KR20110114701A - 다차원 무선 충전에 관한 시스템 및 방법 - Google Patents

다차원 무선 충전에 관한 시스템 및 방법 Download PDF

Info

Publication number
KR20110114701A
KR20110114701A KR1020117020595A KR20117020595A KR20110114701A KR 20110114701 A KR20110114701 A KR 20110114701A KR 1020117020595 A KR1020117020595 A KR 1020117020595A KR 20117020595 A KR20117020595 A KR 20117020595A KR 20110114701 A KR20110114701 A KR 20110114701A
Authority
KR
South Korea
Prior art keywords
transmit
antenna
power
antennas
transmit antenna
Prior art date
Application number
KR1020117020595A
Other languages
English (en)
Inventor
어니스트 티 오자키
리나트 버도
샤힌 파라하니
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20110114701A publication Critical patent/KR20110114701A/ko

Links

Images

Classifications

    • H04B5/79
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre
    • H04B10/25759Details of the reception of RF signal or the optical conversion before the optical fibre
    • H04B5/24
    • H04B5/26
    • H04B5/263
    • H04B5/266
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/22The load being a portable electronic device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Abstract

무선 충전에 관한 예시적인 방법들 및 시스템들이 개시된다. 예시적인 실시형태에서, 복수의 송신 안테나가 사용되고, 복수의 송신 안테나 중 적어도 하나의 송신 안테나는 복수의 송신 안테나 중 적어도 하나의 다른 송신 안테나와는 다른 평면에 배향되도록 구성된다. 또한, 복수의 송신 안테나의 각 송신 안테나는 관련된 근거리장내에서 전력을 송신하기 위해 구성된다.

Description

다차원 무선 충전에 관한 시스템 및 방법{SYSTEMS AND METHODS RELATING TO MULTI-DIMENSIONAL WIRELESS CHARGING}
35 U.S.C.§119 하의 우선권 주장
본 출원은 35 U.S.C.§119(e) 하에서,
그 개시물이 전체적으로 참조로 여기에 포함되는, 2009년 2월 10일 출원된 "MULTI-DIMENSIONAL WIRELESS CHARGING" 이란 명칭의 미국 가특허 출원 번호 61/151,290; 및
그 개시물이 전체적으로 참조로 여기에 포함되는, 2009년 9월 21일 출원된 "MULTI-ANTENNA TRANSMITTER FOR WIRELESS CHARGING" 이란 명칭의 미국 가특허 출원 번호 61/244,391 에 대한 우선권을 주장한다.
본 발명은 일반적으로 무선 충전에 관한 것으로, 더욱 구체적으로는, 다차원 무선 충전에 관한 디바이스, 시스템, 및 방법에 관한 것이다.
통상적으로, 각각의 배터리 전력공급 디바이스는 그 자체의 충전기 및 일반적으로 AC 전력 아웃렛인 전원을 요구한다. 이것은 다수의 디바이스들이 충전을 필요로 할 때 불편하게 된다.
송신기와 충전될 디바이스 사이에서 공중 전력 송신을 통해 사용하는 접근방식들이 개발되고 있다. 이들은 일반적으로 2개의 카테고리내에 있다. 하나는, 방사 전력을 수집하고, 배터리를 충전하기 위해 그것을 정류하는 충전될 디바이스상의 송신 안테나와 수신 안테나 사이의 평면파 방사 (또한 원거리장 방사라 칭함) 의 커플링에 기초한다. 안테나들은 일반적으로 커플링 효율을 개선하기 위해 공진 길이를 갖는다. 이러한 접근방식은, 전력 커플링이 안테나들 사이의 거리에 따라 급격하게 떨어진다는 사실이 문제점이다. 그래서, 알맞은 거리 이상 (예를 들어, > 1 - 2 m) 의 충전은 어려워진다. 추가로, 시스템이 평면파들을 방사하기 때문에, 필터링을 통해 적절하게 제어되지 않으면, 의도치 않은 방사가 다른 시스템과 간섭할 수 있다.
다른 접근방식들은, 예를 들어, "충전" 매트 또는 표면에 임베디드된 송신 안테나와 충전될 호스트 디바이스에 임베디드된 수신 안테나와 정류 회로 사이의 유도 커플링에 기초한다. 이러한 접근방식은, 송신 안테나와 수신 안테나 사이의 간격이 매우 근접 (예를 들어, mms) 해야 한다는 단점을 갖는다. 이러한 접근방식이 동일한 영역에서 다중의 디바이스를 동시에 충전하는 능력을 갖지만, 이러한 영역을 통상적으로 작아서, 사용자는 디바이스를 특정한 영역에 위치시켜야 한다.
무선 충전기 (예를 들어, 근거리장 자기 공진, 유도 커플링 등) 에 하나 이상의 디바이스를 배치할 때, 수신기와 충전기 사이의 배향은 변화할 수도 있다. 예를 들어, 의료 디바이스를 충전하면서 용액조에서 소독할 때 또는 기구들을 충전하면서 물 아래에서 작업할 때이다. 디바이스가 내부에 유체를 갖는 컨테이너로 떨어질 때, 디바이스가 컨테이너의 바닥에 착지하는 각도는 그것의 질량이 분포되는 방식에 의존한다. 다른 제한하지 않는 예로서, 충전기가 박스 또는 볼 (bowl) 의 형태를 취할 때, 디바이스를 부주의하게 그 안으로 던지는 것은, 사용자에게 매우 편리하지만, 디바이스가 바로 서는 포지션을 보장하지 않는다. 충전기는 또한, 기구 저장 체스트, 장난감 체스트, 또는 무선 충전을 위해 특수하게 설계된 인클로저와 같은 다수의 디바이스를 홀딩할 수 있는 대형 컨테이너 또는 캐비넷에 통합될 수도 있다. 이들 디바이스들로의 수신기 통합은, 디바이스가 상이한 폼 팩터들을 갖고, 무선 전력 송신기에 대해 상이한 배향으로 배치될 수도 있기 때문에 불편할 수도 있다.
무선 충전기들의 기존의 설계들은 사전 정의된 배향하에서 최상으로 수행할 수도 있고, 충전기와 수신기 사이의 배향이 상이하면 더 낮은 전력 레벨을 전달할 수도 있다. 또한, 충전된 디바이스가, 무선 전력의 일부만이 그 디바이스로 전달될 수 있는 포지션에 배치될 때, 충전 시간은 증가할 수 있다. 일부 솔루션들은, 사용자가 충전될 디바이스를 바람직한 배향으로 포지셔닝하는 특수한 크래들 또는 홀더에 디바이스를 배치해야 하는 방식으로 충전기를 설계하고, 이것은 아무 생각없이 충전기에 디바이스를 배치하는 것보다 덜 편리하거나, 다중의 디바이스를 홀딩할 수 없다.
따라서, 다차원 무선 충전에 관한 시스템 및 방법을 제공할 필요성이 존재한다.
도 1 은 무선 전력 전달 시스템의 단순 블록도를 도시한다.
도 2 는 무선 전력 전달 시스템의 단순 개략도를 도시한다.
도 3 은 본 발명의 예시적인 실시형태에서 사용하기 위한 루프 안테나의 개략도를 도시한다.
도 4 는 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 5a 및 도 5b 는 본 발명의 예시적인 실시형태들에 따른 송신 안테나와 수신 안테나에 대한 루프 안테나에 대한 레이아웃들을 도시한다.
도 6 은 도 5a 및 도 5b 에 예시된 정사각형 및 원형 송신 안테나들에 대한 다양한 원주 사이즈에 대한 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 7 은 도 5a 및 도 5b 에 예시된 정사각형 및 원형 송신 안테나들에 대한 다양한 표면적에 대한 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 8 은 공면 (coplanar) 및 동축 배치들에서 커플링 강도들을 예시하기 위해 송신 안테나에 관한 수신 안테나에 대한 다양한 배치 포인트를 도시한다.
도 9 는 송신 안테나와 수신 안테나 사이의 다양한 거리에서 동축 배치에 대한 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 10 은 본 발명의 예시적인 실시형태에 따른 송신기의 단순 블록도이다.
도 11 은 본 발명의 예시적인 실시형태에 따른 수신기의 단순 블록도이다.
도 12 는 송신기와 수신기 사이에서 메시징을 수행하는 송신 회로의 일부의 단순 개략도를 도시한다.
도 13a 내지 도 13c 는 수신기와 송신기 사이의 메시징을 예시하기 위해 다양한 상태들에서 수신 회로의 일부의 단순 개략도를 도시한다.
도 14a 내지 도 14c 는 수신기와 송신기 사이의 메시징을 예시하기 위해 다양한 상태들에서 대안의 수신 회로의 일부의 단순 개략도를 도시한다.
도 15a 내지 도 15d 는 송신기와 수신기 사이에서 전력을 송신하는 비컨 전력 모드를 예시하는 단순 블록도이다.
도 16a 는 송신 안테나와 공면 배치되고 송신 안테나의 주위 이내 배치된 3개의 상이한 소형 중계기 안테나들을 갖는 대형 송신 안테나를 예시한다.
도 16b 는 송신 안테나에 대하여 오프셋 동축 배치 및 오프셋 공면 배치를 갖는 소형 중계기 안테나들을 갖는 대형 송신 안테나를 예시한다.
도 17 은 송신 안테나, 중계기 안테나, 및 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 18a 는 중계기 안테나들이 없는 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 18b 는 중계기 안테나를 갖는 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다.
도 19 는 본 발명의 하나 이상의 예시적인 실시형태에 따른 송신기의 단순 블록도이다.
도 20 은 본 발명의 예시적인 실시형태에 따른 확장된 면적의 무선 충전 장치의 단순 블록도이다.
도 21 은 본 발명의 다른 예시적인 실시형태에 따른 확장된 면적의 무선 충전 장치의 단순 블록도이다.
도 22a 및 도 22b 는 본 발명의 예시적인 실시형태에 따른, 충전 장치에 커플링되고 다중 평면에 배향된 복수의 송신 안테나를 포함하는 충전 시스템을 예시한다.
도 23a 및 도 23b 는 본 발명의 예시적인 실시형태에 따른, 충전가능한 장치에 커플링되고 다중의 평면에 배향된 복수의 송신 안테나를 포함하는 다른 충전 시스템을 예시한다.
도 24 는 본 발명의 예시적인 실시형태에 따른 다중의 평면에 배향된 복수의 송신 안테나를 포함하는 충전 시스템을 예시한다.
도 25 는 본 발명의 예시적인 실시형태에 따른 다중의 평면에 배향된 복수의 송신 안테나를 포함하는 다른 충전 시스템을 예시한다.
도 26 은 본 발명의 예시적인 실시형태에 따른 다중의 평면에 배향된 복수의 송신 안테나를 포함하는 다른 충전 시스템을 예시한다.
도 27 은 본 발명의 예시적인 실시형태에 따른 다중의 평면에 배향된 복수의 송신 안테나를 포함하는 또 다른 충전 시스템을 예시한다.
도 28 은 본 발명의 예시적인 실시형태에 따른 복수의 병렬 송신 안테나를 포함하는 다른 충전 시스템을 예시한다.
도 29 는 본 발명의 예시적인 실시형태에 따른 실질적으로 직교 방향에서 다중의 패싯 (facet) 을 포함하는 연속 루프 송신 안테나를 예시한다.
도 30 은 본 발명의 예시적인 실시형태에 따른 다중의 평면에 배향된 복수의 송신 안테나를 포함하는 다른 충전 시스템을 예시한다.
도 31 은 본 발명의 예시적인 실시형태에 따른 다중의 평면에 배향된 복수의 송신 안테나를 포함하는 또 다른 충전 시스템을 예시한다.
도 32 는 본 발명의 예시적인 실시형태에 따른 방법을 예시하는 플로우차트이다.
도 33 은 본 발명의 예시적인 실시형태에 따른 다른 방법을 예시하는 플로우차트이다.
단어 "예시적인" 은 "예, 경우, 또는 예시로서 기능하는" 을 의미하는 것으로 여기에서 사용된다. "예시적인" 으로서 여기에 설명된 임의의 실시형태가 다른 실시형태 보다 바람직하거나 유용한 것으로서 반드시 해석되지는 않는다.
첨부한 도면과 관련하여 아래에 설명된 상세한 설명은, 본 발명의 예시적인 실시형태의 설명으로서 의도되고, 본 발명의 실시될 수 있는 실시형태들만을 나타내는 것으로 의도되지 않는다. 이러한 설명 전반적으로 사용된 용어 "예시적인" 은 "예, 경우, 또는 예시로서 기능하는" 을 의미하고, 다른 예시적인 실시형태들 보다 바람직하거나 유용한 것으로서 반드시 해석되지 않아야 한다. 상세한 설명은 본 발명의 예시적인 실시형태들의 완전한 이해를 제공하기 위한 특정한 상세를 포함한다. 본 발명의 예시적인 실시형태들이 이들 특정한 상세없이도 실시될 수도 있다는 것이 당업자에게는 명백할 것이다. 일부 경우에서, 널리 공지된 구조들 및 디바이스들은 여기에 제공된 예시적인 실시형태들의 신규성을 모호하게 하는 것을 회피하기 위해 블록도 형태로 도시된다.
단어 "무선 전력" 은 물리적인 전자기 도체들을 사용하지 않고 송신기로부터 수신기로 송신되는 전기장, 자기장, 전자기장, 또는 그 외 것과 관련된 임의의 형태의 에너지를 의미하는 것으로 여기에서 사용된다.
도 1 은 본 발명의 다양한 예시적 실시형태에 따른 무선 송신 또는 충전 시스템 (100) 을 예시한다. 에너지 전달을 제공하기 위한 방사장 (radiated field; 106) 을 생성하기 위해 입력 전력 (102) 이 송신기 (104) 에 제공된다. 수신기 (108) 는 방사장 (106) 에 커플링되며, 출력 전력 (110) 에 커플링된 디바이스 (미도시) 에 의한 소비 또는 저장을 위해 출력 전력 (110) 을 생성한다. 송신기 (104) 및 수신기 (108) 양자는 거리 (112) 만큼 분리되어 있다. 하나의 예시적 실시형태에서, 송신기 (104) 및 수신기 (108) 는 상호 공진 관계에 따라 구성되며, 수신기 (108) 의 공진 주파수 및 송신기 (104) 의 공진 주파수가 정확히 동일한 경우, 수신기 (108) 가 방사장 (106) 의 "근거리장" 에 위치될 때 송신기 (104) 와 수신기 (108) 사이의 송신 손실이 최소화된다.
송신기 (104) 는 에너지 송신을 위한 수단을 제공하는 송신 안테나 (114) 를 더 포함하고, 수신기 (108) 는 에너지 수신을 위한 수단을 제공하는 수신 안테나 (118) 를 더 포함한다. 송신 및 수신 안테나는 그들과 관련될 애플리케이션 및 디바이스에 따라 사이징된다. 진술된 바와 같이, 전자기파로 에너지의 대부분을 원거리장에 전파하기보다는 송신 안테나의 근거리장 내의 에너지의 큰 부분을 수신 안테나에 커플링함으로써, 효율적인 에너지 전달이 발생한다. 이러한 근거리장에 있을 때, 송신 안테나 (114) 와 수신 안테나 (118) 사이에 커플링 모드가 발생될 수도 있다. 여기에서, 이러한 근거리장 커플링이 발생할 수도 있는 안테나 (114 및 118) 주변의 영역은 커플링 모드 영역으로 지칭된다.
도 2 는 무선 전력 송신 시스템의 단순한 개략도를 도시한다. 송신기 (104) 는 오실레이터 (122), 전력 증폭기 (124) 및 필터와 정합 회로 (126) 를 포함한다. 오실레이터는 조정 신호 (123) 에 응답하여 조정될 수도 있는 원하는 주파수에서 오실레이터 신호를 생성하도록 구성된다. 오실레이터 신호는 제어 신호 (125) 에 응답하는 증폭량으로 전력 증폭기 (124) 에 의해 증폭될 수도 있다. 고조파 또는 다른 원치않는 주파수를 필터링하고 송신기 (104) 의 임피던스를 송신 안테나 (114) 에 정합시키기 위해 필터 및 정합 회로 (126) 가 포함될 수도 있다.
수신기는, DC 전력 출력을 생성하여 도 2 에 도시된 바와 같이 배터리 (136) 를 충전시키거나 수신기에 커플링된 디바이스 (미도시) 에 전력공급하기 위한 정합 회로 (132) 및 정류기 및 스위칭 회로를 포함할 수도 있다. 수신기 (108) 의 임피던스를 수신 안테나 (118) 에 정합시키기 위해 정합 회로 (132) 가 포함될 수도 있다.
도 3 에 예시된 바와 같이, 예시적 실시형태에서 사용된 안테나는 여기에서 "자기" 안테나라고도 또한 지칭될 수도 있는 "루프" 안테나 (150) 로서 구성될 수도 있다. 루프 안테나는 페라이트 코어와 같은 물리적 코어 또는 공심 (air-core) 을 포함하도록 구성될 수도 있다. 공심 루프 안테나는 코어 근방에 배치된 외부의 물리적 디바이스들에 대해 더 허용가능할 수도 있다. 또한, 공심 루프 안테나는 코어 영역 내에 다른 컴포넌트들의 배치를 허용한다. 또한, 공심 루프는 송신 안테나 (114) (도 2) 의 평면 내의 수신 안테나 (118) (도 2) 의 배치를 더 용이하게 가능하게 할 수도 있으며, 여기서 송신 안테나 (114) (도 2) 의 커플링 모드 영역은 더 강력할 수도 있다.
진술된 바와 같이, 송신기 (104) 와 수신기 (108) 사이의 정합 또는 거의 정합된 공진 동안에 송신기 (104) 와 수신기 (108) 사이의 에너지의 효율적인 전달이 발생한다. 그러나, 송신기 (104) 와 수신기 (108) 사이의 공진이 정합되지 않는 경우라도, 에너지가 저효율로 전달될 수도 있다. 에너지의 전달은 송신 안테나로부터 자유 공간으로 에너지를 전파하는 것보다는, 송신 안테나의 근거리장으로부터의 에너지를 이러한 근거리장이 확립된 이웃에 상주하는 수신 안테나에 커플링함으로써 발생한다.
루프 또는 자기 안테나의 공진 주파수는 인덕턴스 및 커패시턴스에 기초한다. 루프 안테나의 인덕턴스는 일반적으로 단순히 그 루프에 의해 생성된 인덕턴스이지만, 커패시턴스는 일반적으로 원하는 공진 주파수에서 공진 구조를 생성하기 위해 루프 안테나의 인덕턴스에 부가된다. 비제한적 예로서, 공진 신호 (156) 를 생성하는 공진 회로를 생성하기 위해, 커패시터 (152) 및 커패시터 (154) 가 안테나에 부가될 수도 있다. 따라서, 더 큰 직경의 루프 안테나의 경우, 공진을 유도하는데 필요한 커패시턴스의 사이즈는, 그 루프의 직경 또는 인덕턴스가 증가함에 따라 감소한다. 또한, 루프 또는 자기 안테나의 직경이 증가함에 따라, 근거리장의 효율적인 에너지 전달 영역이 증가한다. 물론, 다른 공진 회로들도 가능하다. 다른 비제한적 예로서, 커패시터는 루프 안테나의 2 개의 단자 사이에서 병렬로 배치될 수도 있다. 또한, 송신 안테나의 경우 공진 신호 (156) 가 루프 안테나 (150) 로의 입력일 수도 있다는 것을 당업자는 인식할 것이다.
본 발명의 예시적 실시형태는 서로의 근거리장에 존재하는 2 개의 안테나 사이의 전력을 커플링하는 것을 포함한다. 진술된 바와 같이, 근거리장은 안테나 주변의 영역이며, 여기서 전자기장은 존재하지만 안테나로부터 멀리 전파되거나 방사되지 않을 수도 있다. 통상적으로, 그들은 안테나의 물리적인 볼륨과 비슷한 볼륨으로 한정된다. 본 발명의 예시적 실시형태에서, 싱글 및 멀티-턴 루프 안테나와 같은 자기 타입의 안테나는, 자기 근거리장 진폭이 전기 타입의 안테나 (예를 들어, 작은 다이폴) 의 전기 근거리장과 비교하여 자기 타입의 안테나에 대해 더 높은 경향이 있기 때문에, 송신 (Tx) 및 수신 (Rx) 안테나 시스템 양자에 사용된다. 이것은 그 쌍 사이의 잠재적으로 더 큰 커플링을 허용한다. 또한, "전기" 안테나 (예를 들어, 다이폴 및 모노폴) 또는 자기 및 전기 안테나의 조합이 또한 고려된다.
Tx 안테나는 상술된 원거리장 및 유도성 접근방식들에 의해 허용된 것보다 상당히 더 큰 거리에서 작은 Rx 안테나에 대한 양호한 커플링 (예를 들어, >-4 ㏈) 을 달성하는데 충분히 큰 안테나 사이즈를 갖고 충분히 낮은 주파수에서 동작될 수도 있다. Tx 안테나가 정확히 사이징되면, 호스트 디바이스상의 Rx 안테나가 구동 Tx 루프 안테나의 커플링 모드 영역 내에 (즉, 근거리장에) 배치될 때, 높은 커플링 레벨 (예를 들어, -2 ㏈ 내지 -4 ㏈) 이 달성될 수 있다.
도 4 는 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 곡선들 (170 및 172) 은, 송신 안테나 및 수신 안테나 각각에 의한 전력의 수용의 측정치를 나타낸다. 다시 말해, 큰 음수를 가지면, 매우 근접한 임피던스 정합이 있고 대부분의 전력이 수용되며, 그 결과, 송신 안테나에 의해 방사된다. 반대로, 작은 음수는 대부분의 전력이 소정의 주파수에서 근접한 임피던스 정합이 없기 때문에 안테나로부터 반사된다는 것을 나타낸다. 도 4 에서, 송신 안테나 및 수신 안테나는 약 13.56 MHz 의 공진 주파수를 갖도록 동조된다.
곡선 (170) 은 다양한 주파수들에서 송신 안테나로부터 송신된 전력량을 예시한다. 따라서, 약 13.528 MHz 및 13.593 MHz 에 대응하는 포인트들 (1a 및 3a) 에서, 대부분의 전력은 반사되고 송신 안테나 외부로 송신되지 않는다. 그러나, 약 13.56 MHz 에 대응하는 포인트 (2a) 에서, 다량의 전력이 수용되고 안테나 외부로 송신된다는 것을 알 수 있다.
유사하게는, 곡선 (172) 은 다양한 주파수들에서 수신 안테나에 의해 수신된 전력량을 예시한다. 따라서, 약 13.528 MHz 및 13.593 MHz 에 대응하는 포인트들 (1b 및 3b) 에서, 대부분의 전력이 반사되고 수신 안테나를 통해 수신기로 전달되지 않는다. 그러나, 약 13.56 MHz 에 대응하는 포인트 (2b) 에서, 대량의 전력이 수신 안테나에 의해 수용되고 수신기로 전달된다는 것을 알 수 있다.
곡선 (174) 은 송신 안테나를 통해 송신기로부터 전송되고, 수신 안테나를 통해 수신되며 수신기로 전달된 이후에 수신기에서 수신된 전력량을 나타낸다. 따라서, 약 13.528 MHz 및 13.593 MHz 에 대응하는 포인트들 (1c 및 3c) 에서, 송신기 외부로 전송된 대부분의 전력은 (1) 송신 안테나가 송신기로부터 송신 안테나로 전송된 대부분의 전력을 거부하고 (2) 송신 안테나와 수신 안테나 사이의 커플링은 주파수가 공진 주파수로부터 이격하여 이동할 때 덜 효율적이기 때문에, 수신기에서 이용가능하지 않다. 그러나, 약 13.56 MHz 에 대응하는 포인트 (2c) 에서, 송신기로부터 전송된 대량의 전력이 수신기에서 이용가능하고, 이것은 송신 안테나와 수신 안테나 사이의 커플링의 높은 정도를 나타낸다.
도 5a 및 도 5b 는 본 발명의 예시적인 실시형태에 따른 송신 안테나와 수신 안테나에 대한 루프 안테나들의 레이아웃들을 도시한다. 루프 안테나들은 광범위한 사이즈에서의 단일 루프들 또는 다중 루프들을 갖는, 다수의 상이한 방식으로 구성될 수도 있다. 또한, 루프들은 단지 예를 들어, 원형, 타원형, 정사각형 및 직사각형과 같은 다수의 상이한 형상일 수도 있다. 도 5a 는 대형 정사각형 루프 송신 안테나 (114S) 및 그 송신 안테나 (114S) 와 동일한 평면 및 송신 안테나 (114S) 의 중심 근처에 배치된 소형 정사각형 루프 수신 안테나 (118) 를 예시한다. 도 5b 는 대형 원형 루프 송신 안테나 (114C) 및 그 송신 안테나 (114C) 와 동일한 평면 및 그 송신 안테나 (114C) 의 중심 근처에 배치된 소형 정사각형 루프 수신 안테나 (118') 를 예시한다. 정사각형 루프 송신 안테나 (114S) 는 측면 길이 "a" 를 갖고, 원형 루프 송신 안테나 (114C) 는 직경 "
Figure pct00001
" 를 갖는다. 정사각형 루프에 대해, 그 직경이
Figure pct00002
로서 정의될 수도 있는 등가의 원형 루프가 존재한다는 것을 나타낼 수 있다.
도 6 은 도 4a 및 도 4b 에 예시된 정사각형 및 원형 송신 안테나들에 대한 다양한 원주들에 대한 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 따라서, 곡선(180)은 원형 루프 송신 안테나 (114C) 에 대한 다양한 원주 사이즈에서 원형 루프 송신 안테나 (114C) 와 수신 안테나 (118) 사이의 커플링 강도를 도시한다. 유사하게는, 곡선 (182) 은 송신 루프 송신 안테나 (114S) 에 대한 다양한 등가의 원주 사이즈에서 정사각형 루프 송신 안테나 (114S) 와 수신 안테나 (118') 사이의 커플링 강도를 도시한다.
도 7 은 도 5a 및 도 5b 에 예시된 정사각형 및 원형 송신 안테나들에 대한 다양한 표면적에 대한 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 따라서, 곡선 (190) 은 원형 루프 송신 안테나 (114C) 에 대한 다양한 표면적에서 원형 루프 송신 안테나 (114C) 와 수신 안테나 (118) 사이의 커플링 강도를 도시한다. 유사하게는, 곡선 (192) 은 송신 루프 송신 안테나 (114S) 에 대한 다양한 표면적에서 정사각형 루프 송신 안테나 (114S) 와 수신 안테나 (118') 사이의 커플링 강도를 도시한다.
도 8 은 공면 및 동축 배치에서 커플링 강도들을 예시하기 위해 송신 안테나에 관한 수신 안테나에 대한 다양한 배치 포인트들을 도시한다. 여기에서 사용되는 바와 같은 "공면" 은, 송신 안테나 및 수신 안테나가 실질적으로 정렬되고 (즉, 실질적으로 동일한 방향으로 포인팅하는 표면 법선들을 갖고) 송신 안테나와 수신 안테나의 평면들 사이에 거리가 없는 (또는 작은 거리를 갖는) 평면들을 갖는다는 것을 의미한다. 여기에서 사용되는 바와 같은 "동축" 은, 송신 안테나 및 수신 안테나가 실질적으로 정렬되는 평면들을 갖고 (즉, 실질적으로 동일한 방향으로 포인팅하는 표면 법선들을 갖고) 2개의 평면들 사이의 거리가 사소하지 않으며, 또한, 송신 안테나 및 수신 안테나의 표면 법선이 실질적으로 동일한 벡터를 따라 놓여 있거나, 2개의 법선들이 사다리꼴을 이룬다는 것을 의미한다.
예들로서, 포인트들 (p1, p2, p3, 및 p7) 은 송신 안테나에 대한 수신 안테나에 대해 모두 공면 배치 포인트들이다. 다른 예로서, 포인트 (p5 및 p6) 는 송신 안테나에 대한 수신 안테나에 대해 동축 배치 포인트들이다. 아래의 표는 도 8 에 예시된 다양한 배치 포인트들 (p1 내지 p7) 에서의 커플링 강도 (S21) 및 커플링 효율 (수신 안테나에 도달한 송신 안테나로부터 송신된 전력의 퍼센티지로서 표현됨) 을 나타낸다.
표 1
Figure pct00003
Figure pct00004
알 수 있는 바와 같이, 공면 배치 포인트들 (p1, p2, 및 p3) 모두는 상대적으로 높은 커플링 효율을 나타낸다. 배치 포인트 (p7) 는 또한 공면 배치 포인트이지만, 송신 루프 안테나 외부이다. 배치 포인트 (p7) 가 높은 커플링 효율을 갖지는 않지만, 일부 커플링이 존재하고 커플링 모드 영역이 송신 루프 안테나의 주변을 넘어 연장한다는 것이 명백하다.
배치 포인트 (p5) 는 송신 안테나와 동축이고, 상당한 커플링 효율을 나타낸다. 배치 포인트 (p5) 에 대한 커플링 효율은 공면 배치 포인트들에 대한 커플링 효율들 만큼 높지는 않다. 그러나, 배치 포인트 (p5) 에 대한 커플링 효율은, 상당한 전력이 동축 배치에서 송신 안테나와 수신 안테나 사이에서 전달될 수 있을 만큼 충분히 높다.
배치 포인트 (p4) 는 송신 안테나의 원주 이내이지만, 오프셋 동축 배치 (즉, 실질적으로 동일한 방향이지만 상이한 위치에서 표면 법선들을 가짐) 또는 오프셋 공면 (즉, 실질적으로 동일한 방향에서 표면 법선들을 갖지만 서로에 대하여 오프셋인 평면들을 가짐) 으로서 칭할 수도 있는 포지션에서 송신 안테나의 평면 상부에서 약간의 거리에 있다. 표로부터, 2.5 cm 의 오프셋 거리로, 배치 포인트 (p4) 는 여전치 상대적으로 양호한 커플링 효율을 갖는다는 것을 알 수 있다.
배치 포인트 (p6) 는 송신 안테나의 평면상에서 상당한 거리에 있고 송신 안테나의 원주 외부의 배치 포인트를 예시한다. 표로부터 알 수 있는 바와 같이, 배치 포인트 (p7) 는 송신 안테나와 수신 안테나 사이에 커플링 효율을 거의 나타내지 않는다.
도 9 는 송신 안테나와 수신 안테나 사이의 다양한 거리들에서 동축 배치에 대한 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 도 9 에 대한 시뮬레이션은 모두 약 1.2 미터의 측면을 갖고 10 MHz 의 송신 주파수에서의 동축 배치의 정사각형 송신 및 수신 안테나들에 대한 것이다. 커플링 강도는 약 0.5 미터 보다 작은 거리에서 매우 높고 균일하게 유지된다는 것을 알 수 있다.
도 10 은 본 발명의 예시적 실시형태에 따른 송신기의 단순화된 블록도이다. 송신기 (200) 는 송신 회로 (202) 및 송신 안테나 (204) 를 포함한다. 일반적으로, 송신 회로 (202) 는 송신 안테나 (204) 에 관한 근거리장 에너지의 생성을 야기하는 발진 신호를 제공함으로써 RF 전력을 송신 안테나 (204) 에 제공한다. 예로서, 송신기 (200) 는 13.56 MHz ISM 대역에서 동작할 수도 있다.
예시적인 송신 회로 (202) 는 송신 회로 (202) 의 임피던스 (예를 들어, 50 옴) 를 송신 안테나 (204) 에 정합시키는 고정 임피던스 정합 회로 (206) 및 수신기 (108) (도 1) 에 커플링된 디바이스의 자기 재밍을 방지하기 위한 레벨로 고조파 방출을 감소시키도록 구성된 로우 패스 필터 (LPF) (208) 를 포함한다. 다른 예시적인 실시형태는 특정 주파수를 감쇠시키지만 다른 주파수는 통과시키는 노치 필터 (이에 한정되지 않음) 를 포함하는 상이한 필터 토폴로지를 포함할 수도 있고, 전력 증폭기에 의한 DC 전류 인출 또는 안테나로의 출력 전력과 같은 측정가능한 송신 메트릭에 기초하여 변화될 수도 있는 적응형 임피던스 정합을 포함할 수도 있다. 송신 회로 (202) 는 오실레이터 (212) 에 의해 결정되는 RF 신호를 구동하도록 구성된 전력 증폭기 (210) 를 더 포함한다. 송신 회로는 개별 디바이스들 또는 회로들로 구성될 수도 있고, 또는 다르게는 집적 어셈블리로 구성될 수도 있다. 송신 안테나 (204) 로부터 출력된 예시적인 RF 전력은 대략 2.5 와트일 수도 있다.
송신 회로 (202) 는 특정 수신기에 대한 송신 페이즈 (또는 듀티 사이클) 동안에 오실레이터 (212) 를 인에이블시키고, 오실레이터의 주파수를 조정하며, 부착된 수신기를 통해 인접하는 디바이스와 상호작용하는 통신 프로토콜을 구현하기 위해 출력 전력 레벨을 조정하기 위한 프로세서 (214) 를 더 포함한다.
송신 회로 (202) 는 송신 안테나 (204) 에 의해 생성된 근거리장의 근방에서 액티브 수신기의 존재 또는 부재를 검출하는 로드 감지 회로 (216) 를 더 포함할 수도 있다. 예로서, 로드 감지 회로 (216) 는 전력 증폭기 (210) 로 흐르는 전류를 모니터링하고, 그 전력 증폭기 (210) 는 송신 안테나 (204) 에 의해 생성된 근거리장의 근방에서 액티브 수신기의 존재 또는 부재에 의해 영향을 받는다. 액티브 수신기와 통신하기 위한 에너지를 송신하기 위해 오실레이터 (212) 를 인에이블시킬지 여부를 결정하는데 이용하기 위해, 전력 증폭기 (210) 상의 부하에 대한 변화의 검출이 프로세서 (214) 에 의해 모니터링된다.
송신 안테나 (204) 는 저항 손실을 낮게 유지하도록 선택된 두께, 폭 및 금속 타입을 갖는 안테나 스트립으로서 구현될 수도 있다. 종래의 구현에서, 송신 안테나 (204) 는 일반적으로 테이블, 매트, 램프 또는 다른 휴대성이 작은 구성과 같은 더 큰 구조와 연관되도록 구성될 수도 있다. 따라서, 송신 안테나 (204) 는 일반적으로 실제 치수로 되기 위하여 "턴 (turn)" 을 필요로 하지 않을 것이다. 송신 안테나 (204) 의 예시적인 구현은 "전기적으로 작을" 수도 있고 (즉, 파장의 일부), 공진 주파수를 정의하기 위해 커패시터를 사용함으로써 더 작은 가용 주파수에서 공진하도록 동조될 수도 있다. 송신 안테나 (204) 가 수신 안테나에 비해 직경에 있어서 더 클 수도 있거나, 또는 사각 루프인 경우 측면의 길이 (예를 들어, 0.50 미터) 에 있어서 클 수도 있는 예시적인 애플리케이션에서, 송신 안테나 (204) 는 적정한 커패시턴스를 획득하기 위해 다수의 턴을 반드시 필요로 하지는 않을 것이다.
도 11 은 본 발명의 예시적인 실시형태에 따른 수신기의 블록도이다. 수신기 (300) 는 수신 회로 (302) 및 수신 안테나 (304) 를 포함한다. 수신기 (300) 는 수신된 전력을 거기에 제공하는 디바이스 (350) 에 또한 커플링된다. 수신기 (300) 가 디바이스 (350) 외부에 존재하는 것으로 예시되어 있지만, 디바이스 (350) 내로 집적될 수도 있다는 것에 유의해야 한다. 일반적으로, 에너지가 수신 안테나 (304) 에 무선으로 전파된 후에, 수신 회로 (302) 를 통해 디바이스 (350) 에 커플링된다.
수신 안테나 (304) 는 송신 안테나 (204) (도 10) 와 같이, 동일한 주파수에서 또는 동일한 주파수 근처에서 공진하도록 동조된다. 수신 안테나 (304) 는 송신 안테나 (204) 와 유사하게 치수가 정해질 수도 있고, 또는 관련된 디바이스 (350) 의 치수에 기초하여 상이하게 사이징될 수도 있다. 예로서, 디바이스 (350) 는 송신 안테나 (204) 의 직경 또는 길이보다 작은 직경 또는 길이 치수를 갖는 휴대용 전자 디바이스일 수도 있다. 이러한 예에서, 동조 커패시터 (미도시) 의 커패시턴스 값을 감소시키고 수신 안테나의 임피던스를 증가시키기 위하여 수신 안테나 (304) 가 멀티-턴 안테나로서 구현될 수도 있다. 예로서, 안테나 직경을 최대화하고 수신 안테나의 루프 턴 (즉, 권선) 의 수 및 권선간 커패시턴스를 감소시키기 위하여 수신 안테나 (304) 가 디바이스 (350) 의 실질적인 원주 주위에 배치될 수도 있다.
수신 회로 (302) 는 수신 안테나 (304) 에 대한 임피던스 정합을 제공한다. 수신 회로 (302) 는 수신된 RF 에너지 소스를 디바이스 (350) 에 의한 사용을 위한 충전 전력으로 변환하는 전력 변환 회로 (306) 를 포함한다. 전력 변환 회로 (306) 는 RF-DC 변환기 (308) 를 포함하고, 또한 DC-DC 변환기 (310) 를 포함할 수도 있다. RF-DC 변환기 (308) 는 수신 안테나 (304) 에 의해 수신된 RF 에너지 신호를 비-교류 전력으로 정류하는 한편, DC-DC 변환기 (310) 는 정류된 RF 에너지 신호를 디바이스 (350) 와 호환성이 있는 에너지 전위 (예를 들어, 전압) 로 변환한다. 다양한 RF-DC 변환기는 선형 및 스위칭 변환기 뿐만 아니라, 부분파 및 전파 정류기, 레귤레이터, 브리지, 더블러 (doubler) 를 포함하는 것으로 고려된다.
수신 회로 (302) 는 수신 안테나 (304) 를 전력 변환 회로 (306) 에 접속하거나 또는 다르게는 전력 변환 회로 (306) 를 접속해제하는 스위칭 회로 (312) 를 더 포함할 수도 있다. 더욱 충분히 후술하는 바와 같이, 수신 안테나 (304) 를 전력 변환 회로 (306) 로부터 접속해제하는 것은 디바이스 (350) 의 충전을 중지시킬 뿐만 아니라, 송신기 (200) (도 2) 에 의해 "확인" 되는 "부하" 를 변경한다. 상술한 바와 같이, 송신기 (200) 는 송신기 전력 증폭기 (210) 에 제공되는 바이어스 전류의 변동을 검출하는 부하 감지 회로 (216) 를 포함한다. 따라서, 송신기 (200) 는 수신기가 송신기의 근거리장에 존재하는 때를 결정하기 위한 메커니즘을 갖는다.
다수의 수신기 (300) 가 송신기의 근거리장에 존재할 때, 하나 이상의 수신기의 로딩 및 언로딩을 시간 멀티플렉싱하여 다른 수신기로 하여금 송신기에 더욱 효율적으로 커플링할 수 있게 하는 것이 바람직할 수도 있다. 또한, 다른 근처의 수신기에 커플링하는 것을 제거하거나 또는 근처의 송신기 상의 로딩을 감소시키기 위하여 수신기가 은폐 (cloak) 될 수도 있다. 또한, 이러한 수신기의 "언로딩" 은 여기에서 "은폐" 로서 인식된다. 또한, 수신기 (300) 에 의해 제어되고 송신기 (200) 에 의해 검출된 언로딩과 로딩 사이의 이러한 스위칭은 더욱 완전하게 후술되는 바와 같이 수신기 (300) 로부터 송신기 (200) 로의 통신 메커니즘을 제공한다. 추가로, 프로토콜은 수신기 (300) 로부터 송신기 (200) 로의 메시지의 전송을 가능하게 하는 스위칭과 연관될 수도 있다. 예로서, 스위칭 속도는 대략 100 μsec 일 수도 있다.
일 예시적 실시형태에서, 송신기와 수신기 사이의 통신은 종래의 양방향 통신보다는 디바이스 감지 및 충전 제어 메커니즘으로 지칭한다. 다시 말해, 송신기는 송신된 신호의 온/오프 키잉 (keying) 을 이용하여 근거리장에서의 에너지의 가용성을 조정할 수도 있다. 수신기는 에너지의 이들 변화를 송신기로부터의 메시지로서 해석한다. 수신기측으로부터, 수신기는 수신 안테나의 동조 및 이조를 이용하여 근거리장으로부터 얼마나 많은 전력이 수용되고 있는지를 조정한다. 송신기는 근거리장으로부터 이용된 이러한 전력의 차이를 검출하여 이들 변화를 수신기로부터의 메시지로서 해석할 수도 있다.
수신 회로 (302) 는 수신된 에너지 변동을 식별하는데 사용되는 시그널링 검출기 및 비컨 회로 (314) 를 더 포함할 수도 있고, 그 수신된 에너지 변동은 송신기로부터 수신기로의 정보 시그널링에 대응할 수도 있다. 또한, 시그널링 및 비컨 회로 (314) 는 또한 무선 충전을 위한 수신 회로 (302) 를 구성하기 위하여, 감소된 RF 신호 에너지 (즉, 비컨 신호) 의 송신을 검출하고, 감소된 RF 신호 에너지를 수신 회로 (302) 내의 미전력공급형 또는 전력격감형 회로 중 어느 하나를 지각하기 위한 공칭 전력으로 정류하는데 사용될 수도 있다.
수신 회로 (302) 는 여기에서 설명된 스위칭 회로 (312) 의 제어를 포함하여 여기에서 설명된 수신기 (300) 의 프로세스를 조정하는 프로세서 (316) 를 더 포함한다. 또한, 충전 전력을 디바이스 (350) 에 제공하는 외부의 유선 충전 소스 (예를 들어, 벽/USB 전력) 의 검출을 포함하는 다른 이벤트의 발생시 수신기 (300) 의 은폐가 발생할 수도 있다. 또한, 프로세서 (316) 는, 수신기의 은폐를 제어하는 것 이외에도, 비컨 회로 (314) 를 모니터링하여 비컨 상태를 결정하고 송신기로부터 전송된 메시지를 추출할 수도 있다. 또한, 프로세서 (316) 는 성능을 개선하기 위해 DC-DC 변환기 (310) 를 조정할 수도 있다.
도 12 는 송신기와 수신기 사이에서 메시징을 수행하는 송신 회로의 일부의 단순 개략도를 도시한다. 본 발명의 일부 예시적인 실시형태들에서, 통신 수단이 송신기와 수신기 사이에서 인에이블될 수도 있다. 도 12 에서, 전력 증폭기 (210) 는 방사장을 생성하기 위해 송신 안테나 (204) 를 구동한다. 전력 증폭기는 송신 안테나 (204) 에 대해 원하는 주파수에서 발진하는 캐리어 신호 (220) 에 의해 구동된다. 송신 변조 신호 (224) 는 전력 증폭기 (210) 의 출력을 제어하기 위해 사용된다.
송신 회로는 전력 증폭기 (210) 상에서 온/오프 (ON/OFF) 키잉 프로세스들을 사용함으로써 수신기로 신호를 전송할 수 있다. 다시 말해, 송신 변조 신호 (224) 가 선언되면, 전력 증폭기 (210) 는 송신 안테나 (204) 상의 캐리어 신호 (220) 의 주파수를 구동할 것이다. 송신 변조 신호 (224) 가 무효가 되면, 전력 증폭기는 송신 안테나 (204) 상의 어떠한 주파수도 구동하지 않을 것이다.
도 12 의 송신 회로는 또한, 전력 증폭기 (210) 에 전력을 공급하고 수신 신호 (235) 출력을 생성하는 부하 감지 회로 (216) 를 포함한다. 부하 감지 회로 (216) 에서, 저항 (RS) 양단의 전압 강하는 전력 입력 신호 (226) 와 전력 증폭기 (210) 에 대한 전원 (228) 사이에서 나타난다. 전력 증폭기 (210) 에 의해 소모된 전력에서의 임의의 변화는, 차동 증폭기 (230) 에 의해 증폭될 전압 강하에서의 변화를 야기할 것이다. 송신 안테나가 수신기 (도 12 에는 미도시) 에서의 수신 안테나와 커플링된 모드에 있으면, 전력 증폭기 (210) 에 의해 인출된 전류량이 변화할 것이다. 다시 말해, 송신 안테나 (210) 에 대해 커플링된 모드 공진이 존재하지 않으면, 방사장을 구동하기 위해 요구되는 전력은 제 1 양이다. 커플링된 모드 공진이 존재하면, 많은 전력이 수신 안테나에 커플링되어 있기 때문에 전력 증폭기 (210) 에 의해 소모된 전력량은 올라간다. 따라서, 수신 신호 (235) 는 송신 안테나 (235) 에 커플링된 수신 안테나의 존재를 나타낼 수 있고, 후술하는 바와 같이, 수신 안테나로부터 전송된 신호를 또한 검출할 수 있다. 추가로, 수신기 전류 인출에서의 변화는 송신기의 전력 증폭기 전류 인출에서 관측가능하고, 이러한 변화는 후술하는 바와 같이, 수신 안테나로부터의 신호를 검출하는데 사용될 수 있다.
도 13a 내지 도 13c 는 수신기와 송신기 사이의 메시징을 예시하기 위한 다양한 상태에서의 수신 회로의 일부의 단순 개략도를 도시한다. 도 13a 내지 도 13c 전부는 다양한 스위치의 상태에 차이가 있는 동일한 회로 엘리먼트를 도시한다. 수신 안테나 (304) 는 특성 인덕턴스 (L1) 를 포함하고, 그 특성 인덕턴스 (L1) 는 노드 (350) 를 구동한다. 노드 (350) 는 스위치 (S1A) 를 통해 접지에 선택적으로 커플링된다. 또한, 노드 (350) 는 스위치 (S1B) 를 통해 다이오드 (D1) 및 정류기 (318) 에 선택적으로 커플링된다. 정류기 (318) 는 DC 전력 신호 (322) 를 수신 디바이스 (미도시) 에 공급하여 수신 디바이스에 전력공급하고, 배터리를 충전하거나, 이들의 조합을 행한다. 다이오드 (D1) 는 커패시터 (C3) 및 저항기 (R1) 로 고조파 및 원치않는 주파수를 제거하기 위해 필터링되는 송신 신호 (320) 에 커플링된다. 따라서, D1, C3, 및 R1 의 결합은 도 12 의 송신기를 참조하여 상기 논의된 송신 변조 신호 (224) 에 의해 생성된 송신 변조처럼 보이는 송신 신호 (320) 에 대한 신호를 생성할 수 있다.
본 발명의 예시적인 실시형태들은 수신 디바이스의 전류 인출의 변조 및 수신 안테나의 임피던스의 변조를 포함하여 역방향 링크 시그널링을 달성한다. 도 13a 및 도 12 양자를 참조하면, 수신 디바이스의 전력 인출이 변화함에 따라, 부하 감지 회로 (216) 는 송신 안테나상에서 결과적인 전력 변화를 검출하고, 이들 변화로부터 수신 신호 (235) 를 생성할 수 있다.
도 13a 내지 도 13c 의 예시적인 실시형태에서, 송신기를 통한 전류 인출은 스위치 (S1A 및 S2A) 의 상태를 변경함으로써 변화될 수도 있다. 도 13a 에서, 스위치 (S1A) 및 스위치 (S2A) 는 양자가 개방되어 "DC 개방 상태" 를 생성하고 본질적으로는 송신 안테나 (204) 로부터의 부하를 제거한다. 이것은 송신기에 의해 확인되는 전류를 감소시킨다.
도 13b 에서, 스위치 (S1A) 가 폐쇄되고 스위치 (S2A) 가 개방되어 수신 안테나 (304) 에 대한 "DC 단락 상태" 를 생성한다. 따라서 도 13b 의 상태는 송신기에 의해 확인되는 전류를 증가시키는데 사용될 수 있다.
도 13c 에서, 스위치 (S1A) 가 개방되고 스위치 (S2A) 가 폐쇄되어 (여기에서 "DC 동작 상태" 라고도 지칭되는) 정규 수신 모드를 생성하고, 여기서 전력은 DC 출력 신호 (322) 에 의해 공급될 수 있고 송신 신호 (320) 가 검출될 수 있다. 도 13c 에 도시된 상태에서, 수신기는 정규량의 전력을 수신하여, DC 개방 상태 또는 DC 단락 상태보다 많거나 적은, 송신 안테나로부터의 전력을 소모한다.
DC 동작 상태 (도 13c) 와 DC 단락 상태 (도 13b) 사이에서 스위칭함으로써 역방향 링크 시그널링이 달성될 수도 있다. 또한, DC 동작 상태 (도 13c) 와 DC 개방 상태 (도 13a) 사이에서 스위칭함으로써 역방향 링크 시그널링이 달성될 수도 있다.
도 14a 내지 도 14c 는 수신기와 송신기 사이의 메시징을 예시하기 위한 다양한 상태에서의 다른 수신 회로의 일부의 단순 개략도를 도시한다.
도 14a 내지 도 14c 전부는 다양한 스위치의 상태에 차이가 있는 동일한 회로 엘리먼트를 도시한다. 수신 안테나 (304) 는 특성 인덕턴스 (L1) 를 포함하고, 그 특성 인덕턴스 (L1) 는 노드 (350) 를 구동한다. 노드 (350) 는 커패시터 (C1) 및 스위치 (S1B) 를 통해 접지에 선택적으로 커플링된다. 또한, 노드 (350) 는 커패시터 (C2) 를 통해 다이오드 (D1) 및 정류기 (318) 에 커플링된 AC 이다. 다이오드 (D1) 는 커패시터 (C3) 및 저항기 (R1) 로 고조파 및 원치않는 주파수를 제거하기 위해 필터링되는 송신 신호 (320) 에 커플링된다. 따라서, D1, C3, 및 R1 의 결합은 도 12 의 송신기를 참조하여 상기 논의된 송신 변조 신호 (224) 에 의해 생성된 송신 변조처럼 보이는 송신 신호 (320) 에 대한 신호를 생성할 수 있다.
정류기 (318) 는 스위치 (S2B) 에 접속되고, 그 스위치 (S2B) 는 저항기 (R2) 및 접지와 직렬로 접속된다. 또한, 정류기 (318) 는 스위치 (S3B) 에 접속된다. 스위치 (S3B) 의 타측은 DC 전력 신호 (322) 를 수신 디바이스 (미도시) 에 공급하여 그 수신 디바이스에 전력공급하고, 배터리를 충전하거나, 이들의 조합을 행한다.
도 13a 내지 도 13c 에서, 스위치 (S1B) 통해 수신 안테나를 접지에 선택적으로 커플링함으로써 수신 안테나 (304) 의 DC 임피던스가 변화된다. 반대로, 도 14a 내지 도 14c 의 예시적 실시형태에서, 스위치 (S1B, S2B, 및 S3B) 의 상태를 변경하여 수신 안테나 (304) 의 AC 임피던스를 변화시킴으로써 안테나의 임피던스가 변경되어 역방향 링크 시그널링을 발생시킬 수 있다. 도 14a 내지 도 14c 에서, 수신 안테나 (304) 의 공진 주파수가 커패시터 (C2) 와 동조될 수도 있다. 따라서, 본질적으로는 송신 안테나와 최적으로 커플링되는 범위 밖에 있는 상이한 주파수로 공진 회로를 변화시키는 스위치 (S1B) 를 사용하여, 커패시터 (C1) 를 통해 수신 안테나 (304) 를 선택적으로 커플링함으로써 수신 안테나 (304) 의 AC 임피던스가 변화될 수도 있다. 수신 안테나 (304) 의 공진 주파수가 송신 안테나의 공진 주파수에 근접하고, 수신 안테나 (304) 가 송신 안테나의 근거리장에 있으면, 커플링 모드가 발생할 수도 있고, 여기서 수신기는 방사장 (106) 으로부터 상당한 전력을 인출할 수 있다.
도 14a 에서, 스위치 (S1B) 가 폐쇄되고, 이는 안테나를 이조시키고, "AC 은폐 상태" 를 생성하여, 본질적으로는, 수신 안테나가 송신 안테나의 주파수에서 공진하지 않기 때문에 송신 안테나 (204) 에 의한 검출로부터 수신 안테나를 "은폐" 시킨다. 수신 안테나가 커플링 모드에 있지 않을 것이기 때문에, 스위치 (S2B 및 S3B) 의 상태가 본 논의에서는 특히 중요하지 않다.
도 14b 에서, 스위치 (S1B) 가 개방되고, 스위치 (S2B) 가 폐쇄되며, 스위치 (S3B) 가 개방되어, 수신 안테나 (304) 에 대한 "동조 더미-부하 상태" 를 생성한다. 스위치 (S1B) 가 개방되기 때문에, 커패시터 (C1) 는 공진 회로에 기여하지 않으며, 커패시터 (C2) 와 결합된 수신 안테나 (304) 는 송신 안테나의 공진 주파수와 정합할 수도 있는 공진 주파수 내에 존재할 것이다. 개방된 스위치 (S3B) 및 폐쇄된 스위치 (S2B) 의 결합은 정류기에 대한 비교적 고전류의 더미 부하를 생성하고, 그 정류기는 수신 안테나 (304) 를 통해 더 많은 전력을 인출할 것이고, 이는 송신 안테나에 의해 감지될 수 있다. 또한, 수신 안테나가 송신 안테나로부터의 전력을 수신하기 위한 상태에 있기 때문에 송신 신호 (320) 가 검출될 수 있다.
도 14c 에서, 스위치 (S1B) 가 개방되고, 스위치 (S2B) 가 개방되며, 스위치 (S3B) 가 폐쇄되어, 수신 안테나 (304) 에 대한 "동조 동작 상태" 를 생성한다. 스위치 (S1B) 가 개방되기 때문에, 커패시터 (C1) 는 공진 회로에 기여하지 않으며, 커패시터 (C2) 와 결합된 수신 안테나 (304) 는 송신 안테나의 공진 주파수와 정합할 수도 있는 공진 주파수 내에 존재할 것이다. 개방된 스위치 (S2B) 및 폐쇄된 스위치 (S3B) 의 결합은 정규 동작 상태를 생성하고, 여기서 전력은 DC 출력 신호 (322) 에 의해 공급될 수 있고 송신 신호 (320) 가 검출될 수 있다.
동조 동작 상태 (도 14c) 와 AC 은폐 상태 (도 14a) 사이에서 스위칭함으로써 역방향 링크 시그널링이 달성될 수도 있다. 또한, 동조 더미-부하 상태 (도 14b) 와 AC 은폐 상태 (도 14a) 사이에서 스위칭함으로써 역방향 링크 시그널링이 달성될 수도 있다. 또한, 송신기에서의 부하 감지 회로에 의해 검출될 수 있는 수신기에 의해 소모된 전력량에 차이가 있기 때문에, 동조 동작 상태 (도 14c) 와 동조 더미-부하 상태 (도 14b) 사이에서 스위칭함으로써 역방향 링크 시그널링이 달성될 수도 있다.
물론, 스위치 (S1B, S2B, 및 S3B) 의 다른 조합이 은폐를 생성하고, 역방향 링크 시그널링을 생성하고, 수신 디바이스로 전력을 공급하기 위해 사용될 수도 있다는 것을 당업자는 인식할 것이다. 또한, 은폐, 역방향 링크 시그널링, 및 수신 디바이스로의 전력 공급을 위한 다른 가능한 조합을 생성하기 위해 스위치 (S1A 및 S1B) 가 도 14a 내지 도 14c 의 회로에 추가될 수도 있다.
따라서, 도 12 를 참조하여 상기 논의된 바와 같이, 커플링 모드 신호가 송신기로부터 수신기로 전송될 수도 있다. 또한, 도 13a 내지 도 13c 및 도 14a 내지 도 14c 를 참조하여 상기 논의된 바와 같이, 커플링 모드 신호가 수신기로부터 송신기로 전송될 수도 있다.
도 15a 내지 도 15d 는 송신기와 하나 이상의 수신기 사이에서 전력을 송신하는 비컨 전력 모드를 예시하는 단수 블록도이다. 도 15a 는 비컨 커플링-모드 영역 (510) 에 수신 디바이스가 없을 때 저전력 "비컨" 신호 (525) 를 갖는 송신기 (520) 를 예시한다. 비컨 신호 (525) 는 제한하지 않는 예로서, 예를 들어, ~10 내지 ~20mW RF 의 범위일 수도 있다. 이러한 신호는 커플링-모드 영역에 배치될 때 충전될 디바이스에 초기 전력을 제공하는데 알맞을 수 있다.
도 15b 는 비컨 신호 (525) 를 송신하는 송신기 (520) 의 비컨 커플링-모드 영역 (510) 내에 배치된 수신 디바이스 (530) 를 예시한다. 수신 디바이스 (530) 가 온이고 송신기와의 커플링을 나타내면, 실제로 비컨 신호 (525) 로부터의 수신기 수용 전력인 역방향 링크 커플링 (535) 을 생성할 것이다. 이러한 추가의 전력은 송신기의 부하 감지 회로 (216; 도 12) 에 의해 감지될 수도 있다. 그 결과, 송신기는 고전력 모드로 들어달 수 있다.
도 15c 는 고전력 커플링-모드 영역 (510') 을 발생시키는 고전력 신호 (525') 를 생성하는 송신기 (520) 를 예시한다. 수신 디바이스 (530) 가 전력을 수용하고, 그 결과, 역방향 링크 커플링 (535) 을 생성하는 한은, 송신기는 고전력 상태를 유지한다. 오직 하나의 수신 디바이스 (530) 만이 예시되어 있지만, 다중의 수신 디바이스 (530) 가 커플링-모드 영역 (510) 에 존재할 수도 있다. 다중의 수신 디바이스 (530) 가 존재하면, 이들은 각 수신 디바이스 (530) 가 얼마나 잘 커플링되는지에 기초하여 송신기에 의해 송신된 전력량을 공유할 것이다. 예를 들어, 커플링 효율은 도 8 및 도 9 를 참조하여 상술한 바와 같이, 디바이스가 커플링-모드 영역 (510) 내에 배치되는 위치에 의존하여 각 수신 디바이스 (530) 에 대해 상이할 수도 있다.
도 15d 는, 수신 디바이스 (530) 가 비컨 커플링-모드 영역 (510) 에 있을 때에도 비컨 신호 (525) 를 생성하는 송신기 (520) 를 예시한다. 이러한 상태는, 아마도 더이상 전력을 필요로 하지 않기 때문에, 수신 디바이스 (530) 가 차단되거나, 디바이스가 스스로 은폐할 때 발생할 수도 있다.
수신기 및 송신기는 개별 통신 채널 (예를 들어, 블루투스, 지그비 등) 을 통해 통신할 수도 있다. 개별 통신 채널로, 송신기는 커플링-모드 영역 (510) 에서의 수신 디바이스의 수 및 그들 각각의 전력 요건에 기초하여, 비컨 모드와 고전력 모드 사이에서 스위칭할 때를 결정할 수도 있거나, 다중의 전력 레벨을 생성할 수도 있다.
본 발명의 예시적인 실시형태는, 중계기로서 작용하고, 송신 안테나로부터 수신 안테나로의 전력 흐름을 강화하는 커플링된 안테나의 시스템으로의 추가 안테나의 도입을 통해 2개의 안테나 사이의 근거리장 전력 전달에서 비교적 대형인 송신 안테나와 소형인 수신 안테나 사이의 커플링을 강화하는 것을 포함한다.
예시적인 실시형태에서, 시스템에서의 송신 안테나와 수신 안테나에 커플링하는 하나 이상의 추가의 안테나가 사용된다. 이들 추가의 안테나는 액티브 또는 패시브 안테나와 같은 중계기 안테나를 포함한다. 패시브 안테나는 단순한 안테나 루프 및 안테나의 공진 주파수를 동조시키기 위한 용량성 엘리먼트를 포함할 수도 있다. 액티브 엘리먼트는 안테나 루프 및 하나 이상의 동조 커패시터에 부가하여, 중계된 근거리장 방사의 강도를 증가시키는 증폭기를 포함할 수도 있다.
전력 전달 시스템에서의 송신 안테나와 수신 안테나의 결합은, 매우 소형의 수신 안테나에 대한 전력의 커플링이 종단 부하, 동조 컴포넌트, 공진 주파수, 및 송신 안테나에 대한 중계기 안테나의 배치와 같은 팩터들에 기초하여 강화되도록 최적화될 수도 있다.
단일 송신 안테나는 유한 근거리장 커플링 모드 영역을 나타낸다. 따라서, 송신 안테나의 근거리장 커플링 모드 영역에서 수신기를 통해 충전하는 디바이스의 사용은, 금지적이거나 적어도 불편한 상당한 사용자 액세스 공간을 요구한다. 또한, 커플링 모드 영역은, 수신 안테나가 송신 안테나로부터 떨어져 이동할 때 빠르게 축소할 수도 있다.
중계기 안테나는, 중계기 안테나 주위에 제 2 커플링 모드 영역을 생성하기 위해 송신 안테나로부터의 커플링 모드 영역에 리포커싱(refocus)하고 리세이핑(reshape)할 수도 있고, 이것은 수신 안테나에 에너지를 커플링하는데 더욱 적합할 수도 있다. 중계기 안테나를 포함하는 실시형태들의 몇몇 제한하지 않는 예들이 도 16a 내지 도 18b 에서 이하 논의된다.
도 16a 는 송신 안테나 (610C) 와 공면 배치되고, 그 송신 안테나의 주변내에 배치된 3개의 더 작은 중계기 안테나 (620C) 를 갖는 대형 송신 안테나 (610C) 를 예시한다. 송신 안테나 (610C) 및 중계기 안테나 (620C) 는 테이블 (640) 상에 형성된다. 수신 안테나 (630C) 를 포함하는 다양한 디바이스가 송신 안테나 (610C) 및 중계기 안테나 (620C) 내의 다양한 위치에 배치된다. 도 16a 의 예시적인 실시형태는 송신 안테나 (610C) 에 의해 생성된 커플링 모드 영역을 중계기 안테나 (620C) 각각 주위의 더 작고 더 강한 중계된 커플링 모드 영역으로 리포커싱할 수도 있다. 그 결과, 상대적으로 강한 중계된 근거리장 방사가 수신 안테나 (630C) 에 대해 이용가능하다. 수신 안테나 중 일부는 임의의 중계기 안테나 (620C) 외부에 배치된다. 커플링된 모드 영역이 안테나의 주위 외부로 어느 정도 연장할 수도 있다는 것을 상기한다. 따라서, 수신 안테나 (630C) 는 임의의 근처의 중계기 안테나 (620C) 뿐만 아니라 송신 안테나 (610C) 의 근거리장 방사로부터 전력을 수신할 수도 있다. 그 결과, 임의의 중계기 안테나 (620C) 외부에 배치된 수신 안테나는 임의의 근처의 중계기 안테나 (620C) 뿐만 아니라 송신 안테나 (610C) 의 근거리장 방사로부터 전력을 여전히 수신할 수도 있다.
도 16b 는 송신 안테나 (610D) 에 대하여 오프셋 동축 배치 및 오프셋 공면 배치를 갖는 더 작은 중계기 안테나 (620D) 를 갖는 대형 송신 안테나 (610D) 를 예시한다. 수신 안테나 (630D) 를 포함하는 디바이스는 중계기 안테나 (620D) 중 하나의 주변내에 배치된다. 제한하지 않는 예로서, 송신 안테나 (610D) 는 천장 (646) 에 배치될 수도 있고, 중계기 안테나 (620D) 는 테이블 (640) 상에 배치될 수도 있다. 오프셋 동축 배치에서의 중계기 안테나 (620D) 는 중계기 안테나 (620D) 주위의 중계된 근거리장 방사에 대해 송신 안테나 (610D) 로부터의 근거리장 방사를 리세이핑하고 강화할 수도 있다. 그 결과, 상대적으로 강한 중계된 근거리장 방사가 중계기 안테나 (620D) 와 공면 배치된 수신 안테나 (630D) 에 대해 이용가능하다.
도 17 은 송신 안테나, 중계기 안테나 및 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 송신 안테나, 중계기 안테나, 및 수신 안테나는 약 13.56 MHz 의 공진 주파수를 갖도록 동조된다.
곡선 662 는 다양한 주파수에서 송신 안테나에 공급된 총 전력 중에서 송신 안테나로부터 송신된 전력량에 대한 측정을 예시한다. 유사하게는, 곡선 664 는 다양한 주파수에서 단말기의 근처에서 이용가능한 총 전력 중에서 중계기 안테나를 통해 수신 안테나에 의해 수신된 전력량에 대한 측정을 예시한다. 마지막으로, 곡선 668 은 다양한 주파수에서 송신 안테나 사이에서, 중계기 안테나를 통해 그리고 수신 안테나로 실제로 커플링된 전력량을 예시한다.
약 13.56 MHz 에 대응하는 곡선 668 의 피크에서, 송신기로부터 전송된 대량의 전력이 수신기에서 이용가능하다는 것을 확인할 수 있고, 이것은, 송신 안테나, 중계기 안테나 및 수신 안테나의 결합 사이에서 고도의 커플링을 나타낸다.
도 18a 는 중계기 안테나 없이 송신 안테나에 대해 동축 배치로 배치된 수신 안테나와 송신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 송신 안테나 및 수신 안테나는 약 10 MHz 의 공진 주파수를 갖도록 동조된다. 이러한 시뮬레이션에서의 송신 안테나는 일 측상에서 약 1.3 미터이고, 수신 안테나는 일 측상에서 약 30 mm의 멀티-루프 안테나이다. 수신 안테나는 송신 안테나 평면으로부터 약 2 미터 이격되어 배치된다. 곡선 682A 는 다양한 주파수에서 단자에 공급된 총 전력 중에서 송신 안테나로부터 송신된 전력량에 대한 측정을 예시한다. 유사하게는, 곡선 684A 는 다양한 주파수에서 단자 근처에서 이용가능한 총 전력 중에서 수신 안테나에 의해 수신된 전력량의 측정을 예시한다. 마지막으로, 곡선 686A 는 다양한 주파수에서 송신 안테나와 수신 안테나 사이에 실제로 커플링된 전력량을 예시한다.
도 18b 는 중계기 안테나가 시스템에 포함될 때 도 18a 의 송신 안테나와 수신 안테나 사이의 커플링 강도를 나타내는 시뮬레이션 결과를 도시한다. 송신 안테나와 수신 안테나는 도 18a 와 동일한 사이즈 및 배치이다. 중계기 안테나는 일 측상에서 약 28 cm 이고, 수신 안테나와 공면 배치된다 (즉, 송신 안테나의 평면으로부터 약 0.1 미터 이격된다). 도 18b 에서, 곡선 682B 는 다양한 주파수에서 단말기에 공급된 총 전력 중에서 송신 안테나로부터 송신된 전력량의 측정을 예시한다. 곡선 684B 는 다양한 주파수에서 단말기 근처에서 이용가능한 총 전력 중에서 중계기 안테나를 통해 수신 안테나에 의해 수신된 전력량을 예시한다. 마지막으로, 곡선 686B 는 다양한 주파수에서 송신 안테나 사이에서, 중계를 안테나를 통해, 그리고 수신 안테나로 실제로 커플링된 전력량을 예시한다.
도 18a 및 도 18b 로부터 커플링된 전력 (686A 및 686B) 을 비교할 때, 중계기 안테나 없이, 커플링된 전력 (686A) 은 약 -36dB 에서 피크이다는 것을 확인할 수 있다. 반면에, 중계기 안테나를 가지면, 커플링된 전력 (686B) 은 약 -5 dB 에서 피크이다. 따라서, 공진 주파수 근처에서, 중계기 안테나의 포함으로 인해 수신 안테나에 대해 이용가능한 전력량의 상당한 증가가 존재한다.
본 발명의 예시적인 실시형태는, 송신기가 충전 전력을 개별 디바이스들로 전달하는 효율성을 최적화하기 위해 송신기가 단일 및 다중 디바이스 및 디바이스 타입들로 어떻게 방사하는지를 적절하게 관리하는 저가의 과도하지 않은 방식을 포함한다.
도 19 는 존재 검출기 (280) 를 포함하는 송신기 (200) 의 단순 블록도이다. 송신기는 도 10 의 송신기와 유사하고, 따라서, 다시 설명할 필요는 없다. 그러나, 도 19 에서는, 송신기 (200) 는 제어기 (214) (여기에서 프로세서로 또한 지칭됨) 에 접속된 존재 검출기 (280), 폐쇄형 검출기 (enclosed detector; 290), 또는 이들의 조합을 포함할 수도 있다. 제어기 (214) 는 존재 검출기 (280) 및 폐쇄형 검출기 (290) 로부터의 존재 신호들에 응답하여 증폭기 (210) 에 의해 전달된 전력량을 조절할 수 있다. 송신기는 통상의 AC 전력 (299) 을 변환하기 위해 AC-DC 변환기 (미도시) 를 통해 전력을 수신할 수도 있다.
제한하지 않는 예로서, 존재 검출기 (280) 는 송신기의 커버리지 영역으로 삽입되는 충전될 디바이스의 초기 존재를 감지하기 위해 활용된 모션 검출기일 수도 있다. 검출 이후에, 송신기는 턴 온되고, 디바이스에 의해 수신된 RF 전력은 송신기의 구동 포인트 임피던스에 대한 변화를 발생시키는 사전결정된 방식으로 Rx 디바이스상의 스위치를 토글링하기 위해 사용된다.
다른 제한하지 않는 예로서, 존재 검출기 (280) 는 예를 들어, 적외선 검출, 모션 검출, 또는 다른 적합한 수단에 의해 인간을 검출할 수 있는 검출기일 수도 있다. 일부 예시적인 실시형태에서, 송신 안테나가 특정 주파수에서 송신할 수도 있는 전력량을 제한하는 규제가 있을 수도 있다. 일부 경우에서, 이들 규제들은 전자기 방사로부터 인간을 보호하는 것으로 여겨진다. 그러나, 송신 안테나가 예를 들어, 차고, 작업 현장, 공장 직영 매장 등과 같은 인간에 의해 점유되지 않거나 인간에 의해 덜 빈번하게 점유되는 영역에 배치되는 환경이 존재할 수도 있다. 이들 환경이 인간으로부터 자유로우면, 송신 안테나의 전력 출력을 정상 전력 제한 규제 이상으로 증가시키는 것이 허용될 수도 있다. 다시 말해, 제어기 (214) 는 인간의 존재에 응답하여 송신 안테나 (204) 의 출력 전력을 규제 레벨 이하로 조절할 수도 있고, 인간이 송신 안테나 (204) 의 전자기장으로부터 규제 거리 외부에 있을 때 규제 레벨 이상으로 송신 안테나 (204) 의 전력 출력을 조절할 수도 있다.
아래의 다수의 예들에서, 오직 하나의 게스트 디바이스가 충전되는 것으로 도시된다. 실제로는, 다수의 디바이스가 각 호스트에 의해 생성된 근거리장으로부터 충전될 수 있다.
예시적인 실시형태에서, Tx 회로가 무기한으로 유지되지 않는 방법이 사용될 수도 있다. 이러한 경우에서, Tx 회로는 사용자 결정된 시간량 이후에 중단하도록 프로그램될 수도 있다. 이러한 특징은, 주변의 무선 디바이스가 완전하게 충전된 오랜 이후에 Tx 회로, 특히, 전력 증폭기가 구동하는 것을 방지한다. 이러한 이벤트는, 디바이스가 완전하게 충전된 Rx 코일 또는 중계기로부터 전송된 신호를 검출하기 위한 회로의 고장으로 인한 것일 수도 있다. 다른 디바이스가 그 주변에 배치되는 경우에 Tx 회로가 자동으로 정지하는 것을 방지하기 위해, Tx 회로 자동 중단 특징은 그 주변에서 검출된 일정 기간의 모션의 부족 이후에만 활성화될 수도 있다. 사용자는 비활성 시간 간격을 결정할 수도 있고, 원하는 경우 변경할 수도 있다. 제한하지 않는 예로서, 시간 간격은 디바이스가 초기에 완전하게 방전되었다는 가정하에서 특정 타입의 무선 디바이스를 완전하게 충전하는데 필요한 것 보다 길 수도 있다.
본 발명의 예시적인 실시형태는, 종종 "게스트" 로서 지칭되는 다른 소형 디바이스, 장비, 또는 머신으로 전력의 무선 전달을 위해 필요한 송신 안테나 및 다른 회로를 전체적으로 또는 부분적으로 하우징하는 충전 스테이션 또는 "호스트" 로서 표면을 사용하는 것을 포함한다. 제한하지 않는 예로서, 이들 충전 스테이션 또는 호스트는 창, 벽 등일 수 있다. 상기 언급한 예들에서 부분적으로 구현될 수도 있는 충전 시스템은 기존의 장치에 대한 재조절일 수도 있거나, 그것의 초기 설계 및 제조의 일부로서 이루어질 수도 있다.
전기적으로 소형 안테나는 종종, 소형 안테나의 이론에 의해 설명되는 바와 같이 수 퍼센트 보다 크지 않은 저효율을 갖는다. 안테나의 전기적 사이즈가 작을수록, 그 효율은 더 낮아진다. 무선 전력 전달은, 전력이 이러한 무선 전달 시스템의 수신단에 있는 디바이스에 중요한 거리에 걸쳐 전송될 수 있는 경우에 산업적, 상업적, 및 가정적 애플리케이션들에서의 전기 격자에 대한 유선 접속을 대체하는 실행가능한 기법이 될 수 있다. 이러한 거리가 애플리케이션 의존형이지만, 수십 센티미터 내지 수 미터가 대부분의 애플리케이션들에 대해 적합한 범위로 여겨질 수 있다. 일반적으로, 이러한 범위는 5 MHz 내지 100 MHz 사이의 간격에서 전력에 대한 유효 주파수를 감소시킨다.
도 20 및 도 21 은 예시적인 실시형태에 따른, 확장된 면적의 무선 충전 장치의 블록도들의 평면도들이다. 논의한 바와 같이, 무선 충전에 수신기를 참여시키기 위해 송신기의 근거리장 커플링 모드 영역에 수신기를 위치시키는 것은, 송신 안테나의 근거리장 커플링 모드 영역에서 수신기의 정확한 포지셔닝을 요구함으로써 과도하게 부담스러울 수도 있다. 또한, 고정 위치 송신 안테나의 근거리장 커플링 모드 영역에 수신기를 위치시키는 것은 또한, 특히 사용자가 디바이스에 대한 동시 물리적 액세스를 필요로 하는 다중의 사용자 액세스가능한 디바이스 (예를 들어, 랩탑, PDA, 무선 디바이스) 에 다중의 수신기가 각각 커플링될 때, 수신기에 커플링된 디바이스의 사용자에 의해 액세스불가능할 수도 있다. 예를 들어, 단일 송신 안테나는 유한 근거리장 커플링 모드 영역을 나타낸다. 따라서, 송신 안테나의 근거리장 커플링 모드 영역에서 수신기를 통해 충전하는 디바이스의 사용자는 동일한 송신 안테나의 근거리장 커플링 모드 영역내에서 또한 무선으로 충전하기 위한 다른 디바이스의 다른 사용자에 대해 금지적이거나 적어도 불편한 상당한 사용자 액세스 공간을 요구할 수도 있고, 또한 개별 사용자 액세스 공간을 요구할 수도 있다. 예를 들어, 단일 송신 안테나로 구성된 회의 테이블에 놓인 무선 충전가능한 디바이스들의 2명의 인접한 사용자는 각각의 디바이스와 상호작용하기 위해 요구되는 상당한 사용자 액세스 공간 및 송신기 근거리장 커플링 모드 영역의 로컬 특성으로 인해 불편할 수도 있거나 각각의 디바이스에 액세스하는 것이 금지될 수도 있다. 추가로, 특정한 무선 충전 디바이스 및 그것의 사용자가 구체적으로 위치되는 것을 요구하는 것은, 디바이스의 사용자를 불편하게 할 수도 있다.
도 20 을 참조하면, 확장된 면적의 무선 충전 장치 (700) 의 예시적인 실시형태가, 확장된 무선 충전 면적 (708) 을 정의하기 위해 복수의 인접하게 위치된 송신 안테나 회로들 (702A-702D) 의 배치를 제공한다. 제한하지 않는 예로서, 송신 안테나 회로는 전자 디바이스 (예를 들어, 무선 디바이스, 핸드셋, PDA, 랩탑 등) 과 관련되거나 전자 디바이스에 피팅되는 수신 안테나 (미도시) 에 균일한 커플링을 제공하기 위해 예를 들어, 대략 30-40 센티미터의 직경 또는 측면 치수를 갖는 송신 안테나 (710) 를 포함한다. 송신 안테나 회로 (702) 를 확장된 면적의 무선 충전 장치 (700) 의 유닛 또는 셀로서 고려함으로써, 실질적으로 단일 평면 (704) (예를 들어, 테이블 상부) 상에서 서로에 이어서 이들 송신 안테나 회로 (702A-702D) 를 적층하거나 인접하게 타일링하는 것은, 충전 면적을 증가시키거나 확장하는 것을 허용한다. 확장된 무선 충전 면적 (708) 은 하나 이상의 디바이스에 대한 증가된 충전 영역을 발생시킨다.
확장된 면적의 무선 충전 장치 (700) 는 구동 신호를 송신 안테나 (710) 에 제공하는 송신 전력 증폭기 (720) 를 더 포함한다. 하나의 송신 안테나 (710) 의 근거리장 커플링 모드 영역들이 다른 송신 안테나 (710) 의 근거리장 커플링 모드 영역을 간섭하는 구성에서, 간섭하는 인접 송신 안테나 (710) 는 "은폐"되어, 활성 송신 안테나 (710) 의 개선된 무선 충전 효율을 허용한다.
확장된 면적의 무선 충전 장치 (700) 에서의 송신 장치 (710) 의 활성화의 시퀀싱은 시간 도메인 기반 시퀀스에 따라 발생할 수도 있다. 송신 출력 증폭기 (720) 의 출력은, 송신기 프로세서로부터의 제어 신호 (724) 에 따라, 송신 전력 증폭기 (720) 로부터 송신 안테나 (710) 각각으로의 출력 신호를 시간 멀티플렉싱하는 멀티플렉서 (722) 에 커플링된다.
전력 증폭기 (720) 가 활성 송신 안테나를 구동할 때 인접한 비활성 송신 안테나 (710) 에서 공진을 유도하는 것을 방지하기 위해, 비활성 안테나는 예를 들어, 은폐 회로 (714) 를 활성화함으로써 그 송신 안테나의 공진 주파수를 변경함으로써 "은폐"될 수도 있다. 구현으로서, 직접 또는 거의 인접한 송신 안테나 회로 (702) 의 동시 동작은 동시에 활성화되고 물리적으로 근처 또는 인접한 다른 송신 안테나 회로들 (702) 사이에서 간섭 효과를 발생시킬 수도 있다. 따라서, 송신 안테나 회로 (702) 는 송신 안테나 (710) 의 공진 주파수를 변경하기 위한 송신기 은폐 회로 (714) 를 더 포함할 수도 있다.
송신기 은폐 회로는 송신 안테나 (710) 의 리액티브 엘리먼트, 예를 들어, 커패시터 (716) 의 값을 변경하거나 쇼트-아웃 (short-out) 하기 위한 스위칭 수단 (예를 들어, 스위치) 으로서 구성될 수도 있다. 스위칭 수단은 송신기의 프로세서로부터의 제어 신호에 의해 제어될 수도 있다. 동작중에, 송신 안테나 (710) 중 하나가 활성화되고, 공진하도록 허용되고, 다른 송신 안테나 (710) 는 공진이 금지되며, 따라서, 활성 송신 안테나 (710) 와 인접하게 간섭하는 것이 금지된다. 따라서, 송신 안테나 (710) 의 커패시턴스를 쇼트-아웃하거나 변경함으로써, 송신 안테나 (710) 의 공진 주파수는 다른 송신 안테나 (710) 로부터의 공진 커플링을 방지하도록 변경된다. 공진 주파수를 변경하는 다른 기법들이 또한 고려된다.
다른 예시적인 실시형태에서, 송신 안테나 회로 (702) 각각은, 수신기들이 존재하고 무선 충전할 준비가 될 때 송신 안테나 회로 (702) 중 송신 안테나 회로들을 활성화하거나 수신기들이 각각의 근거리장 커플링 모드 영역에 존재하지 않거나 충전할 준비가 안되어 있을 때 송신 안테나 회로 (702) 중 송신 안테나 회로들의 활성화를 포기하는 것을 선택하는 송신기 프로세서로 각각의 근거리장 커플링 모드 영역내에서 수신기의 존재 또는 부재를 결정할 수 있다. 존재 또는 준비된 수신기들의 검출은 여기에 설명된 수신기 검출 시그널링 프로토콜에 따라 발생할 수도 있거나 송신기 안테나의 근거리장 커플링 모드 영역내에서 수신기의 존재를 결정하는 모션 감지, 압력 감지, 이미지 감지 또는 다른 감지 기법들과 같은 수신기의 물리적 감지에 따라 발생할 수도 있다. 또한, 복수의 안테나 회로 중 적어도 하나에 강화된 비례 듀티 사이클을 제공함으로써 하나 이상의 송신 안테나 회로의 우선적 활성화가 본 발명의 범위 이내인 것으로 또한 고려된다.
도 21 을 참조하면, 확장된 영역의 무선 충전 장치 (800) 의 예시적인 실시형태는 확장된 무선 충전 영역 (808) 을 정의하는 송신 안테나 (801) 내부의 복수의 인접하게 위치된 중계기 안테나 회로들 (802A-802D) 의 배치를 제공한다. 송신 전력 증폭기 (820) 에 의해 구동될 때, 송신 안테나 (801) 는 중계기 안테나 (810A-810D) 각각에 대한 공진 커플링을 유도한다. 제한하지 않는 예로서, 예를 들어, 약 30-40 센티미터의 직경 또는 측면 치수를 갖는 중계기 안테나 (810) 는 전자 디바이스와 관련되거나 전자 디바이스에 부착되는 수신 안테나 (미도시) 에 균일한 커플링을 제공한다. 중계기 안테나 회로 (802) 를 확장된 면적의 무선 충전 장치 (800) 의 유닛 또는 셀로서 고려함으로써, 이들 중계기 안테나 회로들 (802A-802D) 을 실질적으로 단일 평면 (804) (예를 들어, 테이블 상부) 상에 서로에 이어서 적층하거나 인접하게 타일링하는 것은, 충전 면적의 증가 또는 확장을 허용한다. 확장된 무선 충전 면적 (808) 은 하나 이상의 디바이스에 대해 증가된 충전 공간을 발생시킨다.
확장된 면적의 무선 충전 장치 (800) 는 구동 신호를 송신 안테나 (801) 에 제공하는 송신 전력 증폭기 (820) 를 포함한다. 하나의 중계기 안테나 (810) 의 근거리장 커플링 모드 영역이 다른 중계기 안테나 (810) 의 근거리장 커플링 모드 영역과 간섭하는 구성에서, 간섭하는 인접 중계기 안테나들 (810) 은 "은폐"되어, 활성 중계기 안테나 (810) 의 개선된 무선 충전 효율을 허용한다.
확장된 영역의 무선 충전 장치 (800) 에서의 중계기 안테나 (810) 의 활성의 시퀀싱은, 시간 도메인 기반 시퀀스에 따라 발생할 수도 있다. 송신 전력 증폭기 (820) 의 출력은 일반적으로 (여기에 설명되는 바와 같이 수신기 시그널링 동안은 제외하고) 송신 안테나 (801) 에 일정하게 커플링된다. 이 예시적인 실시형태에서, 중계기 안테나 (810) 는 송신 프로세서로부터의 제어 신호에 따라 시간 멀티플렉싱된다. 구현으로서, 직접 또는 거의 인접한 중계기 안테나 회로들 (802) 의 동시 동작은, 동시에 활성화되고 물리적으로 근처 또는 인접한 다른 중계기 안테나 회로들 (802) 사이에서 간섭 효과를 발생시킬 수도 있다. 따라서, 중계기 안테나 회로 (802) 는 중계기 안테나 (810) 의 공진 주파수를 변경하기 위한 중계기 은폐 회로 (814) 를 더 포함할 수도 있다.
중계기 은폐 회로는 중계기 안테나 (810) 의 리액티브 엘리먼트, 예를 들어, 커패시터 (816) 의 값을 쇼트-아웃하거나 변경하기 위해 스위칭 수단 (예를 들어, 스위치) 으로서 구성될 수도 있다. 스위칭 수단은 송신기의 프로세서로부터의 제어 신호 (821) 에 의해 제어될 수도 있다. 동작중에, 중계기 안테나들 (810) 중 하나가 활성화되고 공진하도록 허용되고, 중계기 안테나들 (810) 중 다른 중계기 안테나가 공진하는 것이 금지되어서, 활성 중계기 안테나 (810) 와 인접하게 간섭한다. 따라서, 중계기 안테나 (810) 의 커패시턴스를 쇼트-아웃하거나 변경함으로써, 중계기 안테나 (810) 의 공진 주파수가 변경되어 다른 중계기 안테나 (810) 로부터의 공진 커플링을 방지한다. 공진 주파수를 변경하는 다른 기법들이 또한 고려된다.
다른 예시적인 실시형태에서, 중계기 안테나 회로들 (802) 각각은 수신기들이 존재하고 무선 충전할 준비가 될 때 중계기 안테나 회로들 (802) 중 중계기 안테나 회로들을 활성화하거나 수신기들이 각각의 근거리장 커플링 모드 영역에 존재하지 않거나 충전할 준비가 안되어 있을 때 중계기 안테나 회로들 (802) 중 중계기 안테나 회로들의 활성화를 포기하는 것을 선택하는 송신기 프로세서로 각각의 근거리장 커플링 모드 영역내에서 수신기의 존재 또는 부재를 결정할 수 있다. 존재 또는 준비의 검출은 여기에 설명된 수신기 검출 시그널링 프로토콜에 따라 발생할 수도 있거나 수신기가 중계기 안테나의 근거리장 커플링 모드 영역내인 것으로 결정하는 모션 감지, 압력 감지, 이미지 감지 또는 다른 감지 기법들과 같은 수신기의 물리적 감지에 따라 발생할 수도 있다.
확장된 면적의 무선 충전 장치 (700 및 800) 의 다양한 예시적인 실시형태들은, 특정한 수신기의 우선순위 충전, 상이한 안테나의 근거리장 커플링 모드 영역에서 수신기의 변화하는 양, 수신기에 커플링된 특정한 디바이스의 요건과 같은 팩터들 뿐만 아니라 다른 팩터들에 기초하여 송신/중계기 안테나들에 대한 활성 시간 주기의 비대칭 할당에 기초하여 송신/중계기 안테나들 (710, 810) 에 커플링된 입력 신호의 시간 도메인 멀티플렉싱을 더 포함할 수도 있다.
전기적 소형 안테나가, 종종 당업자에 의해 알려진 소형 안테나의 이론에 의해 설명되는 바와 같이 수 퍼센트 보다 크지 않은 저효율을 갖는다는 것이 알려져 있다. 일반적으로 안테나의 전기 사이즈가 작을수록, 효율은 낮아진다. 따라서, 무선 전력 전달은 전력이 의미있는 거리를 통해 이러한 전달 시스템의 수신단에 있는 디바이스로 전송될 수 있는 경우에 산업적, 상업적, 및 가정 애플리케이션에서의 전기 그리드에 대한 유선 접속을 대체하는 실행가능한 기법이 될 수 있다. 이러한 거리가 애플리케이션 의존형이지만, 예를 들어, 수십 센티미터 내지 수 미터가 대부분의 애플리케이션들에 대해 적합한 범위로 여겨질 수 있다. 일반적으로, 이러한 범위는 예를 들어, 5 MHz 내지 100 MHz 사이의 간격에서 전력에 대한 유효 주파수를 감소시킨다.
논의한 바와 같이, 송신기와 수신기 사이의 에너지의 효율적 전달은, 송신기와 수신기 사이의 정합되거나 거의 정합된 공진 동안 발생한다. 그러나, 송신기와 수신기 사이의 공진이 정합되지 않을 때에도, 에너지는 더 낮은 효율에서 전달될 수도 있다. 에너지의 전달은 송신 안테나로부터 자유 공간으로 에너지를 전파하기 보다는, 송신 안테나의 근거리장으로부터의 에너지를 이러한 근거리장이 확립된 이웃에 상주하는 수신 안테나에 커플링함으로써 발생한다.
본 발명의 예시적인 실시형태는, 서로 근거리장에 있는 2개의 안테나 사이에서 전력을 커플링하는 것을 포함한다. 논의한 바와 같이, 근거리장은 전자기장이 존재하지만 안테나로부터 이격하여 전파 또는 방사하지 못할 수도 있는 안테나 주위의 영역이다. 이들은 통상적으로, 안테나의 물리적 체적 근처의 체적으로 한정된다. 본 발명의 예시적인 실시형태에서, 단일 및 멀티-턴 루프 안테나와 같은 자기 타입 안테나는, 자기 근거리장 진폭이 전기 타입 안테나 (예를 들어, 소형 다이폴) 의 전기 근거리장에 비하여 자기 타입 안테나에 대해 더 높은 경향이 있기 때문에, 송신 (Tx) 및 수신 (Rx) 안테나 시스템 양자를 위해 사용된다. 이것은 쌍 사이의 잠재적으로 더 높은 커플링을 허용한다. 또한, "전기" 안테나 (예를 들어, 다이폴 및 모노폴) 또는 자기 안테나와 전기 안테나의 조합이 또한 고려된다.
Tx 안테나는 충분히 낮은 주파수에서 동작될 수 있고, 이전에 언급한 원거리장 및 유도성 접근방식에 의해 허용된 것 보다 현저하게 더 큰 거리에서 소형 Rx 안테나에 대한 양호한 커플링 (예를 들어, > -4 dB) 을 달성하는데 충분히 큰 안테나 사이즈를 갖는다. Tx 안테나가 정확하게 사이징되면, 높은 커플링 레벨 (예를 들어, -2 내지 -4 dB) 이, 호스트 디바이스상의 Rx 안테나가 구동된 Tx 루프 안테나의 커플링 모드 영역 (즉, 근거리장) 내에 배치될 때 달성될 수 있다.
도 20 및 도 21 은 실질적으로 평면인 충전 면적에서의 다중의 루프를 예시한다. 그러나, 본 발명의 예시적인 실시형태는 이에 제한되지 않는다. 다중 안테나를 갖는 3차원 공간이 사용될 수도 있다.
본 발명의 예시적인 실시형태들은, "게스트"로서 지칭하는 종종 다른 소형의 디바이스, 장비, 또는 머신으로 전력의 무선 전달을 위해 필요한 송신 안테나 및 다른 회로를 전체적으로 또는 부분적으로 하우징하는 충전 스테이션 또는 "호스트" 로서 장치를 사용하는 것을 포함한다. 이들 충전 스테이션 및 호스트는 복수의 표면을 갖는 임의의 장치일 수 있다. 제한하지 않는 예로서, 이들 충전 스테이션 또는 호스트는 툴박스, 백, 솔루션을 홀딩하도록 구성된 컨테이너, 오토클레이브, 캐비넷, 체스트 등일 수 있다. 상기 언급한 예들에 적어도 부분적으로 포함될 수 있는 송신 안테나는 기존의 장치에 대한 재조절일 수도 있거나 초기 설계 및 제조의 일부로서 이루어질 수도 있다.
도 22a 내지 도 31 은 다중의 방향으로 배향된 송신 안테나를 갖는 장치들을 포함하는 충전 시스템의 다양한 예시적인 실시형태를 예시한다. 송신 안테나의 다차원 배향은 송신 안테나의 다중 차원에 관하여 다양한 배향으로 배치된 하나 이상의 수신 안테나에 전달될 수 있는 전력을 증가시킬 수도 있다. 충전 시스템은, 임의의 수의 송신 안테나가 장치내에 위치된 하나 이상의 수신 안테나로 송신 전력을 무선으로 한번에 송신하기 위해 사용될 수 있도록 구성될 수도 있다. 이하 도시되는 다양한 예시적인 실시형태들이 3개의 평면 (즉, 3차원 무선 충전) 으로 배향된 송신 안테나를 예시할 수도 있지만, 봉 발명의 실시형태들은 이에 제한되지 않는다. 오히려, 본 발명의 실시형태들은 다차원 무선 충전에 관한 것이고, 여기서, 송신 안테나는 임의의 수의 평면으로 배향될 수도 있다.
여기에 설명한 예시적인 실시형태들에서, 수신기와 송신기 사이의 메시징은 도 13a 내지 도 15d 에 관하여 상술한 기법들에 의해 수행될 수도 있다. 또한, 그 내용이 참조로 전체가 여기에 포함되는 2008년 10월 10일 출원된 "SIGNALING CHARGING IN WIRELESS POWER ENVIRONMENT" 라는 명칭의 미국 특허 출원 제 12/249,816 호에 기재된 수단과 같은 더욱 정교한 메시징 수단이 이용될 수도 있다.
도 22a 및 도 22b 를 참조하면, 복수의 송신 안테나 (즉, 송신 안테나 (912), 송신 안테나 (914), 및 송신 안테나 (916)) 가 복수의 축을 따라 면에 커플링되는 다차원 무선 충전 장치 (910) 가 도시되어 있다. 도 22a 는 리드 (911) 가 개방되어 복수의 충전가능한 디바이스 (930) 가 그 안에 배치된 것을 나타내고 있는 장치 (910) 를 예시한다. 도 22b 는 리드 (911) 가 폐쇄된 장치 (910) 를 예시한다. 송신 안테나 (912), 송신 안테나 (914), 및 송신 안테나 (916) 는 안테나가 장치 (910) 의 재료, 장치의 내용물, 또는 이들의 임의의 조합에 의해 단락되는 것을 방지하기 위한 방식으로 장치 (910) 에 각각 커플링될 수도 있다는 것에 유의한다. 예로서, 송신 안테나 (912), 송신 안테나 (914), 및 송신 안테나 (916) 각각은 절연 재료로 코팅될 수도 있고 장치 (910) 의 표면에 부착될 수도 있다. 또한, 단지 예를 들어, 장치 (910) 는 비도전성 재료를 포함할 수도 있다.
도 22a 및 도 22b 각각에 예시된 바와 같이, 무선 충전 장치 (910) 는 3개의 측면에 커플링된 송신 안테나를 포함한다. 구체적으로는, 제 1 배향 송신 안테나 (912) 가 장치 (910) 의 바닥에 커플링된다. 제 2 배향 송신 안테나 (914) 가 장치 (910) 의 제 1 측면에 커플링되고 제 3 배향 송신 안테나 (916) 가 장치 (910) 의 제 2 측면에 커플링되고 제 1 배향 송신 안테나 (912) 에 실질적으로 직교한다. 3개의 송신 안테나 중 어느 하나, 이들 중 어느 쌍, 또는 한번에 3개 모두가, 장치 (910) 내에 위치되고 충전가능한 디바이스에 커플링된 하나 이상의 수신 안테나에 전력을 무선으로 제공하기 위해 사용될 수 있다. 도 20 및 도 21 에 관하여 상기 논의된 바와 같은 수단은 상이하게 배향된 송신 안테나들 사이에서 선택하고 멀티플렉싱하기 위해 사용될 수도 있다.
도 23a 및 도 23b 는 대향 패널들에서 송신 안테나를 갖는, 다중의 방향으로 배향된 송신 안테나를 지탱하는 캐비넷 (950) 의 예시적인 실시형태를 예시한다. 도 23a 는 개방 도어 (951) 를 갖는 캐비넷 (950) 을 도시하고, 도 23b 는 폐쇄된 도어 (951) 를 갖는 캐비넷 (950) 을 도시한다. 송신 안테나들 (972 및 974) 은 캐비넷 (950) 의 대향하는 측면들 (즉, 각각 왼쪽 및 오른쪽) 상에 있다. 송신 안테나들 (962 및 964) 은 캐비넷 (950) 의 대향하는 측면 (즉, 각각 도어 및 후면) 상에 있다. 송신 안테나들 (982 및 984) 은 캐비넷 (950) 의 대향하는 측면 (즉, 각각 상부 및 바닥) 상에 있다. 상이한 표면 길이를 갖는 장치 (예를 들어, 직사각형 장치) 에 대해, 상이한 사이즈의 송신 안테나들은 당업자가 이해하는 바와 같이, 탱크 커패시터들에서의 각각의 변동에 의해 보상될 수도 있다는 것에 유의한다. 또한, 각 송신 안테나는 송신 안테나가 장치 캐비넷 (950) 의 재료, 그것의 내용물, 또는 이들의 조합에 의해 단락되는 것을 방지하기 위한 방식으로 캐비넷 (950) 에 커플링될 수도 있다. 예로서, 절연 재료로 코팅될 수도 있고 캐비넷 (950) 의 표면에 부착될 수도 있다. 또한, 단지 예를 들어, 캐비넷 (950) 은 비도전성 재료를 포함할 수도 있다.
도 24 는 본 발명의 예시적인 실시형태에 따른 충전 시스템 (1000) 을 예시한다. 충전 시스템 (1000) 은 다중의 방향으로 배향된 송신 안테나들 (1012, 1014, 및 1016) 을 갖는 충전 장치 (1010) 를 포함한다. 상기 언급한 바와 같이, 충전 장치 (1010) 는 단지 예를 들어, 툴박스, 백, 또는 캐비넷과 같은 복수의 표면을 갖는 임의의 장치를 포함할 수도 있다. 도시된 바와 같이, 커플링된 각각의 수신 안테나들 (1022 및 1026) 을 갖는 복수의 충전가능한 디바이스들 (1020 및 1024) 가 충전 장치 (1010) 내에 위치된다. 충전 시스템 (1000) 이 충전 장치 (1010) 에 커플링된 3개의 송신 안테나 및 그 안에 위치된 2개의 충전가능한 디바이스를 포함하지만, 본 발명의 실시형태들은 이에 제한되지 않는다. 오히려, 커플링된 임의의 수의 송신 안테나 및 그 안에 배치된 임의의 수의 충전가능한 디바이스를 갖는 충전 장치를 포함하는 충전 시스템이 본 발명의 범위 이내이다.
본 발명의 일 예시적인 실시형태에 따르면, 다중의 평면으로 배향된 복수의 송신 안테나를 갖는 충전 시스템은 각 송신 안테나로부터 전력을 순차적으로 송신하도록 구성될 수도 있다. 더욱 구체적으로는, 충전 시스템은, 충전 장치내의 각 충전가능한 디바이스가 완전하게 충전될 때까지 또는 각 충전가능한 디바이스가 충전 장치로부터 제거될 때까지 지속적으로 랜덤 또는 소정의 순서로 각 송신 안테나로부터 전력을 순차적으로 송신하도록 구성될 수도 있다. 일 예로서, 도 24 를 참조하면, 충전 시스템 (1000) 은 제 1 시간 지속기간 동안 송신 안테나 (1012) 로부터 전력을 송신하고, 제 2 시간 지속기간 동안 송신 안테나 (1014) 로부터 전력을 송신하며, 제 3 시간 지속기간 동안 송신 안테나 (1016) 로부터 전력을 송신하도록 구성될 수도 있다. 이러한 프로세스는, 충전가능한 디바이스 (1020) 및 충전가능한 디바이스 (1024) 각각이 완전하게 충전되거나 충전가능한 디바이스 (1020) 및 충전가능한 디바이스 (1024) 각각이 충전 장치 (1010) 로부터 제거될 때까지 무기한으로 반복될 수도 있다. 다른 방식으로 말하면, 이러한 프로세스는, 충전가능한 장치 (1010) 가 그 안에 적어도 하나의 충전가능한 디바이스를 포함하고, 그 안의 적어도 하나의 충전가능한 디바이스가 충전을 요구하는 한은 반복될 수도 있다. 제 1 시간 지속기간, 제 2 시간 지속기간, 및 제 3 시간 지속기간은 실질적으로 서로 동일할 수도 있거나, 시간 지속기간들은 임의의 적합한 방식으로 변화할 수도 있다.
본 발명의 다른 예시적인 실시형태에 따르면, 충전 시스템은 관련된 충전 장치내에 위치된 각 충전가능한 디바이스를 충전하는 하나 이상의 송신 안테나의 최적을 선택을 결정하도록 구성될 수도 있다. 더욱 구체적으로는, 도 24 에 예시된 예에서, 충전 시스템 (1000) 은 수신 안테나 (1026) 및 수신 안테나 (1022) 각각에 대해, 수신 안테나 및 관련된 충전가능한 디바이스에 의해 수신된 가장 높은 전력이 되게 할 수도 있는 단일 송신 안테나 (즉, 송신 안테나 (1012), 송신 안테나 (1014), 또는 송신 안테나 (1016)) 또는 송신 안테나들의 임의의 가능한 조합 (즉, 송신 안테나 (1012) 및 송신 안테나 (1014), 송신 안테나 (1012) 및 송신 안테나 (1014), 송신 안테나 (1014) 및 송신 안테나 (1016), 또는 송신 안테나 (1012), 송신 안테나 (1014), 및 송신 안테나 (1016)) 의 최적의 선택을 정의하도록 구성될 수도 있다. 복수의 (즉, 조합) 송신 안테나가 충전가능한 디바이스에 대해 최적의 충전을 제공하는지를 결정하는데 있어서, 복수의 송신 안테나 각각의 전력 레벨은 송신 안테나의 조합으로부터 충전가능한 디바이스에 의해 수신된 최적의 전력량을 또한 확립하기 위해 변화될 수도 있다. 충전가능한 디바이스를 충전하는 하나 이상의 송신 안테나의 최적의 선택을 결정하는 방법을 여기에서 "단일 디바이스 교정 프로세스" 라 또한 칭할 수도 있다.
이제, 본 발명의 예시적인 실시형태에 따른, 충전가능한 디바이스를 충전하는 하나 이상의 송신 안테나의 최적의 선택을 결정하는 방법 (즉, 단일 디바이스 교정 프로세스) 이 설명될 것이다. 충전가능한 디바이스에 커플링되고 충전 장치내에 위치된 수신 안테나의 식별 이후에, 관련된 충전 시스템은 충전 장치에 커플링된 각 송신 안테나로부터 수신 안테나에 전력을 순차적으로 송신하도록 구성될 수도 있다. 또한, 충전 시스템은 송신 안테나들의 각 가능한 조합으로부터 수신 안테나에 전력을 순차적으로 송신하도록 구성될 수도 있다. 상기 논의한 바와 같이, 송신 안테나의 조합으로부터 수신 안테나로의 전력의 송신 동안, 송신 안테나의 전력 레벨은 송신 안테나의 조합으로부터 수신 안테나에 의해 수신된 최적의 전력량을 또한 결정하도록 변화될 수도 있다.
각 송신 안테나로부터 개별적으로 및 송신 안테나의 각 가능한 조합으로부터 수신 안테나에 전력을 순차적으로 송신한 이후에, 충전 시스템은 하나 이상의 송신 안테나가 수신 안테나에 커플링된 충전가능한 디바이스에 대해 최적의 충전을 제공하는지를 결정하도록 구성될 수도 있다. 충전 장치내에 위치된 수신 안테나 및 관련된 충전가능한 디바이스의 교정 동안, 충전 장치내에 위치된 하나 이상의 다른 수신 안테나가 관련된 충전 장치에 커플링되거나 그 관련된 충전 장치내의 임의의 다른 수신 또는 송신 안테나와 하나 이상의 다른 수신 안테나 사이의 커플링을 방지하도록 "은폐"될 수도 있다.
도 24 를 참조하면, 이제, 단일 디바이스 교정 프로세스의 일 예가 설명될 것이다. 수신 안테나 (1022) 의 식별 이후에, 수신 안테나 (1026) 가 수신 안테나 (1026) 와 임의의 송신 안테나 (즉, 송신 안테나 (1012, 1014, 또는 1016)) 또는 수신 안테나 (1026) 와 수신 안테나 (1022) 사이의 커플링을 방지하기 위해 "은폐"될 수도 있다. 그 후, 송신 안테나 (1012) 는 수신 안테나 (1022) 에 전력을 송신할 수도 있고, 수신 안테나 (1022) 에 의해 수신된 전력량이 결정될 수도 있다. 그 후에, 송신 안테나 (1014) 는 수신 안테나 (1022) 로 전력을 송신할 수도 있고, 수신 안테나 (1022) 에 의해 수신된 전력량이 결정될 수도 있다. 그 다음에, 송신 안테나 (1016) 는 수신 안테나 (1022) 로 전력을 송신할 수도 있고, 수신 안테나 (1022) 에 의해 수신된 전력량이 결정될 수도 있다.
또한, 각 개별 송신 안테나가 수신 안테나 (1022) 로 전력을 순차적으로 송신한 이후에, 송신 안테나 (1012) 및 송신 안테나 (1014) 는 수신 안테나 (1022) 로 전력을 동시에 송신할 수도 있고, 수신 안테나 (1022) 에 의해 수신된 전력량이 결정될 수도 있다. 송신 안테나 (1012) 및 송신 안테나 (1014) 로부터의 전력의 송신 동안, 송신 안테나 (1012) 및 송신 안테나 (1014) 각각의 전력 레벨들은 송신 안테나 (1012) 및 송신 안테나 (1014) 의 조합으로부터 수신 안테나 (1022) 에 의해 수신된 최적의 전력량을 결정하기 위해 변화될 수도 있다. 그 후, 송신 안테나 (1012) 및 송신 안테나 (1016) 는 수신 안테나 (1022) 로 전력을 동시에 송신할 수도 있고, 수신 안테나 (1022) 에 의해 수신된 전력량이 결정될 수도 있다. 송신 안테나 (1012) 및 송신 안테나 (1016) 로부터의 전력의 송신 동안, 송신 안테나 (1012) 및 송신 안테나 (1016) 각각의 전력 레벨들은 송신 안테나 (1012) 및 송신 안테나 (1016) 의 조합으로부터 수신 안테나 (1022) 에 의해 수신된 최적의 전력량을 결정하기 위해 변화될 수도 있다. 그 다음에, 송신 안테나 (1014) 및 송신 안테나 (1016) 는 수신 안테나 (1022) 로 전력을 동시에 송신할 수도 있고, 수신 안테나 (1022) 에 의해 수신된 전력량이 결정될 수도 있다. 송신 안테나 (1014) 및 송신 안테나 (1016) 로부터의 전력의 송신 동안, 송신 안테나 (1014) 및 송신 안테나 (1016) 각각의 전력 레벨들은 송신 안테나 (1014) 및 송신 안테나 (1016) 의 조합으로부터 수신 안테나 (1022) 에 의해 수신된 최적의 전력량을 결정하기 위해 변화될 수도 있다.
추가로, 송신 안테나 (1014), 송신 안테나 (1016), 및 송신 안테나 (1012) 는 수신 안테나 (1022) 로 전력을 동시에 송신할 수도 있고, 수신 안테나 (1022) 에 의해 수신된 전력량이 결정될 수도 있다. 송신 안테나 (1012), 송신 안테나 (1014), 및 송신 안테나 (1016) 로부터의 전력의 송신 동안, 송신 안테나 (1012), 송신 안테나 (1014), 및 송신 안테나 (1016) 각각의 전력 레벨들은 송신 안테나 (1012), 송신 안테나 (1014), 및 송신 안테나 (1016) 의 조합으로부터 수신 안테나 (1022) 에 의해 수신된 최적의 전력량을 결정하기 위해 변화될 수도 있다. 수신 안테나 (1022) 에 의해 수신된 전력량이 임의의 공지된 적합한 방법에 의해 결정될 수도 있다는 것에 유의한다. 예를 들어, 일 예시적인 실시형태에 따르면, 하나 이상의 송신 안테나는 하나 이상의 송신 안테나들과 수신 안테나 (1022) 사이의 임피던스를 감지함으로써 수신 안테나 (1022) 에 의해 수신된 전력량을 감지할 수도 있다. 다른 예시적인 실시형태에 따르면, 하나 이상의 송신 안테나로부터 전력의 수신시에, 수신 안테나 (1022) 는 수신된 전력량을 나타내는 하나 이상의 송신 안테나로 역으로 신호를 전달하도록 구성될 수도 있다.
다양한 전력 레벨에서 각 송신 안테나 및 송신 안테나의 각 가능한 조합으로부터 전력을 순차적으로 수신한 이후에, 충전 시스템 (1000) 은 하나 이상의 송신 안테나가 수신 안테나 (1022) 에 커플링되는 충전가능한 디바이스 (1020) 에 대해 최적의 충전을 제공하는지를 결정하도록 구성될 수도 있다. 또한, 상기 논의한 바와 같이, 이러한 교정 프로세스는 장치 (1010) 내에 위치된 각 식별된 수신 안테나에 대해 반복될 수도 있다. 따라서, 충전가능한 디바이스 (1020) 에 대해 교정 프로세스를 수행한 이후에, 충전 시스템 (1000) 은 충전가능한 디바이스 (1024) 대해 하나 이상의 송신 안테나의 최적의 선택을 결정하기 위해 다른 교정 프로세스를 수행하도록 구성될 수도 있다. 이러한 예에서, 배향의 병렬 특성으로 인해, 송신 안테나 (1014) 가 충전가능한 디바이스 (1024) 에 대해 최적의 충전을 제공하고, 송신 안테나 (1012) 가 충전가능한 디바이스 (1020) 에 대해 최적의 충전을 제공한다는 것이 결정될 수도 있다. 또한, 충전가능한 디바이스 및 그것의 관련된 수신 안테나가 충전 장치내에서 위치를 변화시킬 수도 있기 때문에, 충전 시스템 (1000) 은 수신 안테나 및 관련 충전 디바이스, 또는 이들의 임의의 조합에 의해 수신된 전력량에서의 변화의 검출시에, 각 충전가능한 디바이스에 대해 교정 프로세스를 주기적으로 반복하도록 구성될 수도 있다.
충전 장치 (1010) 내에 위치된 각 충전가능한 디바이스를 충전하는 하나 이상의 송신 안테나의 최적의 선택을 정의하는 것에 부가하여, 충전 시스템 (1000) 은 충전 장치 (1010) 내에 위치된 복수의 충전가능한 디바이스를 동시에 충전하는 하나 이상의 송신 안테나의 최적의 선택을 정의하도록 구성될 수도 있다. 더욱 구체적으로는, 도 24 를 참조하면, 충전 시스템 (100) 은, 수신 안테나 (1026) 및 수신 안테나 (1022) 양자에 의해 수신된 최고의 총전력이 되게 할 수도 있는 단일 송신 안테나 (즉, 송신 안테나 (1012), 송신 안테나 (1014), 또는 송신 안테나 (1016)) 또는 송신 안테나들의 임의의 가능한 조합 (즉, 송신 안테나 (1012) 및 송신 안테나 (1014), 송신 안테나 (1012) 및 송신 안테나 (1014), 송신 안테나 (1014) 및 송신 안테나 (1016), 또는 송신 안테나 (1012), 송신 안테나 (1014), 및 송신 안테나 (1016)) 의 최적의 선택을 정의하도록 구성될 수도 있다. 복수의 (즉, 조합) 송신 안테나가 복수의 충전가능한 디바이스에 대해 최적의 충전을 제공하는지를 결정하는데 있어서, 복수의 송신 안테나 각각의 전력 레벨은 송신 안테나의 조합으로부터 충전가능한 디바이스에 의해 수신된 최적의 총 전력량을 또한 확립하기 위해 변화될 수도 있다. 복수의 충전가능한 디바이스를 충전하는 하나 이상의 송신 안테나의 최적의 선택을 결정하는 방법을 여기에서 "다중 디바이스 교정 프로세스" 라 또한 칭할 수도 있다.
이제, 본 발명의 예시적인 실시형태에 따른, 복수의 충전가능한 디바이스를 충전하는 하나 이상의 송신 안테나의 최적의 선택을 결정하는 방법 (즉, 다중 디바이스 교정 프로세스) 이 설명될 것이다. 충전가능한 디바이스에 각각 커플링된 복수의 수신 안테나의 식별 이후에, 관련된 충전 시스템은 충전 장치에 커플링된 각 송신 안테나로부터 수신 안테나에 전력을 순차적으로 송신하도록 구성될 수도 있다. 또한, 충전 시스템은 송신 안테나들의 각 가능한 조합으로부터 수신 안테나에 전력을 순차적으로 송신하도록 구성될 수도 있다. 상기 논의한 바와 같이, 송신 안테나의 조합으로부터 복수의 수신 안테나로의 전력의 송신 동안, 송신 안테나의 전력 레벨은 송신 안테나의 조합으로부터 수신 안테나에 의해 수신된 최적의 총 전력량을 또한 결정하도록 변화될 수도 있다. 다양한 전력 레벨에서 각 송신 안테나로부터 개별적으로 및 송신 안테나의 각 가능한 조합으로부터 수신 안테나에 전력을 순차적으로 송신한 이후에, 충전 시스템은 하나 이상의 송신 안테나가 수신 안테나에 각각 커플링되는 복수의 충전가능한 디바이스에 대해 최적의 충전을 제공하는지를 결정하도록 구성될 수도 있다.
도 24 를 참조하면, 이제, 다중 디바이스 교정 프로세스의 일 예가 설명될 것이다. 수신 안테나 (1022) 및 수신 안테나 (1026) 의 식별 이후에, 송신 안테나 (1012) 는 수신 안테나 (1022) 및 수신 안테나 (1026) 로 전력을 송신할 수도 있고 수신 안테나 (1022) 및 수신 안테나 (1026) 에 의해 수신된 총 전력량이 결정될 수도 있다. 그 후, 송신 안테나 (1014) 는 수신 안테나 (1022) 및 수신 안테나 (1026) 로 전력을 송신할 수도 있고, 수신 안테나 (1022) 및 수신 안테나 (1026) 에 의해 수신된 총 전력량이 결정될 수도 있다. 그 후에, 송신 안테나 (1016) 는 수신 안테나 (1022) 수신 안테나 (1026) 로 전력을 송신할 수도 있고, 수신 안테나 (1022) 및 수신 안테나 (1026) 에 의해 수신된 전력량이 결정될 수도 있다.
또한, 각 개별 송신 안테나가 수신 안테나 (1022) 및 수신 안테나 (1026) 로 전력을 순차적으로 송신한 이후에, 송신 안테나 (1012) 및 송신 안테나 (1014) 는 수신 안테나 (1022) 및 수신 안테나 (1026) 로 전력을 동시에 송신할 수도 있고, 수신 안테나 (1022) 및 수신 안테나 (1026) 에 의해 수신된 총 전력량이 결정될 수도 있다. 송신 안테나 (1012) 및 송신 안테나 (1014) 로부터의 전력의 송신 동안, 송신 안테나 (1012) 및 송신 안테나 (1014) 각각의 전력 레벨들은 송신 안테나 (1012) 및 송신 안테나 (1014) 의 조합으로부터 수신 안테나 (1022) 및 수신 안테나 (1026) 에 의해 수신된 최적의 총 전력량을 결정하기 위해 변화될 수도 있다. 그 후, 송신 안테나 (1012) 및 송신 안테나 (1016) 는 수신 안테나 (1022) 및 수신 안테나 (1026) 로 전력을 동시에 송신할 수도 있고, 수신 안테나 (1022) 및 수신 안테나 (1026) 에 의해 수신된 총 전력량이 결정될 수도 있다. 송신 안테나 (1012) 및 송신 안테나 (1016) 로부터의 전력의 송신 동안, 송신 안테나 (1012) 및 송신 안테나 (1016) 각각의 전력 레벨들은 송신 안테나 (1012) 및 송신 안테나 (1016) 의 조합으로부터 수신 안테나 (1022) 및 수신 안테나 (1026) 에 의해 수신된 최적의 총 전력량을 결정하기 위해 변화될 수도 있다. 그 다음에, 송신 안테나 (1014) 및 송신 안테나 (1016) 는 수신 안테나 (1022) 및 수신 안테나 (1026) 로 전력을 동시에 송신할 수도 있고, 수신 안테나 (1022) 및 수신 안테나 (1026) 에 의해 수신된 총 전력량이 결정될 수도 있다. 송신 안테나 (1014) 및 송신 안테나 (1016) 로부터의 전력의 송신 동안, 송신 안테나 (1014) 및 송신 안테나 (1016) 각각의 전력 레벨들은 송신 안테나 (1014) 및 송신 안테나 (1016) 의 조합으로부터 수신 안테나 (1022) 및 수신 안테나 (1026) 에 의해 수신된 최적의 총 전력량을 결정하기 위해 변화될 수도 있다.
추가로, 송신 안테나 (1014), 송신 안테나 (1016), 및 송신 안테나 (1012) 는 수신 안테나 (1022) 및 수신 안테나 (1026) 로 전력을 동시에 송신할 수도 있고, 수신 안테나 (1022) 및 수신 안테나 (1026) 에 의해 수신된 총 전력량이 결정될 수도 있다. 송신 안테나 (1012), 송신 안테나 (1014), 및 송신 안테나 (1016) 로부터의 전력의 송신 동안, 송신 안테나 (1012), 송신 안테나 (1014), 및 송신 안테나 (1016) 각각의 전력 레벨들은 송신 안테나 (1012), 송신 안테나 (1014), 및 송신 안테나 (1016) 의 조합으로부터 수신 안테나 (1022) 및 수신 안테나 (1026) 에 의해 수신된 최적의 총 전력량을 결정하기 위해 변화될 수도 있다. 수신 안테나 (1022) 및 수신 안테나 (1026) 에 의해 수신된 총 전력량이 임의의 공지된 적합한 방법에 의해 결정될 수도 있다는 것에 유의한다. 예를 들어, 일 예시적인 실시형태에 따르면, 하나 이상의 송신 안테나는 하나 이상의 송신 안테나들과 수신 안테나들 (1022 및 1026) 사이의 임피던스를 감지함으로써 수신 안테나 (1022) 및 수신 안테나 (1026) 에 의해 수신된 전력량을 감지할 수도 있다. 다른 예시적인 실시형태에 따르면, 하나 이상의 송신 안테나로부터 전력의 수신시에, 수신 안테나 (1022) 및 수신 안테나 (1026) 는 수신된 전력량을 나타내는 하나 이상의 송신 안테나로 역으로 신호를 전달하도록 구성될 수도 있다.
다양한 전력 레벨에서 각 송신 안테나 및 송신 안테나들의 각 가능한 조합으로부터 전력을 순차적으로 수신한 이후에, 충전 시스템 (1000) 은 하나 이상의 송신 안테나가 수신 안테나 (1022) 에 커플링되는 충전가능한 디바이스 (1020) 및 수신 안테나 (1026) 에 커플링되는 충전가능한 디바이스 (1024) 에 대해 최적의 충전을 제공하는지를 결정하도록 구성될 수도 있다. 또한, 충전가능한 디바이스들 및 관련된 수신 안테나들이 충전 장치내에서 위치를 변화시킬 수도 있기 때문에, 충전 시스템 (1000) 은 수신 안테나 및 관련 충전가능한 디바이스, 또는 이들의 임의의 조합에 의해 수신된 전력에서의 변화의 검출시에, 교정 프로세스를 주기적으로 반복하도록 구성될 수도 있다.
본 발명의 다양한 예시적인 실시형태에 따르면, 이하 더욱 완전하게 설명되는 바와 같이, 충전 시스템 (1000) 은 하나 이상의 송신 안테나로 하나 이상의 충전가능한 디바이스들을 동시에 충전하고, 할당된 기간에 따라 하나 이상의 다른 충전가능한 디바이스들과는 독립적으로 하나 이상의 충전가능한 디바이스들을 충전하거나, 이들의 임의의 적합한 조합을 행하도록 구성될 수도 있다.
상이한 평면에 배향된 송신 안테나들 사이의 고유 분리로 인해, 2개 이상의 송신 안테나로 하나 이상의 충전가능한 디바이스를 동시에 충전하는 것이 가능하다. 예를 들어, 계속 도 24 를 참조하면, 송신 안테나 (1014) 는 송신 안테나 (1014) 에 실질적으로 평행한 수신 안테나 (1026) 에 전력을 송신할 수도 있다. 또한, 수신 안테나 (1022) 에 실질적으로 평행하고, 송신 안테나 (1014) 에 실질적으로 수직인 송신 안테나 (1012) 가 수신 안테나 (1022) 로 전력을 동시에 송신할 수도 있다. 하나 이상의 송신 안테나 (예를 들어, 송신 안테나 (1012) 및/또는 송신 안테나 (1014)) 로부터 송신된 전력량은 하나 이상의 수신 안테나 (예를 들어, 수신 안테나 (1022) 또는 수신 안테나 (1026)) 에 의해 수신된 전력량을 더 최적화하기 위해 조절될 수도 있다는 것에 유의한다. 예를 들어, 충전가능한 디바이스 (1020) 및 충전가능한 디바이스 (1024) 의 동시 충전 동안, 충전가능한 디바이스 (1024) 가 충전가능한 디바이스 (1020) 보다 많은 전력을 요구하면, 송신 안테나 (1014) 에 의해 송신된 전력량은 증가될 수도 있고, 송신 안테나 (1012) 에 의해 송신된 전력량은 감소될 수도 있다.
다른 예시적인 실시형태에 따르면, 충전 시스템은 2개 이상의 송신 안테나로부터 충전가능한 디바이스에 커플링된 수신 안테나로 전력을 동시에 송신하도록 구성될 수도 있다. 예를 들어, 도 25 를 참조하면, 충전가능한 디바이스 (1072) 에 커플링되는 수신 안테나 (1070) 는, 송신 안테나 (1012) 및 송신 안테나 (1016) 각각으로부터 전력을 동시에 송신함으로써 최적의 충전이 제공될 수도 있도록 충전 장치 (1010) 내에 있는 방식으로 배향될 수도 있다. 또한, 하나 이상의 송신 안테나 (예를 들어, 송신 안테나 (1012) 및/또는 송신 안테나 (1014)) 로부터 송신된 전력량은 수신 안테나 (예를 들어, 수신 안테나 (1070)) 에 의해 수신된 전력량을 더 최적화시키도록 조절될 수도 있다. 예를 들어, 송신 안테나 (1012) 에 의해 송신된 전력량은 증가될 수도 있고, 송신 안테나 (1014) 에 의해 송신된 전력량은 감소될 수도 있어서 수신 안테나 (1070) 에 의해 수신된 전력량을 최적화시킬 수도 있다. 하나 이상의 송신 안테나로부터 송신된 전력량이 조절될 수 있게 하는 것은, 하나 이상의 송신 안테나와 임의의 배치된 수신 안테나 사이의 극성 부정합으로 인해 효율 손실의 감소를 허용할 수도 있다는 것에 유의한다.
다양한 예시적인 실시형태에서, 동작의 주파수가 충분하게 낮을 수도 있어서, 합리적으로 사이징된 인접한 송신 안테나가 서로의 근거리장 영역내에 있다는 것에 더 유의한다. 이것은 안테나가 더 멀리 이격되어 있는 경우에 가능한 더 높은 커플링 레벨 (-1.5 내지 -3 dB) 을 허용할 수도 있다. 또한, 실질적으로 직교이고 인접한 송신 안테나들에 의해 방사된 전자기장은 직교로 분극화될 수도 있고, 이것은 인접한 안테나들 사이의 분리를 개선시킬 수도 있어서, 원치않은 커플링으로 인한 전력 손실이 감소될 수도 있다.
상대적으로 소형인 무선 충전 장치에서, 각 차원에서 오직 하나의 송신 안테나가 요구될 수도 있다. 한편, 상대적으로 대형인 무선 충전 장치는 각각 커플링된 송신 안테나 사이에서 간섭을 방지하기 위해 서로로부터 충분하게 이격되어 있는 평행면을 포함할 수도 있다. 이러한 경우에서, 송신 안테나는, 평행면들 사이에서 적절한 정렬로 위치된 하나 이상의 충전가능한 디바이스가 송신 안테나들 모두로부터 전력을 수신할 수도 있도록 평행면 각각에 임베디드될 수도 있다. 예를 들어, 도 27 을 참조하면, 충전 시스템 (1002) 은 제 1 면 (1056) 에 임베디드된 제 1 송신 안테나 (1054) 및 제 2 면 (1060) 에 임베디드된 제 2 송신 안테나 (1058) 를 포함하는 충전 장치 (1050) 를 포함하고, 여기서, 제 2 면 (1060) 은 커플링된 송신 안테나들 사이의 간섭을 회피하기 위해 제 1 면 (1056) 에 실질적으로 평행하고 제 1 면 (1056) 으로부터 충분하게 이격되어 있다. 따라서, 충전가능한 디바이스 (1064) 에 커플링된 수신 안테나 (1062) 는 송신 안테나 (1054) 및 송신 안테나 (1058) 각각으로부터 무선 전력을 동시에 수신할 수도 있다. 도 27 이 단지 2개의 평행 안테나만을 도시하지만, 본 발명의 실시형태들은 이에 제한되지 않는다. 오히려, 충전 시스템은 임의의 수의 평행 안테나를 포함할 수도 있고, 여기서, 평행 안테나는 하나 이상의 충전가능한 디바이스에 전력을 동시에 송신하고, 하나 이상의 충전가능한 디바이스에 전력을 독립적으로 송신하거나, 이들의 임의의 조합을 행하도록 구성될 수도 있다. 예를 들어, 도 28 을 참조하면, 복수의 평행 송신 안테나 (1162) 를 갖는 충전 장치 (1160) 가 도시되어 있다.
또한, 다른 예시적인 실시형태에 따르면, 충전 시스템은 하나의 송신 안테나로부터 복수의 충전가능한 디바이스로 전력을 동시에 송신하도록 구성될 수도 있다. 예를 들어, 도 26 을 참조하면, 송신 안테나 (1014) 에 의해 송신된 전력은, 각각이 송신 안테나 (1014) 와 실질적으로 평행한 수신 안테나 (1080) 및 수신 안테나 (1084) 각각에 의해 수신될 수도 있다.
또한, 그 안에 위치된 복수의 충전가능한 디바이스를 포함하는 충전 장치에 대해, 관련된 충전 시스템은 충전 장치내에 위치된 각 충전가능한 디바이스에 충전을 위한 기간을 할당하도록 구성될 수도 있다. 예로서, 도 24 를 참조하면, 충전 시스템 (1000) 은 수신 안테나 (1022) 에 전력을 수신하는 제 1 기간 및 수신 안테나 (1026) 에 전력을 수신하는 제 2 기간을 할당하도록 구성될 수도 있다. 단지 예를 들어, 충전 시스템 (1000) 은 충전 장치 (1010) 내에 위치된 각 디바이스에 지속기간 1/N*T 의 기간을 할당하도록 구성될 수도 있고, 여기서, N 은 충전 장치내에 위치된 충전가능한 디바이스의 수를 나타내고, T 는 총 충전 주기를 나타낸다. 정의된 기간이 동일한 지속기간일 필요는 없다는 것에 유의한다. 따라서, 다른 예로서, 충전 시스템 (1000) 은 각 충전가능한 디바이스에 기간을 할당하도록 구성될 수도 있고, 여기서, 충전가능한 디바이스에 할당된 기간의 지속기간은 충전가능한 디바이스를 완전하게 충전하기 위해 필요한 전력량에 의존할 수도 있다. 예를 들어, 충전가능한 디바이스 (1024) 가 디바이스 (1020) 보다 많은 전력을 요구하면, 충전가능한 디바이스 (1024) 에는 디바이스 (1020) 에 할당된 기간 보다 긴 지속기간을 갖는 기간이 할당될 수도 있다.
하나 이상의 수신 안테나가 정의된 기간 동안 하나 이상의 송신 안테나로부터 전력을 수신할 수도 있다는 것에 유의한다. 예를 들어, 도 26 을 다시 참조하면, 일 예시적인 실시형태에 따르면, 충전가능한 디바이스 (1082) 및 충전가능한 디바이스 (1086) 는 공통 기간 동안 전력을 각각 수신할 수도 있다. 다른 예시적인 실시형태에 따르면, 충전가능한 디바이스 (1082) 및 충전가능한 디바이스 (1086) 는 개별 기간 동안 전력을 수신할 수도 있다. 다른 예로서, 도 27 을 참조하면, 충전가능한 디바이스 (1064) 는 제 1 기간 동안 송신 안테나 (1058) 및 송신 안테나 (1054) 각각으로부터 전력을 수신할 수도 있고, 충전가능한 디바이스 (1065) 는 제 2 기간 동안 송신 안테나 (1055) 로부터 전력을 수신할 수도 있다.
기간의 지속기간이 임의의 적합한 방식에 의해 결정될 수도 있다는 것에 더 유의한다. 구체적으로는, 기간의 지속기간은 총 충전 주기의 지속기간, 관련된 충전 장치내에 위치된 충전가능한 디바이스의 수, 관련된 충전 장치내에 위치된 각 충전가능한 디바이스의 저력 레벨, 또는 이들의 임의의 조합에 의존한다. 또한, 충전 장치내에 위치된 하나 이상의 충전가능한 디바이스를 충전하는 충전 기간 동안, 충전 장치내에 위치된 하나 이상의 다른 수신 안테나는, 그 하나 이상의 다른 수신 안테나와 관련된 충전 장치에 커플링되거나 그 안에 임의의 다른 수신 또는 송신 안테나 사이의 커플링을 방지하기 위해 "은폐"될 수도 있다.
도 29 는 실질적으로 직교 방향에서 다중의 패싯 (facet) 을 포함하는 연속 루프 송신 안테나의 다른 구성을 예시한다. 도 29 의 예시적인 실시형태에서, 연속 루프 송신 안테나 (920) 는 박스 (913) 의 바닥에 따른 제 1 패싯 (922), 박스 (913) 의 측면을 따른 제 2 패싯 (924), 및 박스 (913) 의 후면을 따른 제 3 패싯 (926) 을 포함한다.
도 22a 내지 도 29 가 거의 직교 표면들에 임베디드된 송신 안테나들을 예시하지만, 본 발명의 실시형태들은 이에 제한되지 않는다. 오히려, 송신 안테나들은 예각 만큼 분리되는 장치의 인접 표면들에 임베디드될 수도 있다. 예를 들어, 도 30 을 참조하면, 복수의 송신 안테나 (1152) 를 갖는 충전 장치 (1150) 가 도시되어 있고, 여기서, 각 송신 안테나는 모든 다른 송신 안테나에 대해 평행하지도 않고 직교하지도 않는다. 다른 예로서, 도 31 을 참조하면, 복수의 송신 안테나를 갖는 충전 장치 (1110) 가 도시되어 있다. 제 1 배향 송신 안테나 (1112) 가 충전 장치 (1111) 의 제 1 측면 (1114) 상에 배치되고, 제 2 배향 송신 안테나 (1116) 가 충전 장치 (1110) 의 제 2 측면 (1116) 상에 배치되고, 여기서, 제 1 배향 송신 안테나 (1112) 및 제 2 배향 송신 안테나 (1116) 는 예를 들어, 45 도 이상일 수도 있는 각도 (
Figure pct00005
) 만큼 분리된다.
도 32 는 하나 이상의 예시적인 실시형태에 따른 방법 (600) 을 예시하는 플로우차트이다. 방법 (600) 은 다중의 평면에 배향된 복수의 송신 안테나 중 하나 이상의 송신 안테나로부터 하나 이상의 송신 안테나의 근거리장내에 위치된 적어도 하나의 수신 안테나로 전력을 무선으로 송신하는 단계를 포함한다 (부호 602 로 나타냄).
도 33 은 하나 이상의 예시적인 실시형태에 따른 다른 방법 (690)을 예시하는 플로우차트이다. 방법 (690) 은 복수의 송신 안테나를 다중의 평면에 배향하는 단계를 포함할 수도 있다 (부호 692 로 나타냄). 또한, 방법 (690) 은 복수의 송신 안테나 중 적어도 하나의 송신 안테나로부터 충전가능한 디바이스에 커플링된 적어도 하나의 수신 안테나로 무선 전력을 송신하는 단계를 포함할 수도 있다 (부호 694 로 나타냄).
여기에 설명하는 바와 같은 본 발명의 다양한 예시적인 실시형태는 충전 장치내에 위치되고 다양한 평면에 배향된 하나 이상의 충전가능한 디바이스가 충전 장치에 커플링되고 다중의 평면에 배향된 하나 이상의 송신 안테나로부터 전력을 수신할 수 있게 한다. 또한, 본 발명의 다양한 예시적인 실시형태는 충전 장치내에 위치된 각 충전가능한 디바이스에 대해 하나 이상의 송신 안테나의 최적의 선택을 정의하는 것을 가능하게 할 수도 있다. 추가로, 본 발명의 다양한 예시적인 실시형태는 충전 장치내에 복수의 디바이스를 충전하는 최적의 충전 방식을 정의하는 것을 가능하게 할 수도 있다. 더욱 구체적으로는, 본 발명의 다양한 예시적인 실시형태는 하나 이상의 충전가능한 디바이스를 충전하는 기간을 할당하고 변화시킴으로써 최적의 충전 방식을 정의하는 것을 가능하게 할 수도 있다. 또한, 각 송신 안테나의 전력 레벨이 변화될 수도 있다. 따라서, 각 충전가능한 디바이스에 전달된 전력량은 증가될 수도 있고, 또한, 충전 시스템의 효율이 전체적으로 증가될 수도 있다.
당업자는 정보 및 신호들이 임의의 다양한 다른 기술 및 기법을 사용하여 표현될 수도 있다는 것을 이해할 것이다. 예를 들어, 상기 설명 전반적으로 참조될 수도 있는 데이터, 명령들, 커맨드들, 정보, 신호들, 비트들, 심볼들 및 칩들은, 전압, 전류, 전자기파, 자기장 또는 자기 입자, 광학장 또는 광입자, 또는 이들의 임의의 조합에 의해 표현될 수도 있다.
당업자는, 여기에 개시된 다양한 실시형태들과 관련하여 설명된 다양한 예시적인 논리 블록들, 모듈들, 회로들 및 알고리즘 단계들이 전자 하드웨어, 컴퓨터 소프트웨어, 또는 양자의 조합으로서 구현될 수도 있다는 것을 더 이해할 것이다. 하드웨어와 소프트웨어의 이러한 상호교환성을 명확하게 예시하기 위해, 다양한 예시적인 컴포넌트들, 블록들, 모듈들, 회로들, 및 단계들이 그들의 기능과 관련하여 일반적으로 상술되었다. 이러한 기능이 하드웨어 또는 소프트웨어로서 구현되는지는 전체 시스템상에 부과된 설계 제약들 및 특정한 애플리케이션에 의존한다. 당업자는 설명된 기능을 각 특정한 애플리케이션에 대해 변화하는 방식으로 구현할 수도 있지만, 이러한 구현 결정이 본 발명의 예시적인 실시형태의 범위를 벗어나는 것으로서 해석되어서는 안된다.
여기에 개시된 다양한 실시형태들과 관련하여 설명한 다양한 예시적인 논리 블록들, 모듈들, 및 회로들은 범용 프로세서, 디지털 신호 프로세서 (DSP), 응용 주문형 집적 회로 (ASIC), 필드 프로그램가능한 게이트 어레이 (FPGA) 또는 다른 프로그램가능한 로직 디바이스, 개별 게이트 또는 트랜지스터 로직, 개별 하드웨어 컴포넌트, 또는 여기에 설명된 기능들을 수행하도록 설계된 이들의 임의의 조합으로 구현되거나 수행될 수도 있다. 범용 프로세서는 마이크로프로세서일 수도 있지만, 대안으로는, 프로세서는 임의의 종래의 프로세서, 제어기, 마이크로제어기, 또는 상태 머신일 수도 있다. 프로세서는 또한 컴퓨팅 디바이스들의 조합, 예를 들어, DSP 와 마이크로프로세서의 조합, 복수의 마이크로프로세서, DSP 와 연결된 하나 이상의 마이크로프로세서, 또는 임의의 다른 이러한 구성으로서 구현될 수도 있다.
여기에 개시된 예시적인 실시형태들과 관련하여 설명한 방법 및 알고리즘의 단계들은 하드웨어, 하드웨어에 의해 실행된 소프트웨어 모듈, 또는 이 둘의 조합에서 직접적으로 구현될 수도 있다. 소프트웨어 모듈은 랜덤 액세스 메모리 (RAM), 플래시 메모리, 판독 전용 메모리 (ROM), 전기적으로 프로그램가능한 ROM (EPROM), 전기적으로 소거가능한 프로그램가능한 ROM (EEPROM), 레지스터, 하드 디스크, 착탈식 디스크, CD-ROM, 또는 당업계에 알려진 임의의 다른 형태의 저장 매체에 상주할 수도 있다. 예시적인 저장 매체는 프로세서에 커플링되어서, 프로세서는 저장 매체로부터 정보를 판독할 수도 있고 저장 매체에 정보를 기록할 수도 있다. 대안으로는, 저장 매체는 프로세서와 일체형일 수도 있다. 프로세서 및 저장 매체는 ASIC 에 상주할 수도 있다. ASIC 는 사용자 단말기에 상주할 수도 있다. 대안으로는, 프로세서 및 저장 매체는 사용자 단말기에 개별 컴포넌트로서 상주할 수도 있다.
하나 이상의 예시적인 실시형태에서, 설명된 기능들은 하드웨어, 소프트웨어, 펌웨어, 또는 이들의 조합에서 구현될 수도 있다. 소프트웨어에서 구현되면, 기능들은 컴퓨터 판독가능한 매체상에 하나 이상의 명령 또는 코드로서 저장되거나 송신될 수도 있다. 컴퓨터 판독가능한 매체는 일 장소로부터 다른 장소로 컴퓨터 프로그램의 전송을 용이하게 하는 임의의 매체를 포함하는 통신 매체 및 컴퓨터 저장 매체 양자를 포함한다. 저장 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수도 있다. 제한하지 않는 예로서, 이러한 컴퓨터 판독가능한 매체는 RAM, ROM, EEPROM, CD-ROM 또는 다른 광 디스크 저장 디바이스, 자기 디스크 저장 디바이스 또는 다른 자기 저장 디바이스, 또는 원하는 프로그램 코드를 명령들 또는 데이터 구조들의 형태로 반송하거나 저장하기 위해 사용될 수 있고 컴퓨터에 의해 액세스될 수 있는 임의의 다른 매체를 포함할 수 있다. 또한, 임의의 문맥이 컴퓨터 판독가능한 매체를 적절하게 칭한다. 예를 들어, 소프트웨어가 동축 케이블, 광섬유 케이블, 트위스트 페어 (twisted pair), 디지털 가입자 라인 (DSL), 또는 적외선, 라디오, 및 마이크로파와 같은 무선 기술들을 사용하여 웹사이트, 서버, 또는 다른 원격 소스로부터 송신된다면, 이러한 동축 케이블, 광섬유 케이블, 트위스트 페어, DSL, 또는 적외선, 라디오, 및 마이크로파와 같은 무선 기술들은 매체의 정의에 포함된다. 본 명세서에 사용된 바와 같은 디스크 (disk) 및 디스크 (disc) 는 컴팩트 디스크 (compact disc; CD), 레이저 디스크 (laser disc), 광학 디스크 (optical disc), DVD (digital versatile disc), 플로피 디스크 (floppy disk) 및 블루-레이 디스크 (blu-ray disc) 를 포함하며, 여기서 디스크 (disk) 는 통상 데이터를 자기적으로 재생하는 한편 디스크 (disc) 는 레이저를 이용하여 광학적으로 데이터를 재생한다. 상기의 조합들도 또한 컴퓨터 판독가능 매체의 범위 내에 포함되어야 한다.
개시된 예시적인 실시형태들의 이전의 설명은, 당업자가 본 발명을 제조하거나 사용할 수 있게 하기 위해 제공된다. 이들 예시적인 실시형태들에 대한 다양한 변형물이 당업자에게는 쉽게 명백할 것이고, 여기에 정의된 일반 원리가 본 발명의 사상 또는 범위를 벗어나지 않고 다른 실시형태들에 적용될 수도 있다. 따라서, 본 발명은 여기에 나타낸 예시적인 실시형태들에 제한되는 것으로 의도되지 않고, 여기에 개시된 원리들 및 신규한 특징들과 부합하는 최광의 범위를 부여하려는 것이다.

Claims (34)

  1. 충전 시스템으로서,
    복수의 송신 안테나를 포함하고,
    상기 복수의 송신 안테나 중 적어도 하나의 송신 안테나가 상기 복수의 송신 안테나 중 적어도 하나의 다른 송신 안테나와는 상이한 평면에 배향되도록 구성되고;
    상기 복수의 송신 안테나의 각 송신 안테나는 관련된 근거리장 내에서 전력을 송신하기 위해 구성되는, 충전 시스템.
  2. 제 1 항에 있어서,
    상기 복수의 송신 안테나 중 상기 적어도 하나의 송신 안테나는, 상기 복수의 송신 안테나 중 상기 적어도 하나의 다른 송신 안테나와 실질적으로 직교인 평면에 배향되도록 구성되는, 충전 시스템.
  3. 제 1 항에 있어서,
    충전 장치를 더 포함하고,
    상기 복수의 송신 안테나의 각 송신 안테나는 상기 충전 장치의 관련된 표면에 커플링되는, 충전 시스템.
  4. 제 3 항에 있어서,
    상기 충전 장치의 2개 이상의 표면들은 표면들에 커플링된 송신 안테나를 갖는, 충전 시스템.
  5. 제 1 항에 있어서,
    상기 충전 시스템은, 충전 장치내에 위치된 충전가능한 디바이스를 충전하는 상기 복수의 송신 안테나 중 하나 이상의 송신 안테나를 식별하도록 구성되는, 충전 시스템.
  6. 제 1 항에 있어서,
    상기 충전 시스템은, 충전 장치내에 위치된 복수의 충전가능한 디바이스를 충전하는 상기 복수의 송신 안테나 중 하나 이상의 송신 안테나를 식별하도록 구성되는, 충전 시스템.
  7. 제 1 항에 있어서,
    상기 충전 시스템은 상기 복수의 송신 안테나의 제 1 송신 안테나 및 상기 복수의 송신 안테나의 제 2 송신 안테나로부터 적어도 하나의 수신 안테나로 전력을 동시에 송신하도록 구성되고, 상기 제 2 송신 안테나는 상기 제 1 송신 안테나와 평행하고 상기 제 1 송신 안테나로부터 이격되어 있는, 충전 시스템.
  8. 제 1 항에 있어서,
    상기 충전 시스템은 상기 복수의 송신 안테나의 제 1 송신 안테나 및 상기 제 1 송신 안테나와 평행하고 상기 제 1 송신 안테나로부터 이격되어 있는 상기 복수의 송신 안테나의 제 2 송신 안테나를 포함하고, 상기 제 1 송신 안테나와 상기 제 2 송신 안테나 사이에 위치된 적어도 하나의 수신 안테나로 전력을 송신하는 상기 제 1 송신 안테나 및 상기 제 2 송신 안테나 중 하나를 식별하도록 구성되는. 충전 시스템.
  9. 제 1 항에 있어서,
    상기 충전 시스템은, 적어도 하나의 송신 안테나로부터 적어도 하나의 수신 안테나로 전력을 송신하고, 적어도 하나의 다른 송신 안테나로부터 적어도 하나의 다른 수신 안테나로 전력을 동시에 송신하도록 구성되는, 충전 시스템.
  10. 제 1 항에 있어서,
    상기 충전 시스템은, 할당된 기간에 따라 충전 장치내에 위치된 각 충전가능한 디바이스를 충전하도록 구성되는, 충전 시스템.
  11. 제 1 항에 있어서,
    상기 충전 시스템은, 제 1 기간 동안 하나 이상의 충전가능한 디바이스를 충전하고, 적어도 하나의 다른 기간 동안 하나 이상의 다른 충전가능한 디바이스를 충전하도록 구성되는, 충전 시스템.
  12. 충전 시스템으로서,
    제 1 평면에서의 배향을 위해 구성된 제 1 송신 안테나; 및
    제 2 상이한 평면에서의 배향을 위해 구성된 제 2 송신 안테나를 포함하고,
    상기 제 1 송신 안테나 및 상기 제 2 송신 안테나 각각은, 관련된 커플링 모드 영역내에 위치된 적어도 하나의 수신 안테나에 전력을 송신하기 위해 구성되는, 충전 시스템.
  13. 제 12 항에 있어서,
    상기 제 1 평면은 상기 제 2 평면과 실질적으로 직교인, 충전 시스템.
  14. 제 12 항에 있어서,
    상기 제 1 평면은 상기 제 2 평면으로부터 예각 만큼 분리되어 있는, 충전 시스템.
  15. 제 12 항에 있어서,
    적어도 하나의 다른 송신 안테나를 더 포함하고,
    상기 적어도 하나의 다른 송신 안테나의 각 송신 안테나는, 상기 제 1 평면 또는 상기 제 2 평면 이외의 평면에서 배향되도록 구성되고, 각 송신 안테나는 또한, 관련된 커플링 모드 영역내에 위치된 적어도 하나의 수신 안테나에 전력을 송신하기 위해 구성되는, 충전 시스템.
  16. 제 12 항에 있어서,
    상기 제 1 송신 안테나 및 상기 제 2 송신 안테나는 적어도 하나의 수신 안테나에 전력을 동시에 송신하도록 구성되는, 충전 시스템.
  17. 제 12 항에 있어서,
    상기 제 1 송신 안테나는 적어도 하나의 수신 안테나에 전력을 송신하도록 구성되고, 상기 제 2 송신 안테나는 적어도 하나의 다른 수신 안테나에 전력을 동시에 송신하도록 구성되는, 충전 시스템.
  18. 제 12 항에 있어서,
    상기 제 1 송신 안테나는 충전 장치의 제 1 표면에 커플링되도록 구성되고, 상기 제 2 송신 안테나는 상기 충전 장치의 제 2 상이한 표면에 커플링되도록 구성되는, 충전 시스템.
  19. 다중의 평면에 배향된 복수의 송신 안테나 중 하나 이상의 송신 안테나로부터 상기 하나 이상의 송신 안테나의 근거리장내에 위치된 적어도 하나의 수신 안테나로 전력을 무선으로 송신하는 단계를 포함하는, 방법.
  20. 제 19 항에 있어서,
    상기 전력을 송신하는 단계는, 일 기간 동안 하나 이상의 송신 안테나로부터 적어도 하나의 수신 안테나로 전력을 송신하는 단계, 및 다른 기간 동안 하나 이상의 송신 안테나로부터 적어도 하나의 다른 수신 안테나로 전력을 송신하는 단계를 포함하는, 방법.
  21. 제 19 항에 있어서,
    상기 하나 이상의 송신 안테나 중 적어도 하나의 송신 안테나의 전력 레벨을 조절하는 단계를 더 포함하는, 방법.
  22. 제 19 항에 있어서,
    수신 안테나에 커플링된 충전가능한 디바이스를 충전하는 하나 이상의 송신 안테나를 식별하기 위해, 각 송신 안테나 개별적으로 및 송신 안테나들의 각 가능한 조합으로부터 상기 수신 안테나로 전력을 순차적으로 송신하는 단계를 더 포함하는, 방법.
  23. 제 19 항에 있어서,
    복수의 충전가능한 디바이스를 충전하는 하나 이상의 송신 안테나를 식별하기 위해, 각 송신 안테나 개별적으로 및 송신 안테나들의 각 가능한 조합으로부터 복수의 수신 안테나로 전력을 순차적으로 송신하는 단계를 더 포함하고, 복수의 충전가능한 디바이스 각각은 상기 복수의 수신 안테나 중 관련된 수신 안테나에 커플링되는, 방법.
  24. 제 19 항에 있어서,
    상기 전력을 송신하는 단계는,
    D = 1/N*T 에 의해 정의된 지속기간을 갖는 기간 동안 각 수신 안테나로 전력을 송신하는 단계를 포함하고,
    D 는 기간의 지속기간이고, N 은 상기 하나 이상의 송신 안테나의 근거리장내에 위치된 수신 안테나들의 수이며, T 는 총 충전 주기인, 방법.
  25. 제 19 항에 있어서,
    제 1 시간 지속기간 동안 제 1 송신 안테나로부터 전력을 송신하는 단계, 제 2 시간 지속기간 동안 제 2 송신 안테나로부터 전력을 송신하는 단계, 및 제 3 시간 지속기간 동안 제 3 송신 안테나로부터 전력을 송신하는 단계를 더 포함하는, 방법.
  26. 무선 전력 시스템으로서,
    다중의 평면에 배향된 복수의 송신 안테나 중 하나 이상의 송신 안테나로부터 상기 하나 이상의 송신 안테나의 근거리장내에 위치된 적어도 하나의 수신 안테나로 전력을 무선으로 송신하는 수단을 포함하는, 무선 전력 시스템.
  27. 다중의 평면에 복수의 송신 안테나를 배향하는 단계; 및
    상기 복수의 송신 안테나 중 적어도 하나의 송신 안테나로부터 충전가능한 디바이스에 커플링된 적어도 하나의 수신 안테나로 무선 전력을 송신하는 단계를 포함하는, 방법.
  28. 제 27 항에 있어서,
    상기 배향하는 단계는, 상기 복수의 송신 안테나를 충전 장치내에 위치시키는 단계를 포함하고,
    상기 복수의 송신 안테나 중 적어도 하나의 송신 안테나는, 상기 복수의 송신 안테나 중 적어도 하나의 다른 송신 안테나와는 다른 평면에 배향되는, 방법.
  29. 제 27 항에 있어서,
    충전 장치내에 위치된 하나 이상의 충전가능한 디바이스에 대해 교정 프로세스를 수행하는 단계를 더 포함하는, 방법.
  30. 제 27 항에 있어서,
    상기 무선 전력을 송신하는 단계는, 적어도 2개의 인접한 송신 안테나로부터 적어도 하나의 충전가능한 디바이스로 무선 전력을 송신하는 단계를 포함하는, 방법.
  31. 제 27 항에 있어서,
    상기 무선 전력을 송신하는 단계는, 2개의 평행하고 이격된 송신 안테나로부터 그 사이에 위치된 적어도 하나의 충전가능한 디바이스로 무선 전력을 송신하는 단계를 포함하는, 방법.
  32. 제 27 항에 있어서,
    상기 무선 전력을 송신하는 단계는, 적어도 하나의 송신 안테나로부터 적어도 하나의 충전가능한 디바이스로 무선 전력을 송신하는 단계, 및 적어도 하나의 다른 송신 안테나로부터 적어도 하나의 다른 충전가능한 디바이스로 무선 전력을 동시에 송신하는 단계를 포함하는, 방법.
  33. 제 27 항에 있어서,
    적어도 하나의 송신 안테나로부터 적어도 하나의 수신 안테나로 송신된 전력량을 변화시키는 단계 및 적어도 하나의 송신 안테나로부터 적어도 하나의 수신 안테나로 무선 전력을 송신하는 기간의 지속기간을 변화시키는 단계를 더 포함하는, 방법.
  34. 무선 전력 시스템으로서,
    재생가능한 에너지를 캡처하고 다른 형태의 에너지를 전달하는 수단;
    적어도 하나의 송신 안테나에서 상기 전달된 다른 형태의 에너지를 수신하는 수단; 및
    상기 적어도 하나의 송신 안테나로부터 관련된 커플링 모드 영역내에 위치된 적어도 하나의 다른 안테나로 전력을 무선으로 송신하는 수단을 포함하는, 무선 전력 시스템.
KR1020117020595A 2009-02-10 2010-02-10 다차원 무선 충전에 관한 시스템 및 방법 KR20110114701A (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US15129009P 2009-02-10 2009-02-10
US61/151,290 2009-02-10
US24439109P 2009-09-21 2009-09-21
US61/244,391 2009-09-21
US12/567,339 US9312924B2 (en) 2009-02-10 2009-09-25 Systems and methods relating to multi-dimensional wireless charging
US12/567,339 2009-09-25

Publications (1)

Publication Number Publication Date
KR20110114701A true KR20110114701A (ko) 2011-10-19

Family

ID=42199484

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117020595A KR20110114701A (ko) 2009-02-10 2010-02-10 다차원 무선 충전에 관한 시스템 및 방법

Country Status (7)

Country Link
US (1) US9312924B2 (ko)
EP (1) EP2396898B1 (ko)
JP (1) JP5759388B2 (ko)
KR (1) KR20110114701A (ko)
CN (1) CN102318212B (ko)
TW (1) TW201101640A (ko)
WO (1) WO2010093719A1 (ko)

Families Citing this family (384)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US8115448B2 (en) 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US8629650B2 (en) 2008-05-13 2014-01-14 Qualcomm Incorporated Wireless power transfer using multiple transmit antennas
CN102099958B (zh) 2008-05-14 2013-12-25 麻省理工学院 包括干涉增强的无线能量传输
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US8587155B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using repeater resonators
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US8552592B2 (en) 2008-09-27 2013-10-08 Witricity Corporation Wireless energy transfer with feedback control for lighting applications
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US8324759B2 (en) 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US8304935B2 (en) 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US8461720B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US8569914B2 (en) 2008-09-27 2013-10-29 Witricity Corporation Wireless energy transfer using object positioning for improved k
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8692410B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
CN107026511A (zh) 2008-09-27 2017-08-08 韦特里西提公司 无线能量转移系统
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8362651B2 (en) 2008-10-01 2013-01-29 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US20100201311A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless charging with separate process
US20100201201A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer in public places
US20100201312A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer for portable enclosures
US9438063B2 (en) 2010-07-09 2016-09-06 Industrial Technology Research Institute Charge apparatus
US10211664B2 (en) 2010-07-09 2019-02-19 Industrial Technology Research Institute Apparatus for transmission of wireless energy
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9391476B2 (en) 2010-09-09 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Power feeding device, wireless power feeding system using the same and wireless power feeding method
TWM399634U (en) * 2010-10-04 2011-03-11 Gooten Innolife Corp Watch winder with noncontact transmission function
DE102010047579A1 (de) * 2010-10-07 2012-04-12 Christmann Informationstechnik+Medien Gmbh & Co. Kg Flächenhaft sich erstreckendes Möbelbauteil
AU2011323276A1 (en) * 2010-11-05 2013-05-23 Ethicon Endo-Surgery, Inc. Medical device packaging with charging interface
US9899882B2 (en) * 2010-12-20 2018-02-20 Qualcomm Incorporated Wireless power peer to peer communication
JP5654367B2 (ja) 2011-01-28 2015-01-14 パナソニックIpマネジメント株式会社 非接触給電装置の給電モジュール、非接触給電装置の給電モジュールの使用方法及び非接触給電装置の給電モジュールの製造方法
JP5439416B2 (ja) * 2011-03-04 2014-03-12 株式会社東芝 無線電力伝送装置
JP2012186949A (ja) * 2011-03-07 2012-09-27 Hitachi Maxell Energy Ltd 磁界共鳴を利用した非接触電力伝送装置
JP5656698B2 (ja) * 2011-03-08 2015-01-21 株式会社アドバンテスト ワイヤレス電力送信機、無線タグおよびワイヤレス給電システム
JP5847161B2 (ja) * 2011-03-31 2016-01-20 積水化学工業株式会社 建築物及びその施工方法
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
EP3435389A1 (en) 2011-08-04 2019-01-30 WiTricity Corporation Tunable wireless power architectures
CA2788895C (en) 2011-09-07 2020-08-18 Solace Power Inc. Wireless electric field power transmission system and method
EP2754222B1 (en) 2011-09-09 2015-11-18 Witricity Corporation Foreign object detection in wireless energy transfer systems
US20130062966A1 (en) 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
JP5890170B2 (ja) * 2011-09-29 2016-03-22 日立マクセル株式会社 非接触電力伝送装置及び非接触電力伝送方法
FR2980925B1 (fr) 2011-10-03 2014-05-09 Commissariat Energie Atomique Systeme de transfert d'energie par couplage electromagnetique
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US10948289B2 (en) 2011-11-03 2021-03-16 Sony Corporation System and method for calibrating sensors across loosely coupled consumer electronic devices
AU2012332131A1 (en) 2011-11-04 2014-05-22 Witricity Corporation Wireless energy transfer modeling tool
WO2013068873A1 (en) 2011-11-11 2013-05-16 Sony Mobile Communications Ab System and method for the assisted calibration of sensors distributed across different devices
US9118203B2 (en) * 2011-11-15 2015-08-25 Qualcomm Incorporated Systems and methods for induction charging with a closed magnetic loop
DE102012213418A1 (de) 2011-11-22 2013-05-23 Robert Bosch Gmbh Handwerkzeugakkuladevorrichtung
BR112014012763A8 (pt) * 2011-11-30 2017-06-20 Koninklijke Philips Nv dispositivo transmissor de potência indutiva, e sistema transmissor de potência indutiva
US9236756B2 (en) 2011-12-05 2016-01-12 Qualcomm Incorporated Apparatus for wireless device charging using radio frequency (RF) energy and device to be wirelessly charged
CN103151846A (zh) * 2011-12-07 2013-06-12 博西华电器(江苏)有限公司 以定向和无线方式将电力输送给用电设备单元的家用电器
CN104040833B (zh) * 2012-01-12 2016-08-24 富士通株式会社 送电装置以及送受电系统
JP2015508987A (ja) 2012-01-26 2015-03-23 ワイトリシティ コーポレーションWitricity Corporation 減少した場を有する無線エネルギー伝送
US8933589B2 (en) 2012-02-07 2015-01-13 The Gillette Company Wireless power transfer using separately tunable resonators
TWI456859B (zh) * 2012-03-02 2014-10-11 Hsiung Kuang Tsai 無線電力傳輸系統
CN107275763B (zh) 2012-03-23 2020-07-28 Lg 伊诺特有限公司 天线组件
TWI604480B (zh) * 2012-03-23 2017-11-01 Lg伊諾特股份有限公司 無線功率接收器以及包含有其之可攜式終端裝置
DE102012007922A1 (de) * 2012-04-24 2013-10-24 Peiker Acustic Gmbh & Co. Kg Integrationseinrichtung und Verfahren zur Herstellung einer Wandung einer Aufnahmevorrichtung
JP2013240246A (ja) * 2012-05-17 2013-11-28 Toshiba Corp 無線給電中継装置
NZ702514A (en) * 2012-05-29 2016-11-25 Humavox Ltd Wireless charging device
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US9787103B1 (en) * 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US20150042265A1 (en) * 2013-05-10 2015-02-12 DvineWave Inc. Wireless powering of electronic devices
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US9859757B1 (en) 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US9124125B2 (en) 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
CN104604077B (zh) 2012-09-05 2018-10-19 瑞萨电子株式会社 非接触充电装置以及使用该非接触充电装置的非接触供电系统
US20150244199A1 (en) * 2012-09-11 2015-08-27 Yulong Computer Telecommunication Technologies (Shenzhen) Co., Ltd. Wireless charger and multi-terminal wireless charging method
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US20140087657A1 (en) * 2012-09-27 2014-03-27 Broadcom Corporation Remote Antenna Driver for Reducing Unwanted Electromagnetic Emissions and/or Distortion Within a Near Field Communication (NFC) Capable Device
US9601930B2 (en) * 2012-09-28 2017-03-21 Broadcom Corporation Power transmitting device having device discovery and power transfer capabilities
US20140091636A1 (en) * 2012-10-02 2014-04-03 Witricity Corporation Wireless power transfer
WO2014063159A2 (en) 2012-10-19 2014-04-24 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9660478B2 (en) 2012-12-12 2017-05-23 Qualcomm Incorporated System and method for facilitating avoidance of wireless charging cross connection
US9831705B2 (en) * 2012-12-12 2017-11-28 Qualcomm Incorporated Resolving communcations in a wireless power system with co-located transmitters
KR101397668B1 (ko) * 2012-12-27 2014-05-23 전자부품연구원 무선 전력 충전용 송신 안테나 및 송신기.
JP6056477B2 (ja) * 2012-12-28 2017-01-11 富士通株式会社 生体情報取得装置、生体情報取得装置の制御方法、及び、生体情報取得システム
CA2899563C (en) * 2013-01-30 2017-10-03 Fujitsu Limited Power source, wireless power transfer system and wireless power transfer method
JP2014192949A (ja) * 2013-03-26 2014-10-06 Canon Inc 送電装置、受電装置、送電方法、受電方法及びプログラム
US9843763B2 (en) 2013-05-10 2017-12-12 Energous Corporation TV system with wireless power transmitter
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
CN105340030B (zh) 2013-06-28 2018-11-16 西门子公司 感应式充电装置、电动车辆、充电站以及用于感应式充电的方法
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
WO2015023899A2 (en) 2013-08-14 2015-02-19 Witricity Corporation Impedance tuning
KR20150052367A (ko) * 2013-10-10 2015-05-14 엘지이노텍 주식회사 무선 전력 송신 장치
KR101943082B1 (ko) * 2014-01-23 2019-04-18 한국전자통신연구원 무선 전력 송신 장치, 무선 전력 수신 장치, 및 무선 전력 전송 시스템
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
WO2015123614A2 (en) 2014-02-14 2015-08-20 Witricity Corporation Object detection for wireless energy transfer systems
KR101762778B1 (ko) 2014-03-04 2017-07-28 엘지이노텍 주식회사 무선 충전 및 통신 기판 그리고 무선 충전 및 통신 장치
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
WO2015161035A1 (en) 2014-04-17 2015-10-22 Witricity Corporation Wireless power transfer systems with shield openings
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9735585B2 (en) * 2014-05-05 2017-08-15 Google Inc. Foreign object detection method for wireless charging systems
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
EP3140680B1 (en) 2014-05-07 2021-04-21 WiTricity Corporation Foreign object detection in wireless energy transfer systems
WO2015177860A1 (ja) * 2014-05-20 2015-11-26 富士通株式会社 無線電力伝送制御方法および無線電力伝送システム
CN106464021B (zh) * 2014-05-20 2019-01-22 富士通株式会社 无线电力传输控制方法以及无线电力传输系统
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
EP3157116A4 (en) * 2014-05-30 2018-01-17 IHI Corporation Contactless power-supplying system, power-receiving device, and power-transmitting device
WO2015196123A2 (en) 2014-06-20 2015-12-23 Witricity Corporation Wireless power transfer systems for surfaces
CN106716778A (zh) 2014-06-26 2017-05-24 索雷斯能源公司 无线电场电力传输系统、其发射器与接收器以及无线传送电力的方法
JP6240036B2 (ja) * 2014-07-07 2017-11-29 株式会社東芝 送電装置、受電装置、及び電力伝送装置
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
WO2016007674A1 (en) 2014-07-08 2016-01-14 Witricity Corporation Resonator balancing in wireless power transfer systems
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
SG11201701617QA (en) 2014-09-05 2017-03-30 Solace Power Inc Wireless electric field power transfer system, method, transmitter and receiver therefor
WO2016099032A1 (ko) 2014-12-16 2016-06-23 주식회사 한림포스텍 무선 전력 전송 네트워크의 전력 전송 커버리지 제어 장치 및 방법
KR20160051497A (ko) 2014-11-03 2016-05-11 주식회사 한림포스텍 무선 전력 전송 네트워크의 전력 전송 커버리지 제어 장치 및 방법
JP6618535B2 (ja) 2014-12-02 2019-12-11 オシア,インク. 無線給電環境においてビーコン信号を符号化するための技術
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
CN104716751A (zh) * 2015-02-11 2015-06-17 苏州大学 一种穿戴式无线传能装置和方法
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
WO2016144193A1 (en) * 2015-03-06 2016-09-15 Powerbyproxi Limited Wireless power transfer adaptor
CN106300495B (zh) * 2015-06-23 2019-04-05 台湾东电化股份有限公司 无线充电装置及其充电方法
US10375479B2 (en) 2015-08-04 2019-08-06 Curtis E. Graber Electric motor
US11172308B2 (en) 2015-08-04 2021-11-09 Curtis E. Graber Electric motor
US9668060B2 (en) * 2015-08-04 2017-05-30 Curtis E. Graber Transducer
US11183881B2 (en) 2015-09-11 2021-11-23 Yank Technologies, Inc. Injection molding electroplating for three-dimensional antennas
EP3347968B1 (en) * 2015-09-11 2021-06-30 Yank Technologies, Inc. Wireless charging platforms via three-dimensional phased coil arrays
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
CN105245036B (zh) * 2015-09-15 2018-12-11 华南理工大学 一种基于多发射单元的无线电磁波能量采集的方法和装置
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10397682B2 (en) * 2015-09-30 2019-08-27 Apple Inc. Earbuds with acoustic insert
WO2017062647A1 (en) 2015-10-06 2017-04-13 Witricity Corporation Rfid tag and transponder detection in wireless energy transfer systems
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
CN108700620B (zh) 2015-10-14 2021-03-05 无线电力公司 无线能量传输系统中的相位和振幅检测
WO2017070227A1 (en) 2015-10-19 2017-04-27 Witricity Corporation Foreign object detection in wireless energy transfer systems
WO2017070009A1 (en) 2015-10-22 2017-04-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10116162B2 (en) 2015-12-24 2018-10-30 Energous Corporation Near field transmitters with harmonic filters for wireless power charging
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US9837832B2 (en) 2015-12-29 2017-12-05 Motorola Solutions, Inc. Wireless power transfer device and method
US10263476B2 (en) 2015-12-29 2019-04-16 Energous Corporation Transmitter board allowing for modular antenna configurations in wireless power transmission systems
JP6909557B2 (ja) * 2016-01-27 2021-07-28 日東電工株式会社 給電装置、及び受給電装置
WO2017136491A1 (en) 2016-02-02 2017-08-10 Witricity Corporation Controlling wireless power transfer systems
CN114123540A (zh) 2016-02-08 2022-03-01 韦特里西提公司 可变电容装置及高功率无线能量传输系统
EP3444925B1 (en) 2016-03-31 2022-04-27 Samsung Electronics Co., Ltd. Wireless power transmission apparatus and control method therefor
US11528058B2 (en) 2016-09-06 2022-12-13 Apple Inc. Inductive charging coil configuration for wearable electronic devices
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
JP6691273B2 (ja) 2016-12-12 2020-04-28 エナージャス コーポレイション 配送される無線電力を最大化するために近接場充電パッドのアンテナ区域を選択的に活性化する方法
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
WO2018129462A1 (en) * 2017-01-06 2018-07-12 Energous Corporation Devices, systems, and methods for wireless power transmission
US10530177B2 (en) * 2017-03-09 2020-01-07 Cochlear Limited Multi-loop implant charger
JP2018153026A (ja) * 2017-03-14 2018-09-27 オムロンオートモーティブエレクトロニクス株式会社 送電装置
WO2018183892A1 (en) 2017-03-30 2018-10-04 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
EP3631946A4 (en) 2017-05-30 2020-12-09 Wireless Advanced Vehicle Electrification Inc. SINGLE-POWERED MULTI-DOCKING RANGE WIRELESS CHARGING
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
CN107332363B (zh) * 2017-08-21 2020-08-25 京东方科技集团股份有限公司 无线充电系统及其控制方法
US11426091B2 (en) 2017-09-06 2022-08-30 Apple Inc. Film coatings as electrically conductive pathways
US10491041B2 (en) 2017-09-06 2019-11-26 Apple Inc. Single-structure wireless charging receiver systems having multiple receiver coils
US10381881B2 (en) 2017-09-06 2019-08-13 Apple Inc. Architecture of portable electronic devices with wireless charging receiver systems
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11462943B2 (en) 2018-01-30 2022-10-04 Wireless Advanced Vehicle Electrification, Llc DC link charging of capacitor in a wireless power transfer pad
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
US11515732B2 (en) 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
CN109004768B (zh) * 2018-06-26 2022-05-31 华为技术有限公司 一种无线充电的装置和方法
CN109038769B (zh) * 2018-06-29 2019-06-28 深圳市宇能无线技术有限公司 一种单对多的多频无线输能方法和系统
CN109125923B (zh) * 2018-07-19 2022-01-28 贵州省人民医院 一种用于心脏传导阻滞的充电起搏器系统
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
US10862543B2 (en) * 2019-01-17 2020-12-08 Capital One Services, Llc Apparatus and method for wireless communication with improved reliability
KR20210117283A (ko) 2019-01-28 2021-09-28 에너저스 코포레이션 무선 전력 전송을 위한 소형 안테나에 대한 시스템들 및 방법들
CN113661660B (zh) 2019-02-06 2023-01-24 艾诺格思公司 估计最佳相位的方法、无线电力发射设备及存储介质
CN115276262B (zh) * 2019-04-10 2023-06-16 欧希亚有限公司 简化的无线电力接收器架构
US11139699B2 (en) 2019-09-20 2021-10-05 Energous Corporation Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
EP4032166A4 (en) 2019-09-20 2023-10-18 Energous Corporation SYSTEMS AND METHODS FOR PROTECTING WIRELESS POWER RECEIVERS USING MULTIPLE RECTIFIER AND ESTABLISHING IN-BAND COMMUNICATIONS USING MULTIPLE RECTIFIER
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
EP3806284A1 (en) * 2019-10-10 2021-04-14 Vestel Elektronik Sanayi ve Ticaret A.S. Apparatus and method for wirelessly charging mobile devices, and mobile device
US11509172B2 (en) 2019-11-07 2022-11-22 Chairge Llc Wireless charging system and associated methods
EP4073905A4 (en) * 2019-12-13 2024-01-03 Energous Corp CHARGING PAD WITH GUIDING CONTOURS FOR ALIGNING AN ELECTRONIC DEVICE ON THE CHARGING PAD AND FOR EFFICIENTLY TRANSMITTING NEAR FIELD HIGH FREQUENCY ENERGY TO THE ELECTRONIC DEVICE
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
US20230075393A1 (en) * 2020-02-18 2023-03-09 Gan Systems Inc. Apparatus, systems and methods for load-adaptive 3d wireless charging
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
US20210344232A1 (en) * 2020-05-04 2021-11-04 Apple Inc. Wireless Power Relay with Constant Power Controlled Converter
CN112967490A (zh) * 2021-05-18 2021-06-15 北京英夫美迪科技股份有限公司 基于谐振电路的无源遥控器设备及开关式传感器设备
US11824373B2 (en) 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with parallel coil molecule configuration
US11824372B2 (en) 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with puzzled antenna molecules
US20230140464A1 (en) * 2021-11-03 2023-05-04 Nucurrent, Inc. Wireless Power Transmission System with Source-Repeater Architecture
US11831177B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmitter with internal repeater and enhanced uniformity
US11955819B2 (en) 2021-11-03 2024-04-09 Nucurrent, Inc. Communications modulation in wireless power receiver with multi-coil receiver antenna
US11831173B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmission antenna with series coil molecule configuration
US11831176B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transfer systems with substantial uniformity over a large area
US11824371B2 (en) 2021-11-03 2023-11-21 Nucurrent, Inc. Wireless power transmission antenna with internal repeater and repeater filter
US11962337B2 (en) 2021-11-03 2024-04-16 Nucurrent, Inc. Communications demodulation in wireless power transmission system having an internal repeater
US11862991B2 (en) 2021-11-03 2024-01-02 Nucurrent, Inc. Wireless power transmission antenna with internal repeater and in-coil tuning
US11831175B2 (en) 2021-11-03 2023-11-28 Nucurrent, Inc. Wireless power transmission antenna with antenna molecules
US11848566B2 (en) 2021-11-03 2023-12-19 Nucurrent, Inc. Dual communications demodulation of a wireless power transmission system having an internal repeater
US11862984B2 (en) 2021-11-03 2024-01-02 Nucurrent, Inc. Wireless power receiver with repeater for enhanced power harvesting
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Family Cites Families (363)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1283307B (de) 1967-10-21 1968-11-21 August Schwer Soehne Gmbh Antennenverstaerker
US4556837A (en) 1982-03-24 1985-12-03 Terumo Kabushiki Kaisha Electronic clinical thermometer
JPS5931054U (ja) 1982-08-23 1984-02-27 日本電子機器株式会社 酸素センサ
JPS61278222A (ja) * 1985-06-03 1986-12-09 Nippon Denzai Kogyo Kenkyusho:Kk 伝送制御装置
JPS62203526A (ja) 1986-02-28 1987-09-08 トヨタ自動車株式会社 無線電力伝送装置
JPS6369335A (ja) 1986-09-11 1988-03-29 Nippon Denzai Kogyo Kenkyusho:Kk 非接触伝送装置
US4802080A (en) 1988-03-18 1989-01-31 American Telephone And Telegraph Company, At&T Information Systems Power transfer circuit including a sympathetic resonator
US5161255A (en) 1990-01-26 1992-11-03 Pioneer Electronic Corporation Motor vehicle-mounted radio wave receiving gps apparatus requiring no drill holes for mounting
DE4004196C1 (en) 1990-02-12 1991-04-11 Texas Instruments Deutschland Gmbh, 8050 Freising, De Transponder transferring stored measurement data to interrogator - operates without battery using capacitor charged by rectified HF pulses
KR920011068B1 (ko) 1990-07-25 1992-12-26 현대전자산업 주식회사 무선에 의한 채널 및 비밀코드 변경과 상호기억방식을 채용한 무선전화시스템 및 비밀코드 변경방법
US5311198A (en) 1990-08-23 1994-05-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Active antenna
GB9204200D0 (en) * 1992-02-27 1992-04-08 Goble Nigel M An inductive loop power transmission system
JP3036224B2 (ja) 1992-04-13 2000-04-24 オムロン株式会社 非接触伝送装置およびその媒体
JP3344593B2 (ja) 1992-10-13 2002-11-11 株式会社ソニー木原研究所 無線式電力供給装置
US5287112A (en) 1993-04-14 1994-02-15 Texas Instruments Incorporated High speed read/write AVI system
US5790946A (en) 1993-07-15 1998-08-04 Rotzoll; Robert R. Wake up device for a communications system
JPH0739077A (ja) 1993-07-22 1995-02-07 Sony Corp コードレスパワーステーション
JPH0771769A (ja) 1993-08-31 1995-03-17 Sanyo Electric Co Ltd 加熱調理器
US5539394A (en) 1994-03-16 1996-07-23 International Business Machines Corporation Time division multiplexed batch mode item identification system
WO1995027338A1 (en) 1994-04-04 1995-10-12 Motorola Inc. Method and apparatus for detecting and handling collisions in a radio communication system
US5520892A (en) 1994-04-11 1996-05-28 Bowen; John G. Sterilization unit for dental handpieces and other instruments
JPH087059A (ja) 1994-06-21 1996-01-12 Sony Chem Corp 非接触情報カード
MY120873A (en) 1994-09-30 2005-12-30 Qualcomm Inc Multipath search processor for a spread spectrum multiple access communication system
US5790080A (en) 1995-02-17 1998-08-04 Lockheed Sanders, Inc. Meander line loaded antenna
DE19519450C2 (de) 1995-05-26 1997-06-12 Oliver Simons Kontrollsystem
JP3761001B2 (ja) 1995-11-20 2006-03-29 ソニー株式会社 非接触型情報カード及びic
SE506626C2 (sv) 1995-11-27 1998-01-19 Ericsson Telefon Ab L M Impedansorgan
JPH09172743A (ja) 1995-12-20 1997-06-30 Toyota Autom Loom Works Ltd 充電装置のカプラ結合装置
US5956626A (en) 1996-06-03 1999-09-21 Motorola, Inc. Wireless communication device having an electromagnetic wave proximity sensor
JP3392016B2 (ja) 1996-09-13 2003-03-31 株式会社日立製作所 電力伝送システム並びに電力伝送および情報通信システム
JPH1090405A (ja) 1996-09-19 1998-04-10 Toshiba Corp 情報処理装置
KR19980024391U (ko) 1996-10-31 1998-07-25 양재신 자동차용 변속레버
FI106759B (fi) 1996-11-13 2001-03-30 Nokia Mobile Phones Ltd Matkaviestimen lähetystehon rajoitinjärjestelmä
JPH10187916A (ja) 1996-12-27 1998-07-21 Rohm Co Ltd 非接触icカード通信システムにおける応答器
CN1242092A (zh) 1996-12-27 2000-01-19 罗姆股份有限公司 非接触ic卡通信系统中的应答器、集成电路片、非接触ic卡、不需自电源型装置及不需自电源型装置的自动调整方法
US5805067A (en) 1996-12-30 1998-09-08 At&T Corp Communication terminal having detector method and apparatus for safe wireless communication
JPH10210751A (ja) 1997-01-22 1998-08-07 Hitachi Ltd 整流回路および半導体集積回路並びにicカード
JPH10225020A (ja) 1997-02-03 1998-08-21 Sony Corp 無接点電力供給装置
US5933421A (en) 1997-02-06 1999-08-03 At&T Wireless Services Inc. Method for frequency division duplex communications
DE29710675U1 (de) 1997-06-16 1997-08-14 Tegethoff Marius Anzeigesystem für Fahrzeuge
JPH10240880A (ja) 1997-02-26 1998-09-11 Rohm Co Ltd Icカードシステム及びそれを用いた搬送システム
US7107103B2 (en) 1997-02-26 2006-09-12 Alfred E. Mann Foundation For Scientific Research Full-body charger for battery-powered patient implantable device
JPH10295043A (ja) 1997-04-16 1998-11-04 Fujiden Enji Kk 携帯型電子機器用電源装置
US6164532A (en) 1997-05-15 2000-12-26 Hitachi, Ltd. Power transmission system, power transmission/communication system and reader and/or writer
US5963144A (en) 1997-05-30 1999-10-05 Single Chip Systems Corp. Cloaking circuit for use in a radiofrequency identification and method of cloaking RFID tags to increase interrogation reliability
DE69838364T2 (de) 1997-06-20 2008-05-29 Hitachi Kokusai Electric Inc. Schreib-/Lesevorrichtung, Stromversorgungssystem und Kommunikationssystem
US6151500A (en) 1997-06-20 2000-11-21 Bellsouth Corporation Method and apparatus for directing a wireless communication to a wireline unit
JPH1125238A (ja) 1997-07-04 1999-01-29 Kokusai Electric Co Ltd Icカード
US6025780A (en) 1997-07-25 2000-02-15 Checkpoint Systems, Inc. RFID tags which are virtually activated and/or deactivated and apparatus and methods of using same in an electronic security system
JPH1169640A (ja) 1997-08-26 1999-03-09 Matsushita Electric Works Ltd 非接触式充電装置
JPH1198706A (ja) 1997-09-18 1999-04-09 Tokin Corp 非接触充電器
JPH11122832A (ja) 1997-10-07 1999-04-30 Casio Comput Co Ltd 充電装置
JP4009688B2 (ja) 1997-10-31 2007-11-21 竹中エンジニアリング株式会社 無線式電力供給装置を備えた物体検知器
JP3840765B2 (ja) 1997-11-21 2006-11-01 神鋼電機株式会社 非接触給電搬送システムにおける1次給電側電源装置
JPH11188113A (ja) 1997-12-26 1999-07-13 Nec Corp 電力伝送システムおよび電力伝送方法ならびにその電力伝送システムを備えた電気刺激装置
DE59801757D1 (de) 1998-03-03 2001-11-22 Infineon Technologies Ag Datenträger zum kontaktlosen Empfangen von amplitudenmodulierten Signalen
JP3881770B2 (ja) 1998-03-10 2007-02-14 松下電器産業株式会社 移動局装置および通信方法
US6570541B2 (en) * 1998-05-18 2003-05-27 Db Tag, Inc. Systems and methods for wirelessly projecting power using multiple in-phase current loops
US6388628B1 (en) * 1998-05-18 2002-05-14 Db Tag, Inc. Systems and methods for wirelessly projecting power using in-phase current loops
JP3884565B2 (ja) 1998-05-21 2007-02-21 株式会社日立国際電気 非接触icカード用リーダ/ライタ装置
JPH11341711A (ja) 1998-05-21 1999-12-10 Sony Corp 無接点電源回路
JP3264266B2 (ja) 1998-06-04 2002-03-11 三菱マテリアル株式会社 盗難防止用タグ及びその使用方法
US6047214A (en) 1998-06-09 2000-04-04 North Carolina State University System and method for powering, controlling, and communicating with multiple inductively-powered devices
JP2000037046A (ja) 1998-07-15 2000-02-02 Nippon Telegr & Teleph Corp <Ntt> 非接触給電に用いる電力供給装置および負荷装置ならびに負荷装置検出方法
TW412896B (en) 1998-07-28 2000-11-21 Koninkl Philips Electronics Nv Communication apparatus, mobile radio equipment, base station and power control method
JP4099807B2 (ja) 1998-08-03 2008-06-11 詩朗 杉村 Icカードの電力供給装置
JP2000067195A (ja) 1998-08-26 2000-03-03 Sony Corp 情報カード
JP2000076008A (ja) 1998-09-03 2000-03-14 Kokusai Electric Co Ltd 情報処理システム
JP2000113127A (ja) 1998-09-30 2000-04-21 Toshiba Corp 無線タグシステム
JP2000138621A (ja) 1998-10-30 2000-05-16 Hitachi Maxell Ltd 非接触情報媒体を利用する通信システム及びかかる通信システムに使用される通信補助装置
US6072383A (en) 1998-11-04 2000-06-06 Checkpoint Systems, Inc. RFID tag having parallel resonant circuit for magnetically decoupling tag from its environment
JP2000172795A (ja) 1998-12-07 2000-06-23 Kokusai Electric Co Ltd リーダライタ
DE19858299A1 (de) 1998-12-17 2000-06-29 Daimler Chrysler Ag Antennensystem für eine Datenkommunikationseinrichtung in einem Fahrzeug
US6666875B1 (en) 1999-03-05 2003-12-23 Olympus Optical Co., Ltd. Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state
FR2793360A1 (fr) 1999-05-04 2000-11-10 Cie Des Signaux Controle de la puissance rayonnee d'un lecteur de carte a circuit integre de proximite
EP1190543A4 (en) 1999-06-01 2003-05-28 Peter Monsen SYSTEM AND METHOD FOR MULTIPLE ACCESS FOR MULTIFUNCAL DIGITAL RADIOCOMMUNICATION SYSTEMS
US7522878B2 (en) 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US7212414B2 (en) 1999-06-21 2007-05-01 Access Business Group International, Llc Adaptive inductive power supply
US7005985B1 (en) 1999-07-20 2006-02-28 Axcess, Inc. Radio frequency identification system and method
DE19958265A1 (de) 1999-12-05 2001-06-21 Iq Mobil Electronics Gmbh Drahtloses Energieübertragungssystem mit erhöhter Ausgangsspannung
US7478108B2 (en) 1999-12-06 2009-01-13 Micro Strain, Inc. Data collection using sensing units and separate control units with all power derived from the control units
JP3488166B2 (ja) 2000-02-24 2004-01-19 日本電信電話株式会社 非接触icカードシステムとそのリーダライタおよび非接触icカード
US20020154705A1 (en) 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
JP4522532B2 (ja) 2000-04-07 2010-08-11 日本信号株式会社 非接触型icカード
JP4240748B2 (ja) 2000-04-25 2009-03-18 パナソニック電工株式会社 無接点給電装置
JP2001339327A (ja) 2000-05-29 2001-12-07 Sony Corp 情報授受装置および情報授受方法および情報担持装置および情報担持方法
US7248841B2 (en) 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
JP3631112B2 (ja) 2000-07-14 2005-03-23 三洋電機株式会社 非接触型充電装置及び携帯電話機
JP2002050534A (ja) 2000-08-04 2002-02-15 Taiyo Yuden Co Ltd 電子部品
US6392544B1 (en) 2000-09-25 2002-05-21 Motorola, Inc. Method and apparatus for selectively activating radio frequency identification tags that are in close proximity
KR100355270B1 (ko) 2000-10-11 2002-10-11 한국전자통신연구원 시분할 방법을 이용하는 핑거와, 이를 구비한 레이크 수신기
KR100566220B1 (ko) 2001-01-05 2006-03-29 삼성전자주식회사 무접점 배터리 충전기
US6690264B2 (en) 2001-01-23 2004-02-10 Single Chip Systems Corporation Selective cloaking circuit for use in a radiofrequency identification and method of cloaking RFID tags
JP4784794B2 (ja) 2001-01-26 2011-10-05 ソニー株式会社 電子装置
DE10104019C1 (de) 2001-01-31 2002-01-31 Bosch Gmbh Robert Motoradschutzanzug
US7142811B2 (en) 2001-03-16 2006-11-28 Aura Communications Technology, Inc. Wireless communication over a transducer device
US6600931B2 (en) 2001-03-30 2003-07-29 Nokia Corporation Antenna switch assembly, and associated method, for a radio communication station
JP2003011734A (ja) 2001-04-26 2003-01-15 Denso Corp 車両用電気機器取付構造
JP3905418B2 (ja) 2001-05-18 2007-04-18 セイコーインスツル株式会社 電源装置および電子機器
US6970142B1 (en) 2001-08-16 2005-11-29 Raytheon Company Antenna configurations for reduced radar complexity
TW535341B (en) 2001-09-07 2003-06-01 Primax Electronics Ltd Wireless peripherals charged by electromagnetic induction
US6489745B1 (en) 2001-09-13 2002-12-03 The Boeing Company Contactless power supply
US7039435B2 (en) 2001-09-28 2006-05-02 Agere Systems Inc. Proximity regulation system for use with a portable cell phone and a method of operation thereof
US7146139B2 (en) 2001-09-28 2006-12-05 Siemens Communications, Inc. System and method for reducing SAR values
EP1783926B1 (en) 2001-11-20 2010-03-31 Qualcomm, Incorporated Reverse link power controlled repeater
CN1220339C (zh) 2001-12-12 2005-09-21 天瀚科技股份有限公司 无线压力电磁感应系统
US7304972B2 (en) 2002-01-10 2007-12-04 Harris Corporation Method and device for establishing communication links and handling unbalanced traffic loads in a communication system
US6954449B2 (en) 2002-01-10 2005-10-11 Harris Corporation Method and device for establishing communication links and providing reliable confirm messages in a communication system
JP3932906B2 (ja) 2002-01-23 2007-06-20 日本電気株式会社 基地局装置及びそれを用いた移動通信システム
JP2003224937A (ja) 2002-01-25 2003-08-08 Sony Corp 電力供給装置および方法、受電装置および方法、電力供給システム、記録媒体、並びにプログラム
US6777829B2 (en) 2002-03-13 2004-08-17 Celis Semiconductor Corporation Rectifier utilizing a grounded antenna
US7187288B2 (en) 2002-03-18 2007-03-06 Paratek Microwave, Inc. RFID tag reading system and method
US7565108B2 (en) 2002-03-26 2009-07-21 Nokia Corporation Radio frequency identification (RF-ID) based discovery for short range radio communication with reader device having transponder functionality
JP3719510B2 (ja) 2002-04-08 2005-11-24 アルプス電気株式会社 非接触式充電器を有する保管庫
US7239110B2 (en) * 2002-05-13 2007-07-03 Splashpower Limited Primary units, methods and systems for contact-less power transfer
US6906495B2 (en) 2002-05-13 2005-06-14 Splashpower Limited Contact-less power transfer
EP1506554A1 (en) 2002-05-13 2005-02-16 Splashpower Limited Improvements relating to the transfer of electromagnetic power
GB2388716B (en) 2002-05-13 2004-10-20 Splashpower Ltd Improvements relating to contact-less power transfer
EP1547222B1 (en) 2002-06-10 2018-10-03 City University of Hong Kong Planar inductive battery charger
US20040002835A1 (en) 2002-06-26 2004-01-01 Nelson Matthew A. Wireless, battery-less, asset sensor and communication system: apparatus and method
US7428438B2 (en) 2002-06-28 2008-09-23 Boston Scientific Neuromodulation Corporation Systems and methods for providing power to a battery in an implantable stimulator
US7069086B2 (en) 2002-08-08 2006-06-27 Cardiac Pacemakers, Inc. Method and system for improved spectral efficiency of far field telemetry in a medical device
US20040130425A1 (en) 2002-08-12 2004-07-08 Tal Dayan Enhanced RF wireless adaptive power provisioning system for small devices
JP2004096589A (ja) 2002-09-03 2004-03-25 General Res Of Electronics Inc 同調回路
US20040245473A1 (en) 2002-09-12 2004-12-09 Hisanobu Takayama Receiving device, display device, power supply system, display system, and receiving method
KR20040026318A (ko) 2002-09-24 2004-03-31 엘지전자 주식회사 충전기
US7019617B2 (en) 2002-10-02 2006-03-28 Battelle Memorial Institute Radio frequency identification devices, backscatter communication device wake-up methods, communication device wake-up methods and a radio frequency identification device wake-up method
JP3821083B2 (ja) 2002-10-11 2006-09-13 株式会社デンソー 電子機器
GB2394843A (en) 2002-10-28 2004-05-05 Zap Wireless Technologies Ltd Charge and data transfer by the same means
JP4089778B2 (ja) 2002-11-07 2008-05-28 株式会社アイデンビデオトロニクス エネルギー供給装置
JP2004166384A (ja) 2002-11-12 2004-06-10 Sharp Corp 非接触型給電システムにおける電磁結合特性調整方法、給電装置、および非接触型給電システム
FR2847089B1 (fr) 2002-11-12 2005-02-04 Inside Technologies Circuit d'antenne accordable, notamment pour lecteur de circuit integre sans contact
GB2395627B (en) 2002-11-21 2006-05-10 Hewlett Packard Co Detector
US20090072782A1 (en) 2002-12-10 2009-03-19 Mitch Randall Versatile apparatus and method for electronic devices
GB0229141D0 (en) 2002-12-16 2003-01-15 Splashpower Ltd Improvements relating to contact-less power transfer
JP3951298B2 (ja) 2002-12-17 2007-08-01 ソニー株式会社 通信装置および通信方法
JP4136649B2 (ja) 2002-12-26 2008-08-20 トヨタ自動車株式会社 車両用盗難防止装置及び車両の制御方法
US7480907B1 (en) 2003-01-09 2009-01-20 Hewlett-Packard Development Company, L.P. Mobile services network for update of firmware/software in mobile handsets
US8183827B2 (en) 2003-01-28 2012-05-22 Hewlett-Packard Development Company, L.P. Adaptive charger system and method
WO2004073283A2 (en) 2003-02-04 2004-08-26 Access Business Group International Llc Inductive coil assembly
US6948505B2 (en) 2003-02-10 2005-09-27 Armen Karapetyan Cleaning apparatus for medical and/or dental tool
MXPA05008892A (es) 2003-02-19 2006-05-25 Qualcomm Flarion Tech Codificacion de superposicion controlada en sistemas de comunicacion de usuarios multiples.
EP1454769A1 (fr) 2003-03-03 2004-09-08 Sokymat Identifikations Komponenten GmbH Dispositif de transmission de signaux par induction entre un circuit transpondeur et un circuit d'interrogation
US20040180637A1 (en) 2003-03-11 2004-09-16 Nobuyuki Nagai Wireless communication IC and wireless communication information storage medium using the same
JP2004297779A (ja) 2003-03-11 2004-10-21 Hitachi Maxell Ltd 無線通信icおよびこれを用いた無線通信情報記憶媒体
JP2004274972A (ja) 2003-03-12 2004-09-30 Toshiba Corp ケーブルレス電源装置
US7657273B2 (en) 2003-03-28 2010-02-02 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for calculating whether power level is sufficient for data transfer
JP4337383B2 (ja) 2003-04-10 2009-09-30 セイコーエプソン株式会社 消耗品容器を搭載可能な装置
FI115264B (fi) 2003-04-17 2005-03-31 Ailocom Oy Langaton tehonsiirto
US6985113B2 (en) 2003-04-18 2006-01-10 Matsushita Electric Industrial Co., Ltd. Radio antenna apparatus provided with controller for controlling SAR and radio communication apparatus using the same radio antenna apparatus
JP2004336742A (ja) 2003-04-18 2004-11-25 Matsushita Electric Ind Co Ltd 無線用アンテナ装置及びそれを用いた無線通信装置
AU2004233670B2 (en) 2003-04-25 2007-11-29 Olympus Corporation Radio-type in-subject information acquisition system and outside-subject device
JP4614961B2 (ja) 2003-05-23 2011-01-19 オークランド ユニサービシズ リミテッド 誘導結合電力伝達システムを制御する方法および装置
JP4172327B2 (ja) 2003-05-28 2008-10-29 松下電器産業株式会社 非接触icカードリード/ライト装置及びその調整方法
US6967462B1 (en) 2003-06-05 2005-11-22 Nasa Glenn Research Center Charging of devices by microwave power beaming
US7613497B2 (en) 2003-07-29 2009-11-03 Biosense Webster, Inc. Energy transfer amplification for intrabody devices
JP2005110412A (ja) 2003-09-30 2005-04-21 Sharp Corp 電力供給システム
US7233137B2 (en) 2003-09-30 2007-06-19 Sharp Kabushiki Kaisha Power supply system
JP4036813B2 (ja) 2003-09-30 2008-01-23 シャープ株式会社 非接触電力供給システム
US6839035B1 (en) 2003-10-07 2005-01-04 A.C.C. Systems Magnetically coupled antenna range extender
JP3686067B2 (ja) 2003-10-28 2005-08-24 Tdk株式会社 磁気記録媒体の製造方法
JP2005159607A (ja) 2003-11-25 2005-06-16 Matsushita Electric Ind Co Ltd 携帯通信機器
KR20070032271A (ko) 2003-11-25 2007-03-21 스타키 러보러토리즈 인코포레이티드 개선된 자기장 통신 시스템
US6940466B2 (en) 2003-11-25 2005-09-06 Starkey Laboratories, Inc. Enhanced magnetic field communication system
US7515881B2 (en) 2003-11-26 2009-04-07 Starkey Laboratories, Inc. Resonance frequency shift canceling in wireless hearing aids
JP4457727B2 (ja) 2003-11-27 2010-04-28 セイコーエプソン株式会社 非接触識別タグ、データ通信システム及び非接触識別タグ制御プログラム
US7375492B2 (en) 2003-12-12 2008-05-20 Microsoft Corporation Inductively charged battery pack
US7378817B2 (en) 2003-12-12 2008-05-27 Microsoft Corporation Inductive power adapter
US7356588B2 (en) 2003-12-16 2008-04-08 Linear Technology Corporation Circuits and methods for detecting the presence of a powered device in a powered network
JP4536496B2 (ja) 2003-12-19 2010-09-01 株式会社半導体エネルギー研究所 半導体装置及び半導体装置の駆動方法
US20050151511A1 (en) 2004-01-14 2005-07-14 Intel Corporation Transferring power between devices in a personal area network
JP2005208754A (ja) 2004-01-20 2005-08-04 Matsushita Electric Ind Co Ltd 非接触icカード通信装置
JP2005218021A (ja) 2004-02-02 2005-08-11 Fujitsu Frontech Ltd 誘導式読書き装置用小型ループアンテナ
JP2005224045A (ja) 2004-02-06 2005-08-18 Mitsubishi Heavy Ind Ltd 非接触給電装置および非接触給電装置を備えた架線レスシステム
JP3777577B2 (ja) 2004-02-12 2006-05-24 関西ティー・エル・オー株式会社 携帯it機器用無線電力供給システム
CN2681368Y (zh) 2004-03-16 2005-02-23 周彬 一种无线充电电池的贴膜
DE102004013177B4 (de) 2004-03-17 2006-05-18 Infineon Technologies Ag Datenübertragungseinheit mit einer Datenübertragungsschnittstelle und ein Verfahren zum Betreiben der Datenübertragungseinheit
US7132946B2 (en) 2004-04-08 2006-11-07 3M Innovative Properties Company Variable frequency radio frequency identification (RFID) tags
JP4578139B2 (ja) 2004-04-13 2010-11-10 富士通株式会社 所定の情報を受信する情報処理装置、プログラム、記憶媒体および方法
US20050239018A1 (en) 2004-04-27 2005-10-27 Scott Green Intraoral bite spacer and illumination apparatus
JP4296215B2 (ja) 2004-04-28 2009-07-15 チエツクポイント システムズ, インコーポレーテツド ループアンテナを使用した小売りラック用の電子商品追跡システム
EP1751834B1 (en) 2004-05-11 2009-12-02 Access Business Group International LLC Controlling inductive power transfer systems
GB2414120B (en) 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
US7180403B2 (en) 2004-05-18 2007-02-20 Assa Abloy Identification Technology Group Ab RFID reader utilizing an analog to digital converter for data acquisition and power monitoring functions
US20060028176A1 (en) 2004-07-22 2006-02-09 Qingfeng Tang Cellular telephone battery recharging apparatus
KR20040072581A (ko) 2004-07-29 2004-08-18 (주)제이씨 프로텍 전자기파 증폭중계기 및 이를 이용한 무선전력변환장치
JP2006060909A (ja) 2004-08-19 2006-03-02 Seiko Epson Corp 非接触電力伝送装置
US7382260B2 (en) 2004-09-01 2008-06-03 Microsoft Corporation Hot swap and plug-and-play for RFID devices
JP4408250B2 (ja) 2004-09-07 2010-02-03 株式会社リコー 充電システム
NZ535390A (en) 2004-09-16 2007-10-26 Auckland Uniservices Ltd Inductively powered mobile sensor system
US7274913B2 (en) 2004-10-15 2007-09-25 Broadcom Corporation Transceiver system and method of using same
JP2006141170A (ja) 2004-11-15 2006-06-01 Sharp Corp 電力供給システム及びこれに用いられる送電装置並びに受電装置
JP4639773B2 (ja) 2004-11-24 2011-02-23 富士電機ホールディングス株式会社 非接触給電装置
JP4779342B2 (ja) 2004-11-25 2011-09-28 パナソニック電工株式会社 無線センサ装置
TW200617792A (en) 2004-11-26 2006-06-01 Ind Tech Res Inst Method and device applying RFID system tag to serve as local card reader and for power detection
US7443057B2 (en) * 2004-11-29 2008-10-28 Patrick Nunally Remote power charging of electronic devices
US8295940B2 (en) 2004-12-17 2012-10-23 De Puy Products, Inc. System for recharging medical instruments
JP4525331B2 (ja) 2004-12-20 2010-08-18 日産自動車株式会社 車両用マイクロ波送電システム及び車両用マイクロ波送電装置
KR100695328B1 (ko) 2004-12-21 2007-03-15 한국전자통신연구원 초격리 안테나
GB0501115D0 (en) 2005-01-19 2005-02-23 Innovision Res & Tech Plc Combined power coupling and rf communication apparatus
JP2006201959A (ja) 2005-01-19 2006-08-03 Fuji Photo Film Co Ltd プリントシステム及びプリント端末装置並びに画像保存システム及び画像保存装置
US7646343B2 (en) 2005-06-24 2010-01-12 Ruckus Wireless, Inc. Multiple-input multiple-output wireless antennas
JP4706036B2 (ja) 2005-02-03 2011-06-22 学校法人東京理科大学 非接触電力供給システム及びそれを用いた医療システム
JP2006229583A (ja) 2005-02-17 2006-08-31 Eastman Kodak Co 通信システム及びデジタルカメラ並びにドック装置
JP2006230129A (ja) 2005-02-18 2006-08-31 Nanao Corp 非接触電力供給装置
JP2006238548A (ja) 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd 無線電力供給装置
CN1829037A (zh) 2005-03-03 2006-09-06 陈居阳 具无线充电系统的电池装置及其方法
US20060197652A1 (en) 2005-03-04 2006-09-07 International Business Machines Corporation Method and system for proximity tracking-based adaptive power control of radio frequency identification (RFID) interrogators
JP2006254678A (ja) 2005-03-07 2006-09-21 Wise Media Technology Inc Rfid応答器用電力チャージボックス
US7262700B2 (en) 2005-03-10 2007-08-28 Microsoft Corporation Inductive powering surface for powering portable devices
US7786863B2 (en) 2005-03-16 2010-08-31 Semiconductor Energy Laboratory Co., Ltd. Information processing and wireless communication device wherein the resonant frequency of an antenna circuit is regularly corrected regardless of temperature
JP2006295905A (ja) 2005-03-16 2006-10-26 Semiconductor Energy Lab Co Ltd 情報処理装置
JP4602808B2 (ja) 2005-03-18 2010-12-22 富士通株式会社 アンテナ切換器
CN100416601C (zh) 2005-03-21 2008-09-03 财团法人工业技术研究院 运用无线射频识别的手推车
KR100554889B1 (ko) 2005-03-21 2006-03-03 주식회사 한림포스텍 무접점 충전 시스템
CN1808473A (zh) 2005-03-28 2006-07-26 上海中策工贸有限公司 无线标签电子纸交通标志
JP2006296123A (ja) 2005-04-13 2006-10-26 Yaskawa Electric Corp 非接触電力供給装置および送電方法
US20060238365A1 (en) * 2005-04-24 2006-10-26 Elio Vecchione Short-range wireless power transmission and reception
US20070072474A1 (en) 2005-04-27 2007-03-29 Nigel Beasley Flexible power adapter systems and methods
US8111143B2 (en) 2005-04-29 2012-02-07 Hewlett-Packard Development Company, L.P. Assembly for monitoring an environment
JP2006314181A (ja) 2005-05-09 2006-11-16 Sony Corp 非接触充電装置及び非接触充電システム並びに非接触充電方法
JP2008543255A (ja) 2005-05-24 2008-11-27 パワーキャスト コーポレイション 電力送信ネットワーク
CN1881733A (zh) 2005-06-17 2006-12-20 乐金电子(沈阳)有限公司 无线遥控器充电系统
JP2007006029A (ja) 2005-06-22 2007-01-11 Sony Corp Rfid内蔵電子機器
CA2511051A1 (en) 2005-06-28 2006-12-29 Roger J. Soar Contactless battery charging apparel
US8830035B2 (en) 2005-06-30 2014-09-09 Farpointe Data, Inc. Power consumption management for an RFID reader
CN102983639B (zh) 2005-07-12 2016-01-27 麻省理工学院 无线非辐射能量传递
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
SE529375C2 (sv) 2005-07-22 2007-07-24 Sandvik Intellectual Property Anordning för förbättrad plasmaaktivitet i PVD-reaktorer
US20070021140A1 (en) 2005-07-22 2007-01-25 Keyes Marion A Iv Wireless power transmission systems and methods
US7495414B2 (en) 2005-07-25 2009-02-24 Convenient Power Limited Rechargeable battery circuit and structure for compatibility with a planar inductive charging platform
US7720439B2 (en) 2005-07-28 2010-05-18 D-Link Systems, Inc. Wireless media device cradle
KR100792311B1 (ko) 2005-07-30 2008-01-07 엘에스전선 주식회사 충전전력 공급장치, 충전 장치, 배터리 장치, 무접점 충전 시스템 및 무접점 충전 방법
JP2007043773A (ja) 2005-08-01 2007-02-15 Nissan Motor Co Ltd マイクロ波の洩れ波監視・制御装置及びマイクロ波の洩れ波監視・制御方法
KR100691255B1 (ko) 2005-08-08 2007-03-12 (주)제이씨 프로텍 소형ㆍ경량의 무선 전력 송수신 장치
JPWO2007034543A1 (ja) 2005-09-21 2009-03-19 パナソニック株式会社 タグ読み取り装置
JP2007089279A (ja) 2005-09-21 2007-04-05 Asyst Shinko Inc 非接触給電装置
JP2007089341A (ja) 2005-09-22 2007-04-05 Fujifilm Corp 充電システム、電子機器、充電装置、電子機器の充電方法
CN1941541A (zh) 2005-09-29 2007-04-04 英华达(上海)电子有限公司 手持设备的无线充电装置
WO2007044144A2 (en) 2005-10-04 2007-04-19 Atmel Corporation A means to deactivate a contactless device
US7193578B1 (en) 2005-10-07 2007-03-20 Lockhead Martin Corporation Horn antenna array and methods for fabrication thereof
US20070080804A1 (en) 2005-10-07 2007-04-12 Edwin Hirahara Systems and methods for enhanced RFID tag performance
JP2007104868A (ja) 2005-10-07 2007-04-19 Toyota Motor Corp 車両用充電装置、電気機器及び車両用非接触充電システム
JP2007109301A (ja) 2005-10-12 2007-04-26 Dream Maker Kk 広告用プレーヤの制御装置
US7382636B2 (en) 2005-10-14 2008-06-03 Access Business Group International Llc System and method for powering a load
US7642918B2 (en) 2005-10-21 2010-01-05 Georgia Tech Research Corporation Thin flexible radio frequency identification tags and subsystems thereof
US7592961B2 (en) 2005-10-21 2009-09-22 Sanimina-Sci Corporation Self-tuning radio frequency identification antenna system
KR100768510B1 (ko) 2005-10-24 2007-10-18 한국전자통신연구원 다중안테나를 사용하는 직교 주파수 분할 다중 접속시스템의 전송 장치 및 그 방법
KR100717877B1 (ko) 2005-11-03 2007-05-14 한국전자통신연구원 슬롯 알로하 기반 알에프아이디 시스템에서의 태그 개수추정방법
KR100811880B1 (ko) 2005-12-07 2008-03-10 한국전자통신연구원 다중 무선인식 리더 시스템 및 그 시스템에서의 다중무선인식 리더 제어 방법
JP2007166379A (ja) 2005-12-15 2007-06-28 Fujitsu Ltd ループアンテナ及びこのループアンテナを備えた電子機器
EP1961117B1 (en) 2005-12-16 2014-01-22 Nicholas Patrick Roland Hill Resonant circuits
US7521890B2 (en) 2005-12-27 2009-04-21 Power Science Inc. System and method for selective transfer of radio frequency power
TWM294779U (en) 2006-01-06 2006-07-21 Wen-Sung Li Portable charging device of mobile phone
JP2009523402A (ja) 2006-01-11 2009-06-18 パワーキャスト コーポレイション パルス伝送方法
KR100752650B1 (ko) 2006-01-13 2007-08-29 삼성전자주식회사 데이터 버스라인의 부하를 감소시키기 위한 트라이스테이트 출력 드라이버 배치방법 및 이를 이용하는 반도체메모리장치
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
KR20080106186A (ko) 2006-01-18 2008-12-04 나이젤 파워 엘엘씨 무선 링크를 통해 전기 또는 전자 기기에 에너지를 전달하는 방법 및 장치
US8169185B2 (en) * 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
US7952322B2 (en) * 2006-01-31 2011-05-31 Mojo Mobility, Inc. Inductive power source and charging system
KR100792308B1 (ko) 2006-01-31 2008-01-07 엘에스전선 주식회사 코일 어레이를 구비한 무접점 충전장치, 무접점 충전시스템 및 충전 방법
WO2007095267A2 (en) 2006-02-13 2007-08-23 Powercast Corporation Implementation of an rf power transmitter and network
JP2007221584A (ja) 2006-02-17 2007-08-30 Nec Corp 商品管理用アンテナ及びその制御方法
US20080261519A1 (en) 2006-03-16 2008-10-23 Cellynx, Inc. Dual cancellation loop wireless repeater
US7576657B2 (en) 2006-03-22 2009-08-18 Symbol Technologies, Inc. Single frequency low power RFID device
AU2006340379A1 (en) 2006-03-22 2007-09-27 Powercast Corporation Method and apparatus for implementation of a wireless power supply
WO2007138690A1 (ja) 2006-05-31 2007-12-06 Hitachi, Ltd. 非接触型電子装置及びそれに搭載される半導体集積回路装置
US7948208B2 (en) 2006-06-01 2011-05-24 Mojo Mobility, Inc. Power source, charging system, and inductive receiver for mobile devices
US7826873B2 (en) 2006-06-08 2010-11-02 Flextronics Ap, Llc Contactless energy transmission converter
US20070290654A1 (en) 2006-06-14 2007-12-20 Assaf Govari Inductive charging of tools on surgical tray
JP2007336717A (ja) 2006-06-15 2007-12-27 Sharp Corp 非接触電力伝送システム、送電装置及び受電装置
US7561050B2 (en) 2006-06-28 2009-07-14 International Business Machines Corporation System and method to automate placement of RFID repeaters
WO2008011769A1 (fr) 2006-07-21 2008-01-31 Zhenyou Huang Pompe à incendie et son fonctionnement, système de lutte contre les incendies et autopompe
US20080030324A1 (en) 2006-07-31 2008-02-07 Symbol Technologies, Inc. Data communication with sensors using a radio frequency identification (RFID) protocol
GB2440571A (en) 2006-08-01 2008-02-06 Splashpower Ltd Drive for an inductive coupling with a changing magnetic field direction
WO2008053369A2 (en) * 2006-08-23 2008-05-08 Bio Aim Technologies Holding Ltd. Three-dimensional electromagnetic flux field generation
JP4865451B2 (ja) 2006-08-24 2012-02-01 三菱重工業株式会社 受電装置及び送電装置並びに車両
JP4769666B2 (ja) 2006-08-30 2011-09-07 京セラ株式会社 無線通信方法及び無線通信端末
US8463332B2 (en) 2006-08-31 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Wireless communication device
US7764046B2 (en) 2006-08-31 2010-07-27 Semiconductor Energy Laboratory Co., Ltd. Power storage device and semiconductor device provided with the power storage device
US8159090B2 (en) 2006-09-01 2012-04-17 Powercast Corporation Hybrid power harvesting and method
US20080116847A1 (en) * 2006-09-01 2008-05-22 Bio Aim Technologies Holding Ltd. Systems and methods for wireless power transfer
US7538666B2 (en) 2006-09-06 2009-05-26 Grace Industries, Inc. Automated accountability locating system
US9129741B2 (en) 2006-09-14 2015-09-08 Qualcomm Incorporated Method and apparatus for wireless power transmission
US7658247B2 (en) 2006-09-20 2010-02-09 Gatekeeper Systems, Inc. Systems and methods for power storage and management from intermittent power sources
US7839124B2 (en) 2006-09-29 2010-11-23 Semiconductor Energy Laboratory Co., Ltd. Wireless power storage device comprising battery, semiconductor device including battery, and method for operating the wireless power storage device
JP5147345B2 (ja) 2006-09-29 2013-02-20 株式会社半導体エネルギー研究所 半導体装置
US7539465B2 (en) 2006-10-16 2009-05-26 Assa Abloy Ab Tuning an RFID reader with electronic switches
US7626544B2 (en) 2006-10-17 2009-12-01 Ut-Battelle, Llc Robust low-frequency spread-spectrum navigation system
US8068984B2 (en) 2006-10-17 2011-11-29 Ut-Battelle, Llc Triply redundant integrated navigation and asset visibility system
JP2008104295A (ja) 2006-10-19 2008-05-01 Voltex:Kk 非接触電源装置
KR100836634B1 (ko) 2006-10-24 2008-06-10 주식회사 한림포스텍 무선 데이타 통신과 전력 전송이 가능한 무접점 충전장치,충전용 배터리팩 및 무접점 충전장치를 이용한 휴대용단말기
CN101529688A (zh) 2006-10-26 2009-09-09 皇家飞利浦电子股份有限公司 地面覆层和感应电力系统
US20100328044A1 (en) 2006-10-26 2010-12-30 Koninklijke Philips Electronics N.V. Inductive power system and method of operation
US9295444B2 (en) 2006-11-10 2016-03-29 Siemens Medical Solutions Usa, Inc. Transducer array imaging system
JP4691000B2 (ja) 2006-11-15 2011-06-01 三菱重工業株式会社 移動体の非接触給電装置
TW200824215A (en) 2006-11-23 2008-06-01 Univ Nat Central A non-contact type power supply device having load and interval detection
US8099140B2 (en) 2006-11-24 2012-01-17 Semiconductor Energy Laboratory Co., Ltd. Wireless power supply system and wireless power supply method
JP4650407B2 (ja) 2006-12-12 2011-03-16 ソニー株式会社 無線処理システム、無線処理方法及び無線電子機器
CN100458841C (zh) 2006-12-28 2009-02-04 复旦大学 一种支持无线充电的半有源射频识别标签
US20080157711A1 (en) 2007-01-03 2008-07-03 Kuo Ching Chiang Portable device charging module
JP2008178195A (ja) 2007-01-17 2008-07-31 Seiko Epson Corp 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置及び電子機器
US8143844B2 (en) 2007-01-19 2012-03-27 Semiconductor Energy Laboratory Co., Ltd. Charging device
WO2008093334A2 (en) 2007-01-29 2008-08-07 Powermat Ltd Pinless power coupling
TWM319367U (en) 2007-02-12 2007-09-21 Di-Shian Wu The separation structure of a horizontal energy saving lamp and a lamp stabilizer
JP2008199857A (ja) 2007-02-15 2008-08-28 Fujifilm Corp レクテナ装置
JP4525747B2 (ja) 2007-02-20 2010-08-18 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び無接点電力伝送システム
US7772802B2 (en) 2007-03-01 2010-08-10 Eastman Kodak Company Charging display system
US7793121B2 (en) 2007-03-01 2010-09-07 Eastman Kodak Company Charging display system
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
JP4379480B2 (ja) 2007-03-09 2009-12-09 ソニー株式会社 充電器および充電方法
US8095166B2 (en) 2007-03-26 2012-01-10 Qualcomm Incorporated Digital and analog power control for an OFDMA/CDMA access terminal
JP5151632B2 (ja) 2007-04-20 2013-02-27 ソニー株式会社 データ通信システム、サーバ装置、携帯電子機器、クレードル装置、ホーム機器、データ通信方法およびプログラム
US7831757B2 (en) 2007-04-20 2010-11-09 Sony Corporation Data communication system, portable electronic device, server device, data communication method, and data communication program
CN201044047Y (zh) 2007-05-09 2008-04-02 贺伟 可无线充电的表
JP5174374B2 (ja) 2007-05-10 2013-04-03 オリンパス株式会社 無線給電システム
EP2158711B1 (en) 2007-05-22 2020-06-24 Intel Corporation On frequency repeater with agc stability determination
JP5110966B2 (ja) 2007-05-24 2012-12-26 ソニーモバイルコミュニケーションズ株式会社 無接点充電装置及び無接点電力伝送システム
US8115448B2 (en) 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US8179102B2 (en) * 2007-06-20 2012-05-15 Motorola Mobility, Inc. Devices, systems, and methods for priority charging of a group of electronic devices
US7812481B2 (en) 2007-06-29 2010-10-12 Seiko Epson Corporation Power transmission control device, power transmission device, electronic instrument, and non-contact power transmission system
US9634730B2 (en) 2007-07-09 2017-04-25 Qualcomm Incorporated Wireless energy transfer using coupled antennas
US8159331B2 (en) 2007-07-17 2012-04-17 Psion Teklogix Inc. Method and system for radiated power control for short range RFID tag reading
CN101123318A (zh) 2007-08-02 2008-02-13 深圳市杰特电信控股有限公司 一种无线充电手机、充电装置及其充电方法
JP2010537496A (ja) 2007-08-13 2010-12-02 クゥアルコム・インコーポレイテッド 長距離低周波数共振器および素材
US7609157B2 (en) 2007-08-20 2009-10-27 Radio Systems Corporation Antenna proximity determining system utilizing bit error rate
GB0716679D0 (en) 2007-08-28 2007-10-03 Fells J Inductive power supply
US9048945B2 (en) 2007-08-31 2015-06-02 Intel Corporation Antenna training and tracking protocol
JP4727636B2 (ja) 2007-09-13 2011-07-20 トヨタ自動車株式会社 車両の充電制御装置および車両
KR101473600B1 (ko) 2007-09-17 2014-12-16 퀄컴 인코포레이티드 무선 전력 자기 공진기에서의 고효율 및 고전력 전송
US20090075704A1 (en) 2007-09-18 2009-03-19 Kevin Peichih Wang Mobile communication device with charging module
CN107154534A (zh) 2007-09-19 2017-09-12 高通股份有限公司 使来自无线功率磁谐振器的功率产量最大化的方法和设备
US7663490B2 (en) 2007-09-28 2010-02-16 Intel Corporation Methods and apparatus for efficiently tracking activity using radio frequency identification
AU2008309154A1 (en) 2007-10-09 2009-04-16 Powermat Technologies Ltd. Inductive power providing system
US8729734B2 (en) 2007-11-16 2014-05-20 Qualcomm Incorporated Wireless power bridge
JP4600462B2 (ja) 2007-11-16 2010-12-15 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び無接点電力伝送システム
US8536737B2 (en) * 2007-11-19 2013-09-17 Powermat Technologies, Ltd. System for inductive power provision in wet environments
KR101261686B1 (ko) 2007-11-28 2013-05-06 퀄컴 인코포레이티드 무급전 안테나를 사용한 무선 전력 범위 증가
TWI361540B (en) 2007-12-14 2012-04-01 Darfon Electronics Corp Energy transferring system and method thereof
TWI358879B (en) 2008-01-08 2012-02-21 Asustek Comp Inc Bulti-in uninterruptible power supply system and e
US9128687B2 (en) 2008-01-10 2015-09-08 Qualcomm Incorporated Wireless desktop IT environment
TWM334559U (en) 2008-01-17 2008-06-11 ming-xiang Ye Attached wireless charger
TWM336621U (en) 2008-01-28 2008-07-11 Tennrich Int Corp Contactless electric charging apparatus
US7579913B1 (en) 2008-02-27 2009-08-25 United Microelectronics Corp. Low power comsumption, low noise and high power gain distributed amplifiers for communication systems
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US8421267B2 (en) 2008-03-10 2013-04-16 Qualcomm, Incorporated Packaging and details of a wireless power device
KR101589836B1 (ko) 2008-04-21 2016-01-28 퀄컴 인코포레이티드 근거리 효율적인 무선 전력 송신
US8629650B2 (en) 2008-05-13 2014-01-14 Qualcomm Incorporated Wireless power transfer using multiple transmit antennas
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US7893564B2 (en) * 2008-08-05 2011-02-22 Broadcom Corporation Phased array wireless resonant power delivery system
US8248024B2 (en) 2008-08-15 2012-08-21 Microsoft Corporation Advanced inductive charging pad for portable devices
TWM349639U (en) 2008-08-29 2009-01-21 Airwave Technologies Inc Wireless audio output apparatus with wireless audio receiving adaptors
CN107026511A (zh) 2008-09-27 2017-08-08 韦特里西提公司 无线能量转移系统
JP5238472B2 (ja) 2008-12-16 2013-07-17 株式会社日立製作所 電力伝送装置、および電力受信装置
US20100201310A1 (en) 2009-02-06 2010-08-12 Broadcom Corporation Wireless power transfer system
US20100201201A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer in public places
US20100201312A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer for portable enclosures
US20100201311A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless charging with separate process
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US9407327B2 (en) * 2009-02-13 2016-08-02 Qualcomm Incorporated Wireless power for chargeable and charging devices
US20110057606A1 (en) 2009-09-04 2011-03-10 Nokia Corpation Safety feature for wireless charger
KR20110062841A (ko) 2009-12-04 2011-06-10 한국전자통신연구원 무선 전력 전송 장치

Also Published As

Publication number Publication date
TW201101640A (en) 2011-01-01
JP5759388B2 (ja) 2015-08-05
EP2396898B1 (en) 2018-11-14
JP2012517792A (ja) 2012-08-02
CN102318212A (zh) 2012-01-11
CN102318212B (zh) 2015-05-27
US9312924B2 (en) 2016-04-12
WO2010093719A1 (en) 2010-08-19
EP2396898A1 (en) 2011-12-21
US20100289341A1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
KR20110114701A (ko) 다차원 무선 충전에 관한 시스템 및 방법
KR101398367B1 (ko) 확장된 무선 충전 영역을 위한 방법 및 장치
US20130147428A1 (en) Wireless charging with separate process
EP2396867B1 (en) Wireless power from renewable energy
JP6030305B2 (ja) 可搬エンクロージャ用の無線電力伝達
JP5362038B2 (ja) 公共施設における電力伝達システム、装置、および方法
EP2396896B1 (en) Wireless power transfer for furnishings and building elements
KR20110114704A (ko) 차량에 대한 무선 전력 전송

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application