TWI787279B - 有機化合物、發光元件、發光裝置、電子裝置及照明設備 - Google Patents

有機化合物、發光元件、發光裝置、電子裝置及照明設備 Download PDF

Info

Publication number
TWI787279B
TWI787279B TW107120096A TW107120096A TWI787279B TW I787279 B TWI787279 B TW I787279B TW 107120096 A TW107120096 A TW 107120096A TW 107120096 A TW107120096 A TW 107120096A TW I787279 B TWI787279 B TW I787279B
Authority
TW
Taiwan
Prior art keywords
light
organic compound
abbreviation
carbon atoms
layer
Prior art date
Application number
TW107120096A
Other languages
English (en)
Other versions
TW201905165A (zh
Inventor
原朋香
吉住英子
木戶裕允
瀬尾哲史
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW201905165A publication Critical patent/TW201905165A/zh
Application granted granted Critical
Publication of TWI787279B publication Critical patent/TWI787279B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D497/00Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D497/02Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D497/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs

Abstract

本發明提供一種新穎的化合物。另外,提供一種發光效率高且元件壽命長的發光元件。本發明提供一種由通式(G0)表示的具有苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架的有機化合物。苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架的2位具有取代基,在6至9位具有至少一個取代基。鍵合到6至9位的取代基中的任一個藉由伸苯基與苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架鍵合。另外,本發明提供一種包含該化合物的發光元件。

Description

有機化合物、發光元件、發光裝置、電子裝置及照明設備
本發明的一個實施方式係關於一種新穎的有機化合物。另外,本發明的一個實施方式係關於一種苯并呋喃并[3,2-d]嘧啶化合物或者苯并噻吩并[3,2-d]嘧啶化合物。另外,本發明的一個實施方式係關於一種包含上述有機化合物的發光元件、發光裝置、電子裝置及照明設備。
注意,本發明的一個實施方式不侷限於上述技術領域。本發明的一個實施方式係關於一種物體、方法或製造方法。另外,本發明係關於一種製程(process)、機器(machine)、產品(manufacture)或組成物(composition of matter)。尤其是,本發明的一個實施方式係關於一種半導體裝置、發光裝置、顯示裝置、照明設備、發光元件以及它們的製造方法。另外,本發明的一個實施方式係關於一種苯并呋喃并[3,2-d]嘧啶化合物或者苯并噻吩并[3,2-d]嘧啶化合物的新穎的合成方法。因此,作為本說明書所公開的本發明的一個實施方式的具體例子,可以舉出含有該有機化合物的發光元件、發光裝置、電子裝置及照明設備以及它們的製造方法。
近年來,利用使用有機化合物的電致發光(EL:Electroluminescence)的發光元件(有機EL元件)的實用化非常活躍。在這些發光元件的基本結構中,在一對電極之間夾有包含發光材料的有機化合物層(EL層)。藉由對該元件施加電壓,注入載子,利用該載子的再結合能量,可以獲得來自發光材料的發光。
這種發光元件是自發光型發光元件,當將其用於顯示器的像素時,有可見度高、不需要背光源等優勢。因此,該發光元件適用於平板顯示器元件。另外,採用該發光元件的顯示器可以被製造成薄且輕也是其一大優點。並且,回應速度極快也是其特徵之一。
因為這種發光元件的發光層可以在二維上連續地形成,所以可以獲得面狀發光。這是在以白熾燈或LED為代表的點光源或者以螢光燈為代表的線光源中難以得到的特徵。另外,藉由選擇材料可以使有機化合物的發光為不含有紫外光的發光,由此作為可應用於照明等的面光源也有較高的利用價值。
如上所述,使用有機EL元件的顯示器或照明設備適用於各種各樣的電子裝置,為了追求具有更高的效率及更長的元件壽命的發光元件的研究開發日益活躍。近年來,磷光發光元件的發光效率比螢光發光元件高,因此對磷光發光元件的研究開發日益增強(例如,參照專利文獻1)。
影響到採用有機化合物的發光元件的元件壽命及元件特性的因素很多,主體材料或電子傳輸材料的特性對採用有機化合物的發光元件的影響較大。因此,作為主體材料或電子傳輸材料,已提出了具有各種分子結構的有機化合物(例如,專利文獻2及專利文獻3)。 [專利文獻]
[專利文獻1] 日本專利申請公開第2010-182699號公報   [專利文獻2] 日本專利申請公開第2014-209611號公報   [專利文獻3] 日本專利申請公開第2015-157808號公報
由於對電子裝置或照明設備的高性能化的要求,因此對發光元件的特性的要求也各種各樣,尤其期待可靠性高的發光元件的開發。因為主體材料的特性影響到發光元件的可靠性,所以對可靠性高的主體材料的開發日益活躍。尤其是,可用於磷光元件並可以實現具有高發光效率及高可靠性的發光元件的主體材料的開發是急務。
於是,本發明的一個實施方式的目的是提供一種新穎的有機化合物。尤其是,本發明的一個實施方式的目的是提供一種新穎的芳雜環化合物。另外,本發明的一個實施方式的目的是提供一種新穎的具有電子傳輸性的有機化合物。另外,本發明的一個實施方式的目的是提供一種使用壽命長的發光元件。另外,本發明的一個實施方式的目的是提供一種發光效率高的發光元件。另外,本發明的一個實施方式的目的是提供一種驅動電壓低的發光元件。
另外,本發明的另一個實施方式的目的是提供一種可靠性高的發光元件、發光裝置及電子裝置。另外,本發明的另一個實施方式的目的是提供一種低功耗的發光元件、發光裝置及電子裝置。
注意,這些目的的記載不妨礙其他目的的存在。注意,本發明的一個實施方式並不需要實現所有上述目的。此外,上述以外的目的可明顯從說明書、圖式及申請專利範圍等的記載看出,且可以從說明書、圖式及申請專利範圍等的記載中衍生上述以外的目的。
本發明的一個實施方式是由下述通式(G0)表示的有機化合物。
Figure 02_image001
在通式(G0)中,X表示氧或硫,A1 及A2 分別獨立地表示取代或未取代的碳原子數為6至30的芳烴基或者取代或未取代的碳原子數為3至30的芳雜烴基,Ar表示取代或未取代的碳原子數為6至25的伸芳基,R1 至R4 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基,n是0至4的整數,l是1至4的整數。
另外,本發明的其他實施方式是由下述通式(G1)表示的有機化合物。
Figure 02_image003
在通式(G1)中,X表示氧或硫,Ar表示取代或未取代的碳原子數為6至25的伸芳基,R1 至R4 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基,n是0至4的整數,l是1至4的整數,Ht1 及Ht2 分別獨立地表示取代或未取代的稠合芳雜環,該稠合芳雜環包含咔唑骨架、二苯并呋喃骨架和二苯并噻吩骨架中的任一個或多個,該稠合芳雜環的碳原子數為12至30。
另外,本發明的其他實施方式是由下述通式(G2)表示的有機化合物。
Figure 02_image005
在通式(G2)中,X表示氧或硫,R1 至R4 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基,n是0至4的整數,l是1至4的整數,Ht1 及Ht2 分別獨立地表示取代或未取代的稠合芳雜環,該稠合芳雜環包含咔唑骨架、二苯并呋喃骨架和二苯并噻吩骨架中的任一個或多個,該稠合芳雜環的碳原子數為12至30。
另外,本發明的其他實施方式是由下述通式(G3)表示的有機化合物。
Figure 02_image007
在通式(G3)中,X表示氧或硫,R1 至R4 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基,n是0至4的整數,l是1至4的整數,Ht1 及Ht2 分別獨立地表示取代或未取代的稠合芳雜環,該稠合芳雜環包含咔唑骨架、二苯并呋喃骨架和二苯并噻吩骨架中的任一個或多個,該稠合芳雜環的碳原子數為12至30。
在上述結構中,較佳的是,Ht1 及Ht2 分別獨立地表示由下述通式(Ht-1)至(Ht-4)表示的基團中的任一個。
Figure 02_image009
在通式(Ht-1)至(Ht-4)中,R5 至R13 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基、取代或未取代的碳原子數為6至25的芳基或者取代或未取代的碳原子數為12至30的芳雜烴基。注意,R5 至R8 及R9 至R12 可以彼此鍵合而形成飽和環或者不飽和環。
另外,本發明的其他實施方式是由下述通式(G4)表示的有機化合物。
Figure 02_image011
在通式(G4)中,X、Z1 及Z2 分別獨立地表示氧或硫,R1 表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基。
另外,本發明的其他實施方式是由下述結構式(100)表示的有機化合物。
Figure 02_image013
另外,本發明的其他實施方式是含有上述有機化合物中的任一個的發光元件。
另外,具有上述結構的發光元件在陽極與陰極之間包括EL層。較佳的是,EL層至少包括發光層。EL層還可以包括電洞注入層、電洞傳輸層、電子傳輸層和電子注入層或其他功能層。
另外,本發明的其他實施方式是一種顯示裝置,該顯示裝置包括:具有上述結構中的任一個的發光元件;以及濾色片和電晶體中的至少一個。另外,本發明的其他實施方式是一種電子裝置,該電子裝置包括:上述顯示裝置;以及外殼和觸控感測器中的至少一個。另外,本發明的其他實施方式是一種照明設備,該照明設備包括:具有上述結構中的任一個的發光元件;以及外殼和觸控感測器中的至少一個。另外,本發明的一個實施方式在其範疇內不僅包括具有發光元件的發光裝置,還包括具有發光裝置的電子裝置。因此,本說明書中的發光裝置是指影像顯示裝置或光源(包括照明設備)。另外,如下顯示模組也是本發明的一個實施方式:在發光元件中安裝有連接器諸如FPC(Flexible Printed Circuit:撓性電路板)或TCP(Tape Carrier Package:捲帶式封裝)的顯示模組;在TCP端部中設置有印刷線路板的顯示模組;或者IC(積體電路)藉由COG(Chip On Glass:玻璃上晶片)方式直接安裝在發光元件上的顯示模組。
藉由本發明的一個實施方式,可以提供一種新穎的有機化合物。尤其是,可以提供一種新穎的芳雜環化合物。另外,可以提供一種新穎的具有電子傳輸性的有機化合物。另外,可以提供一種使用壽命長的發光元件。另外,可以提供一種發光效率高的發光元件。另外,可以提供一種驅動電壓低的發光元件。
另外,藉由本發明的其他實施方式,可以提供一種可靠性高的發光元件、發光裝置及電子裝置。另外,藉由本發明的其他實施方式,可以提供一種低功耗的發光元件、發光裝置及電子裝置。
注意,這些效果的記載不妨礙其他效果的存在。注意,本發明的一個實施方式並不需要實現所有上述效果。此外,上述以外的效果可明顯從說明書、圖式及申請專利範圍等的記載看出,且可以從說明書、圖式及申請專利範圍等的記載中衍生上述以外的效果。
下面,參照圖式對本發明的實施方式進行說明。但是,所屬技術領域的通常知識者可以很容易地理解一個事實,就是本發明可以以多個不同形式來實施,其方式和詳細內容可以在不脫離本發明的精神及其範圍的條件下被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在實施方式所記載的內容中。
另外,在本說明書所說明的每一個圖式中,有時為了便於說明,誇大表示陽極、EL層、中間層、陰極等的尺寸或厚度。因此,各組件不侷限於圖式所示的大小,並不侷限於各組件之間的相對大小。
注意,在本說明書等中,為了方便起見,附加了第一、第二、第三等序數詞,而其並不表示製程順序或上下的位置關係等。因此,例如可以將“第一”適當地替換為“第二”或“第三”等來進行說明。此外,有時本說明書等所記載的序數詞與用來指定本發明的一個實施方式的序數詞不一致。
另外,在本說明書等所說明的本發明的結構中,在不同圖式之間共同使用同一元件符號表示同一部分或具有相同功能的部分而省略其重複說明。另外,有時使用同一陰影線表示具有相同功能的部分,而不特別附加元件符號。
另外,在本說明書中,根據情況或狀態,可以互相調換“膜”和“層”。例如,有時可以將“導電層”調換為“導電膜”。或者,有時可以將“絕緣膜”調換為“絕緣層”。
實施方式1   在本實施方式中,以下說明本發明的一個實施方式的有機化合物。
可以將本發明的一個實施方式的有機化合物用於發光元件,該有機化合物由下述通式(G0)表示。
Figure 02_image015
在通式(G0)中,X表示氧或硫,A1 及A2 分別獨立地表示取代或未取代的碳原子數為6至30的芳烴基或者取代或未取代的碳原子數為3至30的芳雜烴基,Ar表示取代或未取代的碳原子數為6至25的伸芳基,R1 至R4 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基,n是0至4的整數,l是1至4的整數。
本發明的一個實施方式的有機化合物是具有苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架的有機化合物,在該骨架的2位具有取代基,在苯環一側(6至9位)具有至少一個取代基,鍵合到6至9位的取代基中的任一個藉由伸苯基與苯并呋喃并[3,2-d]嘧啶或苯并噻吩并[3,2-d]嘧啶骨架鍵合。本案發明人等發現:藉由採用該結構,實現高最低三重激發能階(T1能階)及高最低空分子軌域(Lowest Unoccupied Molecular Orbital,LUMO)能階。因此,藉由將本發明的一個實施方式的有機化合物用作主體材料,可以高效地利用後述的激態錯合物-三重態能量轉移(Exciplex-Triplet Energy Transfer,ExTET)。由此,可以得到發光效率高、驅動電壓低且可靠性高的發光元件。另外,與使用只在苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架的嘧啶環一側(2位及/或4位)具有取代基的有機化合物的情況相比,在使用本發明的一個實施方式的有機化合物的情況下,發光元件的可靠性可以更高。可認為這效果是因為如下原因而得到的:在苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架的嘧啶環一側(2位及/或4位)及苯環一側(6至9位)的兩個具有至少一個取代基,由此膜品質得到提高。
另外,本案發明人等發現:藉由作為苯并呋喃并嘧啶骨架或苯并噻吩并嘧啶骨架使用苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架,與具有在其他的稠合位置稠合的骨架的有機化合物相比,可以得到LUMO能階及T1能階更高的有機化合物。因此,如上所述,可以高效地利用ExTET。由此,可以得到發光效率高、驅動電壓低且可靠性高的發光元件。
因為本發明的一個實施方式的有機化合物具有電子傳輸性高的苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架,所以不僅具有高電子傳輸性而且具有上述那樣的高LUMO能階。因此,可以將本發明的一個實施方式的有機化合物用於發光層,可以選擇其LUMO能階低於本發明的一個實施方式的有機化合物的材料作為電子傳輸層。藉由採用該結構,可以在發光層與電子傳輸層之間形成電子注入能障,可以調整EL層中的載子平衡。因此,可以得到發光效率高的發光元件。注意,本發明的一個實施方式的有機化合物具有高電子傳輸性,因此即使存在電子注入能障,也可以以低驅動電壓驅動發光元件。
另外,如上所述,本發明的一個實施方式的有機化合物具有高T1能階,因此可以適用於發光元件,尤其是可以適用於磷光發光元件的主體材料,可以得到發光效率及可靠性高的發光元件。此外,可以將本發明的一個實施方式的有機化合物用於螢光發光元件或者將熱活化延遲螢光材料用作客體材料的發光元件。
在通式(G0)中,較佳的是,A1 及A2 分別獨立地為取代或未取代的碳原子數為6至30的芳烴基或者取代或未取代的碳原子數為3至30的芳雜烴基。藉由採用該結構,可以實現p共軛體系在整個分子上擴伸的結構,因此可以實現可靠性高且驅動電壓低的發光元件。較佳的是,該芳烴基及該芳雜環具有稠環,亦即A1 及A2 具有稠環。藉由採用該結構,對電化學上的穩定性的提高及膜品質的改善有效果,因此可以提高發光元件的可靠性。另外,可以在不降低昇華性的方式增大分子量,所以可以形成耐熱性高的材料。
作為上述取代或未取代的碳原子數為6至30的芳烴基,例如可以舉出具有苯環、萘環、茀環、螺茀環、菲環、聯伸三苯環的取代基。作為取代或未取代的碳原子數為3至30的芳雜烴基,例如可以舉出具有吡咯環、吡啶環、二嗪環、三嗪環、咪唑環、三唑環、噻吩環、呋喃環的取代基。
作為上述稠環,例如可以舉出萘環、茀環、菲環、聯伸三苯環、螺茀環等不包含雜原子的稠環。藉由將該不包含雜原子的稠環導入通式(G0)的A1 和A2 中的一個或兩個,可以容易增大分子量,因此可以得到耐熱性高的有機化合物。藉由將該不包含雜原子的稠環導入通式(G0)的A1 和A2 ,可以得到最高佔據分子軌域(Highest Occupied Molecular Orbital,HOMO)能階較低的有機化合物。藉由將HOMO能階低的有機化合物用作發光元件的主體材料,可以提供電洞注入能障得到降低的發光元件。
上述稠環也可以包含雜原子。作為包含雜原子的稠環(稠合芳雜環),例如舉出包含咔唑環、二苯并呋喃環或二苯并噻吩環的稠合芳雜環(例如,咔唑環、二苯并呋喃環、二苯并噻吩環、苯并萘并呋喃環、苯并萘并噻吩環、吲哚并咔唑環、苯并呋喃并咔唑環、苯并噻吩并咔唑環、茚并咔唑環、二苯并咔唑環等)。尤其是,咔唑環、二苯并呋喃環或二苯并噻吩環等富p電子稠合芳雜環是較佳的。藉由具有該富p電子稠合芳雜環,可以得到電洞傳輸性高的有機化合物。藉由將該富p電子稠合芳雜環導入電子傳輸性高的苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架,可以實現氧化特性及還原特性都良好的結構,因此可以得到可靠性高的發光元件。
在通式(G0)中,A2 較佳為藉由一個以上的伸苯基與苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架鍵合。藉由採用該結構,苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架與A2 之間的距離變大,與A2 直接鍵合到苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架的情況相比,可以實現T1能階更高的有機化合物。如上所述,本發明的一個實施方式的有機化合物所具有的特徵之一是:A2 藉由一個以上的伸苯基與苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架鍵合。
A2 較佳為藉由伸苯基以間位鍵合到苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架。由於以間位鍵合,因此苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架所具有的共軛體系和A2 所具有的共軛體系獨立(苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架與A2 之間的共軛體系被切斷),因此可以得到T1能階高的有機化合物。
在通式(G0)中,A1 較佳為藉由一個以上的伸芳基與苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架鍵合。藉由採用該結構,苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架與A1 之間的距離變大,與A1 直接鍵合到苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架的情況相比,可以實現T1能階更高的有機化合物。A1 也可以直接鍵合到苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架。
在通式(G0)中,R1 較佳為具有烴基。作為該烴基,可以舉出:甲基、乙基、丙基、異丙基、丁基、異丙基、三級丁基、正己基等碳原子數為1至6的烷基;環丙基、環丁基、環戊基、環己基等碳原子數為3至7的環烷基;以及苯基、萘基、聯苯基、茀基、螺茀基等碳原子數為6至25的芳基。藉由將烴基導入R1 ,亦即藉由將取代基導入苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架中的N原子周邊,可以使N原子周邊龐大,因此可以得到可靠性高的發光元件。
另外,本發明的一個實施方式是由通式(G1)表示的有機化合物。
Figure 02_image017
在通式(G1)中,X表示氧或硫,Ar表示取代或未取代的碳原子數為6至25的伸芳基,R1 至R4 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基,n是0至4的整數,l是1至4的整數,Ht1 及Ht2 分別獨立地表示取代或未取代的稠合芳雜環,該稠合芳雜環包含咔唑骨架、二苯并呋喃骨架和二苯并噻吩骨架中的任一個或多個,該稠合芳雜環的碳原子數為12至30。
在通式(G1)中,Ht2 較佳為藉由一個以上的伸苯基與苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架鍵合。藉由採用該結構,與Ht2 直接鍵合到苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架的情況相比,可以實現T1能階更高的有機化合物。
Ht2 較佳為藉由伸苯基以間位鍵合到苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架。由於以間位鍵合,因此苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架所具有的共軛體系和Ht2 所具有的共軛體系獨立(苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架與Ht2 之間的共軛體系被切斷),因此可以得到T1能階高的有機化合物。
在通式(G1)中,Ht1 較佳為藉由一個以上的伸芳基與苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架鍵合。藉由採用該結構,與Ht1 直接鍵合到苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架的情況相比,可以實現T1能階更高的有機化合物。Ht1 也可以以不藉由伸芳基的方式鍵合到苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架。
在通式(G1)中,Ht1 及Ht2 較佳為具有電洞傳輸性骨架。藉由在苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架上導入電洞傳輸性骨架,可以形成氧化特性及還原特性都良好的結構,從而可以提供可靠性高的發光元件。另外,載子(電子及電洞)傳輸性得到提高,所以可以提供驅動電壓低的發光元件。尤其是,Ht1 及Ht2 較佳為包含咔唑環、二苯并呋喃環和二苯并噻吩環中的任一個的取代或未取代的碳原子數為12至30的芳雜烴基。藉由採用這種結構,可以實現耐熱性高、激發態穩定且T1能階高的有機化合物。
另外,本發明的一個實施方式是由通式(G2)表示的有機化合物。
Figure 02_image019
在通式(G2)中,X表示氧或硫,R1 至R4 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基,n是0至4的整數,l是1至4的整數,Ht1 及Ht2 分別獨立地表示取代或未取代的稠合芳雜環,該稠合芳雜環包含咔唑骨架、二苯并呋喃骨架和二苯并噻吩骨架中的任一個或多個,該稠合芳雜環的碳原子數為12至30。
另外,本發明的一個實施方式是由通式(G3)表示的有機化合物。
Figure 02_image021
在通式(G3)中,X表示氧或硫,R1 至R4 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基,n是0至4的整數,l是1至4的整數,Ht1 及Ht2 分別獨立地表示取代或未取代的稠合芳雜環,該稠合芳雜環包含咔唑骨架、二苯并呋喃骨架和二苯并噻吩骨架中的任一個或多個,該稠合芳雜環的碳原子數為12至30。
在本發明的一個實施方式的有機化合物中,嘧啶環一側的取代基的Ht1 較佳為藉由伸芳基鍵合到苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架的2位,更佳的是,上述伸芳基是伸苯基。Ht1 較佳為藉由伸苯基以間位鍵合到苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架。藉由採用這樣的結構,可以得到T1能階高的有機化合物。
在本發明的一個實施方式的有機化合物中,當苯環一側的取代基的Ht2 較佳為藉由伸苯基鍵合到苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架時,其鍵合位置較佳為8位。Ht2 較佳為藉由伸苯基以間位鍵合到苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架。藉由採用這樣的結構,可以得到T1能階高的有機化合物。
在上述結構式(G1)至(G3)中,較佳的是,Ht1 及Ht2 分別獨立地由下述通式(Ht-1)至(Ht-4)表示。
Figure 02_image023
在通式(Ht-1)至(Ht-4)中,R5 至R13 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基、取代或未取代的碳原子數為6至25的芳基或者取代或未取代的碳原子數為12至30的芳雜烴基。注意,R5 至R8 及R9 至R12 可以彼此鍵合而形成飽和環或者不飽和環。
作為上述碳原子數為12至30的芳雜烴基,可以舉出具有包含咔唑環、二苯并呋喃環或二苯并噻吩環的稠合芳雜環(例如,咔唑環、二苯并呋喃環、二苯并噻吩環、苯并萘并呋喃環、苯并萘并噻吩環、吲哚并咔唑環、苯并呋喃并咔唑環、苯并噻吩并咔唑環、茚并咔唑環、二苯并咔唑環等)的取代基。尤其是,咔唑環、二苯并呋喃環或二苯并噻吩環等富p電子稠合芳雜環是較佳的。藉由具有該富p電子稠合芳雜環,可以得到電洞傳輸性高的有機化合物。
作為上述飽和環,例如可以舉出環丙烷環、環丁基、環戊基及環己基等。作為上述不飽和環,可以舉出呋喃環、噻吩環、吡咯環、苯環等。
另外,本發明的一個實施方式是由通式(G4)表示的有機化合物。
Figure 02_image025
在通式(G4)中,X、Z1 及Z2 分別獨立地表示氧或硫,R1 表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基。
另外,本發明的一個實施方式是由結構式(100)表示的有機化合物。
Figure 02_image027
〈取代基的實例〉   在通式(G0)及(G1)中,作為由Ar表示的取代或未取代的碳原子數為6至25的伸芳基,例如可以舉出伸苯基、伸萘基、茀二基、聯苯二基、螺茀二基等。明確而言,可以採用由下述結構式(Ar-1)至(Ar-27)表示的基團。注意,由Ar表示的基團不侷限於此,也可以具有取代基。
Figure 02_image029
通式(G0)至(G4)的R1 至R4 以及通式(Ht-1)至(Ht-4)的R5 至R13 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基、取代或未取代的碳原子數為6至25的芳基或者取代或未取代的碳原子數為12至30的芳雜烴基。作為上述烷基,例如可以舉出甲基、乙基、丙基、異丙基、丁基、異丙基、三級丁基、正己基等,作為上述環烷基,例如可以舉出環丙基、環丁基、環戊基、環己基等,作為上述芳基,可以舉出苯基、萘基、聯苯基、茀基、螺茀基等。作為上述芳雜烴基,可以舉出具有包含咔唑環、二苯并呋喃環或二苯并噻吩環的稠合芳雜環(例如,咔唑環、二苯并呋喃環、二苯并噻吩環、苯并萘并呋喃環、苯并萘并噻吩環、吲哚并咔唑環、苯并呋喃并咔唑環、苯并噻吩并咔唑環、茚并咔唑環、二苯并咔唑環等)的取代基。更明確而言,可以舉出由下述結構式(R-1)至(R-55)表示的基團。注意,由R1 至R4 及R5 至R13 表示的基團不侷限於此。
Figure 02_image031
Figure 02_image033
在上述通式(G0)至(G4)以及通式(Ht-1)至(Ht-4)中,在A1 、A2 、Ar、Ht1 、Ht2 、R1 至R4 、R6 至R13 還具有取代基的情況下,作為該取代基,可以舉出碳原子數為1至6的烷基,取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基。作為上述烷基,明確而言,例如可以舉出甲基、乙基、丙基、異丙基、丁基、異丙基、三級丁基、正己基等,作為上述環烷基,例如可以舉出環丙基、環丁基、環戊基、環己基等,作為上述芳基,可以舉出苯基、萘基、聯苯基、茀基、螺茀基等。
〈化合物的具體例子〉   作為由通式(G0)至(G4)表示的化合物的具體結構,可以舉出由下述結構式(100)至(135)表示的有機化合物等。注意,由通式(G0)至(G4)表示的有機化合物不侷限於以下例子。
Figure 02_image035
Figure 02_image037
Figure 02_image039
Figure 02_image041
Figure 02_image043
Figure 02_image045
Figure 02_image047
當在本發明的一個實施方式的有機化合物中,通式(G0)的A1 和A2 中的至少一個具有電洞傳輸性骨架時,因為包括具有電子傳輸性的苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架,所以在一個分子內具有電洞傳輸性骨架和電子傳輸性骨架,因此可以視為雙極性材料。這種材料具有良好的載子傳輸性,所以藉由將這種材料用作發光元件的主體材料,可以提供驅動電壓低的發光元件。
本發明的一個實施方式的有機化合物具有富p電子型芳雜環(例如,二苯并呋喃骨架、二苯并噻吩骨架、咔唑骨架)及缺p電子型芳雜環(苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架)。因此,在分子中容易形成施體-受體型的激發態。再者,藉由使富p電子型芳雜環與缺p電子型芳雜環直接或藉由伸芳基鍵合,可以增強施體性及受體性。藉由增強分子中的施體性及受體性,可以縮小在化合物中HOMO的分子軌域分佈的區域與LUMO的分子軌域分佈的區域重疊的部分,而可以減少化合物的單重激發能階與三重激發能階的能量差。此外,可以使化合物的三重激發能階保持為高能量。
在單重激發能階與三重激發能階的能量差小時,可以使用100℃以下,較佳為室溫程度的微小的熱能而將三重激發能上轉換為(反系間竄越)單重激發能。就是說,本發明的一個實施方式的化合物是具有將三重激發能轉換為單重激發能的功能的有機化合物。為了高效地發生反系間竄越,單重激發能階與三重激發能階的能量差較佳為大於0eV且為0.3eV以下,更佳為大於0eV且為0.2eV以下,進一步較佳為大於0eV且為0.1eV以下。
在HOMO的分子軌域分佈的區域與LUMO的分子軌域分佈的區域重疊,HOMO能階與LUMO能階之間的躍遷偶極矩大於0時,能夠從與HOMO能階及LUMO能階有關的激發態(例如最低單重激發態)得到發光。因此,本發明的一個實施方式的化合物適合用作具有將三重激發能轉換為單重激發能的功能的發光材料,亦即適合用作熱活化延遲螢光材料。
另外,本實施方式的有機化合物可以利用蒸鍍法(包括真空蒸鍍法)、噴墨法、塗佈法、凹版印刷法等的方法形成。
本實施方式可以與其他實施方式適當地組合。
實施方式2   在本實施方式中,對包含本發明的一個實施方式的由通式(G0)表示的苯并呋喃并[3,2-d]嘧啶骨架或苯并噻吩并[3,2-d]嘧啶骨架的有機化合物的合成方法的一個例子進行說明。
Figure 02_image049
以下,示出由通式(G0)表示的有機化合物的合成方案。如合成方案(S-1)所示,藉由使具有苯并呋喃并嘧啶骨架或苯并噻吩并嘧啶骨架的鹵化合物(A1)與具有取代或未取代的碳原子數為6至30的芳烴基或者取代或未取代的碳原子數為3至30的芳雜烴基的苯基硼酸化合物(A2)起反應,得到由通式(G0)表示的有機化合物。
Figure 02_image051
在此,如下述合成方案(S-2)所示,藉由使具有苯并呋喃并嘧啶骨架或苯并噻吩并嘧啶骨架的二鹵化合物(B1)與具有取代或未取代的碳原子數為6至30的芳烴基或者取代或未取代的碳原子數為3至30的芳雜烴基的芳基硼酸化合物(B2)起反應,得到合成方案(S-1)所示的化合物(A1)。
Figure 02_image053
或者,如下述合成方案(S-3)所示,也可以藉由使具有苯并呋喃并嘧啶骨架或苯并噻吩并嘧啶骨架的二鹵化合物(C1)與具有取代或未取代的碳原子數為6至30的芳烴基或者取代或未取代的碳原子數為3至30的芳雜烴基的硼酸化合物(C2)起反應,得到合成方案(S-1)所示的化合物(A1)。
Figure 02_image055
如下述合成方案(S-4)所示,也可以藉由使具有苯并呋喃并嘧啶骨架或苯并噻吩并嘧啶骨架的鹵化合物(D1)與具有取代或未取代的碳原子數為6至30的芳烴基或者取代或未取代的碳原子數為3至30的芳雜烴基的芳基硼酸化合物(B2)起反應,得到由通式(G0)表示的有機化合物。
Figure 02_image057
在上述合成方案(S-1)至(S-4)中,X表示氧或硫,A1 及A2 分別獨立地表示取代或未取代的碳原子數為6至30的芳烴基或者取代或未取代的碳原子數為3至30的芳雜烴基,Ar表示取代或未取代的碳原子數為6至25的伸芳基,R1 至R4 分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基,n是0至4的整數,l是1至4的整數。在方案中,Y1 至Y4 表示鹵素元素,較佳為氯、溴或碘。B1 至B4 表示硼酸、硼酸酯或環狀三醇硼酸鹽等。作為環狀三醇硼酸鹽,除了鋰鹽之外還可以使用鉀鹽或鈉鹽。
作為上述合成方案(S-1)至(S-4)中的化合物(A1)、(A2)、(B1)、(B2)、(C1)、(C2)及(D1),在市場上銷售各種種類的化合物,或者能夠合成這些化合物,所以可以合成很多種類的由通式(G0)表示的有機化合物。因此,本發明的一個實施方式的化合物具有種類豐富的特徵。
以上說明了本發明的一個實施方式的有機化合物的合成方法的例子,但是本發明不侷限於此,也可以採用任何其他的合成方法進行合成。
實施方式3   在本實施方式中,參照圖1A至圖1C說明包含本發明的一個實施方式的有機化合物的發光元件。
〈發光元件的結構例子1〉   首先,下面將參照圖1A至圖1C說明本發明的一個實施方式的發光元件的結構。
圖1A是本發明的一個實施方式的發光元件150的剖面示意圖。
發光元件150包括一對電極(電極101及電極102),並包括設置在該一對電極間的EL層100。EL層100至少包括發光層140。
此外,圖1A所示的EL層100除了發光層140以外還包括電洞注入層111、電洞傳輸層112、電子傳輸層118及電子注入層119等功能層。
注意,雖然在本實施方式中以一對電極中的電極101為陽極且以電極102為陰極來進行說明,但是發光元件150的結構並不侷限於此。也就是說,也可以將電極101用作陰極且將電極102用作陽極,倒序地層疊該電極間的各層。換言之,從陽極一側依次層疊電洞注入層111、電洞傳輸層112、發光層140、電子傳輸層118及電子注入層119即可。
注意,EL層100的結構不侷限於圖1A所示的結構,只要包括選自電洞注入層111、電洞傳輸層112、電子傳輸層118及電子注入層119中的至少一個即可。或者,EL層100也可以包括具有如下功能的功能層:能夠降低電洞或電子的注入能障;能夠提高電洞或電子的傳輸性;能夠阻礙電洞或電子的傳輸性;或者能夠抑制電極所引起的淬滅現象等。功能層既可以是單層又可以是層疊有多個層的結構。
發光元件150在EL層100中的任一個的層包含本發明的一個實施方式的有機化合物即可。該有機化合物較佳為包含在電子傳輸層118中,更佳為包含在發光層140中。另外,如上所述,較佳的是,作為發光層140的主體材料141使用本發明的一個實施方式的有機化合物,作為客體材料142使用能夠將三重激發能轉換為發光的發光物質(尤其是磷光性化合物)。
圖1B是示出圖1A所示的發光層140的一個例子的剖面示意圖。圖1B所示的發光層140包括主體材料141及客體材料142。主體材料141可以由一個有機化合物構成,也可以是包含有機化合物141_1及有機化合物141_2的co-host類。本發明的一個實施方式的有機化合物可被用作主體材料141或有機化合物141_1。
作為客體材料142,使用發光有機材料即可,作為該發光有機材料,可以舉出能夠發射螢光的材料(以下,也稱為螢光材料)或磷光化合物。下面,說明作為客體材料142使用磷光化合物的結構。注意,也可以將客體材料142換稱為磷光化合物。
在圖1B所示的在發光層中包含有機化合物141_1及有機化合物141_2的兩種主體材料的情況(co-host類)下,通常作為兩種主體材料使用電子傳輸性材料及電洞傳輸性材料。藉由使用這種結構,可以降低電洞傳輸層112與發光層140之間的電洞注入能障及電子傳輸層118與發光層140之間的電子注入能障,從而可以降低驅動電壓,所以是較佳的。
〈發光元件的發光機制〉   接著,下面將對發光層140的發光機制進行說明。
發光層140中的主體材料141所包括的有機化合物141_1及有機化合物141_2可以形成激態錯合物(Exciplex)。以下,說明有機化合物141_1及有機化合物141_2形成激態錯合物的情況。
圖1C示出發光層140中的有機化合物141_1、有機化合物141_2及客體材料142的能階相關。另外,下面示出圖1C中的用詞及元件符號。以下,以有機化合物141_1為電子傳輸性材料且以有機化合物141_2為電洞傳輸性材料而進行說明。   ·Host(141_1):有機化合物141_1(主體材料)   ·Host(141_2):有機化合物141_2(主體材料)   ·Guest(142):客體材料142(磷光性化合物)   ·SPH1 :有機化合物141_1(主體材料)的S1能階   ·TPH1 :有機化合物141_1(主體材料)的T1能階   ·SPH2 :有機化合物141_2(主體材料)的S1能階   ·TPH2 :有機化合物141_2(主體材料)的T1能階   ·SPG :客體材料142(磷光性化合物)的S1能階   ·TPG :客體材料142(磷光性化合物)的T1能階   ·SPE :激態錯合物的S1能階   ·TPE :激態錯合物的T1能階
有機化合物141_1與有機化合物141_2形成激態錯合物,該激態錯合物的S1能階(SPE )及T1能階(TPE )成為互相相鄰的能階(參照圖1C的路徑E1 )。
藉由有機化合物141_1接收電子且有機化合物141_2接收電洞,迅速地形成激態錯合物。或者,當其中一個成為激發態時,藉由與另一個起相互作用來迅速地形成激態錯合物。由此,發光層140中的大部分的激子都作為激態錯合物存在。激態錯合物的激發能階(SPE 或TPE )比形成激態錯合物的主體材料(有機化合物141_1及有機化合物141_2)的S1能階(SPH1 及SPH2 )低,所以可以以更低的激發能形成主體材料141的激發態。由此,可以降低發光元件的驅動電壓。注意,可以藉由有機化合物141_1接收電洞且有機化合物141_2接收電子,形成激態錯合物。
然後,藉由將激態錯合物(SPE )及(TPE )的兩者的能量轉移到客體材料142(磷光性化合物)的T1能階而得到發光(參照圖1C的路徑E2 、E3 )。
激態錯合物的T1能階(TPE )較佳為比客體材料142的T1能階(TPG )高。由此,可以將所產生的激態錯合物的單重激發能及三重激發能從激態錯合物的S1能階(SPE )及T1能階(TPE )轉移到客體材料142的T1能階(TPG )。
為了將激發能高效地從激態錯合物轉移到客體材料142,激態錯合物的T1能階(TPE )較佳為等於或低於形成激態錯合物的各有機化合物(有機化合物141_1及有機化合物141_2)的T1能階(TPH1 及TPH2 )。由此,不容易產生各有機化合物(有機化合物141_1及有機化合物141_2)所導致的激態錯合物的三重激發能的淬滅,而高效地發生從激態錯合物向客體材料142的能量轉移。
在有機化合物141_1與有機化合物141_2的組合是具有電洞傳輸性的化合物與具有電子傳輸性的化合物的組合時,能夠藉由調整其混合比而容易地控制載子平衡。明確而言,具有電洞傳輸性的化合物:具有電子傳輸性的化合物的重量比較佳為在1:9至9:1的範圍內。另外,藉由採用該結構,可以容易地控制載子平衡,由此也可以容易地對載子再結合區域進行控制。
在本說明書等中,有時將上述路徑E2 、E3 的過程稱為ExTET(Exciplex-Triplet Energy Transfer:激態錯合物-三重態能量轉移)。換言之,在發光層140中,產生從激態錯合物到客體材料142的激發能的供應。在此情況下,未必需要使從TPE 向SPE 的反系間竄越的效率及由SPE 的發光量子產率高,因此可以選擇的材料更多。藉由利用ExTET,可以得到發光效率高、驅動電壓低且可靠性高的發光元件。
有機化合物141_1和有機化合物141_2的組合只要是能夠形成激態錯合物的組合即可,較佳的是其中一個的HOMO能階及LUMO能階分別低於另一個的HOMO能階及LUMO能階。
在上述結構中,在客體材料142的HOMO能階較高(是有機化合物141_1的HOMO能階及有機化合物141_2的HOMO能階以上)時,有時客體材料142接收電洞。此時,有時由客體材料142和電子傳輸性材料的有機化合物141_1形成激態錯合物。當客體材料142形成激態錯合物時,有時降低發光元件的發光效率。此外,有時不能高效地利用上述ExTET。
當客體材料142的HOMO能階與有機化合物141_1的LUMO能階之間的差較小時,客體材料142和有機化合物141_1容易形成激態錯合物。
在此,如在上述實施方式中所述那樣,本發明的一個實施方式的有機化合物具有高LUMO能階。因此,藉由將本發明的一個實施方式的有機化合物用作有機化合物141_1,可以使客體材料142的HOMO能階與有機化合物141_1的LUMO能階之間的差變大。因此,可以防止由客體材料142和有機化合物141_1形成激態錯合物。就是說,即使使用HOMO能階較高的客體材料142,也可以得到發光效率高的發光元件。此外,因為可以高效地利用ExTET,所以可以得到發光效率高、驅動電壓低且可靠性高的發光元件。
〈材料〉   接著,對本發明的一個實施方式的發光元件的組件的詳細內容進行說明。
《發光層》   在發光層140中,主體材料141的重量比最高,客體材料142分散在主體材料141中。在客體材料142為螢光化合物的情況下,發光層140的主體材料141(有機化合物141_1及有機化合物141_2)的S1能階較佳為高於發光層140的客體材料(客體材料142)的S1能階。在客體材料142為磷光化合物的情況下,發光層140的主體材料141(有機化合物141_1及有機化合物141_2)的T1能階較佳為高於發光層140的客體材料(客體材料142)的T1能階。
有機化合物141_1較佳為具有含氮六元芳雜環骨架的化合物。尤其是,本發明的一個實施方式的有機化合物具有嘧啶骨架,所以適用於有機化合物141_1。作為其他的具體例子,可以舉出具有吡啶骨架、二嗪骨架(吡嗪骨架、嘧啶骨架及嗒
Figure 107120096-A0304-12-0020-4
骨架)及三嗪骨架的化合物。作為上述含有具有鹼性的含氮芳雜環骨架的化合物,例如可以舉出吡啶衍生物、聯吡啶衍生物、嘧啶衍生物、三嗪衍生物、喹㗁啉衍生物、二苯并喹㗁啉衍生物、啡啉衍生物、嘌呤化合物等化合物。另外,作為有機化合物141_1,可以使用電子傳輸性比電洞傳輸性高的材料(電子傳輸性材料),較佳為使用具有1´10-6 cm2 /Vs以上的電子移動率的材料。
明確而言,例如可以使用:紅啡啉(簡稱:BPhen)、浴銅靈(簡稱:BCP)等的具有吡啶骨架的芳雜環化合物;2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)聯苯-3-基]二苯并[f,h]喹㗁啉(簡稱:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)聯苯-3-基]二苯并[f,h]喹㗁啉(簡稱:2mCzBPDBq)、2-[4-(3,6-二苯基-9H-咔唑-9-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2CzPDBq-III)、7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:7mDBTPDBq-II)及6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹㗁啉(簡稱:6mDBTPDBq-II)、2-[3-(3,9’-聯-9H-咔唑-9-基)苯基]二苯并[f,h]喹㗁啉(簡稱:2mCzCzPDBq)、4,6-雙[3-(菲-9-基)苯基]嘧啶(簡稱:4,6mPnP2Pm)、4,6-雙[3-(4-二苯并噻吩基)苯基]嘧啶(簡稱:4,6mDBTP2Pm-II)、4,6-雙[3-(9H-咔唑-9-基)苯基]嘧啶(簡稱:4,6mCzP2Pm)等的具有二嗪骨架的雜環化合物;2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:PCCzPTzn)等的具有三嗪骨架的雜環化合物;3,5-雙[3-(9H-咔唑-9-基)苯基]吡啶(簡稱:35DCzPPy)、1,3,5-三[3-(3-吡啶基)苯基]苯(簡稱:TmPyPB)等的具有吡啶骨架的芳雜環化合物。在上述芳雜環化合物中,具有三嗪骨架、二嗪(嘧啶、吡嗪、嗒
Figure 107120096-A0304-12-0020-4
)骨架或吡啶骨架的芳雜環化合物穩定且可靠性高,所以是較佳的。具有該骨架的芳雜環化合物具有高電子傳輸性,也有助於驅動電壓的降低。此外,也可以使用高分子化合物諸如聚(2,5-吡啶二基)(簡稱:PPy)、聚[(9,9-二己基茀-2,7-二基)-co-(吡啶-3,5-二基)](簡稱:PF-Py)、聚[(9,9-二辛基茀-2,7-二基)-co-(2,2’-聯吡啶-6,6’-二基)](簡稱:PF-BPy)。這裡所述的物質主要為具有1´10-6 cm2 /Vs以上的電子移動率的物質。注意,只要是電子傳輸性高於電洞傳輸性的物質,就可以使用上述物質以外的物質。
作為有機化合物141_2較佳為使用具有含氮五元芳雜環骨架或三級胺骨架的化合物。明確而言,可以舉出具有吡咯骨架或芳香胺骨架的化合物。例如,可以舉出吲哚衍生物、咔唑衍生物、三芳基胺衍生物等。另外,作為含氮五元芳雜環骨架可以舉出咪唑骨架、三唑骨架及四唑骨架。另外,作為有機化合物141_2,可以使用電洞傳輸性比電子傳輸性高的材料(電洞傳輸性材料),較佳為使用具有1´10-6 cm2 /Vs以上的電洞移動率的材料。上述電洞傳輸性材料也可以是高分子化合物。
作為電洞傳輸性高的材料,明確而言,作為芳香胺化合物,可以舉出N,N’-二(對甲苯基)-N,N’-二苯基-對苯二胺(簡稱:DTDPPA)、4,4’-雙[N-(4-二苯胺基苯基)-N-苯胺基]聯苯(簡稱:DPAB)、N,N’-雙{4-[雙(3-甲基苯基)胺基]苯基}-N,N’-二苯基-(1,1’-聯苯)-4,4’-二胺(簡稱:DNTPD)、1,3,5-三[N-(4-二苯胺基苯基)-N-苯胺基]苯(簡稱:DPA3B)等。
另外,作為咔唑衍生物,明確而言,可以舉出3-[N-(4-二苯胺基苯基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzDPA1)、3,6-雙[N-(4-二苯胺基苯基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzDPA2)、3,6-雙[N-(4-二苯胺基苯基)-N-(1-萘基)氨]-9-苯基咔唑(簡稱:PCzTPN2)、3-[N-(9-苯基咔唑-3-基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯胺基]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)氨]-9-苯基咔唑(簡稱:PCzPCN1)等。
另外,作為咔唑衍生物,還可以舉出4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)、1,4-雙[4-(N-咔唑基)苯基]-2,3,5,6-四苯基苯等。
另外,還可以使用N,N-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:CzA1PA)、4-(10-苯基-9-蒽基)三苯胺(簡稱:DPhPA)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(簡稱:YGAPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:PCAPA)、N,9-二苯基-N-{4-[4-(10-苯基-9-蒽基)苯基]苯基}-9H-咔唑-3-胺(簡稱:PCAPBA)、N,9-二苯基-N-(9,10-二苯基-2-蒽基)-9H-咔唑-3-胺(簡稱:2PCAPA)、9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:PCzPA)、3,6-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:DPCzPA)、N,N,N’,N’,N”,N”,N”’,N”’-八苯基二苯并[g,p]䓛(chrysene)-2,7,10,15-四胺(簡稱:DBC1)等。
另外,也可以使用聚(N-乙烯基咔唑)(簡稱:PVK)、聚(4-乙烯基三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基胺基)苯基]苯基-N’-苯基胺基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺](簡稱:Poly-TPD)等高分子化合物。
另外,作為電洞傳輸性高的材料,例如,可以使用4,4’-雙[N-(1-萘基)-N-苯胺基]聯苯(簡稱:NPB或a-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’,4”-三(咔唑-9-基)三苯胺(簡稱:TCTA)、4,4’,4”-三[N-(1-萘基)-N-苯胺基]三苯胺(簡稱:1’-TNATA)、4,4’,4”-三(N,N-二苯胺基)三苯胺(簡稱:TDATA)、4,4’,4”-三[N-(3-甲基苯基)-N-苯胺基]三苯胺(簡稱:MTDATA)、4,4’-雙[N-(螺-9,9’-聯茀-2-基)-N-苯胺基]聯苯(簡稱:BSPB)、4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP)、4-苯基-3’-(9-苯基茀-9-基)三苯胺(簡稱:mBPAFLP)、N-(9,9-二甲基-9H-茀-2-基)-N-{9,9-二甲基-2-[N’-苯基-N’-(9,9-二甲基-9H-茀-2-基)氨]-9H-茀-7-基}苯基胺(簡稱:DFLADFL)、N-(9,9-二甲基-2-二苯胺基-9H-茀-7-基)二苯基胺(簡稱:DPNF)、2-[N-(4-二苯胺基苯基)-N-苯胺基]螺-9,9’-聯茀(簡稱:DPASF)、4-苯基-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBA1BP)、4,4’-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBBi1BP)、4-(1-萘基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBANB)、4,4’-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBNBB)、4-苯基二苯基-(9-苯基-9H-咔唑-3-基)胺(簡稱:PCA1BP)、N,N’-雙(9-苯基咔唑-3-基)-N,N’-二苯基苯-1,3-二胺(簡稱:PCA2B)、N,N’,N”-三苯基-N,N’,N”-三(9-苯基咔唑-3-基)苯-1,3,5-三胺(簡稱:PCA3B)、N-(4-聯苯)-N-(9,9-二甲基-9H-茀-2-基)-9-苯基-9H-咔唑-3-胺(簡稱:PCBiF)、N-(1,1’-聯苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-茀-2-胺(簡稱:PCBBiF)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]螺-9,9’-聯茀-2-胺(簡稱:PCBASF)、2-[N-(9-苯基咔唑-3-基)-N-苯胺基]螺-9,9’-聯茀(簡稱:PCASF)、2,7-雙[N-(4-二苯胺基苯基)-N-苯胺基]螺-9,9’-聯茀(簡稱:DPA2SF)、N-[4-(9H-咔唑-9-基)苯基]-N-(4-苯基)苯基苯胺(簡稱:YGA1BP)、N,N’-雙[4-(咔唑-9-基)苯基]-N,N’-二苯基-9,9-二甲基茀-2,7-二胺(簡稱:YGA2F)等芳香胺化合物等。另外,還可以使用3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPN)、3-[4-(9-菲基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPPn)、3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)、1,3-雙(N-咔唑基)苯(簡稱:mCP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、3,6-二(9H-咔唑-9-基)-9-苯基-9H-咔唑(簡稱:PhCzGI)、2,8-二(9H-咔唑-9-基)-二苯并噻吩(簡稱:Cz2DBT)等的胺化合物、咔唑化合物等。在上述化合物中,具有吡咯骨架、芳香胺骨架的化合物穩定且可靠性良好,所以是較佳的。另外,具有上述骨架的化合物具有高電洞傳輸性,也有助於驅動電壓的降低。
另外,作為有機化合物141_2可以使用具有如咪唑骨架、三唑骨架及四唑骨架等的含氮五元芳雜環骨架的化合物。明確而言,例如可以使用3-(4-聯苯基)-4-苯基-5-(4-三級丁基苯基)-1,2,4-三唑(簡稱:TAZ)、9-[4-(4,5-二苯基-4H-1,2,4-三唑-3-基)苯基]-9H-咔唑(簡稱:CzTAZ1)、2,2’,2”-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(簡稱:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(簡稱:mDBTBIm-II)等。
在發光層140中,對客體材料142沒有特別的限制,作為螢光化合物較佳為使用蒽衍生物、稠四苯衍生物、䓛(chrysene)衍生物、菲衍生物、芘衍生物、苝衍生物、二苯乙烯衍生物、吖啶酮衍生物、香豆素衍生物、啡㗁
Figure 107120096-A0304-12-0020-4
衍生物、啡噻
Figure 107120096-A0304-12-0020-4
衍生物等,例如可以使用如下物質。
明確而言,作為該材料,可以舉出5,6-雙[4-(10-苯基-9-蒽基)苯基]-2,2’-聯吡啶(簡稱:PAP2BPy)、5,6-雙[4’-(10-苯基-9-蒽基)聯苯-4-基]-2,2’-聯吡啶(簡稱:PAPP2BPy)、N,N’-二苯基-N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6FLPAPrn)、N,N’-雙(3-甲基苯基)-N,N’-雙[3-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6mMemFLPAPrn)、N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]-N,N’-雙(4-三級丁苯基)芘-1,6-二胺(簡稱:1,6tBu-FLPAPrn)、N,N’-二苯基-N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]-3,8-二環己基芘-1,6-二胺(簡稱:ch-1,6FLPAPrn)、N,N’-雙[4-(9H-咔唑-9-基)苯基]-N,N’-二苯基二苯乙烯-4,4’-二胺(簡稱:YGA2S)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(簡稱:YGAPA)、4-(9H-咔唑-9-基)-4’-(9,10-二苯基-2-蒽基)三苯胺(簡稱:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:PCAPA)、苝、2,5,8,11-四(三級丁基)苝(簡稱:TBP)、4-(10-苯基-9-蒽基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPA)、N,N”-(2-三級丁基蒽-9,10-二基二-4,1-伸苯基)雙[N,N’,N’-三苯基-1,4-苯二胺](簡稱:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2-蒽基)苯基]-9H-咔唑-3-胺(簡稱:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPPA)、N,N,N’, N’,N”,N”,N”’,N”’-八苯基二苯并[g,p]䓛(chrysene)-2,7,10, 15-四胺(簡稱:DBC1)、香豆素30、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCAPA)、N-[9,10-雙(1,1’-聯苯-2-基)-2-蒽基]-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCABPhA)、N-(9,10-二苯基-2-蒽基)-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPA)、N-[9,10-雙(1,1’-聯苯-2-基)-2-蒽基]-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPABPhA)、9,10-雙(1,1’-聯苯-2-基)-N-[4-(9H-咔唑-9-基)苯基]-N-苯基蒽-2-胺(簡稱:2YGABPhA)、N,N,9-三苯基蒽-9-胺(簡稱:DPhAPhA)、香豆素6、香豆素545T、N,N’-二苯基喹吖酮(簡稱:DPQd)、紅螢烯、2,8-二-三級丁基-5,11-雙(4-三級丁苯基)-6,12-二苯基稠四苯(簡稱:TBRb)、尼羅紅、5,12-雙(1,1’-聯苯-4-基)-6,11-二苯基稠四苯(簡稱:BPT)、2-(2-{2-[4-(二甲胺基)苯基]乙烯基}-6-甲基-4H-吡喃-4-亞基)丙二腈(簡稱:DCM1)、2-{2-甲基-6-[2-(2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCM2)、N,N,N’,N’-四(4-甲基苯基)稠四苯-5,11-二胺(簡稱:p-mPhTD)、7,14-二苯基-N,N,N’,N’-四(4-甲基苯基)苊并[1,2-a]丙二烯合茀-3,10-二胺(簡稱:p-mPhAFD)、2-{2-異丙基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCJTI)、2-{2-三級丁基-6-[2-(1, 1,7,7-四甲基-2,3,6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:DCJTB)、2-(2,6-雙{2-[4-(二甲胺基)苯基]乙烯基}-4H-吡喃-4-亞基)丙二腈(簡稱:BisDCM)、2-{2,6-雙[2-(8-甲氧基-1,1,7,7-四甲基-2,3, 6,7-四氫-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亞基}丙二腈(簡稱:BisDCJTM)、5,10,15,20-四苯基雙苯并(tetraphenylbisbenzo)[5,6]茚并[1,2,3-cd:1’,2’,3’-lm]苝等。
作為客體材料142(磷光化合物),可以舉出銥、銠、鉑類有機金屬錯合物或金屬錯合物,其中較佳的是有機銥錯合物,例如銥類鄰位金屬錯合物。作為鄰位金屬化的配體,可以舉出4H-三唑配體、1H-三唑配體、咪唑配體、吡啶配體、嘧啶配體、吡嗪配體或異喹啉配體等。作為金屬錯合物可以舉出具有卟啉配體的鉑錯合物等。
作為在藍色或綠色的波長區域具有發光峰值的物質,例如可以舉出三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-kN2]苯基-kC}銥(III)(簡稱:Ir(mpptz-dmp)3 )、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)銥(III)(簡稱:Ir(Mptz)3 )、三[4-(3-聯苯)-5-異丙基-3-苯基-4H-1,2,4-三唑]銥(III)(簡稱:Ir(iPrptz-3b)3 )、三[3-(5-聯苯)-5-異丙基-4-苯基-4H-1,2,4-三唑]銥(III)(簡稱:Ir(iPr5btz)3 )等具有4H-三唑骨架的有機金屬銥錯合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]銥(III)(簡稱:Ir(Mptz1-mp)3 )、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)銥(III)(簡稱:Ir(Prptz1-Me)3 )等具有1H-三唑骨架的有機金屬銥錯合物;fac-三[1-(2,6-二異丙基苯基)-2-苯基-1H-咪唑]銥(III)(簡稱:Ir(iPrpmi)3 )、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]銥(III)(簡稱:Ir(dmpimpt-Me)3 )等具有咪唑骨架的有機金屬銥錯合物;以及雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)四(1-吡唑基)硼酸鹽(簡稱:FIr6)、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)吡啶甲酸鹽(簡稱:FIrpic)、雙{2-[3’,5’-雙(三氟甲基)苯基]吡啶根-N,C2’ }銥(III)吡啶甲酸鹽(簡稱:Ir(CF3 ppy)2 (pic))、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’ ]銥(III)乙醯丙酮(簡稱:FIr(acac))等以具有拉電子基團的苯基吡啶化合物為配體的有機金屬銥錯合物。在上述金屬錯合物中,由於具有4H-三唑骨架、1H-三唑骨架及咪唑骨架等含氮五元芳雜環骨架的有機金屬銥錯合物的三重激發能很高並具有優異的可靠性及發光效率,所以是特別較佳的。
作為在綠色或黃色的波長區域具有發光峰值的物質,例如可以舉出三(4-甲基-6-苯基嘧啶)銥(III)(簡稱:Ir(mppm)3 )、三(4-三級丁基-6-苯基嘧啶)銥(III)(簡稱:Ir(tBuppm)3 )、(乙醯丙酮根)雙(6-甲基-4-苯基嘧啶)銥(III)(簡稱:Ir(mppm)2 (acac))、(乙醯丙酮根)雙(6-三級丁基-4-苯基嘧啶)銥(III)(簡稱:Ir(tBuppm)2 (acac))、(乙醯丙酮根)雙[4-(2-降莰基)-6-苯基嘧啶]銥(III)(簡稱:Ir(nbppm)2 (acac))、(乙醯丙酮根)雙[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶]銥(III)(簡稱:Ir(mpmppm)2 (acac))、(乙醯丙酮根)雙{4,6-二甲基-2-[6-(2,6-二甲基苯基)-4-嘧啶基-kN3]苯基-kC}銥(III)(簡稱:Ir(dmppm-dmp)2 (acac))、(乙醯丙酮根)雙(4,6-二苯基嘧啶)銥(III)(簡稱:Ir(dppm)2 (acac))等具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮根)雙(3,5-二甲基-2-苯基吡嗪)銥(III)(簡稱:Ir(mppr-Me)2 (acac))、(乙醯丙酮根)雙(5-異丙基-3-甲基-2-苯基吡嗪)銥(III)(簡稱:Ir(mppr-iPr)2 (acac))等具有吡嗪骨架的有機金屬銥錯合物;三(2-苯基吡啶-N,C2’ )銥(III)(簡稱:Ir(ppy)3 )、雙(2-苯基吡啶根-N,C2’ )銥(III)乙醯丙酮(簡稱:Ir(ppy)2 (acac))、雙(苯并[h]喹啉)銥(III)乙醯丙酮(簡稱:Ir(bzq)2 (acac))、三(苯并[h]喹啉)銥(III)(簡稱:Ir(bzq)3 )、三(2-苯基喹啉-N,C2’ )銥(III)(簡稱:Ir(pq)3 )、雙(2-苯基喹啉-N,C2’ )銥(III)乙醯丙酮(簡稱:Ir(pq)2 (acac))等具有吡啶骨架的有機金屬銥錯合物;雙(2,4-二苯基-1,3-㗁唑-N,C2’ )銥(III)乙醯丙酮(簡稱:Ir(dpo)2 (acac))、雙{2-[4’-(全氟苯基)苯基]吡啶-N,C2’ }銥(III)乙醯丙酮(簡稱:Ir(p-PF-ph)2 (acac))、雙(2-苯基苯并噻唑-N,C2’ )銥(III)乙醯丙酮(簡稱:Ir(bt)2 (acac))等有機金屬銥錯合物;三(乙醯丙酮根)(單啡啉)鋱(III)(簡稱:Tb(acac)3 (Phen))等稀土金屬錯合物。在上述物質中,由於具有嘧啶骨架的有機金屬銥錯合物也具有顯著優良的可靠性及發光效率,所以是尤其較佳的。
另外,作為在黃色或紅色的波長區域具有發光峰值的物質,例如可以舉出(二異丁醯甲烷根)雙[4,6-雙(3-甲基苯基)嘧啶根]銥(III)(簡稱:Ir(5mdppm)2 (dibm))、雙[4,6-雙(3-甲基苯基)嘧啶根](二新戊醯基甲烷根)銥(III)(簡稱:Ir(5mdppm)2 (dpm))、雙[4,6-二(萘-1-基)嘧啶根](二新戊醯基甲烷根)銥(III)(簡稱:Ir(d1npm)2 (dpm))等具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮根)雙(2,3,5-三苯基吡嗪根)銥(III)(簡稱:Ir(tppr)2 (acac))、雙(2,3,5-三苯基吡嗪根)(二新戊醯基甲烷根)銥(III)(簡稱:Ir(tppr)2 (dpm))、(乙醯丙酮根)雙[2,3-雙(4-氟苯基)喹㗁啉]合銥(III)(簡稱:Ir(Fdpq)2 (acac))等具有吡嗪骨架的有機金屬銥錯合物;三(1-苯基異喹啉-N,C2’ )銥(III)(簡稱:Ir(piq)3 )、雙(1-苯基異喹啉-N,C2’ )銥(III)乙醯丙酮(簡稱:Ir(piq)2 (acac))等具有吡啶骨架的有機金屬銥錯合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:PtOEP)等鉑錯合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(單啡啉)銪(III)(簡稱:Eu(DBM)3 (Phen))、三[1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](單啡啉)銪(III)(簡稱:Eu(TTA)3 (Phen))等稀土金屬錯合物。在上述物質中,由於具有嘧啶骨架的有機金屬銥錯合物也具有顯著高的可靠性及發光效率,所以是尤其較佳的。另外,具有吡嗪骨架的有機金屬銥錯合物可以實現色度良好的紅色光。
由於具有苯并呋喃并吡嗪骨架或苯并噻吩并吡嗪骨架的有機化合物具有較高的T1能階,所以適用於使用能夠將三重激發能轉換為發光的物質作為發光材料的發光層的主體材料。因此,作為發光層140所包含的發光材料,較佳為使用能夠將三重激發能轉換為發光的材料。作為該能夠將三重激發能轉換為發光的材料,除了上述磷光化合物之外,可以舉出熱活化延遲螢光(Thermally activated delayed fluorescence:TADF)材料。因此,可以將有關磷光化合物的記載看作有關熱活化延遲螢光材料的記載。注意,熱活化延遲螢光材料是指三重激發能階與單重激發能階的差較小且具有藉由反系間竄越將能量從三重激發態轉換為單重激發態的功能的材料。因此,能夠藉由微小的熱能量將三重激發態上轉換(up-convert)為單重激發態(反系間竄越)並能夠高效地呈現來自單重激發態的發光(螢光)。另外,可以高效地獲得熱活化延遲螢光的條件為如下:三重激發態能階與單重激態發能階的能量差大於0eV且為0.2eV以下,較佳為大於0eV且為0.1eV以下。作為熱活化延遲螢光材料,也可以使用實施方式1中說明的化合物。
當熱活化延遲螢光材料由一種材料構成時,例如可以使用如下材料。
首先,可以舉出富勒烯或其衍生物、原黃素等吖啶衍生物、曙紅(eosin)等。另外,可以舉出包含鎂(Mg)、鋅(Zn)、鎘(Cd)、錫(Sn)、鉑(Pt)、銦(In)或鈀(Pd)等的含金屬卟啉。作為該含金屬卟啉,例如,也可以舉出原卟啉-氟化錫錯合物(簡稱:SnF2 (Proto IX))、中卟啉-氟化錫錯合物(簡稱:SnF2 (Meso IX))、血卟啉-氟化錫錯合物(簡稱:SnF2 (Hemato IX))、糞卟啉四甲酯-氟化錫錯合物(簡稱:SnF2 (Copro Ⅲ-4Me))、八乙基卟啉-氟化錫錯合物(簡稱:SnF2 (OEP))、初卟啉-氟化錫錯合物(簡稱:SnF2 (Etio I))以及八乙基卟啉-氯化鉑錯合物(簡稱:PtCl2 OEP)等。
另外,作為由一種材料構成的熱活化延遲螢光材料,還可以使用具有富p電子型芳雜環及缺p電子型芳雜環的芳雜環化合物。明確而言,可以舉出2-(聯苯-4-基)-4,6-雙(12-苯基吲哚并[2,3-a]咔唑-11-基)-1,3,5-三嗪(簡稱:PIC-TRZ)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:PCCzPTzn)、2-[4-(10H-吩惡嗪-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(簡稱:PXZ-TRZ)、3-[4-(5-苯基-5,10-二氫吩嗪-10-基)苯基]-4,5-二苯基-1,2,4-三唑(簡稱:PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧雜蒽-9-酮(簡稱:ACRXTN)、雙[4-(9,9-二甲基-9,10-二氫吖啶)苯基]碸(簡稱:DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(簡稱:ACRSA )等。該雜環化合物具有富p電子型芳雜環及缺p電子型芳雜環,因此電子傳輸性及電洞傳輸性高,所以是較佳的。尤其是,在具有缺p電子型芳雜環的骨架中,二嗪骨架(嘧啶骨架、吡嗪骨架、嗒
Figure 107120096-A0304-12-0020-4
骨架)或三嗪骨架穩定且可靠性良好,所以是較佳的。另外,在具有富p電子型芳雜環的骨架中,吖啶骨架、啡㗁
Figure 107120096-A0304-12-0020-4
骨架、噻吩骨架、呋喃骨架及吡咯骨架穩定且可靠性良好,所以具有選自該骨架中的任何一個或多個是較佳的。作為吡咯骨架,特別較佳為使用吲哚骨架、咔唑骨架及3-(9-苯基-9H-咔唑-3-基)-9H-咔唑骨架。另外,在富p電子型芳雜環與缺p電子型芳雜環直接鍵合的物質中,富p電子型芳雜環的施體性和缺p電子型芳雜環的受體性都強,而單重激發態的能階和三重激發態的能階之間的差異小,所以是特別較佳的。
另外,發光層140也可以包括主體材料141及客體材料142以外的材料。
對作為能夠用於發光層140的材料沒有特別的限制,例如,可以舉出蒽衍生物、菲衍生物、芘衍生物、䓛衍生物、二苯并[g,p]䓛衍生物等的稠合多環芳香化合物,明確而言,可以舉出9,10-二苯基蒽(簡稱:DPAnth)、6,12-二甲氧基-5,11-二苯基䓛、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、9,10-二(2-萘基)蒽(簡稱:DNA)、2-三級丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、9,9’-聯蒽(簡稱:BANT)、9,9’-(二苯乙烯-3,3’-二基)二菲(簡稱:DPNS)、9,9’-(二苯乙烯-4,4’-二基)二菲(簡稱:DPNS2)、1,3,5-三(1-芘)苯(簡稱:TPB3)等。另外,可以從上述物質及公知物質中選擇一種或多種具有比上述客體材料142的激發能階高的單重激發能階或三重激發能階的物質而使用。
另外,例如,可以將如㗁二唑衍生物等的具有芳雜環骨架的化合物用於發光層140。明確而言,例如,可以舉出2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-㗁二唑(簡稱:PBD)、1,3-雙[5-(對三級丁基苯基)-1,3,4-㗁二唑-2-基]苯(簡稱:OXD-7)、9-[4-(5-苯基-1,3,4-㗁二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)、4,4’-雙(5-甲基苯并㗁唑-2-基)二苯乙烯(簡稱:BzOs)等的雜環化合物。
另外,可以將具有雜環的金屬錯合物(例如,鋅及鋁類金屬錯合物)等用於發光層140。例如,可以舉出包括喹啉配體、苯并喹啉配體、㗁唑配體或噻唑配體的金屬錯合物。明確而言,可舉出具有喹啉骨架或苯并喹啉骨架的金屬錯合物等,例如三(8-羥基喹啉)鋁(III)(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(III)(簡稱:Almq3 )、雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq2 )、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)等。另外,除此之外,還可以使用如雙[2-(2-苯并㗁唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯并噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等具有㗁唑基類或噻唑類配體的金屬錯合物等。
發光層140也可以由兩層以上的多個層形成。例如,在從電洞傳輸層一側依次層疊第一發光層和第二發光層來形成發光層140的情況下,可以將具有電洞傳輸性的物質用作第一發光層的主體材料,並且將具有電子傳輸性的物質用作第二發光層的主體材料。另外,第一發光層和第二發光層所包含的發光材料也可以是相同或不同的材料。另外,第一發光層和第二發光層所包含的發光材料既可以是具有呈現相同顏色的發光的功能的材料,又可以是具有呈現不同顏色的發光的功能的材料。藉由作為兩層的發光層分別使用具有呈現彼此不同顏色的發光的功能的發光材料,可以同時得到多個發光。尤其是,較佳為選擇用於各發光層的發光材料,以便藉由組合兩層發光層所發射的光而能夠得到白色發光。
另外,可以利用蒸鍍法(包括真空蒸鍍法)、噴墨法、塗佈法、凹版印刷等的方法形成發光層140。此外,除了上述材料以外,發光層140也可以包含量子點等無機化合物或高分子化合物(低聚物、樹枝狀聚合物、聚合物等)。
《電洞注入層》   電洞注入層111具有藉由降低從一對電極中的一個(電極101或電極102)的電洞的注入能障促進電洞注入的功能,並例如使用過渡金屬氧化物、酞青衍生物或芳香胺等形成。作為過渡金屬氧化物可以舉出鉬氧化物、釩氧化物、釕氧化物、鎢氧化物、錳氧化物等。作為酞青衍生物,可以舉出酞青或金屬酞青等。作為芳香胺,可以舉出聯苯胺衍生物或伸苯基二胺衍生物等。另外,也可以使用聚噻吩或聚苯胺等高分子化合物,典型的是:作為被自摻雜的聚噻吩的聚(乙基二氧噻吩)/聚(苯乙烯磺酸)等。
電洞注入層111也可以包含電洞傳輸性材料和對該電洞傳輸性材料呈現電子接收性的材料的複合材料。或者,也可以使用包含呈現電子接收性的材料的層與包含電洞傳輸性材料的層的疊層。在定態或者在存在有電場的狀態下,電荷的授受可以在這些材料之間進行。作為呈現電子接收性的材料,可以舉出醌二甲烷衍生物、四氯苯醌衍生物、六氮雜聯伸三苯衍生物等有機受體。明確而言,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F4 -TCNQ)、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮雜聯伸三苯(簡稱:HAT-CN)等具有拉電子基團(鹵基或氰基)的化合物。此外,也可以使用過渡金屬氧化物、例如第4族至第8族金屬的氧化物。明確而言,可以使用氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鉬、氧化鎢、氧化錳、氧化錸等。特別較佳為使用氧化鉬,因為其在大氣中也穩定,吸濕性低,並且容易處理。
作為電洞傳輸性材料,可以使用電洞傳輸性比電子傳輸性高的材料,較佳為使用具有1´10-6 cm2 /Vs以上的電洞移動率的材料。明確而言,可以使用作為能夠用於發光層140的電洞傳輸性材料而舉出的芳香胺、咔唑衍生物、芳烴、二苯乙烯衍生物等。上述電洞傳輸性材料也可以是高分子化合物。
另外,作為電洞傳輸性材料還可以舉出芳烴,例如,可以舉出2-三級丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、2-三級丁基-9,10-二(1-萘基)蒽、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、2-三級丁基-9,10-雙(4-苯基苯基)蒽(簡稱:t-BuDBA)、9,10-二(2-萘基)蒽(簡稱:DNA)、9,10-二苯基蒽(簡稱:DPAnth)、2-三級丁基蒽(簡稱:t-BuAnth)、9,10-雙(4-甲基-1-萘基)蒽(簡稱:DMNA)、2-三級丁基-9,10-雙[2-(1-萘基)苯基]蒽、9,10-雙[2-(1-萘基)苯基]蒽、2,3,6,7-四甲基-9,10-二(1-萘基)蒽、2,3,6,7-四甲基-9,10-二(2-萘基)蒽、9,9’-聯蒽、10,10’-二苯基-9,9’-聯蒽、10,10’-雙(2-苯基苯基)-9,9’-聯蒽、10,10’-雙[(2,3,4,5,6-五苯基)苯基]-9,9’-聯蒽、蒽、稠四苯、紅螢烯、苝、2,5,8,11-四(三級丁基)苝等。此外,還可以使用稠五苯、蔻等。如此,更佳為使用具有1´10-6 cm2 /Vs以上的電洞移動率且碳原子數為14至42的芳烴。
另外,芳烴可以具有乙烯基骨架。作為具有乙烯基的芳烴,例如,可以舉出4,4’-雙(2,2-二苯基乙烯基)聯苯(簡稱:DPVBi)、9,10-雙[4-(2,2-二苯基乙烯基)苯基]蒽(簡稱:DPVPA)等。
另外,可以使用4-{3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯并呋喃(簡稱:mmDBFFLBi-II)、4,4’,4”-(苯-1,3,5-三基)三(二苯并呋喃)(簡稱:DBF3P-II)、1,3,5-三(二苯并噻吩-4-基)苯(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯并噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯并噻吩(簡稱:DBTFLP-IV)、4-[3-(聯伸三苯-2-基)苯基]二苯并噻吩(簡稱:mDBTPTp-II)等的噻吩化合物、呋喃化合物、茀化合物、聯伸三苯化合物、菲化合物等。其中,具有吡咯骨架、呋喃骨架、噻吩骨架、芳香胺骨架的化合物穩定且可靠性良好,所以是較佳的。具有上述骨架的化合物具有高電洞傳輸性,也有助於驅動電壓的降低。
《電洞傳輸層》   電洞傳輸層112是包含電洞傳輸性材料的層,可以使用作為電洞注入層111的材料所例示的電洞傳輸性材料。電洞傳輸層112具有將注入到電洞注入層111的電洞傳輸到發光層140的功能,所以較佳為具有與電洞注入層111的HOMO(Highest Occupied Molecular Orbital,也稱為最高佔據分子軌域)能階相同或接近的HOMO能階。
另外,較佳為使用具有1´10-6 cm2 /Vs以上的電洞移動率的物質。但是,只要是電洞傳輸性高於電子傳輸性的物質,就可以使用上述物質以外的物質。另外,包括高電洞傳輸性的物質的層不限於單層,還可以層疊兩層以上的由上述物質構成的層。
《電子傳輸層》   電子傳輸層118具有將從一對電極中的另一個(電極101或電極102)經過電子注入層119注入的電子傳輸到發光層140的功能。作為電子傳輸性材料,可以使用電子傳輸性比電洞傳輸性高的材料,較佳為使用具有1´10-6 cm2 /Vs以上的電子移動率的材料。作為容易接收電子的化合物(具有電子傳輸性的材料),可以使用含氮芳雜環化合物等缺p電子型芳雜環化合物或金屬錯合物等。由於本發明的一個實施方式的有機化合物具有嘧啶骨架,所以適用於容易接收電子的化合物。作為其他的具體例子,可以舉出作為可用於發光層140的電子傳輸性材料舉出的吡啶衍生物、聯吡啶衍生物、嘧啶衍生物、三嗪衍生物、喹㗁啉衍生物、二苯并喹㗁啉衍生物、啡啉衍生物、三唑衍生物、苯并咪唑衍生物、㗁二唑衍生物等。另外,較佳為具有1´10-6 cm2 /Vs以上的電子移動率的物質。另外,只要是電子傳輸性高於電洞傳輸性的物質,就可以使用上述物質以外的物質作為電子傳輸層。另外,電子傳輸層118不限於單層,還可以層疊兩層以上的由上述物質構成的層。
另外,還可以舉出具有芳雜環的金屬錯合物,例如,可以舉出包括喹啉配體、苯并喹啉配體、㗁唑配體或噻唑配體的金屬錯合物。明確而言,可舉出具有喹啉骨架或苯并喹啉骨架的金屬錯合物等,例如三(8-羥基喹啉)鋁(III)(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(III)(簡稱:Almq3 )、雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq2 )、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)等。另外,除此之外,還可以使用如雙[2-(2-苯并㗁唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯并噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等具有㗁唑基類配體或噻唑類配體的金屬錯合物等。
另外,還可以在電子傳輸層118與發光層140之間設置控制電子載子的移動的層。該控制電子載子的移動的層是對上述電子傳輸性高的材料添加少量的電子俘獲性高的物質而成的層,藉由抑制電子載子的移動,可以調節載子平衡。這種結構對電子傳輸性材料的電子傳輸性比電洞傳輸性材料的電洞傳輸性高得多的情況下發生的問題(例如元件壽命的下降)的抑制發揮很大的效果。
《電子注入層》   電子注入層119具有藉由降低與電極102之間的介面處的電子注入能障促進電子注入的功能,例如可以使用第1族金屬、第2族金屬或它們的氧化物、鹵化物、碳酸鹽等。另外,也可以使用上述電子傳輸性材料和對該電子傳輸性材料呈現電子供給性的材料的複合材料。作為呈現電子供給性的材料,可以舉出第1族金屬、第2族金屬或它們的氧化物等。明確而言,可以使用氟化鋰(LiF)、氟化鈉(NaF)、氟化銫(CsF)、氟化鈣(CaF2 )及鋰氧化物(LiOx )等鹼金屬、鹼土金屬或這些金屬的化合物。另外,可以使用氟化鉺(ErF3 )等稀土金屬化合物。另外,也可以將電子鹽用於電子注入層119。作為該電子鹽,例如可以舉出對鈣和鋁的混合氧化物以高濃度添加電子的物質等。另外,也可以將能夠用於電子傳輸層118的物質用於電子注入層119。
另外,也可以將有機化合物與電子予體(施體)混合形成的複合材料用於電子注入層119。這種複合材料因為藉由電子予體在有機化合物中產生電子而具有優異的電子注入性和電子傳輸性。在此情況下,有機化合物較佳為在傳輸所產生的電子方面性能優異的材料,明確而言,例如,可以使用如上所述的構成電子傳輸層118的物質(金屬錯合物、芳雜環化合物等)。作為電子予體,只要是對有機化合物呈現電子供給性的物質即可。明確而言,較佳為使用鹼金屬、鹼土金屬和稀土金屬,可以舉出鋰、鈉、銫、鎂、鈣、鉺、鐿等。另外,較佳為使用鹼金屬氧化物或鹼土金屬氧化物,可以舉出鋰氧化物、鈣氧化物、鋇氧化物等。此外,還可以使用氧化鎂等路易士鹼。另外,也可以使用四硫富瓦烯(簡稱:TTF)等有機化合物。
另外,上述發光層、電洞注入層、電洞傳輸層、電子傳輸層及電子注入層分別可以藉由蒸鍍法(包括真空蒸鍍法)、噴墨法、塗佈法、凹版印刷等方法形成。此外,作為上述發光層、電洞注入層、電洞傳輸層、電子傳輸層及電子注入層,除了上述材料之外,也可以使用量子點等無機化合物或高分子化合物(低聚物、樹枝狀聚合物、聚合物等)。
《量子點》   量子點是其尺寸為幾nm至幾十nm的半導體奈米晶,並由1´103 個至1´106 個左右的原子構成。量子點的能量移動依賴於其尺寸,因此,即使是由相同的物質構成的量子點也根據尺寸具有互不相同的發光波長。所以,藉由改變所使用的量子點的尺寸,可以容易改變發光波長。
此外,量子點的發射光譜的峰寬窄,因此,可以得到色純度高的發光。再者,量子點的理論上的內部量子效率被認為大致是100%,亦即,大幅度地超過呈現螢光發光的有機化合物的25%,且與呈現磷光發光的有機化合物相等。因此,藉由將量子點用作發光材料,可以獲得發光效率高的發光元件。而且,作為無機材料的量子點在實質穩定性上也是優異的,因此,可以獲得使用壽命長的發光元件。
作為構成量子點的材料,可以舉出第14族元素、第15族元素、第16族元素、包含多個第14族元素的化合物、第4族至第14族的元素和第16族元素的化合物、第3族元素和第16族元素的化合物、第13族元素和第15族元素的化合物、第13族元素和第17族元素的化合物、第14族元素和第15族元素的化合物、第11族元素和第17族元素的化合物、氧化鐵類、氧化鈦類、硫系尖晶石(spinel chalcogenide)類、半導體簇等。
明確而言,可以舉出硒化鎘、硫化鎘、碲化鎘、硒化鋅、氧化鋅、硫化鋅、碲化鋅、硫化汞、硒化汞、碲化汞、砷化銦、磷化銦、砷化鎵、磷化鎵、氮化銦、氮化鎵、銻化銦、銻化鎵、磷化鋁、砷化鋁、銻化鋁、硒化鉛、碲化鉛、硫化鉛、硒化銦、碲化銦、硫化銦、硒化鎵、硫化砷、硒化砷、碲化砷、硫化銻、硒化銻、碲化銻、硫化鉍、硒化鉍、碲化鉍、矽、碳化矽、鍺、錫、硒、碲、硼、碳、磷、氮化硼、磷化硼、砷化硼、氮化鋁、硫化鋁、硫化鋇、硒化鋇、碲化鋇、硫化鈣、硒化鈣、碲化鈣、硫化鈹、硒化鈹、碲化鈹、硫化鎂、硒化鎂、硫化鍺、硒化鍺、碲化鍺、硫化錫、硫化錫、硒化錫、碲化錫、氧化鉛、氟化銅、氯化銅、溴化銅、碘化銅、氧化銅、硒化銅、氧化鎳、氧化鈷、硫化鈷、氧化鐵、硫化鐵、氧化錳、硫化鉬、氧化釩、氧化鎢、氧化鉭、氧化鈦、氧化鋯、氮化矽、氮化鍺、氧化鋁、鈦酸鋇、硒鋅鎘的化合物、銦砷磷的化合物、鎘硒硫的化合物、鎘硒碲的化合物、銦鎵砷的化合物、銦鎵硒的化合物、銦硒硫化合物、銅銦硫的化合物以及它們的組合等,但是不侷限於此。此外,也可以使用以任意比例表示組成的所謂的合金型量子點。例如,因為鎘硒硫的合金型量子點可以藉由改變元素的含量比來改變發光波長,所以鎘硒硫的合金型量子點是有效於得到藍色光的方法之一。
作為量子點的結構,有核型、核殼(Core Shell)型、核多殼(Core Multishell)型等。可以使用上述任一個,但是藉由使用覆蓋核且具有更寬的能帶間隙的其他無機材料來形成殼,可以減少存在於奈米晶表面上的缺陷或懸空鍵的影響,從而可以大幅度地提高發光的量子效率。由此,較佳為使用核殼型或核多殼型的量子點。作為殼的材料的例子,可以舉出硫化鋅或氧化鋅。
此外,在量子點中,由於表面原子的比例高,因此反應性高而容易發生聚集。因此,量子點的表面較佳為附著有保護劑或設置有保護基。由此可以防止聚集並提高對溶劑的溶解性。此外,還可以藉由降低反應性來提高電穩定性。作為保護劑(或保護基),例如可以舉出:月桂醇聚氧乙烯醚、聚氧乙烯硬脂酸酯(polyoxyethylene stearyl ether)、聚氧乙烯月桂醚(polyoxyethylene oleyl ether)等聚氧乙烯烷基醚類;三丙基膦、三丁基膦、三己基膦、三辛基膦等三烷基膦類;聚氧乙烯正-辛基苯基醚、聚氧乙烯正-壬基苯基醚等聚氧乙烯烷基苯基醚類;三(正-己基)胺、三(正-辛基)胺、三(正-癸基)胺等三級胺類;三丙基氧化膦、三丁基氧化膦、三己基氧化膦、三辛基氧化膦、三癸基氧化膦等有機磷化合物;聚乙二醇二月桂酸酯、聚乙二醇二硬脂酸酯等聚乙二醇二酯類;吡啶、二甲基吡啶、柯林鹼、喹啉類等含氮芳香化合物等有機氮化合物;己基胺、辛基胺、癸基胺、十二烷基胺、十四烷基胺、十六烷基胺、十八烷基胺等胺基鏈烷類;二丁基硫醚等二烷基硫醚類;二甲亞碸、二丁亞碸等二烷亞碸類;噻吩等含硫芳香化合物等有機硫化合物;棕櫚酸、硬脂酸、油酸等高級脂肪酸;乙醇類;失水山梨醇脂肪酸酯類;脂肪酸改性聚酯類;三級胺類改性聚氨酯類;聚乙烯亞胺類等。
量子點其尺寸越小能帶間隙越大,因此適當地調節其尺寸以獲得所希望的波長的光。隨著結晶尺寸變小,量子點的發光向藍色一側(亦即,向高能量一側)遷移,因此,藉由改變量子點的尺寸,可以在涵蓋紫外區域、可見光區域和紅外區域的光譜的波長區域中調節其發光波長。通常使用的量子點的尺寸(直徑)為0.5nm至20nm,較佳為1nm至10nm。另外,量子點其尺寸分佈越小發射光譜越窄,因此可以獲得色純度高的發光。另外,對量子點的形狀沒有特別的限制,可以為球狀、棒狀、圓盤狀、其他的形狀。另外,作為棒狀量子點的量子杆具有呈現具有指向性的光的功能,所以藉由將量子杆用作發光材料,可以得到外部量子效率更高的發光元件。
在有機EL元件中,通常藉由將發光材料分散在主體材料中來抑制發光材料的濃度淬滅,而提高發光效率。主體材料需要具有發光材料以上的單重激發能階或三重激發能階。特別是,在將藍色磷光化合物用作發光材料時,需要具有藍色磷光材料以上的三重激發能階且壽命長的主體材料,這種材料的開發是極困難的。在此,量子點即使在只使用量子點而不使用主體材料來形成發光層的情況下,也可以確保發光效率,因此可以得到壽命長的發光元件。在只使用量子點形成發光層時,量子點較佳為具有核殼型結構(包括核多殼型結構)。
在將量子點用作發光層的發光材料的情況下,該發光層的厚度為3nm至100nm,較佳為10nm至100nm,發光層所包含的量子點的比率為1vol.%至100vol.%。注意,較佳為只由量子點形成發光層。另外,在形成將該量子點用作發光材料而將其分散在主體材料中的發光層時,可以將量子點分散在主體材料中或將主體材料和量子點溶解或分散在適當的液體介質中,並使用濕處理(旋塗法、澆鑄法、點膠塗佈法、刮塗法、輥塗法、噴墨法、印刷法、噴塗法、簾式塗佈法、朗繆爾-布羅基特(Langmuir Blodgett)法等)形成。使用磷光發光材料的發光層除了上述濕處理之外也可以採用真空蒸鍍法。
作為用於濕處理的液體介質,例如可以使用:甲乙酮、環己酮等酮類;乙酸乙酯等脂肪酸酯類;二氯苯等鹵化烴類;甲苯、二甲苯、均三甲苯、環己基苯等芳烴類;環己烷、十氫化萘、十二烷等脂肪族烴類;二甲基甲醯胺(DMF)、二甲亞碸(DMSO)等有機溶劑。
《一對電極》   電極101及電極102被用作發光元件的陽極或陰極。電極101及電極102可以使用金屬、合金、導電性化合物以及它們的混合物或疊層體等形成。
電極101和電極102中的一個較佳為使用具有反射光的功能的導電材料形成。作為該導電材料,可以舉出鋁(Al)或包含Al的合金等。作為包含Al的合金,可以舉出包含Al及L(L表示鈦(Ti)、釹(Nd)、鎳(Ni)和鑭(La)中的一個或多個)的合金等,例如為包含Al及Ti的合金或者包含Al、Ni及La的合金等。鋁具有低電阻率和高光反射率。此外,由於鋁在地殼中大量地含有且不昂貴,所以使用鋁可以降低發光元件的製造成本。此外,也可以使用銀(Ag)、包含Ag、N(N表示釔(Y)、Nd、鎂(Mg)、鐿(Yb)、Al、Ti、鎵(Ga)、鋅(Zn)、銦(In)、鎢(W)、錳(Mn)、錫(Sn)、鐵(Fe)、Ni、銅(Cu)、鈀(Pd)、銥(Ir)和金(Au)中的一個或多個)的合金等。作為包含銀的合金,例如可以舉出如下合金:包含銀、鈀及銅的合金;包含銀及銅的合金;包含銀及鎂的合金;包含銀及鎳的合金;包含銀及金的合金;以及包含銀及鐿的合金等。除了上述材料以外,可以使用鎢、鉻(Cr)、鉬(Mo)、銅及鈦等的過渡金屬。
另外,從發光層獲得的光透過電極101和電極102中的一個或兩個被提取。由此,電極101和電極102中的至少一個較佳為使用具有透過光的功能的導電材料形成。作為該導電材料,可以舉出可見光穿透率為40%以上且100%以下,較佳為60%以上且100%以下,且電阻率為1´10-2 W×cm以下的導電材料。
此外,電極101及電極102也可以使用具有透過光的功能及反射光的功能的導電材料形成。作為該導電材料,可以舉出可見光反射率為20%以上且80%以下,較佳為40%以上且70%以下,且電阻率為1´10-2 W×cm以下的導電材料。例如,可以使用具有導電性的金屬、合金和導電性化合物中的一種或多種。明確而言,例如可以使用銦錫氧化物(Indium Tin Oxide,以下稱為ITO)、包含矽或氧化矽的銦錫氧化物(簡稱:ITSO)、氧化銦-氧化鋅(Indium Zinc Oxide)、含有鈦的氧化銦-錫氧化物、銦-鈦氧化物、包含氧化鎢及氧化鋅的氧化銦等金屬氧化物。另外,可以使用具有透過光的程度的厚度(較佳為1nm以上且30nm以下的厚度)的金屬膜。作為金屬,例如可以使用Ag、Ag及Al、Ag及Mg、Ag及Au以及Ag及Yb等的合金等。
注意,在本說明書等中,作為具有透光的功能的材料,使用具有使可見光透過的功能且具有導電性的材料即可,例如有上述以ITO為代表的氧化物導電體、氧化物半導體或包含有機物的有機導電體。作為包含有機物的有機導電體,例如可以舉出包含混合有機化合物與電子予體(施體)而成的複合材料、包含混合有機化合物與電子受體(受體)而成的複合材料等。另外,也可以使用石墨烯等無機碳類材料。另外,該材料的電阻率較佳為1´105 W×cm以下,更佳為1´104 W×cm以下。
另外,可以藉由層疊多個上述材料形成電極101和電極102中的一個或兩個。
為了提高光提取效率,可以與具有透過光的功能的電極接觸地形成其折射率比該電極高的材料。作為這種材料,只要具有透過可見光的功能即可,可以為具有導電性的材料,也可以為不具有導電性的材料。例如,除了上述氧化物導電體以外,還可以舉出氧化物半導體、有機物。作為有機物,例如可以舉出作為發光層、電洞注入層、電洞傳輸層、電子傳輸層或電子注入層例示出的材料。另外,也可以使用無機碳類材料或具有透過光的程度的厚度的金屬薄膜,也可以層疊多個具有幾nm至幾十nm厚的層。
當電極101或電極102具有被用作陰極的功能時,較佳為使用功函數小(3.8eV以下)的材料。例如,可以使用屬於元素週期表中的第1族或第2族的元素(例如,鋰、鈉及銫等鹼金屬、鈣或鍶等鹼土金屬、鎂等)、包含上述元素的合金(例如,Ag及Mg或Al及Li)、銪(Eu)或Yb等稀土金屬、包含上述稀土金屬的合金、包含鋁或銀的合金等。
當電極101或電極102被用作陽極時,較佳為使用功函數大(4.0eV以上)的材料。
電極101及電極102也可以採用具有反射光的功能的導電材料及具有透過光的功能的導電材料的疊層。在此情況下,電極101及電極102具有調整光學距離的功能以便使來自各發光層的所希望的波長的光諧振而增強該波長的光,所以是較佳的。
作為電極101及電極102的成膜方法,可以適當地使用濺射法、蒸鍍法、印刷法、塗佈法、MBE (Molecular Beam Epitaxy:分子束磊晶)法、CVD法、脈衝雷射沉積法、ALD(Atomic Layer Deposition:原子層沉積)法等。
《基板》   另外,本發明的一個實施方式的發光元件可以在由玻璃、塑膠等構成的基板上製造。作為在基板上層疊的順序,可以從電極101一側依次層疊,也可以從電極102一側依次層疊。
另外,作為能夠形成本發明的一個實施方式的發光元件的基板,例如可以使用玻璃、石英或塑膠等。或者,也可以使用撓性基板。撓性基板是可以彎曲(flexible)的基板,例如由聚碳酸酯、聚芳酯製成的塑膠基板等。另外,可以使用薄膜、無機蒸鍍薄膜等。注意,只要在發光元件及光學元件的製造過程中起支撐物的作用,就可以使用其他材料。或者,只要具有保護發光元件及光學元件的功能即可。
例如,在本說明書等中,可以使用各種基板形成發光元件。對基板的種類沒有特別的限制。作為該基板的例子,例如可以使用半導體基板(例如,單晶基板或矽基板)、SOI基板、玻璃基板、石英基板、塑膠基板、金屬基板、不鏽鋼基板、具有不鏽鋼箔的基板、鎢基板、具有鎢箔的基板、撓性基板、貼合薄膜、包含纖維狀的材料的紙或者基材薄膜等。作為玻璃基板的例子,有鋇硼矽酸鹽玻璃、鋁硼矽酸鹽玻璃、鈉鈣玻璃等。作為撓性基板、貼合薄膜、基材薄膜等,可以舉出如下例子。例如,可以舉出以聚對苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、聚醚碸(PES)、聚四氟乙烯(PTFE)為代表的塑膠。或者,作為例子,可以舉出丙烯酸樹脂等樹脂等。或者,作為例子,可以舉出聚丙烯、聚酯、聚氟化乙烯或聚氯乙烯等。或者,作為例子,可以舉出聚醯胺、聚醯亞胺、芳族聚醯胺、環氧樹脂、無機蒸鍍薄膜、紙類等。
另外,也可以作為基板使用撓性基板,並在撓性基板上直接形成發光元件。或者,也可以在基板與發光元件之間設置剝離層。當在剝離層上製造發光元件的一部分或全部,然後將其從基板分離並轉置到其他基板上時可以使用剝離層。此時,也可以將發光元件轉置到耐熱性低的基板或撓性基板上。另外,作為上述剝離層,例如可以使用鎢膜和氧化矽膜的無機膜的疊層結構或在基板上形成有聚醯亞胺等樹脂膜的結構等。
也就是說,也可以使用一個基板來形成發光元件,然後將發光元件轉置到另一個基板上。作為發光元件被轉置的基板的例子,除了上述基板之外,還可以舉出玻璃紙基板、石材基板、木材基板、布基板(包括天然纖維(絲、棉、麻)、合成纖維(尼龍、聚氨酯、聚酯)或再生纖維(醋酯纖維、銅氨纖維、人造纖維、再生聚酯)等)、皮革基板、橡膠基板等。藉由採用這些基板,可以製造不易損壞的發光元件、耐熱性高的發光元件、實現輕量化的發光元件或實現薄型化的發光元件。
另外,也可以在上述基板上例如形成場效應電晶體(FET),並且在與FET電連接的電極上製造發光元件150。由此,可以製造藉由FET控制發光元件150的驅動的主動矩陣型顯示裝置。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式4   在本實施方式中,參照圖2對具有與實施方式3所示的發光元件的結構不同的結構的發光元件進行說明。注意,在圖2中,在具有與圖1A所示的元件符號相同功能的部分,使用相同的陰影,而有時省略元件符號。此外,具有與圖1A相同的功能的部分由相同的元件符號表示,有時省略其詳細說明。
〈發光元件的結構實例2〉   圖2是發光元件250的剖面示意圖。
圖2所示的發光元件250在一對電極(電極101與電極102)之間具有多個發光單元(發光單元106和發光單元108)。多個發光單元中的一個較佳為具有與圖1A所示的EL層100同樣的結構。也就是說,圖1A所示的發光元件150較佳為具有一個發光單元,而發光元件250較佳為具有多個發光單元。注意,在發光元件250中,雖然對電極101為陽極且電極102為陰極時的情況進行說明,但是作為發光元件250的結構也可以採用與此相反的結構。
在圖2所示的發光元件250中,層疊有發光單元106和發光單元108,並且在發光單元106與發光單元108之間設置有電荷產生層115。另外,發光單元106和發光單元108可以具有相同結構或不同結構。例如,發光單元108較佳為採用與EL層100相同的結構。
發光元件250包括發光層120和發光層170。發光單元106除了發光層170之外還包括電洞注入層111、電洞傳輸層112、電子傳輸層113及電子注入層114。發光單元108除了發光層120之外還包括電洞注入層116、電洞傳輸層117、電子傳輸層118及電子注入層119。
在發光元件250中,發光單元106及發光單元108中的任一個層包含根據本發明的一個實施方式的有機化合物即可。注意,作為包含該有機化合物的層,電子傳輸層113或電子傳輸層118是較佳的,發光層120或發光層170是更佳的。
電荷產生層115既可以是對電洞傳輸性材料添加有作為電子受體的受體性物質的結構,又可以是對電子傳輸性材料添加有作為電子予體的施體性物質的結構。另外,也可以層疊這兩種結構。
當電荷產生層115包含由有機化合物與受體性物質構成的複合材料時,作為該複合材料使用可以用於實施方式3所示的電洞注入層111的複合材料即可。作為有機化合物,可以使用芳香胺化合物、咔唑化合物、芳烴、高分子化合物(低聚物、樹枝狀聚合物、聚合物等)等各種化合物。另外,作為有機化合物,較佳為使用其電洞移動率為1´10-6 cm2 /Vs以上的物質。但是,只要是其電洞傳輸性高於電子傳輸性的物質,就可以使用這些以外的物質。因為由有機化合物和受體性物質構成的複合材料具有良好的載子注入性以及載子傳輸性,所以可以實現低電壓驅動以及低電流驅動。注意,在發光單元的陽極一側的表面接觸於電荷產生層115時,電荷產生層115還可以具有該發光單元的電洞注入層或電洞傳輸層的功能,所以在該發光單元中也可以不設置電洞注入層或電洞傳輸層。或者,在發光單元的陰極一側的表面接觸於電荷產生層115時,電荷產生層115還可以具有該發光單元的電子注入層或電子傳輸層的功能,所以在該發光單元中也可以不設置電子注入層或電子傳輸層。
注意,電荷產生層115也可以是組合包含有機化合物和受體性物質的複合材料的層與由其他材料構成的層的疊層結構。例如,也可以是組合包含有機化合物和受體性物質的複合材料的層與包含選自供電子性物質中的一個化合物和高電子傳輸性的化合物的層的結構。另外,也可以是組合包含有機化合物和受體性物質的複合材料的層與包含透明導電膜的結構。
夾在發光單元106與發光單元108之間的電荷產生層115只要具有在將電壓施加到電極101和電極102之間時,將電子注入到一個發光單元且將電洞注入到另一個發光單元的結構即可。例如,在圖3A中,在以使電極101的電位高於電極102的電位的方式施加電壓時,電荷產生層115將電子注入到發光單元106且將電洞注入到發光單元108。
從光提取效率的觀點來看,電荷產生層115較佳為具有可見光透射性(明確而言,可見光的透射率為40%以上)。另外,電荷產生層115即使其導電率小於一對電極(電極101及電極102)也發揮作用。
藉由使用上述材料形成電荷產生層115,可以抑制在層疊發光層時的驅動電壓的增大。
雖然在圖2中說明了具有兩個發光單元的發光元件,但是可以將同樣的結構應用於層疊有三個以上的發光單元的發光元件。如發光元件250所示,藉由在一對電極之間以由電荷產生層將其隔開的方式配置多個發光單元,可以實現在保持低電流密度的同時還可以進行高亮度發光,並且壽命更長的發光元件。另外,還可以實現低功耗的發光元件。
另外,在上述各結構中,用於發光單元106及發光單元108的客體材料的發光顏色既可以相同又可以不同。當發光單元106和發光單元108包含具有發射相同顏色的發光的功能的客體材料時,發光元件250成為以較低的電流值呈現高發光亮度的發光元件,所以是較佳的。另外,當發光單元106和發光單元108包含發射呈現彼此不同顏色的發光的功能的客體材料時,發光元件250發射多個顏色的發光,所以是較佳的。此時,當將發光波長不同的多個發光材料用於發光層120和發光層170中的一個或兩個時,合成具有不同的發光峰值的光,因此發光元件250的發射光譜具有至少兩個極大值。
上述結構適合獲得白色發光的情況。藉由使發光層120與發光層170的光為互補色的關係,可以獲得白色發光。尤其較佳為以實現演色性高的白色發光或至少具有紅色、綠色、藍色的發光的方式選擇客體材料。
另外,在層疊三個以上的發光單元的發光元件中,用於各發光單元的客體材料的發光顏色可以相同或不同。在發光元件包括發射相同顏色的發光的多個發光單元的情況下,這些發光單元可以以比其他的顏色低的電流值獲得高發光亮度的發光顏色。這種結構適於發光顏色的調整。尤其較佳為用於使用發光效率不同且呈現不同發光顏色的客體材料的情況。例如,在設置三個發光單元的情況下,藉由設置包含呈現相同發光顏色的螢光材料的兩個發光單元及包含呈現與該螢光材料不同的發光顏色的磷光化合物的一個發光單元,可以調整螢光發光及磷光發光的發光強度。換言之,可以根據發光單元的個數調整各顏色的發光的強度。
在採用上述包括兩個螢光發光單元及一個磷光發光單元的發光元件的情況下,為了高效地獲得白色發光,較佳為採用如下結構:發光單元包括包含藍色螢光材料的兩個發光單元及包含黃色磷光化合物的一個發光單元的結構;發光單元包括包含藍色螢光材料的兩個發光單元及包含紅色磷光化合物及綠色磷光化合物的一個發光單元的結構;發光單元包括包含藍色螢光材料的兩個發光單元及包含紅色磷光化合物、黃色磷光化合物及綠色磷光化合物的一個發光單元的結構。
此外,也可以將發光層120和發光層170中的至少一個進一步分割為層狀並使各層含有不同的發光材料。也就是說,發光層120和發光層170中的至少一個也可以由兩層以上的多個層形成。例如,在從電洞傳輸層一側依次層疊第一發光層和第二發光層來形成發光層的情況下,可以將具有電洞傳輸性的材料用於第一發光層的主體材料,並且將具有電子傳輸性的材料用於第二發光層的主體材料。在此情況下,第一發光層和第二發光層所包含的發光材料也可以是相同或不同的材料。另外,第一發光層和第二發光層所包含的發光材料可以是具有發射相同顏色的發光的功能的材料,也可以是具有發射不同顏色的發光的功能的材料。藉由採用具有發射彼此不同顏色的發光的功能的多個發光材料的結構,也可以得到由三原色或四種以上的發光顏色構成的演色性高的白色發光。
另外,發光單元108的發光層較佳為包含磷光性化合物。注意,當多個單元中的至少一個單元包含本發明的一個實施方式的有機化合物時,可以提供發光效率及可靠性高的發光元件。
本實施方式可以與其他實施方式適當地組合。
實施方式5   在本實施方式中,參照圖3A及圖3B對使用實施方式3及實施方式4中說明的發光元件的發光裝置進行說明。
圖3A是示出發光裝置的俯視圖,圖3B是沿圖3A中的A-B以及C-D切割的剖面圖。該發光裝置包括以虛線表示的用來控制發光元件的發光的驅動電路部(源極一側驅動電路)601、像素部602以及驅動電路部(閘極一側驅動電路)603。另外,元件符號604是密封基板,元件符號625是乾燥劑,元件符號605是密封劑,由密封劑605圍繞的內側是空間607。
另外,引導佈線608是用來傳送輸入到源極一側驅動電路601及閘極一側驅動電路603的信號的佈線,並且從用作外部輸入端子的FPC(軟性印刷電路板)609接收視訊信號、時脈信號、啟動信號、重設信號等。另外,雖然在此只圖示FPC,但是該FPC也可以安裝有印刷線路板(PWB:Printed Wiring Board)。本說明書中的發光裝置不僅包括發光裝置主體,並且還包括安裝有FPC或PWB的發光裝置。
接下來,參照圖3B說明上述發光裝置的剖面結構。在元件基板610上形成有驅動電路部及像素部,在此示出作為驅動電路部的源極一側驅動電路601及像素部602中的一個像素。
另外,在源極一側驅動電路601中,形成組合n通道TFT623和p通道TFT624的CMOS電路。此外,驅動電路也可以使用各種CMOS電路、PMOS電路或NMOS電路形成。另外,在本實施方式中,雖然示出將驅動電路形成於基板上的驅動器一體型,但不需要必須採用該結構,也可以將驅動電路形成於外部而不形成於基板上。
此外,像素部602由包括開關用TFT611、電流控制用TFT612、電連接於該電流控制用TFT612的汲極的第一電極613的像素形成。另外,以覆蓋第一電極613的端部的方式形成有絕緣物614。絕緣物614可以使用正型光敏樹脂膜來形成。
另外,為了提高形成於絕緣物614上的膜的覆蓋率,將絕緣物614上端部或下端部形成為具有曲率的曲面。例如,在作為絕緣物614的材料使用光敏丙烯酸樹脂的情況下,較佳為僅使絕緣物614上端部具有曲面。該曲面的曲率半徑為0.2mm以上且3mm以下。此外,作為絕緣物614,可以使用負型光敏材料或正型光敏材料。
在第一電極613上形成有EL層616及第二電極617。在此,作為用作陽極的第一電極613的材料較佳為使用功函數大的材料。例如,除了ITO膜、包含矽的銦錫氧化物膜、包含2wt%以上且20wt%以下的氧化鋅的氧化銦膜、氮化鈦膜、鉻膜、鎢膜、Zn膜、Pt膜等的單層膜以外,還可以使用由氮化鈦膜和以鋁為主要成分的膜構成的疊層膜以及由氮化鈦膜、以鋁為主要成分的膜和氮化鈦膜構成的三層的疊層膜等。注意,當採用疊層結構時,佈線電阻也低,可以得到良好的歐姆接觸,並且可以將其用作陽極。
另外,EL層616藉由使用蒸鍍遮罩的蒸鍍法、噴墨法、旋塗法等各種方法形成。作為構成EL層616的材料,也可以使用低分子化合物、或者高分子化合物(包含低聚物、樹枝狀聚合物)。
另外,作為形成在EL層616上並用作陰極的第二電極617的材料,較佳為使用功函數小的材料(Al、Mg、Li、Ca、或它們的合金及化合物、MgAg、MgIn、AlLi等)。注意,當使產生在EL層616中的光透過第二電極617時,作為第二電極617較佳為使用由膜厚度減薄了的金屬薄膜和透明導電膜(ITO、包含2wt%以上且20wt%以下的氧化鋅的氧化銦、包含矽的銦錫氧化物、氧化鋅(ZnO)等)構成的疊層。
此外,發光元件618由第一電極613、EL層616、第二電極617形成。該發光元件618較佳為具有實施方式3及實施方式4所示的結構。另外,像素部包括多個發光元件,本實施方式的發光裝置也可以包括具有實施方式3及實施方式4所說明的結構的發光元件和具有其他結構的發光元件的兩者。
再者,藉由利用密封劑605將密封基板604與元件基板610貼合在一起,在由元件基板610、密封基板604及密封劑605圍繞的空間607中設置有發光元件618。另外,在空間607中填充有填充劑,除了填充有惰性氣體(氮、氬等)以外,還有時填充有樹脂或乾燥材料、或者樹脂與乾燥材料的兩者。
作為密封劑605,較佳為使用環氧類樹脂或玻璃粉。另外,這些材料較佳為儘量不使水分、氧透過的材料。此外,作為用於密封基板604的材料,除了玻璃基板、石英基板之外,還可以使用由FRP(Fiber Reinforced Plastics:玻璃纖維強化塑膠)、PVF(聚氟乙烯)、聚酯或丙烯酸樹脂等構成的塑膠基板。
藉由上述方法可以得到使用實施方式3及實施方式4中說明的發光元件的發光裝置。
〈發光裝置的結構實例1〉   在圖4A和圖4B中,作為發光裝置的一個例子示出形成有呈現白色發光的發光元件及彩色層(濾色片)的發光裝置的例子。
圖4A示出基板1001、基底絕緣膜1002、閘極絕緣膜1003、閘極電極1006、1007、1008、第一層間絕緣膜1020、第二層間絕緣膜1021、周邊部1042、像素部1040、驅動電路部1041、發光元件的第一電極1024W、1024R、1024G、1024B、分隔壁1026、EL層1028、發光元件的第二電極1029、密封基板1031、密封劑1032等。
另外,在圖4A中將彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)設置於透明基材1033上。另外,還可以設置黑色層(黑矩陣)1035。對設置有彩色層及黑色層的透明基材1033進行對準將其固定在基板1001上。此外,彩色層及黑色層由覆蓋層1036覆蓋。另外,在圖4A中,作為從EL層1028得到的光,有不透過彩色層而透射到外部的光以及透過各顏色的彩色層而透射到外部的層,不透過彩色層的光成為白色光且透過彩色層的光成為紅色光、藍色光、綠色光,因此能夠以四個顏色的像素呈現影像。
圖4B示出將紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B形成在閘極絕緣膜1003與第一層間絕緣膜1020之間的例子。如圖4B所示,也可以將彩色層設置在基板1001與密封基板1031之間。
另外,雖然作為上述說明的發光裝置採用從形成有TFT的基板1001一側取出發光的結構(底部發射型)的發光裝置,但是也可以採用從密封基板1031一側取出發光的結構(頂部發射型)的發光裝置。
〈發光裝置的結構實例2〉   圖5示出頂部發射型發光裝置的剖面圖。在此情況下,基板1001可以使用不使光透過的基板。直到製造連接TFT與發光元件的陽極的連接電極為止的製程與底部發射型發光裝置同樣地進行。然後,以覆蓋電極1022的方式形成第三層間絕緣膜1037。該絕緣膜也可以具有平坦化的功能。第三層間絕緣膜1037可以使用與第二層間絕緣膜1021相同的材料或其他各種材料形成。
雖然發光元件的下部電極1025W、下部電極1025R、下部電極1025G、下部電極1025B在這裡都為陽極,但是也可以為陰極。另外,在圖5所示的頂部發射型發光裝置中,較佳為下部電極1025W、下部電極1025R、下部電極1025G、下部電極1025B為反射電極。另外,較佳為第二電極1029具有發射光及使光透過的功能。另外,較佳為在第二電極1029與下部電極1025W、下部電極1025R、下部電極1025G、下部電極1025B間採用微腔結構,來放大特定波長的光。EL層1028的結構採用如實施方式3及實施方式4所說明那樣的結構,並且採用能夠得到白色發光的元件結構。
在圖4A、圖4B和圖5中,藉由使用多個發光層或者使用多個發光單元等來實現能夠得到白色發光的EL層的結構,即可。注意,獲得白色發光的結構不侷限於此。
在採用如圖5所示的頂部發射結構的情況下,可以使用設置有彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)的密封基板1031進行密封。可以在密封基板1031上設置有位於像素與像素之間的黑色層(黑矩陣)。彩色層(紅色彩色層1034R、綠色彩色層1034G、藍色彩色層1034B)、黑色層(黑矩陣)也可以由覆蓋層覆蓋。另外,作為密封基板1031使用具有透光性的基板。
另外,雖然在此示出了以紅色、綠色、藍色、白色的四個顏色進行全彩色顯示的例子,但並不侷限於此,也可以以紅色、綠色、藍色的三個顏色進行全彩色顯示。另外,也可以以紅色、綠色、藍色和黃色的四個顏色進行全彩色顯示。
藉由上述方法可以得到使用實施方式3及實施方式4中說明的發光元件的發光裝置。
另外,本實施方式可以與其他實施方式適當地組合。
實施方式6   在本實施方式中,說明本發明的一個實施方式的電子裝置。
因為本發明的一個實施方式是使用有機EL的發光元件,所以可以製造具有平面、發光效率高且可靠性高的電子裝置。另外,藉由本發明的一個實施方式,可以製造具有曲面、發光效率高且可靠性高的電子裝置。另外,藉由將本發明的一個實施方式的有機化合物用於該電子裝置,可以製造發光效率高且可靠性高的電子裝置。
作為電子裝置,例如可以舉出:電視機;桌上型或膝上型個人電腦;用於電腦等的顯示器;數位相機;數位攝影機;數位相框;行動電話機;可攜式遊戲機;可攜式資訊終端;音頻再生裝置;彈珠機等大型遊戲機等。
圖6A和圖6B所示的可攜式資訊終端900包括外殼901、外殼902、顯示部903及鉸鏈部905等。
外殼901與外殼902藉由鉸鏈部905連接在一起。可攜式資訊終端900可以從折疊狀態(圖6A)轉換成如圖6B所示的展開狀態。由此,攜帶時的可攜性好,並且由於具有大顯示區域,所以使用時的可見度高。
可攜式資訊終端900跨著由鉸鏈部905連接的外殼901和外殼902設置有撓性顯示部903。
可以將使用本發明的一個實施方式製造的發光裝置用於顯示部903。由此,可以以高良率製造可攜式資訊終端。
顯示部903可以顯示文件資訊、靜態影像和動態影像等中的至少一個。當在顯示部中顯示文件資訊時,可以將可攜式資訊終端900用作電子書閱讀器。
當使可攜式資訊終端900展開時,顯示部903被保持為大幅度彎曲的狀態。例如,可以以包括以1mm以上且50mm以下,較佳為5mm以上且30mm以下的曲率半徑彎曲的部分的方式保持顯示部903。顯示部903的一部分跨著外殼901和外殼902連續地配置有像素,從而能夠進行曲面顯示。
顯示部903被用作觸控面板,可以用手指或觸控筆等進行操作。
顯示部903較佳為由一個撓性顯示器構成。由此,可以跨著外殼901和外殼902進行連續的顯示。此外,外殼901和外殼902也可以分別設置有顯示器。
為了避免在使可攜式資訊終端900展開時外殼901和外殼902所形成的角度超過預定角度,鉸鏈部905較佳為具有鎖定機構。例如,鎖定角度(達到該角度時不能再繼續打開)較佳為90°以上且小於180°,典型的是,可以為90°、120°、135°、150°或175°等。由此,可以提高可攜式資訊終端900的方便性、安全性和可靠性。
當鉸鏈部905具有上述鎖定機構時,可以抑制過大的力施加到顯示部903,從而可以防止顯示部903的損壞。由此,可以實現可靠性高的可攜式資訊終端。
外殼901和外殼902也可以包括電源按鈕、操作按鈕、外部連接埠、揚聲器、麥克風等。
外殼901和外殼902中的任一個可以設置有無線通訊模組,可以藉由網際網路、局域網(LAN)、無線保真(Wi-Fi:註冊商標)等電腦網路進行資料收發。
圖6C所示的可攜式資訊終端910包括外殼911、顯示部912、操作按鈕913、外部連接埠914、揚聲器915、麥克風916、照相機917等。
可以將利用本發明的一個實施方式製造的發光裝置用於顯示部912。由此,可以以高良率製造可攜式資訊終端。
在可攜式資訊終端910中,在顯示部912中具有觸控感測器。藉由用手指或觸控筆等觸摸顯示部912可以進行打電話或輸入文字等各種操作。
另外,藉由操作按鈕913的操作,可以進行電源的ON、OFF工作或切換顯示在顯示部912上的影像的種類。例如,可以將電子郵件的編寫畫面切換為主功能表畫面。
另外,藉由在可攜式資訊終端910內部設置陀螺儀感測器或加速度感測器等檢測裝置,可以判斷可攜式資訊終端910的方向(縱向或橫向),而對顯示部912的螢幕顯示方向進行自動切換。另外,螢幕顯示方向的切換也可以藉由觸摸顯示部912、操作操作按鈕913或者使用麥克風916輸入聲音來進行。
可攜式資訊終端910例如具有選自電話機、筆記本和資訊閱讀裝置等中的一種或多種功能。明確地說,可攜式資訊終端910可以被用作智慧手機。可攜式資訊終端910例如可以執行行動電話、電子郵件、文章的閱讀及編輯、音樂播放、動畫播放、網路通訊、電腦遊戲等各種應用程式。
圖6D所示的照相機920包括外殼921、顯示部922、操作按鈕923、快門按鈕924等。另外,照相機920安裝有可裝卸的鏡頭926。
可以將利用本發明的一個實施方式製造的發光裝置用於顯示部922。由此,可以製造可靠性高的照相機。
在此,雖然照相機920具有能夠從外殼921拆卸下鏡頭926而交換的結構,但是鏡頭926和外殼921也可以被形成為一體。
藉由按下快門按鈕924,照相機920可以拍攝靜態影像或動態影像。另外,也可以使顯示部922具有觸控面板的功能,藉由觸摸顯示部922進行攝像。
另外,照相機920還可以具備另外安裝的閃光燈裝置及取景器等。另外,這些構件也可以組裝在外殼921中。
圖7A是示出手錶型可攜式資訊終端9200的立體圖,圖7B是示出手錶型可攜式資訊終端9201的立體圖。
圖7A所示的可攜式資訊終端9200可以執行行動電話、電子郵件、文章的閱讀及編輯、音樂播放、網路通訊、電腦遊戲等各種應用程式。另外,顯示部9001的顯示面彎曲,可沿著其彎曲的顯示面進行顯示。另外,可攜式資訊終端9200可以進行基於通訊標準的近距離無線通訊。例如,藉由與可進行無線通訊的耳麥相互通訊,可以進行免提通話。另外,可攜式資訊終端9200包括連接端子9006,可以藉由連接器直接與其他資訊終端進行資料的交換。另外,也可以藉由連接端子9006進行充電。另外,充電動作也可以利用無線供電進行,而不藉由連接端子9006。
圖7B所示的可攜式資訊終端9201與圖7A所示的可攜式資訊終端不同之處在於顯示部9001的顯示面不彎曲。此外,可攜式資訊終端9201的顯示部的外形為非矩形(在圖7B中為圓形狀)。
圖7C至圖7E是示出能夠折疊的可攜式資訊終端9202的立體圖。另外,圖7C是將可攜式資訊終端9202展開的狀態的立體圖,圖7D是將可攜式資訊終端9202從展開的狀態和折疊的狀態中的一個轉換成另一個時的中途的狀態的立體圖,圖7E是將可攜式資訊終端9202折疊的狀態的立體圖。
可攜式資訊終端9202在折疊狀態下可攜性好,而在展開狀態下因為具有無縫拼接較大的顯示區域所以顯示的一覽性強。可攜式資訊終端9202所包括的顯示部9001被由鉸鏈9055連結的三個外殼9000支撐。藉由鉸鏈9055使兩個外殼9000之間彎曲,可以使可攜式資訊終端9202從展開的狀態可逆性地變為折疊的狀態。例如,能夠使可攜式資訊終端9202以1mm以上且150mm以下的曲率半徑彎曲。
圖8A為示出掃地機器人的例子的示意圖。
掃地機器人5100包括頂面上的顯示器5101及側面上的多個照相機5102、刷子5103及操作按鈕5104。雖然未圖示,但是掃地機器人5100的底面設置有輪胎和吸入口等。此外,掃地機器人5100還包括紅外線感測器、超音波感測器、加速度感測器、壓電感測器、光感測器、陀螺儀感測器等各種感測器。另外,掃地機器人5100包括無線通訊單元。
掃地機器人5100可以自動行走,檢測垃圾5120,可以從底面的吸入口吸引垃圾。
另外,掃地機器人5100對照相機5102所拍攝的影像進行分析,可以判斷牆壁、家具或步階等障礙物的有無。另外,在藉由影像分析檢測佈線等可能會繞在刷子5103上的物體的情況下,可以停止刷子5103的旋轉。
可以在顯示器5101上顯示電池的剩餘電量和所吸引的垃圾的量等。另外,也可以在顯示器5101上顯示掃地機器人5100的行走路徑。另外,顯示器5101可以是觸控面板,可以將操作按鈕5104顯示在顯示器5101上。
掃地機器人5100可以與智慧手機等可攜式電子裝置5140互相通訊。照相機5102所拍攝的影像可以顯示在可攜式電子裝置5140上。因此,掃地機器人5100的擁有者在出門時也可以知道房間的情況。另外,可以使用智慧手機等可攜式電子裝置5140確認顯示器5101的顯示內容。
可以將本發明的一個實施方式的發光裝置用於顯示器5101。
圖8B所示的機器人2100包括運算裝置2110、照度感測器2101、麥克風2102、上部照相機2103、揚聲器2104、顯示器2105、下部照相機2106、障礙物感測器2107及移動機構2108。
麥克風2102具有檢測使用者的聲音及周圍的聲音等的功能。另外,揚聲器2104具有發出聲音的功能。機器人2100可以使用麥克風2102及揚聲器2104與使用者交流。
顯示器2105具有顯示各種資訊的功能。機器人2100可以將使用者所希望的資訊顯示在顯示器2105上。顯示器2105可以安裝有觸控面板。顯示器2105可以是可拆卸的資訊終端,藉由將該資訊終端設置在機器人2100的所定位置,可以進行充電及資料的收發。
上部照相機2103及下部照相機2106具有對機器人2100的周圍環境進行攝像的功能。另外,障礙物感測器2107可以檢測機器人2100使用移動機構2108移動時的前方的障礙物的有無。機器人2100可以使用上部照相機2103、下部照相機2106及障礙物感測器2107認知周囲環境而安全地移動。
可以將本發明的一個實施方式的發光裝置用於顯示器2105。
圖8C是示出護目鏡型顯示器的一個例子的圖。護目鏡型顯示器例如包括外殼5000、顯示部5001、揚聲器5003、LED燈5004、操作鍵5005(包括電源開關或操作開關)、連接端子5006、感測器5007(它具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)、麥克風5008、第二顯示部5002、支撐部5012、耳機5013等。
可以將本發明的一個實施方式的發光裝置用於顯示部5001及第二顯示部5002。
圖9A和圖9B示出可折疊的可攜式資訊終端5150。可折疊的可攜式資訊終端5150包括外殼5151、顯示區域5152及彎曲部5153。圖9A示出展開狀態的可攜式資訊終端5150。圖9B示出折疊狀態的可攜式資訊終端5150。雖然可攜式資訊終端5150具有較大的顯示區域5152,但是藉由將可攜式資訊終端5150折疊,可攜式資訊終端5150變小而可可攜性好。
可以由彎曲部5153將顯示區域5152折疊成一半。彎曲部5153由可伸縮的構件和多個支撐構件構成,在折疊時,可伸縮的構件被拉伸,以彎曲部5153具有2mm以上,較佳為5mm以上的曲率半徑的方式進行折疊。
另外,顯示區域5152也可以為安裝有觸控感測器(輸入裝置)的觸控面板(輸入/輸出裝置)。可以將本發明的一個實施方式的發光裝置用於顯示區域5152。
本實施方式可以與其他實施方式適當地組合。
實施方式7   在本實施方式中,參照圖10A至圖11說明將本發明的一個實施方式的發光元件適用於各種照明設備的情況的例子。藉由使用本發明的一個實施方式的發光元件,可以製造發光效率及可靠性高的照明設備。
藉由將本發明的一個實施方式的發光元件形成在具有撓性的基板上,能夠實現在曲面上具有發光區域的電子裝置或照明設備。
另外,還可以將應用了本發明的一個實施方式的發光元件的發光裝置適用於汽車的照明,其中該照明被設置於擋風玻璃、天花板等。
圖10A示出多功能終端3500的一個面的立體圖,圖10B示出多功能終端3500的另一個面的立體圖。在多功能終端3500中,外殼3502組裝有顯示部3504、照相機3506、照明3508等。可以將本發明的一個實施方式的發光裝置用於照明3508。
將包括本發明的一個實施方式的發光裝置的照明3508用作面光源。因此,不同於以LED為代表的點光源,能夠得到指向性低的發光。例如,在將照明3508和照相機3506組合使用的情況下,可以在使照明3508點亮或閃爍的同時使用照相機3506來進行拍攝。因為照明3508具有面光源的功能,可以獲得仿佛在自然光下拍攝般的照片。
注意,圖10A及圖10B所示的多功能終端3500與圖7A至圖7C所示的電子裝置同樣地可以具有各種各樣的功能。
另外,可以在外殼3502的內部設置揚聲器、感測器(該感測器具有測量如下因素的功能:力、位移、位置、速度、加速度、角速度、轉速、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、傾斜度、振動、氣味或紅外線)、麥克風等。另外,藉由在多功能終端3500內部設置具有陀螺儀和加速度感測器等檢測傾斜度的感測器的檢測裝置,可以判斷多功能終端3500的方向(縱或橫)而自動進行顯示部3504的螢幕顯示的切換。
另外,也可以將顯示部3504用作影像感測器。例如,藉由用手掌或手指觸摸顯示部3504,來拍攝掌紋、指紋等,能夠進行個人識別。另外,藉由在顯示部3504中設置發射近紅外光的背光或感測光源,也能夠拍攝手指靜脈、手掌靜脈等。注意,可以將本發明的一個實施方式的發光裝置適用於顯示部3504。
圖10C示出安全燈(security light)3600的立體圖。燈3600在外殼3602的外側包括照明3608,並且,外殼3602組裝有揚聲器3610等。可以將本發明的一個實施方式的發光元件用於照明3608。
燈3600例如在抓住或握住照明3608時可以進行發光。另外,可以在外殼3602的內部設置有能夠控制燈3600的發光方式的電子電路。作為該電子電路,例如可以為能夠實現一次或間歇性的多次發光的電路或藉由控制發光的電流值能夠調整發光的光量的電路。另外,也可以組裝在照明3608進行發光的同時從揚聲器3610發出很大的警報音的電路。
燈3600因為能夠向所有方向發射光,所以可以發射光或發出光和聲音來恐嚇歹徒等。另外,燈3600可以包括具有攝像功能的數碼靜態相機等照相機。
圖11是將發光元件用於室內照明設備8501的例子。另外,因為發光元件可以實現大面積化,所以也可以形成大面積的照明設備。另外,也可以藉由使用具有曲面的外殼來形成發光區域具有曲面的照明設備8502。本實施方式所示的發光元件為薄膜狀,所以外殼的設計的彈性高。因此,可以形成能夠對應各種設計的照明設備。並且,室內的牆面也可以設置有大型的照明設備8503。也可以在照明設備8501、照明設備8502、照明設備8503中設置觸控感測器,啟動或關閉電源。
另外,藉由將發光元件用於桌子的表面一側,可以提供具有桌子的功能的照明設備8504。另外,藉由將發光元件用於其他家具的一部分,可以提供具有家具的功能的照明設備。
如上所述,藉由應用本發明的一個實施方式的發光元件,能夠得到照明設備及電子裝置。注意,不侷限於本實施方式所示的照明設備及電子裝置,可以應用於各種領域的照明設備及電子裝置。
本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。 實施例1
在本實施例中,對本發明的一個實施方式的由通式(G0)表示的化合物之一的2,8-雙[3-(二苯并噻吩-4-基)苯基]-4-苯基-[1]苯并呋喃并[3,2-d]嘧啶(簡稱:4Ph-2,8mDBtP2Bfpm)(結構式(100))的合成方法以及該化合物的特性進行說明。
〈合成例1〉 〈步驟1:2,4,5-三氯-6-(5-氯-2-甲氧基苯基)嘧啶的合成〉   將26g(121mmol)的2,4,5,6-四氯嘧啶、15g(81mmol)的5-氯-2-甲氧基苯基硼酸、34g(161mmol)的磷酸三鉀、320mL的乙腈以及80mL的水放入1L三頸燒瓶中,對該燒瓶內進行脫氣及氮氣置換。對該混合物加入2.1g(8.0mmol)的三苯基膦、0.90g(4mmol)的醋酸鈀,在室溫下進行攪拌16小時。在經過指定時間後,對所得到的反應混合物進行吸引過濾,將濾液分離為水層和有機層,然後使用甲苯對水層進行萃取。混合有機層和所得到的萃取溶液,利用飽和食鹽水進行洗滌,添加無水硫酸鎂進行乾燥。對所得到的混合物進行重力過濾並濃縮濾液來得到固體。藉由快速管柱層析法對所得到的固體進行純化。作為展開溶劑,使用甲苯:己烷=1:1的混合溶劑,直到比例變為甲苯:己烷=5:1為止,一邊逐漸改變甲苯的比例一邊進行純化。濃縮所得到的餾分,而以57%的產率得到15g的目的物的白色固體。下述式(A-1)表示步驟1的合成方案。注意,進行本步驟兩次。
Figure 02_image059
〈步驟2:4-氯-2-(2,5,6-三氯嘧啶-4-基)酚的合成〉   將16g(49mmol)的在步驟1中得到的2,4,5-三氯-6-(5-氯-2-甲氧基苯基)嘧啶及180mL的二氯甲烷放入1L三頸燒瓶中,在冰浴中,冷卻該混合物。對此滴加100mL的三溴化硼(二氯甲烷溶液1mol/L),一邊將溫度上升到室溫一邊進行攪拌24小時。在經過指定時間後,將反應混合物倒入300mL的水中,在室溫下進行攪拌1小時。對所得到的混合物加入270mL的飽和碳酸氫鈉水溶液,進行中和。對水層和有機層進行分離,利用二氯甲烷對水層進行萃取。依次利用硫代硫酸鈉水溶液和飽和食鹽水對有機層和萃取溶液的混合溶液進行洗滌,對該混合溶液添加無水硫酸鎂進行乾燥。對所得到的混合物進行重力過濾,濃縮濾液,由此以91%的產率得到14g的目的物的黃色固體。下述式(A-2)表示步驟2的合成方案。
Figure 02_image061
〈步驟3:2,4,8-三氯-[1]苯并呋喃并[3,2-d]嘧啶的合成〉   將12g(38mmol)的在上述步驟2中得到的4-氯-2-(2,5,6-三氯嘧啶-4-基)酚以及370mL的二甲基乙醯胺(DMAc)放入1L三頸燒瓶中,對燒瓶內進行氬氣置換。對該混合物加入7.9g(41mmol)的2-噻吩羧酸銅,在400W、140℃的條件下,照射微波20分鐘,進行反應。在經過指定時間後,對所得到的反應混合物加入600mL的0.5M鹽酸,利用二氯甲烷對水層進行萃取。依次利用水、飽和碳酸氫鈉水溶液及飽和食鹽水對所得到的萃取溶液進行洗滌,添加無水硫酸鎂進行乾燥。對所得到的混合物進行重力過濾,濃縮濾液來得到油狀物。藉由快速管柱層析法對該油狀物進行純化。作為展開溶劑,使用二氯甲烷:己烷=1:1的混合溶劑,濃縮所得到的餾分,而以15%的產率得到1.5g的目的物的白色固體。下述式(A-3)表示步驟3的合成方案。
Figure 02_image063
〈步驟4:2,8-二氯-4-苯基-[1]苯并呋喃并[3,2-d]嘧啶的合成〉   將1.5g(5.5mmol)的在上述步驟3中得到的2,4,8-三氯-[1]苯并呋喃并[3,2-d]嘧啶、0.68g(5.5mmol)苯基硼酸、20mL的乙腈以及20mL的水放入100mL圓底燒瓶中,對燒瓶內進行氬氣置換。對該混合物添加0.18mg(0.25mmol)的雙(三苯基膦)二氯化鈀(II),在100W、65℃的條件下,照射微波1小時。在經過指定時間後,還添加34mg (0.05mmol)的雙(三苯基膦)二氯化鈀(II),在100W、65℃的條件下,照射微波30分鐘。在經過指定時間後,對所析出的固體進行吸引過濾,依次利用水和乙醇進行洗滌。藉由矽膠管柱層析法對所得到的固體進行純化。作為展開溶劑,使用甲苯:己烷=1:1的混合溶劑。濃縮所得到的餾分得到白色固體。利用己烷對該固體進行洗滌,以67%的產率得到1.2g的目的物的白色固體。下述式(A-4)表示步驟4的合成方案。
Figure 02_image065
〈步驟5:4Ph-2,8mDBtP2Bfpm的合成〉   將0.42g(1.3mmol)的在步驟4中得到的2,8-二氯-4-苯基-[1]苯并呋喃并[3,2-d]嘧啶、0.93g(3.0mmol)的3-(二苯并噻吩-4-基)苯基硼酸、1.9g(9.0mmol)的磷酸三鉀、15mL的二甘醇二甲醚、0.67g(9.0mmol)的三級丁醇放入三頸燒瓶中,對燒瓶內進行氮氣置換。將該混合物升溫到60℃,添加12mg(0.053mmol)的醋酸鈀(II)、38mg(0.11mmol)的二(1-金剛烷基)-正丁基膦,以140℃進行加熱攪拌6小時。對所得到的反應混合物加入水,對所析出的固體進行吸引過濾,依次利用水和乙醇進行洗滌。將所得到的固體溶解於甲苯,藉由依次層疊藻土和礬土而成的疊層進行吸引過濾。藉由矽膠管柱層析法對濃縮所得到的濾液而得到的固體進行純化。作為展開溶劑,使用甲苯:己烷=1:1的混合溶劑。濃縮所得到的餾分得到固體。利用甲苯/乙醇使該固體再結晶,以52%的產率得到0.52g的目的物的白色粉末。下述式(A-5)表示步驟5的合成方案。
Figure 02_image067
以下示出所得到的固體的利用核磁共振法(1 H NMR)的分析資料。
1 H-NMR d(CDCl3 ):7.44-7.51(m, 4H), 7.58-7.68(m, 8H), 7.72(t, 1H), 7.78-7.86(m, 5H), 7.90(d, 1H), 8.07(dd, 1H), 8.11(st, 1H), 8.18-8.24(m, 4H), 8.67(sd, 1H), 8.79-8.82(m, 3H), 9.12(st,1H)。
圖12A和圖12B示出所得到的固體的1 H NMR譜。圖12B為圖12A中的6.5ppm至9.5ppm的範圍的放大圖。從測量結果可知獲得了目的物4Ph-2,8mDBtP2Bfpm。
〈4Ph-2,8mDBtP2Bfpm特性〉   接著,測量出甲苯溶液中的4Ph-2,8mDBtP2Bfpm的紫外×可見吸收光譜(以下簡稱為“吸收光譜”)及發射光譜。在吸收光譜的測量中,使用紫外可見分光光度計(由日本分光株式會社製造,V550型)。在發射光譜的測量中,使用螢光分光光度計(由日本濱松光子學株式會社製造的FS920)。圖13示出所得到的甲苯溶液的吸收光譜及發射光譜的測量結果。橫軸表示波長,縱軸表示吸收強度及發光強度。
在圖13中,在333nm及356nm附近觀察到甲苯溶液中的4Ph-2,8mDBtP2Bfpm的吸收峰值,在366nm附近觀察到發光峰值。由此可知,因為本發明的一個實施方式的4Ph-2,8mDBtP2Bfpm具有高S1能階,所以可以適當地用作發光元件的主體材料。
接著,示出利用循環伏安法(CV)測量計算出4Ph-2,8mDBtP2Bfpm的HOMO能階及LUMO能階的結果。計算方法如下所示。
作為測量裝置,使用電化學分析儀(BAS株式會社(BAS Inc.)製造的ALS型號600A或600C)。以如下方法調變用於CV測量的溶液:作為溶劑,使用脫水二甲基甲醯胺(DMF)(株式會社Aldrich製造,99.8%,目錄號碼:22705-6),使作為支援電解質的過氯酸四正丁銨(n-Bu4 NClO4 )(東京化成工業株式會社(Tokyo Chemical Industry Co., Ltd.)製造,目錄號碼:T0836)以100mmol/L的濃度溶解,且使測量對象以2mmol/L的濃度溶解而調變。另外,作為工作電極使用鉑電極(BAS株式會社(BAS Inc.)製造,PTE鉑電極),作為輔助電極使用鉑電極(BAS株式會社(BAS Inc.)製造,VC-3用Pt對電極(5cm)),作為參考電極使用Ag/Ag+ 電極(BAS株式會社(BAS Inc.)製造,RE7非水溶劑型參考電極)。另外,測量在室溫(20℃至25℃)下進行。將CV測量時的掃描速度統一為0.1V/sec,測量出相對於參考電極的氧化電位Ea[V]及還原電位Ec[V]。Ea為氧化-還原波之間的中間電位,Ec為還原-氧化波之間的中間電位。在此,已知在本實施例中使用的參考電極的相對於真空能階的勢能為-4.94[eV],因此利用HOMO能階[eV]=-4.94-Ea、LUMO能階[eV]=-4.94-Ec這兩個公式分別求得HOMO能階及LUMO能階。
反復進行CV測量100次,比較第100次測量中的氧化-還原波與第1次測量中的氧化-還原波,來調查化合物的電性穩定性。
其結果表示:4Ph-2,8mDBtP2Bfpm的HOMO能階為-6.16eV且LUMO能階為-2.99eV。另外,根據氧化-還原波的反復測量中的第1次測量與第100次後測量的波形比較,可知在氧化電位Ea[V]測量中保持了88%的峰強度,由此確認到4Ph-2,8mDBtP2Bfpm的耐氧化性很高。 實施例2
在本實施例中,對包含本發明的一個實施方式的有機化合物的發光元件及對比發光元件的製造實例及該發光元件的特性進行說明。圖1A示出在本實施例中製造的發光元件的疊層結構。此外,表1示出元件結構的詳細內容。此外,以下示出在本實施例中使用的有機化合物。關於其他有機化合物可以參照實施方式或其他實施例。
Figure 02_image069
Figure 02_image071
《發光元件1的製造》   作為電極101,利用濺射法在玻璃基板上形成厚度為70nm的ITSO膜。電極101的電極面積為4mm2 (2mm´ 2mm)。接著,作為為了在基板上形成發光元件的預處理,用水洗滌基板表面,以200℃乾燥1小時,然後進行370秒的UV臭氧處理。然後,將基板放入被保持在1´10-4 Pa左右的真空度的真空蒸著裝置,以170℃進行30分鐘的焙燒。然後,將基板冷卻30分鐘左右。
接著,作為電洞注入層111,在電極101上以厚度為45nm的方式共蒸鍍DBT3P-II與氧化鉬(MoO3 ),並使重量比(DBT3P-II:MoO3 )為1:0.5。
接著,作為電洞傳輸層112,在電洞注入層111上以厚度為20nm的方式蒸鍍PCBBi1BP。
作為發光層140,在電洞傳輸層112上以厚度為40nm的方式共蒸鍍4Ph-2,8mDBtP2Bfpm、PCCP、[2-(4-甲基-5-苯基-2-吡啶基kN)苯基-kC]雙[2-(2-吡啶基kN)苯基-kC]銥(III)(簡稱:Ir(ppy)2 (mdppy)),並使重量比(4Ph-2,8mDBtP2Bfpm:PCCP:Ir(ppy)2 (mdppy))為0.6:0.4:0.1。在發光層140中,Ir(ppy)2 (mdppy)為發射磷光發光的客體材料。
接著,作為電子傳輸層118(1),在發光層140上以厚度為20nm的方式蒸鍍4Ph-2,8mDBtP2Bfpm。接著,作為電子傳輸層118(2),在電子傳輸層118(1)上以厚度為15nm的方式蒸鍍NBPhen。
接著,作為電子注入層119,在電子傳輸層118上以厚度為1nm的方式蒸鍍LiF。
接著,作為電極102,在電子注入層119上以200nm的厚度形成鋁(Al)。
接著,在氮氛圍的手套箱內,使用密封劑將與形成有發光元件的玻璃基板不同的基板(對向基板)固定到形成有發光元件的玻璃基板上來密封發光元件1。具體地,向對向基板黏貼乾燥劑,然後貼合形成有發光元件的範圍周邊塗佈了密封劑的該對向基板和形成有發光元件的玻璃基板,並以6J/cm2 照射波長為365nm的紫外光,在80℃下進行1小時的熱處理。藉由上述製程得到發光元件1。
《對比發光元件2的製造》   在對比發光元件2的製程中,只有發光層140及電子傳輸層118的製程與上述發光元件1的製程不同,其他製程與發光元件1相同,因此省略詳細的說明。關於元件結構的詳細內容可以參照圖1A及表1。
本發明的一個實施方式的發光元件1使用本發明的一個實施方式的有機化合物,該有機化合物具有苯并呋喃并[3,2-d]嘧啶骨架,在該骨架的2位具有取代基,苯環一側(6至9位)具有至少一個取代基。另一方面,對比發光元件2使用一種有機化合物,該有機化合物具有苯并呋喃并[3,2-d]嘧啶骨架,在該骨架的4位具有取代基,在苯環一側(6至9位)具有至少一個取代基。
〈發光元件的特性〉   接著,測量以上製造的發光元件1及對比發光元件2的特性。在亮度及CIE色度的測量中,利用色亮度計(由Topcon Technohouse公司製造的BM-5A)。在電致發射光譜的測量中,利用多通道光譜分析儀(由日本濱松光子學株式會社製造的PMA-11)。
圖14示出發光元件1及對比發光元件2的電流效率-亮度特性。圖15示出電流密度-電壓特性。圖16示出外部量子效率-亮度特性。在室溫(保持為23℃的氛圍)下測量各發光元件的特性。
另外,表2示出1000cd/m2 附近的發光元件1及對比發光元件2的元件特性。
Figure 02_image073
此外,圖17示出以2.5mA/cm2 的電流密度使電流流過發光元件1及對比發光元件2時的電致發射光譜。
如圖14、圖16及表2所示,發光元件1及對比發光元件2具有較高的電流效率及外部量子效率。發光元件1具有比對比發光元件2高的電流效率及外部量子效率。在此,作為客體材料的Ir(ppy)2 (mdppy)的HOMO能階低,亦即為-5.31eV,因此有時與作為主體材料的4Ph-2,8mDBtP2Bfpm或4,8mDBtP2Bfpm形成激態錯合物。當客體材料與主體材料形成激態錯合物時,有助於發光的概率變低,而降低發光元件的發光效率。因此主體材料和客體材料的組合較佳為不形成激態錯合物的組合。在此,用於對比發光元件2的有機化合物4,8mDBtP2Bfpm的LUMO能階為-3.02eV。另一方面,用於發光元件1的本發明的一個實施方式的有機化合物4Ph-2,8mDBtP2Bfpm的LUMO能階為 -2.99eV,亦即比4,8mDBtP2Bfpm高。有LUMO能階較低的化合物容易與客體材料形成激態錯合物的趨勢。因此,本發明的一個實施方式的有機化合物不容易與客體材料形成激態錯合物,所以可以製造發光效率高的發光元件。
由圖15及表2可知,發光元件1及對比發光元件2的驅動電壓良好。
此外,如圖17所示,發光元件1和對比發光元件2的電致發射光譜分別在523nm和525nm附近具有光譜峰值,它們的半峰全寬分別為69nm和71nm,發光元件1及對比發光元件2發射來源於各自包含的客體材料的良好的綠色光。
以上,可知藉由將本發明的一個實施方式的化合物用於發光層,可以製造發光效率高且驅動電壓低的發光元件。
100‧‧‧EL層101‧‧‧電極102‧‧‧電極106‧‧‧發光單元108‧‧‧發光單元111‧‧‧電洞注入層112‧‧‧電洞傳輸層113‧‧‧電子傳輸層114‧‧‧電子注入層115‧‧‧電荷產生層116‧‧‧電洞注入層117‧‧‧電洞傳輸層118‧‧‧電子傳輸層119‧‧‧電子注入層120‧‧‧發光層140‧‧‧發光層141‧‧‧主體材料141_1‧‧‧有機化合物141_2‧‧‧有機化合物142‧‧‧客體材料150‧‧‧發光元件170‧‧‧發光層250‧‧‧發光元件601‧‧‧源極一側驅動電路602‧‧‧像素部603‧‧‧閘極一側驅動電路604‧‧‧密封基板605‧‧‧密封劑607‧‧‧空間608‧‧‧引導佈線610‧‧‧元件基板611‧‧‧開關用TFT612‧‧‧電流控制用TFT613‧‧‧電極614‧‧‧絕緣物616‧‧‧EL層617‧‧‧電極618‧‧‧發光元件623‧‧‧n通道TFT624‧‧‧p通道TFT900‧‧‧可攜式資訊終端901‧‧‧外殼902‧‧‧外殼903‧‧‧顯示部905‧‧‧鉸鏈部910‧‧‧可攜式資訊終端911‧‧‧外殼912‧‧‧顯示部913‧‧‧操作按鈕914‧‧‧外部連接埠915‧‧‧揚聲器916‧‧‧麥克風917‧‧‧照相機920‧‧‧照相機921‧‧‧外殼922‧‧‧顯示部923‧‧‧操作按鈕924‧‧‧快門按鈕926‧‧‧鏡頭1001‧‧‧基板1002‧‧‧基底絕緣膜1003‧‧‧閘極絕緣膜1006‧‧‧閘極電極1007‧‧‧閘極電極1008‧‧‧閘極電極1020‧‧‧層間絕緣膜1021‧‧‧層間絕緣膜1022‧‧‧電極1024B‧‧‧電極1024G‧‧‧電極1024R‧‧‧電極1024W‧‧‧電極1025B‧‧‧下部電極1025G‧‧‧下部電極1025R‧‧‧下部電極1025W‧‧‧下部電極1026‧‧‧分隔壁1028‧‧‧EL層1029‧‧‧電極1031‧‧‧密封基板1032‧‧‧密封劑1033‧‧‧基材1034B‧‧‧彩色層1034G‧‧‧彩色層1034R‧‧‧彩色層1035‧‧‧黑色層1036‧‧‧保護層1037‧‧‧層間絕緣膜1040‧‧‧像素部1041‧‧‧驅動電路部1042‧‧‧周邊部2100‧‧‧機器人2101‧‧‧照度感測器2102‧‧‧麥克風2103‧‧‧上部照相機2104‧‧‧揚聲器2105‧‧‧顯示器2106‧‧‧下部照相機2107‧‧‧障礙物感測器2108‧‧‧移動機構2110‧‧‧運算裝置3500‧‧‧多功能終端3502‧‧‧外殼3504‧‧‧顯示部3506‧‧‧照相機3508‧‧‧照明3600‧‧‧燈3602‧‧‧外殼3608‧‧‧照明3610‧‧‧揚聲器5000‧‧‧外殼5001‧‧‧顯示部5002‧‧‧第二顯示部5003‧‧‧揚聲器5004‧‧‧LED燈5005‧‧‧操作鍵5006‧‧‧連接端子5007‧‧‧感測器5008‧‧‧麥克風5012‧‧‧支撐部5013‧‧‧耳機5100‧‧‧掃地機器人5101‧‧‧顯示器5102‧‧‧照相機5103‧‧‧刷子5104‧‧‧操作按鈕5120‧‧‧垃圾5140‧‧‧可攜式電子裝置5150‧‧‧可攜式資訊終端5151‧‧‧外殼5152‧‧‧顯示區域5153‧‧‧彎曲部8501‧‧‧照明設備8502‧‧‧照明設備8503‧‧‧照明設備8504‧‧‧照明設備9000‧‧‧外殼9001‧‧‧顯示部9006‧‧‧連接端子9055‧‧‧鉸鏈9200‧‧‧可攜式資訊終端9201‧‧‧可攜式資訊終端9202‧‧‧可攜式資訊終端
在圖式中:   圖1A至圖1C是本發明的一個實施方式的發光元件的示意圖及說明發光層中的能階相關的圖;   圖2是本發明的一個實施方式的發光元件的示意圖;   圖3A和圖3B是本發明的一個實施方式的主動矩陣型發光裝置的示意圖;   圖4A和圖4B是本發明的一個實施方式的主動矩陣型發光裝置的示意圖;   圖5是本發明的一個實施方式的主動矩陣型發光裝置的示意圖;   圖6A至圖6D是示出本發明的一個實施方式的電子裝置的圖;   圖7A至圖7E是示出本發明的一個實施方式的電子裝置的圖;   圖8A至圖8C是示出本發明的一個實施方式的電子裝置的圖;   圖9A和圖9B是示出本發明的一個實施方式的電子裝置的圖;   圖10A至圖10C是示出本發明的一個實施方式的照明設備的圖;   圖11是示出本發明的一個實施方式的照明設備的圖;   圖12A和圖12B示出有關實施例的化合物的NMR譜;   圖13示出有關實施例的化合物的吸收光譜及發射光譜;   圖14是示出有關實施例的發光元件的電流效率-亮度特性的圖;   圖15是示出有關實施例的發光元件的電流密度-電壓特性的圖;   圖16是示出有關實施例的發光元件的外部量子效率-亮度特性的圖;   圖17示出有關實施例的發光元件的電致發射光譜。
100‧‧‧EL層
101‧‧‧電極
102‧‧‧電極
111‧‧‧電洞注入層
112‧‧‧電洞傳輸層
118‧‧‧電子傳輸層
119‧‧‧電子注入層
140‧‧‧發光層

Claims (12)

  1. 一種由通式(G0)表示的有機化合物,
    Figure 107120096-A0305-02-0130-1
    其中,在通式(G0)中:X表示氧或硫;A1及A2分別獨立地表示取代或未取代的碳原子數為6至30的芳烴基或者取代或未取代的碳原子數為3至30的芳雜烴基;Ar表示取代或未取代的碳原子數為6至25的伸芳基;R1至R4分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基;n是0至4的整數;l是1至4的整數;以及該有機化合物至少包含一個氧原子及一個硫原子。
  2. 一種由通式(G1)表示的有機化合物,
    Figure 107120096-A0305-02-0131-2
    其中,在通式(G1)中:X表示氧或硫;Ar表示取代或未取代的碳原子數為6至25的伸芳基;R1至R4分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基;n是0至4的整數;l是1至4的整數;以及Ht1及Ht2分別獨立地表示取代或未取代的稠合芳雜環,其中該稠合芳雜環包含咔唑骨架、二苯并呋喃骨架和二苯并噻吩骨架中的任一個或多個,其中該稠合芳雜環的碳原子數為12至30;以及其中該有機化合物至少包含一個氧原子及一個硫原子。
  3. 根據申請專利範圍第2項之有機化合物,其中該有機化合物由通式(G2)表示,
    Figure 107120096-A0305-02-0132-4
  4. 根據申請專利範圍第2項之有機化合物,其中該有機化合物由通式(G3)表示,
    Figure 107120096-A0305-02-0132-5
  5. 根據申請專利範圍第2項之有機化合物,其中該Ht1及該Ht2分別獨立地表示由通式(Ht-1)至(Ht-4)表示的基團中的任一個:
    Figure 107120096-A0305-02-0132-6
    在通式(Ht-1)至(Ht-4)中: R5至R13分別獨立地表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基、取代或未取代的碳原子數為6至25的芳基或者取代或未取代的碳原子數為12至30的芳雜烴基。
  6. 根據申請專利範圍第5項之有機化合物,其中R5至R8彼此鍵合而形成飽和環或者不飽和環,或者,R9至R12彼此鍵合而形成飽和環或者不飽和環。
  7. 根據申請專利範圍第2項之有機化合物,其中該有機化合物由通式(G4)表示,
    Figure 107120096-A0305-02-0133-7
    其中,在通式(G4)中:X、Z1及Z2分別獨立地表示氧或硫;並且R1表示氫、碳原子數為1至6的烷基、取代或未取代的碳原子數為3至7的環烷基或者取代或未取代的碳原子數為6至25的芳基。
  8. 根據申請專利範圍第7項之有機化合物,其中該有機化合物由結構式(100)表示,
    Figure 107120096-A0305-02-0134-8
  9. 一種包括申請專利範圍第2項之有機化合物的發光元件。
  10. 一種顯示裝置,包括:申請專利範圍第9項之發光元件;以及濾色片和電晶體中的至少一個。
  11. 一種電子裝置,包括:申請專利範圍第10項之顯示裝置;以及外殼和觸控感測器中的至少一個。
  12. 一種照明設備,包括:申請專利範圍第9項之發光元件;以及外殼和觸控感測器中的至少一個。
TW107120096A 2017-06-23 2018-06-12 有機化合物、發光元件、發光裝置、電子裝置及照明設備 TWI787279B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-123227 2017-06-23
JP2017123227 2017-06-23

Publications (2)

Publication Number Publication Date
TW201905165A TW201905165A (zh) 2019-02-01
TWI787279B true TWI787279B (zh) 2022-12-21

Family

ID=64737058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107120096A TWI787279B (zh) 2017-06-23 2018-06-12 有機化合物、發光元件、發光裝置、電子裝置及照明設備

Country Status (6)

Country Link
US (1) US11456424B2 (zh)
JP (1) JP7106366B2 (zh)
KR (1) KR102645515B1 (zh)
CN (1) CN110785421A (zh)
TW (1) TWI787279B (zh)
WO (1) WO2018234932A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI766884B (zh) * 2016-09-30 2022-06-11 德商麥克專利有限公司 具有二氮雜二苯并呋喃或二氮雜二苯并噻吩結構的化合物、其製法及其用途
JP2019006763A (ja) * 2017-06-22 2019-01-17 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、および照明装置
DE112020000691T5 (de) * 2019-02-06 2021-10-21 Semiconductor Energy Laboratory Co., Ltd. Licht emittierende Vorrichtung, Licht emittierende Einrichtung, elektronisches Gerät, Anzeigevorrichtung und Beleuchtungsvorrichtung
JP6827135B2 (ja) * 2019-03-29 2021-02-10 住友化学株式会社 発光素子及び発光素子用組成物
US20210036244A1 (en) * 2019-08-01 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
WO2021191720A1 (ja) * 2020-03-27 2021-09-30 株式会社半導体エネルギー研究所 発光デバイス用組成物、発光デバイス、発光装置、電子機器、および照明装置
CN114075210B (zh) * 2020-08-13 2023-02-24 上海和辉光电股份有限公司 一种电子传输材料及有机电致发光器件
US20230389344A1 (en) 2020-09-24 2023-11-30 Merck Patent Gmbh Organic electroluminescent device
TW202231838A (zh) 2020-10-27 2022-08-16 德商麥克專利有限公司 有機電致發光裝置
KR20230162073A (ko) 2021-03-30 2023-11-28 메르크 파텐트 게엠베하 유기 전계 발광 디바이스
WO2023052377A1 (de) 2021-09-30 2023-04-06 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201527302A (zh) * 2013-09-11 2015-07-16 Tosoh Corp 苯并噻吩嘧啶化合物、其製造方法及含有此化合物之有機電場發光元件

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4037033B2 (ja) 2000-03-31 2008-01-23 パイオニア株式会社 有機エレクトロルミネッセンス素子
TW200541401A (en) 2004-02-13 2005-12-16 Idemitsu Kosan Co Organic electroluminescent device
JP4844641B2 (ja) 2009-03-12 2011-12-28 ソニー株式会社 表示装置及びその駆動方法
JP5604848B2 (ja) 2009-10-19 2014-10-15 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
US10570113B2 (en) * 2010-04-09 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Aromatic amine derivative, light-emitting element, light-emitting device, electronic device, and lighting device
KR102004629B1 (ko) 2010-08-20 2019-07-26 유니버셜 디스플레이 코포레이션 Oled를 위한 바이카르바졸 화합물
JP5938175B2 (ja) 2011-07-15 2016-06-22 出光興産株式会社 含窒素芳香族複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
US20140131665A1 (en) 2012-11-12 2014-05-15 Universal Display Corporation Organic Electroluminescent Device With Delayed Fluorescence
WO2014157599A1 (en) 2013-03-26 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, compound, organic compound, display module, lighting module, light-emitting device, display device, lighting device, and electronic device
US9553274B2 (en) 2013-07-16 2017-01-24 Universal Display Corporation Organic electroluminescent materials and devices
US9324949B2 (en) 2013-07-16 2016-04-26 Universal Display Corporation Organic electroluminescent materials and devices
CN105849112A (zh) 2014-01-14 2016-08-10 三星Sdi株式会社 缩合环化合物以及含有其的有机发光元件
US9755159B2 (en) 2014-01-23 2017-09-05 Universal Display Corporation Organic materials for OLEDs
JP2015151352A (ja) * 2014-02-13 2015-08-24 国立大学法人山形大学 ベンゾフロピリミジン誘導体、それよりなるホスト材料及びそれを用いた有機エレクトロルミネッセンス素子
US9502656B2 (en) 2014-02-24 2016-11-22 Universal Display Corporation Organic electroluminescent materials and devices
JP6378106B2 (ja) * 2014-04-16 2018-08-22 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子および電子機器
JP6500340B2 (ja) * 2014-04-18 2019-04-17 東ソー株式会社 ベンゾフロピリミジン化合物、その製造方法、及びその用途
KR102208859B1 (ko) 2014-05-21 2021-01-28 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JP2016056169A (ja) * 2014-09-05 2016-04-21 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP6538504B2 (ja) 2014-09-30 2019-07-03 株式会社半導体エネルギー研究所 有機金属錯体、発光素子、発光装置、電子機器、及び照明装置
KR101842584B1 (ko) 2015-02-13 2018-03-27 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자 및 표시 장치
JP6846876B2 (ja) 2015-05-12 2021-03-24 株式会社半導体エネルギー研究所 化合物、発光素子、ディスプレイモジュール、照明モジュール、発光装置、表示装置、照明装置、及び電子機器
KR20160140393A (ko) 2015-05-29 2016-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기 및 조명 장치
CN110600635A (zh) 2015-05-29 2019-12-20 株式会社半导体能源研究所 发光元件、发光装置、显示装置、电子设备以及照明装置
CN113292572A (zh) * 2015-09-04 2021-08-24 株式会社半导体能源研究所 化合物、发光元件、显示装置、电子设备及照明装置
KR20180095919A (ko) * 2015-12-25 2018-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 화합물, 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
KR101941154B1 (ko) * 2016-08-23 2019-01-23 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
TWI766884B (zh) * 2016-09-30 2022-06-11 德商麥克專利有限公司 具有二氮雜二苯并呋喃或二氮雜二苯并噻吩結構的化合物、其製法及其用途
KR20240033302A (ko) * 2016-09-30 2024-03-12 메르크 파텐트 게엠베하 디아자디벤조푸란 또는 디아자디벤조티오펜 구조를 갖는 카르바졸
KR102122340B1 (ko) 2016-12-02 2020-06-12 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
KR102616441B1 (ko) 2016-12-23 2023-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP2018127402A (ja) 2017-02-06 2018-08-16 国立大学法人山形大学 新規なベンゾフロピリミジン化合物、及びそれを用いた有機el素子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201527302A (zh) * 2013-09-11 2015-07-16 Tosoh Corp 苯并噻吩嘧啶化合物、其製造方法及含有此化合物之有機電場發光元件

Also Published As

Publication number Publication date
KR102645515B1 (ko) 2024-03-07
TW201905165A (zh) 2019-02-01
US11456424B2 (en) 2022-09-27
CN110785421A (zh) 2020-02-11
WO2018234932A1 (en) 2018-12-27
JP7106366B2 (ja) 2022-07-26
JP2019006768A (ja) 2019-01-17
US20210151689A1 (en) 2021-05-20
KR20200019709A (ko) 2020-02-24

Similar Documents

Publication Publication Date Title
TWI787279B (zh) 有機化合物、發光元件、發光裝置、電子裝置及照明設備
JP7257952B2 (ja) 電子デバイス、表示装置、電子機器、及び照明装置
JP7353440B2 (ja) 化合物
TW202137600A (zh) 發光元件、顯示裝置、電子裝置及照明裝置
WO2019229583A1 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7354387B2 (ja) 発光素子、表示装置、電子機器及び照明装置
TWI791649B (zh) 發光元件、顯示裝置、電子裝置、及照明裝置
JP2018104413A (ja) 有機化合物、発光素子、発光装置、電子機器、及び照明装置
WO2019229584A1 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
TW202030303A (zh) 發光元件、發光機器、顯示裝置、電子機器及照明裝置
US11555030B2 (en) Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
KR20220002337A (ko) 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
JP2018104359A (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7382936B2 (ja) 有機金属錯体、発光素子、発光装置、電子機器、および照明装置
JP2023041743A (ja) 有機化合物および発光素子
WO2020058811A1 (ja) 有機化合物、発光デバイス、発光装置、電子機器、および照明装置
WO2018154408A1 (ja) 発光素子、発光装置、電子機器、および照明装置