JPWO2005039824A1 - マルチワイヤソー - Google Patents

マルチワイヤソー Download PDF

Info

Publication number
JPWO2005039824A1
JPWO2005039824A1 JP2005514977A JP2005514977A JPWO2005039824A1 JP WO2005039824 A1 JPWO2005039824 A1 JP WO2005039824A1 JP 2005514977 A JP2005514977 A JP 2005514977A JP 2005514977 A JP2005514977 A JP 2005514977A JP WO2005039824 A1 JPWO2005039824 A1 JP WO2005039824A1
Authority
JP
Japan
Prior art keywords
wire
slurry
workpiece
cutting
wire saw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005514977A
Other languages
English (en)
Other versions
JP4387361B2 (ja
Inventor
河嵜 貴文
貴文 河嵜
鶴田 明三
明三 鶴田
博一 西田
博一 西田
三村 誠一
誠一 三村
昌之 濱保
昌之 濱保
尚史 冨永
尚史 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2005039824A1 publication Critical patent/JPWO2005039824A1/ja
Application granted granted Critical
Publication of JP4387361B2 publication Critical patent/JP4387361B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/007Use, recovery or regeneration of abrasive mediums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • B24B27/0633Grinders for cutting-off using a cutting wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/04Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
    • B28D5/045Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools by cutting with wires or closed-loop blades
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

この発明に係るワイヤソーは、被加工物とワイヤとの切断界面にアルカリまたは混酸を含むスラリを供給しながら前記被加工物を切断するマルチワイヤソーであって、前記スラリを貯蔵加熱するための加熱機構付貯蔵タンクと、前記加熱機構付貯蔵タンクから前記ワイヤが前記被加工物に繰り込まれる手前の位置までポンプにより送出された前記スラリを所定の温度に維持しながら搬送する保温パイプと、ステージに固定された前記被加工物の近傍の温度を前記所定の温度に維持する恒温槽と、前記ワイヤを前記所定の温度に加熱するワイヤ加熱機構とを備えている。その結果、シリコンインゴット切断加工時の切断抵抗が低減されるとともにそのばらつきが小さくなり、高品質のウエハを高効率・低コストで得ることができる。

Description

本発明は、半導体用および太陽電池用のウエハを製造するために、シリコンインゴットを切断する際に使用するマルチワイヤソーに関する。
従来からシリコンインゴットの切断には、小さい切断代および均一な厚さで切断することや一度に多数枚のウエハに切断することができるマルチワイヤソーが用いられている。このマルチワイヤソーを用いたシリコンインゴットの切断は、走行するワイヤにシリコンインゴットを押し付けつつ、その切断界面に砥粒を含むスラリを導入することによって行われている(例えば、特許文献1参照)。
このようなワイヤを用いたシリコンインゴットの切断においては、ワイヤによるインゴットの切断の進行に伴ってスラリの温度が上昇し、ワイヤソーのローラが伸縮したりする。インゴットの加工条件が変化するためインゴットの加工精度を一定に保持することができなくなる。そのため、スラリを冷却して加工精度を確保しようとしている(例えば、特許文献2参照)。
しかし、近年はシリコンインゴットの切断に対して高いウエハ品質を維持すると共に、切断代や切断ピッチを小さくして、ウエハ加工費を削減することが要求されている。
切断代を小さくするには、ワイヤ径を小さくすればよいが、その分ワイヤの破断強度が低下するため、ワイヤに掛かる張力を小さくする必要がある。インゴットの切断は圧力転写であるラッピング作用で行われているので、ワイヤの張力を小さくすると、切断速度が遅くなり、ワイヤの変位(撓み)が大きくなる。ワイヤの変位(撓み)が大きくなると、切断方向と直交する方向におけるワイヤの変位も大きくなり、ウエハの反り、厚さむら、微小な凹凸(ソーマーク)が発生し、ウエハの品質が低下する。このようなワイヤ撓みを小さくするために、切断速度の遅延に応じてシリコンインゴットの送り速度を低下させると、切断効率を低下させることになる。ワイヤの送り速度を高めて、切断速度の遅延を補ってシリコンインゴットの送り速度を高くすると、切断界面での砥粒の分散不良に対するマージンがなくなり、張力の突発的な上昇によってワイヤの破断が発生する。したがって、高いウエハ品質を維持すると共に、シリコンインゴットの切断代や切断ピッチを小さくするためには、切断抵抗を低減することが必要である。
そこで、固定砥粒ワイヤと、遊離砥粒を含むスラリ又は濃度が2%以下のKOHアルカリ溶液とを用いてシリコンインゴットを切断する方法が提案されている(例えば、特許文献3参照)。
一方、マルチワイヤソーでは、スラリをワイヤに供給する際に、ワイヤの上方からカーテン状に大量のスラリを吐出している。供給したスラリのうちワイヤに付着するのは極少量であり、スラリの大部分はワイヤの下方に脱落するので、脱落したスラリは、加工室床部から引き出されたドレインを経由して、スラリ貯蔵タンクに回収されている。すなわち大部分のスラリはシリコンインゴットの切断に使用されることなく、スラリ貯蔵タンクからスラリ供給経路及び吐出機構を介してスラリ貯蔵タンクに循環されているだけである。通常、マルチワイヤソーでは、反応生成した水素などを排気するために加工室内が負圧状態に保持されているため、このようなスラリの供給・循環過程においてスラリ中に含まれる水分が蒸発する。特に、使用するスラリが高温であると、水分の蒸発が顕著になって、供給・循環するスラリ粘度が高くなったり、ワイヤがシリコンインゴットに挿入される入口部分において切断界面に導入されない余剰なスラリが乾燥、固化したりする。スラリ粘度の変化は、加工品質の低下(ウエハ厚さのばらつき、ソーマークの発生)を招く。また、ワイヤがシリコンインゴットに挿入される入口部分に固化したスラリが蓄積すると、ワイヤとの間に抵抗を持つようになったり、ワイヤとシリコンインゴットとの切断界面に固化したスラリの破片をかみ込んだりして、やがてはワイヤの破断を引き起こす恐れがある。加工中にワイヤの破断を引き起こすと、加工が中断されるばかりではなく、加工中のシリコンインゴットが無駄になる。加工に復帰するために、シリコンインゴット取り出し作業、清掃作業、ワイヤ張り作業などの工数が発生し、生産性が著しく低下する。
特許第3187296号公報 特開平8−47850号公報 特開2000−343525号公報
固定砥粒ワイヤと遊離砥粒を含むスラリとを用いる従来の切断方法は、遊離砥粒を運搬する媒体として固定ワイヤを使用し、遊離砥粒の切断界面への導入量の不確定さを低減して平均的な遊離砥粒導入量を増やすとともに、固定砥粒を同時に作用させてシリコンインゴットをラッピング切断する作用を持つ。切断におけるいわゆる刃数の増大が見込め、切断効率を上昇させて見かけ上の切断抵抗を下げている。しかしながら、裸のワイヤを用いる場合に比べ、切断屑や遊離砥粒の排出が困難になり、切断界面における液中の切断屑や遊離砥粒濃度が高くなって、切断界面におけるスラリ粘度が高くなるという問題がある。また、固定砥粒ワイヤは非常に高価であり、これを使用することは著しく経済性を欠いている。
固定砥粒ワイヤとアルカリ溶液とを用いる従来の切断方法では、切断屑が切断界面で目詰まりを起こし、この切断屑の溶解にアルカリ溶液の一部が使用されてしまうため、アルカリ溶液の切断面への働きが低下する。また、凝集した切断屑は切断面に微小なクラックを与えることがあるが、アルカリ溶液はこのようなクラックを拡大するように選択的に働き、切断面を荒らすことになる。切断屑の排出抵抗は、切断抵抗の増大に寄与し、結果的にウエハの反り、厚さむら、微小な凹凸を発生させる。アルカリ溶液の十分な働きを得るには、ワイヤの送り速度、シリコンインゴット送り速度を大幅に低下させる必要があり、切断効率の著しい低下を招く。
そこで、砥粒および数質量%の塩基性物質を含有し、pHが12以上のスラリを加熱して切断界面に供給して、インゴットを裸のワイヤに押し付けつつ切断した結果、切断抵抗を低減することができることが分かった。特に、スラリの加熱温度としては65℃〜95℃が好ましいことが分かった。このような切断抵抗を低減する効果を得るためには、切断界面に導入されるか又は導入されたスラリ温度を所定の温度に制御することが重要である。
特許文献2に開示される従来の切断方法では、スラリ貯蔵タンクにおいてスラリの温度を調整しているが、スラリ貯蔵タンクからスラリ吐出部までスラリを運搬する間にスラリの温度が下がったり、ワイヤにスラリが塗布されたときにワイヤに吸熱されたり、ワイヤに塗布されたスラリがインゴットと接触したときにインゴットに吸熱されたりして、スラリとインゴットとの化学反応箇所でスラリの温度が下がるという問題があった。このようなスラリの温度低下により、インゴットとスラリとの化学反応界面の箇所によって化学反応速度が異なる現象が生じ、結果として切断抵抗のばらつきを生じ、ソーマーク、ウエハ厚さむらが発生する。
また、従来の切断方法では以下に示すような課題もあった。
(1)大量のスラリを供給・循環するため、大流量・大電力のスラリ供給機構が必要であり、装置が高価になる。
(2)循環中に組成の変化(水分や砥粒の減少、液体成分の相分離)によって、インゴット切断界面に導入されるスラリ中の砥粒量の減少やスラリ粘度の変化を生じやすく、加工品質のばらつきが発生する。
(3)加工室内でのスラリの飛散が大きく、加工室の汚れが大きいため、操業後の清掃工数が大きくなる。
(4)スラリの温度管理においても、切断に寄与せずに大量に循環するスラリの温度を制御しなければならず、切断界面に導入するスラリの温度制御の応答性が劣る。また、タンク内で次々に回収されてくる大量のスラリを攪拌しても砥粒の均一分散性が悪く、不均一なままワイヤに塗布され、加工品質の低下(ウエハ厚さばらつき、ソーマーク(傷)の発生など)を招く。
本発明は、上記の課題を鑑みてなされたものであり、シリコンインゴット切断加工時の切断抵抗を低減するとともにそのばらつきを小さくすることのできるマルチワイヤソーを提供することを目的とする。
また、本発明は、スラリの粘度変化やワイヤがシリコンインゴットに挿入される入口部分におけるスラリの乾燥、固化を抑制して、高い加工品質を維持し且つワイヤの破断を防止することのできるマルチワイヤソーを提供することを目的とする。
さらに、本発明は、スラリの利用効率が高く、安価な装置構成であり、スラリ温度制御が容易であり、回転ローラの寿命長期化が可能であり且つ清掃・ワイヤ張り作業などの作業性がよいマルチワイヤソーを提供することを目的とする。
本発明は、被加工物とワイヤとの切断界面にアルカリまたは混酸を含むスラリを供給しながら前記被加工物を切断するマルチワイヤソーにおいて、前記スラリを貯蔵加熱するための加熱機構付貯蔵タンクと、前記加熱機構付貯蔵タンクから前記ワイヤが前記被加工物に繰り込まれる手前の位置までポンプにより送出された前記スラリを所定の温度に維持しながら搬送する保温パイプと、ステージに固定された前記被加工物の近傍の温度を前記所定の温度に維持する恒温槽と、前記ワイヤを前記所定の温度に加熱するワイヤ加熱機構と、を備えることを特徴とするマルチワイヤソーである。
また、本発明は、複数のローラ間で走行するワイヤにスラリを供給しながら被加工物を切断するマルチワイヤソーにおいて、前記スラリを吐出するためのスラリ吐出部と、少なくとも前記スラリ吐出部と前記被加工物とを覆う加工室と、前記加工室内の湿度を設定湿度に調節するための湿度調節機構と、を備えていること特徴とするマルチワイヤソーである。
また、本発明は、複数のローラ間で走行するワイヤにスラリを供給しながら被加工物を切断するマルチワイヤソーにおいて、前記被加工物を切断する部位の上流側に設けられた前記ローラと前記被加工物を切断する部位との間に設けられたスラリ吐出部を有するスラリ供給機構を備え、前記スラリ吐出部から吐出されたスラリが前記被加工物の側面に沿って移動することによって、前記ワイヤにスラリを供給することを特徴とするマルチワイヤソーである。
さらに、本発明は、複数のローラ間で走行するワイヤに砥粒を含むスラリを供給しながら被加工物を切断するマルチワイヤソーにおいて、前記スラリを収容する収容部を有し、前記収容部内を前記ワイヤが通過することで、前記ワイヤにスラリが供給されるスラリ供給機構を、前記被加工物が切断される部位の上流に設けたことを特徴とするマルチワイヤソーである。
本発明によれば、アルカリ性スラリを所望の高い温度に維持しながら切断加工を行うことができるので、被加工物とスラリとの切断界面の場所に伴う反応速度のばらつきが抑制され、切断抵抗のばらつきが低減され、ソーマーク、ウエハ厚みむらなどを抑制することができる。
また、本発明によれば、湿度調節機構により加工室内の湿度を設定湿度に調節することができるので、高い加工品質を維持しつつ、ワイヤの破断を防止することができる。
さらに、本発明によれば、安価な装置構成でスラリの利用効率を高め、スラリの温度制御を容易にし、回転ローラの寿命長期化を可能とし且つ清掃・ワイヤ張り作業などの作業性を向上させることができる。
[図1]本発明の実施の形態1に係るマルチワイヤソーの外観図である。
[図2]本発明の実施の形態1に係るマルチワイヤソーの部分外観図である。
[図3]本発明の実施の形態2に係るマルチワイヤソーのワイヤ加熱機構の構造を示す図である。
[図4]本発明の実施の形態3に係るマルチワイヤソーの外観図である。
[図5]本発明の実施の形態3に係るマルチワイヤソーの部分外観図である。
[図6]本発明の実施の形態3に係るマルチワイヤソーによる被加工物の切断工程を説明するための図である。
[図7]本発明の実施の形態3に係る湿度調節のフローチャートである。
[図8]本発明の実施の形態3に係るスラリ貯蔵タンク内のスラリ粘度を示すグラフである。
[図9]本発明の実施の形態4に係るマルチワイヤソーの外観図である。
[図10]本発明の実施の形態4に係るマルチワイヤソーの部分外観図である。
[図11]本発明の実施の形態4に係るマルチワイヤソーによる被加工物の切断工程を説明するための図である。
[図12]本発明の実施の形態5に係るマルチワイヤソーの部分外観図である。
[図13]本発明の実施の形態6に係るマルチワイヤソーの外観図である。
[図14]本発明の実施の形態6に係るマルチワイヤソーの部分外観図である。
[図15]本発明の実施の形態6に係るマルチワイヤソーによる被加工物の切断工程を説明するための図である。
[図16]本発明の実施の形態7に係るマルチワイヤソーの部分外観図である。
[図17]図16におけるX矢視図である。
[図18]本実施の形態8に係るマルチワイヤソーのスラリ供給機構における側壁部を説明する図である。
実施の形態1.
図1は、本発明の実施の形態1に係わるマルチワイヤソーの外観図である。図2は、実施の形態1のマルチワイヤソーの部分外観図である。
実施の形態1に係るマルチワイヤソーは、ベース1と、ベース1の上面に立設するフレーム2と、被加工物3を加工方向に移動可能なように支持する被加工物支持機構4と、被加工物3に繰り込んで被切断箇所にワイヤ5を供給するワイヤ供給機構6と、被加工物3とワイヤ5との切断界面にスラリ7を供給するスラリ供給機構8とを備えている。ベース1はマルチワイヤソーを支持する平盤から構成されている。フレーム2は、箱からなり、作業者に向かって正対する側板9が設けられている。
被加工物支持機構4は、被加工物3をダミー板10を介して固定するステージ11と、フレーム2に対して移動可能に支持され、加工方向に向かってステージ11に所定の荷重を加えながらステージ11を押し下げるステージ可動機構12と、ステージ11の周囲を囲繞する恒温槽13とを備えている。恒温槽13は、フレーム2とフレーム2の4辺手前に突設された4つの側壁14とフレーム2に対向し側壁14の前辺に連なる前壁15とで囲まれた加工室16を備えている。恒温槽13はさらに図2に示すように加工室16内の温度を計測する室内温度計17と、加工室16内を加熱する熱板18と、室内温度計17で計測された温度に基づき加工室温度がスラリ7の最適な温度になるように熱板18へ供給する電力を調整する室温度調整器19とを備えている。
ワイヤ供給機構6は、ベース1に備えられた図示しない2台のモータと、そのモータの軸にそれぞれ連結された繰り出し回転軸20および巻き取り回転軸21と、繰り出し回転軸20に嵌合し、ワイヤ5が繰り出されるワイヤ繰り出しボビン22と、巻き取り回転軸21に嵌合し、加工室16から戻されてきたワイヤ5を巻き取るワイヤ巻き取りボビン23と、ワイヤ繰り出しボビン22から繰り出されたワイヤ5をフレーム2に支持されたメインローラ24まで走行案内する複数の案内プーリ25と、メインローラ24からワイヤ巻き取りボビン23まで戻されるワイヤ5をその間で走行案内する複数の案内プーリ26と、案内プーリ25、26で案内されるワイヤ5の張力を制御する張力制御ローラ43とを備えている。
さらに、ワイヤ供給機構6は、フレーム2に対して垂直に回転支持され、外周表面に複数の溝が等間隔に形成されているメインローラ24と、メインローラ24に並行になるようにフレーム2に対して回転支持され、外周表面に複数の溝が等間隔に形成されているサブローラ27とを備えている。
さらに、ワイヤ供給機構6は、ワイヤ加熱機構としてのボビン加熱ヒータ28がワイヤ繰り出しボビン22内に内蔵されている。このワイヤ加熱機構としては、他にメインローラ24の近傍に備えられ、ワイヤ5に赤外線などを照射できる赤外線ヒータまたはメインローラ24の手前でワイヤ5が温水を通過する温水槽なども適用できるが、ワイヤ5を加熱することができるものであればこれらに限定されるものではない。
スラリ供給機構8は、調整された後供給されたスラリ7および加工室16のスラリ受皿29で回収されて戻されたスラリ7を貯蔵し、そのスラリ7の温度を最適な温度に制御する加熱機構付貯蔵タンク30と、加熱機構付貯蔵タンク30からスラリ7を送出するポンプ31と、ポンプ31から送出されたスラリ7がその中を通ってスラリ7の最適な温度に保温されながら加工室16まで送液される保温パイプ32と、保温パイプ32を経由して送られてきたスラリ7をワイヤ5に向けて吐出するスラリ吐出部33とを備えている。
加熱機構付貯蔵タンク30は、図2に示すようにスラリ貯蔵タンク34と、スラリ貯蔵タンク34の周囲を囲んで加熱するスラリ加熱用ヒータ35と、スラリ貯蔵タンク34内のスラリ7の温度を計測する温度計36と、計測されたスラリ7の温度に基づいてスラリ加熱用ヒータ35の加熱条件を調整する温度調節器37とを備えている。このスラリ加熱用ヒータ35として電熱線を用いているが、他に投げ込みヒータ、リボンヒータ、温水ヒータなどスラリ7を加熱することができるものであればこれらに限定されるものではない。
保温パイプ32は、図2に示すようにスラリ7が通過できるパイプ38と、その側壁面に巻き付けられたスラリ保温用ヒータ39と、パイプ38内に突出してスラリ7の温度を計測する温度計40と、パイプ38内のスラリ7の温度に基づいてスラリ保温用ヒータ39の保温条件を制御する温度調節器41とを備えている。この保温用ヒータ39としてリボンヒータを用いているが、他に2重管の外側に管に温水を流すなどパイプ38内のスラリ7の保温ができるものであればこれらに限定されるものではない。
次に、実施の形態1のマルチワイヤソーを用いて被加工物3を切断してウエハを作製することを説明する。
このときの被加工物3として多結晶シリコンインゴット(以下、インゴットと称する。)を用いる。その外形は150mm角で長さ25mmの角柱である。このインゴットは、ガラス製のダミー10を介してステンレス製のベースプレート44上にエポキシ樹脂などからなる接着剤で固定され、ベースプレート44はステージ11に機械的に固定される。
次に、ワイヤをメインローラ24とサブローラ27との間に螺旋状に巻き付ける。なお、ここで用いるワイヤ5は硬鋼線(ピアノ線)から形成され、その太さは0.06〜0.25mm程度のものが使用される。他にワイヤとしては、ニッケルクロム合金または鉄ニッケル合金などの合金、タングステンまたはモリブデンなどの高融点金属またはポリアミド繊維を束ねたものから構成されていてもよい。
まず、ワイヤ5をワイヤ繰り出しボビン22から繰り出し、案内プーリ25により走行案内して走行方向を変更し、メインローラ24の一番手前の溝まで繰り出す。そしてこの溝内を接しながらサブローラ27の一番手前の溝まで繰り出し、その溝内に沿ってサブローラ27を半周分反時計方向に周回させる。そこからメインローラ24の手前から2番目の溝まで繰り出し、その溝内に沿ってメインローラ24を半周分反時計方向に周回させる。これらの操作を繰り返してメインローラ24とサブローラ27との間に所望のピッチでらせん状に張られた複数のワイヤ5を設けることができる。
さらに、サブローラ27からメインローラ24の一番奥側の溝まで繰り出されたワイヤ5は案内プーリ26に案内されながらワイヤ巻き取りボビン23に巻き取られる。メインローラ24およびサブローラ27の巻きつけのワイヤピッチはインゴットの切断ピッチに等しく、また巻きつけ回数はインゴットから切り出すウエハの枚数に応じて任意に決められる。
次に、インゴットを切断するときに用いるスラリ7を説明する。このスラリ7は、アルカリまたは混酸を含み、その成分は砥粒、塩基性物質および液体成分からなる。
砥粒としては、一般的に研磨材として用いられるものであればよく、例えば、炭化ケイ素、酸化セリウム、ダイヤモンド、窒化ホウ素、酸化アルミニウム、酸化ジルコニウム、二酸化ケイ素を挙げることができる。また、これらを単独で又は二種以上を組み合わせて用いることができる。このような砥粒に用いることのできる化合物は市販されており、具体的には炭化ケイ素としては、商品名GC(Green Silicon Carbide)およびC(Black Silicon Carbide)((株)フジミインコーポレーテッド社製)、酸化アルミニウムとしては、商品名FO(Fujimi Optical Emery)、A(Regular Fused Alimina)、WA(White Fused Alumina)およびPWA(Platelet CalcinedAlumina)((株)フジミインコーポレーテッド社製)等が挙げられる。
砥粒の平均粒子径は、特に限定されるものではないが、好ましくは1μm〜60μm、より好ましくは5μm〜20μmである。また、砥粒の含有量は、特に限定されるものではないが、スラリ7全体の質量に対して、好ましくは20質量%〜50質量%である。
また、塩基性物質としては、スラリ7中で塩基として作用する物質であればよく、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類水酸化物を挙げることができる。また、これらを単独で又は二種以上を組み合わせて用いることができる。これらの中でも、シリコンインゴットとの反応性の観点から、アルカリ金属水酸化物が好ましい。
塩基性物質の含有量は、スラリ7中の液体成分全体の質量に対して、3.5質量%以上ないし20質量%以下である。
また、スラリ7の液体成分としては、水、公知のクーラントおよびこれらの混合物を用いることができる。ここで用いる水としては、不純物含有量の少ないものが好ましいが、これに限定されるものではない。具体的には、純水、超純水、市水、工業用水等が挙げられる。水の含有量は、特に限定されるものではないが、スラリ7全体の質量に対して、好ましくは10質量%〜75質量%である。
また、クーラントとしては、保湿剤、潤滑剤、防錆剤、粘度調整剤、例えば、ポリエチレングリコール、ベンゾトリアゾール、オレイン酸等を含む切断補助混合液として一般的に用いられるものであればよい。このようなクーラントは市販されており、具体的には商品名リカマルチノール(理化商会社製)、ルナクーラント(大智化学産業社製)等が挙げられる。クーラントの含有量は、特に限定されるものではないが、スラリ7全体の質量に対して、好ましくは0質量%〜50質量%である。
このような構成のスラリ7は、各成分を所望の割合で混合することにより調製することができる。各成分を混合する方法は任意であり、例えば、翼式撹拌機で撹拌することにより行うことができる。また、各成分の混合順序についても任意である。更に、精製などの目的で、調製されたスラリ7にさらなる処理、例えば、濾過処理、イオン交換処理等を行ってもよい。
このスラリ7は、強塩基性を有している。そのためシリコンインゴット切断界面は、式(1)に示すような反応によって脆弱化されると共に、砥粒によってラッピングされる。
Si+4HO→Si(OH)+2H (1)
このスラリ7とインゴットとの化学反応を促進させるスラリ7の温度は、65℃〜95℃の範囲であることが好ましい。スラリ7の温度が低過ぎる場合には、反応が活性化されないため切断抵抗が十分に低減されず、高過ぎる場合には、スラリ液体成分(主に水分)の蒸発によって反応に必要な水分が不足し、切断抵抗が増大してしまい好ましくない。
このように調製されたスラリ7はスラリ貯蔵タンク34内に貯蔵し、加熱して65℃〜95℃にスラリ7の温度を上昇させる。このように温度調整されたスラリ7は保温パイプ32内をスラリ7の温度が65℃〜95℃に保温されながらスラリ突出部33から吐出される。このスラリ吐出部33の下方に位置しているワイヤ5にスラリ7は付着し、インゴットとワイヤ5の切断界面に導き入れられる。被加工物支持機構4により下方へ押し下げられるインゴットとスラリ付きのワイヤ5とが接触、加圧、摺動されることでインゴットが加工される。また、加工室16の空気の温度が65℃〜95℃になるように制御される。さらに、ワイヤ5の温度も65℃〜95℃になるように加熱される。このとき、スラリ7の最適な温度、例えば80℃の場合、スラリ7、ワイヤ5および加工室16の空気のそれぞれの温度を80℃になるように制御する。
また、スラリ吐出部33から吐出されてインゴットおよびワイヤ5から下に落下したスラリ7の残部は、スラリ受皿29で回収され、不純物(シリコンの切り屑など)と分離され、再生された後、スラリ回収ドレイン管46を介してスラリ貯蔵タンク34に戻される。
スラリ7の組成の具体例として、4質量部の水酸化ナトリウムを46質量部の水に溶解して塩基性水溶液とし、この水溶液と50質量部のクーラント(大智化学産業社製、ルナクーラント#691)とを混合した。この混合溶液に、100質量部のSiC砥粒(フジミインコーポレーテッド社製、GC#1200、平均粒子径約10μm)を更に加えて攪拌し、スラリ7を調整した。得られたスラリ7の25℃におけるpHは13.9であった。
次に、得られたスラリ7を用いて、下記に示す切断条件で多結晶シリコンのインゴット(150mm角、25mm長)を切断してウエハを作製した。
切断条件は、それぞれワイヤ径が0.1mm、切断代が0.13mm、切断ピッチが0.39mm、切断速度が0.35mm/分、ワイヤ走行速度が600m/分、スラリ温度が80℃であった。比較例としてスラリ温度を25℃として同様にインゴットを切断した。
その際、切断抵抗の大きさを表わす指標として、ワイヤ5のたわみ量を測定した。結果を表1に示す。切断加工時に、走行するワイヤ5とインゴットとの切断界面に切断抵抗が生じると、ワイヤ5がインゴット送り方向にたわむ。このたわみは切断抵抗の大きさに比例するので、切断加工中のワイヤたわみ量を測定することで、切断抵抗の大小を知ることができる。換言すれば、たわみが大きいということは、切断界面でのワイヤ5に切断方向(2方向)の遅れがでるということであり、所望の切断速度が得られないことになる。
次に、得られたウエハを水で洗浄し、乾燥させた後、ウエハの厚さむらを評価した。さらに、ウエハ表面のソーマークの有無を目視にて評価した。これらの結果を表1に示す。
Figure 2005039824
Figure 2005039824
表1から明らかなように、80℃の温度にスラリ7を制御することにより厚さむらが小さく、ソーマークがないという高いウエハ品質を維持すると共に、ワイヤたわみ量、即ち、切断抵抗を大幅に低減することができた。
このように本実施の形態1によれば、スラリおよび被加工物の温度を所望の値に維持しながら切断加工ができるので、厚さむらが小さく、ソーマークが極めて少ないという高いウエハ品質を維持すると共に、ワイヤたわみ量、即ち、切断抵抗を大幅に低減することができる。
実施の形態2.
図4は、本発明の実施の形態2に係るマルチワイヤソーのワイヤ加熱機構の外観図である。実施の形態2のマルチワイヤソーは、実施の形態1とワイヤ加熱機構が異なっていて、その他は同様であるので同様な部分の説明は省略する。
このワイヤ加熱機構は、ワイヤ繰り出しボビン22からメインローラ24の間でワイヤ5を案内する複数の案内プーリ25のうち、所望の長さワイヤ5が走行できるだけ離れた2個のプーリ25a、25bとこの2つのプーリ25a、25bの間に電圧を供給する電源42とを備えている。このプーリ25a、25bは導電性を有していて、プーリ25a、25bとワイヤ5の間で導通することができる。なお、ワイヤ繰り出しボビン22、ワイヤ巻き取りボビン23はワイヤ5を電気的に浮かすために絶縁性を有している。
このワイヤ加熱機構は、プーリ25a、25b間のワイヤ5に電流を流すことにより、ジュール熱を発生してワイヤ5を加熱することができる。
この実施の形態2で使用したワイヤ5は、抵抗R=28.3(Ω/m)、直径D=0.1(mm)のピアノ線であり、ワイヤ送り速度はv=10(m/s)、プーリ間距離はL=0.4(m)とし、以下ワイヤ5をトT=60(K)昇温するのに必要な電圧を求める。
ワイヤ5の微小部分Δxがプーリ間を通過するのに必要な時間t(sec)は式(2)から求めることができる。
t=L/v=0.04[sec] (2)
さらに、プーリ間に存在するワイヤ5の質量W(g)は、ワイヤ比重をA=7.8(g/cm)として、式(3)から求めることができる。
W=(πD/4)・L・A=0.025[g] (3)
そこで昇温に必要な熱量Q(J)は、ワイヤ比熱をC=0.5(J/gK)として式(4)から求めることができる。
Q=ΔT・C・W=0.74[J] (4)
このときにワイヤ5に流れる電流量I(A)は、必要な熱量Qから式(5)から求めることができる。
I=(Q/Rt)1/2=1.3[A] (5)
そこでプーリ間に印加しなければならないプーリ間電圧V(V)は式(6)のようになる。
V=IR=14[V] (6)
このように本実施の形態2によれば、市販の汎用電圧源や電池などを使用して容易にワイヤを加熱することができる。また、ワイヤの加熱温度は、電源電圧の変更によって容易に制御することができる。
実施の形態3.
図4は、本発明の実施の形態3に係るマルチワイヤソーの外観図であり、図5は、実施の形態3のマルチワイヤソーの部分外観図である。また、図6は、実施の形態3のマルチワイヤソーによる被加工物の切断工程を説明するための図である。
実施の形態3に係るマルチワイヤソーは、ベース1と、ベース1の上面に立設するフレーム2と、被加工物3を加工方向に移動可能なように支持する被加工物支持機構4と、被加工物3に繰り込んで被切断箇所にワイヤ5を供給するワイヤ供給機構6と、被加工物3とワイヤ5との切断界面にスラリ7を供給するスラリ供給機構8Aとを備えている。ベース1はマルチワイヤソーを支持する平盤から構成されている。フレーム2は、箱からなり、作業者に向かって正対する側板9が設けられている。
被加工物支持機構4は、被加工物3をダミー板10を介して固定するステージ11と、フレーム2に対して移動可能に支持され、加工方向に向かってステージ11に所定の荷重を加えながらステージ11を押し下げるステージ可動機構12と、ステージ11の周囲を囲繞する加工室16とを備えている。加工室16は、フレーム2とフレーム2の4辺手前に突設された4つの側壁14とフレーム2に対向し側壁14の前辺に連なる前壁15とで囲まれている。図5に示すように加工室16の天井面には、加工室16内の雰囲気(切断加工時に発生するガス、例えば水素などを含む)を排出するための排出口45が設けられ、加工室16のスラリ受皿29には、スラリ回収ドレイン管46が接続されている。さらに加工室16の天井面には、加工室16内の湿度を設定湿度に調節するための湿度調節機構47が取り付けられている。この湿度調節機構47は、水蒸気48を発生させるための加湿装置49と、湿度を測定するための湿度計50と、設定湿度と測定された加工室16内湿度との比較結果から加湿装置49の作動・停止を行う制御装置51とを備えている。このため、湿度調節機構47により加工室16内の湿度が調節可能となっている。ここで用いられる加湿装置49としては、水蒸気48を発生することができるものであれば特に限定されないが、例えば、超音波式加湿装置やヒータ式加湿装置などを挙げることができる。
ワイヤ供給機構6は、ベース1に備えられた図示しない2台のモータと、そのモータの軸にそれぞれ連結された繰り出し回転軸20および巻き取り回転軸21と、繰り出し回転軸20に嵌合し、ワイヤ5が繰り出されるワイヤ繰り出しボビン22と、巻き取り回転軸21に嵌合し、加工室16から戻されてきたワイヤ5を巻き取るワイヤ巻き取りボビン23と、ワイヤ繰り出しボビン22から繰り出されたワイヤ5をフレーム2に支持されたメインローラ24まで走行案内する複数の案内プーリ25と、メインローラ24からワイヤ巻き取りボビン23まで戻されるワイヤ5をその間で走行案内する複数の案内プーリ26と、案内プーリ25、26で案内されるワイヤ5の張力を制御する張力制御ローラ43とを備えている。
さらに、ワイヤ供給機構6は、フレーム2に対して垂直に回転支持され、外周表面に複数の溝が等間隔に形成されているメインローラ24と、メインローラ24に並行になるようにフレーム2に対して回転支持され、外周表面に複数の溝が等間隔に形成されているサブローラ27とを備えている。
スラリ供給機構8Aは、ワイヤ5に供給されるスラリ7および加工室16のスラリ受皿29で回収され、スラリ回収ドレイン管46を介して戻されたスラリ7を貯蔵するスラリ貯蔵タンク34と、スラリ貯蔵タンク34からスラリ7を送出するポンプ31と、ポンプ31から送出されたスラリ7がその中を通って加工室16まで送液されるパイプ32Aと、パイプ32Aを経由して送られてきたスラリ7をワイヤ5に向けて吐出するスラリ吐出部33とを備えている。このスラリ吐出部33は、加工室16内であって、被加工物3を切断する部位の上流側に配置されたサブローラ27と被加工物3を切断する部位との間の上方に配置されている。スラリ貯蔵タンク34は、加工室16内に配置してもよいが、スラリ貯蔵量が制限されることや、加工室16内の構造が複雑になることから、加工室16外に配置することが望ましい。
次に、実施の形態3のマルチワイヤソーを用いて被加工物3を切断してウエハを作製することを説明する。
このときの被加工物3として多結晶シリコンインゴット(以下、インゴットと称する。)を用いる。このインゴットは、ガラス製のダミー10を介してステンレス製のベースプレート44上にエポキシ樹脂などからなる接着剤で固定され、ベースプレート44はステージ11に機械的に固定される。
次に、ワイヤ5をメインローラ24とサブローラ27との間に螺旋状に巻き付ける。なお、ここで用いるワイヤ5は硬鋼線(ピアノ線)から形成され、その太さは0.06〜0.25mm程度のものが使用される。他にワイヤとしては、ニッケルクロム合金または鉄ニッケル合金などの合金、タングステンまたはモリブデンなどの高融点金属またはポリアミド繊維を束ねたものから構成されていてもよい。
まず、ワイヤ5をワイヤ繰り出しボビン22から繰り出し、案内プーリ25により走行案内して走行方向を変更し、メインローラ24の一番手前の溝まで繰り出す。そしてこの溝内を接しながらサブローラ27の一番手前の溝まで繰り出し、その溝内に沿ってサブローラ27を半周分反時計方向に周回させる。そこからメインローラ24の手前から2番目の溝まで繰り出し、その溝内に沿ってメインローラ24を半周分反時計方向に周回させる。これらの操作を繰り返してメインローラ24とサブローラ27との間に所望のピッチでらせん状に張られた複数のワイヤ5を設けることができる。
さらに、サブローラ27からメインローラ24の一番奥側の溝まで繰り出されたワイヤ5は案内プーリ26に案内されながらワイヤ巻き取りボビン23に巻き取られる。メインローラ24およびサブローラ27の巻きつけのワイヤピッチはインゴットの切断ピッチに等しく、また巻きつけ回数はインゴットから切り出すウエハの枚数に応じて任意に決められる。
このようなマルチワイヤソーにおいて、ワイヤ供給機構6を駆動させると、張力制御ローラ43によって一定の張力が維持されながら、ワイヤ5が一定方向に所定の速度で走行する。このとき、メインローラ24およびサブローラ27が、ワイヤ5の走行速度に応じた回転速度で同期回転する。加工室16内では、ワイヤ5が、メインローラ24およびサブローラ27の溝に沿って案内されているため、ステージ11の下方で、ワイヤ5の列が平行に走行しながら一定の張力で配置されることになる。ここで被加工物支持機構4が、被加工物3としてのインゴットをワイヤ5に向けて押し下げることによって、インゴットが、走行するワイヤ5と接触し、押し付けられる。このとき図6に示すように、スラリ7が、スラリ吐出部33から吐出され、走行するワイヤ5に供給されると、走行するワイヤ5によってインゴットの切断界面に運ばれる。そして、スラリ7のラッピング作用や化学的作用によってシリコン原子の結合が分断され、インゴットが切断される。
このような切断加工過程において、図5に示されるように、湿度調節機構47から水蒸気48が加工室16内に放出されることによって、加工室16内の湿度(相対湿度)が飽和蒸気圧に近い状態に保持される。
この湿度調節機構47による加工室16内の湿度調節について、図7を参照しつつ説明する。まず、マルチワイヤソーが作動中であることを確認すると、ステップ101において、制御装置51に入力された設定湿度の読み取りが行われ、ステップ102に進む。ステップ102では、湿度計50により測定された加工室16内の湿度の読み取りが行われ、ステップ103に進む。ステップ103では、測定された加工室16内の湿度が設定範囲内にあるか否かが、制御装置51よって判定される。測定された加工室16内の湿度が設定範囲内よりも低い場合は、判定が否定されてステップ104に進み、加湿装置49による加湿が開始される。一方、ステップ103において、測定された加工室16内の湿度が設定範囲内よりも高い場合は、判定が肯定されてステップ105に進み、加湿装置49による加湿が停止される。
ここで、加工室16内の湿度は95〜99%に調節することが望ましい。湿度が低過ぎると、スラリ7中に含まれる水分の蒸発量が増大してスラリ7の粘度が高くなるため、ソーマークを発生させることがある。また、湿度が高過ぎると、加工室16内に放出された水蒸気48が水滴となってスラリ受皿29で回収され、スラリ貯蔵タンク34内のスラリ7が希釈されて粘度が低下する。スラリ7の粘度が低下すると、ワイヤ5から脱落するスラリ7の量が増大し、切断効率が低下することがある。
この実施の形態3に係るマルチワイヤソーにおいて、46質量部の水と、4質量部の水酸化ナトリウムと、50質量部のプロピレングリコールと、100質量部の砥粒(平均粒径10μmの炭化チタン)とを含むスラリを用いて、加工室16内の湿度98%、温度80℃の条件で、シリコンインゴットの切断加工実験を行った。スラリ貯蔵タンク34内のスラリを所定時間(0、2、4及び7時間)毎に採取し、回転粘度計(ブルックフィールド社製、プログラマブルレオメータDV−III)を用いて、ずり速度57.6[s−1]、25℃における粘度を測定した。結果を図8に示す。
図8から明らかなように、湿度が飽和蒸気圧に近い状態に保持された加工室16内においてインゴットの切断加工を行うと、スラリ7に含まれる水分の蒸発が抑制されるため、スラリ7の粘度は、ほぼ一定に保持される。これに対して、加湿を行わない従来のマルチワイヤソー(加工室内の湿度約70%)では、切断加工開始から2時間でスラリ7の粘度が大きく上昇した。
また、この実施の形態3に係るマルチワイヤソーにおいて、水酸化ナトリウム濃度が4質量%である80℃のスラリと、0.1mm径のピアノ線ワイヤとを用いて、加工室内の湿度98%、切断速度0.35mm/分、ワイヤ走行速度600m/分の条件でシリコンインゴット(150mm角、25mm長)を切断したところ、ワイヤが破断することなくシリコンインゴットを切断できることが確認された。これに対して、従来のマルチワイヤソーを用いてシリコンインゴットを切断したところ、切断加工開始から約1時間後(切断長さ約21mm)に、ワイヤの破断が発生した。
このように本実施の形態3によれば、加工室16内の湿度が飽和蒸気圧に近い状態に保持されるため、スラリ7の粘度変化が極めて小さく、且つワイヤ5が被加工物3としてのシリコンインゴットに挿入される入口部分においてスラリ7が乾燥、固化することがない。そのため、高い加工品質を維持しつつ、ワイヤの破断を防止することができる。さらに、従来のマルチワイヤソーのようにスラリ貯蔵タンク34に水分を補給しながら粘度を調整するための機構が不必要となり、スラリの粘度管理が容易になる。
なお、本実施の形態3に係るマルチワイヤソーでは、被加工物3を切断する部位の上流側に配置されたサブローラ27と被加工物3を切断する部位との間の上方に、スラリ吐出部33を配置したが、これに限定されない。例えば、スラリ吐出部33から吐出されたスラリ7が、被加工物3の側面に沿って移動し、ワイヤ5に供給されるように、被加工物3を切断する部位の上流側壁面に近接して配置してもよい。
また、本実施の形態3に係るマルチワイヤソーでは、湿度調節機構47を加工室16内に配置したが、湿度調節機構47から加工室16内に水蒸気48を放出することができればよく、これに限定されない。例えば、湿度調節機構47を加工室16の外部に配置しておき、湿度調節機構47から配管等を介して加工室16内に水蒸気48を放出してもよい。
さらに、本実施の形態3に係る加工室16内には、加工室16内の湿度が均一になるように、強制対流用ファンなどを設けてもよい。
また、スラリ7の温度を調整するために、スラリ貯蔵タンク34の周囲を囲んで加熱するスラリ加熱用ヒータを設けてもよい。このようなスラリ加熱用ヒータとしては、スラリ7を加熱することができるものであれば限定されるものではないが、電熱線、投げ込みヒータ、リボンヒータ、温水ヒータなどを挙げることができる。
実施の形態4.
図9は、本発明の実施の形態4に係るマルチワイヤソーの外観図であり、図10は、実施の形態4のマルチワイヤソーの部分外観図である。また、図11は、実施の形態4のマルチワイヤソーによる被加工物の切断工程を説明するための図である。
実施の形態4に係るマルチワイヤソーは、ベース1と、ベース1の上面に立設するフレーム2と、被加工物3を加工方向に移動可能なように支持する被加工物支持機構4と、被加工物3に繰り込んで被切断箇所にワイヤ5を供給するワイヤ供給機構6と、被加工物3とワイヤ5との切断界面にスラリ7を供給するスラリ供給機構8Bとを備えている。ベース1はマルチワイヤソーを支持する平盤から構成されている。フレーム2は、箱からなり、作業者に向かって正対する側板9が設けられている。
被加工物支持機構4は、被加工物3をダミー板10を介して固定するステージ11と、フレーム2に対して移動可能に支持され、加工方向に向かってステージ11に所定の荷重を加えながらステージ11を押し下げるステージ可動機構12と、ステージ11の周囲を囲繞する加工室16とを備えている。加工室16は、フレーム2とフレーム2の4辺手前に突設された4つの側壁14とフレーム2に対向し側壁14の前辺に連なる前壁15とで囲まれている。
ワイヤ供給機構6は、ベース1に備えられた図示しない2台のモータと、そのモータの軸にそれぞれ連結された繰り出し回転軸20および巻き取り回転軸21と、繰り出し回転軸20に嵌合し、ワイヤ5が繰り出されるワイヤ繰り出しボビン22と、巻き取り回転軸21に嵌合し、加工室16から戻されてきたワイヤ5を巻き取るワイヤ巻き取りボビン23と、ワイヤ繰り出しボビン22から繰り出されたワイヤ5をフレーム2に支持されたメインローラ24まで走行案内する複数の案内プーリ25と、メインローラ24からワイヤ巻き取りボビン23まで戻されるワイヤ5をその間で走行案内する複数の案内プーリ26と、案内プーリ25、26で案内されるワイヤ5の張力を制御する張力制御ローラ43とを備えている。
さらに、ワイヤ供給機構6は、フレーム2に対して垂直に回転支持され、外周表面に複数の溝が等間隔に形成されているメインローラ24と、メインローラ24に並行になるようにフレーム2に対して回転支持され、外周表面に複数の溝が等間隔に形成されているサブローラ27とを備えている。
次に、スラリ供給機構8Bによるワイヤ5へのスラリ7の供給について、図10を参照しつつ具体的に説明する。
スラリ供給機構8Bは、ワイヤ5に供給されるスラリ7および加工室16のスラリ受皿29で回収され、スラリ回収ドレイン管46を介して戻されたスラリ7を貯蔵するスラリ貯蔵タンク34と、スラリ貯蔵タンク34からスラリ7を送出するポンプ31と、ポンプ31から送出されたスラリ7がその中を通って加工室16まで送液されるパイプ32Aと、パイプ32Aを経由して送られてきたスラリ7をワイヤ5に向けて吐出するスラリ吐出部33とを備えている。このスラリ吐出部33は、図10に示されるように、被加工物3を切断する部位の上流側に設けられたサブローラ27と被加工物3を切断する部位との間の上方であって、吐出されたスラリ7が被加工物3の側面に沿って移動するように(被加工物3を切断する部位の上流側壁面に近接して)設置されている。スラリ吐出部33によりワイヤ5にスラリ7を供給する際には、スラリ吐出部33からスラリ7を、例えばカーテン状に吐出させる。このとき、スラリ吐出部33は被加工物3の切断部位の上方にあるので、吐出されたスラリ7は被加工物3の側面に沿って流下する。スラリ7はそのまま、水分蒸発することなくワイヤ5と被加工物3との交点へ移動してワイヤ5と接触すると、ワイヤ5によって被加工物3の切断界面に運ばれる。このような切断加工において、被加工物3の側面、特に走行するワイヤ5と被加工物3との交点では、スラリ7が常に流動しているため、スラリ7の粘度は常に一定となる。
次に、実施の形態4のマルチワイヤソーを用いて被加工物3を切断してウエハを作製することを説明する。
このときの被加工物3として多結晶シリコンインゴット(以下、インゴットと称する。)を用いる。このインゴットは、ガラス製のダミー10を介してステンレス製のベースプレート44上にエポキシ樹脂などからなる接着剤で固定され、ベースプレート44はステージ11に機械的に固定される。
次に、ワイヤ5をメインローラ24とサブローラ27との間に螺旋状に巻き付ける。なお、ここで用いるワイヤ5は硬鋼線(ピアノ線)から形成され、その太さは0.06〜0.25mm程度のものが使用される。他にワイヤとしては、ニッケルクロム合金または鉄ニッケル合金などの合金、タングステンまたはモリブデンなどの高融点金属またはポリアミド繊維を束ねたものから構成されていてもよい。
まず、ワイヤ5をワイヤ繰り出しボビン22から繰り出し、案内プーリ25により走行案内して走行方向を変更し、メインローラ24の一番手前の溝まで繰り出す。そしてこの溝内を接しながらサブローラ27の一番手前の溝まで繰り出し、その溝内に沿ってサブローラ27を半周分反時計方向に周回させる。そこからメインローラ24の手前から2番目の溝まで繰り出し、その溝内に沿ってメインローラ24を半周分反時計方向に周回させる。これらの操作を繰り返してメインローラ24とサブローラ27との間に所望のピッチでらせん状に張られた複数のワイヤ5を設けることができる。
さらに、サブローラ27からメインローラ24の一番奥側の溝まで繰り出されたワイヤ5は案内プーリ26に案内されながらワイヤ巻き取りボビン23に巻き取られる。メインローラ24およびサブローラ27の巻きつけのワイヤピッチはインゴットの切断ピッチに等しく、また巻きつけ回数はインゴットから切り出すウエハの枚数に応じて任意に決められる。
このようなマルチワイヤソーにおいて、ワイヤ供給機構6を駆動させると、張力制御ローラ43によって一定の張力が維持されながら、ワイヤ5が一定方向に所定の速度で走行する。このとき、メインローラ24およびサブローラ27が、ワイヤ5の走行速度に応じた回転速度で同期回転する。加工室16内では、ワイヤ5が、メインローラ24およびサブローラ27の溝に沿って案内されているため、ステージ11の下方で、ワイヤ5の列が平行に走行しながら一定の張力で配置されることになる。ここで被加工物支持機構4が、被加工物3としてのインゴットをワイヤ5に向けて押し下げることによって、インゴットが、走行するワイヤ5と接触し、押し付けられる。このとき図11に示すように、スラリ7が、スラリ吐出部33から吐出され、インゴットの側面に沿って移動し、走行するワイヤ5に供給されると、走行するワイヤ5によってインゴットの切断界面に運ばれる。そして、スラリ7のラッピング作用や化学的作用によってシリコン原子の結合が分断され、インゴットが切断される。
また、スラリ吐出部33から吐出されてインゴットおよびワイヤ5から下に落下したスラリ7の残部は、スラリ受皿29で回収され、不純物(シリコンの切り屑など)と分離され、再生された後、スラリ回収ドレイン管46を介してスラリ貯蔵タンク34に戻される。
この実施の形態4に係るマルチワイヤソーにおいて、水酸化ナトリウム濃度が4質量%である80℃のスラリと、0.1mm径のピアノ線ワイヤとを用いて、切断速度0.35mm/分、ワイヤ走行速度600m/分の条件でシリコンインゴット(150mm角、25mm長)を切断した(ワイヤの破断はなかった)。切断後、ワイヤがシリコンインゴットに挿入される入口部分を観察した結果、固化したスラリの付着は認められなかった。従来のマルチワイヤソーを用いてシリコンインゴットを切断し、切断加工開始から約1時間後(切断長さ約21mm)にワイヤの破断が発生したときは、入口部分に固化したスラリが多量に付着していた。
このように本実施の形態4によれば、走行するワイヤ5と被加工物3としてのインゴットとの交点においてスラリ7が常に流動しているため、スラリ7は乾燥、固化することがない。そのため、ワイヤ5の走行にかかる抵抗を低減することができ、ひいては生産性を著しく低下させるワイヤ破断を防止することができる。
実施の形態5.
図12は、実施の形態5のマルチワイヤソーの部分外観図である。
実施の形態5に係るマルチワイヤソーでは、スラリ供給機構8Cが、被加工物3の側面に貼付されたシート部材52を備えている。他の構成は前記実施の形態4と同様に構成されている。
ここで用いるシート部材52としては、スラリ7と反応しないか、又は極めて反応性の低い材料からなるものであればよく、例えば、水酸化ナトリウムなどの強アルカリ性物質を含むスラリ7の場合、ポリエチレン、ポリプロピレン、メチルペンテン樹脂、フッ素樹脂、天然ゴム、スチレンゴム、ブチルゴム、エチレン・プロピレンゴム等を挙げることができる。さらに、シート部材52は、切断効率の観点から、被加工物3の硬度よりも小さいものが好ましい。また、被加工物3の切断部位は、ワイヤ5の走行にかかる抵抗等により100℃程度の高温になることがあるので、上記の材料からなるシート部材52を貼付する際には、ガラス転移温度が100℃以上の熱可塑性接着剤を用いることが好ましい。
このようなスラリ供給機構8Cでは、シート部材52が被加工物3の側面に貼付されているので、スラリ吐出部33から吐出されたスラリ7がシート部材52表面に沿って流下する。このため、被加工物3と化学反応性を有するスラリ7を被加工物3の側面に吐出し続けても、被加工物3の側面はエッチングされない。
このように本実施の形態5によれば、被加工物と化学反応性を有するスラリ7を被加工物3の側面に吐出し続けても、被加工物3の側面はエッチングされず、被加工物3の寸法変化を極力抑制することができる。
なお、実施の形態4および5に係るマルチワイヤソーでは、スラリ吐出部33をサブローラ27と被加工物3を切断する部位との間の上方に設置したが、吐出されたスラリ7が、被加工物3の側面に沿って移動してワイヤ5と接触することができれば上方に限定されない。例えば、スラリ吐出部33を、サブローラ27と被加工物3を切断する部位との間の側方や下方に設置して、被加工物3の側面に向けてスラリ7を吐出させてもよい。
また、実施の形態4および5に係るスラリ貯蔵タンク34の内部には、スラリ吐出部33から吐出されるスラリ7の組成が一定になるように、スラリ7中の水分量を一定に保つ水分制御機構、スラリ7の温度を一定に保つ温度制御機構およびスラリの沈殿や凝集を防ぐための攪拌機構などを設けてもよい。特に、スラリ7を65〜95℃程度の高温で使用する場合には、水分の蒸発によって組成が変わってしまうので、水分制御機構を設けることが望ましい。その際、単位時間当たりの水分蒸発量を予め求めておくと、スラリ貯蔵タンク34に一定の割合で水を供給すればよいため、スラリ7中の水分量の調節をより容易にすることができる。
なお、実施の形態4および5では、被加工物3の側面に沿ってスラリ7を移動させてスラリ7を供給する構成と、ワイヤ5にスラリ7を直接塗布してスラリ7を供給する構成とを併用して、被加工物3の切断界面にスラリ7を導入してもよい。この場合、ワイヤ5に直接塗布して供給するスラリ7を主として被加工物3を切断することとし、被加工物3の側面に沿って移動するスラリ7は、ワイヤ5が被加工物3に挿入される入口部分におけるスラリ7の固化を防ぐ補助的手段とすることが好ましい。そのため、被加工物3の側面に沿って移動するスラリ7の流量は最小限とすることが好ましい。
実施の形態6.
図13は、本発明の実施の形態6に係るマルチワイヤソーの外観図であり、図14は、実施の形態6のマルチワイヤソーの部分外観図である。また、図15は、実施の形態6のマルチワイヤソーによる被加工物の切断工程を説明するための図である。
実施の形態6に係るマルチワイヤソーは、ベース1と、ベース1の上面に立設するフレーム2と、被加工物3を加工方向に移動可能なように支持する被加工物支持機構4と、被加工物3に繰り込んで被切断箇所にワイヤ5を供給するワイヤ供給機構6と、被加工物3とワイヤ5との切断界面にスラリ7を供給するスラリ供給機構8Dとを備えている。ベース1はマルチワイヤソーを支持する平盤から構成されている。フレーム2は、箱からなり、作業者に向かって正対する側板9が設けられている。
被加工物支持機構4は、被加工物3をダミー板10を介して固定するステージ11と、フレーム2に対して移動可能に支持され、加工方向に向かってステージ11に所定の荷重を加えながらステージ11を押し下げるステージ可動機構12と、ステージ11の周囲を囲繞する加工室16とを備えている。加工室16は、フレーム2とフレーム2の4辺手前に突設された4つの側壁14とフレーム2に対向し側壁14の前辺に連なる前壁15とで囲まれている。
ワイヤ供給機構6は、ベース1に備えられた図示しない2台のモータと、そのモータの軸にそれぞれ連結された繰り出し回転軸20および巻き取り回転軸21と、繰り出し回転軸20に嵌合し、ワイヤ5が繰り出されるワイヤ繰り出しボビン22と、巻き取り回転軸21に嵌合し、加工室16から戻されてきたワイヤ5を巻き取るワイヤ巻き取りボビン23と、ワイヤ繰り出しボビン22から繰り出されたワイヤ5をフレーム2に支持されたメインローラ24まで走行案内する複数の案内プーリ25と、メインローラ24からワイヤ巻き取りボビン23まで戻されるワイヤ5をその間で走行案内する複数の案内プーリ26と、案内プーリ25、26で案内されるワイヤ5の張力を制御する張力制御ローラ43とを備えている。
さらに、ワイヤ供給機構6は、フレーム2に対して垂直に回転支持され、外周表面に複数の溝が等間隔に形成されているメインローラ24と、メインローラ24に並行になるようにフレーム2に対して回転支持され、外周表面に複数の溝が等間隔に形成されているサブローラ27とを備えている。
次に、スラリ供給機構8Dによるワイヤ5へのスラリ7の供給について、図14および15を参照しつつ具体的に説明する。
スラリ供給機構8Dは、スラリ7を貯留する収容部としての液漕53と、この液漕53へワイヤ5を引き込むと共に液漕53から引き上げて被加工物3へ案内するための複数のワイヤ引き回し用ローラ54a、54b、54c、54dとを備えている。また、液漕53は、被加工物3の切断部の上流側に位置するサブローラ27と被加工物3の切断部との間に配置され、スラリ7を攪拌するための攪拌機構55を底部に有している。
次に、実施の形態6のマルチワイヤソーを用いて被加工物3を切断してウエハを作製することを説明する。
このときの被加工物3として多結晶シリコンインゴット(以下、インゴットと称する。)を用いる。このインゴットは、ガラス製のダミー10を介してステンレス製のベースプレート44上にエポキシ樹脂などからなる接着剤で固定され、ベースプレート44はステージ11に機械的に固定される。
ワイヤ供給機構6を駆動させると、張力制御ローラ43によって一定の張力が維持されながら、ワイヤ5が一定方向に所定の速度で走行する。このとき、メインローラ24およびサブローラ27が、ワイヤ5の走行速度に応じた回転速度で同期回転する。加工室16内では、メインローラ24およびサブローラ27の間を走行するワイヤ5は、ワイヤ引き回し用ローラ54aを介して液槽53内に進入し、ワイヤ引き回し用ローラ54b、54cに順次案内され、液槽53から外部へ送出される。液槽53にはスラリ7が収容されているので、ワイヤ5が液槽53内を案内されることにより、ワイヤ5にスラリ7が供給される。そして、ワイヤ5に付着したスラリ7が、ワイヤ5の走行によりインゴットの切断界面に運ばれる。そして、スラリ7のラッピング作用や化学的作用によってシリコン原子の結合が分断され、インゴットが切断される。
なお、図示しないが、インゴットの切断界面に導入された分量のスラリ7を回収するスラリ貯蔵・攪拌タンクと、インゴットの切断界面に導入された分量のスラリ7をスラリ貯蔵・攪拌タンクから液槽53に供給する機構を設置している。
この実施の形態6に係るマルチワイヤソーにおいて、粘度が150mPa・s(25℃、ずり速度57.6[s−1])であるスラリを収容する液槽53に、ワイヤ引き回し用ローラ54a、54b、54c、54dを介して、0.1mm径のピアノ線ワイヤを、0.39mmピッチ、幅25mmとして64本、10m/秒の速度で進入・送出させた場合、横膜(表面張力により隣接ワイヤ間に張るスラリ膜)が発生する程度の十分なスラリがワイヤに均一に塗布され、通常どおり切断加工できることが確認された。
このように本実施の形態6によれば、ワイヤ5が被加工物3の切断部の上流側に配置された液槽53内を通過するように構成されているので、液槽53から送出されたワイヤ5には、適量のスラリ7が付着され、スラリの無駄が省かれ、スラリの利用効率が向上し、製造コストを抑制することができる。また、大量のスラリ7を供給・循環するための大流量・大電力のスラリ供給機構が不必要となり、装置が安価になる。さらに、適量のスラリ7が付着したワイヤ5が加工室16内を走行するので、スラリ7の飛散も最小限に抑えられる。このことは加工室16の汚れが少ないことの他、加工室16の壁面、床面に付着したスラリ7の回収の手間が省けることを意味する。さらにまた、本実施の形態6における液槽53は、従来のそれよりも小容量ですむので、スラリ7の温度管理が容易にできることや、循環するスラリ量を必要最小限とすることができるのでスラリ貯蔵・攪拌タンク内のスラリ組成が安定し、砥粒の均一分散性を維持できる。そのため、スラリ組成が正確に管理され、初期に調整した状態と大差ない状態のスラリ7を被加工物3の切断界面に供給し続けることができるので、ウエハ厚さばらつき、ソーマーク(傷)の発生などが抑制され、加工品質が向上する。また、螺旋状に巻き付けられたワイヤ5の対向部へのスラリ7の付着量が減少するので、液槽53に近い側のサブローラ27に余分なスラリ7が付着せず、ローラ溝の磨耗による寿命の短期化を抑制できる。
また、液槽53には、必要に応じて温度を一定に保つ温度制御機構(図示せず)、被加工物3の切り屑を取り除くためのフィルタ(図示せず)などを設けてもよい。液槽53は、被加工物3の切断部に近接して配置するのが好適である。
実施の形態7.
図16は、実施の形態7のマルチワイヤソーの部分外観図であり、図17は、図16におけるX矢視図である。
この実施の形態7のマルチワイヤソーは、実施の形態6とスラリ供給機構が異なっていて、その他は同様であるので同様な部分の説明は省略する。
実施の形態7に係るマルチワイヤソーでは、スラリ供給機構8Eが、スラリ7を収容するとともに攪拌機構55を有する液槽53Aが備えられ、この液漕53Aの構成面としての側面部のうち対向する2つの側壁部56a、56bには、スリット状の通過孔57a、57bがそれぞれ設けられている。通過孔57a、57bが設けられた位置は、液漕53Aにスラリ7が収容されたときに、スラリ7の液面よりも下方となる位置になっている。そして、図17に示されるように、メインローラ24およびサブローラ27に掛け渡されて構成されたワイヤ7の列は、このスリット状の通過孔57a、57bを通過するように配置され、このため、液漕53Aを通過する際にスラリ7中に案内される。
このようなスラリ供給機構8Eでは、一方の通過孔57aを通ってワイヤ5が液槽53Aに進入する。このとき液漕53Aにはスラリ7が収容されているため、ワイヤ5がスラリ7と接触して、ワイヤ5にスラリ7が供給される。スラリ7が付着したワイヤ5は、対向する側壁部56bの通過孔57bから液槽53Aの外部に送出され、ワイヤ5の走行によりスラリ7が被加工物3の切断界面に運ばれる。
なお、通過孔57aとワイヤ5との間に若干の隙間が生じており、ここからスラリ7が漏れ出してくる。加工室16内を汚さないためや、螺旋状に巻き付けられたワイヤ5の対向部へのスラリ7の付着を抑制するため、液槽53Aの下部に回収用トレイ58を設けておくことが好ましい。
このように本実施の形態7によれば、ワイヤ5がワイヤ引き回し用ローラ54a、54b、54c、54d上を走行しないため、スラリの利用効率をさらに向上させることができる。また、ワイヤ張り作業が低減され、作業性も向上する。
なお、前記実施の形態6と同様に、液槽53Aには、必要に応じて攪拌機構55、温度を一定に保つ温度制御機構(図示せず)、インゴット切りくずを取り除くためのフィルタ(図示せず)などを設けてもよい。
また、スラリ供給機構8Eにおいて通過孔57a、57bは、対向する側面部56a、56bに設けたが、これに限定されず、液漕53A内のスラリ7に対してワイヤ5を案内することができれば、どの側面部に設けてもよい。例えば、被加工物3の切断位置を液漕53Aの上方に配置させると共に液漕53A内に方向を変更させるためのローラを設け、側面部56aから侵入させた後、液漕53Aの上方へ案内させてもよい。
実施の形態8.
実施の形態8のマルチワイヤソーは、実施の形態7とスラリ供給機構が異なっていて、その他は同様であるので同様な部分の説明は省略する。
図18は、本発明の実施の形態8に係るマルチワイヤソーのスラリ供給機構8Fにおける側壁部を説明する図であり、図18(A)は閉じた状態を、図18(B)は開放状態を説明するための図である。
図18において、液槽53Aの側壁部56cとこれに対向する側壁部(図示せず)とは、切欠き部59を備えた開放自在の部材60を備えている。この開放自在の部材60は、切欠き部59を備えた上方側壁部材61aと液槽53Aに固定されている下方側壁部材61bから構成されている。上方側壁部材61aを閉じたときには、図18(A)に示すように、切欠き部59が通過孔57cを形成するようになっている。
このようなスラリ供給機構8Fでは、メインローラ24およびサブローラ27にワイヤ5を螺旋状に巻き付ける準備作業時に、ワイヤ5を毎周ごとに通過孔57cに通す必要がなくなるので作業性が向上する。すなわち、ワイヤ5の巻き付け準備作業時には、図5(B)に示すように、上方側壁部材61aを外し、ワイヤ5を切欠き部59に通すだけでよい。被加工物3の切断時には上方側壁部材61aを再び閉じ、通過孔57cを形成し、液槽53Aにスラリ7を供給し、その後は前記実施の形態7で説明したように被加工物3を切断すればよい。
なお、上方側壁部材61a、下方側壁部材61bおよび液槽53Aそれぞれの接触面の加工精度を確保しておくか、又はやわらかい部材(ポリテトラフルオロエチレン樹脂など)を使用すれば、機械的な締結だけで、スラリ7の漏れを十分シールすることができる。

Claims (8)

  1. 被加工物とワイヤとの切断界面にアルカリまたは混酸を含むスラリを供給しながら前記被加工物を切断するマルチワイヤソーにおいて、
    前記スラリを貯蔵加熱するための加熱機構付貯蔵タンクと、
    前記加熱機構付貯蔵タンクから前記ワイヤが前記被加工物に繰り込まれる手前の位置までポンプにより送出された前記スラリを所定の温度に維持しながら搬送する保温パイプと、
    ステージに固定された前記被加工物の近傍の温度を前記所定の温度に維持する恒温槽と、
    前記ワイヤを前記所定の温度に加熱するワイヤ加熱機構と
    を備えることを特徴とするマルチワイヤソー。
  2. 前記ワイヤ加熱機構は、
    ワイヤ繰り出しボビンから前記切断界面に繰り込まれる前記ワイヤの走行経路中に、前記ワイヤの走行方向の前後に位置して前記ワイヤの走行を案内する導電性の2つのプーリと、電源とを備え、前記電源から前記2つのプーリを介して前記ワイヤに電圧を印加し、前記ワイヤに流れる電流に伴って発生するジュール熱により前記ワイヤを加熱するように構成されていることを特徴とする請求項1に記載のマルチワイヤソー。
  3. 複数のローラ間で走行するワイヤにスラリを供給しながら被加工物を切断するマルチワイヤソーにおいて、
    前記スラリを吐出するためのスラリ吐出部と、
    少なくとも前記スラリ吐出部と前記被加工物とを覆う加工室と、
    前記加工室内の湿度を設定湿度に調節するための湿度調節機構と
    を備えていること特徴とするマルチワイヤソー。
  4. 複数のローラ間で走行するワイヤにスラリを供給しながら被加工物を切断するマルチワイヤソーにおいて、
    前記被加工物を切断する部位の上流側に設けられた前記ローラと前記被加工物を切断する部位との間に設けられたスラリ吐出部を有するスラリ供給機構を備え、前記スラリ吐出部から吐出されたスラリが前記被加工物の側面に沿って移動することによって、前記ワイヤにスラリを供給することを特徴とするマルチワイヤソー。
  5. 前記被加工物の側面に、シート部材が貼付されていることを特徴とする請求項4に記載のマルチワイヤソー。
  6. 複数のローラ間で走行するワイヤに砥粒を含むスラリを供給しながら被加工物を切断するマルチワイヤソーにおいて、
    前記スラリを収容する収容部を有し、前記収容部内を前記ワイヤが通過することで、前記ワイヤにスラリが供給されるスラリ供給機構を、前記被加工物が切断される部位の上流に設けたことを特徴とするマルチワイヤソー。
  7. 前記収容部の構成面に、前記ワイヤが通過可能な通過孔が設けられていることを特徴とする請求項6に記載のマルチワイヤソー。
  8. 前記収容部の構成面が、切欠き部を備えた開放自在の部材を有し、前記部材を閉じたときに前記切欠き部が前記通過孔を形成することを特徴とする請求項7に記載のマルチワイヤソー。
JP2005514977A 2003-10-27 2004-10-22 マルチワイヤソー Expired - Fee Related JP4387361B2 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2003366378 2003-10-27
JP2003366378 2003-10-27
JP2003365719 2003-10-27
JP2003365719 2003-10-27
JP2003369476 2003-10-29
JP2003369476 2003-10-29
JP2003370859 2003-10-30
JP2003370859 2003-10-30
PCT/JP2004/015705 WO2005039824A1 (ja) 2003-10-27 2004-10-22 マルチワイヤソー

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009069968A Division JP4907682B2 (ja) 2003-10-27 2009-03-23 マルチワイヤソー

Publications (2)

Publication Number Publication Date
JPWO2005039824A1 true JPWO2005039824A1 (ja) 2007-03-01
JP4387361B2 JP4387361B2 (ja) 2009-12-16

Family

ID=34528115

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005514977A Expired - Fee Related JP4387361B2 (ja) 2003-10-27 2004-10-22 マルチワイヤソー
JP2009069968A Expired - Fee Related JP4907682B2 (ja) 2003-10-27 2009-03-23 マルチワイヤソー

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2009069968A Expired - Fee Related JP4907682B2 (ja) 2003-10-27 2009-03-23 マルチワイヤソー

Country Status (5)

Country Link
US (1) US7306508B2 (ja)
EP (2) EP1685927B1 (ja)
JP (2) JP4387361B2 (ja)
NO (1) NO326031B1 (ja)
WO (1) WO2005039824A1 (ja)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2275241B1 (de) * 2005-08-25 2012-10-17 Freiberger Compound Materials GmbH Drahtsäge und Verfahren zum Trennen eines Werkstücks mittels Drahtsägen
DE102005040343A1 (de) * 2005-08-25 2007-03-01 Freiberger Compound Materials Gmbh Verfahren, Vorrichtung und Slurry zum Drahtsägen
JP5072204B2 (ja) 2005-08-31 2012-11-14 信越半導体株式会社 ウエーハの表面のナノトポグラフィを改善する方法及びワイヤソー装置
US7878883B2 (en) * 2006-01-26 2011-02-01 Memc Electronics Materials, Inc. Wire saw ingot slicing system and method with ingot preheating, web preheating, slurry temperature control and/or slurry flow rate control
JP4791306B2 (ja) 2006-09-22 2011-10-12 信越半導体株式会社 切断方法
JP5003294B2 (ja) * 2007-06-08 2012-08-15 信越半導体株式会社 切断方法
EP2165805A4 (en) 2007-06-27 2014-02-12 Mitsubishi Electric Corp MULTI-THREAD SAW AND CUTTING METHOD OF INGOT
US20090032006A1 (en) * 2007-07-31 2009-02-05 Chul Woo Nam Wire saw process
US8157876B2 (en) * 2007-07-31 2012-04-17 Cabot Microelectronics Corporation Slurry composition containing non-ionic polymer and method for use
DE102007048879A1 (de) 2007-10-11 2009-04-16 Schott Ag Wiederaufbereitung von fluiden Sägeslurries sowie deren Verwendung zur Herstellung von Wafern mit verbesserten Oberflächen
JP5557391B2 (ja) * 2007-10-30 2014-07-23 ポール・コーポレーション 基板材料からウェハ状スライスを製造するための方法及びシステム
JP5056859B2 (ja) 2007-12-19 2012-10-24 信越半導体株式会社 ワイヤソーによるワークの切断方法およびワイヤソー
FR2927272B1 (fr) * 2008-02-07 2010-05-21 Saint Gobain Ct Recherches Poudre de grains abrasifs.
US8425639B2 (en) * 2008-05-30 2013-04-23 Cabot Microelectronics Corporation Wire saw slurry recycling process
KR100898151B1 (ko) * 2008-10-08 2009-05-19 장은영 친환경 와이어쏘 절단장치 및 이를 이용한 절단방법
JP5217918B2 (ja) * 2008-11-07 2013-06-19 信越半導体株式会社 インゴット切断装置及び切断方法
US20100126488A1 (en) * 2008-11-25 2010-05-27 Abhaya Kumar Bakshi Method and apparatus for cutting wafers by wire sawing
US8065995B2 (en) * 2008-11-25 2011-11-29 Cambridge Energy Resources Inc Method and apparatus for cutting and cleaning wafers in a wire saw
US8261730B2 (en) * 2008-11-25 2012-09-11 Cambridge Energy Resources Inc In-situ wafer processing system and method
AU2010210673B2 (en) * 2009-02-03 2014-11-27 The Nanosteel Company, Inc. Method and product for cutting materials
GB2468874A (en) * 2009-03-24 2010-09-29 Rec Wafer Norway As Apparatus for cutting wafers using wires and abrasive slurry
FR2943848B1 (fr) * 2009-03-27 2012-02-03 Jean Pierre Medina Procede et machine de fabrication d'un semi-conducteur, du type cellule photovoltaique ou composant electronique similaire
JP2010253621A (ja) * 2009-04-27 2010-11-11 Ihi Compressor & Machinery Co Ltd ワイヤソーのクーラント管理方法及び装置
JP5201086B2 (ja) * 2009-06-10 2013-06-05 信越半導体株式会社 ワークの切断方法
EP2444179B1 (en) 2009-06-16 2019-01-23 Sintokogio, Ltd. Method for supplying molten metal to automatic pouring machine and facility therefor
FR2947831B1 (fr) * 2009-07-09 2012-02-03 Saint Gobain Ct Recherches Suspension de grains abrasifs
CN102665988B (zh) 2009-08-14 2015-11-25 圣戈班磨料磨具有限公司 包括粘结到长形本体上的磨料颗粒的磨料物品及其形成方法
RU2516318C2 (ru) 2009-08-14 2014-05-20 Сэнт-Гобэн Эбрейзивс, Инк. Абразивное изделие (варианты) и способ резания сапфира с его использованием
TW201112317A (en) * 2009-09-22 2011-04-01 Ching Hung Machinery & Electric Ind Co Ltd Serial multi-thread saw crystal slicing device
DE102010015111A1 (de) 2010-03-23 2011-09-29 Schott Solar Ag Fluide Trennmedien und deren Verwendung
DE102010014551A1 (de) 2010-03-23 2011-09-29 Schott Solar Ag Fluide Trennmedien und deren Verwendung
DE102010025606A1 (de) 2010-06-30 2012-01-05 Schott Solar Ag Verfahren zur Wiederaufbereitung von verbrauchten Sägeflüssigkeiten aus der Herstellung von Siliziumwafern
KR101279681B1 (ko) * 2010-09-29 2013-06-27 주식회사 엘지실트론 단결정 잉곳 절단장치
GB2484348A (en) * 2010-10-08 2012-04-11 Rec Wafer Norway As Abrasive slurry and method of production of photovoltaic wafers
KR20120037576A (ko) * 2010-10-12 2012-04-20 주식회사 엘지실트론 단결정 잉곳 절단장치 및 단결정 잉곳 절단방법
TW201507812A (zh) 2010-12-30 2015-03-01 Saint Gobain Abrasives Inc 磨料物品及形成方法
TW201226087A (en) * 2010-12-31 2012-07-01 Micron Diamond Wire & Equipment Co Ltd Cutting and cooling device of diamond wire
DE102011014828A1 (de) 2011-03-23 2012-09-27 Schott Solar Ag Fluide Trennmedien und deren Verwendung
DE102011082366B3 (de) * 2011-09-08 2013-02-28 Siltronic Ag Einlagiges Wickeln von Sägedraht mit fest gebundenem Schneidkorn für Drahtsägen zum Abtrennen von Scheiben von einem Werkstück
JP5733120B2 (ja) * 2011-09-09 2015-06-10 住友電気工業株式会社 ソーワイヤおよびそれを用いたiii族窒化物結晶基板の製造方法
US9375826B2 (en) 2011-09-16 2016-06-28 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
KR20140075717A (ko) 2011-09-29 2014-06-19 생-고뱅 어브레이시브즈, 인코포레이티드 배리어층이 있는 신장 기재 몸체 결합 연마 입자를 포함하는 연마 물품, 및 이를 형성하는 방법
EP2583804A1 (en) * 2011-10-22 2013-04-24 Applied Materials Switzerland Sàrl A new wafer sawing system
WO2013128653A1 (ja) * 2012-03-02 2013-09-06 株式会社クリスタル光学 シリコンインゴットの切断方法
DE102012209974B4 (de) 2012-06-14 2018-02-15 Siltronic Ag Verfahren zum gleichzeitigen Abtrennen einer Vielzahl von Scheiben von einem zylindrischen Werkstück
TWI483803B (zh) * 2012-06-29 2015-05-11 Saint Gobain Abrasives Inc 在工件上進行切割操作之方法
TW201402274A (zh) 2012-06-29 2014-01-16 Saint Gobain Abrasives Inc 研磨物品及形成方法
TWI477343B (zh) 2012-06-29 2015-03-21 Saint Gobain Abrasives Inc 研磨物品及形成方法
TW201404527A (zh) 2012-06-29 2014-02-01 Saint Gobain Abrasives Inc 研磨物品及形成方法
JP5996308B2 (ja) * 2012-07-10 2016-09-21 コマツNtc株式会社 ワイヤソー
TW201441355A (zh) 2013-04-19 2014-11-01 Saint Gobain Abrasives Inc 研磨製品及其形成方法
CN104354233A (zh) * 2014-10-13 2015-02-18 灵璧县灵磁新材料有限公司 一种钕铁硼多线切割机的冷却装置
WO2016103397A1 (ja) * 2014-12-25 2016-06-30 エムティアール株式会社 Cmpスラリー再生方法および再生装置
TWI664057B (zh) 2015-06-29 2019-07-01 美商聖高拜磨料有限公司 研磨物品及形成方法
JP6270796B2 (ja) * 2015-10-28 2018-01-31 株式会社リード 固定砥粒ワイヤーソー及び固定砥粒ワイヤーのドレッシング方法
WO2018087619A1 (en) * 2016-11-10 2018-05-17 Meyer Burger (Switzerland) Ag Wire saw
JP7113365B2 (ja) * 2017-05-10 2022-08-05 パナソニックIpマネジメント株式会社 ソーワイヤー及び切断装置
FR3070538B1 (fr) * 2017-08-30 2020-02-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de desassemblage d'un module photovoltaique et installation associee
KR102282063B1 (ko) * 2020-01-30 2021-07-28 에스케이실트론 주식회사 잉곳 온도 제어기 및 그를 구비한 와이어 쏘잉 장치
CN113211278A (zh) * 2021-05-14 2021-08-06 安徽省景隆电子科技有限公司 一种提高合金电阻落料效率的切割方法
CN115958709B (zh) * 2022-12-28 2023-06-20 宁波合盛新材料有限公司 碳化硅晶片的多线切割方法
CN117340357B (zh) * 2023-12-06 2024-03-19 成都游小木创新科技有限公司 一种汽车零件精度切割装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7308102A (ja) * 1973-06-12 1974-12-16
JPS61125768A (ja) * 1984-11-20 1986-06-13 Sumitomo Metal Ind Ltd 脆性材料の切断方法
JPS61284926A (ja) * 1985-06-10 1986-12-15 Teikoku Seiki Kk シリコンウエハ−加工用マスキングシ−トの切断除去方法
JPS6357171A (ja) * 1986-08-29 1988-03-11 Otaru Seisakusho:Kk 多重鋼線式切断装置
JPH01316164A (ja) * 1988-06-13 1989-12-21 Osaka Titanium Co Ltd 切削製品の製法およびワイヤソーマシン
JPH02262955A (ja) * 1988-12-15 1990-10-25 Nippon Steel Corp Siインゴットのワイヤソーによる切断法
JPH02298280A (ja) * 1989-05-11 1990-12-10 Seiko Epson Corp ワイヤーエッチング法
JPH0639095B2 (ja) * 1992-10-12 1994-05-25 住友金属工業株式会社 脆性材料の切断装置
JP3323621B2 (ja) * 1993-12-29 2002-09-09 株式会社日平トヤマ ワイヤソーのスラリ供給方法およびスラリ供給ノズル
JP3071100B2 (ja) 1994-08-05 2000-07-31 株式会社日平トヤマ ワイヤソーにおけるスラリー供給装置
JP3187296B2 (ja) 1995-08-31 2001-07-11 株式会社日平トヤマ ワイヤソー及びワーク切断方法
JPH0985737A (ja) * 1995-09-22 1997-03-31 Toray Eng Co Ltd ワイヤ式切断装置
JP3594375B2 (ja) * 1995-10-05 2004-11-24 三井化学株式会社 試料切断装置および試料切断方法
JP3655004B2 (ja) * 1996-03-28 2005-06-02 信越半導体株式会社 ワイヤーソー装置
JPH1052816A (ja) * 1996-08-13 1998-02-24 M Ii M C Kk ワイヤ式切断方法
JPH10180750A (ja) * 1996-12-25 1998-07-07 Nippei Toyama Corp ワイヤソーにおけるスラリー温度調節装置
JPH10217036A (ja) * 1997-01-29 1998-08-18 Komatsu Electron Metals Co Ltd 半導体結晶棒の切断装置及び切断方法
JP3741523B2 (ja) * 1997-07-30 2006-02-01 株式会社荏原製作所 研磨装置
JP3695124B2 (ja) * 1998-03-31 2005-09-14 信越半導体株式会社 ワイヤーソー装置
DE19841492A1 (de) * 1998-09-10 2000-03-23 Wacker Siltronic Halbleitermat Verfahren und Vorrichtung zum Abtrennen einer Vielzahl von Scheiben von einem sprödharten Werkstück
JP2000218493A (ja) * 1999-01-28 2000-08-08 Tokyo Seimitsu Co Ltd ワイヤソー
JP3314921B2 (ja) 1999-06-08 2002-08-19 三菱住友シリコン株式会社 半導体材料の切断・加工方法
JP2001079747A (ja) * 1999-09-08 2001-03-27 Nippei Toyama Corp ワイヤソー
JP2002307283A (ja) * 2001-04-19 2002-10-23 Shin Etsu Handotai Co Ltd ワイヤーソー
JP2003159650A (ja) * 2001-11-22 2003-06-03 Takatori Corp ワイヤソー用スラリータンク
US6832606B2 (en) * 2001-11-30 2004-12-21 Dowa Mining Co., Ltd. Wire saw and cutting method thereof
JP2008213111A (ja) * 2007-03-06 2008-09-18 Sharp Corp マルチワイヤーソーおよびスラリー供給方法

Also Published As

Publication number Publication date
US7306508B2 (en) 2007-12-11
JP4907682B2 (ja) 2012-04-04
US20060249134A1 (en) 2006-11-09
WO2005039824A1 (ja) 2005-05-06
JP4387361B2 (ja) 2009-12-16
EP1685927B1 (en) 2013-04-10
EP1685927A4 (en) 2008-11-26
JP2009142986A (ja) 2009-07-02
EP1685927A1 (en) 2006-08-02
NO20053153L (no) 2006-04-21
NO20053153D0 (no) 2005-06-28
EP2343155A1 (en) 2011-07-13
NO326031B1 (no) 2008-09-01
EP2343155B1 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP4387361B2 (ja) マルチワイヤソー
US7195542B2 (en) Process, apparatus and slurry for wire sawing
US8968054B2 (en) Method for cooling a workpiece made of semiconductor material during wire sawing
JP4022569B1 (ja) ウエハ製造方法
US8960177B2 (en) Wiresaw cutting method
WO2005037968A1 (ja) シリコンインゴット切断用スラリー及びそれを用いるシリコンインゴットの切断方法
KR20020086243A (ko) 가공물로 부터 슬라이스의 절삭방법
JP2008213111A (ja) マルチワイヤーソーおよびスラリー供給方法
CN100503166C (zh) 多钢线锯
JP3197053U (ja) 液補充装置及びこれを備えたクーラント再生装置
JPH02262955A (ja) Siインゴットのワイヤソーによる切断法
JP2005088394A (ja) シリコンインゴット切削用スラリーおよびそれを用いるシリコンインゴットの切断方法
KR101112743B1 (ko) 잉곳 절단용 와이어 소오
JP2007276048A (ja) ワイヤによるワークの切断方法
JP2005112917A (ja) シリコンインゴット切削用スラリーおよびそれを用いるシリコンインゴットの切断方法
JP2005131743A (ja) ワイヤソー
JP2000094296A (ja) ワイヤソーの熱交換装置
JPH09225932A (ja) ワイヤソーの加工液温度制御方法及びその装置
JP2012143847A (ja) 一方向走行式ワイヤソー
JPH10138231A (ja) ワイヤソー
JP2005125474A (ja) ワイヤソー
JP2010105114A (ja) ワイヤーソー装置
JPH11114825A (ja) 水分を含む切削液の水分調整装置及び切削液再利用システム
JP2004114280A (ja) ワイヤソー及びワイヤソーでのワーク切断形状制御方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees