JP6957582B2 - 発光素子、発光装置、電子機器及び照明装置 - Google Patents

発光素子、発光装置、電子機器及び照明装置 Download PDF

Info

Publication number
JP6957582B2
JP6957582B2 JP2019213950A JP2019213950A JP6957582B2 JP 6957582 B2 JP6957582 B2 JP 6957582B2 JP 2019213950 A JP2019213950 A JP 2019213950A JP 2019213950 A JP2019213950 A JP 2019213950A JP 6957582 B2 JP6957582 B2 JP 6957582B2
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting element
abbreviation
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019213950A
Other languages
English (en)
Other versions
JP2020043358A (ja
Inventor
香 荻田
恒徳 鈴木
瀬尾 哲史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2020043358A publication Critical patent/JP2020043358A/ja
Application granted granted Critical
Publication of JP6957582B2 publication Critical patent/JP6957582B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Furan Compounds (AREA)
  • Optics & Photonics (AREA)

Description

本発明は、電圧を印加することにより発光が得られ、少なくとも発光素子の一部に適用可
能な新規有機化合物に関する。また当該有機化合物を用いた発光素子、発光装置、電子機
器、および照明装置に関する。
近年、エレクトロルミネッセンス(Electro Luminescence:EL)
を利用した発光素子の研究開発が盛んに行われている。これらの発光素子の基本的な構成
は、一対の電極間に発光性の物質を含む層を挟んだ素子である。該素子に電圧を印加する
ことにより、発光性の物質からの発光を得ることができる。
このような発光素子は自発光型であるため、液晶ディスプレイに比べ画素の視認性が高く
、バックライトが不要であり、発光素子の応答速度が非常に速いこと等が利点として挙げ
られる。このため、フラットパネルディスプレイ素子として好適であるとされている。ま
た、このような発光素子は、薄型軽量に作製できることも大きな利点である。
そして、これらの発光素子は膜状に形成できるため、面状の発光を容易に得ることができ
る。よって、面状の発光を利用した大面積の素子を形成することができる。このことは、
白熱電球やLEDに代表される点光源、あるいは蛍光灯に代表される線光源では得難い特
色であるため、照明等に応用できる面光源としての利用価値も高い。
そのエレクトロルミネッセンスを利用した発光素子は、発光性の物質が有機化合物である
か無機化合物であるかによって大別することができるが、発光性の物質に有機化合物を用
いる有機ELの場合、発光素子に電圧を印加することにより、一対の電極の一方から電子
が、また他方からホール(正孔)がそれぞれ発光性の有機化合物を含む層に注入され、電
流が流れる。そして、発光性の有機化合物中で電子、およびホールが再結合することによ
り、発光性の有機化合物は励起状態を形成し、その励起状態から基底状態に戻る際の緩和
エネルギーとして発光する。
このようなメカニズムから、上述の発光素子は電流励起型の発光素子と呼ばれる。なお、
有機化合物が形成する励起状態の種類としては、一重項励起状態と三重項励起状態が可能
であり、一重項励起状態からの発光が蛍光、三重項励起状態からの発光がリン光と呼ばれ
ている。
また、電子と正孔(ホール)の再結合による励起とその緩和に伴う発光の他に、電流励起
された有機化合物の励起エネルギーが他の有機化合物に移動することで、その有機化合物
が励起され、緩和する際に発光するという方法もある。この方法は、発光させたい有機化
合物分子が高濃度である場合、例えばスタッキング相互作用を起こし発光効率が悪くなっ
てしまう場合(濃度消光)に有効な手段である。
具体的には、この方法では、有機ELにおいて、発光材料を発光層中に分散(ドープ)さ
せる。発光させたい有機化合物分子をホスト材料にドープして、スタッキング相互作用を
抑制することで、発光素子を高効率化させることができる。該発光素子において、電流に
よって励起したホスト材料からドーパント材料へ励起エネルギーが移動することでドーパ
ント材料が発光する。なお、物質Aを他の物質Bからなるマトリクス中に分散する場合、
マトリクスを構成する物質Bをホスト材料と呼び、マトリクス中に分散される物質Aをド
ーパント材料(ゲスト材料とも言う。)と呼ぶものとする。
また、発光材料が発する光は、その物質固有の光であり、良好な色の発光を呈する材料を
開発することはそれだけで困難である。加えて、長寿命や低消費電力などその他の重要な
特性を満たす発光素子を得ることは、非常に困難である。これは寿命や消費電力など、発
光素子の重要な性能は、発光を呈する物質のみに依存する訳ではなく、素子構造、そして
、発光物質とホスト材料との相性なども大きく影響しているためである。
特に、青色発光素子は他の色の発光素子に比べ寿命が短く、長い寿命と良好な色純度を両
立しうる材料の開発が望まれている。例えば、有機ELを表示素子等として用いたフラッ
トパネルディスプレイなどを商品化するには、青色発光素子の長寿命化と色純度の向上は
重要な課題であり、さらなる改良が求められている。それゆえ、様々な分子構造を有する
発光素子材料が提案されている。(例えば特許文献1および2参照)。
特開2004−204238号公報 国際公開第2005/108348号
本発明は色純度が高く、長寿命な青色発光素子を提供するためになされたもので、本発明
の一態様は、色純度が高く、有機EL用青色発光材料として良好な、新規芳香族アミン誘
導体を提供することを課題の一とする。
また、これら新規な芳香族アミン誘導体を用いた発光素子、発光装置、照明装置、および
電子機器を提供することを課題の一とする。
本発明の一態様は、下記一般式(G1)で表される芳香族アミン誘導体である。
Figure 0006957582
〜Rは、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、置換若しくは無
置換のフェニル基、または、置換若しくは無置換のビフェニル基のいずれかを表す。さら
に、αおよびαは、それぞれ独立に、置換または無置換のフェニレン基を表す。さら
に、Arは、環を形成する炭素数14〜18の、置換または無置換の縮合芳香族炭化水
素を表す。さらに、Arは、環を形成する炭素数6〜13の、置換または無置換のアリ
ール基を表す。j、nは、それぞれ独立に0または1であり、pは、1または2である。
さらに、Aは、O(酸素)またはS(硫黄)である。
また、本発明の一態様は、下記一般式(G2)で表される芳香族アミン誘導体である。
Figure 0006957582
〜Rは、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、置換若しくは無
置換のフェニル基、または、置換若しくは無置換のビフェニル基のいずれかを表す。さら
に、αおよびαは、それぞれ独立に、置換または無置換のフェニレン基を表す。さら
に、Arは、環を形成する炭素数14〜18の、置換または無置換の縮合芳香族炭化水
素を表す。さらに、Arは、環を形成する炭素数6〜13の、置換または無置換のアリ
ール基を表す。j、nは、それぞれ独立に0または1であり、pは、1または2である。
さらに、Aは、O(酸素)またはS(硫黄)である。
一般式(G1)、および一般式(G2)中のArとしては、(Ar1−1)または(A
r1−2)が挙げられる。一般式(Ar1−1)および(Ar1−2)中のR〜R10
は、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、置換若しくは無置換のフェ
ニル基、または、置換若しくは無置換のビフェニル基のいずれかを表す。ただし、一般式
(G1)、および一般式(G2)中のArが一般式(Ar1−1)の場合、一般式(G
1)、および一般式(G2)中のpは1であり、一般式(G1)、および一般式(G2)
中のArが一般式(Ar1−2)の場合、一般式(G1)および一般式(G2)中のp
は2である。
Figure 0006957582
また、本発明の一態様は、下記一般式(G3)で表される芳香族アミン誘導体である。一
般式(G3)は、一般式(G1)においてArが(Ar1−2)で、jが0、pが2で
ある芳香族アミン誘導体である。
Figure 0006957582
一般式(G3)中、R〜R、RおよびR10は、それぞれ独立に、水素原子、炭素
数1〜6のアルキル基、置換若しくは無置換のフェニル基、または、置換若しくは無置換
のビフェニル基のいずれかを表す。また、αは、置換または無置換のフェニレン基を表
す。また、Arは、環を形成する炭素数6〜13の、置換または無置換のアリール基を
表す。nは、0または1である。さらに、Aは、O(酸素)またはS(硫黄)である。
また、本発明の一態様は、下記一般式(G4)で表される芳香族アミン誘導体である。一
般式(G4)は一般式(G1)においてArが(Ar1−2)でjが1、pが2である
芳香族アミン誘導体である。
Figure 0006957582
一般式(G4)中、R〜R、RおよびR10は、それぞれ独立に、水素原子、炭素
数1〜6のアルキル基、置換若しくは無置換のフェニル基、または、置換若しくは無置換
のビフェニル基のいずれかを表す。また、α及びαは、それぞれ独立に、置換または
無置換のフェニレン基を表す。また、Arは、環を形成する炭素数6〜13の、置換ま
たは無置換のアリール基を表す。nは0または1である。さらに、Aは、O(酸素)また
はS(硫黄)である。
一般式(G1)〜一般式(G4)において、α〜αは、それぞれ独立に、下記構造式
(α−1)〜(α−3)で表されるいずれか一であるのが好ましい。
Figure 0006957582
また、本発明の一態様は、下記一般式(G5)で表される芳香族アミン誘導体である。一
般式(G5)は一般式(G4)において、αが構造式(α−2)の芳香族アミン誘導体
である。
Figure 0006957582
一般式(G5)中、R〜R、RおよびR10は、それぞれ独立に、水素原子、炭素
数1〜6のアルキル基、置換若しくは無置換のフェニル基、または、置換若しくは無置換
のビフェニル基のいずれかを表す。また、αは、置換または無置換のフェニレン基を表
す。また、Arは、環を形成する炭素数6〜13の、置換または無置換のアリール基を
表す。nは0または1である。さらに、Aは、O(酸素)またはS(硫黄)である。
一般式(G5)においても一般式(G1)〜一般式(G4)と同様にnは0または1で、
nが1のとき、αは既出の構造式(α−1)〜(α−3)で表されるいずれか一である
のが好ましい。
一般式(G1)〜一般式(G5)において、Arは、下記構造式(Ar2−1)〜(A
r2−6)で表されるいずれか一であるのが好ましい。
Figure 0006957582
一般式(G1)〜一般式(G5)において、R〜R10は、それぞれ独立に、下記構造式
(R−1)〜(R−9)で表されるいずれか一であるのが好ましい。
Figure 0006957582
また、本発明の一態様は、下記一般式(G6)で表される芳香族アミン誘導体である。
Figure 0006957582
一般式(G6)において、Aは、O(酸素)またはS(硫黄)である。
また、本発明の一態様は、下記一般式(G7)で表される芳香族アミン誘導体である。
Figure 0006957582
一般式(G7)において、Aは、O(酸素)またはS(硫黄)である。
また、本発明の一態様は、下記一般式(G8)で表される芳香族アミン誘導体である。
Figure 0006957582
一般式(G8)において、Aは、O(酸素)またはS(硫黄)である。
また、本発明の一態様は、一対の電極間にEL層を有する発光素子であって、EL層は、
発光層を含み、該発光層は、上記の芳香族アミン誘導体(一般式(G1)〜一般式(G8
))のいずれかを含むことを特徴とする。
さらに、本発明の一態様は、上記の発光素子を用いて形成された発光装置、および該発光
装置を用いて形成された電子機器である。また、発光装置を用いて形成された照明装置で
ある。
また、本発明の発光装置の一態様は、上記発光素子と、発光素子の発光を制御する制御手
段とを有する。なお、本明細書中における発光装置とは、画像表示デバイス、発光デバイ
ス、もしくは光源(照明装置を含む)を含む。また、パネルにコネクター、例えばFPC
(Flexible printed circuit)もしくはTAB(Tape A
utomated Bonding)テープもしくはTCP(Tape Carrier
Package)が取り付けられたモジュール、TABテープやTCPの先にプリント
配線板が設けられたモジュール、または発光素子にCOG(Chip On Glass
)方式によりIC(集積回路)が直接実装されたモジュールも全て発光装置に含むものと
する。
本発明の一態様の芳香族アミン誘導体は、短波長の可視光の発光が可能であり、色純度の
良い青色発光を得ることができる。
また、本発明の一態様の芳香族アミン誘導体を用いることにより発光効率、および信頼性
の高い発光素子を得ることができる。
さらに、この発光素子を用いることにより、信頼性の高い発光装置、電子機器、および照
明装置を得ることができる。
発光素子を説明する図。 発光素子を説明する図。 発光素子を説明する図。 発光装置を説明する図。 発光装置を説明する図。 電子機器を説明する図。 照明装置を説明する図。 FrA−IIのH NMRチャートを示す図。 1,6FrAPrn−IIのH NMRチャートを示す図。 1,6FrAPrn−IIのトルエン溶液における吸収スペクトルおよび発光スペクトルを示す図。 1,6FrAPrn−IIの薄膜における吸収スペクトルおよび発光スペクトルを示す図。 ThA−IIのH NMRチャートを示す図。 1,6ThAPrn−IIのH NMRチャートを示す図。 1,6ThAPrn−IIのトルエン溶液における吸収スペクトルおよび発光スペクトルを示す図。 1,6ThAPrn−IIの薄膜における吸収スペクトルおよび発光スペクトルを示す図。 1,6FrAPrnのH NMRチャートを示す図。 1,6FrAPrnのトルエン溶液における吸収スペクトルおよび発光スペクトルを示す図。 1,6FrAPrnの薄膜における吸収スペクトルおよび発光スペクトルを示す図。 1,6ThAPrnのH NMRチャートを示す図。 1,6ThAPrnのトルエン溶液における吸収スペクトルおよび発光スペクトルを示す図。 1,6ThAPrnの薄膜における吸収スペクトルおよび発光スペクトルを示す図。 1,6mFrBAPrn−IIのH NMRチャートを示す図。 1,6mFrBAPrn−IIのトルエン溶液における吸収スペクトルおよび発光スペクトルを示す図。 1,6mFrBAPrn−IIの薄膜における吸収スペクトルおよび発光スペクトルを示す図。 1,6mThBAPrn−IIのH NMRチャートを示す図。 1,6mThBAPrn−IIのトルエン溶液における吸収スペクトルおよび発光スペクトルを示す図。 1,6mThBAPrn−IIの薄膜における吸収スペクトルおよび発光スペクトルを示す図。 1,6FrBAPrn−IIのH NMRチャートを示す図。 1,6FrBAPrn−IIのトルエン溶液における吸収スペクトルおよび発光スペクトルを示す図。 1,6FrBAPrn−IIの薄膜における吸収スペクトルおよび発光スペクトルを示す図。 実施例の発光素子を説明する図。 発光素子1乃至発光素子4の特性を示す図。 発光素子1乃至発光素子4の特性を示す図。 発光素子1乃至発光素子4の特性を示す図。 発光素子1乃至発光素子4の特性を示す図。 発光素子5乃至発光素子7の特性を示す図。 発光素子5乃至発光素子7の特性を示す図。 発光素子5乃至発光素子7の特性を示す図。 発光素子5乃至発光素子7の特性を示す図。
以下、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下
の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなく、その形態およ
び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以
下に示す実施の形態の記載内容に限定して解釈されるものではない。
(実施の形態1)
本実施の形態では、本発明の一態様である芳香族アミン誘導体について説明する。
本実施の形態の芳香族アミン誘導体は、下記一般式(G1)および下記一般式(G2)で
表される芳香族アミン誘導体である。
Figure 0006957582
Figure 0006957582
〜Rは、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、置換若しくは無
置換のフェニル基、または、置換若しくは無置換のビフェニル基のいずれかを表す。さら
に、αまたはαは、それぞれ独立に、置換または無置換のフェニレン基を表す。さら
に、Arは、環を形成する炭素数14〜18の、置換または無置換の縮合芳香族炭化水
素を表す。さらに、Arは、環を形成する炭素数6〜13の、置換または無置換のアリ
ール基を表す。j、nは、それぞれ独立に0または1であり、pは1または2である。さ
らに、AはO(酸素)またはS(硫黄)である。
なお、一般式(G1)および一般式(G2)中の置換基R〜Rとしてアルキル基を用
いた場合、有機溶剤への溶解性が向上するため、精製が容易になり好ましい。また溶解性
が向上することで、湿式で有機EL素子を作製する場合に、成膜した膜の均一性も向上す
るため好ましい。
また、分子内にジベンゾフラニル基または、ジベンゾチオフェニル基のような立体的で嵩
高い構造を有しているために、分子同士の相互作用が抑制され、モルフォロジー(分子形
態)が改善される。このことにより、膜質が向上し、濃度消光やエキシマーの形成を抑制
しやすくなる。
さらに、ジベンゾフラニル基および、ジベンゾチオフェニル基は電気化学的に安定である
。このため、一般式(G1)および一般式(G2)で表されるような分子内にジベンゾフ
ラニル基、およびジベンゾチオフェニル基を有する化合物は高効率、長寿命な化合物であ
ると言え、発光材料として好適である。
一般式(G1)および一般式(G2)中のArは、下記一般式(Ar1−1)または(
Ar1−2)が挙げられる。一般式(Ar1−1)および(Ar1−2)中のR〜R
はそれぞれ独立に、水素原子、炭素数1〜6のアルキル基、置換若しくは無置換のフェ
ニル基、または、置換若しくは無置換のビフェニル基のいずれかを表し、Arが一般式
(Ar1−1)の場合、一般式(G1)及び一般式(G2)中のpは1となり、一般式(
Ar1−2)の場合にpは2となる。
Figure 0006957582
一般式(Ar1−1)および一般式(Ar1−2)で表される置換基を分子内に有し、一
般式(G1)および一般式(G2)で表される芳香族アミン誘導体は、量子収率や発光効
率が高くなるため好ましい。
そして、一般式(Ar1−1)および(Ar1−2)中の置換基R〜R10としてアル
キル基を有する場合も、有機溶剤への溶解性が向上するため、精製が容易となり、湿式で
有機EL素子を作製する場合も、成膜した膜の均一性が向上するので好ましい。さらに分
子がより立体的な構造を形成するため、膜質も向上し、濃度消光やエキシマーの形成を抑
制しやすくなる。
なお、R〜R、αおよびα、Arがそれぞれ置換基を有する場合、その置換基
としては、メチル基、エチル基、プロピル基、ペンチル基、ヘキシル基のようなアルキル
基や、フェニル基やビフェニル基のようなアリール基が挙げられる。また該アルキル基同
士は互いに連結し、環を形成していても良い。
課題を解決するための手段として、下記一般式(G3)で表されるように、一般式(G1
)で表される化合物のArが一般式(Ar1−2)で、jが0、pが2となる芳香族ア
ミン誘導体を用いることが、好ましい。R〜R、RおよびR10は、それぞれ独立
に、水素原子、炭素数1〜6のアルキル基、置換若しくは無置換のフェニル基、または、
置換若しくは無置換のビフェニル基のいずれかを表す。αは、置換または無置換のフェ
ニレン基を表す。Arは、環を形成する炭素数6〜13の、置換または無置換のアリー
ル基を表す。nは、0または1であり、AはO(酸素)またはS(硫黄)である。
Figure 0006957582
また、課題を解決するにあたり、下記一般式(G9)で表されるように、一般式(G2)
で表される化合物のArが(Ar1−2)で、jが0、pが2となる芳香族アミン誘導
体を用いてもよい。R〜R、RおよびR10は、それぞれ独立に、水素原子、炭素
数1〜6のアルキル基、置換若しくは無置換のフェニル基、または、置換若しくは無置換
のビフェニル基のいずれかを表す。αは、置換または無置換のフェニレン基を表す。A
は、環を形成する炭素数6〜13の、置換または無置換のアリール基を表す。nは、
0または1であり、AはO(酸素)またはS(硫黄)である。
Figure 0006957582
さらに、一般式(G1)で表される化合物において、下記一般式(G4)で表されるよう
に、Arが(Ar1−2)、jが1、pが2となる芳香族アミン誘導体も好ましい。R
〜R、RおよびR10は、それぞれ独立に、水素原子、炭素数1〜6のアルキル基
、置換若しくは無置換のフェニル基、または、置換若しくは無置換のビフェニル基のいず
れかを表す。αおよびαは、それぞれ独立に、置換または無置換のフェニレン基を表
す。Arは、環を形成する炭素数6〜13の、置換または無置換のアリール基を表す。
nは、0または1であり、AはO(酸素)またはS(硫黄)である。
Figure 0006957582
一般式(G3)、一般式(G4)および一般式(G9)で表される芳香族アミン誘導体は
、発光スペクトルの半値幅が狭く、高い色純度の発光色が得やすい。特に、色純度の良い
青の発光色が得やすい。また、ストークスシフトが小さいので、この材料を有機EL素子
の発光材料としてドープした場合、ホスト材料からのエネルギー移動が効率よく起こり、
高い発光効率が得やすい。
さらに、一般式(G3)、一般式(G4)および一般式(G9)のように、一般式(G1
)または一般式(G2)中のpを2とすることで分子量が増え、熱物性が良くなる。この
ため、有機EL素子の発光材料として用いた場合に、蒸着安定性が増す。
一般式(G1)乃至一般式(G4)、および一般式(G9)において、α〜αは、そ
れぞれ独立に、下記構造式(α−1)〜(α−3)で表されるいずれか一であるのが好ま
しい。
Figure 0006957582
さらに、下記一般式(G5)のように、上記一般式(G4)おけるαを上記構造式(α
−2)とすることで、分子構造をさらに嵩高くし、分子同士の相互作用を抑制した熱物性
の良い構造とすることができる。R〜R、RおよびR10は、それぞれ独立に、水
素原子、炭素数1〜6のアルキル基、置換若しくは無置換のフェニル基、または、置換若
しくは無置換のビフェニル基のいずれかを表す。αは、置換または無置換のフェニレン
基を表す。Arは、環を形成する炭素数6〜13の、置換または無置換のアリール基を
表す。nは、0または1であり、AはO(酸素)またはS(硫黄)である。
Figure 0006957582
一般式(G5)においても一般式(G1)〜一般式(G4)と同様にnは0または1で、
nが1のとき、αは既出の構造式(α−1)〜(α−3)で表されるいずれか一である
のが好ましい。
上記一般式(G1)乃至一般式(G5)、および一般式(G9)において、Arは、下
記構造式(Ar2−1)乃至(Ar2−6)で表されるいずれか一であるのが好ましい。
Figure 0006957582
また、上述の一般式(G1)乃至一般式(G5)、および一般式(G9)において、R
〜R10は、それぞれ独立に、下記構造式(R−1)〜(R−9)で表されるいずれか一で
あるのが好ましい。
Figure 0006957582
一般式(G1)乃至一般式(G5)、および一般式(G9)に示される芳香族アミン誘導
体の具体例としては、構造式(100)〜構造式(380)に示される芳香族アミン誘導
体が挙げられる。ただし、本発明はこれらに限定されない。
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
Figure 0006957582
本実施の形態の芳香族アミン誘導体の合成方法としては、種々の反応を適用することがで
きる。例えば、以下に示す合成方法を行うことによって、一般式(G1)で表される本実
施の形態の芳香族アミン誘導体を合成することができる。なお、本発明の一様態である芳
香族アミン誘導体の合成方法は、以下の合成方法に限定されない。
〈一般式(G1)で表される芳香族アミン誘導体の合成方法〉
合成スキーム(A−1)に示すように、ジベンゾフラン誘導体、またはジベンゾチオフェ
ン誘導体のハロゲン化物(a1)とアミンを有するアリール化合物(a2)とをカップリ
ングさせることで、アミン誘導体(a3)が得られる。
Figure 0006957582
なお、合成スキーム(A−1)において、Aは、O(酸素)またはS(硫黄)を表し、R
〜Rは、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、置換若しくは無置
換のフェニル基、または、置換若しくは無置換のビフェニル基のいずれかを表す。また、
αおよびαは、それぞれ独立に、置換または無置換のフェニレン基を表す。また、A
は、環を形成する炭素数6〜13の、置換または無置換のアリール基を表す。j、n
は、それぞれ独立に0または1である。また、Xは、ハロゲンを表し、反応性の高さか
ら、好ましくは臭素またはヨウ素、より好ましくはヨウ素とする。
合成スキーム(A−1)において、ジベンゾフラン誘導体、またはジベンゾチオフェン誘
導体のハロゲン化物と、アミンを有するアリール化合物(1級アリールアミン化合物、ま
たは2級アリールアミン化合物)とのカップリング反応には様々な反応条件があるが、そ
の一例として、塩基存在下にて金属触媒を用いた合成方法を適用することができる。
合成スキーム(A−1)において、ハートウィッグ・ブッフバルト反応を用いる場合につ
いて示す。金属触媒としてはパラジウム触媒を用いることができ、パラジウム触媒として
はパラジウム錯体とその配位子の混合物を用いることができる。具体的なパラジウム錯体
としては、ビス(ジベンジリデンアセトン)パラジウム(0)、酢酸パラジウム(II)
等が挙げられる。
配位子としては、トリ(tert−ブチル)ホスフィンや、トリ(n−ヘキシル)ホスフ
ィンや、トリシクロヘキシルホスフィンや、1,1−ビス(ジフェニルホスフィノ)フェ
ロセン(略称:DPPF)等が挙げられる。
塩基として用いることができる物質としては、ナトリウム tert−ブトキシド等の有
機塩基や、炭酸カリウム等の無機塩基等を挙げることができる。
この反応は溶液中で行うことが好ましく、用いることができる溶媒としては、トルエン、
キシレン、ベンゼン等が挙げられる。ただし、用いることができる触媒およびその配位子
、塩基、溶媒はこれらに限られるものでは無い。またこの反応は窒素やアルゴンなど不活
性雰囲気下で行うことが好ましい。
また、合成スキーム(A−1)において、ウルマン反応を用いる場合について示す。金属
触媒としては銅触媒を用いることができ、具体的には、ヨウ化銅(I)、または酢酸銅(
II)が挙げられる。また、塩基として用いることができる物質としては、炭酸カリウム
等の無機塩基が挙げられる。
この反応は溶液中で行うことが好ましく、用いることができる溶媒としては、1,3−ジ
メチル−3,4,5,6−テトラヒドロ−2(1H)−ピリミジノン(DMPU)、トル
エン、キシレン、ベンゼン等が挙げられる。ただし、用いることができる触媒、塩基、溶
媒はこれらに限られるものでは無い。またこの反応は窒素やアルゴンなど不活性雰囲気下
で行うことが好ましい。
なお、ウルマン反応では、反応温度が100℃以上の方がより短時間かつ高収率で目的物
が得られるため、DMPU、キシレンなど沸点の高い溶媒を用いることが好ましい。また
、反応温度として、150℃以上より高い温度が更に好ましいため、より沸点の高いDM
PUを溶媒として用いることがより好ましい。
次に、合成スキーム(A−2)で示すように、アミン誘導体(a3)とハロゲン化アレー
ン(a4)とをカップリングさせることで、一般式(G1)で表される芳香族アミン誘導
体を得ることができる。
Figure 0006957582
なお、合成スキーム(A−2)において、Aは、O(酸素)またはS(硫黄)を表し、R
〜Rは、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、置換若しくは無置
換のフェニル基、または、置換若しくは無置換のビフェニル基のいずれかを表す。また、
αおよびαは、それぞれ独立に、置換または無置換のフェニレン基を表す。また、A
は、環を形成する炭素数14〜18の、置換または無置換の縮合芳香族炭化水素を表
す。また、Arは、環を形成する炭素数6〜13の、置換または無置換のアリール基を
表す。j、nは、それぞれ独立に0または1であり、pは、1または2である。また、X
は、ハロゲンを表し、反応性の高さから、好ましくは臭素またはヨウ素、より好ましく
はヨウ素とする。
このとき、p=1の場合はアミン誘導体(a3)をハロゲン化アレーン(a4)に対して
当量反応させ、p=2の場合はアミン誘導体(a3)をハロゲン化アレーン(a4)に対
して2当量反応させる。
合成スキーム(A−2)において、ハロゲン基を有するアリール化合物と、アミンを有す
るアリール化合物(1級アリールアミン化合物、または2級アリールアミン化合物)との
カップリング反応は様々な反応条件があるが、その一例として、塩基存在下にて金属触媒
を用いた合成方法を適用することができる。なお、合成スキーム(A−2)において、合
成スキーム(A−1)と同様に、ハートウィッグ・ブッフバルト反応、ウルマン反応を用
いればよい。
以上のようにして、本実施の形態の芳香族アミン誘導体(G1)を合成することができる
〈一般式(G2)で表される芳香族アミン誘導体の合成方法〉
まず、合成スキーム(A−3)に示すように、ジベンゾフラン誘導体、またはジベンゾチ
オフェン誘導体のハロゲン化物(a5)とアミンを有するアリール化合物(a6)とをカ
ップリングさせることで、アミン誘導体(a7)が得られる。
Figure 0006957582
なお、合成スキーム(A−3)において、Aは、O(酸素)またはS(硫黄)を表し、R
〜Rは、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、置換若しくは無置
換のフェニル基、または、置換若しくは無置換のビフェニル基のいずれかを表す。また、
αおよびαは、それぞれ独立に、置換または無置換のフェニレン基を表す。また、A
は、環を形成する炭素数6〜13の、置換または無置換のアリール基を表す。j、n
は、それぞれ独立に0または1である。また、Xは、ハロゲンを表し、反応性の高さか
ら、好ましくは臭素またはヨウ素、より好ましくはヨウ素とする。
合成スキーム(A−3)において、ジベンゾフラン誘導体、またはジベンゾチオフェン誘
導体のハロゲン化物と、アミンを有するアリール化合物(1級アリールアミン化合物、ま
たは2級アリールアミン化合物)とのカップリング反応は様々な反応条件があるが、その
一例として、塩基存在下にて金属触媒を用いた合成方法を適用することができる。
合成スキーム(A−3)において、ハートウィッグ・ブッフバルト反応を用いる場合につ
いて示す。金属触媒としてはパラジウム触媒を用いることができ、パラジウム触媒として
はパラジウム錯体とその配位子の混合物を用いることができる。具体的なパラジウム錯体
としては、ビス(ジベンジリデンアセトン)パラジウム(0)、酢酸パラジウム(II)
等が挙げられる。
配位子としては、トリ(tert−ブチル)ホスフィン、トリ(n−ヘキシル)ホスフィ
ン、トリシクロヘキシルホスフィン、及び1,1−ビス(ジフェニルホスフィノ)フェロ
セン(略称:DPPF)等が挙げられる。
塩基として用いることができる物質としては、ナトリウム tert−ブトキシド等の有
機塩基や、炭酸カリウム等の無機塩基等を挙げることができる。この反応は溶液中で行う
ことが好ましく、用いることができる溶媒としては、トルエン、キシレン、ベンゼン等が
挙げられる。ただし、用いることができる触媒およびその配位子、塩基、溶媒はこれらに
限られるものでは無い。また、この反応は窒素やアルゴンなど不活性雰囲気下で行うこと
が好ましい。
また、合成スキーム(A−3)において、ウルマン反応を用いる場合について示す。金属
触媒としては銅触媒を用いることができ、具体的には、ヨウ化銅(I)、または酢酸銅(
II)が挙げられる。また、塩基として用いることができる物質としては、炭酸カリウム
等の無機塩基が挙げられる。
また、この反応は溶液中で行うことが好ましく、用いることができる溶媒としては、1,
3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリミジノン(DMPU)
、トルエン、キシレン、ベンゼン等が挙げられる。ただし、用いることができる触媒、塩
基、溶媒はこれらに限られるものでは無い。またこの反応は窒素やアルゴンなど不活性雰
囲気下で行うことが好ましい。
なお、ウルマン反応では、反応温度が100℃以上の方がより短時間かつ高収率で目的物
が得られるため、DMPU、キシレンなど沸点の高い溶媒を用いることが好ましい。また
、反応温度として、150℃以上より高い温度が更に好ましいため、より沸点の高いDM
PUを溶媒として用いることがより好ましい。
次に、合成スキーム(A−4)で示すように、アミン誘導体(a7)とハロゲン化アレー
ン(a8)とをカップリングさせることで、一般式(G2)で表される芳香族アミン誘導
体を得ることができる。
Figure 0006957582
なお、合成スキーム(A−4)において、Aは、O(酸素)またはS(硫黄)を表し、R
〜Rは、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、置換若しくは無置
換のフェニル基、または、置換若しくは無置換のビフェニル基のいずれかを表す。また、
αおよびαは、それぞれ独立に、置換または無置換のフェニレン基を表す。また、A
は、環を形成する炭素数14〜18の、置換または無置換の縮合芳香族炭化水素を表
す。また、Arは、環を形成する炭素数6〜13の、置換または無置換のアリール基を
表す。j、nは、それぞれ独立に0または1であり、pは、1または2である。また、X
は、ハロゲンを表し、反応性の高さから、好ましくは臭素またはヨウ素、より好ましく
はヨウ素とする。
このとき、p=1の場合はアミン誘導体(a7)をハロゲン化アレーン(a8)に対して
当量反応させ、p=2の場合はアミン誘導体(a7)をハロゲン化アレーン(a8)に対
して2当量反応させる。
合成スキーム(A−4)において、ハロゲン基を有するアリール化合物と、アミンを有す
るアリール化合物(1級アリールアミン化合物または2級アリールアミン化合物)とのカ
ップリング反応は様々な反応条件があるが、その一例として、塩基存在下にて金属触媒を
用いた合成方法を適用することができる。
なお、合成スキーム(A−4)において、合成スキーム(A−3)と同様に、ハートウィ
ッグ・ブッフバルト反応、ウルマン反応を用いることができる。
以上のようにして、本実施の形態の芳香族アミン誘導体(G2)を合成することができる
本実施の形態の芳香族アミン誘導体(G1)、または芳香族アミン誘導体(G2)は、短
波長の可視光の発光が可能であり、色純度の良い青色発光を得ることができるアミン誘導
体である。
また、本実施の形態の芳香族アミン誘導体(G1)、または芳香族アミン誘導体(G2)
を用いて発光素子を形成することにより、発光素子の特性を向上させることができる。
なお、本実施の形態は、他の実施の形態と自由に組み合わせることができる。
(実施の形態2)
本実施の形態では、実施の形態1で示した一般式(G3)、一般式(G9)で表される芳
香族アミン誘導体、及び一般式(G6)および一般式(G10)で表される芳香族アミン
誘導体について説明する。
下記一般式(G6)は、一般式(G3)で表される化合物において、R〜R、R
よびR10が水素原子であり、Arが実施の形態1で示した構造式(Ar2−1)であ
り、nが0であり、AがO(酸素)またはS(硫黄)である、芳香族アミン誘導体である
。また、下記一般式(G6)で表される芳香族アミン誘導体の特徴は、一般式(G3)中
のジベンゾフラニル基またはジベンゾチオフェニル基の4位で3級アミンを形成している
ことである。
Figure 0006957582
また、下記一般式(G10)は、一般式(G9)で表される化合物において、R〜R
、RおよびR10が水素原子であり、Arが実施の形態1で示した構造式(Ar2−
1)であり、nが0であり、Aは、O(酸素)またはS(硫黄)である、芳香族アミン誘
導体である。また、下記一般式(G10)における芳香族アミン誘導体の特徴は、一般式
(G9)中のジベンゾフラニル基またはジベンゾチオフェニル基の2位で3級アミンを形
成していることである。
Figure 0006957582
一般式(G6)および一般式(G10)で表される芳香族アミン誘導体は、共に高発光効
率、長寿命な発光材料であるが、ジベンゾフラニル基またはジベンゾチオフェニル基の4
位で3級アミンを形成している一般式(G6)で表される芳香族アミン誘導体のほうが、
ジベンゾフラニル基またはジベンゾチオフェニル基の2位で3級アミンを形成する一般式
(G10)で表される芳香族アミン誘導体よりも、色純度の良い青色を呈色するので好ま
しい。これは、3級アミンを形成するジベンゾフラニル基またはジベンゾチオフェニル基
の結合位置によって、発光材料分子の共役性の違いが生じるためである。そして、該発光
材料分子の共役性の違いが発光スペクトルのピーク位置を短波長側にシフトさせるためで
ある。
また、一般式(G6)、または一般式(G10)で表される芳香族アミン誘導体において
、AがS(硫黄)であるジベンゾチオフェニル基よりも、AがO(酸素)であるジベンゾ
フラニル基のほうが、発光スペクトルのピーク位置が短波長側に現れるため、色純度の良
い青色を呈色する。
つまり、一般式(G6)で表される芳香族アミン誘導体、または一般式(G10)で表さ
れる芳香族アミン誘導体のなかで、AがO(酸素)であり、ジベンゾフラニル基の4位で
3級アミンを形成している構造式(G6−1)の化合物が、最も色純度の高い青色を呈色
する。
Figure 0006957582
〈一般式(G6)で表される芳香族アミン誘導体の合成方法〉
高効率、長寿命であり、色純度の高い青色を呈色する一般式(G6)における合成方法と
しては、種々の反応を適用することができる。一つの例として、合成スキーム(A−5)
で得ることができる。
Figure 0006957582
合成スキーム(A−5)で示すように、2級芳香族アミン誘導体(a9)とハロゲン化ピ
レン(a10)とをカップリングさせることで、一般式(G6)で表される芳香族アミン
誘導体を得ることができる。なお、合成スキーム(A−5)において、AはO(酸素)ま
たはS(硫黄)を表す。Xは、ハロゲンを表し、反応性の高さから、好ましくは臭素ま
たはヨウ素、より好ましくはヨウ素とする。
合成スキーム(A−5)において、ハロゲン基を有するピレン化合物と、アミンを有する
アリール化合物(1級アリールアミン化合物、または2級アリールアミン化合物)とのカ
ップリング反応は様々な反応条件がある。実施の形態1と同様に塩基存在下にて金属触媒
を用いた合成方法であるハートウィッグ・ブッフバルト反応や、ウルマン反応を用いるこ
とができる。このとき、アミン誘導体(a9)をハロゲン化ピレン(a10)に対して2
当量反応させることで、一般式(G6)を合成することができる。
〈一般式(G11)で表される2級芳香族アミン誘導体(a9)の合成方法〉
ここで、合成スキーム(A−5)に示した2級芳香族アミン誘導体(a9)の合成方法を
、一般式(G11)を用いて説明する。一つの例として、合成スキーム(A−6)で得る
ことができる。
Figure 0006957582
なお、合成スキーム(A−6)において、Aは、O(酸素)またはS(硫黄)を表し、R
〜Rは、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、置換若しくは無置
換のフェニル基、または、置換若しくは無置換のビフェニル基のいずれかを表す。また、
αは、置換または無置換のフェニレン基を表す。また、Arは、環を形成する炭素数
6〜13の、置換または無置換のアリール基を表す。nは、0または1である。具体的に
は、実施の形態1で説明したものが挙げられる。また、Xは、ハロゲンを表し、反応性
の高さから、好ましくは臭素またはヨウ素、より好ましくはヨウ素とする。
合成スキーム(A−6)に示した反応は、ジベンゾフラン誘導体、またはジベンゾチオフ
ェン誘導体のハロゲン化物と、アミンを有するアリール化合物(1級アリールアミン化合
物、または2級アリールアミン化合物)とのカップリング反応である。このカップリング
反応は、様々な反応条件で行うことができる。その一例として、実施の形態1で説明した
ハートウィッグ・ブッフバルト反応や、ウルマン反応等の塩基存在下にて金属触媒を用い
た合成方法を適用することができる。
前記合成スキーム(A−5)で示したように、高効率、長寿命であり、色純度の高い青色
を呈色する一般式(G6)で表される芳香族アミン誘導体を得るためには、一般式(G1
1)で表される2級芳香族アミン誘導体が必要となる。さらに、一般式(G11)で表さ
れる2級芳香族アミン誘導体は、新規な物質であり、大変有用な化合物である。
Figure 0006957582
以上により、本実施の形態で示した化合物を用いることで、本発明の課題である有機EL
用青色発光材料として良好な、新規な芳香族アミン誘導体を提供することができる。また
、本実施の形態で示した新規な芳香族アミン誘導体を用いて発光素子を形成することによ
り、発光素子の特性を向上させることができる。
なお、本実施の形態は、他の実施の形態と自由に組み合わせることができる。
(実施の形態3)
本実施の形態では、実施の形態1で示した一般式(G4)で表される芳香族アミン誘導体
について説明する。特に、一般式(G4)中のαが上記構造式(α−2)である一般式
(G5)において、R〜R、RおよびR10が水素原子であり、Arが上記構造
式(Ar2−1)であり、nが0である一般式(G7)について説明する。さらに、一般
式(G4)のうちαが(α−1)であり、R〜R、RおよびR10が水素原子で
あり、Arが上記構造式(Ar2−1)であり、nが0である一般式(G8)で表され
る芳香族アミン誘導体についても説明する。
Figure 0006957582
Figure 0006957582
一般式(G7)の特徴としては、ジベンゾフラニル基またはジベンゾチオフェニル基が、
アミノ基に結合するフェニレン基のメタ位で結合していることである。また、一般式(G
8)の特徴は、ジベンゾフラニル基またはジベンゾチオフェニル基が、アミノ基に結合す
るフェニレン基のパラ位で結合していることである。なお、一般式(G7)、および一般
式(G8)中のAは、O(酸素)またはS(硫黄)である。
一般式(G7)、および一般式(G8)で表される芳香族アミン誘導体は、共に高効率、
長寿命な発光材料であるが、ジベンゾフラニル基またはジベンゾチオフェニル基が、フェ
ニレン基のメタ位で結合している一般式(G7)で表される芳香族アミン誘導体は、ジベ
ンゾフラニル基またはジベンゾチオフェニル基が、フェニレン基のパラ位で結合している
一般式(G8)で表される芳香族アミン誘導体よりも、発光スペクトルが短波長側にシフ
トするため、より色純度の高い青色を呈色することができる。
〈一般式(G7)で表される芳香族アミン誘導体の合成方法〉
一般式(G7)における合成方法としては、種々の反応を適用することができる。一つの
例として、合成スキーム(A−7)で得ることができる。
Figure 0006957582
合成スキーム(A−7)で示した反応は、実施の形態1で説明したように、ハロゲン基を
有するピレン化合物と、アミンを有するアリール化合物(1級アリールアミン化合物、ま
たは2級アリールアミン化合物)とのカップリング反応である。このカップリング反応は
、様々な反応条件で行うことができる。その一例として、実施の形態1で説明したハート
ウィッグ・ブッフバルト反応や、ウルマン反応等の塩基存在下にて金属触媒を用いた合成
方法を適用することができる。
合成スキーム(A−7)で示すように、2級芳香族アミン誘導体(a13)とハロゲン化
ピレン(a10)とをカップリングさせることで、一般式(G7)で表されるアミン誘導
体を得ることができる。このとき、2級芳香族アミン誘導体(a13)をハロゲン化ピレ
ン(a10)に対して2当量反応させることで、一般式(G7)を合成することができる
。また、この反応は溶液中で行うことが好ましく、用いることができる溶媒としては、実
施の形態1で説明した溶媒を用いることができる。さらに、この反応は窒素やアルゴンな
ど不活性雰囲気下で行うことが好ましい。Xは、ハロゲンを表し、反応性の高さから、
好ましくは臭素またはヨウ素、より好ましくはヨウ素とする。なお、合成スキーム(A−
7)において、AはO(酸素)またはS(硫黄)を表す。
(実施の形態4)
本実施の形態では、実施の形態1乃至3で示した芳香族アミン誘導体を用いて形成した発
光素子について説明する。
本実施の形態における発光素子は、陽極として機能する第1の電極、陰極として機能する
第2の電極、および第1の電極と第2の電極との間に設けられたEL層とから構成されて
いる。なお、本実施の形態における発光素子は、第1の電極の方が第2の電極よりも電位
が高くなるように、それぞれに電圧を印加したときに、発光が得られるものとする。
また、本実施の形態における発光素子のEL層は、陽極として機能する第1の電極側から
第1の層(正孔注入層)、第2の層(正孔輸送層)、第3の層(発光層)、第4の層(電
子輸送層)、第5の層(電子注入層)を含む構成とする。
本実施の形態における発光素子の構造を、図1を用いて説明する。基板101は、発光素
子の支持体として用いられる。基板101としては、例えばガラス、石英、プラスチック
などを用いることができる。また、可撓性基板を用いてもよい。可撓性基板とは、折り曲
げることができる(フレキシブル)基板のことであり、例えば、ポリカーボネート、ポリ
アリレート、ポリエーテルスルフォンからなるプラスチック基板等が挙げられる。また、
フィルム(ポリプロピレン、ポリエステル、ビニル、ポリフッ化ビニル、塩化ビニルなど
からなる)、無機蒸着フィルムを用いることもできる。
なお、上記基板101は、本実施の形態の発光素子を利用する製品である発光装置あるい
は電子機器中に残存させてもよいが、最終製品中に残存せず発光素子の作製工程における
支持体としての機能のみを有していてもよい。
基板101上に形成される第1の電極102には、仕事関数の大きい(具体的には4.0
eV以上)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることが好
ましい。具体的には、例えば、酸化インジウム−酸化スズ(ITO:Indium Ti
n Oxide)、珪素若しくは酸化珪素を含有した酸化インジウム−酸化スズ、酸化イ
ンジウム−酸化亜鉛(IZO:Indium Zinc Oxide)、酸化タングステ
ン、および酸化亜鉛を含有した酸化インジウム等が挙げられる。この他、金(Au)、白
金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(M
o)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、チタン(Ti
)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。但し、本実施の形
態においては、第1の電極102と接して形成されるEL層103のうちの第1の層11
1は、第1の電極102の仕事関数に関係なく正孔(ホール)注入が容易である複合材料
を用いて形成される為、電極材料として可能な材料(例えば、金属、合金、電気伝導性化
合物、およびこれらの混合物、その他、元素周期表の第1族または第2族に属する元素も
含む)であれば、あらゆる公知の材料を用いることができる。
これらの材料は、スパッタリング法により形成することができる。例えば、酸化インジウ
ム−酸化亜鉛(IZO)は、酸化インジウムに対し1〜10wt%の酸化亜鉛を加えたタ
ーゲットを、酸化タングステン、および酸化亜鉛を含有した酸化インジウムは、酸化イン
ジウムに対し酸化タングステンを0.5〜5wt%、酸化亜鉛を0.1〜1wt%含有し
たターゲットを用いることにより、スパッタリング法で形成することができる。その他、
真空蒸着法、塗布法、インクジェット法、スピンコート法などにより形成してもよい。
また、第1の電極102上に形成されるEL層103のうち、第1の電極102に接して
形成される第1の層111に用いる材料として、後述する複合材料を含む層を用いた場合
には、第1の電極102に用いる材料は、仕事関数の大小に関わらず、様々な金属、合金
、電気伝導性化合物、およびこれらの混合物などを用いることができる。例えば、アルミ
ニウム(Al)、銀(Ag)、アルミニウムを含む合金(AlSi)等も用いることがで
きる。
また、仕事関数の小さい材料である元素周期表の第1族または第2族に属する元素、すな
わちリチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg
)、カルシウム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれら
を含む合金(MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等
の希土類金属およびこれらを含む合金等を用いることもできる。
なお、アルカリ金属、アルカリ土類金属、およびこれらを含む合金を用いて第1の電極1
02を形成する場合には、真空蒸着法やスパッタリング法を用いることができる。さらに
、銀ペーストなどを用いる場合には、塗布法やインクジェット法などを用いることができ
る。
第1の電極102上に形成されるEL層103には、実施の形態1乃至3で示した芳香族
アミン誘導体の他に公知の材料を用いることができ、低分子系化合物および高分子系化合
物のいずれを用いることもできる。なお、EL層103を形成する物質には、有機化合物
のみから成るものだけでなく、無機化合物を一部に含む構成も含めるものとする。
EL層103は、例えば、正孔注入性の高い物質を含む正孔注入層と、正孔輸送性の高い
物質を含む正孔輸送層と、発光性物質を含む発光層と、電子輸送性の高い物質を含む電子
輸送層と、電子注入性の高い物質を含む電子注入層とを適宜組み合わせて積層することに
より形成される。
なお、図1(A)に示すEL層103は、第1の電極102側から第1の層(正孔注入層
)111、第2の層(正孔輸送層)112、第3の層(発光層)113、第4の層(電子
輸送層)114、および第5の層(電子注入層)115の順に積層されている。
第1の層111は、正孔注入性の高い物質を含む正孔注入層である。正孔注入性の高い物
質としては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ル
テニウム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化
物、銀酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。この他、
低分子の有機化合物としては、フタロシアニン(略称:HPc)、銅(II)フタロシ
アニン(略称:CuPc)等のフタロシアニン系の化合物が挙げられる。
また、低分子の有機化合物である4,4’,4’’−トリス(N,N−ジフェニルアミノ
)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メ
チルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4
,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニ
ル(略称:DPAB)、4,4’−ビス(N−{4−[N’−(3−メチルフェニル)−
N’−フェニルアミノ]フェニル}−N−フェニルアミノ)ビフェニル(略称:DNTP
D)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミ
ノ]ベンゼン(略称:DPA3B)、3−[N−(9−フェニルカルバゾール−3−イル
)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,
6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−
フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(
9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:P
CzPCN1)等の芳香族アミン化合物等も挙げられる。また、実施の形態1乃至3で示
した芳香族アミン誘導体を用いることもできる。
さらに、高分子化合物(オリゴマー、デンドリマー、ポリマー等)を用いることもできる
。例えば、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフ
ェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニ
ルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド]
(略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビ
ス(フェニル)ベンジジン](略称:Poly−TPD)などの高分子化合物が挙げられ
る。また、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)
(PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PS
S)等の酸を添加した高分子化合物を用いることもできる。
また、第1の層111として、正孔輸送性の高い物質にアクセプター性物質を含有させた
複合材料を用いることができる。なお、正孔輸送性の高い物質にアクセプター性物質を含
有させたものを用いることにより、電極の仕事関数に依らず電極を形成する材料を選ぶこ
とができる。つまり、第1の電極102として仕事関数の大きい材料だけでなく、仕事関
数の小さい材料を用いることができる。これらの複合材料は、正孔輸送性の高い物質とア
クセプター物質とを共蒸着することにより形成することができる。なお、本明細書中にお
いて、複合とは、単に2つの材料を混合させるだけでなく、複数の材料を混合することに
よって材料間での電荷の授受が行われ得る状態になることを言う。
複合材料に用いる有機化合物としては、芳香族アミン化合物、カルバゾール誘導体、芳香
族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)など、種々の化合
物を用いることができる。なお、複合材料に用いる有機化合物としては、正孔輸送性の高
い有機化合物であることが好ましい。具体的には、10−6cm/Vs以上の正孔移動
度を有する物質であることが好ましい。但し、電子よりも正孔の輸送性の高い物質であれ
ば、これら以外のものを用いてもよい。以下に、複合材料に用いることのできる有機化合
物を具体的に列挙する。
複合材料に用いることのできる有機化合物としては、例えば、MTDATA、TDATA
、DPAB、DNTPD、DPA3B、PCzPCA1、PCzPCA2、PCzPCN
1、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:
NPB)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’
−ビフェニル]−4,4’−ジアミン(略称:TPD)、4−フェニル−4’−(9−フ
ェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)等の芳香族ア
ミン化合物や、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、1,3
,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9−
[4−(N−カルバゾリル)フェニル]−10−フェニルアントラセン(略称:CzPA
)、9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−
カルバゾール(略称:PCzPA)、1,4−ビス[4−(N−カルバゾリル)フェニル
]−2,3,5,6−テトラフェニルベンゼン等のカルバゾール誘導体を挙げることがで
きる。
また、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−
BuDNA)、2−tert−ブチル−9,10−ジ(1−ナフチル)アントラセン、9
,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、2−t
ert−ブチル−9,10−ビス(4−フェニルフェニル)アントラセン(略称:t−B
uDBA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、9,10−
ジフェニルアントラセン(略称:DPAnth)、2−tert−ブチルアントラセン(
略称:t−BuAnth)、9,10−ビス(4−メチル−1−ナフチル)アントラセン
(略称:DMNA)、9,10−ビス[2−(1−ナフチル)フェニル]−2−tert
−ブチルアントラセン、9,10−ビス[2−(1−ナフチル)フェニル]アントラセン
、2,3,6,7−テトラメチル−9,10−ジ(1−ナフチル)アントラセン等の芳香
族炭化水素化合物を挙げることができる。
さらに、2,3,6,7−テトラメチル−9,10−ジ(2−ナフチル)アントラセン、
9,9’−ビアントリル、10,10’−ジフェニル−9,9’−ビアントリル、10,
10’−ビス(2−フェニルフェニル)−9,9’−ビアントリル、10,10’−ビス
[(2,3,4,5,6−ペンタフェニル)フェニル]−9,9’−ビアントリル、アン
トラセン、テトラセン、ルブレン、ペリレン、2,5,8,11−テトラ(tert−ブ
チル)ペリレン、ペンタセン、コロネン等の芳香族炭化水素化合物や、4,4’−ビス(
2,2−ジフェニルビニル)ビフェニル(略称:DPVBi)、9,10−ビス[4−(
2,2−ジフェニルビニル)フェニル]アントラセン(略称:DPVPA)等のビニル基
を有している芳香族炭化水素化合物も挙げることができる。また、実施の形態1乃至3で
示した芳香族アミン誘導体を用いることもできる。
また、複合材料に用いることができるアクセプター性物質としては、7,7,8,8−テ
トラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、
クロラニル等の有機化合物や、遷移金属酸化物を挙げることができる。また、元素周期表
における第4族〜第8族に属する金属の酸化物を挙げることができる。具体的には、酸化
バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステ
ン、酸化マンガンおよび酸化レニウムは電子受容性が高いため好ましい。中でも特に、酸
化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。
なお、上述したPVK、PVTPA、PTPDMA、Poly−TPD等の高分子化合物
と、上述したアクセプター性物質を用いて複合材料を形成し、第1の層111に用いても
よい。さらに、実施の形態1乃至3で示した芳香族アミン誘導体も上述したアクセプター
性物質と組み合わせて複合材料を形成し、第1の層111に用いることもできる。
第2の層112は、正孔輸送性の高い物質を含む層である。正孔輸送性の高い物質として
は、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル
(略称:NPB)やN,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[
1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4−フェニル−4’−
(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4
,4’−ビス[N−(9,9−ジメチルフルオレン−2−イル)−N−フェニルアミノ]
ビフェニル(略称:DFLDPBi)、4,4’,4’’−トリス(N,N−ジフェニル
アミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(
3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA
)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N―フェニ
ルアミノ]ビフェニル(略称:BSPB)などの芳香族アミン化合物等を用いることがで
きる。ここに述べた物質は、主に10−6cm/Vs以上の正孔移動度を有する物質で
ある。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いても
よい。また、実施の形態1〜実施の形態3で示した芳香族アミン誘導体も用いることがで
きる。なお、正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からな
る層が二層以上積層したものとしてもよい。
また、第2の層112には、CBP、CzPA、PCzPAのようなカルバゾール誘導体
や、t−BuDNA、DNA、DPAnthのようなアントラセン誘導体を用いても良い
なお、第2の層112として、ポリ(N−ビニルカルバゾール)(略称:PVK)やポリ
(4−ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いること
もできる。
第3の層113は、発光性の高い物質を含む発光層である。該発光層は、発光性の高い物
質を主成分とする構成、または発光性の高い物質を他の物質に分散させた構成とすること
ができる。本実施の形態では、該発光性の高い物質として、実施の形態1乃至3で示した
芳香族アミン誘導体を用いる。
実施の形態1乃至3で示した芳香族アミン誘導体を他の物質に分散させる場合には、実施
の形態1乃至3で示した芳香族アミン誘導体の割合が、質量比で全体の10%以下になる
ようにするのが好ましい。また、発光性の物質を分散させる物質としては、公知の物質を
用いることができるが、発光性の物質(実施の形態1乃至3で示した芳香族アミン誘導体
)よりも最低空軌道準位(LUMO準位)が浅く(絶対値が小さく)、最高被占有軌道準
位(HOMO準位)が深い(絶対値が大きい)物質を用いることが好ましい。
具体的には、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、ト
リス(4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq)、
ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq
)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム
(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq
)、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPB
O)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBT
Z)などの金属錯体を用いることができる。
また、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4
−オキサジアゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブチルフェ
ニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、3
−(ビフェニル−4−イル)−4−フェニル−5−(4−tert−ブチルフェニル)−
1,2,4−トリアゾール(略称:TAZ)、2,2’,2’’−(1,3,5−ベンゼ
ントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、
バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)などの
複素環化合物を用いることができる。
その他、9−[4−(N−カルバゾリル)フェニル]−10−フェニルアントラセン(略
称:CzPA)、9−[4−(3,6−ジフェニル−N−カルバゾリル)フェニル]−1
0−フェニルアントラセン(略称:DPCzPA)、9,10−ビス(3,5−ジフェニ
ルフェニル)アントラセン(略称:DPPA)、9,10−ジ(2−ナフチル)アントラ
セン(略称:DNA)、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラ
セン(略称:t−BuDNA)、9,9’−ビアントリル(略称:BANT)、9,9’
−(スチルベン−3,3’−ジイル)ジフェナントレン(略称:DPNS)、9,9’−
(スチルベン−4,4’−ジイル)ジフェナントレン(略称:DPNS2)、3,3’,
3’’−(ベンゼン−1,3,5−トリイル)トリピレン(略称:TPB3)などの縮合
芳香族化合物を用いることもできる。
また、発光物質を分散させるための物質は複数種用いることができる。例えば、結晶化を
抑制するためにルブレン等の結晶化を抑制する物質をさらに添加してもよい。さらに、発
光物質へのエネルギー移動をより効率良く行うためにNPB、あるいはAlq等を添加し
てもよい。このように、発光物質を他の物質に分散させた構成とすることで、第3の層1
13の結晶化を抑制することができる。さらに、発光性の高い物質の濃度が高いことによ
る濃度消光を抑制することができる。
また、上述した物質のうち、特に電子輸送性の物質に発光性の物質を分散させて第3の層
113を形成することがより好ましい。具体的には、上述した金属錯体、複素環化合物、
縮合芳香族化合物のうちのCzPA、DNA、t−BuDNA、さらには、のちに示す第
4の層114に用いることのできる物質として挙げられる高分子化合物を用いることもで
きる。
なお、第3の層113は2層以上の複数層で形成することもできる。例えば、第1の発光
層と第2の発光層を正孔輸送層側から順に積層して第3の層113とする場合、第1の発
光層のホスト材料として正孔輸送性を有する物質を用い、第2の発光層のホスト材料とし
て電子輸送性を有する物質を用いることができる。より好ましくは第1の発光層のホスト
材料は電子輸送性よりも正孔輸送性の高い材料を用い、第2の発光層のホスト材料は正孔
輸送性よりも電子輸送性の高い材料が好ましい。上記の構成とすることで第1の発光層と
第2の発光層との間が発光領域となり、より高効率な素子が得られる。
以上、説明した第3の層113は、複数の材料で構成されている場合、真空蒸着法での共
蒸着、または混合溶液を用いた方法としてインクジェット法、スピンコート法、若しくは
ディップコート法などを用いて作製することができる。
第4の層114は、電子輸送性の高い物質を含む電子輸送層である。第4の層114には
、例えば、低分子の有機化合物として、Alq、Almq、BeBq、BAlq、Z
nq、ZnPBO、ZnBTZなどの金属錯体等を用いることができる。また、金属錯体
以外にも、PBD、OXD−7、TAZ、TPBI、BPhen、BCPなどの複素環化
合物を用いることができる。ここに述べた物質は、主に10−6cm/Vs以上の電子
移動度を有する物質である。なお、正孔よりも電子の輸送性の高い物質であれば、上記以
外の物質を電子輸送層として用いてもよい。また、電子輸送層は、単層のものだけでなく
、上記物質からなる層が2層以上積層したものとしてもよい。
また、第4の層114には、高分子化合物を用いることもできる。例えば、ポリ[(9,
9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)]
(略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−c
o−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)などを用い
ることができる。
また、第5の層115は、電子注入性の高い物質を含む電子注入層である。第5の層11
5には、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(C
aF)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いるこ
とができる。その他、電子輸送性を有する物質にアルカリ金属、アルカリ土類金属、また
はそれらの化合物を含有させたもの、具体的にはAlq中にマグネシウム(Mg)を含有
させたもの等を用いてもよい。なお、この場合には、第2の電極104からの電子注入を
より効率良く行うことができる。
第2の電極104には、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電
気伝導性化合物、およびこれらの混合物などを用いることが好ましい。このような陰極材
料の具体例としては、元素周期表の第1族または第2族に属する元素、すなわちリチウム
(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウ
ム(Ca)、ストロンチウム(Sr)等のアルカリ土類金属、およびこれらを含む合金(
MgAg、AlLi)、ユーロピウム(Eu)、イッテルビウム(Yb)等の希土類金属
およびこれらを含む合金等が挙げられる。
なお、アルカリ金属、アルカリ土類金属、これらを含む合金を用いて第2の電極104を
形成する場合には、真空蒸着法やスパッタリング法を用いることができる。また、銀ペー
ストなどを用いる場合には、塗布法やインクジェット法などを用いることができる。
なお、第5の層115を設けることにより、仕事関数の大小に関わらず、Al、Ag、I
TO、珪素若しくは酸化珪素を含有した酸化インジウム−酸化スズ等様々な導電性材料を
用いて第2の電極104を形成することができる。これらの導電性材料は、スパッタリン
グ法やインクジェット法、スピンコート法等を用いて成膜することができる。
また、第1の層(正孔注入層)111、第2の層(正孔輸送層)112、第3の層(発光
層)113、第4の層(電子輸送層)114、および第5の層(電子注入層)115が順
次積層して形成されるEL層103の作製方法としては、乾式法、湿式法を問わず、種々
の方法を用いることができる。例えば、真空蒸着法、インクジェット法またはスピンコー
ト法など用いることができる。なお、各層ごとに異なる形成方法を用いてもよい。
第2の電極104についても、スパッタリング法や真空蒸着法などの乾式法だけでなく、
金属材料のペーストを用いて湿式法により形成することができる。
またそれぞれ第1の電極102、第1の層(正孔注入層)111、第2の層(正孔輸送層
)112、第3の層(発光層)113間は主に正孔を流すため、隣接する層間のキャリア
注入障壁を小さくするためにHOMO準位(金属の場合は仕事関数)が同じか同程度であ
ることが望ましい。同様に、それぞれ第3の層(発光層)113、第4の層(電子輸送層
)114、第5の層(電子注入層)115、第2の電極104間は、主に電子を流すため
、隣接する層間のキャリア注入障壁を小さくするためにLUMO準位(金属の場合は仕事
関数)が同じか同程度であることが望ましい。好ましくはその差は0.2eV以内、より
好ましくは0.1eV以内であることが好ましい。
また、あえてそれぞれ第2の層(正孔輸送層)112、第3の層(発光層)113間のH
OMO準位、第3の層(発光層)113、第4の層(電子輸送層)114間のLUMO準
位の差を大きくすることで、発光層でのキャリアを閉じこめ、より効率の良い発光素子と
なり好ましい。ただしこの場合、障壁が大きすぎると駆動電圧が高くなり、素子への負担
となるため、好ましくはその差は0.4eV以内、より好ましくは0.2eV以内である
ことが好ましい。
本実施の形態の発光素子は、第1の電極102と第2の電極104との間に生じた電位差
により電流が流れ、EL層103において正孔と電子とが再結合することにより、発光性
の有機化合物は励起状態を形成し、その励起状態から基底状態に戻る際の緩和エネルギー
として発光する。そして、この発光は、第1の電極102または第2の電極104のいず
れか一方または両方を通って外部に取り出される。従って、第1の電極102または第2
の電極104のいずれか一方、または両方が透光性を有する電極とする必要がある。
なお、第1の電極102のみが透光性を有する電極である場合には、図2(A)に示すよ
うに、EL層103で生じた発光は第1の電極102を通って基板101側から取り出さ
れる。また、第2の電極104のみが透光性を有する電極である場合には、図2(B)に
示すように、EL層103で生じた発光は第2の電極104を通って基板101と逆側か
ら取り出される。さらに、第1の電極102および第2の電極104がいずれも透光性を
有する電極である場合には、図2(C)に示すように、EL層103で生じた発光は第1
の電極102および第2の電極104を通って、基板101側および基板101と逆側の
両方から取り出される。
なお、第1の電極102と第2の電極104との間に設けられる層の構成は、上記のもの
には限定されない。少なくとも正孔輸送層である第2の層112、および発光層である第
3の層113を有する構成であれば、上記以外のものでもよい。
また、図1(B)に示すように、基板101上に陰極として機能する第2の電極104、
EL層103、陽極として機能する第1の電極102が順次積層された構造としてもよい
。なお、この場合のEL層103は、第2の電極104上に第5の層115、第4の層1
14、第3の層113、第2の層112、第1の層111、第1の電極102が順次積層
された構造となる。
なお、本実施の形態の発光素子を用いることで、パッシブマトリクス型の発光装置や、薄
膜トランジスタ(TFT)によって発光素子の駆動が制御されたアクティブマトリクス型
の発光装置を作製することができる。
なお、アクティブマトリクス型の発光装置を作製する場合におけるTFTの構造は、特に
限定されない。例えば、スタガ型や逆スタガ型のTFTを適宜用いることができる。また
、TFT基板に形成される駆動用回路についても、N型およびP型のTFTからなるもの
でもよいし、N型のTFTまたはP型のTFTのいずれか一方のみからなるものであって
もよい。さらに、TFTに用いられる半導体膜の結晶性についても特に限定されない。非
晶質半導体膜を用いてもよいし、結晶性半導体膜を用いてもよい。
以上より、本実施の形態で示した発光素子は、発光物質として実施の形態1乃至3の芳香
族アミン誘導体を含んで形成されることから、素子効率が向上し、且つ長寿命の発光素子
とすることができる。
(実施の形態5)
本実施の形態は、複数の発光ユニット(EL層とも記す)を積層した構成の発光素子(以
下、積層型素子という。)の態様について、図3を参照して説明する。この発光素子は、
第1の電極と第2の電極との間に、複数の発光ユニットを有する積層型発光素子である。
各発光ユニットの構成としては、実施の形態4で示した構成と同様な構成を用いることが
できる。つまり、実施の形態4で示した発光素子は、1つの発光ユニットを有する発光素
子である。本実施の形態では、複数の発光ユニットを有する発光素子について説明する。
図3(A)において、第1の電極321と第2の電極322との間には、第1の発光ユニ
ット311と第2の発光ユニット312が積層されている。第1の電極321と第2の電
極322は実施の形態4で説明したものを適用することができる。また、第1の発光ユニ
ット311と第2の発光ユニット312は同じ構成であっても、異なる構成であってもよ
く、該構成は実施の形態4と同様の構成とすることができる。
電荷発生層313は、第1の電極321と第2の電極322に電圧を印加したときに、一
方の側の発光ユニットに電子を注入し、他方の側の発光ユニットに正孔を注入する層であ
る。つまり、正孔輸送性の高い有機化合物と電子受容体(アクセプター)とを含む構成で
あっても、電子輸送性の高い有機化合物と電子供与体(ドナー)とを含む構成であっても
、単層でも複数の層を積層した構成であってもよい。複数の層を積層した構成としては、
正孔を注入する層と電子を注入する層とを積層する構成であることが好ましい。
正孔を注入する層としては、酸化モリブデン、酸化バナジウム、酸化レニウム、酸化ルテ
ニウム等の半導体や絶縁体を用いることができる。あるいは、正孔輸送性の高い物質に、
アクセプター性物質が添加された構成であってもよい。正孔輸送性の高い物質とアクセプ
ター性物質を含む層は、アクセプター性物質として、7,7,8,8−テトラシアノ−2
,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)や、酸化バナジウ
ムや酸化モリブデンや酸化タングステン等の金属酸化物を含む。正孔輸送性の高い物質と
しては、芳香族アミン化合物、カルバゾール誘導体、芳香族炭化水素、高分子化合物、オ
リゴマー、デンドリマー、ポリマーなど、種々の化合物を用いることができる。なお、実
施の形態1乃至実施の形態3で示した本発明の芳香族アミン誘導体も同様に用いることが
できる。なお、正孔輸送性の高い物質としては、正孔移動度が10−6cm/Vs以上
であるものを適用することが好ましい。但し、電子よりも正孔の輸送性の高い物質であれ
ば、これら以外のものを用いてもよい。正孔輸送性の高い物質とアクセプター性物質を含
む複合材料は、キャリア注入性、キャリア輸送性に優れているため、低電圧駆動、低電流
駆動を実現することができる。
電子を注入する層としては、酸化リチウム、フッ化リチウム、炭酸セシウム等の絶縁体や
半導体を用いることができる。あるいは、電子輸送性の高い物質に、ドナー性物質が添加
された構成であってもよい。ドナー性物質としては、アルカリ金属またはアルカリ土類金
属または希土類金属または元素周期表における第13族に属する金属およびその酸化物、
炭酸塩を用いることができる。具体的には、リチウム(Li)、セシウム(Cs)、マグ
ネシウム(Mg)、カルシウム(Ca)、イッテルビウム(Yb)、インジウム(In)
、酸化リチウム、炭酸セシウムなどを用いることが好ましい。また、テトラチアナフタセ
ンのような有機化合物をドナー性物質として用いてもよい。電子輸送性の高い物質として
は、実施の形態1乃至実施の形態3で示した材料を用いることができる。なお、電子輸送
性の高い物質としては、電子移動度が10−6cm/Vs以上であるものを適用するこ
とが好ましい。但し、正孔よりも電子の輸送性の高い物質であれば、これら以外のものを
用いてもよい。電子輸送性の高い物質とドナー性物質とを有する複合材料は、キャリア注
入性、キャリア輸送性に優れているため、低電圧駆動、低電流駆動を実現することができ
る。
また、電荷発生層313として、実施の形態4で示した電極材料を用いることもできる。
例えば、正孔輸送性の高い物質と金属酸化物を含む層と透明導電膜とを組み合わせて形成
しても良い。なお、光取り出し効率の点から、電荷発生層は透光性の高い層とすることが
好ましい。
いずれにしても、第1の発光ユニット311と第2の発光ユニット312に挟まれる電荷
発生層313は、第1の電極321と第2の電極322に電圧を印加したときに、一方の
側の発光ユニットに電子を注入し、他方の側の発光ユニットに正孔を注入するものであれ
ば良い。例えば、第1の電極の電位の方が第2の電極の電位よりも高くなるように電圧を
印加した場合、電荷発生層313は、第1の発光ユニット311に電子を注入し、第2の
発光ユニット312に正孔を注入するものであればいかなる構成でもよい。
本実施の形態では、2つの発光ユニットを有する発光素子について説明したが、図3(B
)に示すように、3つ以上の発光ユニットを積層した発光素子についても、同様に適用す
ることが可能である。本実施の形態に係る発光素子のように、一対の電極間に複数の発光
ユニットを電荷発生層で仕切って配置することで、電流密度を低く保ったまま、高輝度領
域での発光が可能である。電流密度を低く保てるため、長寿命素子を実現できる。また、
照明を応用例とした場合は、電極材料の抵抗による電圧降下を小さくできるので、大面積
での均一発光が可能となる。また、低電圧駆動が可能で消費電力が低い発光装置を実現す
ることができる。
また、それぞれの発光ユニットの発光色を異なるものにすることで、発光素子全体として
、所望の色の発光を得ることができる。例えば、2つの発光ユニットを有する発光素子に
おいて、第1の発光ユニットの発光色と第2の発光ユニットの発光色を補色の関係になる
ようにすることで、発光素子全体として白色発光する発光素子を得ることも可能である。
なお、補色とは、混合すると無彩色になる色同士の関係をいう。つまり、補色の関係にあ
る色を発光する物質から得られた光を混合すると、白色発光を得ることができる。また、
3つの発光ユニットを有する発光素子の場合でも同様であり、例えば、第1の発光ユニッ
トの発光色が赤色であり、第2の発光ユニットの発光色が緑色であり、第3の発光ユニッ
トの発光色が青色である場合、発光素子全体としては、白色発光を得ることができる。
なお、本実施の形態は、他の実施の形態と適宜組み合わせることが可能である。
(実施の形態6)
本実施の形態では、画素部に実施の形態4または実施の形態5の発光素子を有する発光装
置について図4を用いて説明する。なお、図4(A)は、発光装置を示す上面図、図4(
B)は図4(A)をA−A’およびB−B’で切断した断面図である。
図4(A)において、点線で示された401は駆動回路部(ソース側駆動回路)、402
は画素部、403は駆動回路部(ゲート側駆動回路)である。また、404は封止基板、
405はシール材であり、シール材405で囲まれた内側は、図4(B)に示すように空
間407になっている。
なお、引き回し配線408はソース側駆動回路401、およびゲート側駆動回路403に
入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブル
プリントサーキット)409からビデオ信号、クロック信号、スタート信号、リセット信
号等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリン
ト配線基板(PWB)が取り付けられていても良い。また、本明細書における発光装置に
は、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含
むものとする。
次に、断面構造について図4(B)を用いて説明する。素子基板410上には駆動回路部
、および画素部が形成されているが、ここでは、駆動回路部であるソース側駆動回路40
1と、画素部402中の一つの画素が示されている。なお、ソース側駆動回路401はN
チャネル型TFT423とPチャネル型TFT424とを組み合わせたCMOS回路が形
成される。また、駆動回路は、種々のCMOS回路、PMOS回路もしくはNMOS回路
で形成しても良い。本実施の形態では、基板上に駆動回路を形成したドライバ一体型を示
すが、必ずしもその必要はなく、駆動回路を基板上ではなく外部に形成することもできる
また、画素部402はスイッチング用TFT411と、電流制御用TFT412とそのド
レインに電気的に接続された第1の電極413とを含む複数の画素により形成される。な
お、第1の電極413の端部を覆って絶縁物414が形成される。
絶縁物414として、光の照射によってエッチャントに不溶解性となるネガ型、または光
の照射によってエッチャントに溶解性となるポジ型の感光性材料を用いることができる。
また、被覆性を良好なものとするため、絶縁物414の上端部または下端部に曲面が形成
されるようにするのが好ましい。例えば、絶縁物414の材料としてポジ型の感光性アク
リルを用いることで、絶縁物414の上端部のみに曲率半径(0.2μm〜3μm)を有
する曲面を持たせることができる。
第1の電極413上には、EL層416、および第2の電極417がそれぞれ形成される
。ここで、第1の電極413に用いる材料としては、さまざまな金属、合金、電気伝導性
化合物、およびこれらの混合物を用いることができる。なお、具体的な材料としては、実
施の形態4において第1の電極に用いることができるとして示した材料を用いることがで
きるものとする。
また、EL層416は、蒸着マスクを用いた蒸着法、インクジェット法、スピンコート法
等の種々の方法によって形成される。EL層416は、実施の形態4または実施の形態5
で示した構成を有している。また、EL層416を構成する他の材料としては、低分子化
合物、または高分子化合物(オリゴマー、デンドリマーを含む)であっても良い。また、
EL層に用いる材料としては、有機化合物だけでなく、無機化合物を用いてもよい。
また、第2の電極417に用いる材料としては、さまざまな金属、合金、電気伝導性化合
物、およびこれらの混合物を用いることができる。第2の電極417を陰極として用いる
場合には、その中でも、仕事関数の小さい(仕事関数3.8eV以下)金属、合金、電気
伝導性化合物、およびこれらの混合物などを用いることが好ましい。例えば、元素周期表
の第1族または第2族に属する元素、すなわちリチウム(Li)やセシウム(Cs)等の
アルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(S
r)等のアルカリ土類金属、およびこれらを含む合金(MgAg、AlLi)等が挙げら
れる。
なお、EL層416で生じた光が第2の電極417を透過する構成とする場合には、第2
の電極417として、膜厚を薄くした金属薄膜と、透明導電膜(酸化インジウム−酸化ス
ズ(ITO)、珪素若しくは酸化珪素を含有した酸化インジウム−酸化スズ、酸化インジ
ウム−酸化亜鉛(IZO)、酸化タングステン、および酸化亜鉛を含有した酸化インジウ
ム等)との積層を用いることも可能である。
さらに、シール材405で封止基板404を素子基板410と貼り合わせることにより、
素子基板410、封止基板404、およびシール材405で囲まれた空間407に発光素
子418が備えられた構造になっている。なお、空間407には、充填材が充填されてお
り、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材405で充填され
る場合もある。
なお、シール材405にはエポキシ系樹脂を用いるのが好ましい。また、これらの材料は
できるだけ水分や酸素を透過しない材料であることが望ましい。また、封止基板404に
用いる材料としてガラス基板や石英基板の他、FRP(Fiberglass−Rein
forced Plastics)、PVF(ポリビニルフロライド)、ポリエステルま
たはアクリル等からなるプラスチック基板を用いることができる。
以上のようにして、実施の形態4または実施の形態5で説明した発光素子を有するアクテ
ィブマトリクス型の発光装置を得ることができる。
また、実施の形態4または実施の形態5で説明した発光素子は、上述したアクティブマト
リクス型の発光装置のみならずパッシブマトリクス型の発光装置に用いることもできる。
図5に上記実施の形態で示した発光素子を用いたパッシブマトリクス型の発光装置の斜視
図および断面図を示す。なお、図5(A)は、発光装置を示す斜視図、図5(B)は図5
(A)をX−Yで切断した断面図である。
図5において、基板501上の第1の電極502と第2の電極503との間にはEL層5
04が設けられている。第1の電極502の端部は絶縁層505で覆われている。そして
、絶縁層505上には隔壁層506が設けられている。隔壁層506の側壁は、基板面に
近くなるに伴って、一方の側壁と他方の側壁との間隔が狭くなるような傾斜を有する。つ
まり、隔壁層506の短辺方向の断面は、台形状であり、底辺(図5(B)において絶縁
層505と接する辺)の方が上辺(図5(B)において、絶縁層505と接しない辺)よ
りも短い。このように、隔壁層506を設けることで、静電気等に起因した発光素子の不
良を防ぐことができる。
以上により、実施の形態4または5の発光素子を有するパッシブマトリクス型の発光装置
を得ることができる。
なお、本実施の形態で示した発光装置(アクティブマトリクス型、パッシブマトリクス型
)は、いずれも上記実施の形態で示した発光効率の高く、長寿命の発光素子を用いて形成
されることから、消費電力が低減され、信頼性の高い発光装置を得ることができる。
なお、本実施の形態は、他の実施の形態に示した構成を適宜組み合わせて用いることがで
きることとする。
(実施の形態7)
本実施の形態では、実施の形態6に示す発光装置をその一部に含む電子機器、および照明
装置について説明する。電子機器としては、ビデオカメラ、デジタルカメラ等のカメラ、
ゴーグル型ディスプレイ、ナビゲーションシステム、音響再生装置(カーオーディオ、オ
ーディオコンポ等)、コンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ
、携帯電話、携帯型ゲーム機または電子書籍等)、記録媒体を備えた画像再生装置(具体
的には、Digital Versatile Disc(DVD)等の記録媒体を再生
し、その画像を表示しうる表示装置を備えた装置)などが挙げられる。これらの電子機器
の具体例を図6に示す。
図6(A)は本発明の一態様に係るテレビ装置であり、筐体611、支持台612、表示
部613、スピーカー部614、ビデオ入力端子615等を含む。このテレビ装置におい
て、表示部613には、本発明の発光装置を適用することができる。本発明の発光装置は
、高い発光効率が得られるという特徴を有していることから、本発明の発光装置を適用す
ることで消費電力の低減されたテレビ装置を得ることができる。
図6(B)は本発明の一態様に係るコンピュータであり、本体621、筐体622、表示
部623、キーボード624、外部接続ポート625、ポインティングデバイス626等
を含む。このコンピュータにおいて、表示部623には、本発明の発光装置を適用するこ
とができる。本発明の発光装置は、高い発光効率が得られるという特徴を有していること
から、本発明の発光装置を適用することで消費電力の低減されたコンピュータを得ること
ができる。
図6(C)は本発明の一態様に係る携帯電話であり、本体631、筐体632、表示部6
33、音声入力部634、音声出力部635、操作キー636、外部接続ポート637、
アンテナ638等を含む。この携帯電話において、表示部633には、本発明の発光装置
を適用することができる。本発明の発光装置は、高い発光効率が得られるという特徴を有
していることから、本発明の発光装置を適用することで消費電力の低減された携帯電話を
得ることができる。
図6(D)は本発明の一態様に係るカメラであり、本体641、表示部642、筐体64
3、外部接続ポート644、リモコン受信部645、受像部646、バッテリー647、
音声入力部648、操作キー649、接眼部650等を含む。このカメラにおいて、表示
部642には、本発明の発光装置を適用することができる。本発明の発光装置は、高い発
光効率が得られるという特徴を有していることから、本発明の発光装置を適用することで
消費電力の低減されたカメラを得ることができる。
以上のように、本発明の一態様の発光装置の適用範囲は極めて広く、この発光装置をあら
ゆる分野の電子機器に適用することが可能である。本発明の発光装置を用いることにより
、消費電力の低減された電子機器を得ることができる。
また、本発明の一態様の発光装置は、照明装置として用いることもできる。図7は、上記
実施の形態を適用して形成される発光装置を、室内の照明装置701として用いた例であ
る。上記実施の形態で示した発光装置は大面積化も可能であるため、大面積の照明装置と
して用いることができる。また、上記実施の形態で示した発光装置は、卓上照明器具70
0として用いることも可能である。なお、照明器具には天井固定型の照明器具、卓上照明
器具の他にも、壁掛け型の照明器具、車内用照明、誘導灯なども含まれる。上記実施の形
態を適用して形成される発光装置は、長寿命な発光素子を有しているため、長寿命な照明
装置として用いることが可能となる。
なお、本実施の形態は、他の実施の形態に示した構成を適宜組み合わせて用いることがで
きることとする。
本実施例では、実施の形態2で示した構造式(G6−1)で表されるN,N’−ビス(ジ
ベンゾフラン−4−イル)−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:
1,6FrAPrn−II)を製造する例を示す。
Figure 0006957582
[ステップ1:N−(ジベンゾフラン−4−イル)−N−フェニル−アミン(略称:Fr
A−II)の合成方法]
4−ヨードジベンゾフラン4.5g(15.4mmol)、ナトリウム tert−ブト
キシド4.5g(4.6mmol)を300mL三口フラスコに入れ、フラスコ内を窒素
置換した。この混合物にトルエン98.0mL、アニリン2.8mL(19.1mmol
)、トリ(tert−ブチル)ホスフィンの10%ヘキサン溶液0.3mLを加えた。
この混合物を60℃にし、ビス(ジベンジリデンアセトン)パラジウム(0)54.1m
g(0.1mmol)を加え、80℃にして6.5時間攪拌した。攪拌後、フロリジール
(和光純薬工業株式会社、カタログ番号:540−00135)、セライト(和光純薬工
業株式会社、カタログ番号:531−16855)、アルミナを通して吸引ろ過し、ろ液
を得た。
得られたろ液を濃縮し、固体を得た。得られた固体を、シリカゲルカラムクロマトグラフ
ィー(展開溶媒はヘキサン:トルエン=5:1)により精製し、得られたフラクションを
濃縮し、目的の白色固体を3.3g、収率84%で得た。上記ステップ1の合成スキーム
を、以下(B1−1)に示す。
Figure 0006957582
核磁気共鳴法(NMR)によって、この化合物が目的物であるN−(ジベンゾフラン−4
−イル)−N−フェニル−アミン(略称:FrA−II)であることを確認した。
得られた化合物のH NMRデータを以下に示す。
H NMR(CDCl,300MHz):δ=6.20(s、1H)、6.98−7
.03(m、1H)、7.21−7.59(m、10H)、7.95(d、J=7.8H
z、1H)
また、H NMRチャートを図8(A)、(B)に示す。なお、図8(B)は、図8(
A)における6.00ppm〜8.25ppmの範囲を拡大して表したチャートである。
[ステップ2:N,N’−ビス(ジベンゾフラン−4−イル)−N,N’−ジフェニル−
ピレン−1,6−ジアミン(略称:1,6FrAPrn−II)の合成方法]
1,6−ジブロモピレン0.8g(2.1mmol)、N−(ジベンゾフラン−4−イル
)−N−フェニル−アミン1.1g(4.2mmol)、ナトリウム tert−ブトキ
シド0.6g(6.2mmol)を50mL三口フラスコに入れ、フラスコ内を窒素置換
した。この混合物にトルエン20.0mL、トリ(tert−ブチル)ホスフィンの10
%ヘキサン溶液0.3mLを加えた。
この混合物を60℃にし、ビス(ジベンジリデンアセトン)パラジウム(0)46.7m
g(0.1mmol)を加え、80℃にして3.0時間攪拌した。攪拌後、フロリジール
、セライト、アルミナを通して吸引ろ過し、ろ液を得た。
得られたろ液を濃縮し、固体を得た。得られた固体を、シリカゲルカラムクロマトグラフ
ィー(展開溶媒はヘキサン:トルエン=7:3)により精製し、得られたフラクションを
濃縮した。濃縮して得られた固体をクロロホルムとヘキサンにて再結晶をし、目的の黄色
固体を0.7g、収率45%で得た。
得られた0.6gの黄色固体、をトレインサブリメーション法により昇華精製した。昇華
精製条件は、圧力3.1Pa、アルゴンガスを流量4.0mL/minで流しながら、3
05℃で黄色固体を加熱した。昇華精製後、黄色固体を0.5g、回収率83%で得た。
上記ステップ2の合成スキームを、以下(B1−2)に示す。
Figure 0006957582
核磁気共鳴法(NMR)およびMSスペクトルによって、上記ステップで合成した化合物
が、目的物であるN,N’−ビス(ジベンゾフラン−4−イル)−N,N’−ジフェニル
−ピレン−1,6−ジアミン(略称:1,6FrAPrn−II)であることを確認した
得られた化合物のH NMRデータを以下に示す。
H NMR(CDCl,300MHz):δ=6.86(d、J=7.8Hz、4H
)、6.93(t、J=7.2Hz、2H)、7.11−7.22(m、8H)、7.3
1−7.41(m、6H)、7.70(d、J=6.8Hz、2H)、7.88−7.9
7(m、6H)、8.08(d、J=8.4Hz、2H)、8.25(d、J=9.0H
z、2H)
また、H NMRチャートを図9(A)、(B)に示す。なお、図9(B)は、図9(
A)における6.75ppm〜8.50ppmの範囲を拡大して表したチャートである。
得られた化合物のエレクトロスプレーイオン化質量分析(Electro Spray
Ionization Mass Spectrum、ESI−MS)スペクトルの測定
結果を以下に示す。
MS(ESI−MS):m/z=717(M+H);C5232(716.
25)
また、1,6FrAPrn−IIのトルエン溶液における吸収スペクトルを図10(A)
に、発光スペクトルを図10(B)に示す。また、1,6FrAPrn−IIの薄膜にお
ける吸収スペクトルを図11(A)に、発光スペクトルを図11(B)に示す。吸収スペ
クトルの測定には紫外可視分光光度計(日本分光株式会社製、V550型)を用いた。発
光スペクトルの測定には蛍光光度計((株)浜松ホトニクス製 FS920)を用いた。
溶液は石英セルに入れ、薄膜は石英基板に蒸着してサンプルを作製して測定を行った。図
10(A)および図11(A)に示した吸収スペクトルは、それぞれ参照用のスペクトル
を差し引いた吸収スペクトルである。図10(A)における参照用のスペクトルは、石英
セルにトルエンのみを入れて測定した吸収スペクトルであり、該図11(A)における参
照用のスペクトルは、石英基板の吸収スペクトルである。なお、図10および図11にお
いて横軸は波長(nm)、縦軸は強度(任意単位)を表す。トルエン溶液の場合では42
1nm付近に吸収が見られ、最大発光波長は450nm(励起波長370nm)であった
。また、薄膜の場合では430nm付近に吸収がみられ、発光スペクトルのピークは46
1、488nm(励起波長428nm)であった。
これらの結果より、トルエン溶液における1,6FrAPrn−IIのストークスシフト
は29nmと小さいことが確認された。
また、1,6FrAPrn−IIの薄膜状態におけるHOMO準位とLUMO準位の測定
を行った。HOMO準位の値は、大気中の光電子分光法(理研計器社製、AC−2)で測
定したイオン化ポテンシャルの値を、負の値に換算することにより得た。また、LUMO
準位の値は、図11(B)に示した1,6FrAPrn−IIの薄膜の吸収スペクトルの
データを用い、直接遷移を仮定したTaucプロットから吸収端を求め、その吸収端を光
学的エネルギーギャップとしてHOMO準位の値に加算することにより得た。その結果、
1,6FrAPrn−IIのHOMO準位は、−5.57eVであり、エネルギーギャッ
プは、2.72eVであり、LUMO準位は、−2.85eVであった。
次に、酸化還元反応特性をサイクリックボルタンメトリ(CV)測定によって調べた。測
定には、電気化学アナライザー(ビー・エー・エス(株)製、型番:ALSモデル600
Aまたは600C)を用いた。以下に測定方法について詳述する。
(参照電極の真空準位に対するポテンシャルエネルギーの算出)
まず、本実施例で用いる参照電極(Ag/Ag電極)の真空準位に対するポテンシャル
エネルギー(eV)を算出した。つまり、Ag/Ag電極のフェルミ準位を算出した。
メタノール中におけるフェロセンの酸化還元電位は、標準水素電極に対して+0.610
[V vs. SHE]であることが知られている(参考文献;Christian R
.Goldsmith et al., J.Am.Chem.Soc., Vol.1
24, No.1,83−96, 2002)。一方、本実施例で用いる参照電極を用い
て、メタノール中におけるフェロセンの酸化還元電位を求めたところ、+0.11V[v
s.Ag/Ag]であった。したがって、この参照電極のポテンシャルエネルギーは、
標準水素電極に対して0.50[eV]低くなっていることが確認できた。
ここで、標準水素電極の真空準位からのポテンシャルエネルギーは−4.44eVである
ことが知られている(参考文献;大西敏博・小山珠美著、高分子EL材料(共立出版)、
p.64−67)。以上のことから、用いた参照電極の真空準位に対するポテンシャルエ
ネルギーは、−4.44−0.50=−4.94[eV]であると算出できた。
(目的物のCV測定)
CV測定における溶液は、溶媒として脱水ジメチルホルムアミド(DMF)((株)アル
ドリッチ製、99.8%、カタログ番号;22705−6)を用い、支持電解質である過
塩素酸テトラ−n−ブチルアンモニウム(n−BuNClO)((株)東京化成製カ
タログ番号;T0836)を100mmol/Lの濃度となるように溶解させ、さらに測
定対象を2mmol/Lの濃度となるように溶解させて調製した。また、作用電極として
は白金電極(ビー・エー・エス(株)製、PTE白金電極)を、補助電極としては白金電
極(ビー・エー・エス(株)製、VC−3用Ptカウンター電極(5cm))を、参照電
極としてはAg/Ag電極(ビー・エー・エス(株)製、RE7非水溶媒系参照電極)
をそれぞれ用いた。なお、測定は室温(20〜25℃)で行った。また、CV測定時のス
キャン速度は、0.1V/secに統一した。
この溶液を用いて、目的物のCV測定を行った。参照電極に対する作用電極の電位を−0
.10Vから1.50Vまで走査した後、1.50Vから−0.10Vまで走査したとこ
ろ、酸化を示す明確なピークが観測された。また、走査を100サイクル繰り返した後で
も、そのピークの形状がほとんど変化しなかった。このことから、1,6FrAPrn−
IIは酸化状態と中性状態との間で繰り返される酸化還元に対して良好な特性を示すこと
が確認できた。
なお、このCV測定において、酸化ピーク電位(中性側から酸化間)Epaは、0.58
Vであった。また、還元ピーク電位(酸化側から中性間)Epcは0.46Vであった。
したがって、半波電位(EpaとEpcの中間の電位、(Epa+Epc)/2[V])
は0.52Vと算出できる。このことは、1,6FrAPrn−IIは0.52[V v
s.Ag/Ag]の電気エネルギーにより酸化されることを示している。ここで、上述
した通り、用いた参照電極の真空準位に対するポテンシャルエネルギーは、−4.94[
eV]であるため、1,6FrAPrn−IIのHOMO準位は、−4.94−0.52
=−5.46[eV]であることが確認できた。
得られた1,6FrAPrn−IIの熱重量測定−示差熱分析(TG−DTA:Ther
mogravimetry−Differential Thermal Analys
is)を行った。測定には高真空差動型示差熱天秤(ブルカー・エイエックスエス株式会
社製、TG−DTA2410SA)を用いた。常圧、昇温速度10℃/min、窒素気流
下(流速200mL/min)の条件で測定したところ、重量と温度の関係(熱重量測定
)から、5%重量減少温度は420℃であり、良好な耐熱性を示した。
本実施例では、構造式(G6−2)で表されるN,N’−ビス(ジベンゾチオフェン−4
−イル)−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6ThAPr
n−II)を製造する例を示す。
Figure 0006957582
[ステップ1:N−(ジベンゾチオフェン−4−イル)−N−フェニル−アミン(略称:
ThA−II)の合成方法]
4−ヨードジベンゾチオフェン4.7g(15.3mmol)、ナトリウム tert−
ブトキシド4.5g(4.6mmol)を300mL三口フラスコに入れ、フラスコ内を
窒素置換した。この混合物にトルエン98.0mL、アニリン2.7mL(18.3mm
ol)、トリ(tert−ブチル)ホスフィンの10%ヘキサン溶液0.3mLを加えた
この混合物を60℃にし、ビス(ジベンジリデンアセトン)パラジウム(0)69.8m
g(0.1mmol)を加え、80℃にして14時間攪拌した。攪拌後、フロリジール、
セライト、アルミナを通して吸引ろ過し、ろ液を得た。
得られたろ液を濃縮し、固体を得た。得られた固体を、シリカゲルカラムクロマトグラフ
ィー(展開溶媒はヘキサン:トルエン=4:1)により精製し、得られたフラクションを
濃縮し、目的物を3.9g、収率90%で得た。上記ステップ1の合成スキームを、以下
(B2−1)に示す。
Figure 0006957582
核磁気共鳴法(NMR)によって、上記ステップにて合成した化合物が、N−(ジベンゾ
チオフェン−4−イル)−N−フェニル−アミン(略称:ThA−II)であることを確
認した。
得られた化合物のH NMRデータを以下に示す。
H NMR(CDCl,300MHz):δ=5.66(s、1H)、6.95−7
.00(m、1H)、7.07−7.10(m、2H)、7.27−7.50(m、6H
)、7.83−7.89(m、2H)、8.13−8.19(m、1H)
また、H NMRチャートを図12(A)、(B)に示す。なお、図12(B)は、図
12(A)における5.50ppm〜8.25ppmの範囲を拡大して表したチャートで
ある。
[ステップ2:N,N’−ビス(ジベンゾチオフェン−4−イル)−N,N’−ジフェニ
ル−ピレン−1,6−ジアミン(略称:1,6ThAPrn−II)の合成方法]
1,6−ジブロモピレン0.7g(2.0mmol)、N−(ジベンゾチオフェン−4−
イル)−N−フェニル−アミン1.1g(4.0mmol)、ナトリウム tert−ブ
トキシド0.6g(6.0mmol)を300mL三口フラスコに入れ、フラスコ内を窒
素置換した。この混合物にトルエン20.0mL、トリ(tert−ブチル)ホスフィン
の10%ヘキサン溶液0.3mLを加えた。
この混合物を60℃にし、ビス(ジベンジリデンアセトン)パラジウム(0)40.3m
g(0.1mmol)を加え、80℃にして3.5時間攪拌した。攪拌後、クロロホルム
400mLを加え、フロリジール、セライト、アルミナを通して吸引ろ過し、ろ液を得た
得られたろ液を濃縮し、固体を得た。得られた固体を、シリカゲルカラムクロマトグラフ
ィー(展開溶媒はヘキサン:トルエン=7:3)により精製し、得られたフラクションを
濃縮した。
濃縮して得られた固体をクロロホルムとヘキサンにて再結晶をし、目的の黄色固体を0.
6g、収率39%で得た。得られた0.6gの黄色固体、をトレインサブリメーション法
により昇華精製した。昇華精製条件は、圧力2.5Pa、アルゴンガスを流量5.0mL
/minでながしながら、313℃で黄色固体を加熱した。昇華精製後、黄色固体を0.
5g、回収率82%で得た。上記ステップ2の合成スキームを、以下(B2−2)に示す
Figure 0006957582
核磁気共鳴法(NMR)およびMSスペクトルによって、上記ステップで合成した化合物
が目的物であるN,N’−ビス(ジベンゾチオフェン−4−イル)−N,N’−ジフェニ
ル−ピレン−1,6−ジアミン(略称:1,6ThAPrn−II)であることを確認し
た。
得られた化合物のH NMRデータを以下に示す。
H NMR(CDCl,300MHz):δ=6.92−7.02(m、6H)、7
.20−7.27(m、6H)、7.35−7.46(m、6H)、7.66−7.69
(m、2H)、7.81(d、J=8.4Hz、2H)、7.87(d、J=9.0Hz
、2H)、7.96(d、J=7.8Hz、2H)、8.03(d、J=8.4Hz、2
H)、8.15−8.18(m、4H)
また、H NMRチャートを図13(A)、(B)に示す。なお、図13(B)は、図
13(A)における6.75ppm〜8.25ppmの範囲を拡大して表したチャートで
ある。
得られた化合物のMSスペクトルの測定結果を以下に示す。
MS(ESI−MS):m/z=748(M+H);C5232(748.
2)
また、1,6ThAPrn−IIのトルエン溶液における吸収スペクトルを図14(A)
に、発光スペクトルを図14(B)に示す。また、1,6ThAPrn−IIの薄膜にお
ける吸収スペクトルを図15(A)に、発光スペクトルを図15(B)に示す。吸収スペ
クトルおよび発光スペクトルの測定は、実施例1と同様の装置および測定方法を用いて行
った。図14(A)、および図15(A)の吸収スペクトルは、それぞれ、実施例1と同
様に参照用のスペクトルを差し引いた吸収スペクトルである。図14、および図15にお
いて横軸は波長(nm)、縦軸は強度(任意単位)を表す。トルエン溶液の場合では42
4nm付近に吸収が見られ、最大発光波長は455nm(励起波長370nm)であった
。また、薄膜の場合では432nm付近に吸収がみられ、発光スペクトルのピークは48
3、501nm(励起波長438nm)であった。
これらの結果より、トルエン溶液における1,6ThAPrn−IIのストークスシフト
は31nmと小さいことが確認された。
また、1,6ThAPrn−IIの薄膜状態におけるHOMO準位とLUMO準位の測定
を、実施例1と同様の装置および測定方法を用いて行った。その結果、1,6ThAPr
n−IIのHOMO準位は、−5.49eVであり、エネルギーギャップは、2.69e
Vであり、LUMO準位は、−2.80eVであった。
酸化還元反応特性を、実施例1と同様にCV測定によって調べた。
本実施例のCV測定において、参照電極に対する作用電極の電位を−0.10Vから0.
6Vまで走査した後、0.6Vから−0.10Vまで走査し測定したところ、酸化を示す
明確なピークが観測された。また、走査を100サイクル繰り返した後でも、そのピーク
の形状がほとんど変化しなかった。このことから、1,6ThAPrn−IIは酸化状態
と中性状態との間で繰り返される酸化還元に対して良好な特性を示すことが確認できた。
なお、このCV測定において、酸化ピーク電位(中性側から酸化間)Epaは、0.59
Vであった。また、還元ピーク電位(酸化側から中性間)Epcは0.48Vであった。
したがって、半波電位(EpaとEpcの中間の電位、(Epa+Epc)/2[V])
は0.54Vと算出できる。このことは、1,6ThAPrn−IIは0.54[V v
s.Ag/Ag]の電気エネルギーにより酸化されることを示している。ここで、上述
した通り、用いた参照電極の真空準位に対するポテンシャルエネルギーは、−4.94[
eV]であるため、1,6ThAPrn−IIのHOMO準位は、−4.94−0.54
=−5.48[eV]であることが確認できた。
1,6ThAPrn−IIについて、実施例1と同様の装置および測定方法を用いて熱重
量測定−示差熱分析を行った。重量と温度の関係(熱重量測定)から、1,6ThAPr
n−IIの5%重量減少温度は458℃であり、良好な耐熱性を示した。
本実施例では、構造式(G10−1)で表される、N,N’−ビス(ジベンゾフラン−2
−イル)−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6FrAPr
n)を製造する例を示す。
Figure 0006957582
1,6−ジブロモピレン0.9g(2.5mmol)、N−(ジベンゾフラン−2−イル
)−N−フェニル−アミン1.3g(5.0mmol)、ナトリウム tert−ブトキ
シド0.7g(7.4mmol)を100mL三口フラスコに入れ、フラスコ内を窒素置
換した。
この混合物にトルエン25.0mL、およびトリ(tert−ブチル)ホスフィンの10
%ヘキサン溶液0.3mLを加えた。この混合物を80℃にし、ビス(ジベンジリデンア
セトン)パラジウム(0)34.9mg(0.06mmol)を加え7時間攪拌した。攪
拌後、フロリジール、セライト、アルミナを通して吸引ろ過し、ろ液を得た。
得られたろ液を濃縮し得た固体を、シリカゲルカラムクロマトグラフィー(展開溶媒はヘ
キサン:トルエン=7:3)により精製し、得られたフラクションを濃縮した。得られた
固体をトルエンとヘキサンにより再結晶を行い、目的物の黄色固体を1.3g、収率71
%で得た。
得られた黄色固体1.2gを、トレインサブリメーション法により昇華精製した。昇華精
製条件は、圧力2.4Pa、アルゴンガスを流量5.0mL/minでながしながら、3
02℃で黄色固体を加熱した。昇華精製後、黄色プリズム結晶を1.1g、回収率90%
で得た。上記合成例の合成スキームを以下(C1−1)に示す。
Figure 0006957582
核磁気共鳴法(NMR)およびMSスペクトルによって、上記ステップで合成した化合物
が目的物であるN,N’−ビス(ジベンゾフラン−2−イル)−N,N’−ジフェニル−
ピレン−1,6−ジアミン(略称:1,6FrAPrn)であることを確認した。
得られた化合物のH NMRデータを以下に示す。
H NMR(CDCl,300MHz):δ=6.94(t、J=6.9Hz、2H
)、7.02(d、J=7.8Hz、4H)、7.15−7.46(m、12H)、7.
53(d、J=8.4Hz、2H)、7.72−7.75(m、4H)、7.82−7.
86(m、2H)、7.90−7.93(m、2H)、8.09−8.14(m、2H)
、8.17−8.23(m、2H)
また、H NMRチャートを図16(A)、(B)に示す。なお、図16(B)は、図
16(A)における6.75ppm〜8.00ppmの範囲を拡大して表したチャートで
ある。
得られた化合物のMSスペクトルの測定結果を以下に示す。
MS(ESI−MS):m/z=717(M+H);C5232(716.
25)
また、1,6FrAPrnのトルエン溶液における吸収スペクトルを図17(A)に、発
光スペクトルを図17(B)に示す。また、1,6FrAPrnの薄膜における吸収スペ
クトルを図18(A)に、発光スペクトルを図18(B)に示す。吸収スペクトルおよび
発光スペクトルの測定は、実施例1と同様の装置および測定方法を用いて行った。図17
(A)、および図18(A)の吸収スペクトルは、それぞれ、実施例1と同様に参照用の
スペクトルを差し引いた吸収スペクトルである。なお、図17、および図18において横
軸は波長(nm)、縦軸は強度(任意単位)を表す。トルエン溶液の場合では434nm
付近に吸収が見られ、最大発光波長は465nm(励起波長370nm)であった。また
、薄膜の場合では441nm付近に吸収がみられ、発光スペクトルのピークは480、5
08nm(励起波長441nm)であった。
これらの結果より、トルエン溶液における1,6FrAPrnのストークスシフトは31
nmと小さいことが確認された。
また、1,6FrAPrnの薄膜状態におけるHOMO準位とLUMO準位の測定を、実
施例1と同様の装置および測定方法を用いて行った。その結果、1,6FrAPrnのH
OMO準位は、−5.48eVであり、エネルギーギャップは、2.64eVであり、L
UMO準位は、−2.84eVであった。
酸化還元反応特性を、実施例1と同様にCV測定によって調べた。
本実施例のCV測定においては、参照電極に対する作用電極の電位を−0.10Vから0
.6Vまで走査した後、0.6Vから−0.10Vまで走査し測定したところ、酸化を示
す明確なピークが観測された。また、走査を100サイクル繰り返した後でも、そのピー
クの形状がほとんど変化しなかった。このことから、1,6FrAPrnは酸化状態と中
性状態との間で繰り返される酸化還元に対して良好な特性を示すことが確認できた。
なお、このCV測定において、酸化ピーク電位(中性側から酸化間)Epaは、0.48
Vであった。また、還元ピーク電位(酸化側から中性間)Epcは0.40Vであった。
したがって、半波電位(EpaとEpcの中間の電位、(Epa+Epc)/2[V])
は0.44Vと算出できる。このことは、1,6FrAPrnは0.44[V vs.A
g/Ag]の電気エネルギーにより酸化されることを示している。ここで、上述した通
り、用いた参照電極の真空準位に対するポテンシャルエネルギーは、−4.94[eV]
であるため、1,6FrAPrnのHOMO準位は、−4.94−0.44=−5.38
[eV]であることが確認できた。
1,6FrAPrnについて、実施例1と同様の装置および測定方法を用いて熱重量測定
−示差熱分析を行った。重量と温度の関係(熱重量測定)から、得られた1,6FrAP
rnの5%重量減少温度は448℃であり、良好な耐熱性を示した。
本実施例では、構造式(G10−2)で表される、N,N’−ビス(ジベンゾチオフェン
−2−イル)−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6ThA
Prn)を製造する例を示す。
Figure 0006957582
1,6−ジブロモピレン0.9g(2.4mmol)、N−(ジベンゾチオフェン−2−
イル)−N−フェニル−アミン1.3g(4.8mmol)、ナトリウム tert−ブ
トキシド0.7g(7.0mmol)を50mL三口フラスコに入れ、フラスコ内を窒素
置換した。
この混合物にトルエン25.0mLとトリ(tert−ブチル)ホスフィンの10%ヘキ
サン溶液0.2mLを加えた。この混合物を80℃にし、ビス(ジベンジリデンアセトン
)パラジウム(0)25.7mg(0.04mmol)を加え2.0時間攪拌した。
攪拌後、混合物を90℃にし、ビス(ジベンジリデンアセトン)パラジウム(0)26.
0mg(0.04mmol)を加え3.5時間攪拌した。攪拌後、混合物を80℃にし、
トリ(tert−ブチル)ホスフィンの10%ヘキサン溶液0.2mLを加え、1.0時
間攪拌した。攪拌後、この混合物を85℃にし、3.5時間攪拌した。攪拌後、フロリジ
ール、セライト、アルミナを通して吸引ろ過し、ろ液を得た。
得られたろ液を濃縮し得た固体を、シリカゲルカラムクロマトグラフィー(展開溶媒はヘ
キサン:トルエン=7:3)により精製し、得られたフラクションを濃縮し、黄色固体を
得た。得られた固体をトルエンとヘキサンにより再結晶を行い、黄色固体を0.6g、収
率34%で得た。
得られた黄色固体0.6gを、トレインサブリメーション法により昇華精製した。昇華精
製条件は、圧力2.5Pa、アルゴンガスを流量5.0mL/minでながしながら、3
00℃で黄色固体を加熱した。昇華精製後、目的物の黄色プリズム結晶を0.4g、回収
率74%で得た。上記合成例の合成スキームを以下(C2−1)に示す。
Figure 0006957582
核磁気共鳴法(NMR)およびMSスペクトルによって、上記ステップで合成した化合物
が、目的物であるN,N’−ビス(ジベンゾチオフェン−2−イル)−N,N’−ジフェ
ニル−ピレン−1,6−ジアミン(略称:1,6ThAPrn)であることを確認した。
得られた化合物のH NMRデータを以下に示す。
H NMR(CDCl,300MHz):δ=6.95−7.00(m、2H)、7
.08−7.11(m、4H)、7.02−7.42(m、10H)、7.68(d、J
=8.1Hz、2H)、7.80−7.94(m、10H)、8.11(d、J=8.4
Hz、2H)、8.21(d、J=9.3Hz、2H)
また、H NMRチャートを図19(A)、(B)に示す。なお、図19(B)は、図
19(A)における6.75ppm〜8.50ppmの範囲を拡大して表したチャートで
ある。
得られた化合物のMSスペクトルの測定結果を以下に示す。
MS(ESI−MS):m/z=749(M+H);C5232(748.
2)
また、1,6ThAPrnのトルエン溶液における吸収スペクトルを図20(A)に、発
光スペクトルを図20(B)に示す。また、1,6ThAPrnの薄膜における吸収スペ
クトルを図21(A)に、発光スペクトルを図21(B)に示す。吸収スペクトルおよび
発光スペクトルの測定は、実施例1と同様の装置および測定方法を用いて行った。図20
(A)、および図21(A)の吸収スペクトルは、それぞれ、実施例1と同様に参照用の
スペクトルを差し引いた吸収スペクトルである。なお、図20、および図21において横
軸は波長(nm)、縦軸は強度(任意単位)を表す。トルエン溶液の場合では436nm
付近に吸収が見られ、最大発光波長は467nm(励起波長370nm)であった。また
、薄膜の場合では445nm付近に吸収がみられ、最大発光波長は563nm(励起波長
445nm)であった。
これらの結果より、1,6ThAPrnのトルエン溶液中でのストークスシフトは31n
mと小さいことが確認された。
また、1,6ThAPrnの薄膜状態におけるHOMO準位とLUMO準位の測定を、実
施例1と同様の装置および測定方法を用いて行った。その結果、1,6ThAPrnのH
OMO準位は、−5.48eVであり、エネルギーギャップは、2.61eVであり、L
UMO準位は、−2.87eVであった。
酸化還元反応特性を、実施例1と同様にCV測定によって調べた。
本実施例のCV測定においては、参照電極に対する作用電極の電位を−0.10Vから0
.6Vまで走査した後、0.6Vから−0.10Vまで走査し測定したところ、酸化を示
す明確なピークが観測された。また、走査を100サイクル繰り返した後でも、そのピー
クの形状がほとんど変化しなかった。このことから、1,6ThAPrnは酸化状態と中
性状態との間で繰り返される酸化還元に対して良好な特性を示すことが確認できた。
なお、このCV測定において、酸化ピーク電位(中性側から酸化間)Epaは、0.49
Vであった。また、還元ピーク電位(酸化側から中性間)Epcは0.40Vであった。
したがって、半波電位(EpaとEpcの中間の電位、(Epa+Epc)/2[V])
は0.45Vと算出できる。このことは、1,6ThAPrnは0.45[V vs.A
g/Ag]の電気エネルギーにより酸化されることを示している。ここで、上述した通
り、用いた参照電極の真空準位に対するポテンシャルエネルギーは、−4.94[eV]
であるため、1,6ThAPrnのHOMO準位は、−4.94−0.45=−5.39
[eV]であることが確認できた。
1,6ThAPrnについて、実施例1と同様の装置および測定方法を用いて熱重量測定
−示差熱分析を行った。重量と温度の関係(熱重量測定)から、1,6ThAPrnの5
%重量減少温度は468℃であり、良好な耐熱性を示した。
本実施例では、構造式(G7−1)で表される、N,N’−ビス〔3−(ジベンゾフラン
−4−イル)フェニル〕−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1
,6mFrBAPrn−II)を製造する例を示す。
Figure 0006957582
[ステップ1:3−(ジベンゾフラン−4−イル)−ジフェニルアミンの合成方法]
4−(3−ブロモフェニル)ジベンゾフラン2.5g(7.7mmol)と、ナトリウム
tert−ブトキシド2.1g(21.6mmol)を200mL三口フラスコに入れ
、フラスコ内を窒素置換した。
この混合物にトルエン50.0mL、アニリン0.7mL(7.6mmol)とトリ(t
ert−ブチル)ホスフィンの10%ヘキサン溶液0.2mLを加えた。この混合物を6
5℃にし、ビス(ジベンジリデンアセトン)パラジウム(0)42.5mg(0.1mm
ol)を加え、80℃にして2.0時間攪拌した。
攪拌後、フロリジール、セライト、アルミナを通して吸引ろ過し、ろ液を得た。得られた
ろ液を濃縮し得た油状物を、シリカゲルカラムクロマトグラフィー(展開溶媒はヘキサン
:トルエン=3:2)により精製し、油状物を2.4g、収率91%で得た。上記ステッ
プ1の合成スキームを、以下(D1−1)に示す。
Figure 0006957582
[ステップ2:N,N’−ビス〔3−(ジベンゾフラン−4−イル)フェニル〕−N,N
’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6mFrBAPrn−II)の
合成方法]
1,6−ジブロモピレン0.6g(1.5mmol)とナトリウム tert−ブトキシ
ド0.5g(4.7mmol)を50mL三口フラスコに入れ、フラスコ内を窒素置換し
た。この混合物にトルエン2.2mL、トルエン15.0mLに溶かした3−(ジベンゾ
フラン−4−イル)−ジフェニルアミン1.0g(3.1mmol)、トリ(tert−
ブチル)ホスフィンの10%ヘキサン溶液0.2mLを加えた。
この混合物を60℃にし、ビス(ジベンジリデンアセトン)パラジウム(0)41.2m
g(0.1mmol)を加え、80℃にして2時間攪拌した。攪拌後、吸引ろ過をして固
体を得た。
得られた固体にトルエン500mLを加え、110℃に加熱し、フロリジール、セライト
、アルミナを通して吸引ろ過し、ろ液を得た。得られたろ液を濃縮し固体を得た。得られ
た固体にトルエン45mLを加え、加熱した。
この混合物を吸引ろ過して黄色固体を0.8g、収率65%で得た。得られた0.8gの
黄色固体、をトレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2
.4Pa、アルゴンガスを流量4.0mL/minで流しながら、305℃で黄色固体を
加熱した。昇華精製後、黄色固体を0.6g、回収率73%で得た。上記ステップ2の合
成スキームを、以下(D1−2)に示す。
Figure 0006957582
核磁気共鳴法(NMR)およびMSスペクトルによって、上記ステップで合成された化合
物が目的物であるN,N’−ビス〔3−(ジベンゾフラン−4−イル)フェニル〕−N,
N’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6mFrBAPrn−II)
であることを確認した。
得られた化合物のH NMRデータを以下に示す。
H NMR(CDCl,300MHz):δ=6.98−7.03(m、2H)、7
.09−7.14(m、4H)、7.19−7.39(m、16H)、7.48−7.5
1(m、4H)、7.70(t、J=1.8Hz、2H)、7.82−7.87(m、4
H)、7.92(d、J=8.1Hz、2H)、7.98(d、J=9.3Hz、2H)
、8.15(d、J=8.4Hz、2H)、8.27(d、J=9.0Hz、2H)
また、H NMRチャートを図22(A)、(B)に示す。なお、図22(B)は、図
22(A)における6.75ppm〜8.50ppmの範囲を拡大して表したチャートで
ある。
得られた化合物のMSスペクトルの測定結果を以下に示す。
MS(ESI−MS):m/z=869(M+H);C6440(868.
31)
また、1,6mFrBAPrn−IIのトルエン溶液における吸収スペクトルを図23(
A)に、発光スペクトルを図23(B)に示す。また、1,6mFrBAPrn−IIの
薄膜における吸収スペクトルを図24(A)に、発光スペクトルを図24(B)に示す。
吸収スペクトルおよび発光スペクトルの測定は、実施例1と同様の装置および測定方法を
用いて行った。図23(A)、および図24(A)の吸収スペクトルは、それぞれ、実施
例1と同様に参照用のスペクトルを差し引いた吸収スペクトルである。なお、図23、お
よび図24において横軸は波長(nm)、縦軸は強度(任意単位)を表す。トルエン溶液
の場合では428nm付近に吸収が見られ、最大発光波長は458nm(励起波長370
nm)であった。また、薄膜の場合では437nm付近に吸収がみられ、発光波長は48
4、501nm(励起波長434nm)であった。
これらの結果より、1,6mFrBAPrn−IIのトルエン溶液中でのストークスシフ
トは30nmと小さいことが確認された。
また、1,6mFrBAPrn−IIの薄膜状態におけるHOMO準位とLUMO準位の
測定を、実施例1と同様の装置および測定方法を用いて行った。その結果、1,6mFr
BAPrn−IIのHOMO準位は、−5.51eVであり、エネルギーギャップは、2
.67eVであり、LUMO準位は、−2.84eVであった。
酸化還元反応特性を、実施例1と同様にCV測定によって調べた。
本実施例のCV測定においては、参照電極に対する作用電極の電位を−0.10Vから0
.6Vまで走査した後、0.6Vから−0.10Vまで走査し測定したところ、酸化を示
す明確なピークが観測された。また、走査を100サイクル繰り返した後でも、そのピー
クの形状がほとんど変化しなかった。このことから、1,6mFrBAPrn−IIは酸
化状態と中性状態との間で繰り返される酸化還元に対して良好な特性を示すことが確認で
きた。
なお、このCV測定において、酸化ピーク電位(中性側から酸化間)Epaは、0.52
Vであった。また、還元ピーク電位(酸化側から中性間)Epcは0.45Vであった。
したがって、半波電位(EpaとEpcの中間の電位、(Epa+Epc)/2[V])
は0.49Vと算出できる。このことは、1,6mFrBAPrn−IIは0.49[V
vs.Ag/Ag]の電気エネルギーにより酸化されることを示している。ここで、
上述した通り、用いた参照電極の真空準位に対するポテンシャルエネルギーは、−4.9
4[eV]であるため、1,6mFrBAPrn−IIのHOMO準位は、−4.94−
0.49=−5.43[eV]であることが確認できた。
1,6mFrBAPrn−IIについて、実施例1と同様の装置および測定方法を用いて
熱重量測定−示差熱分析を行った。重量と温度の関係(熱重量測定)から、1,6mFr
BAPrn−IIの5%重量減少温度は500℃以上であり、良好な耐熱性を示した。
本実施例では、構造式(G7−2)で表される、N,N’−ビス〔3−(ジベンゾチオフ
ェン−4−イル)フェニル〕−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称
:1,6mThBAPrn−II)を製造する例を示す。
Figure 0006957582
[ステップ1:3−(ジベンゾチオフェン−4−イル)−ジフェニルアミンの合成方法]
4−(3−ブロモフェニル)ジベンゾチオフェン2.4g(7.1mmol)と、ナトリ
ウム tert−ブトキシド2.0g(20.9mmol)を200mL三口フラスコに
入れ、フラスコ内を窒素置換した。
この混合物にトルエン50.0mL、アニリン0.7mL(7.6mmol)とトリ(t
ert−ブチル)ホスフィンの10%ヘキサン溶液0.2mLを加えた。この混合物を6
0℃にし、ビス(ジベンジリデンアセトン)パラジウム(0)42.7mg(0.1mm
ol)を加え、80℃にして5.0時間攪拌した。
攪拌後、フロリジール、セライト、アルミナを通して吸引ろ過し、ろ液を得た。得られた
ろ液を濃縮し得た油状物を、シリカゲルカラムクロマトグラフィー(展開溶媒はヘキサン
:トルエン=2:1)により精製し、目的物を2.4g、収率95%で得た。上記ステッ
プ1の合成スキームを、以下(D2−1)に示す。
Figure 0006957582
[ステップ2:N,N’−ビス〔3−(ジベンゾチオフェン−4−イル)フェニル〕−N
,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6mThBAPrn−II
)の合成方法]
1,6−ジブロモピレン0.6g(1.7mmol)とナトリウム tert−ブトキシ
ド0.5g(5.2mmol)を50mL三口フラスコに入れ、フラスコ内を窒素置換し
た。この混合物にトルエン2.0mL、トルエン15.0mLに溶かした3−(ジベンゾ
チオフェン−4−イル)−ジフェニルアミン1.2g(3.3mmol)、トリ(ter
t−ブチル)ホスフィンの10%ヘキサン溶液0.2mLを加えた。
この混合物を80℃にし、ビス(ジベンジリデンアセトン)パラジウム(0)17.2m
g(0.03mmol)を加え、1.0時間攪拌した。攪拌後、ビス(ジベンジリデンア
セトン)パラジウム(0)18.5mg(0.03mmol)を加え、1.0時間攪拌し
た。
攪拌後、トルエン600mLを加え、フロリジール、セライト、アルミナを通して吸引ろ
過し、ろ液を得た。得られたろ液を濃縮し固体を得た。
得られた固体にトルエン75mLを加え、加熱した。この混合物を吸引ろ過して黄色固体
を得た。得られた黄色固体0.6gを、トレインサブリメーション法により昇華精製した
。昇華精製条件は、圧力2.3Pa、アルゴンガスを流量6.0mL/minでながしな
がら、308℃で黄色固体を加熱した。昇華精製後、黄色固体を0.5g、回収率77%
で得た。上記ステップ2の合成スキームを、以下(D2−2)に示す。
Figure 0006957582
核磁気共鳴法(NMR)およびMSスペクトルによって、上記ステップで合成した化合物
が、N,N’−ビス〔3−(ジベンゾチオフェン−4−イル)フェニル〕−N,N’−ジ
フェニル−ピレン−1,6−ジアミン(略称:1,6mThBAPrn−II)であるこ
とを確認した。
得られた化合物のH NMRデータを以下に示す。
H NMR(CDCl,300MHz):δ=7.00−7.44(m、28H)、
7.90−7.97(m、6H)、8.00(d、J=9.3Hz、2H)、8.17(
d、J=8.4Hz、2H)、8.27(d、J=9.3Hz、2H)
また、H NMRチャートを図25(A)、(B)に示す。なお、図25(B)は、図
25(A)における6.75ppm〜8.50ppmの範囲を拡大して表したチャートで
ある。
得られた化合物のMSスペクトルの測定結果を以下に示す。
MS(ESI−MS):m/z=901(M+H);C6440(900.
26)
また、1,6mThBAPrn−IIのトルエン溶液における吸収スペクトルを図26(
A)に、発光スペクトルを図26(B)に示す。また、1,6mThBAPrn−IIの
薄膜における吸収スペクトルを図27(A)に、発光スペクトルを図27(B)に示す。
吸収スペクトルおよび発光スペクトルの測定は、実施例1と同様の装置および測定方法を
用いて行った。図26(A)、および図27(A)の吸収スペクトルは、それぞれ、実施
例1と同様に参照用のスペクトルを差し引いた吸収スペクトルである。図26、および図
27において横軸は波長(nm)、縦軸は強度(任意単位)を表す。トルエン溶液の場合
では429nm付近に吸収が見られ、最大発光波長は457nm(励起波長370nm)
であった。また、薄膜の場合では438nm付近に吸収がみられ、発光スペクトルのピー
クは475、504nm(励起波長432nm)であった。
これらの結果より、1,6mThBAPrn−IIのトルエン溶液中でのストークスシフ
トは28nmと小さいことが確認された。
また、1,6mThBAPrn−IIの薄膜状態におけるHOMO準位とLUMO準位の
測定を、実施例1と同様の装置および測定方法を用いて行った。その結果、1,6mTh
BAPrn−IIのHOMO準位は、−5.51eVであり、エネルギーギャップは、2
.66eVであり、LUMO準位は、−2.85eVであった。
酸化還元反応特性を、実施例1と同様にCV測定によって調べた。
本実施例のCV測定においては、参照電極に対する作用電極の電位を−0.10Vから0
.6Vまで走査した後、0.6Vから−0.10Vまで走査し測定したところ、酸化を示
す明確なピークが観測された。また、走査を100サイクル繰り返した後でも、そのピー
クの形状がほとんど変化しなかった。このことから、1,6mThBAPrn−IIは酸
化状態と中性状態との間で繰り返される酸化還元に対して良好な特性を示すことが確認で
きた。
なお、このCV測定において、酸化ピーク電位(中性側から酸化間)Epaは、0.53
Vであった。また、還元ピーク電位(酸化側から中性間)Epcは0.45Vであった。
したがって、半波電位(EpaとEpcの中間の電位、(Epa+Epc)/2[V])
は0.49Vと算出できる。このことは、1,6mThBAPrn−IIは0.49[V
vs.Ag/Ag]の電気エネルギーにより酸化されることを示している。ここで、
上述した通り、用いた参照電極の真空準位に対するポテンシャルエネルギーは、−4.9
4[eV]であるため、1,6mThBAPrn−IIのHOMO準位は、−4.94−
0.49=−5.43[eV]であることが確認できた。
1,6mThBAPrn−IIについて、実施例1と同様の装置および測定方法を用いて
熱重量測定−示差熱分析を行った。重量と温度の関係(熱重量測定)から、1,6mTh
BAPrn−IIの5%重量減少温度は500℃以上であり、良好な耐熱性を示した。
本実施例では、構造式(G8−1)で表される、N,N’−ビス〔4−(ジベンゾフラン
−4−イル)フェニル〕−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1
,6FrBAPrn−II)を製造する例を示す。
Figure 0006957582
[ステップ1:4−(ジベンゾフラン−4−イル)ジフェニルアミンの合成方法]
4−ブロモジフェニルアミン1.8g(7.5mmol)、(ジベンゾフラン−4−イル
)ボロン酸1.6g(7.5mmol)、トリス(2−メチルフェニル)ホスフィン0.
1g(0.4mmol)を100mL三口フラスコに入れ、フラスコ内を窒素置換した。
この混合物にトルエン30.0mL、エタノール9.3mL、炭酸カリウム水溶液(2m
ol/L)7.5mLを加え、フラスコ内を減圧しながら攪拌して、この混合物を脱気し
た。
脱気後、混合物を60℃にした後、酢酸パラジウム(II)41.2mg(0.2mmo
l)を加えた。この混合物を80℃にし、80℃で3.0時間還流し、還流後、混合物に
トルエンと水を加え、有機層と水層を分離し、水層を酢酸エチルで3回抽出した。この抽
出溶液と有機層を合わせて飽和食塩水で洗浄をした。
この抽出溶液と有機層を硫酸マグネシウムで乾燥した。得られた混合物を自然ろ過して硫
酸マグネシウムを除去し、ろ液を濃縮し固体を得た。得られた固体を、シリカゲルカラム
クロマトグラフィー(展開溶媒はヘキサン:トルエン=3:7)により精製し、得られた
フラクションを濃縮し、目的の白色固体を2.1g 収率83%で得た。上記ステップ1
の合成スキームを、以下(E1−1)に示す。
Figure 0006957582
得られた化合物のMSスペクトルの測定結果を以下に示す。
MS(ESI−MS):m/z=336(M+H);C2417NO(335.13
[ステップ2:N,N’−ビス〔4−(ジベンゾフラン−4−イル)フェニル〕−N,N
’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6FrBAPrn−II)の合
成方法]
1,6−ジブロモピレン0.6g(1.7mmol)、4−(ジベンゾフラン−4−イル
)ジフェニルアミン1.2g(3.4mmol)、ナトリウム tert−ブトキシド0
.5g(5.2mmol)を50mL三口フラスコに入れ、フラスコ内を窒素置換した。
この混合物にトルエン17.0mLとトリ(tert−ブチル)ホスフィンの10%ヘキ
サン溶液0.3mLを加えた。
この混合物を80℃にし、ビス(ジベンジリデンアセトン)パラジウム(0)33.4m
g(0.1mmol)を加え、80℃にして4.0時間攪拌した。攪拌後、フロリジール
、セライト、アルミナを通して吸引ろ過し、ろ液を得た。得られたろ液を濃縮し固体を得
た。
得られた固体を、シリカゲルカラムクロマトグラフィー(展開溶媒はヘキサン:トルエン
=7:3)により精製し、得られたフラクションを濃縮した。濃縮して得られた固体をク
ロロホルムとヘキサンにて洗浄し、黄色固体を1.0g、収率66%で得た。
得られた1.0gの黄色固体、をトレインサブリメーション法により昇華精製した。昇華
精製条件は、圧力2.6Pa、アルゴンガスを流量5.0mL/minでながしながら、
370℃で黄色固体を加熱した。昇華精製後、黄色固体を0.8g、回収率86%で得た
。上記ステップ2の合成スキームを、以下(E1−2)に示す。
Figure 0006957582
核磁気共鳴法(NMR)およびMSスペクトルによって、上記ステップで合成した化合物
がN,N’−ビス〔4−(ジベンゾフラン−4−イル)フェニル〕−N,N’−ジフェニ
ル−ピレン−1,6−ジアミン(略称:1,6FrBAPrn−II)であることを確認
した。
得られた化合物のH NMRデータを以下に示す。
H NMR(CDCl,300MHz):δ=7.02(t、J=6.9Hz、2H
)、7.20−7.48(m、18H)、7.56(d、J=7.8Hz、4H)、7.
81(d、J=8.7Hz、4H)、7.88−8.01(m、8H)、8.17(d、
J=8.4Hz、2H)、8.23(d、J=9.3Hz、2H)
また、H NMRチャートを図28(A)、(B)に示す。なお、図28(B)は、図
28(A)における6.75ppm〜8.50ppmの範囲を拡大して表したチャートで
ある。
得られた化合物のMSスペクトルの測定結果を以下に示す。
MS(ESI−MS):m/z=869(M+H);C6440(868.
31)
また、1,6FrBAPrn−IIのトルエン溶液における吸収スペクトルを図29(A
)に、発光スペクトルを図29(B)に示す。また、1,6FrBAPrn−IIの薄膜
における吸収スペクトルを図30(A)に、発光スペクトルを図30(B)に示す。吸収
スペクトルおよび発光スペクトルの測定は、実施例1と同様の装置および測定方法を用い
て行った。図29(A)、および図30(A)の吸収スペクトルは、それぞれ、実施例1
と同様に参照用のスペクトルを差し引いた吸収スペクトルである。図29、および図30
において横軸は波長(nm)、縦軸は強度(任意単位)を表す。トルエン溶液の場合では
433nm付近に吸収が見られ、最大発光波長は464nm(励起波長370nm)であ
った。また、薄膜の場合では443nm付近に吸収がみられ、最大発光波長は528nm
(励起波長441nm)であった。
これらの結果より、1,6FrBAPrn−IIのトルエン溶液中でのストークスシフト
は31nmと小さいことが確認された。
また、1,6FrBAPrn−IIの薄膜状態におけるHOMO準位とLUMO準位の測
定を、実施例1と同様の装置および測定方法を用いて行った。その結果、1,6FrBA
Prn−IIのHOMO準位は、−5.49eVであり、エネルギーギャップは、2.6
2eVであり、LUMO準位は、−2.87eVであった。
酸化還元反応特性、実施例1と同様にCV測定によって調べた。
本実施例のCV測定においては、参照電極に対する作用電極の電位を−0.10Vから0
.6Vまで走査した後、0.6Vから−0.10Vまで走査し測定したところ、酸化を示
す明確なピークが観測された。また、走査を100サイクル繰り返した後でも、そのピー
クの形状がほとんど変化しなかった。このことから、1,6FrBAPrn−IIは酸化
状態と中性状態との間で繰り返される酸化還元に対して良好な特性を示すことが確認でき
た。
なお、このCV測定において、酸化ピーク電位(中性側から酸化間)Epaは、0.52
Vであった。また、還元ピーク電位(酸化側から中性間)Epcは0.43Vであった。
したがって、半波電位(EpaとEpcの中間の電位、(Epa+Epc)/2[V])
は0.48Vと算出できる。このことは、1,6FrBAPrn−IIは0.48[V
vs.Ag/Ag]の電気エネルギーにより酸化されることを示している。ここで、上
述した通り、用いた参照電極の真空準位に対するポテンシャルエネルギーは、−4.94
[eV]であるため、1,6FrBAPrn−IIのHOMO準位は、−4.94−0.
48=−5.42[eV]であることが確認できた。
1,6FrBAPrn−IIについて、実施例1と同様の装置および測定方法を用いて熱
重量測定−示差熱分析を行った。重量と温度の関係(熱重量測定)から、1,6FrBA
Prn−IIの5%重量減少温度は500℃以上であり、良好な耐熱性を示した。
本実施例では、実施の形態2に記載の芳香族アミン誘導体を発光材料として用いた発光素
子の作製方法、および素子特性の測定結果を示す。具体的には、発光素子1として構造式
(G6−1)で表されるN,N’−ビス(ジベンゾフラン−4−イル)−N,N’−ジフ
ェニル−ピレン−1,6−ジアミン(略称:1,6FrAPrn−II)を、発光素子2
として構造式(G6−2)で表されるN,N’−ビス(ジベンゾチオフェン−4−イル)
−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6ThAPrn−II
)を、発光素子3として構造式(G10−1)で表されるN,N’−ビス(ジベンゾフラ
ン−2−イル)−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6Fr
APrn)を、発光素子4として構造式(G10−2)で表されるN,N’−ビス(ジベ
ンゾチオフェン−2−イル)−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称
:1,6ThAPrn)を用いて形成した発光素子について示す。
以下、発光素子1乃至4の作製方法について図31を用いて説明する。また、本実施例で
用いた有機化合物の構造式を以下に示す。
Figure 0006957582
(発光素子1)
まず、ガラス基板である基板2101上に、陽極2102を形成した。まず、スパッタリ
ング法にて、厚さ110nmの酸化珪素を含む酸化インジウム−酸化スズ膜を形成し、形
成した膜を電極面積が2mm×2mmとなるように加工した。
次に、陽極2102上に複数の層が積層されたEL層を形成した。本実施例において、E
L層は、正孔注入層2103、正孔輸送層2104、発光層2105、電子輸送層210
6、電子注入層2107が順次積層された構造を有する。
本実施例では、陽極2102が形成された基板2101を真空蒸着装置内に設けられた基
板ホルダーに固定した。該基板ホルダーに固定する際、陽極2102が形成された面を下
方にした。真空蒸着装置内を10−4Pa程度まで減圧した後、陽極2102上に、正孔
注入層2103として、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]
ビフェニル(略称:NPB)と酸化モリブデン(VI)とを共蒸着法により形成した。形
成した正孔注入層2103の厚さは50nmとし、NPBと酸化モリブデン(VI)の比
率は、重量比で4:1(=NPB:酸化モリブデン)となるように蒸着レートを調節した
。なお、共蒸着法とは、一つの処理室内で複数の蒸発源から同時に蒸着を行う蒸着法であ
る。
次に、抵抗加熱を用いた蒸着法により、正孔注入層2103上に厚さ10nmの正孔輸送
層2104を形成した。なお、正孔輸送層2104にはNPBを用いた。
次に、正孔輸送層2104上に、発光層2105として、9−[4−(10−フェニル−
9−アントリル)フェニル]−9H−カルバゾール(略称:CzPA)とN,N’−ビス
(ジベンゾフラン−4−イル)−N,N’−ジフェニル−ピレン−1,6−ジアミン(略
称:1,6FrAPrn−II)とを共蒸着法により形成した。形成した発光層2105
の厚さは30nmとし、CzPAと1,6FrAPrn−IIとの重量比は、1:0.0
5(=CzPA:1,6FrAPrn−II)となるように蒸着レートを調節した。
次に、抵抗加熱による蒸着法により、発光層2105上にトリス(8−キノリノラト)ア
ルミニウム(略称:Alq)を、該Alq上にバソフェナントロリン(略称:BPhen
)を形成し、該Alqおよび該BPhenを電子輸送層2106とした。なお、形成した
電子輸送層2106において、該Alqの厚さは10nmであり、該BPhenの厚さは
15nmである。
次に、電子輸送層2106上に、電子注入層2107として、厚さ1nmのフッ化リチウ
ム(LiF)を形成した。なお、電子注入層2107は抵抗加熱による蒸着法を用いて形
成した。
最後に、抵抗加熱による蒸着法を用いて、電子注入層2107上に陰極2108を形成し
、本実施例の発光素子1を作製した。なお、陰極2108として、200nmの厚さのア
ルミニウムを形成した。
(発光素子2)
発光素子2において、発光層2105以外は、発光素子1と同様に形成した。発光素子2
は、発光層2105として、9−[4−(10−フェニル−9−アントリル)フェニル]
−9H−カルバゾール(略称:CzPA)とN,N’−ビス(ジベンゾチオフェン−4−
イル)−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6ThAPrn
−II)とを共蒸着法により形成した。形成した発光層2105の厚さは30nmとし、
CzPAと1,6ThAPrn−IIとの重量比は、1:0.05(=CzPA:1,6
ThAPrn−II)となるように蒸着レートを調節した。
以上により、本実施例の発光素子2を作製した。
(発光素子3)
発光素子3において、発光層2105以外は、発光素子1と同様に形成した。発光素子3
は、発光層2105として、9−[4−(10−フェニル−9−アントリル)フェニル]
−9H−カルバゾール(略称:CzPA)とN,N’−ビス(ジベンゾフラン−2−イル
)−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6FrAPrn)と
を共蒸着法により形成した。形成した発光層2105の厚さは30nmとし、CzPAと
1,6FrAPrnとの重量比は、1:0.01(=CzPA:1,6FrAPrn)と
なるように蒸着レートを調節した。
以上により、本実施例の発光素子3を作製した。
(発光素子4)
発光素子4において、発光層2105以外は、発光素子1と同様に形成した。発光素子4
は、発光層2105として、9−[4−(10−フェニル−9−アントリル)フェニル]
−9H−カルバゾール(略称:CzPA)とN,N’−ビス(ジベンゾチオフェン−2−
イル)−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6ThAPrn
)とを共蒸着法により形成した。形成した発光層2105の厚さは30nmとし、CzP
Aと1,6ThAPrnとの重量比は、1:0.01(=CzPA:1,6ThAPrn
)となるように蒸着レートを調節した。
以上により、本実施例の発光素子4を作製した。
本実施例で作製した発光素子1乃至4の素子構成を表1に示す。表1では、混合比は全て
重量比で表している。
Figure 0006957582
以上により、得られた発光素子1乃至4を、窒素雰囲気のグローブボックス内において、
発光素子が大気に曝されないように封止する作業を行った後、発光素子の動作特性につい
て測定を行った。なお、測定は室温(25℃に保たれた雰囲気)で行った。
発光素子1乃至4の電圧−輝度特性を図32、輝度−電流効率特性を図33にそれぞれ示
す。図32では縦軸に輝度(cd/m)、横軸に電圧(V)を示し、図33では、縦軸
に電流効率(cd/A)、横軸に輝度(cd/m)を示す。また、1000cd/m
付近における発光素子の色度を表2に示す。
Figure 0006957582
また、発光素子1乃至4の発光スペクトルを図34に示す。
表2および、図34から発光素子1乃至4はいずれも良好な青色発光を呈することが確認
された。なかでも、1000cd/m付近における、発光素子1の色度のy座標は最も
小さく、また、発光素子1の発光スペクトルピークが454nm付近と、最も短波長側に
表れることから、発光素子1が最も色純度の高い青色を呈することが確認された。
また、発光素子1乃至4の信頼性試験を行った。信頼性試験は初期輝度を1000cd/
に設定し、電流密度一定の条件でこれらの素子を駆動し、或る時間が経過する毎に輝
度を測定した。この信頼性試験によって得られた結果を図35に示す。図35において、
横軸は通電時間(hour)、縦軸はそれぞれの時間における初期輝度に対する輝度の割
合、すなわち規格化輝度(%)を表す。
図35より、100時間駆動後において、発光素子1乃至4いずれにおいても規格化輝度
が80%以上であることから、長寿命な発光素子であると言える。
以上示したように、本実施例の発光素子1乃至4は、長寿命で色純度の高い青色発光素子
とすることが可能であり、なかでも、発光素子1は最も色純度が高い青色発光素子とする
ことが可能であると確認された。
本実施例では、実施の形態3に記載の芳香族アミン誘導体を発光材料として用いた発光素
子の作製方法、および素子特性の測定結果を示す。具体的に、発光素子5は、発光材料と
して、構造式(G7−1)で表されるN,N’−ビス〔3−(ジベンゾフラン−4−イル
)フェニル〕−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6mFr
BAPrn−II)を用いた発光素子である。また、発光素子6は、発光材料として、構
造式(G7−2)で表されるN,N’−ビス〔3−(ジベンゾチオフェン−4−イル)フ
ェニル〕−N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6mThBA
Prn−II)を用いた発光素子である。また、発光素子7は、発光材料として構造式(
G8−1)で表されるN,N’−ビス〔4−(ジベンゾフラン−4−イル)フェニル〕−
N,N’−ジフェニル−ピレン−1,6−ジアミン(略称:1,6FrBAPrn−II
)を用いた発光素子である。
発光素子5および発光素子6の素子構成は、陽極2102、電子輸送層2106、電子注
入層2107、および陰極2108において、実施例8で記載した発光素子1乃至発光素
子4と同一であるが、発光層2105、正孔注入層2103および正孔輸送層2104に
おいて、実施例8で記載した発光素子1乃至発光素子4と異なる。また、発光素子7の素
子構成は、陽極2102、正孔注入層2103、正孔輸送層2104、電子輸送層210
6、電子注入層2107、および陰極2108において、実施例8で記載した発光素子1
乃至発光素子4と同一であるが、発光層2105において、実施例8で記載した発光素子
1乃至発光素子4と異なる。本実施例で新たに用いた有機化合物の構造を以下に示す。
Figure 0006957582
(発光素子5)
基板2101上に陽極2102を実施例8と同様にして形成した。次に、発光素子5の正
孔注入層2103として、陽極2102上に、9−フェニル−3−[4−(10−フェニ
ル−9−アントリル)フェニル]−9H−カルバゾール(略称:PCzPA)と酸化モリ
ブデン(VI)とを実施例8で記載した共蒸着法により形成した。形成した正孔注入層2
103の厚さは50nmとし、PCzPAと酸化モリブデン(VI)の比率は、重量比で
4:2(=PCzPA:酸化モリブデン)となるように蒸着レートを調節した。
次に、抵抗加熱を用いた蒸着法により、正孔注入層2103上に厚さ10nmの正孔輸送
層2104を形成した。なお、正孔輸送層2104にはPCzPAを用いた。
発光素子5においては、正孔輸送層2104上に、発光層2105として、9−[4−(
10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:CzPA)
とN,N’−ビス〔3−(ジベンゾフラン−4−イル)フェニル〕−N,N’−ジフェニ
ル−ピレン−1,6−ジアミン(略称:1,6mFrBAPrn−II)とを実施例8で
記載した共蒸着法により形成した。形成した発光層2105の厚さは30nmとし、Cz
PAと1,6mFrBAPrn−IIとの重量比は、1:0.05(=CzPA:1,6
mFrBAPrn−II)となるように蒸着レートを調節した。
電子輸送層2106、電子注入層2107、および陰極2108は実施例8と同様にして
形成し、本実施例の発光素子5を作製した。
(発光素子6)
基板2101上に陽極2102を実施例8と同様にして形成した。
次に、発光素子6の正孔注入層2103および正孔輸送層2104は、発光素子5と同様
の方法で形成した。次に、発光素子6の発光層2105として、9−[4−(10−フェ
ニル−9−アントリル)フェニル]−9H−カルバゾール(略称:CzPA)とN,N’
−ビス〔3−(ジベンゾチオフェン−4−イル)フェニル〕−N,N’−ジフェニル−ピ
レン−1,6−ジアミン(略称:1,6mThBAPrn−II)とを実施例8で記載し
た共蒸着法により形成した。形成した発光層2105の厚さは30nmとし、CzPAと
1,6mThBAPrn−IIとの重量比は、1:0.05(=CzPA:1,6mTh
BAPrn−II)となるように蒸着レートを調節した。
その後、電子輸送層2106、電子注入層2107、および陰極2108は実施例8の発
光素子1乃至発光素子4と同様にして形成し、本実施例の発光素子6を作製した。
(発光素子7)
基板2101上に陽極2102、正孔注入層2103、および正孔輸送層2104を実施
例8と同様にして形成した。
次に、発光素子7の発光層2105として、9−[4−(10−フェニル−9−アントリ
ル)フェニル]−9H−カルバゾール(略称:CzPA)とN,N’−ビス〔4−(ジベ
ンゾフラン−4−イル)フェニル〕−N,N’−ジフェニル−ピレン−1,6−ジアミン
(略称:1,6FrBAPrn−II)とを実施例8で記載した共蒸着法により形成した
。形成した発光層2105の厚さは30nmとし、CzPAと1,6FrBAPrn−I
Iとの重量比は、1:0.05(=CzPA:1,6FrBAPrn−II)となるよう
に蒸着レートを調節した。
その後、電子輸送層2106、電子注入層2107、および陰極2108は実施例8の発
光素子1乃至発光素子4と同様にして形成し、本実施例の発光素子7を作製した。
本実施例で作製した発光素子5乃至7の素子構成を表3に示す。表3では、混合比は全て
重量比で表している。
Figure 0006957582
以上により、得られた発光素子5乃至発光素子7を、窒素雰囲気のグローブボックス内に
おいて、発光素子が大気に曝されないように封止する作業を行った後、発光素子の動作特
性について測定を行った。なお、測定は室温(25℃に保たれた雰囲気)で行った。
発光素子5乃至発光素子7の電圧−輝度特性を図36、輝度−電流効率特性を図37にそ
れぞれ示す。図36では縦軸に輝度(cd/m)、横軸に電圧(V)を示し、図37で
は、縦軸に電流効率(cd/A)、横軸に輝度(cd/m)を示す。また、1000c
d/m付近における発光素子の色度を表4に示す。
Figure 0006957582
また、発光素子5乃至7の発光スペクトルを図38に示す。
発光素子5乃至7のいずれも電圧に対する輝度に大きな差は観察されなかった。また、表
4および、図38から発光素子5乃至発光素子7はいずれも良好な青色発光を呈すること
が確認された。発光素子5および発光素子6は、発光素子7よりも発光スペクトルピーク
が460nm付近と、短波長側に表れることから、色純度の高い青色を呈するといえる。
また、発光素子5乃至発光素子7の信頼性試験を行った。信頼性試験は初期輝度を100
0cd/mに設定し、電流密度一定の条件でこれらの素子を駆動し、或る時間が経過す
る毎に輝度を測定した。信頼性試験によって得られた結果を図39に示す。図39におい
て、横軸は通電時間(hour)、縦軸はそれぞれの時間における初期輝度に対する輝度
の割合、すなわち規格化輝度(%)を表す。
図39より、100時間駆動後において、発光素子5乃至発光素子7いずれにおいても規
格化輝度が90%以上であり、長寿命な発光素子であることが確認できた。
以上示したように、本実施例の発光素子5乃至発光素子7は、長寿命で色純度の高い青色
発光素子とすることが可能であると確認できた。
101 基板
102 電極
103 EL層
104 電極
111 第1の層(正孔注入層)
112 第2の層(正孔輸送層)
113 第3の層(発光層)
114 第4の層(電子輸送層)
115 第5の層(電子注入層)
311 第1の発光ユニット
312 第2の発光ユニット
313 電荷発生層
321 第1の電極
322 第2の電極
401 ソース側駆動回路
402 画素部
403 ゲート側駆動回路
404 封止基板
405 シール材
407 空間
408 配線
409 FPC(フレキシブルプリントサーキット)
410 素子基板
411 スイッチング用TFT
412 電流制御用TFT
413 電極
414 絶縁物
416 EL層
417 電極
418 発光素子
423 Nチャネル型TFT
424 Pチャネル型TFT
501 基板
502 電極
503 電極
504 EL層
505 絶縁層
506 隔壁層
611 筐体
612 支持台
613 表示部
614 スピーカー部
615 ビデオ入力端子
621 本体
622 筐体
623 表示部
624 キーボード
625 外部接続ポート
626 ポインティングデバイス
631 本体
632 筐体
633 表示部
634 音声入力部
635 音声出力部
636 操作キー
637 外部接続ポート
638 アンテナ
641 本体
642 表示部
643 筐体
644 外部接続ポート
645 リモコン受信部
646 受像部
647 バッテリー
648 音声入力部
649 操作キー
650 接眼部
700 卓上照明器具
701 照明装置
2101 基板
2102 陽極
2103 正孔注入層
2104 正孔輸送層
2105 発光層
2106 電子輸送層
2107 電子注入層
2108 陰極

Claims (5)

  1. 一対の電極間に、発光層と、電子輸送層と、正孔注入層と、を有し、
    前記発光層は、式(G3)で表される芳香族アミン誘導体と、アントラセン骨格を有するホスト材料と、を有し、
    前記ホスト材料のLUMO準位と、前記電子輸送層に用いる材料のLUMOとの差は、0.4eV以内であり、
    前記正孔注入層は、アクセプターを有し、
    前記一対の電極間には、前記式(G3)で表される芳香族アミン誘導体を有する複数の発光ユニットを有する、発光素子。
    Figure 0006957582

    (式中、Aは、酸素または硫黄を表し、R〜Rは、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、置換若しくは無置換のフェニル基、または、置換若しくは無置換のビフェニル基のいずれかを表す。R、R10は、水素原子を表す。αは、置換または無置換のフェニレン基を表す。Arは、環を形成する炭素数6〜13の、置換または無置換のアリール基を表す。nは0または1である。)
  2. 一対の電極間に、発光層と、電子輸送層と、正孔注入層と、を有し、
    前記発光層は、式(G3)で表される芳香族アミン誘導体と、アントラセン骨格を有するホスト材料と、を有し、
    前記ホスト材料のLUMOと、前記電子輸送層に用いる材料のLUMOとの差は、0.4eV以内であり、
    前記一対の電極間には、前記式(G3)で表される芳香族アミン誘導体を有する複数の発光ユニットを有する、発光素子。
    Figure 0006957582

    (式中、Aは、酸素または硫黄を表し、R〜Rは、それぞれ独立に、水素原子、炭素数1〜6のアルキル基、置換若しくは無置換のフェニル基、または、置換若しくは無置換のビフェニル基のいずれかを表す。R、R10は、水素原子を表す。αは、置換または無置換のフェニレン基を表す。Arは、環を形成する炭素数6〜13の、置換または無置換のアリール基を表す。nは0または1である。)
  3. 請求項1または請求項2に記載の発光素子を有する発光装置。
  4. 請求項に記載の発光装置を有する電子機器。
  5. 請求項に記載の発光装置を有する照明装置。

JP2019213950A 2010-04-09 2019-11-27 発光素子、発光装置、電子機器及び照明装置 Active JP6957582B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010090941 2010-04-09
JP2010090941 2010-04-09
JP2018124016A JP2019024085A (ja) 2010-04-09 2018-06-29 発光素子、発光装置、電子機器および照明装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018124016A Division JP2019024085A (ja) 2010-04-09 2018-06-29 発光素子、発光装置、電子機器および照明装置

Publications (2)

Publication Number Publication Date
JP2020043358A JP2020043358A (ja) 2020-03-19
JP6957582B2 true JP6957582B2 (ja) 2021-11-02

Family

ID=44760276

Family Applications (12)

Application Number Title Priority Date Filing Date
JP2011086138A Active JP5690636B2 (ja) 2010-04-09 2011-04-08 芳香族アミン誘導体
JP2015018157A Active JP5716142B1 (ja) 2010-04-09 2015-02-02 発光素子、発光装置、電子機器および照明装置
JP2015018158A Withdrawn JP2015143227A (ja) 2010-04-09 2015-02-02 芳香族アミン誘導体
JP2016022419A Withdrawn JP2016147855A (ja) 2010-04-09 2016-02-09 芳香族アミン誘導体
JP2017015508A Withdrawn JP2017114872A (ja) 2010-04-09 2017-01-31 化合物
JP2018124016A Withdrawn JP2019024085A (ja) 2010-04-09 2018-06-29 発光素子、発光装置、電子機器および照明装置
JP2018124014A Withdrawn JP2018188444A (ja) 2010-04-09 2018-06-29 芳香族アミン誘導体、発光素子、発光装置、電子機器および照明装置
JP2018197435A Withdrawn JP2019052151A (ja) 2010-04-09 2018-10-19 化合物
JP2019213950A Active JP6957582B2 (ja) 2010-04-09 2019-11-27 発光素子、発光装置、電子機器及び照明装置
JP2020098258A Withdrawn JP2020170847A (ja) 2010-04-09 2020-06-05 発光素子、発光装置、電子機器及び照明装置
JP2021165481A Active JP7325487B2 (ja) 2010-04-09 2021-10-07 発光装置および電子機器
JP2023125405A Pending JP2023164795A (ja) 2010-04-09 2023-08-01 発光層用材料および発光装置

Family Applications Before (8)

Application Number Title Priority Date Filing Date
JP2011086138A Active JP5690636B2 (ja) 2010-04-09 2011-04-08 芳香族アミン誘導体
JP2015018157A Active JP5716142B1 (ja) 2010-04-09 2015-02-02 発光素子、発光装置、電子機器および照明装置
JP2015018158A Withdrawn JP2015143227A (ja) 2010-04-09 2015-02-02 芳香族アミン誘導体
JP2016022419A Withdrawn JP2016147855A (ja) 2010-04-09 2016-02-09 芳香族アミン誘導体
JP2017015508A Withdrawn JP2017114872A (ja) 2010-04-09 2017-01-31 化合物
JP2018124016A Withdrawn JP2019024085A (ja) 2010-04-09 2018-06-29 発光素子、発光装置、電子機器および照明装置
JP2018124014A Withdrawn JP2018188444A (ja) 2010-04-09 2018-06-29 芳香族アミン誘導体、発光素子、発光装置、電子機器および照明装置
JP2018197435A Withdrawn JP2019052151A (ja) 2010-04-09 2018-10-19 化合物

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2020098258A Withdrawn JP2020170847A (ja) 2010-04-09 2020-06-05 発光素子、発光装置、電子機器及び照明装置
JP2021165481A Active JP7325487B2 (ja) 2010-04-09 2021-10-07 発光装置および電子機器
JP2023125405A Pending JP2023164795A (ja) 2010-04-09 2023-08-01 発光層用材料および発光装置

Country Status (4)

Country Link
US (3) US10570113B2 (ja)
JP (12) JP5690636B2 (ja)
KR (7) KR101681040B1 (ja)
CN (4) CN110372661A (ja)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2423206B1 (en) * 2009-04-24 2014-01-08 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising same
US10570113B2 (en) * 2010-04-09 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Aromatic amine derivative, light-emitting element, light-emitting device, electronic device, and lighting device
US8993125B2 (en) 2010-05-21 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, and light-emitting element, light-emitting device, electronic device and lighting device using the triazole derivative
EP2428512B1 (en) 2010-09-08 2014-10-22 Semiconductor Energy Laboratory Co., Ltd. Fluorene compound, light-emitting element, light-emitting device, electronic device and lighting device
DE102010045405A1 (de) 2010-09-15 2012-03-15 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
KR101950363B1 (ko) 2010-10-29 2019-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 페난트렌 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR101910030B1 (ko) 2010-11-30 2018-10-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 벤조옥사졸 유도체, 발광 소자, 발광 장치, 전자기기 및 조명 장치
TWI545175B (zh) 2010-12-17 2016-08-11 半導體能源研究所股份有限公司 有機化合物,發光元件,發光裝置,電子裝置,以及照明裝置
US9640773B2 (en) 2011-09-16 2017-05-02 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence element using same
KR102126087B1 (ko) 2011-10-11 2020-06-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 조명 장치, 및 피렌계 화합물
KR101792456B1 (ko) 2011-11-25 2017-11-01 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체, 유기 일렉트로 루미네선스 소자용 재료 및 유기 일렉트로 루미네선스 소자
WO2013077406A1 (ja) * 2011-11-25 2013-05-30 出光興産株式会社 芳香族アミン誘導体、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
KR101918953B1 (ko) * 2012-03-06 2018-11-16 삼성디스플레이 주식회사 아민계 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 유기 발광 장치
KR102113160B1 (ko) 2012-06-15 2020-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US8901557B2 (en) 2012-06-15 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9312500B2 (en) * 2012-08-31 2016-04-12 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US10014477B2 (en) 2012-08-31 2018-07-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
EP2897959B1 (en) * 2012-09-20 2017-12-20 UDC Ireland Limited Azadibenzofurans for electronic applications
US9496503B2 (en) 2013-03-25 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
KR102073220B1 (ko) * 2013-07-26 2020-02-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR20150014778A (ko) * 2013-07-30 2015-02-09 삼성디스플레이 주식회사 유기 발광 소자
KR102336769B1 (ko) * 2014-02-21 2021-12-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
JP6370568B2 (ja) * 2014-03-14 2018-08-08 出光興産株式会社 インク組成物、インク組成物を用いた有機エレクトロルミネッセンス素子、及び電子機器
JP6425395B2 (ja) * 2014-03-14 2018-11-21 出光興産株式会社 インク組成物、インク組成物を用いた有機エレクトロルミネッセンス素子、及び電子機器
JP6425394B2 (ja) * 2014-03-14 2018-11-21 出光興産株式会社 インク組成物、インク組成物を用いた有機エレクトロルミネッセンス素子、及び電子機器
KR101904299B1 (ko) 2014-05-12 2018-10-04 제일모직 주식회사 유기 화합물, 유기 광전자 소자 및 표시 장치
KR101931250B1 (ko) 2014-05-13 2018-12-20 제일모직 주식회사 화합물, 이를 포함하는 유기 광전자 소자 및 표시장치
CN109742262B (zh) * 2014-08-08 2022-11-22 株式会社半导体能源研究所 发光装置、电子设备以及照明装置
JP6516433B2 (ja) * 2014-10-06 2019-05-22 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP6576631B2 (ja) * 2014-12-15 2019-09-18 三星ディスプレイ株式會社Samsung Display Co.,Ltd. アミン化合物、および有機電界発光素子
KR102328676B1 (ko) * 2014-12-24 2021-11-19 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102316683B1 (ko) 2015-01-21 2021-10-26 삼성디스플레이 주식회사 유기 발광 소자
KR102316682B1 (ko) 2015-01-21 2021-10-26 삼성디스플레이 주식회사 유기 발광 소자
KR102316684B1 (ko) 2015-01-21 2021-10-26 삼성디스플레이 주식회사 유기 발광 소자
JP6764671B2 (ja) 2015-04-14 2020-10-07 株式会社半導体エネルギー研究所 複素環化合物、発光素子、発光装置、電子機器、および照明装置
JP6534853B2 (ja) * 2015-04-21 2019-06-26 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子およびその製造方法
JP6846876B2 (ja) 2015-05-12 2021-03-24 株式会社半導体エネルギー研究所 化合物、発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置、及び電子機器
CN105789481B (zh) * 2015-06-10 2018-06-19 广东阿格蕾雅光电材料有限公司 有机电致发光器件
US10439146B2 (en) 2015-08-07 2019-10-08 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
EP3133666B1 (en) * 2015-08-21 2020-03-11 Samsung Display Co., Ltd. Organic light-emitting device
KR102399570B1 (ko) 2015-11-26 2022-05-19 삼성디스플레이 주식회사 유기 발광 소자
KR20170061770A (ko) * 2015-11-26 2017-06-07 삼성디스플레이 주식회사 유기 발광 소자
KR102076884B1 (ko) 2015-12-08 2020-02-13 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
US11910707B2 (en) 2015-12-23 2024-02-20 Samsung Display Co., Ltd. Organic light-emitting device
KR101668448B1 (ko) * 2016-02-11 2016-10-21 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102120517B1 (ko) * 2016-04-28 2020-06-08 주식회사 엘지화학 유기 발광 소자
KR20170127101A (ko) 2016-05-10 2017-11-21 삼성디스플레이 주식회사 유기 발광 소자
CN108129455B (zh) * 2016-12-01 2021-09-10 北京鼎材科技有限公司 二苯并噻吩取代衍生物及其应用
CN108134009B (zh) * 2016-12-01 2020-12-11 北京鼎材科技有限公司 新型有机化合物及其应用
JP6830827B2 (ja) * 2017-02-03 2021-02-17 出光興産株式会社 有機エレクトロルミネッセンス素子、電子機器及び有機エレクトロルミネッセンス素子用材料
EP3584243A4 (en) * 2017-02-14 2020-10-21 Idemitsu Kosan Co.,Ltd. NOVEL JOINT, ORGANIC ELECTROLUMINESCENT ELEMENT WITH USE OF IT AND ELECTRONIC DEVICE
CN106946865B (zh) * 2017-03-04 2019-04-05 长春海谱润斯科技有限公司 一种芳香胺衍生物及其制备方法和应用
WO2018167612A1 (en) 2017-03-17 2018-09-20 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, display device, and lighting device
WO2018185571A1 (ja) 2017-04-07 2018-10-11 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、表示装置及び照明装置
JP6339749B1 (ja) 2017-04-07 2018-06-06 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、照明装置、及び電子デバイス
TWI787279B (zh) * 2017-06-23 2022-12-21 日商半導體能源研究所股份有限公司 有機化合物、發光元件、發光裝置、電子裝置及照明設備
CN107118111B (zh) * 2017-06-28 2019-04-05 长春海谱润斯科技有限公司 一种芳香胺衍生物及其制备方法和应用
KR102469542B1 (ko) 2017-07-26 2022-11-23 삼성디스플레이 주식회사 광 흡수제 및 이를 포함하는 유기 전계 발광 소자
CN107501218A (zh) * 2017-08-09 2017-12-22 上海道亦化工科技有限公司 一种芘类有机电致发光化合物及其有机电致发光器件
CN107445929A (zh) * 2017-08-09 2017-12-08 上海道亦化工科技有限公司 一种芘类有机电致发光化合物及其有机电致发光器件
KR102263822B1 (ko) * 2017-12-27 2021-06-11 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102451278B1 (ko) * 2018-02-08 2022-10-05 주식회사 엘지화학 화합물, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
TW201945367A (zh) * 2018-03-09 2019-12-01 德商麥克專利有限公司 用於電子裝置的化合物
US12065419B2 (en) 2018-05-11 2024-08-20 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting device, light-emitting apparatus, electronic device, display device, and lighting device
US12108659B2 (en) * 2018-07-19 2024-10-01 Lg Display Co., Ltd. Organic electroluminescent device
CN110790754A (zh) * 2018-08-02 2020-02-14 昱镭光电科技股份有限公司 可产生发光激基复合物的有机发光器件
CN109651312A (zh) * 2018-12-31 2019-04-19 瑞声科技(南京)有限公司 一种含芘化合物及有机发光二极管器件
TW202105790A (zh) * 2019-05-17 2021-02-01 日商半導體能源研究所股份有限公司 發光元件、發光裝置、電子機器及照明裝置
CN115785042B (zh) * 2021-09-09 2024-05-03 广州华睿光电材料有限公司 芘类有机化合物、混合物、组合物及有机电子器件

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272648A (en) 1979-11-28 1981-06-09 International Telephone And Telegraph Corporation Gain control apparatus for digital telephone line circuits
JP3974720B2 (ja) * 1998-11-18 2007-09-12 Tdk株式会社 有機el素子
MXPA03008030A (es) 2001-03-28 2005-04-29 Nokia Corp Codigo de espacio-tiempo de ponderacion compleja no nula para transmision en antenas multiples.
US6748024B2 (en) 2001-03-28 2004-06-08 Nokia Corporation Non-zero complex weighted space-time code for multiple antenna transmission
KR100577179B1 (ko) * 2001-10-30 2006-05-10 엘지전자 주식회사 유기 전계 발광 소자
WO2004018588A1 (ja) 2002-07-19 2004-03-04 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子及び有機発光媒体
JP4506113B2 (ja) 2002-09-20 2010-07-21 東ソー株式会社 フルオレン骨格を有する新規アリールアミン誘導体、その合成中間体及びこれらの製造方法並びに有機el素子
JP2004200141A (ja) * 2002-10-24 2004-07-15 Toyota Industries Corp 有機el素子
EP1437395B2 (en) 2002-12-24 2015-08-26 LG Display Co., Ltd. Organic electroluminescent device
EP1604974A4 (en) 2003-03-20 2007-11-14 Idemitsu Kosan Co AROMATIC AMINE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT ELEMENT PRODUCED WITH THIS DERIVATIVE
US6905788B2 (en) 2003-09-12 2005-06-14 Eastman Kodak Company Stabilized OLED device
JP5112601B2 (ja) 2003-10-07 2013-01-09 三井化学株式会社 複素環化合物および該化合物を含有する有機電界発光素子
GB0405310D0 (en) * 2004-03-09 2004-04-21 Prototech As Pipeline pig
JP2005310742A (ja) 2004-03-25 2005-11-04 Sanyo Electric Co Ltd 有機エレクトロルミネッセンス素子
JP4947909B2 (ja) 2004-03-25 2012-06-06 三洋電機株式会社 有機エレクトロルミネッセンス素子
JP2005285618A (ja) 2004-03-30 2005-10-13 Seiko Epson Corp 有機el装置および電子機器
KR100573137B1 (ko) 2004-04-02 2006-04-24 삼성에스디아이 주식회사 플루오렌계 화합물 및 이를 이용한 유기 전계 발광 소자
KR101192519B1 (ko) 2004-05-12 2012-10-17 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체, 이를 이용한 유기 전기 발광 소자 및방향족 아민 유도체의 제조방법
KR101128065B1 (ko) * 2004-05-26 2012-04-12 에자이 알앤드디 매니지먼트 가부시키가이샤 신나미드 화합물
US7504163B2 (en) * 2004-07-12 2009-03-17 Eastman Kodak Company Hole-trapping materials for improved OLED efficiency
TWI285441B (en) 2004-08-13 2007-08-11 Novaled Ag Layer assembly for a light-emitting component
JP2008509565A (ja) 2004-08-13 2008-03-27 ノヴァレッド・アクチエンゲゼルシャフト 発光成分用積層体
US7273663B2 (en) * 2004-08-20 2007-09-25 Eastman Kodak Company White OLED having multiple white electroluminescence units
CN101073164B (zh) 2004-12-06 2010-05-05 株式会社半导体能源研究所 发光元件和使用该元件的发光装置
US9530968B2 (en) 2005-02-15 2016-12-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
JP2007073500A (ja) * 2005-08-11 2007-03-22 Semiconductor Energy Lab Co Ltd 発光素子、発光装置及び電子機器
WO2007043354A1 (en) 2005-09-30 2007-04-19 Semiconductor Energy Laboratory Co., Ltd. Spirofluorene derivative, material for light-emitting element, light-emitting element, light-emitting device, and electronic device
DE102005058557A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
EP1957604B1 (de) 2005-12-08 2015-09-23 Merck Patent GmbH Neue materialien für organische elektrolumineszenzvorrichtungen
US20070215889A1 (en) 2006-03-20 2007-09-20 Semiconductor Energy Laboratory Co., Ltd. Aromatic amine compound, and light-emitting element, light-emitting device, and electronic appliance using the aromatic amine compound
DE102006013802A1 (de) 2006-03-24 2007-09-27 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
WO2007125714A1 (ja) * 2006-04-26 2007-11-08 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
CN101931056B (zh) 2006-06-01 2014-07-09 株式会社半导体能源研究所 发光元件、发光器件和电子器件
KR101426513B1 (ko) 2006-09-29 2014-08-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 퀴녹살린 유도체, 발광소자, 발광장치 및 전자기기
JP5241183B2 (ja) 2006-09-29 2013-07-17 株式会社半導体エネルギー研究所 キノキサリン誘導体、発光素子、発光装置及び電子機器
EP2518045A1 (en) 2006-11-24 2012-10-31 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using the same
CN101627488B (zh) 2007-02-28 2011-09-07 株式会社半导体能源研究所 使用螺芴衍生物的发光元件及电子设备
JP4939284B2 (ja) 2007-04-05 2012-05-23 財団法人山形県産業技術振興機構 有機エレクトロルミネッセント素子
US8216753B2 (en) * 2007-12-13 2012-07-10 E I Du Pont De Nemours And Company Electroactive materials
US8067764B2 (en) * 2007-12-17 2011-11-29 E. I. Du Pont De Nemours And Company Electroactive materials
CN101910147B (zh) 2007-12-28 2014-02-19 出光兴产株式会社 芳胺衍生物及使用该芳胺衍生物的有机电致发光元件
JP2009190398A (ja) * 2008-01-17 2009-08-27 Seiko Epson Corp 液体噴射ヘッド及び液体噴射装置
JP5501656B2 (ja) 2008-05-16 2014-05-28 株式会社半導体エネルギー研究所 組成物、薄膜の作製方法、及び発光素子の作製方法
WO2009145016A1 (ja) 2008-05-29 2009-12-03 出光興産株式会社 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2010006106A1 (en) * 2008-07-09 2010-01-14 Fluor Technologies Corporation High-speed friction stir welding
KR20110043625A (ko) 2008-07-28 2011-04-27 이데미쓰 고산 가부시키가이샤 유기 발광 매체 및 유기 el 소자
WO2010013675A1 (ja) 2008-07-28 2010-02-04 出光興産株式会社 有機発光媒体及び有機el素子
EP2423206B1 (en) 2009-04-24 2014-01-08 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element comprising same
US9153790B2 (en) 2009-05-22 2015-10-06 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
US20100295445A1 (en) * 2009-05-22 2010-11-25 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP5709752B2 (ja) 2009-08-19 2015-04-30 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR101334529B1 (ko) 2009-10-09 2013-11-28 이데미쓰 고산 가부시키가이샤 유기 전계 발광 소자
JP5383422B2 (ja) * 2009-10-16 2014-01-08 東日本高速道路株式会社 車両検知集約伝送装置
US8642190B2 (en) 2009-10-22 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Fluorene derivative, light-emitting element, light-emitting device, electronic device, and lighting device
JP5238889B2 (ja) 2010-01-15 2013-07-17 出光興産株式会社 有機エレクトロルミネッセンス素子
CN102725280A (zh) 2010-02-05 2012-10-10 出光兴产株式会社 氨基蒽衍生物和使用其的有机电致发光元件
JP5691192B2 (ja) 2010-02-24 2015-04-01 東洋インキScホールディングス株式会社 有機エレクトロルミネッセンス素子用材料およびその用途
US10570113B2 (en) * 2010-04-09 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Aromatic amine derivative, light-emitting element, light-emitting device, electronic device, and lighting device
KR101792456B1 (ko) * 2011-11-25 2017-11-01 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체, 유기 일렉트로 루미네선스 소자용 재료 및 유기 일렉트로 루미네선스 소자
JP2018124014A (ja) * 2017-02-01 2018-08-09 フクビ化学工業株式会社 空調システム
JP2018197435A (ja) * 2017-05-23 2018-12-13 日立建機株式会社 自走式縦孔掘削機用のケーブルサポート装置

Also Published As

Publication number Publication date
CN110372661A (zh) 2019-10-25
US20220106286A1 (en) 2022-04-07
JP2023164795A (ja) 2023-11-14
CN106220606A (zh) 2016-12-14
KR20180125140A (ko) 2018-11-22
KR101681040B1 (ko) 2016-11-30
JP7325487B2 (ja) 2023-08-14
KR20110113593A (ko) 2011-10-17
JP2019052151A (ja) 2019-04-04
JP2020170847A (ja) 2020-10-15
KR102525255B1 (ko) 2023-04-25
JP5690636B2 (ja) 2015-03-25
US10570113B2 (en) 2020-02-25
KR20220027905A (ko) 2022-03-08
JP2015135969A (ja) 2015-07-27
JP2022025079A (ja) 2022-02-09
US20190071411A1 (en) 2019-03-07
US20110248246A1 (en) 2011-10-13
KR20180110655A (ko) 2018-10-10
JP2017114872A (ja) 2017-06-29
JP2011231108A (ja) 2011-11-17
KR102060956B1 (ko) 2019-12-31
JP2015143227A (ja) 2015-08-06
JP2020043358A (ja) 2020-03-19
CN117143073A (zh) 2023-12-01
KR20160138361A (ko) 2016-12-05
CN106220606B (zh) 2019-09-10
KR102520284B1 (ko) 2023-04-12
US11046667B2 (en) 2021-06-29
JP5716142B1 (ja) 2015-05-13
KR20210021510A (ko) 2021-02-26
CN102219774A (zh) 2011-10-19
JP2018188444A (ja) 2018-11-29
KR20230058342A (ko) 2023-05-03
CN102219774B (zh) 2016-09-21
JP2016147855A (ja) 2016-08-18
JP2019024085A (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6957582B2 (ja) 発光素子、発光装置、電子機器及び照明装置
JP6619463B2 (ja) 化合物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210727

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210804

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211006

R150 Certificate of patent or registration of utility model

Ref document number: 6957582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250