KR101123459B1 - 보호층 및 저손상 리세스를 갖는 질화물계 트랜지스터 및그의 제조 방법 - Google Patents

보호층 및 저손상 리세스를 갖는 질화물계 트랜지스터 및그의 제조 방법 Download PDF

Info

Publication number
KR101123459B1
KR101123459B1 KR1020067014147A KR20067014147A KR101123459B1 KR 101123459 B1 KR101123459 B1 KR 101123459B1 KR 1020067014147 A KR1020067014147 A KR 1020067014147A KR 20067014147 A KR20067014147 A KR 20067014147A KR 101123459 B1 KR101123459 B1 KR 101123459B1
Authority
KR
South Korea
Prior art keywords
delete delete
layer
protective layer
forming
barrier layer
Prior art date
Application number
KR1020067014147A
Other languages
English (en)
Other versions
KR20060127046A (ko
Inventor
스캇 티. 쉐퍼드
리차드 피터 스미쓰
졸탄 링
Original Assignee
크리 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 크리 인코포레이티드 filed Critical 크리 인코포레이티드
Publication of KR20060127046A publication Critical patent/KR20060127046A/ko
Application granted granted Critical
Publication of KR101123459B1 publication Critical patent/KR101123459B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Weting (AREA)

Abstract

질화물계 반도체 채널층 위에 질화물계 반도체 장벽층을 형성하고, 상기 질화물계 반도체 장벽층의 게이트 영역 위에 보호층을 형성함으로써 트랜지스터가 제조된다. 상기 장벽층 위에 패터닝된 오믹 콘택 금속 영역이 형성되고, 제1 및 제2오믹 콘택을 제공하기 위해 어닐링된다. 상기 어닐링은 상기 게이트 영역 위의 보호층에 대하여 수행된다. 상기 장벽층의 게이트 영역 위에 게이트 콘택이 형성된다.
열처리 이전의 장벽층의 면저항과 실질적으로 동일한 면저항을 갖는 장벽층을 갖는 트랜지스터인, 상기 게이트 영역에 보호층을 갖는 트랜지스터가 제공된다.

Description

보호층 및 저손상 리세스를 갖는 질화물계 트랜지스터 및 그의 제조 방법 {Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof}
<미국정부의 이해에 관한 진술>
본 발명은 미국정부의 지원으로 이루어졌다. 미국정부는 본 발명에 대하여 일정한 권리를 갖는다.
<본 발명의 기술분야>
본 발명은 반도체 소자에 관한 것으로서, 더욱 구체적으로는 질화물계 활성층을 포함하는 트랜지스터에 관한 것이다.
실리콘(Si) 및 갈륨비소(GaAs)와 같은 재료들은 저전력 및 (Si의 경우에는) 저주파 응용을 위한 반도체 소자에 있어서 넓은 응용범위를 갖는다. 그러나, 보다 익숙한 이들 반도체 재료들은 상대적으로 작은 밴드갭(예를 들면, 실온에서 Si의 경우 1.12 eV, GaAs의 경우 1.42 eV) 및/또는 상대적으로 작은 파괴 전압(breakdown voltage) 때문에 고전력 및/또는 고주파 응용에 적합하지 않을 수 있다.
Si 및 GaAs가 주는 어려움으로 인하여, 고전력, 고온 및/또는 고주파 응용 및 소자 분야에서의 관심은 실리콘 카바이드(실온에서 알파 SiC의 경우 2.996 eV) 및 3족 질화물(예를 들면, 실온에서 GaN의 경우 3.36 eV)과 같이 밴드갭이 넓은 반도체 재료로 기울어졌다. 이들 물질은 갈륨비소 및 실리콘과 비교할 때 더 높은 전계 파괴 강도 및 더 높은 전자 포화속도를 통상 갖는다.
고전력 및/또는 고주파 응용을 위해 특히 관심을 끄는 소자는 모드펫(MODFET: modulation doped field effect transistor)으로도 알려진 고전자이동도 트랜지스터(HEMT: High Electron Mobility Transistor)이다. 이들 소자는 상이한 밴드갭 에너지를 갖는 두 반도체 물질의 헤테로접합(heterojunction)에서 2차원 전자 기체(2DEG: two-dimensional electron gas)가 형성되기 때문에 밴드갭이 더 작은 물질이 더 높은 전자친화도를 갖는 경우 수많은 상황에서 작동상의 장점을 제공할 수 있다. 상기 2DEG는 도핑되지 않은("비의도적으로 도핑된") 더 작은 밴드갭 물질 내의 축적층이고 예를 들면, 1013 캐리어/cm2의 매우 높은 과잉 쉬트 전자(sheet electron) 농도를 가질 수 있다. 또한, 더 넓은 밴드갭 반도체에서 나온 전자는, 이온화된 불순물의 산란(scattering)이 감소되기 때문에 높은 전자이동도를 보이며 2DEG로 이동한다.
이와 같이 높은 캐리어 농도와 높은 캐리어 이동도의 결합은 HEMT에 매우 큰 트랜스컨덕턴스를 부여할 수 있고, 고주파 응용에 있어서 금속-반도체 전계효과 트랜지스터(MESFET: metal-semiconductor field effect transistor)에 비하여 더욱 강력한 성능 상의 이점을 제공할 수 있다.
갈륨 질화물/알루미늄갈륨 질화물(GaN/AlGaN) 재료 시스템으로 제조된 고전자이동도 트랜지스터는 앞서 언급한 높은 파괴전계(breakdown field), 그들의 넓은 밴드갭, 큰 전도 밴드 오프셋, 및/또는 높은 포화 전자 이동 속도를 포함하는 물질 특성의 조합으로 인하여 많은 양의 RF 전력을 생산할 잠재력을 갖는다. 2DEG에서 전자의 대부분은 AlGaN에서의 분극에 기인한다. GaN/AlGaN 시스템에서의 HEMT는 이미 증명되었다. 미합중국 특허 제5,192,987호 및 제5,296,395호는 AlGaN/GaN HEMT구조 및 그의 제조 방법을 기재하고 있다. Sheppard 등에게 허여되고 본 출원의 출원인에게 공통 양수되었으며, 본 출원에 인용되어 결합되는 미합중국 특허 제6,316,793호는 반절연 실리콘 카바이드 기판, 상기 기판 위에 위치하는 알루미늄 질화물 버퍼층, 상기 버퍼층 위에 위치하는 절연 갈륨 질화물층, 상기 갈륨 질화물층 위에 위치하는 알루미늄 갈륨 질화물 장벽층, 및 상기 알루미늄 갈륨 질화물 활성 구조 위에 위치하는 패시베이션층을 갖는 HEMT 소자를 기재한다.
질화물계 트랜지스터의 제조의 한 단계는 이러한 트랜지스터의 오믹 콘택을 형성하는 것이다. 오믹 콘택의 형성는 통상 높은 어닐링 온도(예를 들면, 900 ℃)를 요구해 왔다. 이러한 높은 어닐링 온도는 재료 및/또는 소자를 손상시킬 수 있다.
예를 들면, 오믹 콘택을 형성할 때 높은 어닐링 온도를 사용하는 종래의 소자에서, AlGaN 및/또는 GaN 층의 게이트 영역(두 콘택 사이의 활성 소자 영역으로 정의됨)의 면저항(sheet resistance)은 열처리 전의(as-grown) AlGaN 및/또는 GaN 층의 면저항에 비하여 통상 증가한다. 이러한 면저항의 증가는 소자에 악영향을 미 칠 것으로 믿어진다.
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
삭제
본 발명의 구현예는 질화물계 반도체 채널층 위에 질화물계 반도체 장벽층을 형성하는 단계 및 상기 질화물계 반도체 장벽층의 게이트 영역 위에 보호층을 형성하는 단계에 의해 트랜지스터를 제조하는 것을 제공한다. 패터닝된 오믹 콘택 금속 영역은 장벽층 위에 형성되고 제1 및 제2 오믹 콘택을 제공하기 위해 어닐링된다. 상기 어닐링은 게이트 영역 위의 보호층에 대하여 수행된다. 상기 장벽층의 게이트 영역(예를 들면, 제1 및 제2 오믹 콘택 사이의 활성 소자 영역)에도 게이트 콘택이 형성된다.
본 발명의 추가적인 구현예에서, 상기 보호층은 패터닝된 오믹 콘택 금속의 어닐링 후에 이어서 제거된다. 상기 보호층은 알루미늄 질화물층일 수 있다. 상기 보호층은 저손상 식각 기술(low damage etching technique)을 이용하여 제거될 수 있다. 예를 들면, 상기 저손상 식각 기술은 KOH와 같은 강염기를 이용한 습식 제거(wet removal)를 포함할 수 있다. 상기 보호층을 제거한 후 패시베이션층이 장벽층의 노출 부분 위에 형성될 수 있다. 이들 구현예에서, 상기 게이트 콘택은 장벽층 게이트 영역의 일부분을 노출하기 위해 저손상 식각 기술을 이용하여 패시베이션층 내에 리세스를 식각하고, 상기 패시베이션층 내의 리세스 내에 게이트 콘택을 형성함으로써 형성될 수 있다.
본 발명의 추가적인 구현예에서, 상기 패시베이션층은 장벽층 및 보호층의 노출된 부분 위에 형성된다. 이들 구현예에서, 상기 게이트 콘택은 패시베이션층 및 보호층을 관통하여 장벽층과 접촉하도록 연장되는 게이트 콘택을 형성함으로써 제공될 수 있다.
본 발명의 또 다른 구현예에서, 보호층을 형성하는 단계는 패터닝된 보호층을 장벽층 위에 형성하는 단계를 포함한다. 상기 패터닝된 보호층은 게이트 영역에 대응하는 장벽층의 제1부분을 덮고, 제1 및 제2오믹 콘택에 대응하고 상기 제1부분에 이웃하는 장벽층의 제2부분을 노출시킨다. 상기 패터닝된 오믹 콘택 금속 영역은 장벽층의 제2부분 위에 패터닝된 오믹 콘택 금속 영역을 형성함으로써 제공된다. 상기 패터닝된 오믹 콘택 금속 영역은 상기 패터닝된 보호층과 공간을 두고 떨어져서 이웃한다.
본 발명의 또 다른 구현예에서, 패터닝된 보호층을 형성하는 단계는 상기 장벽층 위에 보호층 물질을 블랑켓 증착하는 단계, 제1 및 제2오믹 콘택의 위치에 대응하는 윈도우를 갖는, 통상 포토레지스트인 마스크를 상기 블랑켓 증착된 보호층 물질 위에 형성하는 단계, 저손상 식각 기술을 이용하여 상기 윈도우를 통과하여 상기 블랑켓 증착된 보호층을 식각하는 단계 및 상기 마스크를 제거하는 단계를 포함한다. 제1 및 제2오믹 콘택의 위치에 대응하는 윈도우는 제1 및 제2오믹 콘택의 단면적보다 더 클 수 있다. 상기 저손상 식각 기술은 CF4/O2, NF3/O2 및/또는 다른 불소화된 종을 이용하는 ICP, RIE, ECR, 및/또는 다운스트림 플라스마(downstream plasma) 중 1 이상일 수 있다.
상기 게이트 콘택을 형성하는 단계는 패터닝된 보호층에 장벽층의 제1부분의 일부를 노출하는 리세스를 식각하는 단계 및 상기 리세스 내에 게이트 콘택을 증착시키는 단계를 포함한다. 리세스를 형성하는 단계는 패터닝된 보호층 위에 리세스의 위치에 대응하는 윈도우를 갖는 마스크를 형성하는 단계, 저손상 식각 기술을 이용하여 상기 윈도우를 통과하여 패터닝된 보호층을 식각하는 단계 및 상기 마스크를 제거하는 단계를 포함한다. 패터닝된 보호층을 식각하기 위해 사용되는 상기 저손상 식각기술은 CF4/O2, NF3/O2 및/또는 다른 불소화된 종을 이용하는 ICP, RIE, ECR, 및/또는 다운스트림 플라스마(downstream plasma)를 포함한다.
본 발명의 특정 구현예에서, 상기 보호층은 SiN, AlN 및/또는 SiO2를 포함한다. 상기 SiN, AlN 및/또는 SiO2는 비양론적일 수 있으며, 압축 또는 인장 변형(strain)이 있을 수 있다. 상기 보호층은 물리증착(PVD) 및/또는 화학증착(CVD)를 이용하여 증착될 수 있다.
본 발명의 또 다른 구현예에서, 상기 패터닝된 보호층 및 제1 및 제2오믹 콘택 사이의 갭을 실질적으로 메우기 위해 상기 패터닝된 보호층 위에 패시베이션층이 형성된다. 상기 패터닝된 보호층 및 패시베이션층은 동일 물질이거나 상이한 물질일 수 있다. 예를 들면, 상기 패터닝된 보호층은 알루미늄 질화물이고 상기 패시베이션층은 실리콘 질화물일 수 있다. 선택적으로, 상기 패터닝된 보호층 및 패시베이션층은 실리콘 질화물일 수 있다.
본 발명의 또 다른 구현예에서, 상기 패터닝된 보호층은 장벽층의 제1부분을 노출시키기 위해 제거된다. 상기 패터닝된 보호층을 제거하는 단계에 이어 장벽층의 노출 부분 위에 패시베이션층을 형성하는 단계가 후속될 수 있다. 이러한 구현예에서는, 패터닝된 보호층은 알루미늄 질화물이고 패시베이션층은 실리콘 질화물일 수 있다.
본 발명의 추가적인 구현예에서, 게이트 콘택을 형성하는 단계가 패시베이션층을 형성하는 단계에 후속된다. 상기 게이트 콘택은 패시베이션층에 장벽층의 제1부분의 일부를 노출시키는 리세스를 형성하는 단계 및 상기 리세스 내에 게이트 콘택을 형성하는 단계에 의해 제공된다. 상기 리세스를 형성하는 단계는 상기 패시베이션층 위에 마스크를 형성하는 단계를 포함할 수 있다. 상기 마스크는 상기 리세스의 위치에 대응하는 윈도우를 갖는다. 상기 패시베이션층은 저손상 식각 기술을 이용하여 상기 윈도우를 통하여 식각되고 그 후 상기 마스크가 제거된다.
본 발명의 특정 구현예에서, 상기 질화물계 채널층 및 상기 질화물계 반도체 장벽층은 3족-질화물 층이다. 예를 들면, 상기 채널층은 AlxGa1-xN의 조성을 가질 수 있고, 여기서 0≤x<1이고, 채널층의 밴드갭은 장벽층의 밴드갭보다 작다. 상기 채널층은 역시 알루미늄 갈륨 질화물(AlGaN), 갈륨 질화물(GaN), 인듐 갈륨 질화물(InGaN), 및/또는 알루미늄 인듐 갈륨 질화물(AlInGaN)일 수 있으며, 상기 장벽층은 알루미늄 질화물(AlN), 알루미늄 인듐 질화물(AlInN), AlGaN, GaN, InGaN, 및/또는 AlInGaN일 수 있다. 상기 장벽층 및/또는 상기 채널층은 다층일 수 있다. 기판 위에는 버퍼층이 형성될 수 있으며, 질화물계 채널층을 제공하기 위해 상기 버퍼층 위에 채널층이 형성될 수 있다. 상기 채널층 및 장벽층은 고전자이동도 트랜지스터(HEMT)를 제공하도록 구성될 수 있다. 상기 질화물계 채널층은 SiC 기판 위에 제공될 수 있다.
본 발명의 다른 추가적인 구현예에서, 게이트 콘택의 형성에 이어 패시베이션층의 형성이 후속될 수 있다. 상기 게이트 콘택의 형성은 패시베이션층 및 패터닝된 보호층에 장벽층의 제1부분의 일부를 노출시키는 리세스를 형성하는 단계 및 상기 리세스 내에 게이트 콘택을 형성하는 단계를 포함한다.
본 발명의 특정 구현예에서, 상기 보호층은 적어도 상기 오믹 콘택 물질의 두께만큼의 두께로 형성된다. 상기 보호층은 약 두 개의 단일층의 두께를 가질 수 있다. 특히, 상기 보호층은 약 1 nm 내지 약 500 nm의 두께를 가질 수 있다.
본 발명의 또 다른 구현예에서, 고전자이동도 트랜지스터는 기판 위에 질화물계 채널층 및 상기 질화물계 채널층 위에 질화물계 반도체 장벽층을 포함한다. 상기 채널 및 장벽층 사이의 계면에서 전자의 채널은 열처리 이전의(as-grown) 질화물계 HEMT 채널의 면저항과 실질적으로 동일한 면저항을 갖는다. 오믹 콘택 및 게이트 콘택은 상기 장벽층 위에 제공된다.
상기 고전자이동도 트랜지스터는 장벽층 위에 위치하는 보호층을 더 포함할 수 있고, 상기 장벽층은 오믹 콘택과 공간을 두고 떨어져서 이웃하고 게이트 콘택이 그 내부를 관통하여 연장된다. 상기 보호층 위에 패시베이션 층도 제공될 수 있으며, 상기 오믹 콘택 및 보호층 사이의 갭을 실질적으로 메운다. 상기 패시베이션층은 상기 보호층 위에 있을 수 있으며 상기 게이트 콘택은 상기 보호층 및 패시베이션층을 관통하여 연장될 수 있다. 상기 게이트 콘택은 상기 보호층 위에 직접 제공될 수도 있다. 상기 장벽층 위의 상기 패시베이션층은 상기 오믹 콘택과 상기 게이트 콘택 사이의 갭을 실질적으로 메울 수 있다.
본 발명의 특정 구현예에서, 질화물계 채널층 및 질화물계 반도체 장벽층은 각각 3족-질화물층을 포함한다. 상기 채널층은 장벽층보다 낮은 밴드갭을 가질 수 있다. 상기 채널층은 약 20 Å보다 큰 두께를 갖는 도핑되지 않은 층을 포함할 수 있다. 상기 채널층은 초격자(superlattice) 및/또는 3족-질화물층의 조합을 포함할 수 있다. 상기 채널층은 알루미늄 갈륨 질화물(AlGaN), 갈륨 질화물(GaN), 인듐 갈륨 질화물(InGaN), 및/또는 알루미늄 인듐 갈륨 질화물(AlInGaN)을 포함할 수 있다. 상기 장벽층은 알루미늄 질화물(AlN), 알루미늄 인듐 질화물(AlInN), AlGaN, GaN, InGaN, 및/또는 AlInGaN을 포함할 수 있다. 예를 들면, 상기 장벽층은 AlxGa1-xN을 포함할 수 있고, 여기서 0<x<1이다. 상기 장벽층은 다층을 포함할 수 있다. 상기 기판 위에 버퍼층을 포함할 수 있으며, 여기서 상기 버퍼층 위에 질화물계 채널층이 위치한다.
본 발명의 또 다른 구현예에서, 상기 보호층은 적어도 대략 오믹 콘택의 두께를 갖는다. 상기 오믹 콘택은 약 1Ω-mm 미만의 접촉저항을 가질 수 있다.
본 발명의 또 다른 구현예에서, 고전자이동도 트랜지스터는 기판 위에 질화물계 채널층, 상기 질화물계 채널층 위에 질화물계 반도체 장벽층, 상기 장벽층 위에 보호층, 상기 장벽층 위에 오믹 콘택을 포함하고, 상기 오믹 콘택은 장벽층 위의 게이트 콘택과 보호층 및 상기 오믹 콘택 사이에 갭을 제공하기 위해 상기 보호층과 공간을 두고 떨어져서 이웃하고 상기 보호층을 관통하여 연장된다. 상기 패시베이션층은 상기 보호층 위에 제공될 수 있으며 상기 오믹 콘택과 보호층 사이의 갭을 실질적으로 메운다.
본 발명의 또 다른 구현예에서, 트랜지스터의 제조는 질화물계 반도체 채널층 위에 질화물계 반도체 장벽층을 형성하는 단계 및 상기 질화물계 반도체 장벽층의 게이트 영역 위에 보호층을 형성하는 단계를 포함한다. 패터닝된 오믹 콘택 금속 영역은 장벽층 위에 형성된다. 상기 패터닝된 오믹 콘택 금속은 제1 및 제2오믹 콘택, 예를 들면, 소스 및 드레인 콘택을 제공하기 위해 어닐링된다. 장벽층의 게이트 영역의 일부를 노출시키기 위해 저손상 식각 기술을 이용하여 장벽층의 게이트 영역의 보호층에 리세스가 식각된다. 상기 게이트 콘택은 상기 패시베이션층의 리세스 내에 형성된다.
본 발명의 특정 구현예에서, 상기 보호층은 패시베이션층을 포함한다. 상기 보호층은, 예를 들면, 알루미늄 질화물층, 실리콘 질화물층 및/또는 이산화실리콘층일 수 있다. 상기 저손상 식각 기술은 강염기를 이용하는 습식 식각일 수 있다. 본 발명의 특정 구현예에서, 제1 및 제2오믹 콘택을 제공하기 위한 패터닝된 오믹 콘택 금속의 어닐닝은 보호층의 형성 이전에 수행될 수 있다. 본 발명의 다른 구현예에서, 제1 및 제2오믹 콘택을 제공하기 위한 패터닝된 오믹 콘택 금속의 어닐링은 보호층의 형성에 이어서 수행된다.
본 발명의 구현예를 나타낸 첨부 도면을 참조하여 이하에서 본 발명을 더욱 상세하게 기술한다. 그러나, 본 발명은 많은 다른 형태로 구현될 수 있고 여기에 설명된 구현예에 한정되는 것으로 해석되어서는 아니되고 오히려 이들 구현예들은 본 개시가 보다 완전하고 철저하도록 하고 당업자에게 본 발명의 범위를 완전히 전달하도록 제공된다. 동일한 참조번호는 동일한 요소를 시종 나타낸다. 또한, 도면에 도시된 여러 층 및 영역은 개념적으로 도시되었다. 따라서, 본 발명은 첨부된 도면에 도시된 상대적인 크기, 간격 및 배열에 한정되지 않는다. 당업자에 의해 인식되는 바와 같이, 여기서 기판 또는 다른 층 "위에" 형성된 층의 언급은 기판 또는 다른 층 위에 직접 형성되거나, 기판 또는 다른 층의 위에 형성되어 개재되는 층 또는 층들 위에 형성되는 층을 언급할 수 있다. 또한, 다른 지형에 "이웃하여" 위치하는 구조 또는 지형의 언급이 상기 이웃 지형 위에 놓이거나 아래에 놓이는 부분을 가질 수 있음을 당업자는 이해할 것이다.
본 발명의 구현예는 게이트 누설(gate leakage)을 감소시키기 위해 및/또는 트랜지스터와 같은 반도체 소자에 고품질의 쇼트키(Schottky) 콘택을 제공하기 위해 보호층 및/또는 저손상 리세스 제조 기술을 이용한다. 보호층의 사용은 트랜지스터 게이트 영역의 반도체에 있어서 소자의 오믹 콘택의 어닐링 동안에 일어날 수 있는 손상을 감소시킬 수 있다. 따라서, 고품질의 게이트 및 오믹 콘택에 있어서, 오믹 콘택의 생성으로부터 야기될 수 있는 게이트의 열화가 감소될 수 있다.
본 발명의 구현예는 3족-질화물계 소자와 같은 질화물계 HEMT에 사용하기에 특히 적합할 수 있다. 여기에 사용된 바와 같이, "3족 질화물"의 용어는 질소와 주기율표의 3족 원소, 통상 알루미늄(Al), 갈륨(Ga), 및/또는 이리듐(Ir) 사이에 형성된 반도체 화합물을 가리킨다. 본 용어는 또한 AlGaN 및 AlInGaN과 같은 3원 및 4원 화합물을 가리킨다. 당업자가 잘 이해하는 바와 같이, 3족 원소는 질소와 결합하여 2원(예를 들면, GaN), 3원(예를 들면, AlGaN, AlInN), 및 4원(예를 들면, AlInGaN) 화합물을 형성할 수 있다. 이들 화합물들은 모두 질소 1몰이 전체 몰수가 1몰인 3족 원소와 결합하는 경험식을 갖는다. 따라서, AlxGa1-xN(여기서 0≤x≤1)과 같은 식이 이들을 기술하기 위해 흔히 사용된다.
본 발명의 구현예를 이용할 수 있는 GaN계 HEMT를 위해 적합한 구조는, 예를 들면, 본 발명과 공통양수된 미합중국 특허 제6,316,793호 및 2001년 7월 12일 출원되고 2002년 6월 6일 공개된 미합중국 출원공개 제2002/0066908A1호 "ALUMINIUM GALLIUM NITRIDE/GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS HAVING A GATE CONTACT ON A GALLIUM NITRIDE BASED CAP SEGMENT AND METHODS OF FABRICATING SAME," 2001년 5월 11일 출원된 미합중국 가출원 일련번호 제60/290,195호 "GROUP III NITRIDE BASED HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) WITH BARRIER/SPACER LAYER," 2002년 11월 14일 간행된 Smorchkova 등의 미합중국 출원공개 제2002/0167023A1호 "GROUP-III NITRIDE BASED HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) WITH BARRIER/SPACER LAYER," 2003년 7월 11일 출원된 미합중국 특허출원 일련번호 제10/617,843호 "NITRIDE BASED TRANSISTORS AND METHODS OF FABRICATION THEREOF USING NON-ETCHED CONTACT RECESSES"에 기재되어 있고, 이들은 모두 본 출원에 전체로서 인용되어 결합된다.
본 발명의 구현예의 제조는 도 1a 내지 1e에 개념적으로 도시된다. 도 1a에서 보는 바와 같이, 질화물계 소자가 그 위에 형성될 수 있는 기판(10)이 제공된다. 본 발명의 특정 구현예에서, 상기 기판(10)은, 예를 들면, 4H 폴리형 실리콘 카바이드일 수 있는 반절연 실리콘 카바이드(SiC) 기판일 수 있다. 다른 실리콘 카바이드가 될 수 있는 폴리형은 3C, 6H 및 15R 폴리형을 포함한다. "반절연(semi-insulating)"이라는 용어는 절대적인 의미라기보다는 기술적(descriptively)으로 사용된다. 본 발명의 특정 구현예에서, 상기 실리콘 카바이드 벌크 결정은 실온에서 약 1×105 Ω-cm보다 크거나 같은 고유저항(resistivity)을 갖는다.
상기 기판(10) 위에는 선택적인 버퍼, 응집(nucleation) 및/또는 전이층(미도시)이 제공될 수 있다. 예를 들면, 상기 실리콘 카바이드 기판 및 상기 소자의 나머지 부분 사이에 적절한 결정구조의 트랜지스터를 제공하기 위해 AlN 버퍼층이 제공될 수 있다. 또한, 예를 들면, 여기에 완전히 설명된 것처럼 본 출원에 전체로서 인용되어 결합되고 본원과 공통양수되며 2002년 7월 19일에 출원되어 2003년 6월 5일 공개된 미합중국 출원공개 제2003/0102482A1호 "STRAIN BALANCED NITRIDE HETROJUNCTION TRANSISTORS AND METHODS OF FABRICATING STRAIN BALANCED NITRIDE HETEROJUNCTION TRANSISTORS," 및 2001년 12월 3일 출원된 미합중국 가출원 일련번호 제60/337,687호 "STRAIN BALANCED NITRIDE HETEROJUNCTION TRANSISTOR"에 기재된 바와 같이 변형 밸런싱 전이층 또한 제공될 수 있다.
실리콘 카바이드는 3족 질화물 소자에 매우 흔히 사용되는 기판 물질인 사파이어(Al2O3)보다 3족 질화물에 훨씬 가까운 결정 격자 정합(crystal lattice match)을 갖는다. 더 가까운 격자정합은 사파이어 위에서 일반적으로 얻을 수 있는 것보다 더 우수한 품질의 3족 질화물 막을 가져올 수 있다. 실리콘 카바이드는 또한 매우 높은 열전도도를 갖기 때문에, 실리콘 카바이드 위에 형성된 3족 질화물 소자의 전체 아웃풋 전력은 통상 사파이어 위에 형성된 동일한 소자의 경우에서만큼 기판의 열소산(thermal dissipation)에 제한되지 않는다. 또한, 반절연 실리콘 카바이드 기판의 유용성은 소자 분리 및 감소된 기생 커패시턴스도 제공할 수 있다. 적절한 SiC 기판은 예를 들면, 본 발명의 양수인인 Durham, N.C.의 Cree사에 의해 제조되고 제조방법은, 예를 들면, 미합중국 재발행 특허 제34,861호, 미합중국 특허 제4,946,547호, 제5,200,022호 및 제6,218,680호에 기재되어 있고, 이들은 전체로서 여기에 인용되어 결합된다. 유사하게, 3족 질화물의 에피택셜 성장 기술은, 예를 들면, 미합중국 특허 제5,210,051호, 제5,393,993호, 제5,523,589호 및 제5,292,501호에 기재되어 있으며 이들은 전체로서 여기에 인용되어 결합된다.
비록 실리콘 카바이드가 기판 물질로서 이용될 수 있지만, 본 발명의 구현예는 사파이어, 알루미늄 질화물, 알루미늄 갈륨 질화물, 갈륨 질화물, 실리콘, GaAs, LGO, ZnO, LAO, InP 등과 같은 적합한 어떤 기판이라도 사용될 수 있다. 일부 구현예에서, 적절한 버퍼층이 형성될 수 있다.
도 1a로 돌아가서, 상기 기판(10) 위에 채널층(20)이 제공된다. 상기 채널층(20)은 앞서 설명한 바와 같이 버퍼층, 전이층 및/또는 응집층을 이용하여 상기 기판(10) 위에 증착될 수 있다. 상기 채널층(20)은 압축 변형 하에 있을 수 있다. 또한, 상기 채널층 및/또는 버퍼 응집 및/또는 전이층은 MOCVD 또는 당업자에게 알려진 다른 기술, 예를 들면, MBE 또는 HVPE에 의해 증착될 수 있다.
본 발명의 일부 구현예에서, 채널 및 장벽층 사이의 계면에서 채널층(20) 전도 밴드에지(band edge)의 에너지가 장벽층(22) 전도 밴드에지의 에너지보다 작다면 상기 채널층(20)은 AlxGa1-xN과 같은 3족-질화물일 수 있고 여기서 0≤x<1이다. 본 발명의 특정 구현예에서, x=0이며, 이는 채널층(20)이 GaN임을 가리킨다. 상기 채널층(20)은 InGaN, AlInGaN 등과 같은 다른 3족-질화물일 수 있다. 상기 채널층(20)은 도핑되지 않을 수 있으며("비의도적으로 도핑될 수 있음") 약 20 Å보다 큰 두께로 성장할 수 있다. 상기 채널층(20)은 초격자 또는 GaN, AlGaN의 조합 등과 같이 다층 구조일 수 있다.
상기 채널층(20) 위에는 장벽층(22)이 제공된다. 상기 채널층(20)은 장벽층(22)의 밴드갭보다 작은 밴드갭을 가질 수 있고 상기 채널층(20)은 상기 장벽층(22)보다 큰 전자친화도를 가질 수 있다. 상기 장벽층(22)은 상기 채널층(20) 위에 증착될 수 있다. 본 발명의 특정 구현예에서, 상기 장벽층(22)은 약 0.1 nm 내지 약 10 nm의 두께를 갖는 AlN, AlInN, AlGaN 또는 AlInGaN이다. 본 발명의 특정 구현예에 따른 층의 예는 본 발명에 여기에 전체로서 설명되는 것처럼 인용되어 결합되는 Smorchkova 등의 미합중국 출원공개 제2002/0167023A1호 "GROUP-III NITRIDE BASED HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) WITH BARRIER/SPACER LAYER"에 기재되어 있다. 본 발명의 특정 구현예에서, 상기 장벽층(22)이 오믹 콘택 금속의 아래에 매립되었을 때, 채널층(20)과 장벽층(22) 사이의 계면에서 분극 현상을 통해 현저한 캐리어 농도를 유발하기에 상기 장벽층(22)은 충분히 두껍고, 충분히 높은 Al 함량 및 도핑을 갖는다. 또한, 상기 장벽층(22)은 상기 장벽층(22) 및 제2캡층(24)(도 1b) 사이의 계면에 증착되어 이온화된 불순물로 인하여 채널에서 일어나는 전자의 산란을 감소시키거나 최소화하기에 충분하도록 두꺼워야 한다.
상기 장벽층(22)은 3족-질화물일 수 있고, 상기 채널층(20)보다 큰 밴드갭을 갖고, 상기 채널층(20)보다 작은 전자친화도를 갖는다. 따라서, 본 발명의 특정 구현예에서, 상기 장벽층(22)은 AlGaN, AlInGaN 및/또는 AlN 또는 이들 층의 조합이다. 상기 장벽층(22)은, 예를 들면, 약 0.1 nm 내지 약 10 nm 두께일 수 있지만 그 내부에 크랙 또는 실질적인 결함의 형성을 야기할 정도로 두껍지는 않다. 본 발명의 특정 구현예에서, 상기 장벽층(22)은 도핑되지 않거나 약 1019 cm-3 미만의 농도로 n-형 도펀트로 도핑될 수 있다. 본 발명의 일부 구현예에서, 상기 장벽층(22)은 AlxGa1-xN이고 0<x<1이다. 특정 구현예에서, 알루미늄의 농도는 약 25%이다. 그러나, 본 발명의 다른 구현예에서, 상기 장벽층(22)은 알루미늄의 함량이 약 5% 내지 약 100%인 AlGaN을 포함한다. 본 발명의 특정 구현예에서, 상기 알루미늄의 농도는 약 10%보다 크다.
도 1b는 상기 장벽층(22) 위에 형성된 보호층(24)을 나타낸다. 상기 보호층(24)은 실리콘 질화물(SixNy), 알루미늄 질화물(AlN) 및/또는 이산화실리콘(SiO2) 및/또는 옥시나이트라이드와 같은 다른 적절한 보호 물질일 수 있다. 아래에 깔린 장벽층(22)을 손상시키지 않으면서 제거될 수 있는 물질인 한, 상기 보호층(24)으로 다른 물질도 사용될 수 있다. 예를 들면, 상기 보호층(24)은 마그네슘 산화물, 스칸듐 산화물, 알루미늄 산화물 및/또는 알루미늄 옥시나이트라이드를 포함할 수 있다. 또한, 상기 보호층(24)은 균일하거나 및/또는 균일하지 않은 조성의 단층 또는 다층일 수 있다.
본 발명의 특정 구현예에서, 상기 보호층(24)은 SiN이다. 상기 SiN은 PVD 및/또는 CVD에 의해 형성될 수 있으며 압축 또는 인장 변형에서 비양론적(non-stoichiometric)일 수 있다. 예를 들면, 상기 보호층은 약 -100 MPa 내지 약 100 MPa의 응력을 가질 수 있다. 본 발명의 특정 구현예에서, 상기 SiN 보호층은 633 nm 파장에서 약 1.6 내지 약 2.2의 굴절율을 갖는다. 특정 구현예에서, 상기 SiN 보호층의 굴절율은 1.98 ± 0.05이다.
특정 구현예에서, 상기 보호층(24)는 AlN일 수 있다. 상기 AlN은 PVD 및/또는 CVD에 의해 형성될 수 있으며 압축 또는 인장 변형에서 비양론적(non-stoichiometric)일 수 있다. 예를 들면, 상기 보호층은 약 -100 MPa 내지 약 100 MPa의 응력을 가질 수 있다. 본 발명의 특정 구현예에서, 상기 AlN 보호층은 633 nm 파장에서 약 1.8 내지 약 2.1의 굴절율을 갖는다. 특정 구현예에서, 상기 AlN 보호층의 굴절율은 1.85 ± 0.05이다.
상기 보호층(24)는 SiO2일 수 있다. 상기 SiO2은 PVD 및/또는 CVD에 의해 형성될 수 있으며 압축 또는 인장 변형에서 비양론적(non-stoichiometric)일 수 있다. 예를 들면, 상기 보호층은 약 -100 MPa 내지 약 100 MPa의 응력을 가질 수 있다. 본 발명의 특정 구현예에서, 상기 SiO2 보호층은 633 nm 파장에서 약 1.36 내지 약 1.56의 굴절율을 갖는다. 특정 구현예에서, 상기 SiO2 보호층의 굴절율은 1.46 ± 0.03이다.
상기 보호층(24)은 상기 장벽층(22) 위에 블랑켓 형성되고, 증착(deposition)에 의해 형성될 수 있다. 예를 들면, 실리콘 질화물층은 고품질 스퍼터링 및/또는 PECVD에 의해 형성될 수 있다. 통상, 상기 보호층(24)은 약 30nm의 두께를 가질 수 있으나, 다른 두께의 층도 사용될 수 있다. 예를 들면, 상기 보호층은 후속되는 오믹 콘택의 어닐링 동안 하부의 층을 보호할 수 있도록 충분히 두꺼워야 한다. 이를 위해서 2 내지 3 개의 단일원자층(monolayer)만큼 얇은 층으로 충분할 수도 있다. 그러나, 일반적으로는, 상기 보호층(24)은 약 10 nm 내지 약 500 nm의 두께를 가질 수 있다. 또한, 고품질 SiN 보호층은 3족 질화물층의 MOCVD 성장을 이용하여 인-시투(in-situ) 성장될 수 있다.
도 1c에 나타낸 바와 같이, 상기 보호층(24)에 오믹 콘택(30)을 형성하기 위한 윈도우가 개방된다. 상기 윈도우는 패터닝된 마스크 및 아래의 장벽층(22)에 대한 손상이 적은 저손상 식각을 이용하여 아래의 장벽층(22)을 노출시킴으로써 형성될 수 있다. 저손상 식각 기술의 예는 플라스마에 DC 성분이 없는 유도 결합 플라즈마 또는 전자 사이클로트론 공명(ECR) 또는 다운스트림 플라스마 식각과 같이 반응성 이온식각이 아닌 식각 기술을 포함한다. SiO2에 있어서, 저손상 식각은 완충된 불산을 이용한 습식 식각일 수 있다. 식각저지층의 저손상 제거가 후속되는 ITO, SCO, MgO 등과 같은 식각저지층에 대한 SiN 및/또는 SiO2의 선택적 식각 역시 수행될 수 있다. SiN에 대하여는 식각저지층으로서 SiO2가 사용될 수도 있다. 이러한 구현예에서, 상기 보호층(24)은 식각저지층 뿐만 아니라 SiN, AlN 및/또는 SiO2층을 포함할 수 있다. 따라서, 본 발명의 특정 구현예에서, 상기 보호층(24)은 다층을 포함할 수 있다.
도 1c에 추가로 나타낸 바와 같이, 후속되는 포토리소그래피 단계 및 증발(evaporation)을 이용하여 오믹 콘택(30)을 제공하기 위해 오믹 금속을 패터닝한다. 상기 오믹 콘택의 가장자리가 상기 보호층(24)와 간격을 두고 이격되도록 상기 오믹 콘택(30)은 상기 보호층(24)의 윈도우보다 작게 패터닝된다. 예를 들면, 상기 오믹 콘택(30)의 가장자리는 상기 보호층(24)와 약 0.1 내지 약 0.2 ㎛의 거리로 보호층(24)과 이격될 수 있다. 상기 오믹 콘택(30)은 상기 보호층(24)으로부터 오믹 콘택 금속의 형성 및 패터닝에서 발생하는 정렬오차를 허용하기에 충분히 멀리 이격되어야 한다. 만일 상기 오믹 콘택 금속이 상기 보호층(24)과 접촉되면, 후속되는 가열 단계에서 상기 금속이 상기 보호층(24) 내부로 확산되어 게이트 콘택과 상기 오믹 콘택 사이의 단락을 일으킬 수 있다. 그러나, 상기 오믹 콘택(30)과 상기 보호층(24) 사이의 갭은 상기 보호층(24)의 보호 목적을 좌절시키고 이로 인하여 소자의 성능을 실질적으로 열화시킬 정도로 커서는 안되고, 상기 보호층에 오믹 물질이 임의 접촉할 위험이 있을 정도로 작아서도 안된다. 따라서, 본 발명의 특정 구현예에서, 상기 갭은, 예를 들면, 약 0.1 ㎛ 내지 약 0.5 ㎛일 수 있다.
상기 오믹 콘택 물질은 상기 오믹 콘택(30)을 제공하기 위해 어닐링된다. 상기 어닐링은 고온 어닐링일 수 있다. 예를 들면, 상기 어닐링은 약 900 ℃ 이상의 온도에서 수행되는 어닐링일 수 있다. 오믹 콘택 어닐링을 수행함으로써, 상기 오믹 콘택의 저항은 고저항으로부터 약 1 Ω-mm 미만으로까지 감소될 수 있다. 따라서, 여기서 사용될 때, "오믹 콘택"의 용어는 약 1 Ω-mm 미만의 접촉저항을 갖는 비정류 접촉을 의미한다. 고온 공정 단계동안 상기 보호층의 존재는 이러한 공정이 상기 장벽층(22)에 가져올 수 있는 손상을 차단할 수 있다. 따라서, 예를 들면, 상기 게이트 영역(21)의 면저항은 고온 오믹 콘택 어닐링 후에 열처리 이전의(as-grown)(즉, 콘택 어닐링 이전의) 게이트 영역(21)의 면저항과 실질적으로 동일할 수 있다.
도 1d는 게이트 윈도우의 형성을 나타낸다. 도 1d에서 보는 바와 같이, 마스크(26)가 상기 오믹 콘택 및 보호층(24) 위에 형성되고, 상기 보호층(24)의 일부를 노출시키는 윈도우가 형성되도록 패터닝된다. 그런 후, 상기 보호층(24)를 통해 리세스가 형성되고 상기 장벽층(22)의 일부가 노출된다. 상기 리세스는 상기 마스크(26) 및 앞서 설명한 바와 같은 저손상 식각 공정을 이용하여 형성된다. 상기 오믹 콘택(30)이 소스 및 드레인 콘택을 제공하는 특정 구현예에서, 상기 리세스가, 그리고 후속적으로 게이트 콘택(32)이 상기 드레인 콘택보다는 상기 소스 콘택에 더 가깝도록 상기 리세스는 상기 소스 및 드레인 콘택 사이에서 오프셋(offset)될 수 있다.
도 1e에서 보는 바와 같이, 게이트 콘택(32)은 상기 리세스 내에 형성되고 상기 장벽층(22)의 노출된 부분과 접촉한다. 상기 게이트 콘택은 도 1e에 나타낸 바와 같은 "T" 게이트일 수 있고 통상의 제조 방법을 이용하여 제조할 수 있다. 적합한 게이트 재료는 상기 장벽층의 조성에 의존할 수 있지만, 특정 구현예에서, Ni, Pt, NiSix, Cu, Pd, Cr, W 및/또는 WSiN과 같이 질화물계 반도체 물질에 쇼트키 콘택을 만들 수 있는 통상의 물질이 사용될 수 있다. 바람직하지는 않지만, 예를 들면, 저손상 식각의 비등방성의 결과로서 상기 보호층(24)과 상기 게이트 콘택(32) 사이에 작은 갭이 생길 수 있고 이는 상기 보호층(24)과 상기 게이트 콘택(32) 사이에 장벽층(22)의 노출면을 가져오는 것이 가능하다.
도 1f는 패시베이션층(34)의 형성을 나타낸다. 상기 패시베이션층은 도 1e의 구조 위에 블랑켓 증착될 수 있다. 특정 구현예에서, 상기 패시베이션층(34)은 상기 보호층(24)과 상기 오믹 콘택(30) 사이의 갭 및, 만일 존재한다면, 상기 보호층(24)과 상기 게이트 콘택(32) 사이의 갭을 실질적으로 메우도록 증착된다. 본 발명의 특정 구현예에서, 상기 패시베이션층(34)은 실리콘 질화물, 알루미늄 질화물, 이산화실리콘 및/또는 옥시나이트라이드일 수 있다. 또한, 상기 패시베이션층(34)은 균일하거나 및/또는 불균일한 조성의 단일층 또는 다층일 수 있다.
지금까지 본 발명의 구현예가 게이트 콘택 윈도우 개구부를 형성하고 상기 보호층(24)과 갭을 갖는 게이트 콘택을 형성하는 두 개의 마스크 공정을 참조하여 기술된 반면, 도 2a 및 도 2b는 오믹 콘택 윈도우와 오믹 콘택을 하나의 마스크로 형성하는 조작을 나타낸다. 도 2a에서 보는 바와 같이, 상기 보호층(24) 위에 음의 사각(斜角)을 갖는, 포토레지스트와 같은 마스크(200)가 형성될 수 있다. 상기 마스크(200)의 음의 사각은 후속적으로 형성될 오믹 콘택(30)과 패터닝된 보호층(24) 사이의 갭 거리에 대응된다. 콘택 윈도우를 제공하기 위하여 상기 보호층(24)은 앞서 기재한 바와 같은 저손상 식각을 이용하여 등방적으로 식각된다. 따라서, 상기 콘택 윈도우는 상기 마스크(200)의 바닥 치수에 의해 정의될 것이다. 만일 상기 식각이 등방성이고 상기 저손상 식각이 원하는 공간의 측면 언더컷을 제공하도록 실질적으로 오버에칭된다면 음의 사각이 없는 마스크층이 사용될 수도 있다.
도 2b에서 보는 바와 같이, 오믹 콘택 금속(300)이 그 결과 구조물 위에 증착된다. 상기 마스크(200)의 돌출(overhang)이 상기 노출된 장벽층(22)에 증착되는 금속의 위치를 정의한다. 따라서, 상기 콘택 금속(300)은 상기 패터닝된 보호층(24)와 이격된다. 상기 마스크(200)와 상기 마스크(200) 위의 금속(300)은 도 1c의 구조를 제공하기 위해 제거된다.
도 2a에 나타낸 바와 같이 사각을 갖는 마스크를 제공하는 기술은 당업자에게 알려져 있다. 또한, 상기 마스크(200)는 사각을 갖는 것으로 나타냈지만, 본 발명의 다른 구현예에서, 상기 마스크는 보호층(24)의 식각과 콘택 물질의 증착을 위해 두 개의 상이한 겉보기 윈도우 크기를 갖는 마스크를 제공하는 스텝 또는 다른 구성을 가질 수 있다. 따라서, 예를 들면, 한 번의 노광으로도 상기 보호층(24)에 인접한 쪽의 포토레지스트층에 의해 제공되는 윈도우가 상기 보호층(24)으로부터 멀리 떨어진 쪽의 포토레지스트 층에 의해 제공되는 윈도우보다 크도록 마스크에 오버행 또는 계단(step)이 제공되도록 상이한 노광 감도를 갖는 다층 포토레지스트를 이용할 수 있다.
도 3은 본 발명의 다른 구현예에 따른 트랜지스터의 제조를 나타낸다. 도 3에서 보는 바와 같이, 상기 오믹 금속 증착 이전의 보호층(24)의 형성이 생략될 수 있으며, 상기 오믹금속은 상기 장벽층(22) 위에 증착 및 패터닝되어 상기 장벽층(22) 위에 오믹 콘택 물질 영역(30)을 제공할 수 있다. 그런 후 보호층(40)이 상기 장벽층(22)의 게이트 영역 및 오믹 콘택 물질 위에 형성된다. 본 발명의 특정 구현예에서, 상기 보호층(40)은 스퍼터링에 의해 블랑켓 증착되는 알루미늄 질화물일 수 있다. 상기 보호층(40)은 상기 보호층(24)와 관련하여 앞서 설명된 바와 같은 물질일 수 있다.
상기 오믹 콘택 물질 영역(30)의 어닐링이 상기 보호층(40)이 있는 상태에서 수행된다. 그런 후 상기 보호층(40)은, 예를 들면, 앞서 설명한 바와 같은 저손상 식각 기술을 이용하여 제거될 수 있다. 그런 후 상기 게이트 콘택(32)이 패시베이션층(34)의 형성 전 또는 이후에 형성될 수 있다. 예를 들면, 실리콘 질화물의 층이 스퍼터링에 의해 증착될 수 있다. 그런 후 상기 패시베이션층 내부로 게이트 리세스가, 예를 들면, 앞서 설명한 바와 같은 저손상 식각 공정을 이용하여 식각되고, 상기 리세스 내에 게이트가 형성된다. 이러한 공정은 자신의 전체 두께를 "T" 게이트의 가장자리까지 유지하는 실리콘 질화물 패시베이션층을 제공할 수 있다. 따라서, 도 4에 나타낸 것과 같은 구조를 갖는 트랜지스터가 제공될 수 있다.
선택적으로, 도 4에 나타낸 구조는 도 1a 내지 도 1f에 나타낸 제조 단계를 이용하여 제공될 수 있지만, 상기 보호층(24)은 상기 게이트 콘택(32)의 형성 이전 또는 이후에 제거될 수 있다. 이러한 경우, 상기 보호층(24)은 앞서 설명한 바와 같은 저손상 식각 기술을 이용하여 제거되어야 한다.
도 5는, 상기 보호층(24)이 적어도 상기 오믹 콘택(30)만큼은 두껍게 형성되는 본 발명의 다른 구현예를 나타낸다. 도 5에서 보는 바와 같이, 이러한 구현예에서, 상기 게이트 콘택(32)의 날개 부분이 상기 보호층(24)의 위에 직접 형성될 수 있다. 예를 들면, 상기 보호층(24)은 약 500 내지 약 5000 Å의 두께로 형성될 수 있다. 상기 보호층(24)를 통과하는 저손상 식각을 수행하여 상기 보호층(24)의 직접 위 및 보호층(24)을 관통하여 "T" 게이트(32)가 형성된다. 후속되는 중첩층(overlayer) 패시베이션(34)이, 예를 들면, 소자의 주변 보호를 향상시키기 위해 제공될 수도 있다.
특정한 HEMT 구조를 참조하여 본 발명의 구현예가 여기에 설명되었지만 본 발명은 그러한 구조에 한정되는 것으로 해석되어서는 안된다. 예를 들면, 본 발명의 개시로 인한 이점을 가진 채 상기 HEMT 소자에 추가적인 층이 포함될 수 있다. 이러한 추가층은 예를 들면, 여기에 전체로서 설명된 것처럼 인용되어 결합되는 Yu et al., "Schottky barrier engineering in III V nitrides via the piezoelectric effect," Applied Physics Letters, Vol. 73, No. 13, 1998, 또는 2001년 7월 12일에 출원되고 2002년 6월 6일에 공개된 미합중국 출원공개 제2002/0066908A1호 "ALUMINUM GALLIUM NITRIDE/GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS HAVING A GATE CONTACT ON A GALLIUM NITRIDE BASED CAP SEGMENT AND METHODS OF FABRICATING SAME,"에 기재된 바와 같이 GaN 캡층을 포함할 수 있다. 일부 구현예에서, SiNx와 같은 절연층 또는 비교적 높은 품질의 AlN이 MISHEMT를 만들거나 및/또는 표면을 부동태화(passivate)하기 위해 증착될 수 있다. 추가적인 층은 조성이 점진적으로 전이되는 층 또는 층들을 포함할 수도 있다.
또한, 상기 장벽층(22)은 여기에 전체로서 설명된 것처럼 인용되어 결합되는 Smorchkova 등의 미합중국 출원공개 제2002/0167023A1호 "GROUP-III NITRIDE BASED HIGH ELECTRON MOBILITY TRANSISTOR (HEMT) WITH BARRIER/SPACER LAYER"에 기재되어 있는 바와 같이 다층으로 제공될 수도 있다. 따라서, 본 발명의 구현예는 장벽층이 단일층으로 한정되는 것으로 해석되어서는 안되고, GaN, AlGaN 및/또는 AlN 층의 조합을 갖는 장벽층을 포함할 수도 있다. 예를 들면, GaN, AlN 구조가 합금 산란(scattering)을 감소시키거나 방지하기 위해 사용될 수 있다. 따라서, 본 발명의 구현예는 질화물계 장벽층을 포함할 수 있고, 상기 질화물계 장벽층은 AlGaN계 장벽층, AlN계 장벽층 및 이들의 조합을 포함할 수 있다.
도면과 명세서에서, 본 발명의 전형적인 구현예가 개시되었으며, 비록 구체적인 용어가 사용되었지만, 이들은 일반적이고 기술적인 의미로만 사용되었으며, 한정적인 목적으로 사용된 것이 아니다.
도 1a 내지 도 1f는 본 발명의 일구현예에 따른 트랜지스터의 제조를 나타낸 개념도이다.
도 2a 및 도 2b는 본 발명의 다른 구현예에 따른 트랜지스터의 제조에서의 조작을 나타내는 개념도이다.
도 3은 본 발명의 구현예에 따른 선택적인 제조 단계를 나타낸 개념도이다.
도 4는 본 발명의 다른 구현예에 따른 트랜지스터의 개념도이다.
도 5는 본 발명의 다른 구현예에 따른 트랜지스터의 개념도이다.

Claims (75)

  1. 질화물계 반도체 채널층 위에 질화물계 반도체 장벽층을 형성하는 단계;
    상기 질화물계 반도체 장벽층의 게이트 영역 위에 보호층을 형성하는 단계;
    상기 장벽층 위에 패터닝된 오믹 콘택 금속 영역들을 형성하는 단계;
    상기 보호층을 제거하는 단계;
    제1 및 제2오믹 콘택을 제공하기 위하여 상기 패터닝된 오믹 콘택 금속을 어닐링하되, 상기 게이트 영역 위에 상기 보호층이 있는 상태에서 어닐링을 수행하는 단계; 및
    상기 장벽층의 게이트 영역 위에 게이트 콘택을 형성하는 단계;
    를 포함하는 트랜지스터의 제조 방법.
  2. 제 1 항에 있어서, 상기 보호층이 알루미늄 질화물층, 실리콘 질화물(SiN)층 및 이산화실리콘(SiO2)층 중 적어도 하나를 포함하는 것을 특징으로 하는 트랜지스터의 제조방법.
  3. 제 1 항에 있어서, 상기 보호층을 제거하는 단계가 저손상 식각 기술을 이용하여 상기 보호층을 제거하는 단계를 포함하는 것을 특징으로 하는 트랜지스터의 제조방법.
  4. 제 3 항에 있어서, 상기 저손상 식각 기술이 강염기를 이용한 습식 식각을 포함하는 것을 특징으로 하는 트랜지스터의 제조방법.
  5. 제 1 항에 있어서, 상기 보호층을 제거하는 단계에 이어 상기 장벽층의 노출된 부분 위에 패시베이션층을 형성하는 단계가 후속되는 것을 특징으로 하는 트랜지스터의 제조방법.
  6. 제 5 항에 있어서, 게이트 콘택을 형성하는 단계가,
    상기 패시베이션층 내에 저손상 식각 기술을 이용하여 상기 장벽층의 게이트 영역의 일부를 노출시키기 위해 리세스를 식각하는 단계; 및
    상기 패시베이션층의 상기 리세스 내에 게이트 콘택을 형성하는 단계;
    를 포함하는 것을 특징으로 하는 트랜지스터의 제조방법.
  7. 제 5 항에 있어서, 게이트 콘택을 형성하는 단계가 상기 패시베이션층을 관통하여 상기 장벽층에 접촉하도록 연장되는 게이트 콘택을 형성하는 단계를 포함하는 것을 특징으로 하는 트랜지스터의 제조방법.
  8. 제 1 항에 있어서, 보호층을 형성하는 단계가 패터닝된 보호층을 상기 장벽층 위에 형성하는 단계를 포함하고, 상기 패터닝된 보호층이 게이트 영역에 대응하는 상기 장벽층의 제1부분을 덮고, 상기 제1 및 제2오믹 콘택에 대응하는 상기 장벽층의 이웃하는 제2부분을 노출하고; 및
    패터닝된 오믹 콘택 금속 영역들을 형성하는 단계가 상기 장벽층의 제2부분 위에 패터닝된 오믹 콘택 금속 영역들을 형성하는 단계를 포함하고, 상기 패터닝된 오믹 콘택 금속 영역들이 상기 패터닝된 보호층과 공간을 두고 떨어져서 이웃하는 것을 특징으로 하는 트랜지스터의 제조방법.
  9. 제 8 항에 있어서, 상기 패터닝된 보호층을 형성하는 단계가,
    상기 장벽층 위에 보호층 물질을 블랑켓 증착하는 단계;
    상기 블랑켓 증착된 보호층 물질 위에, 상기 제1 및 제2오믹 콘택의 위치에 대응하는 윈도우를 갖는 마스크를 형성하는 단계;
    저손상 식각 기술을 이용하여 상기 윈도우를 통과하여 상기 블랑켓 증착된 보호층을 식각하는 단계; 및
    상기 마스크를 제거하는 단계;
    를 포함하는 것을 특징으로 하는 트랜지스터의 제조방법.
  10. 제 9 항에 있어서, 상기 제1 및 제2오믹 콘택의 위치에 대응하는 윈도우가 제1 및 제2오믹 콘택의 면적보다 큰 것을 특징으로 하는 트랜지스터의 제조방법.
  11. 제 9 항에 있어서, 상기 장벽층의 제2부분 위에 상기 패터닝된 보호층과 공간을 두고 떨어져서 이웃하는 패터닝된 오믹 콘택 금속 영역들을 형성하는 단계가 상기 마스크를 제거하는 단계 이전에 수행되는 것을 특징으로 하는 트랜지스터의 제조방법.
  12. 제 5 항에 있어서, 상기 패시베이션층이 실리콘 질화물을 포함하는 것을 특징으로 하는 트랜지스터의 제조방법.
  13. 제 1 항에 있어서, 질화물계 채널층을 제공하기 위해 3족-질화물층을 형성하는 단계를 더 포함하고, 질화물계 반도체 장벽층을 형성하는 단계가 3족-질화물층을 형성하는 단계를 포함하는 것을 특징으로 하는 트랜지스터의 제조방법.
  14. 제 13 항에 있어서, 상기 채널층이 AlxGa1-xN의 조성을 갖고(0≤x<1), 상기 채널층의 밴드갭이 장벽층의 밴드갭보다 작은 것을 특징으로 하는 트랜지스터의 제조방법.
  15. 제 14 항에 있어서, 상기 채널층은 알루미늄 갈륨 질화물(AlGaN), 갈륨 질화물(GaN), 인듐 갈륨 질화물(InGaN), 및 알루미늄 인듐 갈륨 질화물(AlInGaN) 중 적어도 하나를 포함하고; 및
    상기 장벽층은 알루미늄 질화물(AlN), 알루미늄 인듐 질화물(AlInN), AlGaN, GaN, InGaN, 및 AlInGaN 중 적어도 하나를 포함하는 것을 특징으로 하는 트랜지스터의 제조방법.
  16. 제 1 항에 있어서, 상기 장벽층이 다층을 포함하는 것을 특징으로 하는 트랜지스터의 제조방법.
  17. 제 1 항에 있어서,
    기판 위에 버퍼층을 형성하는 단계; 및
    상기 질화물계 채널층을 제공하기 위해 상기 버퍼층 위에 3족-질화물 채널층을 형성하는 단계;
    를 더 포함하는 것을 특징으로 하는 트랜지스터의 제조방법.
  18. 제 1 항에 있어서, 상기 채널층 및 상기 장벽층이 고전자이동도 트랜지스터(HEMT: High Electron Mobility Transistor)를 제공하도록 구성되는 것을 특징으로 하는 트랜지스터의 제조방법.
  19. 제 1 항에 있어서, 상기 질화물계 채널층이 SiC 기판 위에 제공되는 것을 특징으로 하는 트랜지스터의 제조방법.
  20. 제 1 항에 있어서, 상기 보호층이 적어도 오믹 콘택 물질의 두께로 형성되는 것을 특징으로 하는 트랜지스터의 제조방법.
  21. 제 1 항에 있어서, 상기 보호층이 적어도 2 개의 단일원자층(monolayer) 두께를 갖는 것을 특징으로 하는 트랜지스터의 제조방법.
  22. 제 1 항에 있어서, 상기 보호층이 5 nm 내지 500 nm의 두께를 갖는 것을 특징으로 하는 트랜지스터의 제조방법.
  23. 제 5 항에 있어서, 패시베이션층을 형성하는 단계가 인-시투(in-situ)로 수행되는 것을 특징으로 하는 트랜지스터의 제조방법.
  24. 제 23 항에 있어서, 상기 패시베이션층을 형성하는 단계가 MOCVD 성장을 이용하여 패시베이션층을 성장시키는 단계를 포함하는 것을 특징으로 하는 트랜지스터의 제조방법.
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
  45. 삭제
  46. 삭제
  47. 삭제
  48. 삭제
  49. 삭제
  50. 삭제
  51. 삭제
  52. 삭제
  53. 삭제
  54. 삭제
  55. 삭제
  56. 삭제
  57. 삭제
  58. 삭제
  59. 삭제
  60. 삭제
  61. 삭제
  62. 삭제
  63. 삭제
  64. 삭제
  65. 삭제
  66. 삭제
  67. 삭제
  68. 삭제
  69. 삭제
  70. 삭제
  71. 삭제
  72. 삭제
  73. 삭제
  74. 삭제
  75. 삭제
KR1020067014147A 2004-01-16 2004-09-28 보호층 및 저손상 리세스를 갖는 질화물계 트랜지스터 및그의 제조 방법 KR101123459B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/758,871 US7045404B2 (en) 2004-01-16 2004-01-16 Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US10/758,871 2004-01-16
PCT/US2004/031756 WO2005076365A1 (en) 2004-01-16 2004-09-28 Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020117014251A Division KR101202497B1 (ko) 2004-01-16 2004-09-28 보호층 및 저손상 리세스를 갖는 질화물계 트랜지스터 및 그의 제조 방법

Publications (2)

Publication Number Publication Date
KR20060127046A KR20060127046A (ko) 2006-12-11
KR101123459B1 true KR101123459B1 (ko) 2012-03-26

Family

ID=34807509

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020117014251A KR101202497B1 (ko) 2004-01-16 2004-09-28 보호층 및 저손상 리세스를 갖는 질화물계 트랜지스터 및 그의 제조 방법
KR1020067014147A KR101123459B1 (ko) 2004-01-16 2004-09-28 보호층 및 저손상 리세스를 갖는 질화물계 트랜지스터 및그의 제조 방법

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020117014251A KR101202497B1 (ko) 2004-01-16 2004-09-28 보호층 및 저손상 리세스를 갖는 질화물계 트랜지스터 및 그의 제조 방법

Country Status (8)

Country Link
US (3) US7045404B2 (ko)
EP (2) EP1704597B1 (ko)
JP (2) JP5156235B2 (ko)
KR (2) KR101202497B1 (ko)
CN (1) CN100468770C (ko)
CA (1) CA2553669A1 (ko)
TW (1) TW200525760A (ko)
WO (1) WO2005076365A1 (ko)

Families Citing this family (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112860B2 (en) * 2003-03-03 2006-09-26 Cree, Inc. Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices
US7898047B2 (en) * 2003-03-03 2011-03-01 Samsung Electronics Co., Ltd. Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices
US7045404B2 (en) 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US7382001B2 (en) * 2004-01-23 2008-06-03 International Rectifier Corporation Enhancement mode III-nitride FET
US7612390B2 (en) * 2004-02-05 2009-11-03 Cree, Inc. Heterojunction transistors including energy barriers
US20050218414A1 (en) * 2004-03-30 2005-10-06 Tetsuzo Ueda 4H-polytype gallium nitride-based semiconductor device on a 4H-polytype substrate
JP2005317684A (ja) * 2004-04-27 2005-11-10 Eudyna Devices Inc ドライエッチング方法および半導体装置
US7332795B2 (en) * 2004-05-22 2008-02-19 Cree, Inc. Dielectric passivation for semiconductor devices
US7238560B2 (en) * 2004-07-23 2007-07-03 Cree, Inc. Methods of fabricating nitride-based transistors with a cap layer and a recessed gate
JP4866007B2 (ja) * 2005-01-14 2012-02-01 富士通株式会社 化合物半導体装置
JP4845872B2 (ja) * 2005-01-25 2011-12-28 富士通株式会社 Mis構造を有する半導体装置及びその製造方法
JP4912604B2 (ja) * 2005-03-30 2012-04-11 住友電工デバイス・イノベーション株式会社 窒化物半導体hemtおよびその製造方法。
US7525122B2 (en) * 2005-06-29 2009-04-28 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
US9331192B2 (en) * 2005-06-29 2016-05-03 Cree, Inc. Low dislocation density group III nitride layers on silicon carbide substrates and methods of making the same
US7855401B2 (en) * 2005-06-29 2010-12-21 Cree, Inc. Passivation of wide band-gap based semiconductor devices with hydrogen-free sputtered nitrides
US7598576B2 (en) * 2005-06-29 2009-10-06 Cree, Inc. Environmentally robust passivation structures for high-voltage silicon carbide semiconductor devices
US20070018198A1 (en) * 2005-07-20 2007-01-25 Brandes George R High electron mobility electronic device structures comprising native substrates and methods for making the same
US20070018199A1 (en) 2005-07-20 2007-01-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
US8183595B2 (en) * 2005-07-29 2012-05-22 International Rectifier Corporation Normally off III-nitride semiconductor device having a programmable gate
JP4897948B2 (ja) * 2005-09-02 2012-03-14 古河電気工業株式会社 半導体素子
JP4799965B2 (ja) * 2005-09-06 2011-10-26 日本電信電話株式会社 窒化物半導体を用いたヘテロ構造電界効果トランジスタ
US7638818B2 (en) * 2005-09-07 2009-12-29 Cree, Inc. Robust transistors with fluorine treatment
US7399692B2 (en) * 2005-10-03 2008-07-15 International Rectifier Corporation III-nitride semiconductor fabrication
US7592211B2 (en) * 2006-01-17 2009-09-22 Cree, Inc. Methods of fabricating transistors including supported gate electrodes
US7709269B2 (en) * 2006-01-17 2010-05-04 Cree, Inc. Methods of fabricating transistors including dielectrically-supported gate electrodes
JP2007234986A (ja) * 2006-03-02 2007-09-13 National Institute Of Information & Communication Technology AlN障壁層を有するGaN系電界効果トランジスタ、及びそのような電界効果トランジスタの製造方法
JP5362187B2 (ja) * 2006-03-30 2013-12-11 日本碍子株式会社 半導体素子
US9040398B2 (en) * 2006-05-16 2015-05-26 Cree, Inc. Method of fabricating seminconductor devices including self aligned refractory contacts
US7737455B2 (en) * 2006-05-19 2010-06-15 Bridgelux, Inc. Electrode structures for LEDs with increased active area
JP5207598B2 (ja) * 2006-05-24 2013-06-12 パナソニック株式会社 窒化物半導体材料、半導体素子およびその製造方法
CN100495724C (zh) * 2006-09-06 2009-06-03 中国科学院半导体研究所 氮化镓基异质结场效应晶体管结构及制作方法
JP5520432B2 (ja) 2006-10-03 2014-06-11 古河電気工業株式会社 半導体トランジスタの製造方法
US8823057B2 (en) 2006-11-06 2014-09-02 Cree, Inc. Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices
JP5268929B2 (ja) 2006-11-21 2013-08-21 アイメック AlGaN/GaNHEMTの表面処理およびパッシベーション
JP5401758B2 (ja) * 2006-12-12 2014-01-29 サンケン電気株式会社 半導体装置及びその製造方法
WO2008086001A2 (en) * 2007-01-10 2008-07-17 International Rectifier Corporation Active area shaping for iii-nitride device and process for its manufacture
US20080265444A1 (en) * 2007-04-26 2008-10-30 Heetronix Thin-film aluminum nitride encapsulant for metallic structures on integrated circuits and method of forming same
US9647103B2 (en) * 2007-05-04 2017-05-09 Sensor Electronic Technology, Inc. Semiconductor device with modulated field element isolated from gate electrode
JP2008288289A (ja) * 2007-05-16 2008-11-27 Oki Electric Ind Co Ltd 電界効果トランジスタとその製造方法
US8455920B2 (en) * 2007-05-23 2013-06-04 International Rectifier Corporation III-nitride heterojunction device
JP2008306026A (ja) * 2007-06-08 2008-12-18 Eudyna Devices Inc 半導体装置の製造方法
US20090072269A1 (en) * 2007-09-17 2009-03-19 Chang Soo Suh Gallium nitride diodes and integrated components
US7800132B2 (en) * 2007-10-25 2010-09-21 Northrop Grumman Systems Corporation High electron mobility transistor semiconductor device having field mitigating plate and fabrication method thereof
KR100922575B1 (ko) * 2007-12-05 2009-10-21 한국전자통신연구원 티형 게이트 전극을 구비한 반도체 소자 및 그의 제조 방법
US7935620B2 (en) 2007-12-05 2011-05-03 Freescale Semiconductor, Inc. Method for forming semiconductor devices with low leakage Schottky contacts
US7632726B2 (en) * 2007-12-07 2009-12-15 Northrop Grumman Space & Mission Systems Corp. Method for fabricating a nitride FET including passivation layers
US8431962B2 (en) * 2007-12-07 2013-04-30 Northrop Grumman Systems Corporation Composite passivation process for nitride FET
US7750370B2 (en) 2007-12-20 2010-07-06 Northrop Grumman Space & Mission Systems Corp. High electron mobility transistor having self-aligned miniature field mitigating plate on a protective dielectric layer
US7842587B2 (en) * 2008-01-30 2010-11-30 Freescale Semiconductor, Inc. III-V MOSFET fabrication and device
US8519438B2 (en) * 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
US9711633B2 (en) * 2008-05-09 2017-07-18 Cree, Inc. Methods of forming group III-nitride semiconductor devices including implanting ions directly into source and drain regions and annealing to activate the implanted ions
US7985986B2 (en) * 2008-07-31 2011-07-26 Cree, Inc. Normally-off semiconductor devices
US8384115B2 (en) 2008-08-01 2013-02-26 Cree, Inc. Bond pad design for enhancing light extraction from LED chips
US8289065B2 (en) 2008-09-23 2012-10-16 Transphorm Inc. Inductive load power switching circuits
US7898004B2 (en) 2008-12-10 2011-03-01 Transphorm Inc. Semiconductor heterostructure diodes
WO2010122628A1 (ja) 2009-04-20 2010-10-28 富士通株式会社 化合物半導体装置及びその製造方法
US8742459B2 (en) 2009-05-14 2014-06-03 Transphorm Inc. High voltage III-nitride semiconductor devices
US8105889B2 (en) * 2009-07-27 2012-01-31 Cree, Inc. Methods of fabricating transistors including self-aligned gate electrodes and source/drain regions
US8390000B2 (en) 2009-08-28 2013-03-05 Transphorm Inc. Semiconductor devices with field plates
US20110068348A1 (en) 2009-09-18 2011-03-24 Taiwan Semiconductor Manufacturing Company, Ltd. Thin body mosfet with conducting surface channel extensions and gate-controlled channel sidewalls
US8216924B2 (en) * 2009-10-16 2012-07-10 Cree, Inc. Methods of fabricating transistors using laser annealing of source/drain regions
US8389977B2 (en) 2009-12-10 2013-03-05 Transphorm Inc. Reverse side engineered III-nitride devices
US20110241020A1 (en) * 2010-03-31 2011-10-06 Triquint Semiconductor, Inc. High electron mobility transistor with recessed barrier layer
US8907350B2 (en) * 2010-04-28 2014-12-09 Cree, Inc. Semiconductor devices having improved adhesion and methods of fabricating the same
US8847563B2 (en) 2010-07-15 2014-09-30 Cree, Inc. Power converter circuits including high electron mobility transistors for switching and rectifcation
US8742460B2 (en) 2010-12-15 2014-06-03 Transphorm Inc. Transistors with isolation regions
US8643062B2 (en) 2011-02-02 2014-02-04 Transphorm Inc. III-N device structures and methods
JP5762049B2 (ja) * 2011-02-28 2015-08-12 ルネサスエレクトロニクス株式会社 半導体装置
US8772842B2 (en) 2011-03-04 2014-07-08 Transphorm, Inc. Semiconductor diodes with low reverse bias currents
US8716141B2 (en) 2011-03-04 2014-05-06 Transphorm Inc. Electrode configurations for semiconductor devices
KR101781438B1 (ko) * 2011-06-14 2017-09-25 삼성전자주식회사 반도체 발광소자의 제조방법
US8901604B2 (en) 2011-09-06 2014-12-02 Transphorm Inc. Semiconductor devices with guard rings
US9257547B2 (en) 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
US8598937B2 (en) 2011-10-07 2013-12-03 Transphorm Inc. High power semiconductor electronic components with increased reliability
US8530978B1 (en) * 2011-12-06 2013-09-10 Hrl Laboratories, Llc High current high voltage GaN field effect transistors and method of fabricating same
JP2013131650A (ja) * 2011-12-21 2013-07-04 Fujitsu Ltd 半導体装置及びその製造方法
US9165766B2 (en) 2012-02-03 2015-10-20 Transphorm Inc. Buffer layer structures suited for III-nitride devices with foreign substrates
US8860088B2 (en) * 2012-02-23 2014-10-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure and method of forming the same
US9093366B2 (en) 2012-04-09 2015-07-28 Transphorm Inc. N-polar III-nitride transistors
CN102709321A (zh) * 2012-04-20 2012-10-03 程凯 增强型开关器件及其制造方法
US8866195B2 (en) 2012-07-06 2014-10-21 Taiwan Semiconductor Manufacturing Co., Ltd. III-V compound semiconductor device having metal contacts and method of making the same
US20130299895A1 (en) 2012-05-09 2013-11-14 Taiwan Semiconductor Manufacturing Co., Ltd. Iii-v compound semiconductor device having dopant layer and method of making the same
US9184275B2 (en) 2012-06-27 2015-11-10 Transphorm Inc. Semiconductor devices with integrated hole collectors
US9076850B2 (en) 2012-07-30 2015-07-07 Samsung Electronics Co., Ltd. High electron mobility transistor
US9099490B2 (en) * 2012-09-28 2015-08-04 Intel Corporation Self-aligned structures and methods for asymmetric GaN transistors and enhancement mode operation
US8994073B2 (en) 2012-10-04 2015-03-31 Cree, Inc. Hydrogen mitigation schemes in the passivation of advanced devices
US9812338B2 (en) 2013-03-14 2017-11-07 Cree, Inc. Encapsulation of advanced devices using novel PECVD and ALD schemes
US9991399B2 (en) 2012-10-04 2018-06-05 Cree, Inc. Passivation structure for semiconductor devices
JP6178065B2 (ja) * 2012-10-09 2017-08-09 株式会社東芝 半導体装置
KR20150092172A (ko) 2012-11-16 2015-08-12 메사추세츠 인스티튜트 오브 테크놀로지 반도체 구조물, 및 리세스 형성 에칭 수법
US9171730B2 (en) 2013-02-15 2015-10-27 Transphorm Inc. Electrodes for semiconductor devices and methods of forming the same
US9087718B2 (en) 2013-03-13 2015-07-21 Transphorm Inc. Enhancement-mode III-nitride devices
US9245992B2 (en) 2013-03-15 2016-01-26 Transphorm Inc. Carbon doping semiconductor devices
US20140335666A1 (en) 2013-05-13 2014-11-13 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Growth of High-Performance III-Nitride Transistor Passivation Layer for GaN Electronics
US9755059B2 (en) 2013-06-09 2017-09-05 Cree, Inc. Cascode structures with GaN cap layers
US9847411B2 (en) 2013-06-09 2017-12-19 Cree, Inc. Recessed field plate transistor structures
US9679981B2 (en) 2013-06-09 2017-06-13 Cree, Inc. Cascode structures for GaN HEMTs
WO2015009514A1 (en) 2013-07-19 2015-01-22 Transphorm Inc. Iii-nitride transistor including a p-type depleting layer
JP6338832B2 (ja) * 2013-07-31 2018-06-06 ルネサスエレクトロニクス株式会社 半導体装置
KR101455283B1 (ko) * 2013-08-09 2014-10-31 홍익대학교 산학협력단 패시베이션막 형성방법 및 이를 포함하는 AlGaN/GaN HFET의 제조방법
CN103760206B (zh) * 2014-01-14 2016-07-06 江苏新广联科技股份有限公司 基于氮化镓材料的人体血糖测试芯片
US20150255589A1 (en) * 2014-03-10 2015-09-10 Toshiba Corporation Indium-containing contact and barrier layer for iii-nitride high electron mobility transistor devices
EP2930754A1 (en) * 2014-04-11 2015-10-14 Nxp B.V. Semiconductor device
US10276712B2 (en) 2014-05-29 2019-04-30 Hrl Laboratories, Llc III-nitride field-effect transistor with dual gates
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
CN106373874A (zh) * 2015-07-21 2017-02-01 北大方正集团有限公司 基于AlGaN/GaN HEMT的欧姆接触电极的制造方法
US9812532B1 (en) 2015-08-28 2017-11-07 Hrl Laboratories, Llc III-nitride P-channel transistor
CN105226093B (zh) * 2015-11-11 2018-06-26 成都海威华芯科技有限公司 GaN HEMT器件及其制作方法
EP3378097A4 (en) 2015-11-19 2019-09-11 HRL Laboratories, LLC NITRIDE-III FIELD EFFECT TRANSISTOR WITH DOUBLE TRIGGER
CN105448977A (zh) * 2015-12-31 2016-03-30 深圳市华讯方舟微电子科技有限公司 高电子迁移率晶体管及其制造方法
US11322599B2 (en) 2016-01-15 2022-05-03 Transphorm Technology, Inc. Enhancement mode III-nitride devices having an Al1-xSixO gate insulator
US10128365B2 (en) 2016-03-17 2018-11-13 Cree, Inc. Bypassed gate transistors having improved stability
US9947616B2 (en) 2016-03-17 2018-04-17 Cree, Inc. High power MMIC devices having bypassed gate transistors
US9786660B1 (en) 2016-03-17 2017-10-10 Cree, Inc. Transistor with bypassed gate structure field
CN107230617A (zh) * 2016-03-25 2017-10-03 北京大学 氮化镓半导体器件的制备方法
TWI813243B (zh) 2016-05-31 2023-08-21 美商創世舫科技有限公司 包含漸變空乏層的三族氮化物裝置
US10354879B2 (en) 2016-06-24 2019-07-16 Cree, Inc. Depletion mode semiconductor devices including current dependent resistance
CN109314135B (zh) * 2016-07-01 2023-03-10 英特尔公司 用于GaN E模式晶体管性能的栅极堆叠体设计
CN108010840B (zh) * 2016-11-02 2021-04-23 株洲中车时代半导体有限公司 掺杂半导体器件的制备方法和半导体器件
JP2018170458A (ja) * 2017-03-30 2018-11-01 株式会社東芝 高出力素子
CN107424919A (zh) * 2017-05-12 2017-12-01 中国电子科技集团公司第十三研究所 一种低损伤介质栅及其制备方法
US10615273B2 (en) 2017-06-21 2020-04-07 Cree, Inc. Semiconductor devices having a plurality of unit cell transistors that have smoothed turn-on behavior and improved linearity
US10268789B1 (en) 2017-10-03 2019-04-23 Cree, Inc. Transistor amplifiers having node splitting for loop stability and related methods
WO2019073409A1 (en) * 2017-10-11 2019-04-18 King Abdullah University Of Science And Technology SEMICONDUCTOR DEVICES HAVING HETEROGONCTIONS OF A GALLIUM ALUMINUM NITRIDE TERNA ALLOY LAYER AND A SECOND NITRIDE III TERNAIRE ALLOY LAYER
CN109728086A (zh) * 2017-10-31 2019-05-07 中国工程物理研究院电子工程研究所 侧墙栅高迁移率晶体管的制备方法
JP7100241B2 (ja) * 2017-12-20 2022-07-13 富士通株式会社 化合物半導体装置及びその製造方法
CN108461543B (zh) * 2018-05-29 2022-07-08 苏州闻颂智能科技有限公司 一种GaN HEMT器件及其制备方法
US10763334B2 (en) 2018-07-11 2020-09-01 Cree, Inc. Drain and/or gate interconnect and finger structure
US10483352B1 (en) * 2018-07-11 2019-11-19 Cree, Inc. High power transistor with interior-fed gate fingers
US10600746B2 (en) 2018-07-19 2020-03-24 Cree, Inc. Radio frequency transistor amplifiers and other multi-cell transistors having gaps and/or isolation structures between groups of unit cell transistors
WO2020106537A1 (en) 2018-11-19 2020-05-28 Cree, Inc. Semiconductor devices having a plurality of unit cell transistors that have smoothed turn-on behavior and improved linearity
US10770415B2 (en) 2018-12-04 2020-09-08 Cree, Inc. Packaged transistor devices with input-output isolation and methods of forming packaged transistor devices with input-output isolation
US10741496B2 (en) 2018-12-04 2020-08-11 Nxp Usa, Inc. Semiconductor devices with a protection layer and methods of fabrication
JP7074045B2 (ja) * 2018-12-21 2022-05-24 住友電気工業株式会社 窒化物半導体デバイスの製造方法及び窒化物半導体デバイス
US10937873B2 (en) 2019-01-03 2021-03-02 Cree, Inc. High electron mobility transistors having improved drain current drift and/or leakage current performance
JP7163806B2 (ja) * 2019-02-05 2022-11-01 富士通株式会社 化合物半導体装置、化合物半導体装置の製造方法及び増幅器
CN109841677A (zh) * 2019-03-28 2019-06-04 英诺赛科(珠海)科技有限公司 高电子迁移率晶体管及其制造方法
US11417746B2 (en) 2019-04-24 2022-08-16 Wolfspeed, Inc. High power transistor with interior-fed fingers
US10923585B2 (en) 2019-06-13 2021-02-16 Cree, Inc. High electron mobility transistors having improved contact spacing and/or improved contact vias
US10971612B2 (en) 2019-06-13 2021-04-06 Cree, Inc. High electron mobility transistors and power amplifiers including said transistors having improved performance and reliability
CN112436056B (zh) * 2019-08-26 2024-03-26 联华电子股份有限公司 高电子迁移率晶体管
CN112490286B (zh) * 2019-09-12 2023-09-19 联华电子股份有限公司 半导体装置及其制作方法
US11075271B2 (en) 2019-10-14 2021-07-27 Cree, Inc. Stepped field plates with proximity to conduction channel and related fabrication methods
US11658233B2 (en) 2019-11-19 2023-05-23 Wolfspeed, Inc. Semiconductors with improved thermal budget and process of making semiconductors with improved thermal budget
CN111223925A (zh) * 2019-11-27 2020-06-02 西安电子科技大学 基于AlN/GaN超晶格沟道的双向阻断功率器件及制作方法
US11670605B2 (en) 2020-04-03 2023-06-06 Wolfspeed, Inc. RF amplifier devices including interconnect structures and methods of manufacturing
US20210313293A1 (en) 2020-04-03 2021-10-07 Cree, Inc. Rf amplifier devices and methods of manufacturing
US11356070B2 (en) 2020-06-01 2022-06-07 Wolfspeed, Inc. RF amplifiers having shielded transmission line structures
US11837457B2 (en) 2020-09-11 2023-12-05 Wolfspeed, Inc. Packaging for RF transistor amplifiers
US11863130B2 (en) 2020-04-03 2024-01-02 Wolfspeed, Inc. Group III nitride-based radio frequency transistor amplifiers having source, gate and/or drain conductive vias
EP4128333A1 (en) 2020-04-03 2023-02-08 Wolfspeed, Inc. Group iii nitride-based radio frequency amplifiers having back side source, gate and/or drain terminals
US11769768B2 (en) 2020-06-01 2023-09-26 Wolfspeed, Inc. Methods for pillar connection on frontside and passive device integration on backside of die
US11228287B2 (en) 2020-06-17 2022-01-18 Cree, Inc. Multi-stage decoupling networks integrated with on-package impedance matching networks for RF power amplifiers
US11533025B2 (en) 2020-06-18 2022-12-20 Wolfspeed, Inc. Integrated doherty amplifier with added isolation between the carrier and the peaking transistors
US11533024B2 (en) 2020-06-25 2022-12-20 Wolfspeed, Inc. Multi-zone radio frequency transistor amplifiers
US11581859B2 (en) 2020-06-26 2023-02-14 Wolfspeed, Inc. Radio frequency (RF) transistor amplifier packages with improved isolation and lead configurations
CN114023819B (zh) * 2020-07-08 2023-07-04 英诺赛科(珠海)科技有限公司 电子装置
US11887945B2 (en) 2020-09-30 2024-01-30 Wolfspeed, Inc. Semiconductor device with isolation and/or protection structures
US11742302B2 (en) 2020-10-23 2023-08-29 Wolfspeed, Inc. Electronic device packages with internal moisture barriers
US20220157671A1 (en) 2020-11-13 2022-05-19 Cree, Inc. Packaged rf power device with pcb routing
US11791389B2 (en) 2021-01-08 2023-10-17 Wolfspeed, Inc. Radio frequency transistor amplifiers having widened and/or asymmetric source/drain regions for improved on-resistance performance
CN114975614A (zh) * 2021-02-24 2022-08-30 联华电子股份有限公司 高电子迁移率晶体管及其制作方法
US11869964B2 (en) 2021-05-20 2024-01-09 Wolfspeed, Inc. Field effect transistors with modified access regions
US20220376085A1 (en) 2021-05-20 2022-11-24 Cree, Inc. Methods of manufacturing high electron mobility transistors having improved performance
TWI762346B (zh) * 2021-06-04 2022-04-21 瑞礱科技股份有限公司 一種iii族氮化物半導體元件之歐姆接觸製造方法
US11842937B2 (en) 2021-07-30 2023-12-12 Wolfspeed, Inc. Encapsulation stack for improved humidity performance and related fabrication methods
US20230075505A1 (en) 2021-09-03 2023-03-09 Wolfspeed, Inc. Metal pillar connection topologies for heterogeneous packaging
US20230078017A1 (en) 2021-09-16 2023-03-16 Wolfspeed, Inc. Semiconductor device incorporating a substrate recess
WO2023056145A1 (en) 2021-10-01 2023-04-06 Wolfspeed, Inc. Bypassed gate transistors having improved stability
US20230291367A1 (en) 2022-03-08 2023-09-14 Wolfspeed, Inc. Group iii nitride-based monolithic microwave integrated circuits having multi-layer metal-insulator-metal capacitors
US20240105824A1 (en) 2022-09-23 2024-03-28 Wolfspeed, Inc. Barrier Structure for Sub-100 Nanometer Gate Length Devices
US20240106397A1 (en) 2022-09-23 2024-03-28 Wolfspeed, Inc. Transistor amplifier with pcb routing and surface mounted transistor die
US20240105823A1 (en) 2022-09-23 2024-03-28 Wolfspeed, Inc. Barrier Structure for Dispersion Reduction in Transistor Devices
US20240120202A1 (en) 2022-10-06 2024-04-11 Wolfspeed, Inc. Implanted Regions for Semiconductor Structures with Deep Buried Layers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015446A1 (en) * 1999-12-08 2001-08-23 Kaoru Inoue Semiconductor device
US20020163012A1 (en) * 2000-03-30 2002-11-07 Fujitsu Limited Semiconductor triode device having a compound-semiconductor channel layer

Family Cites Families (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34861A (en) * 1862-04-01 Improved washing-machine
FR1487060A (ko) * 1965-07-30 1967-10-11
FR2465317A2 (fr) 1979-03-28 1981-03-20 Thomson Csf Transistor a effet de champ a frequence de coupure elevee
DE3072175D1 (de) 1979-12-28 1990-04-26 Fujitsu Ltd Halbleitervorrichtungen mit heterouebergang.
US4536942A (en) * 1982-12-09 1985-08-27 Cornell Research Foundation, Inc. Fabrication of T-shaped metal lines for semiconductor devices
US4551905A (en) * 1982-12-09 1985-11-12 Cornell Research Foundation, Inc. Fabrication of metal lines for semiconductor devices
JPH088350B2 (ja) 1985-04-08 1996-01-29 日本電気株式会社 半導体装置
US4987008A (en) 1985-07-02 1991-01-22 Semiconductor Energy Laboratory Co., Ltd. Thin film formation method
JPS6229175A (ja) * 1985-07-29 1987-02-07 Nippon Telegr & Teleph Corp <Ntt> 電界効果型トランジスタの製造方法
US4755867A (en) 1986-08-15 1988-07-05 American Telephone And Telegraph Company, At&T Bell Laboratories Vertical Enhancement-mode Group III-V compound MISFETs
US4788156A (en) 1986-09-24 1988-11-29 Microwave Technology, Inc. Subchannel doping to reduce short-gate effects in field effect transistors
JPS63155671A (ja) * 1986-12-18 1988-06-28 Nec Corp 半導体装置の製造方法
US4987462A (en) * 1987-01-06 1991-01-22 Texas Instruments Incorporated Power MISFET
US5258631A (en) * 1987-01-30 1993-11-02 Hitachi, Ltd. Semiconductor device having a two-dimensional electron gas as an active layer
US4792531A (en) * 1987-10-05 1988-12-20 Menlo Industries, Inc. Self-aligned gate process
US4866005A (en) 1987-10-26 1989-09-12 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
US5411914A (en) 1988-02-19 1995-05-02 Massachusetts Institute Of Technology III-V based integrated circuits having low temperature growth buffer or passivation layers
EP0334006A1 (en) 1988-02-22 1989-09-27 Siemens Aktiengesellschaft Stacked channel heterojunction fet
JP2508818B2 (ja) * 1988-10-03 1996-06-19 三菱電機株式会社 半導体装置の製造方法
US5231038A (en) * 1989-04-04 1993-07-27 Mitsubishi Denki Kabushiki Kaisha Method of producing field effect transistor
US4946547A (en) 1989-10-13 1990-08-07 Cree Research, Inc. Method of preparing silicon carbide surfaces for crystal growth
US5053348A (en) 1989-12-01 1991-10-01 Hughes Aircraft Company Fabrication of self-aligned, t-gate hemt
US5196358A (en) 1989-12-29 1993-03-23 The United States Of America As Represented By The Secretary Of The Navy Method of manufacturing InP junction FETS and junction HEMTS using dual implantation and double nitride layers
JPH03292744A (ja) * 1990-01-24 1991-12-24 Toshiba Corp 化合物半導体装置およびその製造方法
US5210051A (en) 1990-03-27 1993-05-11 Cree Research, Inc. High efficiency light emitting diodes from bipolar gallium nitride
US5172197A (en) 1990-04-11 1992-12-15 Hughes Aircraft Company Hemt structure with passivated donor layer
US5292501A (en) 1990-06-25 1994-03-08 Degenhardt Charles R Use of a carboxy-substituted polymer to inhibit plaque formation without tooth staining
US5200022A (en) 1990-10-03 1993-04-06 Cree Research, Inc. Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product
JPH04167439A (ja) * 1990-10-30 1992-06-15 Mitsubishi Electric Corp 半導体装置の製造方法
JPH04223342A (ja) * 1990-12-26 1992-08-13 Mitsubishi Electric Corp 半導体装置のゲート電極とその製造方法
US5192987A (en) 1991-05-17 1993-03-09 Apa Optics, Inc. High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
JP3135939B2 (ja) 1991-06-20 2001-02-19 富士通株式会社 Hemt型半導体装置
JPH0575139A (ja) * 1991-09-12 1993-03-26 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2735718B2 (ja) * 1991-10-29 1998-04-02 三菱電機株式会社 化合物半導体装置及びその製造方法
JP3352712B2 (ja) 1991-12-18 2002-12-03 浩 天野 窒化ガリウム系半導体素子及びその製造方法
EP0549373B1 (en) 1991-12-25 1995-05-17 Nec Corporation Tunnel transistor and method of manufacturing same
JP2978972B2 (ja) * 1992-03-12 1999-11-15 富士通株式会社 半導体装置の製造方法
JPH05275463A (ja) 1992-03-30 1993-10-22 Matsushita Electric Ind Co Ltd 半導体装置
JPH05299441A (ja) * 1992-04-24 1993-11-12 Matsushita Electric Ind Co Ltd 電界効果トランジスタの製造方法
JPH05326561A (ja) 1992-05-22 1993-12-10 Nec Corp 電界効果トランジスタの製造方法
JPH0653241A (ja) * 1992-08-03 1994-02-25 Nec Corp 電界効果トランジスタの製造方法
EP0592064B1 (en) * 1992-08-19 1998-09-23 Mitsubishi Denki Kabushiki Kaisha Method of producing a field effect transistor
US5399896A (en) * 1992-09-29 1995-03-21 Mitsubishi Denki Kabushiki Kaisha FET with a T-shaped gate of a particular structure
JPH06267991A (ja) 1993-03-12 1994-09-22 Hitachi Ltd 半導体装置およびその製造方法
JPH06275655A (ja) * 1993-03-24 1994-09-30 Mitsubishi Electric Corp 半導体装置及びその製造方法
DE4326714A1 (de) * 1993-08-03 1995-02-09 Mantis Ulv Spruehgeraete Segmentrotationsdüse
JP2560993B2 (ja) * 1993-09-07 1996-12-04 日本電気株式会社 化合物半導体装置の製造方法
JPH0786310A (ja) * 1993-09-20 1995-03-31 Mitsubishi Electric Corp 高融点金属ゲート電極の形成方法
US5393993A (en) 1993-12-13 1995-02-28 Cree Research, Inc. Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices
JP3294411B2 (ja) * 1993-12-28 2002-06-24 富士通株式会社 半導体装置の製造方法
US5484740A (en) * 1994-06-06 1996-01-16 Motorola, Inc. Method of manufacturing a III-V semiconductor gate structure
US5514605A (en) * 1994-08-24 1996-05-07 Nec Corporation Fabrication process for compound semiconductor device
US5686737A (en) 1994-09-16 1997-11-11 Cree Research, Inc. Self-aligned field-effect transistor for high frequency applications
US5523589A (en) 1994-09-20 1996-06-04 Cree Research, Inc. Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
US5592501A (en) 1994-09-20 1997-01-07 Cree Research, Inc. Low-strain laser structures with group III nitride active layers
US5773334A (en) * 1994-09-26 1998-06-30 Toyota Jidosha Kabushiki Kaisha Method of manufacturing a semiconductor device
JP3380344B2 (ja) * 1994-11-30 2003-02-24 富士通株式会社 半導体装置及びその製造方法
JP3157690B2 (ja) 1995-01-19 2001-04-16 沖電気工業株式会社 pn接合素子の製造方法
JP2687917B2 (ja) * 1995-02-20 1997-12-08 日本電気株式会社 半導体装置の製造方法
US5534462A (en) 1995-02-24 1996-07-09 Motorola, Inc. Method for forming a plug and semiconductor device having the same
US5670798A (en) 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
SE9501311D0 (sv) 1995-04-10 1995-04-10 Abb Research Ltd Method for producing a semiconductor device having a semiconductor layer of SiC
US6002148A (en) 1995-06-30 1999-12-14 Motorola, Inc. Silicon carbide transistor and method
US5569943A (en) * 1995-09-01 1996-10-29 The United States Of America As Represented By The Secretary Of The Army Field effect real space transistor
US5733806A (en) * 1995-09-05 1998-03-31 Motorola, Inc. Method for forming a self-aligned semiconductor device
US6075262A (en) * 1995-09-21 2000-06-13 Fujitsu Limited Semiconductor device having T-shaped gate electrode
JPH09129865A (ja) * 1995-11-06 1997-05-16 Mitsubishi Electric Corp 半導体装置
JPH09139494A (ja) * 1995-11-16 1997-05-27 Mitsubishi Electric Corp 半導体装置の製造方法,及び半導体装置
KR0175030B1 (ko) * 1995-12-07 1999-04-01 김광호 반도체 소자의 고내열 금속 배선 구조 및 그 형성 방법
KR100195269B1 (ko) 1995-12-22 1999-06-15 윤종용 액정표시장치의 제조방법
US5915164A (en) 1995-12-28 1999-06-22 U.S. Philips Corporation Methods of making high voltage GaN-A1N based semiconductor devices
JPH09186175A (ja) * 1995-12-28 1997-07-15 Sanyo Electric Co Ltd 化合物半導体装置の製造方法
KR0179116B1 (ko) * 1995-12-30 1999-03-20 구자홍 자가정렬형 티형 게이트 제조방법
DE19600116C2 (de) 1996-01-03 2001-03-15 Siemens Ag Doppelheterostruktur-HEMT
US5710449A (en) * 1996-05-22 1998-01-20 Integrated Device Technology, Inc. Memory cell having active regions without N+ implants
JPH1050982A (ja) 1996-07-31 1998-02-20 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
JP2891204B2 (ja) * 1996-09-27 1999-05-17 日本電気株式会社 半導体装置の製造方法
US6936839B2 (en) 1996-10-16 2005-08-30 The University Of Connecticut Monolithic integrated circuit including a waveguide and quantum well inversion channel devices and a method of fabricating same
KR100571071B1 (ko) * 1996-12-04 2006-06-21 소니 가부시끼 가이샤 전계효과트랜지스터및그제조방법
JP2904167B2 (ja) * 1996-12-18 1999-06-14 日本電気株式会社 半導体装置の製造方法
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JP3156620B2 (ja) * 1997-02-12 2001-04-16 日本電気株式会社 電界効果トランジスタ及びその製造方法
JP3546634B2 (ja) 1997-03-19 2004-07-28 ソニー株式会社 窒化物系化合物半導体の選択エッチング方法および半導体装置の製造方法
JP3670104B2 (ja) 1997-03-27 2005-07-13 日世株式会社 殺菌済食品の製造方法
US6448648B1 (en) 1997-03-27 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Metalization of electronic semiconductor devices
JPH10335637A (ja) 1997-05-30 1998-12-18 Sony Corp ヘテロ接合電界効果トランジスタ
US6316820B1 (en) * 1997-07-25 2001-11-13 Hughes Electronics Corporation Passivation layer and process for semiconductor devices
JPH1154527A (ja) * 1997-07-30 1999-02-26 Fujitsu Ltd 電界効果トランジスタおよびその製造方法
US6159861A (en) * 1997-08-28 2000-12-12 Nec Corporation Method of manufacturing semiconductor device
US6242327B1 (en) * 1997-09-19 2001-06-05 Fujitsu Limited Compound semiconductor device having a reduced source resistance
US6201262B1 (en) 1997-10-07 2001-03-13 Cree, Inc. Group III nitride photonic devices on silicon carbide substrates with conductive buffer interlay structure
JP3372470B2 (ja) 1998-01-20 2003-02-04 シャープ株式会社 窒化物系iii−v族化合物半導体装置
JP2002502557A (ja) * 1998-02-09 2002-01-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 埋込チャネルfetを含む半導体デバイスを製造する方法
US6150680A (en) 1998-03-05 2000-11-21 Welch Allyn, Inc. Field effect semiconductor device having dipole barrier
JPH11261053A (ja) 1998-03-09 1999-09-24 Furukawa Electric Co Ltd:The 高移動度トランジスタ
US6086673A (en) 1998-04-02 2000-07-11 Massachusetts Institute Of Technology Process for producing high-quality III-V nitride substrates
JP3534624B2 (ja) * 1998-05-01 2004-06-07 沖電気工業株式会社 半導体装置の製造方法
KR100262940B1 (ko) * 1998-05-29 2000-09-01 이계철 절연막 리프트 오프를 이용한 화합물 반도체 소자 제조 방법
JP3385981B2 (ja) * 1998-06-01 2003-03-10 日本電気株式会社 半導体装置及びその製造方法
US6316793B1 (en) 1998-06-12 2001-11-13 Cree, Inc. Nitride based transistors on semi-insulating silicon carbide substrates
JP3416532B2 (ja) * 1998-06-15 2003-06-16 富士通カンタムデバイス株式会社 化合物半導体装置及びその製造方法
JP2000196029A (ja) * 1998-12-28 2000-07-14 Sony Corp 半導体装置とその製造方法
JP3209270B2 (ja) 1999-01-29 2001-09-17 日本電気株式会社 ヘテロ接合電界効果トランジスタ
JP2000277724A (ja) 1999-03-26 2000-10-06 Nagoya Kogyo Univ 電界効果トランジスタとそれを備えた半導体装置及びその製造方法
US6518637B1 (en) 1999-04-08 2003-02-11 Wayne State University Cubic (zinc-blende) aluminum nitride
US6218680B1 (en) 1999-05-18 2001-04-17 Cree, Inc. Semi-insulating silicon carbide without vanadium domination
JP2000349280A (ja) 1999-06-03 2000-12-15 Nec Corp 半導体装置及びその製造方法並びに半導体基板構造
JP4584379B2 (ja) * 1999-07-16 2010-11-17 三菱電機株式会社 半導体装置の製造方法
US6077733A (en) * 1999-09-03 2000-06-20 Taiwan Semiconductor Manufacturing Company Method of manufacturing self-aligned T-shaped gate through dual damascene
JP4592938B2 (ja) 1999-12-08 2010-12-08 パナソニック株式会社 半導体装置
JP3393602B2 (ja) 2000-01-13 2003-04-07 松下電器産業株式会社 半導体装置
JP3362723B2 (ja) * 2000-01-26 2003-01-07 日本電気株式会社 電界効果型トランジスタの製造方法
US6586781B2 (en) 2000-02-04 2003-07-01 Cree Lighting Company Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same
JP4667556B2 (ja) 2000-02-18 2011-04-13 古河電気工業株式会社 縦型GaN系電界効果トランジスタ、バイポーラトランジスタと縦型GaN系電界効果トランジスタの製造方法
US6447604B1 (en) 2000-03-13 2002-09-10 Advanced Technology Materials, Inc. Method for achieving improved epitaxy quality (surface texture and defect density) on free-standing (aluminum, indium, gallium) nitride ((al,in,ga)n) substrates for opto-electronic and electronic devices
US6498111B1 (en) 2000-08-23 2002-12-24 Cree Lighting Company Fabrication of semiconductor materials and devices with controlled electrical conductivity
US6475889B1 (en) 2000-04-11 2002-11-05 Cree, Inc. Method of forming vias in silicon carbide and resulting devices and circuits
US6521961B1 (en) * 2000-04-28 2003-02-18 Motorola, Inc. Semiconductor device using a barrier layer between the gate electrode and substrate and method therefor
JP4022708B2 (ja) 2000-06-29 2007-12-19 日本電気株式会社 半導体装置
US6515316B1 (en) 2000-07-14 2003-02-04 Trw Inc. Partially relaxed channel HEMT device
JP2002076023A (ja) 2000-09-01 2002-03-15 Nec Corp 半導体装置
JP2002124663A (ja) * 2000-10-13 2002-04-26 Murata Mfg Co Ltd ヘテロ接合電界効果トランジスタ
TWI288435B (en) * 2000-11-21 2007-10-11 Matsushita Electric Ind Co Ltd Semiconductor device and equipment for communication system
US6548333B2 (en) 2000-12-01 2003-04-15 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
JP2002170949A (ja) 2000-12-01 2002-06-14 Matsushita Electric Ind Co Ltd 電界効果トランジスタ
JP3428962B2 (ja) 2000-12-19 2003-07-22 古河電気工業株式会社 GaN系高移動度トランジスタ
TW466768B (en) * 2000-12-30 2001-12-01 Nat Science Council An In0.34Al0.66As0.85Sb0.15/InP HFET utilizing InP channels
US6593193B2 (en) 2001-02-27 2003-07-15 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for fabricating the same
JP3501284B2 (ja) * 2001-03-30 2004-03-02 富士通カンタムデバイス株式会社 半導体装置の製造方法
US6849882B2 (en) 2001-05-11 2005-02-01 Cree Inc. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer
JP2003023015A (ja) 2001-07-06 2003-01-24 Mitsubishi Electric Corp GaAs系半導体電界効果トランジスタ
US6646293B2 (en) 2001-07-18 2003-11-11 Motorola, Inc. Structure for fabricating high electron mobility transistors utilizing the formation of complaint substrates
US6853018B2 (en) * 2001-07-19 2005-02-08 Sony Corporation Semiconductor device having a channel layer, first semiconductor layer, second semiconductor layer, and a conductive impurity region
EP2267784B1 (en) 2001-07-24 2020-04-29 Cree, Inc. INSULATING GATE AlGaN/GaN HEMT
US6734111B2 (en) * 2001-08-09 2004-05-11 Comlase Ab Method to GaAs based lasers and a GaAs based laser
JP2003086608A (ja) * 2001-09-14 2003-03-20 Toshiba Corp 電界効果トランジスタ及びその製造方法
JP2003209124A (ja) * 2001-11-06 2003-07-25 Sony Corp 電界効果半導体素子の製造方法及び電界効果半導体素子
US7030428B2 (en) 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
JP2003197646A (ja) * 2001-12-27 2003-07-11 Shin Etsu Handotai Co Ltd 電界効果トランジスタ
KR100438895B1 (ko) * 2001-12-28 2004-07-02 한국전자통신연구원 고전자 이동도 트랜지스터 전력 소자 및 그 제조 방법
JP3733420B2 (ja) * 2002-03-01 2006-01-11 独立行政法人産業技術総合研究所 窒化物半導体材料を用いたヘテロ接合電界効果型トランジスタ
JP3705431B2 (ja) * 2002-03-28 2005-10-12 ユーディナデバイス株式会社 半導体装置及びその製造方法
DE10304722A1 (de) * 2002-05-11 2004-08-19 United Monolithic Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements
JP3986887B2 (ja) 2002-05-17 2007-10-03 松下電器産業株式会社 半導体装置
US6852615B2 (en) * 2002-06-10 2005-02-08 Hrl Laboratories, Llc Ohmic contacts for high electron mobility transistors and a method of making the same
US6893947B2 (en) * 2002-06-25 2005-05-17 Freescale Semiconductor, Inc. Advanced RF enhancement-mode FETs with improved gate properties
US6982204B2 (en) 2002-07-16 2006-01-03 Cree, Inc. Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
US6740535B2 (en) * 2002-07-29 2004-05-25 International Business Machines Corporation Enhanced T-gate structure for modulation doped field effect transistors
US6897137B2 (en) * 2002-08-05 2005-05-24 Hrl Laboratories, Llc Process for fabricating ultra-low contact resistances in GaN-based devices
US20040021152A1 (en) 2002-08-05 2004-02-05 Chanh Nguyen Ga/A1GaN Heterostructure Field Effect Transistor with dielectric recessed gate
US6884704B2 (en) 2002-08-05 2005-04-26 Hrl Laboratories, Llc Ohmic metal contact and channel protection in GaN devices using an encapsulation layer
JP4385205B2 (ja) * 2002-12-16 2009-12-16 日本電気株式会社 電界効果トランジスタ
US8089097B2 (en) * 2002-12-27 2012-01-03 Momentive Performance Materials Inc. Homoepitaxial gallium-nitride-based electronic devices and method for producing same
JP4385206B2 (ja) * 2003-01-07 2009-12-16 日本電気株式会社 電界効果トランジスタ
JP4179539B2 (ja) 2003-01-15 2008-11-12 富士通株式会社 化合物半導体装置及びその製造方法
JP4746825B2 (ja) 2003-05-15 2011-08-10 富士通株式会社 化合物半導体装置
US7501669B2 (en) * 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
US7052942B1 (en) 2003-09-19 2006-05-30 Rf Micro Devices, Inc. Surface passivation of GaN devices in epitaxial growth chamber
US6867078B1 (en) * 2003-11-19 2005-03-15 Freescale Semiconductor, Inc. Method for forming a microwave field effect transistor with high operating voltage
US20050133816A1 (en) * 2003-12-19 2005-06-23 Zhaoyang Fan III-nitride quantum-well field effect transistors
US7045404B2 (en) 2004-01-16 2006-05-16 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
US7547928B2 (en) * 2004-06-30 2009-06-16 Interuniversitair Microelektronica Centrum (Imec) AlGaN/GaN high electron mobility transistor devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015446A1 (en) * 1999-12-08 2001-08-23 Kaoru Inoue Semiconductor device
US20020163012A1 (en) * 2000-03-30 2002-11-07 Fujitsu Limited Semiconductor triode device having a compound-semiconductor channel layer

Also Published As

Publication number Publication date
US7906799B2 (en) 2011-03-15
KR101202497B1 (ko) 2012-11-16
EP2492963A2 (en) 2012-08-29
WO2005076365A1 (en) 2005-08-18
JP5156235B2 (ja) 2013-03-06
WO2005076365A9 (en) 2006-10-12
KR20060127046A (ko) 2006-12-11
EP2492963B1 (en) 2021-03-10
EP1704597A1 (en) 2006-09-27
US20060255366A1 (en) 2006-11-16
US20050170574A1 (en) 2005-08-04
EP1704597B1 (en) 2015-07-22
KR20110075053A (ko) 2011-07-05
US20110140123A1 (en) 2011-06-16
JP2012080111A (ja) 2012-04-19
JP6050579B2 (ja) 2016-12-21
US11316028B2 (en) 2022-04-26
US7045404B2 (en) 2006-05-16
EP2492963A3 (en) 2013-01-23
TW200525760A (en) 2005-08-01
CN100468770C (zh) 2009-03-11
JP2007518265A (ja) 2007-07-05
CN1906765A (zh) 2007-01-31
CA2553669A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
KR101123459B1 (ko) 보호층 및 저손상 리세스를 갖는 질화물계 트랜지스터 및그의 제조 방법
KR101108344B1 (ko) 캡층 및 리세스된 게이트를 가지는 질화물계트랜지스터들의 제조방법들
EP1522091B1 (en) Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
US7960756B2 (en) Transistors including supported gate electrodes
EP1905097B1 (en) Nitride-based transistors and fabrication methods with an etch stop layer

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
A107 Divisional application of patent
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150130

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160127

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170201

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180201

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190129

Year of fee payment: 8