TWI285441B - Layer assembly for a light-emitting component - Google Patents

Layer assembly for a light-emitting component Download PDF

Info

Publication number
TWI285441B
TWI285441B TW94123656A TW94123656A TWI285441B TW I285441 B TWI285441 B TW I285441B TW 94123656 A TW94123656 A TW 94123656A TW 94123656 A TW94123656 A TW 94123656A TW I285441 B TWI285441 B TW I285441B
Authority
TW
Taiwan
Prior art keywords
layer
hole
electron
combination according
transfer
Prior art date
Application number
TW94123656A
Other languages
Chinese (zh)
Inventor
Gufeng He
Martin Pfeiffer
Jan Blochwitz-Nimoth
Original Assignee
Novaled Ag
Univ Dresden Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novaled Ag, Univ Dresden Tech filed Critical Novaled Ag
Application granted granted Critical
Publication of TWI285441B publication Critical patent/TWI285441B/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

The invention relates to a layer assembly for a light-emitting component, in particular a phosphorescent organic light-emitting diode, having a hole-injecting contact and an electron-injecting contact which are each connected to a light-emitting region, wherein, in the light-emitting region, one light-emitting layer is made up of a material (M1) mad another light-emitting layer is made up of another material (M2), where the material (M1) is ambipolar and preferentially transports holes and the other material (M2) is ambipolar and preferentially transports electrons; a heterotransition is formed by the material (M1) and the other material (M2) in the light-emitting region; an interface between the material (M1) and the other material (M2) is of the staggered type II; the material (MI) and the other material (M2) each contain an appropriate addition of one or more triplet emitter dopants; and an energy barrier for transfer of holes from the material (M1) into the other material (M2) and an energy barrier for transfer of electrons from the other material (M2) into the material (M1) are each less than about 0.5 eV.

Description

1285441 九、發明說明: 發明所屬技術領域 本發明係關於〜種發光組件層組合,特別是有機 填光發光二極體(〇LHD>。 先前技術 一種具有機層組合的組件敘述於如文件W〇 03/100880 。 如已由Baldo等(應用物理信件75⑴,4-6(1999)或 _ Ikai等(應用物理信件79(2)356-158(2001)所報告,此 種組件的典型實現為基於包含基質材料及磷光掺雜劑 的混合物的簡單發光層(EML)。若其具有,如在Baid〇 等(包含以Ir(ppy)3(部份參(孓苯基吡啶)銥)掺雜的 06?(4,4’-:^:^’_二咔唑聯苯之£]^]1)或4,4,-雙(咔唑-9-基聯苯)及Ikai等包含以Ir(ppy)3掺雜的TCTA(4,4,,4,,_ 三(N-咔唑基)三苯胺之(EML)的研究中所敘述主要為 電洞傳遞特性,由具非常高游離能的材料所組成的電 φ 洞阻障層(HBL),稱為BCP(向紅2,2、聯喹啉,2,9_二 甲基·4,7-二苯基1,ι〇·菲羅啉)於Bald〇等的情況及全氟 化星狀放射材料於Ikai等的情況於發光層及電子傳遞 層或陰極之間為必要的。 另一方面,若EML·具主要為電子導電特徵,如 在 Adachi 等(應用物理 9〇(1〇),5〇48-5051(2001))的實現 於此EML包含以ir複合物做為發光體掺雜劑掺雜的電 子傳遞材料TAZ(1,2,4-三唑衍生物,如3-(4-聯苯基)-4- 1285441· 苯基-5-第三丁基苯基-1,2,4_三唑),由具非常低電子親 和力材料所組成的電子阻障層(EBL)為需要的,對此BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combination of light-emitting component layers, particularly an organic light-filled light-emitting diode (〇LHD>. A prior art component having a combination of layers is described in document W〇. 03/100880. As demonstrated by Baldo et al. (Applied Physics Letters 75(1), 4-6 (1999) or _ Ikai et al. (Applied Physics Letter 79(2) 356-158 (2001), a typical implementation of such a component is based on a simple luminescent layer (EML) comprising a mixture of a host material and a phosphorescent dopant, if it has, for example, in a Baid(R) or the like (containing Ir(ppy)3 (partial 参(p-phenylpyridinium) ruthenium) 06?(4,4'-:^:^'_dicarbazole biphenyl]]]]1) or 4,4,-bis(carbazol-9-ylbiphenyl) and Ikai include Ir ( Ppy) 3 doped TCTA (4,4,,4,,_tris(N-carbazolyl)triphenylamine (EML) is described in the study of hole transport properties, with very high free energy The electrical Φ hole barrier layer (HBL) composed of materials is called BCP (toward red 2, 2, biquinoline, 2,9-dimethyl-4,7-diphenyl 1, ι〇·菲罗Porphyrin) in the case of Bald〇 et al. and perfluorinated star The material is necessary between the light-emitting layer and the electron transport layer or the cathode in the case of Ikai, etc. On the other hand, if the EML is mainly an electronic conductive feature, as in Adachi et al. (Applied Physics 9 (1〇), 5 Implementation of 〇48-5051 (2001)) This EML contains an electron transport material TAZ (1,2,4-triazole derivative, such as 3-(4-), which is doped with an ir complex as an emitter dopant. Biphenyl)-4- 1285441·Phenyl-5-t-butylphenyl-1,2,4-triazole), required by an electron barrier layer (EBL) composed of a material with very low electron affinity On this

Adachi等使用4,4’-雙[N,N’_(3-甲苯基)胺]_3,3,-二曱基 聯苯(HM-TPD)。然而,特別是在高流明的情況下,此 • 產生電洞/電子在電洞電子-阻障層的累積發生的問 、題,此造成隨增加流明的效率降低。 - 進一步問題為電荷載體累積加速OLED的降級, 此外,良好的電洞阻障材料常為電化學不穩定的。對 ⑩ 如廣泛材料的使用向紅2,2’-聯啥琳(BCP)、向紅菲羅琳 (Bphen)及2,2’,2’’-苯三基)參[丨-苯基_ih_苯並咪 唑](TPBI)做為電洞阻障材料為真(參考Kwong等,(應 , 用物理信件81,162(2002))。 在文件WO 03/100880,雙極發光層(EML)EML 1 及EML 2係如下用於有機磷光發光二極體層組合:陽 極=ITO/電洞傳遞層(HTL)卜以MeO_TPD/HTL 2掺雜 的 F4-TCNQ=螺-TAD/EML 1=TCTA: Ir(ppy)3/ EML 2= φ Bphen·· Ir(ppy)3/電子傳遞層(ETL) ETL 2=BPhen/ETL 1= Bphen:Cs-摻雜/陰極=A1。在此情況自EML 2電子 , 注入EML 1的能障為約0.5電子伏特。Adachi et al. used 4,4'-bis[N,N'-(3-methylphenyl)amine]_3,3,-dimercaptobiphenyl (HM-TPD). However, especially in the case of high lumens, this creates problems with the accumulation of holes/electrons in the electron-barrier layer of the hole, which causes a decrease in efficiency with increasing lumens. - A further problem is that charge carrier accumulation accelerates the degradation of OLEDs. Furthermore, good hole barrier materials are often electrochemically unstable. For 10 such as the use of a wide range of materials to red 2, 2 '- 啥 啥 (BCP), to red phenoline (Bphen) and 2, 2 ', 2 ''-benzene triyl) ginseng [丨-phenyl _ Ih_benzimidazole] (TPBI) is true as a barrier material for holes (Ref. Kwong et al., (should, use physical letters 81, 162 (2002)). In document WO 03/100880, bipolar luminescent layer (EML) EML 1 and EML 2 are used for the combination of organic phosphorescent light-emitting diode layers: anode = ITO / hole transfer layer (HTL), F4-TCNQ doped with MeO_TPD/HTL 2 = spiro-TAD/EML 1 = TCTA : Ir(ppy)3/ EML 2= φ Bphen·· Ir(ppy)3/electron transfer layer (ETL) ETL 2=BPhen/ETL 1= Bphen: Cs-doping/cathode=A1. In this case from EML 2 electrons, the energy barrier for injecting EML 1 is about 0.5 eV.

~ 有機鱗光發光二極體亦揭示於文件WO • 02/071813 A1,在該已知發光二極體中,發光區域具兩 個擁有電洞傳遞材料/電子傳遞材料(其每一個以相同 三重態發光體掺雜劑掺雜)的發射層。 該已知組件具有在電洞傳遞材料與電子傳遞材料之間 8 1285441 的能障為高的之問題,使得電荷載體的累積在發光區 域發生,其導致激子因電荷戴體而驟冷(三重極化子驟 冷)的高玎能性。此外,激子的產生基本上在組件的電 洞傳遞部分與電子傳遞部分之間的介面發生,因此原 • 因,高局部二重態激子密度在此區域發生,其產生三 、 f態與三重態的自我湮滅的高可能性。三重極化子驟 • A及三重態與三錢的自錢滅於相當高電流密度產 生量子效率的降低。 發明内容 本發明目的為提供-種發光組件的層組合,特別 是麟光有機發光二極體,其具經改良發光性質,特別 是於高流明的經改_光的量子效率,及增加的壽命。 此目的可根據本發明藉由根據獨立申請專利範圍 第i項的發光組件層組合達到,本發 例為相依附屬申請專利範圍的主題。有I、體實施 广上二提供至少兩個雙極層的觀念,盆中 於層,“的“區域’亦稱為發光區,一個優先傳: 電子及另-個優先傳遞電洞。 儍无傳遞 -種形式的電荷载體 先傳遞發生於發先組件層若電洞’之優 體的電荷載艘移動性較另電荷载 較另-種形式電荷載體雜的注入能障 異i轉換亦稱為交錯 換"、 4轉換,亦稱為在有機材 9 1285441 t(Ml)及另一個有機材料(M2)之間,,交錯形式π”的異 轉^當優先傳遞電洞的㈣(Ml)具較優先傳遞電子 時另個材料(Μ 2)為低的游離能及為低的電子親和性 始^表不材料(Μ 1)的最高佔據執道(Η0Μ0)及最低佔 軌道(LUMQ)皆較其他材料(Μ2)之情況靠近真空能 处^產生自材料(Ml)進入另一個材料(Μ2)的電洞注 入月b障及自另一個材料(Μ2)進入材料(mi)的電子注入 能障。 • 者為進行本發明目的基於有機材料的層為一種雙極 層當在該層的電子移動性及電洞移動性相差少於約兩 個數里級及該雙極層的有機材料為可逆還原及氧化 的,其係基於自由基陽離子的電化學穩定性及該有機 材料的自由基陰離子。 +該雙極性質較佳為可由電洞傳遞能位(h〇m〇_最 高佔據分子執道)低於慣用電洞傳遞材料的電洞傳遞 能位不超過約0.4電子伏特,較佳為不超過約〇 3電子 • 伏特而更顯著地組成以使電洞注入為可能。慣用電洞 傳遞材料為如N,N,·二(萘·2都_,.二苯基·聯苯胺 (NPD)。自約5.5電子伏特至約5.7電子伏特低於真空 能位之HOMO能量係報告用於該參考 除了涉及HOMO能量的切性料做為其替代 方案’該雙極性質係由該雙極層的有機材料的電子傳 遞能位高於慣用電子傳遞材料例如叫的電子傳遞能 位不超過約0.4電子伏特,較佳為不超過約Q3電子伏 1285441 * 特而產生,此準則可藉由估計該LUM0能量(“LUM(> 最低未佔據分子執道,,)的方法檢查,其本身為熟知本 技藝者已知,這些方法包括,特別是: a) 游離能(IP)的測量,如藉由光電子光譜,及光學吸收 限Eg p及以IP- Egopt估計於真空中該LUMO能量。在 ^ Alq3的情況下,得到自約2.9電子伏特至約3.1電子伏 • 特低於真空能位的LUMO能級。 b) 第一還原電位的電化學決定,於此,發現八丨❿的電 φ 位為-2·3伏特相對於二茂鐵/二茂鐵+,其對應於約2.5 電子伏特的電子親和性。 c) 藉由越過至Alq3介面的電子傳遞的能障之檢查決定 在Alqs的情況下用於該雙極層的有機材料之lUM〇能 • 級。 具雙極性質的有機層可如下得到: i) 將單極有機基質材料與具互補傳遞性質的發光體材 料一起使用,例如,當該基質材料為電子傳遞的則該 • 發光體材料為電洞傳遞的,或反之。在此具體實施例 中,電洞移動性及電子移動性的比值可藉由發光體材 • 料中的掺雜劑濃度設定。由單極電洞傳遞基質材料所 • 組成的基質係稱為”單載子電洞,,基質,且,,單載子電 ^ 子基質為由單極電子傳遞基質材料所組成的基質。 ii) 可使用雙極基質材料。 iii) 在進一步具體實施例中,使用兩種基質材料及一種 發光體材料的混合物,且該基質材料的其中一個為 11 U85441~ Organic luminescent light-emitting diodes are also disclosed in document WO 02/071813 A1, in which the light-emitting region has two holes-transmitting materials/electron-transporting materials (each of which has the same triple weight) An emissive dopant doped with an emissive layer. The known assembly has a problem that the energy barrier of the 8 1285441 is high between the hole transfer material and the electron transfer material, so that the accumulation of the charge carriers occurs in the light-emitting region, which causes the excitons to be quenched by the charge wear (triple weight) High thermal energy of the polaron. In addition, the generation of excitons occurs substantially at the interface between the hole transfer portion and the electron transfer portion of the module, and therefore, the high local doublet exciton density occurs in this region, which produces three, f, and triple The high probability of self-annihilation. The triple-polarization sub-segment • The A and triplet states and the three money's self-depletion at a relatively high current density result in a decrease in quantum efficiency. SUMMARY OF THE INVENTION The object of the present invention is to provide a layer combination of a light-emitting component, in particular a plexiluminescent organic light-emitting diode, which has improved luminescent properties, in particular a high lumen, modified quantum efficiency, and increased lifetime. . This object is achieved according to the invention by a combination of illuminating component layers according to item i of the independent patent application, which is the subject of the dependent claims. I, body implementation Broad 2 provides the concept of at least two bipolar layers, the basin is in the layer, "the "area" is also known as the illuminating area, a priority transmission: electronic and another priority transmission hole. Silent no transfer - the charge carrier of the form first transfers the charge of the preferred component of the current component layer if the hole's mobility is more than that of the other type of charge carrier. Also known as staggered ", 4 conversion, also known as between the organic material 9 1285441 t (Ml) and another organic material (M2), the staggered form π" of the different transfer when the priority transmission hole (4) (Ml) When the electrons are preferentially transferred, the other material (Μ 2) is low free energy and low electron affinity is the highest occupied (Η0Μ0) and the lowest occupied orbit ((1) LUMQ) is closer to the vacuum energy than other materials (Μ2). ^The hole from the material (Ml) into another material (Μ2) is injected into the moon b barrier and from another material (Μ2) into the material (mi). Electron implantation energy barrier. • The organic material-based layer for the purpose of the present invention is a bipolar layer when the electron mobility and hole mobility in the layer differ by less than about two orders of magnitude and the bipolar layer. The organic material is reversibly reduced and oxidized based on the electrochemical stability of the radical cation and the organic The free radical anion of the material. The bipolar property is preferably such that the energy transfer point from the hole (h〇m〇_the highest occupied molecule) is lower than the hole transfer energy of the conventional hole transfer material by no more than about 0.4 electrons. Volt, preferably not more than about 电子3 electrons·volts, is more prominently composed to make hole injection possible. Conventional hole transfer materials are, for example, N, N, · II (naphthalene·2 _,. diphenyl) • Benzidine (NPD). HOMO energy system from about 5.5 eV to about 5.7 eV below vacuum energy is reported for this reference except for the incision of HOMO energy as an alternative to the bipolar system. The electron transfer energy level of the organic material of the bipolar layer is higher than that of the conventional electron transport material, for example, the electron transfer energy level is not more than about 0.4 eV, preferably not more than about Q3 electron volts of 1285441*. It can be checked by estimating the LUM0 energy ("LUM (> lowest unoccupied molecular trajectory,)), which is known per se to those skilled in the art, including, inter alia: a) free energy (IP) Measurements, such as by photoelectron spectroscopy, and optical absorption Limiting Eg p and estimating the LUMO energy in vacuum by IP-Egopt. In the case of Alq3, a LUMO level from about 2.9 eV to about 3.1 eV is obtained, which is lower than the vacuum energy level. b) An electrochemical decision of the reduction potential, in this case, was found to have an electrical φ position of -3·3 volts relative to ferrocene/ferrocene +, which corresponds to an electron affinity of about 2.5 eV. c) The lUM energy level of the organic material used for the bipolar layer in the case of Alqs is determined by an inspection of the energy barrier across the electron transfer to the Alq3 interface. An organic layer having bipolar properties can be obtained by: i) using a monopolar organic matrix material with an illuminant material having complementary transfer properties, for example, when the matrix material is electron-transported, the illuminant material is a hole Passed, or vice versa. In this embodiment, the ratio of hole mobility and electron mobility can be set by the dopant concentration in the illuminant material. The matrix consisting of a monopolar hole transfer matrix material is called a "single carrier hole, a matrix, and, a single carrier electron substrate is a matrix composed of a monopolar electron transport matrix material. A bipolar matrix material can be used. iii) In a further embodiment, a mixture of two matrix materials and one illuminant material is used, and one of the matrix materials is 11 U85441

電洞傳遞的及另一個基質材料為電子傳遞的,電洞 移動性及電子移動性的比值係由混合比值設定,分 子混合比值係在自1:10至1〇:1的範圍。 、本發明具較先前技藝為佳的優點為由在發光區域 的許多層所組成的組合具關於電子注人及電洞注入的 所需平衡之自平衡特性,可避免電荷載體於介面的累 積,在至相鄰傳遞或阻障層的介面皆可避免,其特別 為較 Adachi 等(應用物理 9〇(1〇),5〇48_5〇51(2〇〇1)的已 :發光組件的優點,及亦在發光區域的層之間的内部 ;|面,其產生較特別是得自文件wo 〇2/〇71813 A1的 先刚技藝為佳的優點。結果,於層組合的發光區域形 成經注入電子及電洞分佈的非常廣重㈣域及由此敎 化態(激子)的廣i成區域。因為高局部電荷載體密度的 降解方法及在電荷載體與激子之間及在激子之間的有 效還原驟冷方法皆以此方式最小化。 忒發光區域可能具超過兩個發光層,如在文The ratio of the hole mobility and the electron mobility transmitted by the hole and the other matrix material is set by the mixing ratio, and the molecular mixing ratio is in the range from 1:10 to 1〇:1. The advantage of the present invention over prior art is that the combination of the plurality of layers in the illuminating region has a self-balancing characteristic with respect to the desired balance of electron injection and hole injection, which avoids accumulation of charge carriers at the interface. The interface to the adjacent transfer or barrier layer can be avoided, especially for the advantages of Adachi et al. (Applied Physics 9〇(1〇), 5〇48_5〇51(2〇〇1): And also within the layer between the layers of the illuminating region; the | surface, which produces a more advanced advantage than the prior art from the file wo 〇 2 / 〇 71813 A1. As a result, the illuminating region of the layer combination is formed by injection. The very wide (4) domain of electron and hole distribution and the wide i-region of the 敎-state (exciton). Because of the high local charge carrier density degradation method and between charge carriers and excitons and between excitons The effective reduction quenching method is minimized in this way. The illuminating region may have more than two luminescent layers, such as in the text.

W〇 〇3/1〇_巾所敘述,其内容以參考文件併入本專 利申請案。 I 的該發光層的三重發光體掺雜劑可為相同的或不同 該電荷載體傳遞層及/或該電洞_或電子_轉層可在電 子侧及/或f關省略,使得該發光層直接與在該層 合的發规域__(陽極,陰極)或是該(經換雜 荷載體傳遞層相鄰,此係藉由在該發光區的層系統的 1285441 :· 自平衡特性而為可能,因為否則激子可在金屬接觸點 或在具掺雜劑的接觸點驟冷或是該電荷載體會橫切流 經該OLED及再組合而不在另一個接觸點或是在經掺 雜傳遞層放出輻射。 • 具體貫施方式 、 在下列實例敘述中,使用下列簡寫:HTL-電洞傳 • 遞層,ETL_電子傳遞層,EML-在光發射區域的層,ΕΒ1^ 電子阻擔層及HBL·電洞阻播層。 ❿ 實例1 在第一個實例中,提供下列層組合做為發光組件: 陽極=ΙΤΟ/ HTL卜F4-TCNQ(四氟四氰基對苯釀二甲烷)以自 〇·ι莫耳%至ίο莫耳%的混合比及自約3〇奈米至約5〇〇 奈米,較佳為自約50奈米至約2〇〇奈米的層厚度掺雜 進入Ν,Ν,Ν’,Ν’-四個(4_曱氧苯基)聯苯胺(Me〇-TpD)/ HTL2=2,2’,7,7’_ 四個(N,N’_二苯胺)·9,9,_螺聯芴W〇 〇3/1〇_巾, the contents of which are incorporated herein by reference. The triple emitter dopant of the light-emitting layer of I may be the same or different from the charge carrier transport layer and/or the hole- or electron-transfer layer may be omitted on the electron side and/or the off-off such that the light-emitting layer Directly with the hairline domain __ (anode, cathode) or the adjacent layer (which is adjacent to the load transfer layer, which is by the self-balancing property of the layer system of the layer system in the light-emitting region) It is possible because otherwise the excitons can be quenched at the metal contact or at the contact point with the dopant or the charge carrier will cross the OLED and recombine without being at another contact or doped The transfer layer emits radiation. • In the following examples, the following abbreviations are used: HTL-hole transmission layer, ETL_ electron transport layer, EML-layer in the light emission region, ΕΒ1^ electron blocking Layer and HBL·hole blocking layer. 实例 Example 1 In the first example, the following combination of layers is provided as a light-emitting component: Anode = ΙΤΟ / HTL Bu F4-TCNQ (tetrafluorotetracyano-p-phenylene dimethane) Mix ratio from ι ι 耳 耳 % to ίο 莫 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % Nano, preferably having a layer thickness of from about 50 nm to about 2 nm, is doped into Ν, Ν, Ν', Ν'- four (4_曱-oxyphenyl) benzidine (Me〇- TpD)/ HTL2=2,2',7,7'_ four (N,N'-diphenylamine)·9,9,_spiral 芴

# (螺_TAD),其具自約1奈米至約30奈米,較佳為自約 3奈米至約15奈米的層厚度,且較佳為較HTU • 為薄/ 二 ^ EML1=TCTA: Ir(附)3,其具 lr(ppy)3 濃度自約 1 莫耳%至約50莫耳%,較佳為自約3至約3〇莫耳%, 及自約2奈米至約30奈米,較佳為自約3奈米至約15 奈米的層厚度/ EML2=TPBI: Ir(ppy)3,其具 Ir(ppy)3 濃度自約 i 13 1285441 莫耳%至約50莫耳%,較佳為自約3至约30莫耳0/〇, 及自約2奈米至約3 0奈米’較佳為自約3奈米至約15 奈米的層厚度/ ETL2=雙(2-甲基-8_羥基喳啉)斗(苯基酚根合)銘 • (III)(BAlq2),其具自約1奈米至約%奈米,較佳為自 - 約3奈米至約15奈米的層厚度,且ETL2較佳為較 , ETL1為薄,對照特徵係使用BPhen取代BAlq2做為 ETL2而得到/ • ETLl=Bphen:Cs-以自約〇·ι莫耳%至1:1的莫耳 比值之Cs濃度掺雜,及自約30奈米至約500奈米, 較佳為自約50奈米至約200奈米的層厚度/ — 陰極=A1。 在EML1的電子傳遞可選擇性地由以該三種成分 TCTA、TPBI 及 lr(ppy)3 以如 46%/46%/8%的混合比的 混合物所組成的層協助,電子自EML2進入EML1之 注入能障在此情況係小於約〇·3電子伏特,電洞自 φ EML1進入EML2之注入能障在此情況係約〇電子伏 特’因為在EML1及EML2的電洞傳遞以跳躍至 ' k(ppy)3發生,或是可甚至為消極的當電洞在EML2自 _ TCTA狀態行進至Ir(ppy)3狀態。在該實例中氧化還原 • 掺雜劑如受體例如F4-TCNQ或給予體例如Cs,及發 光體掺雜劑稱為Ir(ppy)3的併入可如藉由於減壓下由 兩個可個別控制的熱昇華源的混合蒸發或是藉由其他 合適方法如藉由於減壓下蒸發連續施用物質,及接著 54 擴散進入彼此進行’若適當’由特定溫度-時間數據協 助。 在該第一實例中,EML2的雙極性係藉由於電子 傳遞材料TPBI及BPhen的Ir(ppy)3的電洞傳遞性質達 到,些微TCTA可選擇性地混合進入EML2以協助電 洞傳遞,但是TCTA於EML2的濃度應總是小於在 EML1的濃度。 實例2 第二個實例具類似於上文實例1的結構,除了 ETL2 係由 Alq3 組成;陽極=ΓΓ〇/ HTL1=F4_TCNQ-掺 雜 MeO-TPD/HTL2=螺-TAD/EML1 =TCTA: Ir(ppy)3/EML2=TPBI: Ir(ppy)3/ ETL2= Alq3/ ETLl=Bphen:Cs-掺雜/陰極卜此實例證實結構的自 平衡方面,若希望,此使得其能夠完全地免除電洞_及 /或電子_阻障層。Alqs不具任何電洞阻障作用,但較典 型電洞阻障材料如BCP更為穩定的。在此實例中,Alq3 幫助自Bphen:Cs進入EML2的電子注入。 實例3 在弟二個貫例中,結構並非由所提供的電子阻障 層亦不由電洞阻障層簡化,但是在此情況可省略僅一 個該阻障層: 陽 極 =ITO/ Me0-TPD/EML1=TCTA: HTL1=F4-TCNQ-掺雜 Ir(PPy)3/EML2=TPBI:#(螺_TAD), having a layer thickness of from about 1 nm to about 30 nm, preferably from about 3 nm to about 15 nm, and preferably less than HTU • is thin / two ^ EML1 = TCTA: Ir (attached) 3 having a concentration of lr(ppy)3 from about 1 mole % to about 50 mole %, preferably from about 3 to about 3 mole %, and from about 2 nm Up to about 30 nm, preferably from about 3 nm to about 15 nm layer thickness / EML2 = TPBI: Ir(ppy)3, with Ir(ppy)3 concentration from about i 13 1285441 mole % to About 50 mole %, preferably from about 3 to about 30 moles 0 / 〇, and from about 2 nanometers to about 30 nanometers, preferably from about 3 nanometers to about 15 nanometers. / ETL2 = bis (2-methyl-8-hydroxy porphyrin) bucket (phenyl phenolate) Ming • (III) (BAlq2), which has a self-conversion of from about 1 nm to about % nanometer, preferably from - a layer thickness of from about 3 nm to about 15 nm, and ETL2 is preferably comparative, ETL1 is thin, and the control feature is obtained by using BPhen instead of BAlq2 as ETL2. / ETLl=Bphen:Cs- ι Moole% to 1:1 molar ratio Cs concentration doping, and from about 30 nm to about 500 nm, preferably from about 50 nm to about 200 nm layer thickness / Cathode = A1. The electron transfer in EML1 can be selectively assisted by a layer consisting of a mixture of the three components TCTA, TPBI and lr(ppy)3 at a mixing ratio of 46%/46%/8%, and electrons entering EML1 from EML2. The injection energy barrier is less than about 〇·3 eV in this case, and the injection energy barrier from the φ EML1 into the EML2 in this case is about 〇 electron volts 'because the holes in EML1 and EML2 pass to jump to 'k ( Ppy)3 occurs, or may even be negative when the hole travels from the _TCTA state to the Ir(ppy)3 state in EML2. In this example, the incorporation of a redox dopant such as a receptor such as F4-TCNQ or an donor such as Cs, and a luminescent dopant such as Ir(ppy)3 can be achieved by two under reduced pressure. The mixed evaporation of individually controlled sublimation sources is assisted by specific temperature-time data by other suitable methods such as continuous application of the material by evaporation under reduced pressure, and then 54 diffusion into each other. In this first example, the bipolarity of EML2 is achieved by the hole transfer properties of the electron transport materials TPBI and BPhen's Ir(ppy)3, which can be selectively mixed into EML2 to assist in hole transfer, but TCTA The concentration of EML2 should always be less than the concentration at EML1. Example 2 The second example has a structure similar to that of Example 1 above, except that ETL2 is composed of Alq3; anode = ΓΓ〇 / HTL1 = F4_TCNQ - doped MeO-TPD / HTL2 = snail - TAD / EML1 = TCTA: Ir ( Ppy)3/EML2=TPBI: Ir(ppy)3/ ETL2= Alq3/ ETLl=Bphen: Cs-doping/cathode This example demonstrates the self-balancing of the structure, which, if desired, allows it to completely eliminate the hole _ and / or electronic _ barrier layer. Alqs does not have any hole blocking effect, but is more stable than typical hole blocking materials such as BCP. In this example, Alq3 assists in the electron injection from Bphen:Cs into EML2. Example 3 In the two examples, the structure is not simplified by the provided electron barrier layer or by the hole barrier layer, but in this case, only one barrier layer can be omitted: anode = ITO / Me0 - TPD / EML1=TCTA: HTL1=F4-TCNQ-doped Ir(PPy)3/EML2=TPBI:

Ir(ppy)3/ ETLl=BPhen:CM参雜/陰極=A卜 1285441 " 實例4 一種構成實例3修正的實例,其具下列結構:陽 極=ITO/ 犯[1=^4-丁〇^(5_掺雜 Me0-TPD/HTL2=螺 •TAD/EML1=TCTA: Ir(ppy)3/EML2=TPBI: • Ir(ppy)3/ETLl = Bphen:CS_ 掺雜 / 陰極=Ab ' 第3圖顯示以第四個實例(三角形)及第五個實例 • (圓形)的流明函數做為電力效率的實驗結果。 上述實例具p-i_n結構,其表示接受體係併入電洞 _ 傳遞層及給予體係併入電子傳遞層,若給予體係在電 子傳遞層ETL1 ’則省略ETL2,得到p-i-i結構,若該 接受體係在電洞傳遞層HTL1,則省略HTL2,形成i-i-n 結構,當省略給予體及接受體時,形成i_i_i結構。所 ‘ 有結構可在發光區與上述EML1及EML2結構合併。 實例5__ 進一步實例提供一種發光組件,其包含具電洞注 入接觸點、選擇性地一或更多電洞注入及電洞傳遞 φ 層、發光區域、選擇性地一或更多電子注入及電子傳 遞層及電子注入接觸點的層組合,於此: — -在該發光區域的至少一個層係由基質材料與磷光發 : 光體掺雜劑的混合物所組成, • -該基質材料係為一種由雙極或電子傳遞結構及雙極 或電洞傳遞結構所組成的共價耦合的二價元素,及 -該二價物質包括具個別7Γ電子系統的子單元。 實例5的發光組件較佳由一種方式組成使得該二 1285441 價元素的子單元的其中一個可優先地佔據額外電洞使 得一個HOMO波函數集中於該兩個子單元的其中一個 且該二價元素的子單元的另一個可優先地佔據額外電 子使得LUMO波函數集中於此(給予體_接收體二價元 , 素)。 〜 在該發光區域的此種傳遞雙極性亦產生改良,因 - 為雙極性一般加寬產生區及不再獨一地集中於介面的 鄰近區域,此適用於特別是當電荷載體移動性係與物 ⑩ 質中的另一個無關地設定以達到非常平衡的條件及因 而於該EML中央的較佳產生。此係藉由使用由具互補 傳遞特徵的兩部分所組成的給予體_接收體二價元素 -(DADs)而達到,因冑該子單元可為電子傳遞及電洞傳 • 遞個別地最適化。 具下㈣點/ 糾沉咖效率的觀點 在蘇本w,、則上對QLEDS低操作電壓為所欲的, 想:些二遞 一舌地从〜、此位為鬲的能量,因為否則該發光體的 激子由該基質材料驟冷,這兩個要求為矛盾的 亥二重態能量因互換作用-般顯著較單態能量 :此隙)或是該自由栽體電荷對的能量(電能隙)為 ’此處,在單態能量及三錢能量之間的差與H〇M( UM〇的空間重疊相關。在該HOMO受限為與驾 17 1285441 LUMO不同的子單元的二價元素的情況下該差值因而 為可忽略地小。若在該子單元的該HOMO能量之間的 差及亦LUMO能量之間的差為足夠大,該DAD的最 低單激發狀態為一種電荷轉移激子,其具較分子弗命 克爾激子為低的激子結合能,使得光及電能隙亦—起 " 移動地較靠近。整體言之,與具有大重疊的H〇M〇s 及LUMOs的物質相較,當使用DADs時在該基質的電 施隙及該鱗光掺雜劑的三重態能量之間的差可由此顯 0 著減少。 此種DAD的一種可能實現為由CBP及TAZ單元 所組成的螺旋鍵結分子,如第4圖所示,該電能隙係 ’ 由CBP的HOMO及TAZ的LUMO所產生,且最低單 及三重態激發狀態係對應於該兩個組件的值。 篮級圖 各種具體實施例(其至少一部分包含上述實例)及 亦進一步具體實施例的能級圖係參考第5至12圖敘述 φ 於下文。 第5圖示意地顯示a)具鄰接疋電子系統的簡單材 " 料,b)DAD的子單元D(給予體子單元)及Α(接受體子 ' 單元)其中在該子單元的HOMO能位或lUM〇能位之 ^ 間的能量差的至少一個為小的,較佳為少於約〇.5電子 伏特,使得最低單重激發態為於該子單元的其中一個 的弗侖克爾激子,及C)DAD的子單元〇(給予體子單元) 及A(接受體子單元)其中在該子單元的h〇m〇能位或 1285441 LUMO能位之間的能量差 叼至^一個為大的,較佳為 ΐ ΓΛ 得料低單重激《w在該子 早70 Α的電子及在該子單 ^ 遞激子。 的電洞所組成的電荷傳 旦最:/Γ!實例敘述一種產生最小操作電壓的能 :=移=為改良能量轉移的效率,或是為 避免電何轉移激子_冷方法Ir(ppy)3/ ETLl=BPhen: CM doping/cathode=Ab 1284441 " Example 4 An example of a modification of the constituent example 3, which has the following structure: anode = ITO / commit [1 = ^ 4-buty ^ (5_Doped Me0-TPD/HTL2=Spiral•TAD/EML1=TCTA: Ir(ppy)3/EML2=TPBI: • Ir(ppy)3/ETLl=Bphen:CS_ Doping/Cathode=Ab '3rd The figure shows the lumen function of the fourth example (triangle) and the fifth instance • (circle) as the experimental result of power efficiency. The above example has a p-i_n structure, which indicates that the acceptance system is incorporated into the hole_transport layer and The donor system is incorporated into the electron transport layer. If the donor system is in the electron transport layer ETL1', the ETL2 is omitted, and the pii structure is obtained. If the acceptor system is in the hole transport layer HTL1, the HTL2 is omitted to form the iin structure, when the donor is omitted and accepted. In the case of a body, an i_i_i structure is formed. The structure can be combined with the above-mentioned EML1 and EML2 structures in the light-emitting region. Example 5__ Further examples provide a light-emitting assembly comprising a hole injection contact point, optionally one or more holes Injection and hole transfer φ layer, illuminating region, selectively one or more electron injection and electricity a layer combination of a sub-transport layer and an electron injecting contact point, wherein: - at least one layer in the light-emitting region is composed of a mixture of a host material and a phosphorescent: photo-dopant, - the matrix material is A covalently coupled divalent element consisting of a bipolar or electron transport structure and a bipolar or hole transfer structure, and - the bivalent material comprises a subunit having an individual 7" electronic system. Composed of one way such that one of the subunits of the two 1 285 441 valence elements can preferentially occupy an additional hole such that one HOMO wave function is concentrated on one of the two subunits and the other of the subunits of the divalent element is Preferentially occupying additional electrons causes the LUMO wave function to be concentrated here (giving the body-receiver bivalent element, prime). ~ This transfer bipolarity in the illuminating region is also improved, because - is a bipolar general widening generating region And no longer uniquely concentrated in the vicinity of the interface, this applies, in particular, when the charge carrier mobility is independent of the other of the substances 10 to achieve a very balanced And preferably produced in the center of the EML. This is achieved by using donor-receiver bivalent elements - (DADs) consisting of two parts with complementary transfer characteristics, since the subunit can be The electronic transmission and the hole transmission are optimized individually. The viewpoint of the next (four) point / correcting the efficiency of the coffee in Su Ben w, then on the low operating voltage of QLEDS is desired, I want to: From ~, this bit is the energy of 鬲, because otherwise the excitons of the illuminant are quenched by the matrix material, the two requirements are contradictory. The double-state energy is significantly more than the singlet energy due to the interchange effect: this gap) Or the energy (electrical energy gap) of the charge pair of the free carrier is 'here, the difference between the singlet energy and the three money energy is related to the spatial overlap of H〇M ( UM〇. In the case where the HOMO is limited to a divalent element of a subunit different from that of the driver 17 1285441 LUMO, the difference is thus negligibly small. If the difference between the HOMO energy of the subunit and the LUMO energy is sufficiently large, the lowest single excitation state of the DAD is a charge transfer exciton, which has a lower molecular weight than the Kerr exciton. The exciton combines energy so that the light and power gaps are also closer to each other. In general, the difference between the electrical gap of the matrix and the triplet energy of the scale dopant when using DADs is comparable to that of materials with large overlaps of H〇M〇s and LUMOs. 0 is reduced. One possible implementation of such a DAD is a helically bonded molecule composed of CBP and TAZ units. As shown in Fig. 4, the electrical energy gap is generated by the HOMO of CBP and the LUMO of TAZ, and the lowest single and triplet states. The excitation state corresponds to the values of the two components. Basket Level Figures The various embodiments (some of which include the above examples) and the energy level diagrams of still further embodiments are described below with reference to Figures 5 through 12, φ hereinafter. Figure 5 is a schematic representation of a) a simple material with a contiguous 疋 electronic system, b) a subunit D of the DAD (giving a subunit) and a Α (receiving a 'unit') where the HOMO energy of the subunit At least one of the energy differences between the bits or the lUM〇 energy bits is small, preferably less than about 〇5 volts, such that the lowest singlet excited state is one of the subunits of the Flenkel Sub, and C) the subunits of the DAD (giving the subunits) and A (the accepting subunits) where the energy difference between the h〇m〇 energy of the subunit or the 1285441 LUMO energy level is ^ For the larger one, it is better to ΐ 得 to get the low single-excitation "w in the early 70 Α electrons and in the sub-single ^ exciton. The charge of the hole is the most: /Γ! Example describes a kind of energy that produces the minimum operating voltage: = shift = to improve the efficiency of energy transfer, or to avoid the transfer of excitons _ cold method

=方法’其係〜定義於第:)= ㈣最低激發態為弗侖克爾激子於該 1、/、—個,因為該能量差(“偏移”)的其中-個 杈“克爾激子的結合能為+,與具高空間 HOMO LUM0重㉜的簡單材料相較關於操作電壓的優 點依然保持,雖然在單態及三重激化之間的差未於此 處減少,光及電能隙一起移動地較靠近。 為避免激發態的單粒子能位及能量之間的混淆, 在第5圖中電子/電洞的能位已由Ee/Eh表示,此基本 上對應於該子單元的LUMO/HOMO能量,雖然在該文 獻中名稱LUM0未特別以一致方式使用,且激發能係 依據自旋多重態而定以心或Tn表示,CT表示由在該 子單元Α的電極及在該子單元d的電洞所形成的電荷 傳遞激子之能量,其與該自旋多重態大不相關。在第5 圖的b)及c)的情況下,該基質在相同三重態能量具較 小電能隙(Egel),使得該磷光發光二極體可操作於較低 操作電壓。 1285441 第6圖示意地顯示一個實例的能級圖其中在發光 區的其中一個層EML 1的材料(Ml)包括雙極、單組件 材料且在發光區的另一個層EML2的另一個材 包括單載子電子基質,且電洞傳遞能夠由在掺雜劑狀 態之間跳躍發生。 上方線表不該LUMO能位,亦即個別電子傳遞能 位’底線表示該HOMO能位,亦即電洞傳遞能位,而 且’亦示出由它們的費米能位所象徵的陽極A及陰極 | K°在所示實例中,假設HTL1為p-掺雜的及HTL2為 η-掺雜的,於第6圖中在放射層EML1及EML2以虛 線示出的能級象徵發光體掺雜劑的能位,箭頭6〇、61 表示電荷載體傳遞發生的能位,箭頭62、63表示物質 系統的較佳傳遞形式。該HOMO能級及該LUMO能 、級於該EMLs的能量排列為重要的且在HTL2與EML1 之間的HOMO偏移及在Etl2與EML2之間的LUMO 偏移不要太大亦為重要的,此偏移較佳為少於約〇·5 • 電子伏特,更佳為少於約0.3電子伏特。 第7圖示意地顯示一個實例的能級圖其中在發光 區的其中一個層EML1的材料(Ml)包括電洞傳遞材 料、電子傳遞材料及三重發光體掺雜劑的混合物且在 發光區的另-個層EML2的另-個材料(M2)包括單載 子基質,且電洞傳遞能夠由在掺雜劑狀態之間跳 躍發生。虛線表示該發光體掺雜劑的能級,橫-虛線表 不在EML1電子傳遞組件的能級,最後,在EML1的 •1285441 實線表示電洞傳遞組件的能級。 第8圖不意地顯示-個實例的能級圖其 區的其中一個層舰1的材料_包括單载子電= 質’且電子轉移能夠由在掺雜劑狀態之間跳躍3基 且在發光區的 雙極、單組件材料。 1』^括 F沾圖示意地顯示—個實例的能級圖其中在發光 =的,日中-個層EML1的材料_包括單載子電洞基 曰丄且電子轉移_由在掺_狀態之間跳躍發生, ::光區的另一個層靴2的另一個材料_包括 ::遞材料、電子傳遞材料、及三重發光體掺雜劑 处厂物。虛線再—次表示該三重態發光體掺雜劑的 2 ’第9圖的橫·虛線表示在層EML2電子傳遞級件 、月b、、及,最後,在層EML2的實線表示電洞傳遞組件 的能級。 “ 第1〇圖示意地顯示一個實例的能級圖其中在發 • 光區的其中一個層EML1的材料(Ml)及在發光區的另 個層EML 2的另一個材料(M2)的每一個由單組件、 雙極材料或電洞傳遞材料及電子傳遞材料的混合物所 組成。對該層EML1及EML2的傳遞材料僅示出對傳 遞為重要的能級;在混合材料情況下未參與的能級未 示出。 第11圖示意地顯示一個實例的能級圖其中在發 光區的層EML1、EML2的材料(Ml)及(M2)的電洞傳遞 21 1285441· 係由在三重態發光體掺雜劑的態之間的跳躍進行,且 在材料(M1)的基質材料的HOMO能位較在另一個材料 (M2)更為接近該三重態發光體掺雜劑的H〇M〇能位, 使得在EML1的材料(M1)的三重態發光體掺雜劑之間 . 的跳躍的穿隧能障較在EML2的另一個材料(M2)的掺 ·· 雜劑之間的跳躍的穿隧能障為小及在該材料(M1)的有 - 效電洞移動性較在該另一個材料(M2)的有效電洞移動 性為大。= Method 'The system' is defined in the first :) = (4) The lowest excited state is the Fronkel exciton in the 1, /, -, because the energy difference ("offset") of which - 杈 "Kerr exciton The combined energy is +, and the advantage of the operating voltage compared to a simple material with a high spatial HOMO LUM0 weight of 32 remains, although the difference between the singlet and triplet is not reduced here, the light and the power gap move together. In order to avoid the confusion between the single-particle energy and the energy of the excited state, the energy level of the electron/hole in Figure 5 has been represented by Ee/Eh, which basically corresponds to the LUMO/ of the subunit. HOMO energy, although in this document the name LUM0 is not used in a particularly consistent manner, and the excitation energy is expressed in terms of the spin multiplicity as a heart or Tn, and CT is represented by the electrode in the subunit and in the subunit d The charge formed by the hole transmits the energy of the excitons, which is largely independent of the spin multiplicity. In the case of b) and c) of Figure 5, the matrix has a smaller energy gap in the same triplet energy. (Egel), making the phosphorescent LED operable at a lower operating voltage. 41 Fig. 6 is a view schematically showing an energy level diagram of an example in which the material (M1) of one of the layers EML 1 in the light-emitting region includes a bipolar, one-component material and the other material of the other layer EML2 in the light-emitting region includes a single The carrier electron matrix, and the hole transfer can be caused by a jump between the dopant states. The upper line indicates that the LUMO energy level, that is, the individual electron transfer energy level 'bottom line indicates the HOMO energy level, that is, the hole transmission Energy level, and 'also shows anode A and cathode symbolized by their Fermi energy levels | K° In the example shown, it is assumed that HTL1 is p-doped and HTL2 is η-doped, 6 In the figure, the energy levels shown by the dashed lines in the radiation layers EML1 and EML2 represent the energy levels of the dopants of the illuminant, the arrows 6〇, 61 represent the energy levels of charge carrier transfer, and the arrows 62 and 63 represent the better of the material system. The transfer form. The HOMO level and the LUMO energy, the energy arrangement of the EMLs is important, and the HOMO shift between HTL2 and EML1 and the LUMO shift between Etl2 and EML2 are not too large and important. Preferably, the offset is less than about 〇·5 • electron volts, more preferably less Approximately 0.3 electron volts. Figure 7 is a schematic diagram showing an energy level diagram of an example in which the material (M1) of one of the layers EML1 in the light-emitting region comprises a mixture of a hole transporting material, an electron transporting material, and a triplet dopant. The other material (M2) of the other layer EML2 in the illuminating region comprises a single carrier matrix, and the hole transfer can occur by jumping between dopant states. The dashed line indicates the energy level of the illuminant dopant. The horizontal-dashed table is not at the energy level of the EML1 electron-transfer component. Finally, the solid line at EML1's •1285441 indicates the energy level of the hole-transfer component. Figure 8 unintentionally shows one of the energy levels of the instance. The material of the ship 1 includes a single carrier charge and the electron transfer can be made of a bipolar, single-component material that jumps 3 bases between the dopant states and in the light-emitting region. 1 ^ 括 F 沾 示意 示意 示意 示意 示意 示意 沾 沾 沾 沾 沾 沾 沾 沾 — 沾 — — — F F F F F F F F F F F F F F F F F F F F F F F F F F Another jump occurs between the other layers of the layer 2 of the ::: the transfer material, the electron transfer material, and the triple emitter dopant. The dashed line again indicates that the horizontal and vertical dashed lines of the 2' ninth diagram of the triplet illuminant dopant indicate the electron transfer level in the layer EML2, the month b, and finally, the solid line in the layer EML2 indicates the hole transmission. The energy level of the component. "The first diagram schematically shows an energy level diagram of an example in which the material (M1) of one of the layers EML1 in the light-emitting region and the other material (M2) of the other layer of the EML 2 in the light-emitting region It consists of a single component, a bipolar material or a mixture of a hole transfer material and an electron transfer material. The transfer material of the layer EML1 and EML2 only shows the energy level important for the transfer; the energy that is not involved in the case of the mixed material The stage is not shown. Fig. 11 is a view schematically showing an energy level diagram of an example in which the materials (M1) and (M2) of the layers EML1 and EML2 in the light-emitting region are transferred to a liquid crystal 21 1285441. The jump between the states of the dopant proceeds, and the HOMO energy level of the matrix material of the material (M1) is closer to the H〇M〇 energy level of the triplet emitter dopant than the other material (M2), The tunneling energy of the jump between the triplet emitter dopant of the material (M1) of EML1 compared to the jumper of the dopant of another material (M2) of EML2 The barrier is small and the effective hole in the material (M1) is more effective than the effective hole in the other material (M2) Mobility is large.

# 、對該層EML1及EML2的傳遞材料僅示出對傳遞 為重要的能級;在混合材料情況下未參與的能級未示 出。該能級係以類似於在對應於第6圖的實例的能級 , 而排列,且現在假設差異為在電洞傳遞係由在層EMU 的二重態發光體掺雜劑之間的跳躍。傳遞係因在三重 態發光體掺雜劑之間的跳躍發生或是做為在具掺=劑 做為陷阱的基質中的傳遞係依據該掺雜劑濃度及該陷 拼深度而定’陷牌深度為在該基質的H〇M〇能級與該 Φ 二重態發光體掺雜劑的HOMO能級之間的能量差。 第12圖顯示一個實例的能級圖其中該層EMl ^ 的材料(Ml)的電子傳遞發生於該發光區及在該發光區 : 的該層EML2的另一個材料(M2)的電子傳遞係由在三 ▲ 重態發光體掺雜劑的態之間的跳躍進行,且在另一個 材料(M2)的基質材料的LUM〇能位較在材料(Μι)更為 接近該三重態發光體掺雜劑的LUM〇能位,使得在另 一個材料(M2)的該三重態發光體掺雜劑之間的電子跳 22 1285441 * 躍隧能障較在材料(M1)的掺雜劑之間的跳躍的穿 隧月bP平為小及在該另一個材料(M2)的有效電子移動性 較在該材料(M1)的有效電子移動性為大。 • _在第12圖對該層EML1及EML2的傳遞材料僅 對傳遞為重要的能級;纟混合材料情況下未參與 、 的能級未示出。該能級係以類似於第9圖實例的方式 排列且現在差異為在層EML2的電子傳遞係藉由在 掺雜劑之間的直接跳躍發生。 鲁 材料進一步實例 可用於所敘述各種具體實施例的材料進一步實例 係提供於下文。 在所敘述實例中,下列材料可優先或獨特地用做 • 在發光區的電洞傳遞基質材料: 1)一種分子包括三芳香基胺單元,特別是TPD、 NPD或它們的螺-鍵結二價元素(螺旋鍵結係敘述 於如文件美國專利號碼第5,84〇,217號)的衍生 _ 物’ TDΑΤΑ的衍生物如間-MTDΑΤΑ、TNANA, 等,或是TDAB的衍生物(參考γ shir〇ta,材料 化學期刊,10(1),1_25(2000))。 : TDAB : * (P17 圖) 星狀放射=TDAB 1,3,5_參(二苯胺)苯 進一步芳香胺係敘述於文件美國專利號碼第 23 1285441 2002/098379號及美國專利號碼第6,406,804號。 2) —種分子包括嗔吩單元, 3) —種分子包括苯撐-亞乙烯單元。 下列成份可優先或獨特地用做在發光區的層 - EML的電子傳遞基質材料: • 噁二唑 OXD : (P18 圖) 2)三唑: TAZ : (P18 圖) 、 3)苯並硫二唑 • (P18 圖) 4) 苯並咪唑 (P19 圖)#, The transfer material for the layers EML1 and EML2 shows only the energy levels important for the transfer; the energy levels that are not involved in the case of the mixed materials are not shown. This energy level is arranged similar to the energy levels in the examples corresponding to Figure 6, and now assumes that the difference is in the hole transfer between the doublet emitter dopants in the layer EMU. The transfer system occurs due to a jump between the triplet emitter dopants or as a transfer in a matrix with a dopant as a trap, depending on the dopant concentration and the depth of the trap. The depth is the energy difference between the H〇M〇 level of the substrate and the HOMO level of the Φ dualt emitter dopant. Figure 12 shows an energy level diagram of an example in which electron transport of the material (M1) of the layer EM1 ^ occurs in the light-emitting region and in the light-emitting region: the electron transport mechanism of another material (M2) of the layer EML2 is The jump between the states of the three ▲ heavy emitter dopants, and the LUM〇 energy of the matrix material of the other material (M2) is closer to the triplet emitter dopant than the material (Μι) LUM〇 energy level, such that electron hopping between the triplet emitter dopants of another material (M2) 22 1285441 * Jumping barrier energy barrier between dopants of material (M1) The tunneling period bP is small and the effective electron mobility of the other material (M2) is greater than the effective electron mobility of the material (M1). • _ In Figure 12, the transfer material for this layer of EML1 and EML2 is only an important energy level for transfer; the energy level that is not involved in the case of 纟 mixed material is not shown. The energy levels are arranged in a manner similar to the example of Figure 9 and now differs in that the electron transport in layer EML2 occurs by direct jumps between dopants. Further Examples of Materials A further examples of materials that can be used in the various embodiments described are provided below. In the examples described, the following materials may be used preferentially or uniquely: • Transfer of matrix material in a hole in the illuminating zone: 1) A molecule comprising triarylamine units, in particular TPD, NPD or their spiro-bonding The valence element (spiral linkage is described in the document US Patent No. 5, 84, 217) derivatives of TD's TDΑΤΑ such as m-MTDΑΤΑ, TNANA, etc., or derivatives of TDAB (reference γ Shir〇ta, Journal of Materials Chemistry, 10(1), 1_25 (2000)). : TDAB : * (P17 Figure) Star Radiation = TDAB 1,3,5_Shen (Diphenylamine) Benzene Further aromatic amines are described in U.S. Patent No. 23 1285441 2002/098379 and U.S. Patent No. 6,406,804. 2) - the molecule comprises a porphin unit, and 3) the molecule comprises a phenylene-vinylidene unit. The following ingredients can be used preferentially or uniquely as layers in the luminescent region - EML electron transport matrix materials: • Oxadiazole OXD: (P18) 2) Triazole: TAZ: (P18), 3) Benzosulfonate Azoles (P18) 4) Benzimidazole (P19)

特別是N-芳基苯並咪唑如TPBI • (P19 圖) 5) 聯吼咬 (P19 圖) : 6)—種分子具氰基乙烯基(參考K· Naito,M· ‘ Sakurai,S· Egusa,物理化學期刊 A· 101, 2350(1997)),特別是7_或8-氰基-對苯撐-亞乙烯衍 生物 (P20 圖) 24 1285441· ‘· 7)喹啉 (P20 圖) 8)喹噁啉(參考 M· Redecker,D.D.C· Bradley,M. Jandke,R Strohriegl,應用物理信件,75(1), • 109-111 (1999)) (P20 圖) , 9)三芳基氧棚基衍生物(參考γ· Shirota,材料化學 期刊,10(1),1-25(2000)) (P21 圖) 10)silol 衍生物’特別是 silacyclopentadiene 衍生 物,如2,5-雙-(2(‘),2(‘)聯吡啶-6-基)-1,1-二甲基 _3,4_二苯基 silacyclopentadiene (PyPySPyPy) (P21 圖) 或 雙(1-甲基-2,3,4,5-四苯基8^〇)^1〇卩61^(^1^) 乙烷 (2PSP) (P22 圖) (參考 H· Murata,Ζ·Η· Kafafi,M· Uchida,應用物 理信件 80(2),189-191(2002)) U)環辛四烯(參考 R Lu,Η·Ρ· Hong,G.R Cai,p, Djurovich,W.P· Weber, M.E.Thompson,材料化 學協會期刊,122(31),7480-7486(2000)) 25 :I285441 ' : (P22 圖) 12) 醌型結構,包括醌型噻吩衍生物 13) 吼嗤琳類 (P23 圖) • (參考 Ζ·Μ· Zhang,R.F· Zhang,F· Wu,Y.G· Ma,G.W. ·· Li,W.J. Tian,J.C. Shen,Chin 物理信件 • 17(6),454-456(2000)) 14) 其他具至少一個氮原子或氧原子做為雜原子 的雜環化合物 15) 酮類 16) 茂基基底自由基電子傳遞材料,特別是五芳基 環戊二烯的衍生物(參考美國專利5,811,833) . (P23 圖) 17) 苯並硫二峻(參考 R· Pacios,D.D.C. Bradley, 合成金屬·,127(1-3),261-265(2002)) (P24 圖) ^ 18)萘二羧酐類 (P24 圖) , 19)萘二羧醯亞胺類 : (P24 圖) • 及蔡二魏味σ坐類 (Ρ25 圖) 20)全氟低-對-苯基類(參考A.J. Campbell,D.D.C· Bradley, Η· Antoniadis,應用物理信件 26 :1285441 · " 79(14),2133-2135(2001)) (P25 圖) 促進電子傳遞的進一步可能結構單元係敘述於 文件美國專利第20002/098379號。 • 在發光組件的進一步具體實施例中,雙極,單組 ^ 件材料係屬於下列材料分類中的其中一個: • 1)由雙極或電子傳遞結構及雙極或電洞傳遞結構 所組成的共價耦合的二價元素,且該子結構具個 別7Γ電子系統。 ® 此種結構已實現為如給予體單元及接受體單元 的螺旋鍵結(參考如德國專利44 46 818 Al,R· Pudzich,J· Salbeck,合成金屬,138,21(2003)及 Τ·Ρ·Ι· Saragi,R· Pudzich,T· Fuhrmann,J· Salbeck, 應用物理信件 84,2334(2004))cPudzich 及 Salbeck 的研究焦點為電荷載體傳遞及有效發光於一個 分子的功能之組合及光敏性電晶體的實現。作者 _ 未提及因電能階帶及最低三重態位準之間的良 好關係之結果特別有利地使用此種化合物做為 — 磷光發光體掺雜劑的基質。 : 包括電子傳導及電洞傳導結構的二價元素亦於 • 文件美國專利號碼第6,406,804號提及,根據此 專利,它們意欲用做螢光發光體分子的基質。 2)—種分子,做為具共用7Γ電子系統的合適結構元 素的結果,其首先包括優勢地佔據額外電洞及因 27 1285441 此HOMO波函數所集中的子單元及第二包括優 勢地佔據額外電子及因此LOMO波函數所集中 的子單元(參考如 Y. Shirota,M· Kinoshita,T. Noda,Κ· Okumoto, Τ· Ohara,美國化學協會期刊 122(44),11021-11022(2000)或 R· Pudzich,J. Salbeck,合成金屬,138, 21(2003)) 〇 3) 經推挽取代分子(一種分子,做為適當拉電子及 推電子取代基的結果,其具優勢地佔據額外電洞 及因此HOMO波函數所集中的子單元及優勢地 佔據額外電子及因此LOMO波函數所集中的其 他子單元)。 4) 一種包括咔唑單元的分子,特別是cbp。 (P27 圖) 5) —種包括芴單元的分子(參考A.J. Campbell, D.D.C· Bradley,Η· Antoniadis,應用物理信件 79(14),2133-2155(2001)) 〇 (P27 圖) 6) —種包括樸琳或酞花菁單元的分子(參考α·In particular, N-arylbenzimidazole such as TPBI • (P19) 5) Joint bite (P19): 6) - a molecule with a cyanovinyl group (Ref. K. Naito, M. 'Sakurai, S. Egusa , Journal of Physical Chemistry A. 101, 2350 (1997)), especially 7- or 8-cyano-p-phenylene-vinylidene derivatives (P20) 24 1285441 · '· 7) Quinoline (P20) 8 Quinoxaline (cf. M. Redecker, DDC Bradley, M. Jandke, R Strohriegl, Applied Physics Letters, 75(1), • 109-111 (1999)) (P20), 9) Triaryloxyxyl Derivatives (Ref. γ· Shirota, Journal of Materials Chemistry, 10(1), 1-25(2000)) (P21) 10) Silol derivatives 'especially silacyclopentadiene derivatives such as 2,5-bis-(2( '), 2(')bipyridin-6-yl)-1,1-dimethyl-3,4-diphenyl silacyclopentadiene (PyPySPyPy) (P21) or bis(1-methyl-2,3, 4,5-tetraphenyl 8^〇)^1〇卩61^(^1^) Ethane (2PSP) (P22) (Refer to H· Murata, Ζ·Η· Kafafi, M·Uchida, Applied Physics Letters 80(2), 189-191(2002)) U) cyclooctatetraene (Ref. R Lu, Η·Ρ·Hong, GR Cai, p, Djurovich, WP · Weber, METhompson, Journal of Materials Chemistry, 122 (31), 7480-7486 (2000)) 25 : I285441 ' : (P22) 12) 醌-type structure, including thiophene derivatives 13) (P23) • (Reference Ζ·Μ· Zhang, RF· Zhang, F· Wu, YG· Ma, GW·· Li, WJ Tian, JC Shen, Chin Physical Letters • 17(6), 454-456 (2000) )) 14) other heterocyclic compounds having at least one nitrogen or oxygen atom as a hetero atom 15) ketones 16) a metallocene-based radical electron-transporting material, in particular a derivative of pentaarylcyclopentadiene (reference to the United States) Patent 5,811,833) . (P23) 17) Benzosulfide II (Ref. R. Pacios, DDC Bradley, Synthetic Metals, 127(1-3), 261-265 (2002)) (P24) ^ 18 Naphthalene dicarboxylic anhydrides (P24), 19) naphthalene dicarboxy quinones: (P24) • and Cai Erweiwei σ sitting (Ρ25) 20) Perfluoro-low-p-phenyl ( Reference AJ Campbell, DDC Bradley, Anton· Antoniadis, Applied Physics Letters 26:1285441 · " 79(14), 2133-2135(2001)) (P25) Further possible structures that facilitate electron transport Yuan is described in US Patent No. 20002/098379 file. • In a further embodiment of the illuminating assembly, the bipolar, single component material is one of the following material classes: • 1) consisting of a bipolar or electron transfer structure and a bipolar or hole transfer structure A covalently coupled divalent element having an individual 7-inch electronic system. ® This structure has been achieved as a helical bond such as donor unit and acceptor unit (see, for example, German Patent 44 46 818 Al, R. Pudzich, J. Salbeck, Synthetic Metals, 138, 21 (2003) and Τ·Ρ · gi · Saragi, R. Pudzich, T. Fuhrmann, J. Salbeck, Applied Physics Letters 84, 2334 (2004)) The focus of cPudzich and Salbeck's research is the combination of charge carrier delivery and efficient luminescence on a molecule and photosensitivity. The realization of the transistor. The author _ does not mention the use of this compound as a substrate for the phosphorescent emitter dopant, as a result of the good relationship between the electrical energy band and the lowest triplet level. : Bivalent elements including electron conducting and hole conducting structures are also referred to in U.S. Patent No. 6,406,804, which is incorporated herein by reference. 2) - a numerator, as a result of a suitable structural element with a shared 7-turn electronic system, which first includes the advantage of occupying additional holes and the subunits that are concentrated by the HOMO wave function of 27 1285441 and the second including the dominant occupying additional Electrons and thus subunits in which the LOMO wave function is concentrated (see, for example, Y. Shirota, M. Kinoshita, T. Noda, Κ·Okumoto, Τ·Ohara, Journal of the American Chemical Society, 122(44), 11021-11022 (2000) or R. Pudzich, J. Salbeck, Synthetic Metals, 138, 21 (2003)) 〇3) Push-pull replacement of a molecule (a molecule that, as a result of appropriate electron-drawing and electron-donating substituents, predominately occupies additional electricity The holes and thus the subunits in which the HOMO wave function is concentrated and advantageously occupy additional electrons and thus other subunits in which the LOMO wave function is concentrated). 4) A molecule comprising a carbazole unit, in particular cbp. (P27) 5) — A molecule that includes a unit of 芴 (Ref. AJ Campbell, DDC Bradley, Η Antoniadis, Applied Physics Letters 79 (14), 2133-2155 (2001)) 〇 (P27) 6) Molecules including Park Lynn or phthalocyanine units (Ref.

Ioannidis,J.P· Dodelet,物理化學期刊 β· ι〇ι(26), 5100-5107(1997)) 〇 7) —種包括具超過三個耗合於對位的苯基單元的 對-低苯基之分子。 (Ρ28 圖) 8) —種包括蔥、丁省或戊省單元的分子。 28 :1285441 ' (P28 圖) 9) 一種包括二萘嵌苯的分子。 (P28 圖) 10) —種包括芘的分子。 - (P29 圖) ' 揭示於上文敘述及申請專利範圍的本發明特徵可 - 個別地或以任何組合的在其各種具體實施例具重要性 以實現本發明。 29 :1285441 > 圖式簡單說明 第1圖為以發光組件第一具體實施例的流明函數 顯示電流效率及電力效率的圖; 第2圖為以發光組件第二具體實施例的流明函數 顯示電力效率的圖; 第3圖為以發光組件第四具體實施例的流明函數 顯示電力效率的圖;Ioannidis, JP Dodelet, Journal of Physical Chemistry, β· ι〇ι(26), 5100-5107 (1997)) 〇7) — a pair of p-phenyl containing phenyl units with more than three para-doses The molecule. (Ρ28) 8) — A molecule that includes the onion, Ding or Puan units. 28:1285441 ' (P28) 9) A molecule comprising perylene. (P28) 10) — A molecule that includes strontium. - (P29) The features of the invention disclosed above and in the scope of the claims can be used to implement the invention individually or in any combination in its various embodiments. 29:1285441 > BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a diagram showing current efficiency and power efficiency in a lumen function of a first embodiment of a light-emitting assembly; Fig. 2 is a view showing power using a lumen function of a second embodiment of a light-emitting assembly Figure 3 is a diagram showing power efficiency in a lumen function of a fourth embodiment of the lighting assembly;

第4圖顯示由CBP及TAZ單元的螺旋鍵結分子 (此種分子於後文稱為DADs=給予體_接受體二價元素) 所組成的二價元素; 产第5圖示意地顯示下列能級幻具鄰接冗電子系統 的簡單材料’b)DAD的子單元%給予體子單元)及Α(接 受體子單兀)其中在該子單元的Η〇Μ〇能位或Figure 4 shows the divalent element composed of the CBP and TAZ unit of the helically bonded molecule (this molecule is hereinafter referred to as DADs = donor-acceptor bivalent element); Figure 5 shows schematically the following energy The simple material of the level of the phantom adjacent to the redundant electronic system 'b) the subunit of the DAD is given to the body subunit) and the Α (receiving the body 兀) where the energy level of the subunit or

LUMO 能位之間的能量差的至少一個為小的使得最低單重激 發態為於該子單元的其中—個的弗侖克爾激子,及 c)DAD的子單% d及Α其中在該子單元的Ή〇Μ〇能 减LUM0齡之_能量錢至少-鶴大的使得 该取低單重激《為*錢子單元A的電子及在該子 皁元組成的電荷傳遞激子; 區的=圖地顯示—個實㈣能級圖其中在發光 二祖八 日EML 1的軸(Ml)包括雙極、單組件 發光區的層的另iEML2的另一個材料 包括單載子電子基以㈣傳遞發光祕雜劑; 变線表示该發光體掺雜劑的能級· 3〇 1285441 f圖示意地顯示一個實例的能級圖其中在發光 :的;:一個層(EML1)的材料_包括電洞傳遞材 '=子傳遞材料及二重發光__ : = 個層祖2的另-個材擊)包括單載 第8圖示意地顯示一個實例的能級圖其中在 ^層^1的其中一個的材料_包括單載子電洞 土負、、中電子轉移可由在掺雜劑狀態之間跳躍發生At least one of the energy differences between the LUMO energy levels is small such that the lowest singlet excited state is one of the Frücker excitons of the subunit, and c) the sub-single d d of the DAD and The subunit's enthalpy can be reduced by LUM0 age _ energy money at least - crane big makes the low single stimuli "the electrons of the * money subunit A and the charge transfer excitons composed in the sub soap unit; = 地地显示—a real (four) energy level diagram in which the other element of the other iEML2 including the layer of the bipolar, single-element illuminating region on the axis of the illuminating ancestor EML 1 (Ml) includes a single carrier electron base (4) Transferring the luminescent dopant; the variable line indicates the energy level of the illuminant dopant. 3〇1285441 f schematically shows an example of an energy level diagram in which luminescence:: a layer (EML1) of material _ Hole transfer material '=sub-transfer material and double-light __ : = another layer of ancestors 2) including single load Figure 8 schematically shows an example of the energy level diagram of the layer One of the materials _ includes a single carrier hole, and the medium electron transfer can occur between the dopant states.

=在發光區的另一個層EML2的另一個材料(M2)包括 又極、單組件材料; 。第9圖示意地顯示一個實例的能級圖其中在發光 ^的其中-個層EML1的材料(M1)包括單載子電職 ^其中電子轉移可由在掺雜劑狀態之間跳躍發生且 在發光區的另一個層EML2的另一個材料(Μ2)包括電 洞傳遞材料、電子傳遞材料、及三重發光體掺雜劑的 混合物; ,第10圖示意地顯示一個實例的能級圖其中在發 ^區的其中一個層EML1的材料(Ml)及在發光區的另 個層EML2的另一個材料(1^2)的每一個由單組件雙 極材料或包括電洞傳遞材料及電子傳遞材料的混合物 所組成; 、,第11圖示意地顯示一個實例的能級圖其中在發 光區的層EML 1的材料(Ml)及在發光區的層EML· 2的 另一個材料(M2)的電洞傳遞由在三重態發光體掺雜劑 31 1285441 的態之間的跳躍進行(與M2相較在此處Ml的較大電 洞移動性係因為以能量觀點距基質的電洞傳遞能位的 較小距離,使得於Ml掺雜劑狀態之間的穿隧更容易 地進行);及 第12圖示意地顯示一個實例的能級圖其中在發光 區的層EML 1的材料(Ml)及在發光區的層EML2的另 一個材料(M2)的電子傳遞由在三重態發光體掺雜劑的 態之間的跳躍進行(與Ml相較於此處M2的較大電子 移動性係因為以能量觀點距基質的電子傳遞能位的較 小距離,使得於M2掺雜劑狀態之間的穿隧更容易地 進行)。 元件符號說明 60、61、62、63 箭頭= Another material (M2) of another layer EML2 in the illuminating zone comprises a pole, single component material; Fig. 9 is a view schematically showing an energy level diagram of an example in which the material (M1) of the layer EML1 in the light-emitting layer includes a single carrier electric position, wherein electron transfer can occur by jumping between dopant states and emitting light Another material of the other layer of the region EML2 (Μ2) includes a mixture of a hole transporting material, an electron transporting material, and a triplet dopant; and FIG. 10 schematically shows an energy level diagram of an example in which The material (M1) of one of the layers of the region and the other material (1^2) of the other layer of the EML2 in the light-emitting region are each composed of a single-component bipolar material or a mixture including a hole-transporting material and an electron-transporting material. The composition of FIG. 11 schematically shows an energy level diagram of an example in which the material (M1) of the layer EML 1 in the light-emitting region and the other material (M2) of the layer EML·2 in the light-emitting region are transmitted. By the jump between the states of the triplet emitter dopant 31 1285441 (the larger hole mobility of M1 here compared to M2 is due to the smaller energy transfer distance from the hole of the matrix from the energy point of view) Distance, making tunneling between M1 dopant states more Easily performed; and FIG. 12 schematically shows an energy level diagram of an example in which the material (M1) of the layer EML 1 in the light-emitting region and the other material (M2) of the layer EML2 in the light-emitting region are The jump between the states of the triplet emitter dopants (the larger electron mobility of M2 compared to M1 here is due to the smaller distance from the electron transfer energy of the matrix from the energy point of view, resulting in M2 doping Tunneling between the dopant states is easier to perform). Component Symbol Description 60, 61, 62, 63 Arrows

3232

Claims (1)

^ 1285441 r —-—~ % 脾《月 &gt; 日修摩)正本公告j 十、申請專利範圍: 1,錄光組件的層組合,特収—縣有婦光三極 體,其具有-電洞注入接觸點及一電子注入接觸點, . 每一個係連接至一發光區域,其中: ·· -在該發光區域’ 一發光層是由一材料(Ml)所組成 • 及另一發光層是由另一材料(M2)所組成,其中該 材料(Ml)為雙極及優先傳送電洞且該另一材料 (M2)為雙極及優先傳送電子; _於該發光區域中,一異質轉換是由該材料(Ml)及 該另一材料(M2)形成; * _在該材料(M1)及該另一材料(M2)間的一介面為交 . 錯形式Π; -該材料(Ml)及該另一材料(M2)各包含一或更多三 重發光體捧雜劑的適當添加;及 _自該材料(Ml)進入該另一材料(]^2)的電洞傳遞 的一能障,及自該另一材料(M2)進入該材料(M1) 、的電子傳遞的一能障,各小於約0·4電子伏特; 並且其中至少一材料(ΜΙ :Μ2)包含由一優先傳送 電洞材料、一優先電子傳送材料與該三重發光體 • 掺雜劑組成的混合物。 2·根據申請專利範圍第1項的層組合,其特徵在於,自 =材料(Μ1)進入該另一材料(M2)的電洞傳遞的該能 障,及/或自該另一材料(]^2)進入該材料(Μ1)的電子 傳遞的該能障,各小於約〇·3電子伏特。 33 Ι28544Γ 3. 根據申請專利範圍第2項的層組合,其特徵在於, 該材料(Ml)包括一雙極、單組件材料及該另一材料 (M2)包括一單載子電子基質,且電洞傳遞能夠由在 該三重發光體掺雜劑的狀態間的跳躍而發生。 4. 根據申請專利範圍第1項的層組合,其特徵在於,該 材料(Ml)包括一雙極、單組件材料及該另一材料(M2) 包括一單載子電子基質,且電洞傳遞能夠由在該三重 發光體掺雜劑的狀態間的跳躍而發生。 5. 根據申請專利範圍第1項的層組合,其特徵在於, 該另一材料(M2)包括一單載子電子基質,且電洞傳 遞能夠由在該三重發光體掺雜劑的狀態間的跳躍而 發生。 6. 根據申請專利範圍第2項的層組合,其特徵在於,該 另一材料(M2)包括一單載子電子基質,且電洞傳遞 '能夠由在該三重發光體掺雜劑的狀態間的跳躍而發 生。 7. 根據申請專利範圍第1項的層組合,其特徵在於, 該材料(Ml)包括一單載子電洞基質,且電子傳遞能 夠由在該三重發光體掺雜劑的狀態間的跳躍而發 生,及該另一材料(M2)包括一雙極、單組件材料。 8. 根據申請專利範圍第2項的層組合,其特徵在於,該 材料(Ml)包括一單載子電洞基質,且電子傳遞能夠 由在該三重發光體掺雜劑的狀態間的跳躍而發生,及 該另一材料(M2)包括一雙極、單組件材料。 34 1285441 9.根據申請專利範圍第1項的層組合,其特徵在於, 該材料(Ml)包括一單載子電洞基質,且電子傳遞能 夠由在該一重發光體掺雜劑的狀態間的跳躍而發 生,及該另一材料(M2)包括一優先電洞傳遞材料、 一優先電子傳遞材料及該三重態發光體掺雜劑的混 合物。 10·根據申請專利範圍第2項的層組合,其特徵在於, 該材料(Ml一)包括—單載子電洞基質,且電子傳遞能 夠由在該三重發光體掺雜劑的狀態間的跳躍而發 生,及該另一材料(M2)包括一優先電洞傳遞材料、 -一優先電子傳遞材料及該三4態發光體掺雜劑的混 合物。 11.根據申請專利範圍第i項的層組合,其特徵在於, 該材料(Ml)及該另一材料(M2)各由一單組件、雙極 唞料或是包含一優先電洞傳遞材料及一優先電率傳 遞材料的混合物所組成。 12·根據申請專利範圍帛u項的層組合,其特徵在 -於,由該材料(Ml)所組成的發光層及由該另一材料 (M2)所組成的另-發光層各由_優先電洞傳遞材 * 料…縣電子傳遞材料及該三重態發光體摻雜劑的 相U合物所組成,且以該混合比的變化將該一發光 層優先製成為電洞傳遞及將該另一發光層優先製成 為電子傳遞。 13·根據申請專利範圍# 12項的層組合,其特徵在 35 .1285441 二仕糾驗域中的該優先電洞傳遞性質及該優先 =子傳遞性質間的平滑過渡係藉由—混合比梯度而 產生。 1艮據,申请專利範圍第2項的層組合,其特徵在於, =材料(Ml)及該另一材料_各由一單組件、雙極 料或疋包含-優先電洞傳遞材料及—優先電子 遞材料的混合物所組成。 15.根據中請專利範圍第14項的層組合,其特徵在於, 由該材料(Ml)所組成的發光層及由該另 一材料(M2: 斤、、且成的另-發光層各由—優先電洞傳遞材料、一優 先電子傳遞材料及該三重態發光體掺雜劑的相同混 二物所組成’且以該混合比的變化將該—發光層優失 製成為電洞傳遞及將該另—發光層優先製成為電子 傳遞。 !6.根據申請專利範圍第ls項的層組合,其特徵在於π 在該發光區域中的該優先電洞傳遞性質及該優先電 子傳遞性㈣的平滑過渡係藉由_混合比梯度而產 生。 17·根據申請專利範圍第丨項的層組合,其特徵在於, 在該材料(Μ1)及該另一材料(M 2)中的電洞傳遞係以 在該三重態發光體掺雜劑的狀態間的跳躍發生,且在 該材料(Ml)中一基質材料的H〇M〇能位較在該另一 材料(M2)更為接近該三重態發光體掺雜劑的h〇m〇 能位,使得在該材料(M1)中該三重態發光體掺雜劑 36 1585441 的狀態間的跳躍的一穿隧能障,較在該另一材料(M2) 中該三重態發光體掺雜劑的狀態間的跳躍的一穿隧 能障為小,及在該材料(M1)中該電洞移動性較在該 另一材料(M2)中電洞移動性為大。 18·根據申請專利範圍第2項的層組合,其特徵在於, 在該材料(Ml)及該另一材料(m2)中的電洞傳遞係以 在該三重態發光體掺雜劑的狀態間的跳躍發生,且在 讓材料(Μ 1)中一基質材料的H〇M〇能位較在該另一 材料(M2)更為接近該三重態發光體掺雜劑的h〇m〇 能位,使得在該材料(Ml)中該三重態發光體掺雜劑 的狀態間的跳躍的一穿隧能障,較在該另一材料(Μ。 中該二重悲發光體掺雜劑的狀態間的跳躍的一穿隨 能障為小,及在該材料(M1)中該電洞移動性較在該 另一材料(M2)中電洞移動性為大。 19·根據申請專利範圍第!項的層組合,其特徵在於在 該兩材料(Ml)及(M2)中電子傳遞係以在該三重態發 光體掺雜劑的狀態間的跳躍而發生,且在該另一材料 (M2)中一基質材料的LUM〇能位較在該材料(Μι)更 為接近該三重態發光體掺雜劑的LUMO能位,使得 在該另一材料(M2)中該三重態發光體掺雜劑的狀態 間的電子跳躍的一穿隧能障,較在該材料(Ml)中該 二重態發光體掺雜劑的狀態間的跳躍的一穿隧能障 為小,及在該另一材料(M2)中該電子移動性較在該 材料(Ml)中電子移動性為大。 37 128544Γ 20.根據申請專利範圍第2項的層組合,其特徵在於在 該兩材料购及⑽)中電子傳遞係以在該三重態發 光體掺雜劑的狀態間的跳躍而發生,且在該另一材料 (M2)中-基質材料的LUM()能位較在該材料(μι)更 為接近該二重態發光體掺雜劑的LUM〇能位,使得 在該另-材料(M2)中該三重態發光體掺雜劑的狀態 間的電子跳躍的一穿隧能障,較在該材料(M1)中該 —重悲發光體掺雜劑的狀態間的跳躍的一穿隧能障 為小,及在该另一材料(M2)中該電子移動性較在該 材料(Ml)中電子移動性為大。 21·根據申請專利範圍第丨項的層組合,其特徵在於, 該材料(Ml)及/或該另一材料(M2)的一基質材料為一 種包括一雙極或電子傳遞結構及一雙極或電洞傳遞結 構的共價耦合的二價元素,及該二價元素包括具個別 疋電子系就的子單元。一_ 22·根據申請專利範圍第21項的層組合,其特徵在於, 該二價元素的該等子單元的其中之一可優先地佔據額 外電洞,使得一 HOMO波函數集中於該等子單元的該 一子單元,且該二價元素的該等子單元的另一可優先 地伯據額外電子,使得該LUMO波函數集中於該等子 單元的該另一子單元,由此形成給予體-接收體二價元 素。 23·根據申請專利範圍第22項的層組合,其特徵在 於’優先地佔據額外電洞的該一子單元包括一或更多 38 1285441 下列材料類別的材料: -一分子,其包括三芳香基胺單元,特別是TPD、 NPD及它們的螺-鍵結二價元素的衍生物、TDATA的 衍生物,如間-MTDΑΤΑ、TNANA等,或是TDAB的 衍生物; -一種包括。塞吩單元的分子;及/或 -一種包括苯撐-亞乙烯單元的分子。 24. 根據申請專利範圍第21項的層組合,其特徵在 於,在該等子單元的HOMO能位或LUMO能位間的 能量偏移的至少其一為小的,較佳為小於約0.5電子伏 特,使得最低單重激發態為於該等子單元的其中之一 的弗侖克爾激子。 25. 根據申請專利範圍第21項的層組合,其特徵在 於,在該等子單元的該HOMO能位或該LUMO能位 的該能量偏移為大的,較隹為大於約0.4電子伏特,使 得該最低單重激發態為由在一接收體子單元的一電子 及在一給予體子單元的一電洞所組成的電荷傳遞激 子。 26. 根據申請專利範圍第22項的層組合,其特徵在於, 優先地彳占據額外電子的該另一子單元包括一或更 多下列材料類別的材料: -嗔二唾類; -三唑類; 39 1285441 -苯並硫二唑類; _苯並咪唑類,特別是N-芳基苯並咪唑類,如TPBI ; -聯吡啶類; -具有氰基乙烯基的分子,特別是7-或8-氰基-對苯 撐-亞乙烯衍生物; -嗜淋類; -喹噁琳類; -三芳基氧硼基衍生物; -silol衍生物,特別是silacyclopentadiene衍生物, 如 2,5-雙-(2(‘),2(‘)-聯 11 比唆-6_基)·1,1-二曱基-3,4· 二苯基 silacyclopentadiene 或 1,2-雙(1_ 曱基 -2,3,4,5-四苯基3丨1&amp;。&gt;^1(^61^&amp;(^1^)乙烧; -環辛四烯類; -醌型結構類; 比嗤琳類; 酮類; -茂基基底自由基電子傳遞材料,特別是五芳基環戊 二烯的衍生物; -苯並硫二ϋ坐類, -萘二羧酐類、萘二羧醯亞胺類及萘二羧咪唑類; -全氟低-對-苯基類; -得自 Κ· Naito, Μ· Sakurai, S· Egusa,物理化學期刊 Α· 101,2350(1997)的材料;及 -得自L.S· Hung, C.H· Chen材料科學工程報告39, 1285441 143-222(2002)的材料。 27. 根據申請專利範圍第21項中任一項的層組合,其特 徵在於,該二價元素的該子單元是藉由一螺旋化合 物所鍵結。 28. 根據申請專利範圍第1項的層組合,其特徵在於, 形成一針狀結構。 29. 根據申請專利範圍第1項的層組合,其特徵在於, 形成一 p-i-i結構。 30. 根據申請專利範圍第1項的層組合,其特徵在於, 形成一 i-i-n結構。 31. 根據申請專利範圍第5、6、9、10、11及14項中任 一項的層組合,其特徵在於,該優先電洞傳遞材 料、該優先電子傳遞材料及該三重態發光體掺雜劑 的混合物包含一或更多下列材料類別的材料做為 優先電洞傳遞成份: -一種分子,其包括三芳香基胺單元,特別是TPD、 NPD及它們的螺-鍵結二價元素的衍生物、TDATA 的衍生物,如間_MTDATA、TNANA等,或是TDAB 的衍生物; -一種包括嗟吩單元的分子;及/或 -一種包括苯撐-亞乙烯單元的分子。 32. 根據申請專利範圍第5、6、9、10、11及14項中任 一項的層組合,其特徵在於,該優先電洞傳遞材 料、該優先電子傳遞材料及該三重態發光體掺雜劑 41 1285441 的混合物包含一或更多下列材料類別的材料做為 優先電子傳遞成份: -噁二峻類; -三唑類; -苯並硫二唑類; •苯並咪唑類,特別是N-芳基苯並咪唑,如TPBI ; -聯吡啶類; -具有氰基乙烯基的分子,特別是7-或8-氰基-對-苯撐-亞乙烯衍生物; -喹淋類; -啥嗔淋類; -三芳基氧硼基衍生物; -silol衍生物,特別是silacyclopentadiene衍生物, 如 2,5-雙_(2(‘),2(‘)_聯 °比咬-6_基)-1,1_二曱基-3,4-二苯基 silacyclopentadiene 或 1,2-雙(1-曱基 -2,3,4,5-四苯基311&amp;〇}^1〇卩61^&amp;(^1]^)乙烧; -環辛四烯類; -醌型結構類; 比唾琳類; -酮類; -茂基基底自由基電子傳遞材料,特別是五芳基環 戊二烯的衍生物; -苯並硫二ϋ坐類, -萘二羧酐類、萘二羧醯亞胺類及萘二羧咪唑類; 42 1285441 -全氟低-對-苯基類; 付自 K· Naito, M· Sakurai,S· Egusa,物理化學期 刊 Α· 101,2350(1997)的材料;及 •侍自L.S· Hung,C.H· Chen材料科學工程報告39, 143-222(2002)的材料。 , 33 彻康申請專利範圍第3、4、7、8、nA14項中任 =的層組合’其特徵在於,該雙極、單組件材料 ;下列材料類別的其中之一: 姓;I#雙極或電子傳遞結構及—雙極或電洞傳遞 、=的共料合的二價元素,及該子結構具有個別 蕙子系統; 構種刀子’做為具有一共用7Γ電子系統的合適結 診=素的結果,纟包括優勢地佔據額夕卜電洞及因此 波函數所集中的第一子單元,及包括優 Μ據額外電子及因此談LUM〇波函數所集中 听弟二額外子單元; _〜推挽取代分子; 、〜種包括咔唑單元的分子,特別是CBp ; •〜種包括芴單元的分子; :種包括樸啉或酞花菁單元的分子; 種包括具有超過三個耦合於對位的苯基單元 扒低苯基之分子; _〜種包括蔥、丁省或戊省單元的分子; 種包括一奈喪苯的分子;及 43 1285441 -一種包括祐的分子。 34. 根據申請專利範圍第1項的層組合,其特徵在於該 發光層及該其他發光層的每一個有小於約3 〇奈米 的層厚度。 35. 根據申請專利範圍第1項的層組合,其特徵在於, 至少一個額外發光層存在於該發光區域。 36. 根據申請專利範圍第1項的層組合,其特徵在於, 一或所有下列層一次或超過一次存在於在該電洞 注入接觸點及該電子注入接觸點間的該發光區域 外:一電子傳遞層、一電洞傳遞層、一電子阻障層 及一電洞阻障層之外。 37. 根據申請專利範圍第36項的層組合,其特徵在於, 自該另一發光層的一有效電洞傳遞能位進入一相 鄰電子傳遞層的有效電洞傳遞能位之電洞注入能 障小於約0.4電子伏特,使得該相鄰電子傳遞層為 一無效電洞阻障層。 38. 根據申請專利範圍第36項的層組合,其特徵在於, 自該發光層的一有效電子傳遞能位進入一相鄰電 洞傳遞層的一有效電子傳遞能位之電子注入能障 小於約0·4電子伏特,使得該相鄰電洞傳遞層為一 無效電子阻障層。 39. 根據申請專利範圍第1項的層組合,其特徵在於, Ρ-掺雜電洞傳遞層為存在的,以及介於該Ρ-掺雜電 洞傳遞層與該發光區域間的一層區域不含一或更 44 ^1285441 多未經掺雜中間層。 4〇·根據申請專利範圍第1項項的層組合,其特徵在 於,該發光區域直接相鄰該電洞注入接觸點。 41 ·根據申請專利範圍第1項的層組合,其特徵在於, η-掺雜電子傳遞層為存在的,以及介於該n•掺雜電 子傳遞層與該發光區域間的層區域不含一或更多 未經掺雜中間層。 42·根據申請專利範圍第1項的層組合,其特徵在於, 該另一發光層直接相鄰該電子注入接觸點。 43·—種發光組件,其特徵在於根據申請專利範圍第i 〜42項中任一項的層組合。 44· 一種發光組件的層組合,特別是一鱗光有機發光二 極體,其具有一電洞注入接觸點及一電子注入接觸 點,每一個係連接至一發光區域,其中: -在該發光區域,一發先層是由一材料(Mi)所組成 及另一發光層是由另一材料(M2)所組成,其中該 材料(Ml)為雙極及優先傳送電洞且該另一材料 (M2)為雙極及優先傳送電子; -於該發光區域中,一異質轉換是由該材料(M1)及 該另'~材料(M2)形成; -在該材料(Ml)及該另一材料(M2)間的一介面為交 錯形式II; _該材料(Ml)及該另一材料(M2)各包含一或更多三 重發光體掺雜劑的適當添加;及 45 .1285441 -自該材料(Ml)進入該另一材料(M2)的電洞傳遞 的一能障,及自該另一材料(M2)進入該材料(Ml) 的電子傳遞的一能障,各小於約〇·4電子伏特; =中,至少一材料包含一雙極或電子傳遞 =構的共價耦合的二價元素及一雙極或電洞傳遞 °構及該二價元素包括具個別7Γ電子系統的子單 元。 據申%專利範圍第44項的層組合,其特徵在 的該二料(M1)進入該另一材料(M2)的電洞傳遞 的^早二及/或自該另一材料(M2)進入該材料(Ml) 於,該材衍a ㈣項的層組合,其特徵在 材料⑽)包極、:組件材料及該另- 仪根據雜劑的狀態間的跳躍而發生。 材料⑽組件材料及該另一 48.根據申圍第T狀態間的跳躍而發生。 ^傳遞材料,以及該三重體傳/雜材^、—優先 傳遞能约由在 w子電子基質,且電洞 &quot;光體掺雜劑的狀態間的跳躍 46 1285441 而發生。 49. 根據申請專利範圍第45項的層組合,其特徵在 於,該材料(Ml)包括一優先電洞傳遞材料、一優先 電子傳遞材料,以及該三重發光體掺雜劑的混合物, 且該另一材料(M2)包括一單載子電子基質,且電洞 傳遞能夠由在該三重發光體掺雜劑的狀態間的跳躍 而發生。 50. 根據申請專利範圍第44項的層組合,其特徵在 於,該材料(Ml)包括一單載子電洞基質,且電子傳 遞能夠由在該三重發光體掺雜劑的狀態間的跳躍而 發生,及該另一材料(M2)包括一雙極、單組件材料。 51. 根據申請專利範圍第45項的層組合,其特徵在 於,該材料(Ml)包括一單載子電洞基質,且電子傳 遞能夠由在該三重發光體掺雜劑的狀態間的跳躍而 發生,及該另一材料(M2)包括一雙極、單組件材料。 52. 根據申請專利範圍第44項的層組合,其特徵在 於,該材料(Ml)包括一單載子電洞基質,且電子傳 遞能夠由在該三重發光體掺雜劑的狀態間的跳躍而 發生,及該另一材料(M2)包括一優先電洞傳遞材 料、一優先電子傳遞材料及該三重態發光體掺雜劑的 混合物。 53. 根據申請專利範圍第45項的層組合,其特徵在 於,該材料(Ml)包括一單載子電洞基質,且電子傳 遞能夠由在該三重發光體掺雜劑的狀態間的跳躍而 47 1285441 發生,及該另一材料(M2)包括一優先電洞傳遞材 料、一優先電子傳遞材料及該三重態發光體掺雜劑的 混合物。 54·根據申請專利範圍第44項的層組合,其特徵在 於,該材料(Ml)及該另一材料(M2)各由一單組件、 雙極材料或是包含一優先電洞傳遞材料及一優先電 子傳遞材料的混合物所組成。 55·根據申請專利範圍第46項的層組合,其特徵在 於,由該材料(Ml)所組成的發光層及由該另一材料 (M2)所組成的另一發光層各由一優先電洞傳遞材 料、一優先電子傳遞材料及該三重態發光體掺雜劑的 相同混合物所組成,且以該混合比的變化將該一發光 層優先製成為電洞傳遞及將該另一發光層優先製成 為電子傳遞。 56·根據申請專利範圍第47項,的層組合,其特徵在 於’在該發光區域中的該優先電洞傳遞性質及該優先 電子傳遞性質間的平滑過渡係藉由一混合比梯度而 產生。 57. 根據申請專利範圍第45項的層組合,其特徵在 於,該材料(Ml)及該另一材料(M2)各由一單組件、 雙極材料或是包含一優先電洞傳遞材料及一優先電 子傳遞材料的混合物所組成。 58. 根據申請專利範圍第57項的層組合,其特徵在 於,由該材料(Ml)所組成的發光層及由該另一材料 48 1285441 (M2)所組成的另一發光層各由一優先電洞傳遞材 料、一優先電子傳遞材料及該三重態發光體掺雜劑的 相同混合物所組成,且以該混合比的變化將該一發光 層優先製成為電洞傳遞及將該另一發光層優先製成 為電子傳遞。 59·根據申請專利範圍第58項的層組合,其特徵在於, 在該發光區域中的該優先電洞傳遞性質及該優先電 子傳遞性質間的平滑過渡係藉由一混合比梯度而產 生。 60·根據申請專利範圍第44項的層組合,其特徵在 於,在該材料(Ml)及該另一材料(M2)中的電洞傳遞 係以在該三重態發光體掺雜劑的狀態間的跳躍發 生,且在該材料(Ml)中一基質材料的H0M0能位較 在該另材料(M2)更為接近該三重態發光體捧雜劑 的HOMO能位,使得在該材料(mi)中該三重態發光 體掺雜劑的狀態間的跳躍的一穿隧能障,較在該另一 材料(M2)中該三重態發光體掺雜劑的狀態間的跳躍 的一穿隧能障為小,及在該材料(Ml)中該電洞移動 性較在該另一材料(M2)中電洞移動性為大。 61·根據申請專利範圍第45項的層組合,其特徵在 於,在該材料(Ml)及該另一材料(M2)中的電洞傳遞 係以在該三重態發光體掺雜劑的狀態間的跳躍發 生,且在該材料(Ml)中一基質材料的HOMO能位較 在該另一材料(M2)更為接近該三重態發光體掺雜劑 49 1285441 的HOMO能位,使得在該材料(M1)中該三重態發光 體掺雜劑的狀態間的跳躍的一穿隧能障,較在該另一 材料(M2)中該三重態發光體掺雜劑的狀態間的跳躍 的一穿隧能障為小,及在該材料(Ml)中該電洞移動 性較在該另一材料(M2)中電洞移動性為大。 62·根據申請專利範圍第44項的層組合,其特徵在於 在該兩材料(Ml)及(M2)中電子傳遞係以在該三重態 發光體掺雜劑的狀態間的跳躍而發生,且在該另一材 料(M2)中一基質材料的LUMO能位較在該材料(Ml) 更為接近該三重態發光體掺雜劑的LUMO能位,使 得在該另一材料(M2)中該三重態發光體掺雜劑的狀 態間的電子跳躍的一穿隨能障,較在該材料(M1)中 該三重態發光體掺雜劑的狀態間的跳躍的一穿隧能 障為小,及在該另一材料(M2)中該電子移動性較在 該材料(Ml)中電子移動性為大:。 63·根據申請專利範圍第45項的層組合,其特徵在於 在該兩材料(Ml)及(M2)中電子傳遞係以在該三重態 發光體掺雜劑的狀態間的跳躍而發生,且在該另一材 料(M2)中一基質材料的LUMO能位較在該材料(M1) 更為接近該二重恶發光體掺雜劑的LUMO能位,使 得在該另一材料(M2)中該三重態發光體掺雜劑的狀 態間的電子跳躍的一穿隧能障,較在該材料(M1)中 該三重態發光體掺雜劑的狀態間的跳躍的一穿随能 障為小,及在該另一材料(M2)中該電子移動性較在 50 1285441 該材料(Ml)中電子移動性為大。 64·根據申請專利範圍第44項的層組合,其特徵在 於,該材料(Ml)及/或該另一材料(m2)的一基質材料、 一種包括一雙極或電子傳遞結構及一雙極或電洞=^ 結構的共價搞合的二價元素,及該二價元素包括耳Y 別7Γ電子系統的子單元。 ^固 65·根據申請專利範圍第64項的層組合,其特後在 於,該二價元素的該等子單元的其中之一可優先地佔 據額外電洞,使得一 HOMO波函數集中於該等子單一 的該一子單元,且該二價元素的該等子單元的另二二 優先地佔據額外電子,使得該LUMO波函數集中於Z 等子單元的該另一子單元,由此形成給予體_接收^§一 價元素。 ~ 66·根據申請專利範圍第65項的層組合,立 升—徵在 於’優先地佔據額外電洞的該一子單元包括—夕 下列材料類別的材料: 夕 _一分子,其包括三芳香基胺單元,特別是TpD NPD及它們的螺-鍵結二價元素的衍生物、tdata的 衍生物,如間-MTDATA、TNANA等,或是TDAB的 衍生物; -一種包括噻吩單元的分子;及/或 -一種包括苯撐-亞乙烯單元的分子。 67·根據申請專利範圍第64項的層組合,其特徵在 於,在該等子單元的HOMO能位或LUMO能位間的 51 1285441 能量偏移的至少其一為小的,較佳為小於約0.5電子伏 特,使得最低單重激發態為於該等子單元的其中之一 的弗侖克爾激子。 68. 根據申請專利範圍第64項的層組合,其特徵在 於,在該等子單元的該HOMO能位或該LUMO能位 的該能量偏移為大的,較佳為大於約0.4電子伏特,使 得該最低單重激發態為由在一接收體子單元的一電子 及在一給予體子單元的一電洞所組成的電荷傳遞激 子。 69. 根據申請專利範圍第65項的層組合,其特徵在 於,優先地佔據額外電子的該另一子單元包括一或更 多下列材料類別的材料: 噪二峻類; -三唑類; •笨並硫二唑類; ;: -苯並咪唑類,特別是N-芳基苯並咪唑類,如TPBI ; -聯吼咬類; -具有氰基乙烯基的分子,特別是7-或8-氰基-對苯 撐-亞乙烯衍生物; -啥淋類; -喧嗔淋類; -三芳基氧硼基衍生物; -silol衍生物,特別是silacyclopentadiene衍生物, 如 2,5-雙-(2(‘),2(6)-聯吼啶-6-基)-1,1_二曱基-3,4- 52 1285441 二苯基 silacyclopentadiene 或 1,厶雙 q:甲某 -2,3,4,5_四苯基 siiaCyCi〇pentadiene) 環辛四烯類; 醌型結構類; 吡唑啉類; 酮類; 特別是五芳基環戊 戊基基底自由基電子傳遞材料, 一坤的衍生物; 本並硫二嗤類; 萘二騎類、萘二紐亞胺類及n米唾類 全氟低-對_苯基類; 、 付目 iNaito, 70. 71. 72. 73· 认1,〇·亡g Α· 101’2350(1997)的材料;及 .得自 L.S.HUng,C.H.Chen 材料 143-222(2002)的材料。 根據申請專利範圍第64項中任1_+ 特徵在於,該一價元素的該子 — 合物所鍵結。 4早从耩由一勒 根據申請專利範圍第44 於,形成一針狀結構。 根據申請專利範圍第44 於,形成一 p-i-i結構。 根據申請專利範圍第44 於,形成一 H-n結構。 “susa,物理化学期, 項的層組合,其特徵在 項的層組合,其特徵在 項的層組合,其特徵在 53 1285441 74·根據申請專利範圍第48、49、52、53、54及57 項中任一項的層組合,其特徵在於,該優先電洞傳 遞材料、該優先電子傳遞材料及該三重態發光體掺 雜劑的混合物包含一或更多下列材料類別的材料 做為優先電洞傳遞成份: -一種分子,其包括三芳香基胺單元,特別是TPD、 NPD及它們的螺-鍵結二價元素的衍生物、TDATA 的衍生物,如間-MTDATA、ΤΝΑΝΑ等,或是TDAB 的衍生物; -一種包括嗟吩單元的分子;及/或 -一種包括苯撐-亞乙烯單元的分子。 75.根據申請專利範圍第48、49、52、53、54及57 項中任一項的層組合,其特徵在於,談優先電洞傳 遞材料、該優先電子傳遞材料及該三重態發光體掺 雜劑的混合物包含一或更多下列材料類別的材料 做為優先電子傳遞成份: -噁二唑類; -三唑類; -苯並硫二唑類; 苯並咪唑類,特別是Ν-芳基苯並咪唑,如ΤΡΒΙ ; -聯吡啶類; -具有氰基乙烯基的分子,特別是7-或8-氰基-對-苯撐-亞乙烯衍生物; -啥琳類; 54 1285441 -喹噁啉類; -三芳基氧硼基衍生物; -silol衍生物,特別是silacyclopentadiene衍生物, 如 2,5-雙_(2(‘),2(&gt;聯吼啶-6-基)-1,1-二曱基-3,4-二苯基 silacyclopentadiene 或 1,2-雙(1-甲基 -2,3,4,5·四苯基 silacyclopentadiene)乙烧; -環辛四烯類; -酉昆型結構類; -口比峻琳類; -酮類; -茂基基底自由基電子傳遞材料,特別是五芳基環 戊二烯的衍生物; 苯並硫二唑類; -萘二羧酐類、萘二羧醯亞胺類及萘二羧咪唑類; 娜全氟低·對,苯基類; -得自 K· Naito, M· Sakurai,S· Egusa,物理化學期 刊 Α· 101,2350(1997)的材料;及 得自L.S· Hung,C.H· Chen材料科學工程報告39, 143-222(2002)的材料。 76·根據申請專利範圍第46、47、50、51、54及57 項中任一項的層組合,其特徵在於,該雙極、單組 件材料屬於下列材料類別的其中之一: -包括一雙極或電子傳遞結構及一雙極或電洞傳遞 結構的共價耦合的二價元素,及該子結構具有個別 55 乜85441 7Γ電子系統; 種刀子’做為具有一共用7Γ電子系統的合適結 構it素的結果’其包括優勢地佔據額外電洞及因此 該HOMO波函數所集中的第一子單元,及包括優 勢地佔據額外電子及因此該LUM〇波函數所集中 的第二額外子單元; •一推挽取代分子; _一種包括咔唑單元的分子,特別是CBP ; -一種包括芴單元的分子; -一種包括樸琳或酞花菁單元的分子; -一種包括具有超過三個耦合於對位的苯基單元的 對-低苯基之分子; -一種包括蔥、丁省或戊省單元的分子; -一種包括二萘嵌苯的分子;及 _一種包括芘的分子。 77·根據申請專利範圍第44項的層組合,其特徵在於 該發光層及該其他發光層的每一個有小於約30奈 米的層厚度。 78·根據申請專利範圍第44項的層組合,其特徵在 於,至少一個額外發光層存在於該發光區域。 79·根據申請專利範圍第44項的層組合,其特徵在 於,一或所有下列層一次或超過一次存在於在該電 洞注入接觸點及該電子注入接觸點間的該發光區 域外:一電子傳遞層、一電洞傳遞層、一電子阻障 56 Γ285441 層及一電洞阻障層之外。 80. 根據申請專利範圍第79項的層組合,其特徵在 於,自該另一發光層的一有效電洞傳遞能位進入一 相鄰電子傳遞層的有效電洞傳遞能位之電洞注入 能障小於約0.4電子伏特,使得該相鄰電子傳遞層 為一無效電洞阻障層。 81. 根據申請專利範圍第79項的層組合,其特徵在 於,自該發光層的一有效電子傳遞能位進入一相鄰 電洞傳遞層的一有效電子傳遞能位之電子注入能 障小於約0.4電子伏特,使得該相鄰電洞傳遞層為 一無效電子阻障層。 82. 根據申請專利範圍第44項的層組合,其特徵在 於,P-掺雜電洞傳遞層為存在的,以及介於該p-掺 雜電洞傳遞層與該發光區域間的一層區域不含一 或更多未經掺雜中間層。 83. 根據申請專利範圍第44項的層組合,其特徵在 於,該發光區域直接相鄰該電洞注入接觸點。 84. 根據申請專利範圍第44項的層組合,其特徵在 於,η-掺雜電子傳遞層為存在的,以及介於該η-掺 雜電子傳遞層與該發光區域間的層區域不含一或 更多未經掺雜中間層。 85. 根據申請專利範圍第44項的層組合,其特徵在 於,該另一發光層直接相鄰該電子注入接觸點。 86. —種發光組件,其特徵在於根據申請專利範圍第 57 085441 44〜85項中任一項的層組合。 58^ 1285441 r —-—~ % Spleen “Month” [Ri Xiu Mo) Original Announcement j X. Application Patent Range: 1. Layer combination of recording components, special collection—the county has a matt triode, which has a Hole injection contact point and an electron injection contact point, .  Each of the wires is connected to a light-emitting region, wherein: - in the light-emitting region, a light-emitting layer is composed of one material (M1); and the other light-emitting layer is composed of another material (M2), wherein The material (M1) is a bipolar and preferentially transmitting hole and the other material (M2) is bipolar and preferentially transports electrons; _ in the illuminating region, a heterogeneous conversion is made by the material (Ml) and the other material (M2) is formed; * _ is an interface between the material (M1) and the other material (M2).  Wrong form Π; - the material (Ml) and the other material (M2) each comprise a suitable addition of one or more triple emitters; and _ from the material (Ml) into the other material (]^ 2) an energy barrier transmitted by the hole, and an energy barrier of electron transfer from the other material (M2) into the material (M1), each less than about 0. 4 electron volts; and at least one of the materials ( ΜΙ : Μ 2) comprises a mixture of a preferential transport hole material, a preferential electron transport material and the triple luminescent body dopant. 2. A layer combination according to claim 1 of the patent application, characterized in that the energy barrier transmitted from the material (Μ1) into the hole of the other material (M2), and/or from the other material (] ^2) The energy barriers for electron transfer into the material (Μ1) are each less than about 〇·3 eV. 33 Ι28544Γ 3.  A layer combination according to claim 2, characterized in that the material (M1) comprises a bipolar, single-component material and the other material (M2) comprises a single-carrier electronic matrix, and the hole transfer can be A jump occurs between the states of the triple emitter dopant. 4.  The layer combination according to claim 1 is characterized in that the material (M1) comprises a bipolar, single component material and the other material (M2) comprises a single carrier electronic matrix, and the hole transfer can be A jump occurs between the states of the triple emitter dopant. 5.  The layer combination according to claim 1 of the patent application, characterized in that the other material (M2) comprises a single carrier electron matrix, and the hole transfer can be caused by a jump between the states of the triple emitter dopant occur. 6.  A layer combination according to claim 2, characterized in that the further material (M2) comprises a single carrier electron matrix and the hole transfer 'capable of jumping between the states of the triple emitter dopant And it happened. 7.  The layer combination according to claim 1, wherein the material (M1) comprises a single carrier hole matrix, and electron transfer can occur by a jump between states of the triple emitter dopant. And the other material (M2) comprises a bipolar, single component material. 8.  A layer combination according to claim 2, characterized in that the material (M1) comprises a single carrier hole matrix, and electron transfer can occur by a jump between states of the triple emitter dopant, And the other material (M2) comprises a bipolar, single component material. 34 1285441 9. A layer combination according to the first aspect of the patent application, characterized in that the material (M1) comprises a single carrier hole matrix, and electron transfer can occur by a jump between states of the one light emitter dopant, And the other material (M2) comprises a preferential hole transport material, a preferential electron transport material, and a mixture of the triplet emitter dopants. 10. A layer combination according to claim 2, characterized in that the material (M1) comprises a single carrier cavity matrix and the electron transfer can be caused by a jump between the states of the triple emitter dopant What happens, and the other material (M2) comprises a preferential hole transport material, a preferential electron transport material, and a mixture of the three 4-state emitter dopants. 11. The layer combination according to item i of the patent application is characterized in that the material (M1) and the other material (M2) are each composed of a single component, a bipolar material or a preferential hole transfer material and a priority. A mixture of electrical conductivity materials. 12. A layer combination according to the scope of the patent application, characterized in that the light-emitting layer composed of the material (M1) and the other light-emitting layer composed of the other material (M2) are each preferentially The hole transfer material* is composed of a county electron transfer material and a phase U compound of the triplet emitter dopant, and the light-emitting layer is preferentially made into a hole transfer and the other is changed by the change of the mixture ratio A luminescent layer is preferentially made for electron transfer. 13· According to the application of patent scope #12 layer combination, its characteristics are 35. 1285441 The priority hole transfer property in the two-dimensional correction domain and the smooth transition between the priority = sub-transfer properties are generated by a mixture ratio gradient. According to the patent application, the layer combination of item 2 is characterized in that = material (Ml) and the other material_each consist of a single component, a bipolar material or a crucible containing - priority hole transfer material and - priority A mixture of electronic delivery materials. 15. The layer combination according to item 14 of the scope of the patent application is characterized in that the light-emitting layer composed of the material (M1) and the other material (M2: jin, and the other-light-emitting layer are each--priority The hole-transporting material, a preferential electron-transporting material, and the same mixture of the triplet emitter dopants are formed, and the light-emitting layer is lost as a hole transfer and the other is changed by the change of the mixture ratio - The luminescent layer is preferentially made for electron transfer. !6. The layer combination according to the ls item of the patent application is characterized in that the preferential hole transfer property of π in the light-emitting region and the smooth transition of the preferential electron transport property (4) are generated by a _mixing ratio gradient. 17. The layer combination according to the scope of the patent application, characterized in that the hole transfer in the material (Μ1) and the other material (M 2) is in the state of the triplet emitter dopant The jump occurs between the material and the H〇M〇 energy of a matrix material in the material (M1) is closer to the h〇m〇 energy level of the triplet emitter dopant than the other material (M2). a tunneling energy barrier that causes a jump between states of the triplet emitter dopant 36 1585441 in the material (M1), compared to the triplet emitter dopant in the other material (M2) The tunneling energy barrier of the jump between states is small, and the mobility of the hole in the material (M1) is larger than that of the hole in the other material (M2). 18. The layer combination according to claim 2, wherein the hole transfer in the material (M1) and the other material (m2) is between the states of the triplet emitter dopant The jump occurs, and the H〇M〇 energy level of a matrix material in the material (Μ 1) is closer to the h〇m〇 energy level of the triplet emitter dopant than the other material (M2). a tunneling energy barrier that causes a jump between states of the triplet emitter dopant in the material (M1), compared to the state of the double sad emitter dopant in the other material The gap between the wear and the wear barrier is small, and the hole mobility in the material (M1) is greater than the hole mobility in the other material (M2). 19· According to the scope of the patent application! A layer combination of the item, characterized in that the electron transport in the two materials (M1) and (M2) occurs with a jump between the states of the triplet emitter dopant, and in the other material (M2) The LUM〇 energy level of the medium-matrix material is closer to the LUMO energy level of the triplet emitter dopant than the material (Μι), such that in the other material (M2) A tunneling energy barrier of electron hopping between states of the heavy illuminant dopant is smaller than a tunneling energy barrier of a jump between states of the doublet illuminant dopant in the material (M1), and In the other material (M2), the electron mobility is larger than that in the material (M1). 37 128544Γ 20. A layer combination according to claim 2, characterized in that in the two materials and (10)), electron transport occurs in a jump between states of the triplet emitter dopant, and in the other material The LUM() energy of the (M2)-substrate material is closer to the LUM〇 energy level of the doublet emitter dopant than the material (μι), such that the triplet state in the further material (M2) a tunneling energy barrier of electron hopping between states of the illuminant dopant is smaller than a tunneling energy barrier of the jump between the states of the sinister illuminant dopant in the material (M1), and In the other material (M2), the electron mobility is larger than the electron mobility in the material (M1). 21. The layer combination according to claim </ RTI> wherein the material (M1) and/or the matrix material of the other material (M2) comprises a bipolar or electron transfer structure and a bipolar Or a covalently coupled divalent element of the hole transfer structure, and the divalent element comprises a subunit having an individual germanium electron system. A layer combination according to claim 21, wherein one of the subunits of the divalent element preferentially occupies an additional hole such that a HOMO wave function is concentrated on the sub The one subunit of the unit, and the other of the subunits of the divalent element may preferentially be extra electrons such that the LUMO wave function is concentrated on the other subunit of the subunits, thereby forming an Body-receiver bivalent element. 23. A layer combination according to claim 22, wherein the sub-unit that preferentially occupies additional holes comprises one or more 38 1285441 materials of the following material classes: - a molecule comprising a tri-aryl group Amine units, in particular TPD, NPD and their spiro-bonded derivatives of divalent elements, derivatives of TDATA, such as meta-MTD, TNANA, etc., or derivatives of TDAB; a molecule of a phenanthrene unit; and/or a molecule comprising a phenylene-vinylidene unit. twenty four.  The layer combination according to claim 21, wherein at least one of the energy offsets between the HOMO energy levels or the LUMO energy levels of the subunits is small, preferably less than about zero. 5 eV, such that the lowest singlet excited state is a Flenkeler exciton of one of the subunits. 25.  The layer combination according to claim 21, wherein the energy offset of the HOMO energy level or the LUMO energy level of the subunits is large, and is greater than about 0. 4 electron volts such that the lowest singlet excited state is a charge transfer exciter consisting of an electron in a receiving subunit and a hole in a donor subunit. 26.  A layer combination according to claim 22, characterized in that the other subunit occupies preferentially occupies additional electrons comprises one or more materials of the following material classes: - scorpion di-salt; - triazoles; 1285441 - benzothiadiazoles; _ benzimidazoles, especially N-aryl benzimidazoles, such as TPBI; - bipyridyls; - molecules with cyanovinyl groups, especially 7- or 8- a cyano-p-phenylene-vinylidene derivative; a guanine; a quinoxaline; a triaryl borohydride derivative; a silol derivative, especially a silacyclopentadiene derivative, such as 2,5-bis- (2('), 2(')-linked 11 to 唆-6_yl)·1,1-dimercapto-3,4·diphenyl silacyclopentadiene or 1,2-bis(1_ fluorenyl-2, 3,4,5-tetraphenyl 3丨1&amp;.&gt;^1(^61^&amp;(^1^) Ethylene; -cyclooctatetraene; -醌-type structure; Ketones; - metallocene-based radical electron-transport materials, especially derivatives of pentaarylcyclopentadiene; - benzothiazepines, -naphthalene dicarboxylic anhydrides, naphthalene dicarboxy quinones and naphthalenes Dicarboxyimidazoles; -Perfluoro-low-p-benzene Class; - Κ · Naito, Μ · Sakurai, S · Egusa, Journal of Physical Chemistry Α · 101,2350 (1997) from a material; and - from L. S· Hung, C. H· Chen Materials Science Engineering Report 39, 1285441 143-222 (2002). 27.  The layer combination according to any one of claims 21, wherein the subunit of the divalent element is bonded by a helical compound. 28.  The layer combination according to the first aspect of the patent application is characterized in that a needle-like structure is formed. 29.  The layer combination according to item 1 of the patent application is characterized in that a p-i-i structure is formed. 30.  The layer combination according to claim 1 of the patent application is characterized in that an i-i-n structure is formed. 31.  The layer combination according to any one of claims 5, 6, 9, 10, 11 and 14 wherein the preferential hole transporting material, the preferential electron transporting material, and the triplet emitter dopant The mixture contains one or more materials of the following material classes as the preferred hole transfer component: - a molecule comprising triarylamine units, in particular TPD, NPD and their spiro-bonded derivatives of divalent elements a derivative of TDATA, such as _MTDATA, TNANA, etc., or a derivative of TDAB; - a molecule comprising a porphin unit; and/or - a molecule comprising a phenylene-vinylidene unit. 32.  The layer combination according to any one of claims 5, 6, 9, 10, 11 and 14 wherein the preferential hole transporting material, the preferential electron transporting material, and the triplet emitter dopant The mixture of 41 1285441 contains one or more of the following material classes as the preferred electron transport component: - Ethylene; - Triazoles; - Benzothiadiazoles; - Benzimidazoles, especially N- Aryl benzimidazoles, such as TPBI; -bipyridyls; - molecules having a cyanovinyl group, especially 7- or 8-cyano-p-phenylene-vinylene derivatives; - quinolone; - hydrazine a triaryl borohydride derivative; a silol derivative, especially a silacyclopentadiene derivative, such as 2,5-bis-(2('), 2(') _ ̄ ° ° bit -6 yl )-1,1_dimercapto-3,4-diphenyl silacyclopentadiene or 1,2-bis(1-indenyl-2,3,4,5-tetraphenyl 311&amp;〇}^1〇卩61 ^&amp;(^1]^) Ethylene; -cyclooctatetraene; - quinoid structure; specific salicin; - ketone; - thiol-based radical electron transport material, especially pentaarylcyclopentan a derivative of a diene; - benzothiazepines, -naphthalene dicarboxylic anhydrides, naphthalene dicarboxy phthalimides and naphthalene dicarboxyimidazoles; 42 1285441 - perfluorolow-p-phenyls; from K· Naito, M · Sakurai, S. Egusa, Journal of Physical Chemistry Α 101, 2350 (1997); and • from L. S· Hung, C. H· Chen Materials Science Engineering Report 39, 143-222 (2002). 33, the level combination of any of the 3, 4, 7, 8, and nA14 patents of the patent application scope is characterized by the bipolar, single-component material; one of the following material categories: surname; I# double a pole or electron transfer structure and a bipolar or hole transfer, a co-combined divalent element of the =, and the substructure has an individual enthalpy system; the knives are configured as a suitable diagnosis with a shared 7 Γ electronic system The result of the prime, including the advantage of occupying the Euclidean hole and thus the first subunit of the wave function, and including the additional sub-units based on the additional electrons and thus the LUM chopping function; _~ push-pull substituted molecule; , ~ a molecule comprising a carbazole unit, especially CBp; • a molecule comprising a ruthenium unit; a molecule comprising a porphyrin or phthalocyanine unit; the species comprising more than three couplings The phenyl unit in the para position is a molecule of a lower phenyl group; a molecule comprising a unit of onion, butyl or pentad; a molecule comprising a benzene group; and 43 1285441 - a molecule comprising a group. 34.  The layer combination according to item 1 of the patent application is characterized in that each of the light-emitting layer and the other light-emitting layer has a layer thickness of less than about 3 Å. 35.  A layer combination according to the first aspect of the patent application, characterized in that at least one additional luminescent layer is present in the illuminating region. 36.  The layer combination according to claim 1 is characterized in that one or all of the following layers are present one or more times outside the light-emitting region between the hole injection contact point and the electron injection contact point: an electron transport layer , a hole transfer layer, an electron barrier layer and a hole barrier layer. 37.  The layer combination according to claim 36 of the patent application, characterized in that the hole injection energy barrier of the effective hole transfer energy level from an effective hole transfer energy level of the other light-emitting layer into an adjacent electron transport layer is less than About 0. 4 electron volts such that the adjacent electron transport layer is an ineffective hole barrier layer. 38.  The layer combination according to claim 36, wherein an electron injection energy barrier from an effective electron transfer energy of the light-emitting layer to an effective electron transport energy of an adjacent hole transport layer is less than about 0. 4 electron volts, making the adjacent hole transfer layer an ineffective electron barrier layer. 39.  The layer combination according to claim 1 is characterized in that the Ρ-doped hole transmission layer is present, and a layer region between the Ρ-doped hole transmission layer and the illuminating region does not contain one Or 44 ^ 1285441 more undoped intermediate layer. 4. A layer combination according to item 1 of the scope of the patent application, characterized in that the light-emitting region is directly adjacent to the hole injection contact point. 41. The layer combination according to claim 1, wherein the η-doped electron transport layer is present, and the layer region between the n•doped electron transport layer and the light emitting region does not comprise a layer Or more undoped intermediate layers. 42. A layer combination according to claim 1 of the patent application, characterized in that the further luminescent layer is directly adjacent to the electron injection contact point. 43. A light-emitting component characterized by a layer combination according to any one of claims ii to 42. 44. A layer combination of a light-emitting component, in particular a scale organic light-emitting diode having a hole injection contact point and an electron injection contact point, each connected to a light-emitting region, wherein: - the light is emitted In the region, the first layer is composed of one material (Mi) and the other layer is composed of another material (M2), wherein the material (M1) is a bipolar and preferentially transporting holes and the other material (M2) is a bipolar and preferentially transmitting electrons; - in the illuminating region, a heterogeneous conversion is formed by the material (M1) and the other material (M2); - in the material (Ml) and the other An interface between materials (M2) is a staggered form II; _ the material (Ml) and the other material (M2) each comprise a suitable addition of one or more triple emitter dopants; and 45. 1285441 - an energy barrier transmitted from the material (Ml) into the hole of the other material (M2), and an energy barrier from the electron transfer of the other material (M2) into the material (M1), each smaller than约··4 eV; = at least one material comprising a bipolar or electron transfer = covalently coupled divalent element and a bipolar or hole transfer structure and the bivalent element comprising individual 7 Γ electrons A subunit of the system. According to the layer combination of claim 44 of the patent scope, it is characterized in that the second material (M1) enters the hole of the other material (M2) and passes through the second material and/or enters from the other material (M2). The material (Ml) is a layer combination of the material (a), characterized in that the material (10)), the component material, and the other device occur according to a jump between states of the dopant. Material (10) component material and the other 48. Occurs according to the jump between the T-states of the application. The transfer material, and the triplet/miscellaneous material, preferentially transfer energy occurs approximately from the jump between the states of the w sub-electron matrices and the holes &quot;light body dopants 46 1285441. 49.  A layer combination according to claim 45, wherein the material (M1) comprises a preferential hole transporting material, a preferential electron transporting material, and a mixture of the triplet emitter dopant, and the other material (M2) includes a single carrier electron matrix, and hole transfer can occur by a jump between the states of the triple emitter dopant. 50.  A layer combination according to claim 44, wherein the material (M1) comprises a single carrier hole matrix, and electron transfer can occur by a jump between states of the triple emitter dopant, And the other material (M2) comprises a bipolar, single component material. 51.  A layer combination according to claim 45, wherein the material (M1) comprises a single carrier hole matrix, and electron transfer can occur by a jump between states of the triple emitter dopant, And the other material (M2) comprises a bipolar, single component material. 52.  A layer combination according to claim 44, wherein the material (M1) comprises a single carrier hole matrix, and electron transfer can occur by a jump between states of the triple emitter dopant, And the other material (M2) comprises a preferential hole transport material, a preferential electron transport material, and a mixture of the triplet emitter dopants. 53.  A layer combination according to claim 45, wherein the material (M1) comprises a single carrier hole matrix, and the electron transfer can be caused by a jump between the states of the triple emitter dopant. Occurs, and the further material (M2) comprises a preferential hole transport material, a preferential electron transport material, and a mixture of the triplet emitter dopants. 54. The layer combination according to claim 44, wherein the material (M1) and the other material (M2) are each composed of a single component, a bipolar material or a preferential hole transfer material and a A mixture of preferential electron transport materials. 55. The layer combination according to claim 46, wherein the light-emitting layer composed of the material (M1) and the other light-emitting layer composed of the other material (M2) each have a priority hole a transfer material, a preferential electron transport material, and the same mixture of the triplet emitter dopants, and the light-emitting layer is preferentially made into a hole transfer and the other light-emitting layer is preferentially formed by the change of the mixture ratio Become an electronic delivery. 56. A layer combination according to claim 47, wherein the preferential hole transfer property in the light-emitting region and the smooth transition between the preferential electron transport properties are produced by a mixture ratio gradient. 57.  The layer combination according to claim 45, wherein the material (M1) and the other material (M2) are each composed of a single component, a bipolar material or a preferential hole transfer material and a preferential electron. Composed of a mixture of materials. 58.  The layer combination according to claim 57, wherein the light-emitting layer composed of the material (M1) and the other light-emitting layer composed of the other material 48 1285441 (M2) each have a priority hole a transfer material, a preferential electron transport material, and the same mixture of the triplet emitter dopants, and the light-emitting layer is preferentially made into a hole transfer and the other light-emitting layer is preferentially formed by the change of the mixture ratio Become an electronic delivery. 59. The layer combination of claim 58 wherein the preferential hole transfer property in the light-emitting region and the smooth transition between the preferential electron transfer properties are produced by a mixture ratio gradient. 60. The layer combination according to claim 44, wherein the hole transfer in the material (M1) and the other material (M2) is between the states of the triplet emitter dopant The jump occurs, and the H0M0 energy level of a matrix material in the material (M1) is closer to the HOMO energy level of the triplet emitter dopant than the other material (M2), such that the material (mi) a tunneling energy barrier of a jump between states of the triplet emitter dopant, a tunneling barrier of a jump between states of the triplet emitter dopant in the other material (M2) It is small, and the hole mobility in the material (Ml) is larger than the hole mobility in the other material (M2). 61. The layer combination according to claim 45, wherein the hole transfer in the material (M1) and the other material (M2) is between the states of the triplet emitter dopant The jump occurs, and the HOMO energy level of a matrix material in the material (M1) is closer to the HOMO energy level of the triplet emitter dopant 49 1285441 than the other material (M2), such that the material (M1) a tunneling energy barrier of the jump between the states of the triplet emitter dopant, compared to the jump between the states of the triplet emitter dopant in the other material (M2) The tunneling barrier is small, and the mobility of the hole in the material (Ml) is greater than the mobility of the hole in the other material (M2). 62. The layer combination according to claim 44, wherein the electron transport system in the two materials (M1) and (M2) occurs with a jump between states of the triplet emitter dopant, and In the other material (M2), the LUMO energy level of a matrix material is closer to the LUMO energy level of the triplet emitter dopant than the material (M1), such that in the other material (M2) A pass-through barrier of electron hopping between the states of the triplet emitter dopant is smaller than a tunneling barrier of the jump between the states of the triplet emitter dopant in the material (M1). And in the other material (M2), the electron mobility is greater than the electron mobility in the material (M1): 63. The layer combination according to claim 45, wherein the electron transport in the two materials (M1) and (M2) occurs with a jump between states of the triplet emitter dopant, and In the other material (M2), the LUMO energy level of a matrix material is closer to the LUMO energy level of the double luminescent emitter dopant than the material (M1), so that in the other material (M2) a tunneling energy barrier of the electron hopping between the states of the triplet illuminant dopant is smaller than a jump-energy barrier between the states of the triplet illuminant dopant in the material (M1) And the electron mobility in the other material (M2) is larger than that in the material (Ml) of 50 1285441. 64. A layer combination according to claim 44, characterized in that the material (M1) and/or a matrix material of the other material (m2), one comprising a bipolar or electron transfer structure and a bipolar Or a hole in the hole =^ structure of the covalently bonded divalent element, and the divalent element includes a subunit of the electronic system of the ear. The combination of layers according to claim 64 of the patent application is characterized in that one of the subunits of the divalent element preferentially occupies additional holes such that a HOMO wave function is concentrated on the a subunit of the subunit, and the other two of the subunits of the divalent element preferentially occupy additional electrons such that the LUMO wave function concentrates on the other subunit of the subunit of Z, thereby forming an Body_receives a § element. ~ 66· According to the layer combination of claim 65, the rise-up is that the sub-unit that preferentially occupies the extra hole includes the material of the following material categories: 夕_one molecule, which includes the triaryl group Amine units, in particular TpD NPD and their spiro-bonded derivatives of divalent elements, derivatives of tdata, such as meta-MTDATA, TNANA, etc., or derivatives of TDAB; - a molecule comprising thiophene units; / or - a molecule comprising a phenylene-vinylidene unit. 67. A layer combination according to claim 64, wherein at least one of the energy offsets of the 51 1285441 between the HOMO energy level or the LUMO energy level of the subunits is small, preferably less than about 0. 5 eV, such that the lowest singlet excited state is a Flenkeler exciton of one of the subunits. 68.  The layer combination according to item 64 of the patent application is characterized in that the energy offset of the HOMO energy level or the LUMO energy level of the subunits is large, preferably greater than about 0. 4 electron volts such that the lowest singlet excited state is a charge transfer exciter consisting of an electron in a receiving subunit and a hole in a donor subunit. 69.  The layer combination according to claim 65, wherein the other subunit preferentially occupies additional electrons comprises one or more materials of the following material categories: noisy class; triazoles; Thiodiazoles; ;: -benzimidazoles, especially N-arylbenzimidazoles, such as TPBI; - conjugated bites; - molecules with cyanovinyl groups, especially 7- or 8-cyano a base-p-phenylene-vinylidene derivative; a guanidine type; a guanidine type; a triaryl borohydride derivative; a silol derivative, particularly a silacyclopentadiene derivative such as 2,5-bis-( 2('),2(6)-biacridin-6-yl)-1,1_didecyl-3,4- 52 1285441 diphenyl silacyclopentadiene or 1, 厶 double q: A-2,3 , 4,5_tetraphenyl siiaCyCi〇pentadiene) cyclooctatetetraenes; quinoid structures; pyrazolines; ketones; especially pentaarylcyclopentyl base free radical electron transport materials, Derivatives; Benzothione; Naphthalenes, naphthalenes and n-salt perfluoro-low-p-phenyls; 付目 iNaito, 70.  71.  72.  73· Recognize 1, 〇·死 g Α· 101’2350 (1997) materials; and . From L. S. HUng, C. H. Chen Materials 143-222 (2002) materials. According to any of the 64th items of the patent application, 1_+ is characterized in that the sub-component of the monovalent element is bonded. 4 Early from the 耩 by a 勒 according to the scope of patent application 44, forming a needle-like structure. According to the scope of the patent application, a p-i-i structure is formed. According to the scope of the patent application, an H-n structure is formed. "Susa, the physicochemical period, the layer combination of the terms, characterized by a layer combination of the terms, characterized by a layer combination of the items, characterized by 53 1285441 74. According to the patent application scopes 48, 49, 52, 53, 54 and The layer combination of any one of clause 57, wherein the preferential hole transport material, the preferential electron transport material, and the mixture of the triplet emitter dopants comprise one or more materials of the following material classes as a priority Hole transfer component: - a molecule comprising a triarylamine unit, in particular a TPD, NPD and a derivative of their spiro-bonded divalent element, a derivative of TDATA, such as meta-MTDATA, hydrazine, etc., or Is a derivative of TDAB; - a molecule comprising a porphin unit; and / or - a molecule comprising a phenylene-vinylidene unit. A layer combination according to any one of claims 48, 49, 52, 53, 54 and 57, characterized in that the priority hole transfer material, the preferential electron transport material and the triplet emitter dopant are The mixture contains one or more of the following material classes as the preferred electron transport component: - oxadiazoles; - triazoles; - benzothiadiazoles; benzimidazoles, especially ruthenium-arylbenzenes And imidazole, such as hydrazine; -bipyridyl; - a molecule having a cyanovinyl group, especially a 7- or 8-cyano-p-phenylene-vinylene derivative; - 啥琳; 54 1285441 - quetia a quinone; a triaryl borohydride derivative; a silol derivative, particularly a silacyclopentadiene derivative, such as 2,5-bis-(2('), 2 (&gt; hydrazin-6-yl)-1 , 1-dimercapto-3,4-diphenyl silacyclopentadiene or 1,2-bis(1-methyl-2,3,4,5·tetraphenyl silacyclopentadiene) ethene; -cyclooctatetraene; - 酉Kun type structure class; - mouth than Junlin class; - ketones; - metallocene base radical electron transport materials, especially pentaaryl cyclopentadiene derivatives; benzene Thiadiazoles; -naphthalene dicarboxylic anhydrides, naphthalene dicarboxy phthalimides and naphthalene dicarboxyimidazoles; naperfluoro-low pairs, phenyls; - from K· Naito, M· Sakurai, S· Egusa, Journal of Physical Chemistry Α 101, 2350 (1997); and from L. S· Hung, C. H· Chen Materials Science Engineering Report 39, 143-222 (2002). The layer combination according to any one of claims 46, 47, 50, 51, 54 and 57, wherein the bipolar, single component material belongs to one of the following material categories: - including one A bipolar or electron transfer structure and a bivalent element of a bipolar or hole transfer structure covalently coupled, and the substructure has an individual 55 乜 85541 7 Γ electronic system; a knives' as a suitable 7 Γ electronic system The result of the structure eigenin 'which includes the first subunit that advantageously occupies the extra hole and thus the HOMO wave function is concentrated, and includes a second additional subunit that preferentially occupies additional electrons and thus the LUM chopping function is concentrated • a push-pull replacement molecule; _ a molecule comprising a carbazole unit, in particular CBP; - a molecule comprising a fluorene unit; - a molecule comprising a Parkin or phthalocyanine unit; - a coupling comprising more than three a p-low phenyl molecule of the phenyl unit in the para position; a molecule comprising a unit of onion, butyl or pentacene; a molecule comprising perylene; and a Child. The layer combination according to claim 44, wherein each of the light-emitting layer and the other light-emitting layer has a layer thickness of less than about 30 nm. 78. A layer combination according to claim 44, wherein at least one additional luminescent layer is present in the illuminating region. 79. The layer combination according to claim 44, wherein one or all of the following layers are present one or more times outside the light-emitting region between the hole injection contact point and the electron injection contact point: an electron The transfer layer, a hole transfer layer, an electron barrier 56 Γ 285441 layer and a hole barrier layer. 80.  The layer combination according to claim 79, characterized in that the hole injection energy barrier of the effective hole transfer energy from an effective hole of the other light-emitting layer into an adjacent electron transport layer is less than About 0. 4 electron volts, making the adjacent electron transport layer an ineffective hole barrier layer. 81.  The layer combination according to claim 79, wherein the electron injection energy from an effective electron transfer energy level of the light-emitting layer to an effective electron transport energy level of the adjacent hole transport layer is less than about 0. 4 electron volts, making the adjacent hole transfer layer an ineffective electron barrier layer. 82.  The layer combination according to claim 44, wherein the P-doped hole transmission layer is present, and a layer region between the p-doped hole transmission layer and the light-emitting region does not contain one Or more undoped intermediate layers. 83.  The layer combination according to item 44 of the patent application is characterized in that the light-emitting region is directly adjacent to the hole injection contact point. 84.  The layer combination according to claim 44, wherein the η-doped electron transport layer is present, and the layer region between the η-doped electron transport layer and the light-emitting region does not contain one or more Multiple undoped intermediate layers. 85.  The layer combination according to item 44 of the patent application is characterized in that the other luminescent layer is directly adjacent to the electron injecting contact point. 86.  A light-emitting component, characterized by a layer combination according to any one of the claims of the invention, in the scope of the invention. 58
TW94123656A 2004-08-13 2005-07-12 Layer assembly for a light-emitting component TWI285441B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04019276 2004-08-13
DE10403959 2004-08-13

Publications (1)

Publication Number Publication Date
TWI285441B true TWI285441B (en) 2007-08-11

Family

ID=39456723

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94123656A TWI285441B (en) 2004-08-13 2005-07-12 Layer assembly for a light-emitting component

Country Status (1)

Country Link
TW (1) TWI285441B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10570113B2 (en) 2010-04-09 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Aromatic amine derivative, light-emitting element, light-emitting device, electronic device, and lighting device
US10693093B2 (en) 2012-02-09 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10570113B2 (en) 2010-04-09 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Aromatic amine derivative, light-emitting element, light-emitting device, electronic device, and lighting device
US11046667B2 (en) 2010-04-09 2021-06-29 Semiconductor Energy Laboratory Co., Ltd. Aromatic amine derivative, light-emitting element, light-emitting device, electronic device, and lighting device
US10693093B2 (en) 2012-02-09 2020-06-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US11495763B2 (en) 2012-02-09 2022-11-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element

Similar Documents

Publication Publication Date Title
US8653537B2 (en) Layer assembly for a light-emitting component
Hung et al. Recent progress of molecular organic electroluminescent materials and devices
EP2247163B1 (en) Organic luminescent device and a production method for the same
JP5828938B2 (en) Light emitting element
US7514863B2 (en) Organic light emitting device
KR101065912B1 (en) Stacked organic light emitting devices
TWI265753B (en) Organic electronic device
US7070867B2 (en) OLEDs having n-type doping
US20120025171A1 (en) Electronic Component with at Least One Organic Layer Arrangement
US8916860B2 (en) Organic light-emitting device comprising first electron transport layer comprising DMBI derivative
KR20230104765A (en) Organic semiconductive layer comprising phosphine oxide compounds
TW201334174A (en) Organic light-emitting device having improved efficiency characteristics and organic light-emitting display apparatus including the same
TW201425295A (en) Organic light-emitting diode
Zhang et al. Polycyclic aromatic hydrocarbon derivatives toward ideal electron-transporting materials for organic light-emitting diodes
KR101973287B1 (en) An organic light emitting device comprising a hole transffer layer comprising an complex and method for preparing the same
JP2010514174A (en) Electronic device having at least one organic layer arrangement
TW200934290A (en) Organic light emitting diode and method of manufacturing the same
TW201004468A (en) Electronic device
KR20230024869A (en) Organic light emitting diode and device including the same
KR20160034526A (en) Organic light-emitting diode
KR20210104788A (en) Organic light emitting devices, methods of making them, and compositions for use therein
TWI285441B (en) Layer assembly for a light-emitting component
TW200405753A (en) Material for an electroluminecence element and electroluminecence element using the same
Mamada et al. Unexpected role of hole and electron blocking interlayers controlling charge carrier injection and transport in TADF based blue organic light-emitting diodes
JP7346562B2 (en) organic light emitting device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees