WO2019229583A1 - 有機化合物、発光素子、発光装置、電子機器、および照明装置 - Google Patents

有機化合物、発光素子、発光装置、電子機器、および照明装置 Download PDF

Info

Publication number
WO2019229583A1
WO2019229583A1 PCT/IB2019/054166 IB2019054166W WO2019229583A1 WO 2019229583 A1 WO2019229583 A1 WO 2019229583A1 IB 2019054166 W IB2019054166 W IB 2019054166W WO 2019229583 A1 WO2019229583 A1 WO 2019229583A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
group
carbon atoms
emitting element
substituted
Prior art date
Application number
PCT/IB2019/054166
Other languages
English (en)
French (fr)
Inventor
瀬尾哲史
渡部智美
吉住英子
木戸裕允
佐々木俊毅
長坂顕
河野優太
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to US17/058,435 priority Critical patent/US20210363151A1/en
Priority to JP2020521633A priority patent/JP7203839B2/ja
Priority to CN201980036626.9A priority patent/CN112204033B/zh
Priority to KR1020207034387A priority patent/KR20210015825A/ko
Publication of WO2019229583A1 publication Critical patent/WO2019229583A1/ja
Priority to JP2022209874A priority patent/JP7441297B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/048Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • H10K50/131OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit with spacer layers between the electroluminescent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

新規の有機化合物であるベンゾフロピリミジン誘導体またはベンゾチエノピリミジン誘導体を提供 する。 下記一般式(G1)で表される有機化合物である。 なお、一般式(G1)において、Qは酸素または硫黄を表す。Ar1、Ar2、Ar3、およびAr 4はそれぞれ独立に、 置換もしくは無置換の芳香族炭化水素環を表し、 前記芳香族炭化水素環の置換 基は、 炭素数1乃至6のアルキル基、 または炭素数1乃至6のアルコキシ基、 または炭素数5乃至7 の単環式飽和炭化水素基、 または炭素数7乃至10の多環式飽和炭化水素基、 またはシアノ基のいず れか一であり、 前記芳香族炭化水素環を形成する炭素数は6以上25以下である。 また、 mおよびn はそれぞれ0または1である。また、Aは総炭素数12乃至100の基であり、かつ、ベンゼン環、 ナフタレン環、 フルオレン環、 フェナントレン環、 トリフェニレン環、 ジベンゾチオフェン環を含む 複素芳香環、 ジベンゾフラン環を含む複素芳香環、 カルバゾール環を含む複素芳香環、 ベンゾイミダ ゾール環、トリフェニルアミン構造のいずれか一または複数を有する。

Description

有機化合物、発光素子、発光装置、電子機器、および照明装置
本発明の一態様は、有機化合物、発光素子、発光装置、電子機器、および照明装置に関する。但し、本発明の一態様は、上記の技術分野に限定されない。すなわち、本発明の一態様は、物、方法、製造方法、または駆動方法に関する。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。また、具体的には、半導体装置、表示装置、液晶表示装置などを一例として挙げることができる。
一対の電極間にEL層を挟んでなる発光素子(有機EL素子ともいう)は、薄型軽量、入力信号に対する高速な応答性、低消費電力などの特性を有することから、これらを適用したディスプレイは、次世代のフラットパネルディスプレイとして注目されている。
発光素子は、一対の電極間に電圧を印加することにより、各電極から注入された電子およびホールがEL層において再結合し、EL層に含まれる発光物質(有機化合物)が励起状態となり、その励起状態が基底状態に戻る際に発光する。なお、励起状態の種類としては、一重項励起状態(S)と三重項励起状態(T)とがあり、一重項励起状態からの発光が蛍光、三重項励起状態からの発光が燐光と呼ばれている。また、発光素子におけるそれらの統計的な生成比率は、S:T=1:3であると考えられている。発光物質から得られる発光スペクトルはその発光物質特有のものであり、異なる種類の有機化合物を発光物質として用いることによって、様々な発光色の発光素子を得ることができる。
この様な発光素子に関しては、その素子特性を向上させる為に、素子構造の改良や材料開発等が盛んに行われている(例えば、特許文献1参照。)。
特開2010−182699号公報
そこで、本発明の一態様では、新規の有機化合物を提供する。また、本発明の別の一態様では、新規の有機化合物であるベンゾフロピリミジン誘導体またはベンゾチエノピリミジン誘導体を提供する。また、本発明の一態様では、発光素子に用いることができる新規な有機化合物を提供する。また、本発明の一態様では、発光素子のEL層に用いることができる、新規な有機化合物を提供する。また、本発明の一態様である新規な有機化合物を用いた信頼性の高い新規な発光素子を提供する。また、新規な発光装置、新規な電子機器、または新規な照明装置を提供する。なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、ベンゾフロピリミジン誘導体またはベンゾチエノピリミジン誘導体であり、下記一般式(G1)で表される有機化合物である。また、下記一般式(G1)で表されるようにベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格の8位に芳香族炭化水素環が複数連結(具体的には2乃至4個の芳香族炭化水素環が連結)した構造を有する。
Figure JPOXMLDOC01-appb-C000009
上記一般式(G1)において、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、Aは総炭素数12乃至100の基であり、かつ、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、トリフェニレン環、ジベンゾチオフェン環を含む複素芳香環、ジベンゾフラン環を含む複素芳香環、カルバゾール環を含む複素芳香環、ベンゾイミダゾール環、トリフェニルアミン構造のいずれか一または複数を有する。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。
また、本発明の別の一態様は、ベンゾフロピリミジン誘導体またはベンゾチエノピリミジン誘導体であり、下記一般式(G2)で表される有機化合物である。また、下記一般式(G2)で表されるようにベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格の8位に芳香族炭化水素環が複数連結(具体的には2乃至4個の芳香族炭化水素環が連結)した構造を有し、4位に少なくとも正孔輸送性を有する骨格を有する。
Figure JPOXMLDOC01-appb-C000010
上記一般式(G2)において、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArは同一の基を表し、それぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、αは置換もしくは無置換のフェニレン基を表し、tは0乃至4の整数を表す。また、Htuniは正孔輸送性を有する骨格を表す。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。
また、本発明の別の一態様は、ベンゾフロピリミジン誘導体またはベンゾチエノピリミジン誘導体であり、下記一般式(G3)で表される有機化合物である。また、下記一般式(G3)で表されるようにベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格の8位に芳香族炭化水素環が複数連結(具体的には2乃至4個の芳香族炭化水素環が連結)した構造を有し、4位にフェニレン基を介して正孔輸送性を有する骨格を有する。
Figure JPOXMLDOC01-appb-C000011
上記一般式(G3)において、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、Htuniは正孔輸送性を有する骨格を表す。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。
また、本発明の別の一態様は、ベンゾフロピリミジン誘導体またはベンゾチエノピリミジン誘導体であり、下記一般式(G4)で表される有機化合物である。また、下記一般式(G4)で表されるようにベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格の8位に芳香族炭化水素環が複数連結(具体的には2乃至4個の芳香族炭化水素環が連結)した構造を有し、4位にビフェニルジイル基を介して正孔輸送性を有する骨格を有する。
Figure JPOXMLDOC01-appb-C000012
上記一般式(G4)において、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、Htuniは正孔輸送性を有する骨格を表す。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。
なお、上記各構成において、上記一般式(G2)、(G3)、および(G4)中のHtuniは、それぞれ独立にピロール環構造、フラン環構造、またはチオフェン環構造のいずれか一を有する。
また、上記各構成において、上記一般式(G2)、(G3)、および(G4)中のHtuniは、それぞれ独立に下記一般式(Ht−1)~(Ht−26)のいずれか一である。
Figure JPOXMLDOC01-appb-C000013
なお、上記一般式(Ht−1)乃至一般式(Ht−26)において、Qは酸素または硫黄を表す。また、R~R71はそれぞれ1乃至4の置換基を表し、かつそれぞれ独立に水素、炭素数1~6のアルキル基、置換もしくは無置換のフェニル基のいずれか一を表す。また、Arは、置換もしくは無置換の炭素数6乃至13のアリール基を表す。
上記各構成において、上記一般式(G1)、(G2)、(G3)、および(G4)中のAr、Ar、Ar、およびArがそれぞれ独立に、置換もしくは無置換のベンゼン環またはナフタレン環である。
また、上記各構成において、上記一般式(G1)、(G2)、(G3)、および(G4)中の、Ar、Ar、Ar、およびArが同一である。
また、上記各構成において、上記一般式(G1)、(G2)、(G3)、および(G4)中の、Ar、Ar、Ar、およびArが無置換である。
また、上記各構成において、上記一般式(G1)、(G2)、(G3)、および(G4)中の部分構造である下記一般式(G−X)は、下記構造式(G−X−p1)~(G−X−p12)および(G−X−n1)~(G−X−n6)のいずれか一で表される。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
また、本発明の別の一態様は、構造式(100)、(101)、または(102)のいずれか一で表される有機化合物である。
Figure JPOXMLDOC01-appb-C000016
なお、本発明の別の一態様は、上述した本発明の一態様である有機化合物を用いた発光素子である。また、上記有機化合物に加えてゲスト材料を有する発光素子も本発明に含める。また、上記有機化合物に加えて燐光材料を有する発光素子も本発明に含める。さらに、上記有機化合物に加えて燐光材料と、カルバゾール誘導体と、を有する発光素子も本発明に含める。なお、カルバゾール誘導体は、ビカルバゾール誘導体またはカルバゾリル基を有する芳香族アミンを含む。
本発明の別の一態様は、上述した本発明の一態様である有機化合物を用いた発光素子である。なお、一対の電極間に有するEL層や、EL層に含まれる発光層に本発明の一態様である有機化合物を用いて形成された発光素子も本発明に含まれることとする。また、上記発光素子に加え、電極と接して有機化合物を有する層(例えばキャップ層)を有する場合も発光素子に含め、本発明に含まれることとする。また、発光素子に加えて、トランジスタ、基板などを有する発光装置も発明の範疇に含める。さらに、これらの発光装置に加えて、マイク、カメラ、操作用ボタン、外部接続部、筐体、カバー、支持台または、スピーカ等を有する電子機器や照明装置も発明の範疇に含める。
また、本発明の一態様は、発光素子を有する発光装置を含み、さらに発光装置を有する照明装置も範疇に含めるものである。従って、本明細書中における発光装置とは、画像表示デバイス、または光源(照明装置含む)を指す。また、発光装置に、例えばFPC(Flexible printed circuit)もしくはTCP(Tape Carrier Package)等のコネクターが取り付けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、または発光素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも全て発光装置に含むものとする。
本発明の一態様では、新規の有機化合物を提供することができる。また、本発明の別の一態様では、新規の有機化合物であるベンゾフロピリミジン誘導体またはベンゾチエノピリミジン誘導体を提供することができる。また、本発明の一態様では、発光素子に用いることができる新規な有機化合物を提供することができる。また、本発明の一態様では、発光素子のEL層に用いることができる、新規な有機化合物を提供することができる。また、本発明の一態様である新規な有機化合物を用いることで信頼性の高い新規な発光素子を提供することができる。また、新規な発光装置、新規な電子機器、または新規な照明装置を提供することができる。
発光素子の構造について説明する図。 発光装置について説明する図。 発光装置について説明する図。 電子機器について説明する図。 電子機器について説明する図。 自動車について説明する図。 照明装置について説明する図。 構造式(100)に示す有機化合物のH−NMRチャート。 (A)構造式(100)に示す有機化合物のトルエン溶液中の紫外・可視吸収スペクトル及び発光スペクトル。(B)構造式(100)に示す有機化合物の固体薄膜の紫外・可視吸収スペクトル及び発光スペクトル。 構造式(101)に示す有機化合物のH−NMRチャート。 (A)構造式(101)に示す有機化合物のトルエン溶液中の紫外・可視吸収スペクトル及び発光スペクトル。(B)構造式(101)に示す有機化合物の固体薄膜の紫外・可視吸収スペクトル及び発光スペクトル。 構造式(102)に示す有機化合物のH−NMRチャート。 (A)構造式(102)に示す有機化合物のトルエン溶液中の紫外・可視吸収スペクトル及び発光スペクトル。(B)構造式(102)に示す有機化合物の固体薄膜の紫外・可視吸収スペクトル及び発光スペクトル。 発光素子について説明する図。 発光素子1、比較発光素子2、および比較発光素子3の電流密度−輝度特性を示す図。 発光素子1、比較発光素子2、および比較発光素子3の電圧−輝度特性を示す図。 発光素子1、比較発光素子2、および比較発光素子3の輝度−電流効率特性を示す図。 発光素子1、比較発光素子2、および比較発光素子3の電圧−電流特性を示す図。 発光素子1、比較発光素子2、および比較発光素子3の発光スペクトルを示す図。 発光素子1、比較発光素子2、および比較発光素子3の信頼性を示す図。 発光素子4、発光素子5、比較発光素子6、および比較発光素子7の電流密度−輝度特性を示す図。 発光素子4、発光素子5、比較発光素子6、および比較発光素子7の電圧−輝度特性を示す図。 発光素子4、発光素子5、比較発光素子6、および比較発光素子7の輝度−電流効率特性を示す図。 発光素子4、発光素子5、比較発光素子6、および比較発光素子7の電圧−電流特性を示す図。 発光素子4、発光素子5、比較発光素子6、および比較発光素子7の発光スペクトルを示す図。 発光素子4、発光素子5、比較発光素子6、および比較発光素子7の信頼性を示す図。 発光素子8、発光素子9、比較発光素子10、および比較発光素子11の電流密度−輝度特性を示す図。 発光素子8、発光素子9、比較発光素子10、および比較発光素子11の電圧−輝度特性を示す図。 発光素子8、発光素子9、比較発光素子10、および比較発光素子11の輝度−電流効率特性を示す図。 発光素子8、発光素子9、比較発光素子10、および比較発光素子11の電圧−電流特性を示す図。 発光素子8、発光素子9、比較発光素子10、および比較発光素子11の発光スペクトルを示す図。 発光素子8、発光素子9、比較発光素子10、および比較発光素子11の信頼性を示す図。 構造式(103)に示す有機化合物のH−NMRチャート。 構造式(103)に示す有機化合物のトルエン溶液中の紫外・可視吸収スペクトル及び発光スペクトル。 構造式(103)に示す有機化合物の固体薄膜の紫外・可視吸収スペクトル及び発光スペクトル。 構造式(105)に示す有機化合物のH−NMRチャート。 構造式(105)に示す有機化合物の固体薄膜の紫外・可視吸収スペクトル及び発光スペクトル。 構造式(126)に示す有機化合物のH−NMRチャート。 構造式(126)に示す有機化合物のトルエン溶液中の紫外・可視吸収スペクトル及び発光スペクトル。 構造式(126)に示す有機化合物の固体薄膜の紫外・可視吸収スペクトル及び発光スペクトル。 構造式(128)に示す有機化合物のH−NMRチャート。 構造式(143)に示す有機化合物のH−NMRチャート。 発光素子12および発光素子13の電流密度−輝度特性を示す図。 発光素子12および発光素子13の電圧−輝度特性を示す図。 発光素子12および発光素子13の輝度−電流効率特性を示す図。 発光素子12および発光素子13の電圧−電流特性を示す図。 発光素子12および発光素子13の発光スペクトルを示す図。 発光素子12および発光素子13の信頼性を示す図。 発光素子14および発光素子15の電流密度−輝度特性を示す図。 発光素子14および発光素子15の電圧−輝度特性を示す図。 発光素子14および発光素子15の輝度−電流効率特性を示す図。 発光素子14および発光素子15の電圧−電流特性を示す図。 発光素子14および発光素子15の発光スペクトルを示す図。 発光素子14および発光素子15の信頼性を示す図。
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることが可能である。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。
また、本明細書等において、図面を用いて発明の構成を説明するにあたり、同じものを指す符号は異なる図面間でも共通して用いる。
(実施の形態1)
本実施の形態では、本発明の一態様である有機化合物について説明する。なお、本発明の一態様である有機化合物は、下記一般式(G1)で表される、ベンゾフロピリミジン誘導体またはベンゾチエノピリミジン誘導体である。なお、本発明の一態様である有機化合物は、下記一般式(G1)で表されるようにベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格の8位に芳香族炭化水素環が複数連結(具体的には2乃至4個の芳香族炭化水素環が連結)した構造を有する。
Figure JPOXMLDOC01-appb-C000017
なお、一般式(G1)においてQは酸素または硫黄を表す。Ar、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、Aは総炭素数12乃至100の基であり、かつ、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、トリフェニレン環、ジベンゾチオフェン環を含む複素芳香環、ジベンゾフラン環を含む複素芳香環、カルバゾール環を含む複素芳香環、ベンゾイミダゾール環、トリフェニルアミン構造のいずれか一または複数を有する。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。
また、本発明の別の一態様は、下記一般式(G2)で表される有機化合物である。なお、下記一般式(G2)で表される有機化合物は、ベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格の8位に芳香族炭化水素環が複数連結(具体的には2乃至4個の芳香族炭化水素環が連結)した構造を有し、4位に少なくとも正孔輸送性を有する骨格を有する。
Figure JPOXMLDOC01-appb-C000018
上記一般式(G2)において、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArは同一の基を表し、それぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、αは置換もしくは無置換のフェニレン基を表し、tは0乃至4の整数を表す。また、Htuniは正孔輸送性を有する骨格を表す。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。
また、本発明の別の一態様は、下記一般式(G3)で表される有機化合物である。なお、下記一般式(G3)で表される有機化合物は、ベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格の8位に芳香族炭化水素環が複数連結(具体的には2乃至4個の芳香族炭化水素環が連結)した構造を有し、4位にフェニレン基を介して正孔輸送性を有する骨格を有する。
Figure JPOXMLDOC01-appb-C000019
上記一般式(G3)において、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、Htuniは正孔輸送性を有する骨格を表す。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。
また、本発明の別の一態様は、下記一般式(G4)で表される有機化合物である。なお、下記一般式(G4)で表される有機化合物は、ベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格の8位に芳香族炭化水素環が複数連結(具体的には2乃至4個の芳香族炭化水素環が連結)した構造を有し、4位にビフェニルジイル基を介して正孔輸送性を有する骨格を有する。
Figure JPOXMLDOC01-appb-C000020
上記一般式(G4)において、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、Htuniは正孔輸送性を有する骨格を表す。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。
なお、上記一般式(G2)、(G3)、および(G4)中のHtuniは、正孔輸送性を有する骨格を表し、それぞれ独立にピロール環構造、フラン環構造、チオフェン環構造を有するいずれか一である。
また、上記一般式(G2)、(G3)、および(G4)中のHtuniは、正孔輸送性を有する骨格を表し、それぞれ独立に下記一般式(Ht−1)~(Ht−26)のいずれか一である。
Figure JPOXMLDOC01-appb-C000021
なお、上記一般式(Ht−1)乃至一般式(Ht−26)において、Qは酸素または硫黄を表す。また、R~R71はそれぞれ1乃至4の置換基を表し、かつそれぞれ独立に水素、炭素数1~6のアルキル基、置換もしくは無置換のフェニル基のいずれか一を表す。また、Arは、置換もしくは無置換の炭素数6乃至13のアリール基を表す。
なお、上記一般式(G2)、(G3)、および(G4)中のHtuniは、正孔輸送性を有する骨格であり、この骨格を有することにより、他の物質(例えば、発光物質)と組み合わせて発光素子に用いた際、素子特性を向上させることができる。
なお、上記一般式(G1)、(G2)、(G3)、および(G4)中における、置換もしくは無置換の芳香族炭化水素環が置換基を有する場合、該置換基としては炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、等が挙げられる。
なお、上記一般式(G1)、(G2)、(G3)、および(G4)中における、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、置換もしくは無置換の炭素数3乃至12のヘテロアリール基、または置換もしくは無置換のフェニレン基が置換基を有する場合、該置換基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基のような炭素数1乃至7のアルキル基や、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、8,9,10−トリノルボルナニル基、のような炭素数5乃至7のシクロアルキル基や、フェニル基、ナフチル基、ビフェニル基のような炭素数6乃至12のアリール基等が挙げられる。
また、上記一般式(G1)、(G2)、(G3)、および(G4)におけるAr、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、芳香族炭化水素環を形成する炭素数は6以上25以下である。なお、芳香族炭化水素環は、1価または2価の芳香族炭化水素基を示し、これを形成する炭素数が6以上25以下となる場合の具体例としては、フェニル基、フェニレン基、ナフチル基、ナフチレン基、フルオレニル基、フルオレンジイル基、スピロフルオレニル基、スピロフルオレンジイル基、トリフェニレン基、トリフェニレンジイル基等が挙げられる。但し、必要以上のT1準位の低下を招かないために芳香族炭化水素環を構成する環の数が3環以上のポリアセンでないことが好ましい。なお、上記のフルオレニル基やフルオレンジイル基は、9位にアルキル基やフェニル基のような置換基を有することが好ましい。
なお、上記一般式(G1)、(G2)、(G3)、および(G4)におけるAr、Ar、Ar、およびArが、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、芳香族炭化水素環を形成する炭素数が6以上25以下とすることにより、有機化合物のT1準位を所望の値とすることができる。また、適度な昇華性を保つことができ、昇華精製時や真空蒸着時の分解を抑制することができる。さらに、本発明の一態様で示したように、該芳香族炭化水素環を複数連結することにより、該芳香族炭化水素環が1つである場合に比べ、発光素子に用いた際の信頼性を向上させることができる。特に、ベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格の8位に、複素芳香環を含む置換基を導入した場合に比べ、発光素子の初期劣化を抑制することができる。
また、上記一般式(G1)、(G2)、(G3)、および(G4)におけるAr、Ar、Ar、およびArはそれぞれ独立に置換もしくは無置換のベンゼン環またはナフタレン環であってもよい。
また、上記一般式(G1)、(G2)、(G3)、および(G4)におけるAr、Ar、Ar、およびArが同一であってもよい。
また、上記一般式(G1)、(G2)、(G3)、および(G4)中の部分構造である下記一般式(G−X)は、下記構造式(G−X−p1)~(G−X−p12)および(G−X−n1)~(G−X−n6)のいずれか一であってもよい。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
また、上記一般式(G1)、(G2)、(G3)、および(G4)におけるRが、炭素数5乃至7の単環式飽和炭化水素基を表す場合の具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、1−メチルシクロヘキシル基、シクロヘプチル基等が挙げられる。
また、上記一般式(G1)、(G2)、(G3)、および(G4)におけるRが、炭素数7乃至10の多環式飽和炭化水素基を表す場合の具体例としては、ノルボルニル基、アダマンチル基、デカリン基、トリシクロデシル基等が挙げられる。
また、上記一般式(G1)、(G2)、(G3)、および(G4)におけるRが、炭素数6乃至13のアリール基を表す場合の具体例としては、フェニル基、o−トリル基、m−トリル基、p−トリル基、メシチル基、o−ビフェニル基、m−ビフェニル基、p−ビフェニル基、1−ナフチル基、2−ナフチル基、フルオレニル基等が挙げられる。
また、上記一般式(G1)、(G2)、(G3)、および(G4)におけるRが、炭素数1乃至6のアルキル基を表す場合の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、sec−ペンチル基、tert−ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、3−メチルペンチル基、2−メチルペンチル基、2−エチルブチル基、1,2−ジメチルブチル基、2,3−ジメチルブチル基、等が挙げられる。
また、上記一般式(G1)、(G2)、(G3)、および(G4)におけるRが、炭素数3乃至12のヘテロアリール基を表す場合の具体例としては、トリアジニル基、ピラジニル基、ピリミジニル基、ピリジニル基、キノリニル基、イソキノリニル基、ベンゾチエニル基、ベンゾフラニル基、インドリル基、ジベンゾチエニル基、ジベンゾフラニル基、またはカルバゾリル基、等が挙げられる。
なお、上記一般式(G1)、(G2)、(G3)、および(G4)におけるRが、上述した具体例であることにより、本発明の一態様である有機化合物は、高いT1準位を有する。
次に、上述した本発明の一態様である有機化合物の具体的な構造式を下記に示す。ただし、本発明はこれらに限定されることはない。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
なお、上記構造式(100)~(144)で表される有機化合物は、上記一般式(G1)で表される有機化合物の一例であるが、本発明の一態様である有機化合物は、これに限られない。
次に、本発明の一態様であり、下記一般式(G1)で表されるベンゾフロピリミジン誘導体、またはベンゾチエノピリミジン誘導体の合成方法について説明する。
Figure JPOXMLDOC01-appb-C000028
一般式(G1)において、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、Aは総炭素数12乃至100の基であり、かつ、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、トリフェニレン環、ジベンゾチオフェン環を含む複素芳香環、ジベンゾフラン環を含む複素芳香環、カルバゾール環を含む複素芳香環、ベンゾイミダゾール環、トリフェニルアミン構造のいずれか一または複数を有する。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。
≪一般式(G1)で表される有機化合物の合成方法≫
上記一般式(G1)で表される有機化合物の合成には、種々の反応を適用することができ、例えば、以下の合成スキームに示す簡便な方法により、一般式(G1)で表される有機化合物を合成することができる。
下記スキーム(A−1)に示すように、8位に置換基を有するベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格を含むハロゲン化合物(A1)と、Aのボロン酸化合物(A2)を反応させることにより、一般式(G1)で表される有機化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000029
なお、上記合成スキーム(A−1)において、Xはハロゲンを表し、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、Aは総炭素数12乃至100の基であり、かつ、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、トリフェニレン環、ジベンゾチオフェン環を含む複素芳香環、ジベンゾフラン環を含む複素芳香環、カルバゾール環を含む複素芳香環、ベンゾイミダゾール環、トリフェニルアミン構造のいずれか一または複数を有する。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。
また、下記合成スキーム(A−2)に示すように、ベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格を含むジハロゲン化合物(B1)と、Aのボロン酸化合物(A2)との反応を経由し、中間体(B2)を得た後、ボロン酸化合物(B3)を反応させることにより、一般式(G1)で表される有機化合物を得ることもできる。
Figure JPOXMLDOC01-appb-C000030
なお、上記合成スキーム(A−2)において、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、Aは総炭素数12乃至100の基であり、かつ、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、トリフェニレン環、ジベンゾチオフェン環を含む複素芳香環、ジベンゾフラン環を含む複素芳香環、カルバゾール環を含む複素芳香環、ベンゾイミダゾール環、トリフェニルアミン構造のいずれか一または複数を有する。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。
また、下記合成スキーム(A−3)に示すように、ベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格を含むトリハロゲン化合物(C1)と、Aのボロン酸化合物(A2)との反応を経由し、中間体(C2)を得た後、Rのボロン酸化合物(C3)との反応を経由し、中間体(C4)を得た後、ボロン酸化合物(B3)を反応させることにより、一般式(G1)で表される有機化合物を得ることもできる。
Figure JPOXMLDOC01-appb-C000031
なお、上記合成スキーム(A−3)において、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、Aは総炭素数12乃至100の基であり、かつ、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、トリフェニレン環、ジベンゾチオフェン環を含む複素芳香環、ジベンゾフラン環を含む複素芳香環、カルバゾール環を含む複素芳香環、ベンゾイミダゾール環、トリフェニルアミン構造のいずれか一または複数を有する。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。また、Bはボロン酸またはボロン酸エステルまたは環状トリオールボレート塩等を表す。また、環状トリオールボレート塩はリチウム塩の他に、カリウム塩、ナトリウム塩を用いても良い。
なお、上記合成スキーム(A−1)、(A−2)、および(A−3)において用いた、8位に置換基を有するベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格を含むハロゲン化合物(A1)、Aのボロン酸化合物(A2)、ベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格を含むジハロゲン化合物(B1)、中間体(B2)、ボロン酸化合物(B3)、ベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格を含むトリハロゲン化合物(C1)、中間体(C2)、Rのボロン酸化合物(C3)、および中間体(C4)は、様々な種類が市販されているか、あるいは合成可能であるため、一般式(G1)で表されるベンゾフロピリミジン誘導体、またはベンゾチエノピリミジン誘導体は数多くの種類を合成することができる。したがって、本発明の一態様である、有機化合物は、バリエーションが豊富であるという特徴がある。
以上、本発明の一態様である有機化合物、及びその合成方法の一例について説明したが、本発明はこれに限定されることはなく、他の合成方法を用いて合成しても良い。
本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
(実施の形態2)
本実施の形態では、実施の形態1で示した有機化合物を用いた発光素子について図1を用いて説明する。
≪発光素子の基本的な構造≫
まず、発光素子の基本的な構造について説明する。図1(A)には、一対の電極間に発光層を含むEL層を有する発光素子の一例を示す。具体的には、第1の電極101と第2の電極102との間にEL層103が挟まれた構造を有する。
また、図1(B)には、一対の電極間に複数(図1(B)では、2層)のEL層(103a、103b)を有し、EL層の間に電荷発生層104を有する積層構造(タンデム構造)の発光素子の一例を示す。タンデム構造の発光素子は、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。
電荷発生層104は、第1の電極101と第2の電極102に電圧を印加したときに、一方のEL層(103aまたは103b)に電子を注入し、他方のEL層(103bまたは103a)に正孔を注入する機能を有する。従って、図1(B)において、第1の電極101に第2の電極102よりも電位が高くなるように電圧を印加すると、電荷発生層104からEL層103aに電子が注入され、EL層103bに正孔が注入されることとなる。
なお、電荷発生層104は、光の取り出し効率の点から、可視光に対して透光性を有する(具体的には、電荷発生層104に対する可視光の透過率が、40%以上)ことが好ましい。また、電荷発生層104は、第1の電極101や第2の電極102よりも低い導電率であっても機能する。
また、図1(C)には、図1(A)に示したEL層103(図1(B)のEL層(103a、103b)が積層構造を有する場合も同様)が、積層構造を有する場合の一例を示す。但し、この場合、第1の電極101は陽極として機能するものとする。EL層103は、第1の電極101上に、正孔(ホール)注入層111、正孔(ホール)輸送層112、発光層113、電子輸送層114、電子注入層115が順次積層された構造を有する。なお、図1(B)に示すタンデム構造のように複数のEL層を有する場合も、各EL層が、陽極側から上記のように順次積層される構造とする。また、第1の電極101が陰極で、第2の電極102が陽極の場合は、EL層の積層順は逆になる。
EL層(103、103a、103b)に含まれる発光層113は、それぞれ発光物質や複数の物質を適宜組み合わせて有し、所望の発光色を呈する蛍光発光や燐光発光が得られる構成とすることができる。また、発光層113を発光色の異なる積層構造としてもよい。なお、この場合、積層された各発光層に用いる発光物質やその他の物質は、それぞれ異なる材料を用いればよい。また、図1(B)に示す複数のEL層(103a、103b)から、それぞれ異なる発光色が得られる構成としても良い。この場合も各発光層に用いる発光物質やその他の物質を異なる材料とすればよい。
また、本発明の一態様である発光素子において、EL層(103、103a、103b)で得られた発光を両電極間で共振させることにより、得られる発光を強める構成としても良い。例えば、図1(C)において、第1の電極101を反射電極とし、第2の電極102を半透過・半反射電極とすることにより微小光共振器(マイクロキャビティ)構造を形成し、EL層103から得られる発光を強めることができる。
なお、発光素子の第1の電極101が、反射性を有する導電性材料と透光性を有する導電性材料(透明導電膜)との積層構造からなる反射電極である場合、透明導電膜の膜厚を制御することにより光学調整を行うことができる。具体的には、発光層113から得られる光の波長λに対して、第1の電極101と、第2の電極102との電極間距離がmλ/2(ただし、mは自然数)近傍となるように調整するのが好ましい。
また、発光層113から得られる所望の光(波長:λ)を増幅させるために、第1の電極101から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、第2の電極102から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、をそれぞれ(2m’+1)λ/4(ただし、m’は自然数)近傍となるように調節するのが好ましい。なお、ここでいう発光領域とは、発光層113における正孔(ホール)と電子との再結合領域を示す。
このような光学調整を行うことにより、発光層113から得られる特定の単色光のスペクトルを狭線化させ、色純度の良い発光を得ることができる。
但し、上記の場合、第1の電極101と第2の電極102との光学距離は、厳密には第1の電極101における反射領域から第2の電極102における反射領域までの総厚ということができる。しかし、第1の電極101や第2の電極102における反射領域を厳密に決定することは困難であるため、第1の電極101と第2の電極102の任意の位置を反射領域と仮定することで充分に上述の効果を得ることができるものとする。また、第1の電極101と、所望の光が得られる発光層との光学距離は、厳密には第1の電極101における反射領域と、所望の光が得られる発光層における発光領域との光学距離であるということができる。しかし、第1の電極101における反射領域や、所望の光が得られる発光層における発光領域を厳密に決定することは困難であるため、第1の電極101の任意の位置を反射領域、所望の光が得られる発光層の任意の位置を発光領域と仮定することで充分に上述の効果を得ることができるものとする。
図1(C)に示す発光素子が、マイクロキャビティ構造を有する場合、EL層が共通であっても異なる波長の光(単色光)を取り出すことができる。従って、異なる発光色を得るための塗り分け(例えば、RGB)が不要となり、高精細化が可能となる。また、着色層(カラーフィルタ)との組み合わせも可能である。また、特定波長の正面方向の発光強度を強めることが可能なため、低消費電力化を図ることができる。
図1(E)に示す発光素子は、図1(B)に示したタンデム構造の発光素子の一例であり、図に示すように、3つのEL層(103a、103b、103c)が電荷発生層(104a、104b)を挟んで積層される構造を有する。なお、3つのEL層(103a、103b、103c)は、それぞれに発光層(113a、113b、113c)を有しており、各発光層の発光色は、自由に組み合わせることができる。例えば、発光層113aを青色、発光層113bを赤色、緑色、または黄色のいずれか、発光層113cを青色とすることができるが、発光層113aを赤色、発光層113bを青色、緑色、または黄色のいずれか、発光層113cを赤色とすることもできる。
なお、上述した本発明の一態様である発光素子において、第1の電極101と第2の電極102の少なくとも一方は、透光性を有する電極(透明電極、半透過・半反射電極など)とする。透光性を有する電極が透明電極の場合、透明電極の可視光の透過率は、40%以上とする。また、半透過・半反射電極の場合、半透過・半反射電極の可視光の反射率は、20%以上80%以下、好ましくは40%以上70%以下とする。また、これらの電極は、抵抗率が1×10−2Ωcm以下とするのが好ましい。
また、上述した本発明の一態様である発光素子において、第1の電極101と第2の電極102の一方が、反射性を有する電極(反射電極)である場合、反射性を有する電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、この電極は、抵抗率が1×10−2Ωcm以下とするのが好ましい。
≪発光素子の具体的な構造および作製方法≫
次に、本発明の一態様であり、図1に示す発光素子の具体的な構造および作製方法について説明する。なお、ここでは、図1(A)や図1(C)に示すようにEL層103が単層構造である発光素子だけでなく、図1(B)、図1(D)及び図1(E)に示すタンデム構造の発光素子についても、まとめて説明する。なお、図1に示す各発光素子がマイクロキャビティ構造を有する場合、例えば、第1の電極101を反射電極として形成し、第2の電極102を半透過・半反射電極として形成すればよい。また、所望の電極材料を単数または複数用い、単層または積層して形成することができる。また、第2の電極102は、EL層(103、103b)を形成した後、上記と同様に材料を選択して形成する。また、これらの電極の作製には、スパッタ法や真空蒸着法を用いることができる。
<第1の電極および第2の電極>
第1の電極101および第2の電極102を形成する材料としては、上述した両電極の機能が満たせるのであれば、以下に示す材料を適宜組み合わせて用いることができる。例えば、金属、合金、電気伝導性化合物、およびこれらの混合物などを適宜用いることができる。具体的には、In−Sn酸化物(ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、In−Zn酸化物、In−W−Zn酸化物が挙げられる。その他、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、およびこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属およびこれらを適宜組み合わせて含む合金、その他グラフェン等を用いることができる。
図1に示す発光素子において、図1(C)のように積層構造を有するEL層103を有し、第1の電極101が陽極である場合、第1の電極101上にEL層103の正孔注入層111、正孔輸送層112が真空蒸着法により順次積層形成される。また、図1(D)のように、積層構造を有する複数のEL層(103a、103b)が電荷発生層104を挟んで積層され、第1の電極101が陽極である場合、第1の電極101上にEL層103aの正孔注入層111a、正孔輸送層112aが真空蒸着法により順次積層形成されるだけでなく、EL層103a、電荷発生層104が順次積層形成された後、電荷発生層104上にEL層103bの正孔注入層111b、正孔輸送層112bが同様に順次積層形成される。
<正孔注入層および正孔輸送層>
正孔注入層(111、111a、111b)は、陽極である第1の電極101や電荷発生層(104)からEL層(103、103a、103b)に正孔(ホール)を注入する層であり、正孔注入性の高い材料を含む層である。
正孔注入性の高い材料としては、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等の遷移金属酸化物が挙げられる。この他、フタロシアニン(略称:HPc)や銅フタロシアニン(略称:CuPC)等のフタロシアニン系の化合物、等を用いることができる。
また、低分子化合物である、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、4,4’−ビス(N−{4−[N’−(3−メチルフェニル)−N’−フェニルアミノ]フェニル}−N−フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物、等を用いることができる。
また、高分子化合物(オリゴマー、デンドリマー、ポリマー等)である、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)等を用いることができる。または、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(略称:PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子系化合物、等を用いることもできる。
また、正孔注入性の高い材料としては、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料を用いることもできる。この場合、アクセプター性材料により正孔輸送性材料から電子が引き抜かれて正孔注入層(111、111a、111b)で正孔が発生し、正孔輸送層(112、112a、112b)を介して発光層(113、113a、113b)に正孔が注入される。なお、正孔注入層(111、111a、111b)は、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料からなる単層で形成しても良いが、正孔輸送性材料とアクセプター性材料(電子受容性材料)とをそれぞれ別の層で積層して形成しても良い。
正孔輸送層(112、112a、112b)は、正孔注入層(111、111a、111b)によって、第1の電極101から注入された正孔を発光層(113、113a、113b)に輸送する層である。なお、正孔輸送層(112、112a、112b)は、正孔輸送性材料を含む層である。正孔輸送層(112、112a、112b)に用いる正孔輸送性材料は、特に正孔注入層(111、111a、111b)のHOMO準位と同じ、あるいは近いHOMO準位を有するものを用いることが好ましい。
正孔注入層(111、111a、111b)に用いるアクセプター性材料としては、元素周期表における第4族乃至第8族に属する金属の酸化物を用いることができる。具体的には、酸化モリブデン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化タングステン、酸化マンガン、酸化レニウムが挙げられる。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。その他、キノジメタン誘導体やクロラニル誘導体、ヘキサアザトリフェニレン誘導体などの有機アクセプターを用いることができる。電子吸引基(ハロゲン基やシアノ基)を有するものとしては、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル、2,3,6,7,10,11−ヘキサシアノ−1,4,5,8,9,12−ヘキサアザトリフェニレン(略称:HAT−CN)、1,3,4,5,7,8−ヘキサフルオロテトラシアノ−ナフトキノジメタン(略称:F6−TCNNQ)等を挙げることができる。特に、HAT−CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であり好ましい。また、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する[3]ラジアレン誘導体は、電子受容性が非常に高いため好ましく、具体的にはα,α’,α’’−1,2,3−シクロプロパントリイリデントリス[4−シアノ−2,3,5,6−テトラフルオロベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,6−ジクロロ−3,5−ジフルオロ−4−(トリフルオロメチル)ベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,3,4,5,6−ペンタフルオロベンゼンアセトニトリル]などが挙げられる。
正孔注入層(111、111a、111b)および正孔輸送層(112、112a、112b)に用いる正孔輸送性材料としては、10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いることができる。
正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、フラン誘導体、およびチオフェン誘導体)や芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い材料が好ましい。
上記、カルバゾール誘導体(カルバゾール骨格を有する化合物)としては、ビカルバゾール誘導体(例えば、3,3’−ビカルバゾール誘導体)、カルバゾリル基を有する芳香族アミン等が挙げられる。
なお、ビカルバゾール誘導体(例えば、3,3’−ビカルバゾール誘導体)としては、具体的には、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)、9,9’−ビス(1,1’−ビフェニル−4−イル)−3,3’−ビ−9H−カルバゾール、9,9’−ビス(1,1’−ビフェニル−3−イル)−3,3’−ビ−9H−カルバゾール、9−(1,1’−ビフェニル−3−イル)−9’−(1,1’−ビフェニル−4−イル)−9H,9’H−3,3’−ビカルバゾール(略称:mBPCCBP)、9−(2−ナフチル)−9’−フェニル−9H,9’H−3,3’−ビカルバゾール(略称:βNCCP)などが挙げられる。
また、カルバゾリル基を有する芳香族アミンとしては、具体的には、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:PCBiF)、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、4−フェニルジフェニル−(9−フェニル−9H−カルバゾール−3−イル)アミン(略称:PCA1BP)、N,N’−ビス(9−フェニルカルバゾール−3−イル)−N,N’−ジフェニルベンゼン−1,3−ジアミン(略称:PCA2B)、N,N’,N’’−トリフェニル−N,N’,N’’−トリス(9−フェニルカルバゾール−3−イル)ベンゼン−1,3,5−トリアミン(略称:PCA3B)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)、3−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA1)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA2)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−(1−ナフチル)アミノ]−9−フェニルカルバゾール(略称:PCzTPN2)、2−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:PCASF)、N−[4−(9H−カルバゾール−9−イル)フェニル]−N−(4−フェニル)フェニルアニリン(略称:YGA1BP)、N,N’−ビス[4−(カルバゾール−9−イル)フェニル]−N,N’−ジフェニル−9,9−ジメチルフルオレン−2,7−ジアミン(略称:YGA2F)、4,4’,4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)などが挙げられる。
カルバゾール誘導体としては、上記に加えて、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)等が挙げられる。
上記、チオフェン誘導体およびフラン誘導体としては、具体的には、1,3,5−トリ(ジベンゾチオフェン−4−イル)ベンゼン(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)などのチオフェン骨格を有する化合物、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)などのフラン骨格を有する化合物等が挙げられる。
上記、芳香族アミンとしては、具体的には、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、N−(9,9−ジメチル−9H−フルオレン−2−イル)−N−{9,9−ジメチル−2−[N’−フェニル−N’−(9,9−ジメチル−9H−フルオレン−2−イル)アミノ]−9H−フルオレン−7−イル}フェニルアミン(略称:DFLADFL)、N−(9,9−ジメチル−2−ジフェニルアミノ−9H−フルオレン−7−イル)ジフェニルアミン(略称:DPNF)、2−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:DPASF)、2,7−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:DPA2SF)、4,4’,4’’−トリス[N−(1−ナフチル)−N−フェニルアミノ]トリフェニルアミン(略称:1−TNATA)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:m−MTDATA)、N,N’−ジ(p−トリル)−N,N’−ジフェニル−p−フェニレンジアミン(略称:DTDPPA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)等が挙げられる。
正孔輸送性材料としては、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)などの高分子化合物を用いることもできる。
但し、正孔輸送性材料は、上記に限られることなく公知の様々な材料を1種または複数種組み合わせて正孔輸送性材料として正孔注入層(111、111a、111b)および正孔輸送層(112、112a、112b)に用いることができる。なお、正孔輸送層(112、112a、112b)は、各々複数の層から形成されていても良い。すなわち、例えば第1の正孔輸送層と第2の正孔輸送層とが積層されていても良い。
図1に示す発光素子において、EL層(103、103a)の正孔輸送層(112、112a)上に発光層(113、113a)が真空蒸着法により形成される。なお、図1(D)に示すタンデム構造の発光素子の場合には、EL層103aおよび電荷発生層104が形成された後、EL層103bの正孔輸送層112b上にも発光層113bが真空蒸着法により形成される。
<発光層>
発光層(113、113a、113b、113c)は、発光物質を含む層である。なお、発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、複数の発光層(113a、113b、113c)に異なる発光物質を用いることにより異なる発光色を呈する構成(例えば、補色の関係にある発光色を組み合わせて得られる白色発光)とすることができる。さらに、一つの発光層が異なる発光物質を有する積層構造であっても良い。
また、発光層(113、113a、113b、113c)は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料等)を有していても良い。また、1種または複数種の有機化合物としては、本発明の一態様である有機化合物や、本実施の形態で説明する正孔輸送性材料や電子輸送性材料の一方または両方を用いることができる。
発光層(113、113a、113b、113c)に用いることができる発光物質として、特に限定は無く、一重項励起エネルギーを可視光領域の発光に変える発光物質、または三重項励起エネルギーを可視光領域の発光に変える発光物質を用いることができる。
なお、他の発光物質としては、例えば、以下のようなものが挙げられる。
一重項励起エネルギーを発光に変える発光物質としては、蛍光を発する物質(蛍光材料)が挙げられ、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。特にピレン誘導体は発光量子収率が高いので好ましい。ピレン誘導体の具体例としては、N,N’−ビス(3−メチルフェニル)−N,N’−ビス[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)、N,N’−ジフェニル−N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6FLPAPrn)、N,N’−ビス(ジベンゾフラン−2−イル)−N,N’−ジフェニルピレン−1,6−ジアミン(略称:1,6FrAPrn)、N,N’−ビス(ジベンゾチオフェン−2−イル)−N,N’−ジフェニルピレン−1,6−ジアミン(略称:1,6ThAPrn)、N,N’−(ピレン−1,6−ジイル)ビス[(N−フェニルベンゾ[b]ナフト[1,2−d]フラン)−6−アミン](略称:1,6BnfAPrn)、N,N’−(ピレン−1,6−ジイル)ビス[(N−フェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−02)、N,N’−(ピレン−1,6−ジイル)ビス[(6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−03)などが挙げられる。
その他にも、5,6−ビス[4−(10−フェニル−9−アントリル)フェニル]−2,2’−ビピリジン(略称:PAP2BPy)、5,6−ビス[4’−(10−フェニル−9−アントリル)ビフェニル−4−イル]−2,2’−ビピリジン(略称:PAPP2BPy)、N,N’−ビス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、4−(9H−カルバゾール−9−イル)−4’−(9,10−ジフェニル−2−アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、4−(10−フェニル−9−アントリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPA)、4−[4−(10−フェニル−9−アントリル)フェニル]−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPBA)、ペリレン、2,5,8,11−テトラ−tert−ブチルペリレン(略称:TBP)、N,N’’−(2−tert−ブチルアントラセン−9,10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’−トリフェニル−1,4−フェニレンジアミン](略称:DPABPA)、N,9−ジフェニル−N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:2PCAPPA)、N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPPA)等を用いることができる。
また、三重項励起エネルギーを発光に変える発光物質としては、例えば、燐光を発する物質(燐光材料)や熱活性化遅延蛍光を示す熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料が挙げられる。
燐光材料としては、有機金属錯体、金属錯体(白金錯体)、希土類金属錯体等が挙げられる。これらは、物質ごとに異なる発光色(発光ピーク)を示すため、必要に応じて適宜選択して用いる。
青色または緑色を呈し、発光スペクトルのピーク波長が450nm以上570nm以下である燐光材料としては、以下のような物質が挙げられる。
例えば、トリス{2−[5−(2−メチルフェニル)−4−(2,6−ジメチルフェニル)−4H−1,2,4−トリアゾール−3−イル−κN]フェニル−κC}イリジウム(III)(略称:[Ir(mpptz−dmp)])、トリス(5−メチル−3,4−ジフェニル−4H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)])、トリス[4−(3−ビフェニル)−5−イソプロピル−3−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPrptz−3b)])、トリス[3−(5−ビフェニル)−5−イソプロピル−4−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPr5btz)])、のような4H−トリアゾール骨格を有する有機金属錯体、トリス[3−メチル−1−(2−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(Mptz1−mp)])、トリス(1−メチル−5−フェニル−3−プロピル−1H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Prptz1−Me)])のような1H−トリアゾール骨格を有する有機金属錯体、fac−トリス[1−(2,6−ジイソプロピルフェニル)−2−フェニル−1H−イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)])、トリス[3−(2,6−ジメチルフェニル)−7−メチルイミダゾ[1,2−f]フェナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt−Me)])のようなイミダゾール骨格を有する有機金属錯体、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(III)ピコリナート(略称:[Ir(CFppy)(pic)])、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)アセチルアセトナート(略称:FIr(acac))のように電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体等が挙げられる。
緑色または黄色を呈し、発光スペクトルのピーク波長が495nm以上590nm以下である燐光材料としては、以下のような物質が挙げられる。
例えば、トリス(4−メチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)])、トリス(4−t−ブチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)])、(アセチルアセトナト)ビス(6−メチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)(acac)])、(アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)(acac)])、(アセチルアセトナト)ビス[6−(2−ノルボルニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)(acac)])、(アセチルアセトナト)ビス[5−メチル−6−(2−メチルフェニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)(acac)])、(アセチルアセトナト)ビス{4,6−ジメチル−2−[6−(2,6−ジメチルフェニル)−4−ピリミジニル−κN]フェニル−κC}イリジウム(III)(略称:[Ir(dmppm−dmp)(acac)])、(アセチルアセトナト)ビス(4,6−ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)(acac)])のようなピリミジン骨格を有する有機金属イリジウム錯体、(アセチルアセトナト)ビス(3,5−ジメチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−Me)(acac)])、(アセチルアセトナト)ビス(5−イソプロピル−3−メチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−iPr)(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体、トリス(2−フェニルピリジナト−N,C2’)イリジウム(III)(略称:[Ir(ppy)])、ビス(2−フェニルピリジナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)(acac)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[Ir(bzq)(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:[Ir(bzq)])、トリス(2−フェニルキノリナト−N,C2’)イリジウム(III)(略称:[Ir(pq)])、ビス(2−フェニルキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)(acac)])、ビス[2−(2−ピリジニル−κN)フェニル−κC][2−(4−フェニル−2−ピリジニル−κN)フェニル−κC]イリジウム(III)(略称:[Ir(ppy)(4dppy)])、ビス[2−(2−ピリジニル−κN)フェニル−κC][2−(4−メチル−5−フェニル−2−ピリジニル−κN)フェニル−κC]のようなピリジン骨格を有する有機金属イリジウム錯体、ビス(2,4−ジフェニル−1,3−オキサゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(dpo)(acac)])、ビス{2−[4’−(パーフルオロフェニル)フェニル]ピリジナト−N,C2’}イリジウム(III)アセチルアセトナート(略称:[Ir(p−PF−ph)(acac)])、ビス(2−フェニルベンゾチアゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(bt)(acac)])などの有機金属錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[Tb(acac)(Phen)])のような希土類金属錯体が挙げられる。
黄色または赤色を呈し、発光スペクトルのピーク波長が570nm以上750nm以下である燐光材料としては、以下のような物質が挙げられる。
例えば、(ジイソブチリルメタナト)ビス[4,6−ビス(3−メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(5mdppm)(dibm)])、ビス[4,6−ビス(3−メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm)(dpm)])、(ジピバロイルメタナト)ビス[4,6−ジ(ナフタレン−1−イル)ピリミジナト]イリジウム(III)(略称:[Ir(d1npm)(dpm)])のようなピリミジン骨格を有する有機金属錯体、(アセチルアセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:[Ir(tppr)(acac)])、ビス(2,3,5−トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(tppr)(dpm)])、ビス{4,6−ジメチル−2−[3−(3,5−ジメチルフェニル)−5−フェニル−2−ピラジニル−κN]フェニル−κC}(2,6−ジメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmdppr−P)(dibm)])、ビス{4,6−ジメチル−2−[5−(4−シアノ−2,6−ジメチルフェニル)−3−(3,5−ジメチルフェニル)−2−ピラジニル−κN]フェニル−κC}(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmdppr−dmCP)(dpm)])、(アセチルアセトナト)ビス[2−メチル−3−フェニルキノキサリナト−N,C2’]イリジウム(III)(略称:[Ir(mpq)(acac)])、(アセチルアセトナト)ビス(2,3−ジフェニルキノキサリナト−N,C2’)イリジウム(III)(略称:[Ir(dpq)(acac)])、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)(acac)])のようなピラジン骨格を有する有機金属錯体や、トリス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)(略称:[Ir(piq)])、ビス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(piq)(acac)])、ビス[4,6−ジメチル−2−(2−キノリニル−κN)フェニル−κC](2,4−ペンタンジオナト−κO,O’)イリジウム(III)のようなピリジン骨格を有する有機金属錯体、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:[PtOEP])のような白金錯体、トリス(1,3−ジフェニル−1,3−プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)(Phen)])、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)(Phen)])のような希土類金属錯体が挙げられる。
発光層(113、113a、113b、113c)に用いる有機化合物(ホスト材料等)としては、発光物質(ゲスト材料)のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いればよい。
従って、発光層(113、113a、113b、113c)に用いる発光物質が蛍光材料である場合、発光物質と組み合わせて用いる有機化合物(ホスト材料)として、一重項励起状態のエネルギー準位が大きく、三重項励起状態のエネルギー準位が小さい有機化合物を用いるのが好ましい。なお、発光物質と組み合わせて用いる有機化合物(ホスト材料)としては、本実施の形態で示す、正孔輸送性材料(前述)や電子輸送性材料(後述)に加えて、バイポーラ性の材料等を用いることができる。
一部上記の具体例と重複するが、発光物質(蛍光材料、燐光材料)との好ましい組み合わせという観点から、以下に有機化合物の具体例を示す。
発光物質が蛍光材料である場合、発光物質と組み合わせて用いることができる有機化合物(ホスト材料)としては、アントラセン誘導体、テトラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体、ジベンゾ[g,p]クリセン誘導体等の縮合多環芳香族化合物が挙げられる。
なお、蛍光性の発光物質と組み合わせて用いる有機化合物(ホスト材料)の具体例としては、9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:PCzPA)、3,6−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:DPCzPA)、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、9,10−ジフェニルアントラセン(略称:DPAnth)、N,N−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:CzA1PA)、4−(10−フェニル−9−アントリル)トリフェニルアミン(略称:DPhPA)、YGAPA、PCAPA、N,9−ジフェニル−N−{4−[4−(10−フェニル−9−アントリル)フェニル]フェニル}−9H−カルバゾール−3−アミン(略称:PCAPBA)、N−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)、6,12−ジメトキシ−5,11−ジフェニルクリセン、N,N,N’,N’,N’’,N’’,N’’’,N’’’−オクタフェニルジベンゾ[g,p]クリセン−2,7,10,15−テトラアミン(略称:DBC1)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6−[3−(9,10−ジフェニル−2−アントリル)フェニル]−ベンゾ[b]ナフト[1,2−d]フラン(略称:2mBnfPPA)、9−フェニル−10−{4−(9−フェニル−9H−フルオレン−9−イル)−ビフェニル−4’−イル}−アントラセン(略称:FLPPA)、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、9,9’−ビアントリル(略称:BANT)、9,9’−(スチルベン−3,3’−ジイル)ジフェナントレン(略称:DPNS)、9,9’−(スチルベン−4,4’−ジイル)ジフェナントレン(略称:DPNS2)、1,3,5−トリ(1−ピレニル)ベンゼン(略称:TPB3)、5,12−ジフェニルテトラセン、5,12−ビス(ビフェニル−2−イル)テトラセンなどが挙げられる。
また、発光物質が燐光材料である場合、発光物質と組み合わせて用いる有機化合物(ホスト材料)としては、発光物質の三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)よりも三重項励起エネルギーの大きい有機化合物を選択すれば良い。なお、励起錯体を形成させるべく複数の有機化合物(例えば、第1のホスト材料、および第2のホスト材料(またはアシスト材料)等)を発光物質と組み合わせて用いる場合は、これらの複数の有機化合物を燐光材料と混合して用いることが好ましい。
このような構成とすることにより、励起錯体から発光物質へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。なお、複数の有機化合物の組み合わせとしては、励起錯体が形成しやすいものが良く、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。なお、実施の形態1で示した本発明の一態様である有機化合物は、三重項励起状態が安定であるため、発光物質が燐光材料である場合のホスト材料として好適である。特に、その三重項励起エネルギー準位から、緑色発光を呈する燐光材料と組み合わせて用いる場合に好適である。
なお、発光物質が燐光材料である場合に発光物質と組み合わせて用いることができる有機化合物(ホスト材料、アシスト材料)としては、芳香族アミン、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、亜鉛やアルミニウム系の金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリミジン誘導体、トリアジン誘導体、ピリジン誘導体、ビピリジン誘導体、フェナントロリン誘導体等が挙げられる。
なお、上記のうち、正孔輸送性の高い有機化合物である芳香族アミン(芳香族アミン骨格を有する化合物)の具体例としては、上記に示した正孔輸送性材料の具体例と同じものが挙げられる。
また、正孔輸送性の高い有機化合物である、カルバゾール誘導体の具体例としては、上記に示した正孔輸送性材料の具体例と同じものが挙げられる。
また、正孔輸送性の高い有機化合物である、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体の具体例としては、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、1,3,5−トリ(ジベンゾチオフェン−4−イル)ベンゼン(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)、4−[3−(トリフェニレン−2−イル)フェニル]ジベンゾチオフェン(略称:mDBTPTp−II)等が挙げられる。
また、電子輸送性の高い有機化合物である、亜鉛やアルミニウム系の金属錯体の具体例としては、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)など、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等が挙げられる。
この他、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などのオキサゾール系、チアゾール系配位子を有する金属錯体なども用いることができる。
また、電子輸送性の高い有機化合物である、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、フェナントロリン誘導体の具体例としては、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)、3−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−4−フェニル−1,2,4−トリアゾール(略称:TAZ)、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOS)、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBphen)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、及び6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)などが挙げられる。
また、電子輸送性の高い有機化合物である、ジアジン骨格を有する複素環化合物、トリアジン骨格を有する複素環化合物、ピリジン骨格を有する複素環化合物の具体例としては、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm−II)、4,6−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)、9−[3−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)フェニル]−9’−フェニル−2,3’−ビ−9H−カルバゾール(略称:mPCCzPTzn−02)、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)などが挙げられる。
また、電子輸送性の高い有機化合物としては、ポリ(2,5−ピリジンジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)のような高分子化合物を用いることもできる。
また、発光層(113、113a、113b、113c)に有機化合物を複数用いる場合、励起錯体を形成する2種類の化合物(第1の化合物および第2の化合物)と、有機金属錯体とを混合して用いてもよい。この場合、様々な有機化合物を適宜組み合わせて用いることができるが、効率よく励起錯体を形成するためには、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。なお、正孔輸送性材料および電子輸送性材料の具体例については、本実施の形態で示す材料を用いることができる。この構成により、高効率、低電圧、長寿命を同時に実現できる。
TADF材料とは、三重項励起状態をわずかな熱エネルギーによって一重項励起状態にアップコンバート(逆項間交差)が可能で、一重項励起状態からの発光(蛍光)を効率よく呈する材料のことである。また、熱活性化遅延蛍光が効率良く得られる条件としては、三重項励起準位と一重項励起準位のエネルギー差が0eV以上0.2eV以下、好ましくは0eV以上0.1eV以下であることが挙げられる。また、TADF材料における遅延蛍光とは、通常の蛍光と同様のスペクトルを持ちながら、寿命が著しく長い発光をいう。その寿命は、10−6秒以上、好ましくは10−3秒以上である。
TADF材料としては、例えば、フラーレンやその誘導体、プロフラビン等のアクリジン誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。金属含有ポルフィリンとしては、例えば、プロトポルフィリン−フッ化スズ錯体(略称:SnF(Proto IX))、メソポルフィリン−フッ化スズ錯体(略称:SnF(Meso IX))、ヘマトポルフィリン−フッ化スズ錯体(略称:SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル−フッ化スズ錯体(略称:SnF(Copro III−4Me))、オクタエチルポルフィリン−フッ化スズ錯体(略称:SnF(OEP))、エチオポルフィリン−フッ化スズ錯体(略称:SnF(Etio I))、オクタエチルポルフィリン−塩化白金錯体(略称:PtClOEP)等が挙げられる。
その他にも、2−(ビフェニル−4−イル)−4,6−ビス(12−フェニルインドロ[2,3−a]カルバゾール−11−イル)−1,3,5−トリアジン(略称:PIC−TRZ)、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)、2−[4−(10H−フェノキサジン−10−イル)フェニル]−4,6−ジフェニル−1,3,5−トリアジン(略称:PXZ−TRZ)、3−[4−(5−フェニル−5,10−ジヒドロフェナジン−10−イル)フェニル]−4,5−ジフェニル−1,2,4−トリアゾール(略称:PPZ−3TPT)、3−(9,9−ジメチル−9H−アクリジン−10−イル)−9H−キサンテン−9−オン(略称:ACRXTN)、ビス[4−(9,9−ジメチル−9,10−ジヒドロアクリジン)フェニル]スルホン(略称:DMAC−DPS)、10−フェニル−10H,10’H−スピロ[アクリジン−9,9’−アントラセン]−10’−オン(略称:ACRSA)、等のπ電子過剰型複素芳香環及びπ電子不足型複素芳香環を有する複素環化合物を用いることができる。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプター性が共に強くなり、一重項励起状態と三重項励起状態のエネルギー差が小さくなるため、特に好ましい。
なお、TADF材料を用いる場合、他の有機化合物と組み合わせて用いることもできる。特に、上述したホスト材料、正孔輸送材料、電子輸送材料と組み合わせることができ、実施の形態1で示した本発明の一態様である有機化合物をTADF材料に対するホスト材料として用いることが好ましい。
また、上記の材料は、低分子材料や高分子材料と組み合わせることにより発光層(113、113a、113b、113c)の形成に用いることができる。また、成膜には、公知の方法(蒸着法や塗布法や印刷法など)を適宜用いることができる。
図1に示す発光素子において、EL層(103、103a)の発光層(113、113a)上に電子輸送層(114、114a)が形成される。なお、図1(D)に示すタンデム構造の発光素子の場合には、EL層103aおよび電荷発生層104が形成された後、EL層103bの発光層113b上にも電子輸送層114bが形成される。
<電子輸送層>
電子輸送層(114、114a、114b)は、電子注入層(115、115a、115b)によって、第2の電極102から注入された電子を発光層(113、113a、113b)に輸送する層である。なお、電子輸送層(114、114a、114b)は、電子輸送性材料を含む層である。電子輸送層(114、114a、114b)に用いる電子輸送性材料は、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものを用いることができる。また、実施の形態1で示した本発明の一態様である有機化合物は電子輸送性に優れているため、電子輸送層としても利用可能である。
電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。
電子輸送性材料の具体例としては、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)等のキノリン骨格またはベンゾキノリン骨格を有する金属錯体、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(II)(略称:Zn(BTZ))等のオキサゾール骨格またはチアゾール骨格を有する金属錯体等が挙げられる。
また、金属錯体以外にも2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)等のオキサジアゾール誘導体、3−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−4−フェニル−1,2,4−トリアゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)等のトリアゾール誘導体、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)等のイミダゾール誘導体(ベンゾイミダゾール誘導体を含む)や、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOS)などのオキサゾール誘導体、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBphen)などのフェナントロリン誘導体、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、及び、6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)等のキノキサリン誘導体、またはジベンゾキノキサリン誘導体、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)等のピリジン誘導体、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm−II)、4,6−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)等のピリミジン誘導体、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)等のトリアジン誘導体を用いることができる。
また、ポリ(2,5−ピリジンジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)のような高分子化合物を用いることもできる。
また、電子輸送層(114、114a、114b)は、単層のものだけでなく、上記物質からなる層が2層以上積層した構造であってもよい。
次に、図1(D)に示す発光素子において、EL層103aの電子輸送層114a上に電子注入層115aが真空蒸着法により形成される。その後、EL層103aおよび電荷発生層104が形成され、EL層103bの電子輸送層114bまで形成された後、上に電子注入層115bが真空蒸着法により形成される。
<電子注入層>
電子注入層(115、115a、115b)は、電子注入性の高い物質を含む層である。電子注入層(115、115a、115b)には、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiO)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。また、フッ化エルビウム(ErF)のような希土類金属化合物を用いることができる。また、電子注入層(115、115a、115b)にエレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。なお、上述した電子輸送層(114、114a、114b)を構成する物質を用いることもできる。
また、電子注入層(115、115a、115b)に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層(114、114a、114b)に用いる電子輸送性材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
なお、図1(D)に示す発光素子において、発光層113bから得られる光を増幅させる場合には、第2の電極102と、発光層113bとの光学距離が、発光層113bが呈する光の波長λの1/4未満となるように形成するのが好ましい。この場合、電子輸送層114bまたは電子注入層115bの膜厚を変えることにより、調整することができる。
<電荷発生層>
図1(D)に示す発光素子において、電荷発生層104は、第1の電極(陽極)101と第2の電極(陰極)102との間に電圧を印加したときに、EL層103aに電子を注入し、EL層103bに正孔を注入する機能を有する。なお、電荷発生層104は、正孔輸送性材料に電子受容体(アクセプター)が添加された構成であっても、電子輸送性材料に電子供与体(ドナー)が添加された構成であってもよい。また、これらの両方の構成が積層されていても良い。なお、上述した材料を用いて電荷発生層104を形成することにより、EL層が積層された場合における駆動電圧の上昇を抑制することができる。
電荷発生層104において、正孔輸送性材料に電子受容体が添加された構成とする場合、正孔輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子受容体としては、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル等を挙げることができる。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムなどが挙げられる。
電荷発生層104において、電子輸送性材料に電子供与体が添加された構成とする場合、電子輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子供与体としては、アルカリ金属またはアルカリ土類金属または希土類金属または元素周期表における第2、第13族に属する金属およびその酸化物、炭酸塩を用いることができる。具体的には、リチウム(Li)、セシウム(Cs)、マグネシウム(Mg)、カルシウム(Ca)、イッテルビウム(Yb)、インジウム(In)、酸化リチウム、炭酸セシウムなどを用いることが好ましい。また、テトラチアナフタセンのような有機化合物を電子供与体として用いてもよい。
なお、図1(E)のEL層103cは、上述したEL層(103、103a、103b)と同様の構成とすればよい。また、電荷発生層104a、104bについても、上述した電荷発生層104と同様の構成とすればよい。
<基板>
本実施の形態で示した発光素子は、様々な基板上に形成することができる。なお、基板の種類は、特定のものに限定されることはない。基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどが挙げられる。
なお、ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどが挙げられる。また、可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表されるプラスチック、アクリル樹脂等の合成樹脂、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニル、ポリアミド、ポリイミド、アラミド樹脂、エポキシ樹脂、無機蒸着フィルム、又は紙類などが挙げられる。
なお、本実施の形態で示す発光素子の作製には、蒸着法などの真空プロセスや、スピンコート法やインクジェット法などの溶液プロセスを用いることができる。蒸着法を用いる場合には、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真空蒸着法などの物理蒸着法(PVD法)や、化学蒸着法(CVD法)等を用いることができる。特に発光素子のEL層に含まれる機能層(正孔注入層(111、111a、111b)、正孔輸送層(112、112a、112b)、発光層(113、113a、113b、113c)、電子輸送層(114、114a、114b)、電子注入層(115、115a、115b))、および電荷発生層(104、104a、104b)については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、マイクロコンタクト法、ナノインプリント法等)などの方法により形成することができる。
なお、本実施の形態で示す発光素子のEL層(103、103a、103b)を構成する各機能層(正孔注入層(111、111a、111b)、正孔輸送層(112、112a、112b)、発光層(113、113a、113b、113c)、電子輸送層(114、114a、114b)、電子注入層(115、115a、115b))や電荷発生層(104、104a、104b)は、上述した材料に限られることはなく、それ以外の材料であっても各層の機能を満たせるものであれば組み合わせて用いることができる。一例としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)、中分子化合物(低分子と高分子の中間領域の化合物:分子量400乃至4000)、無機化合物(量子ドット材料等)等を用いることができる。なお、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料などを用いることができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。
(実施の形態3)
本実施の形態では、本発明の一態様である発光装置について説明する。なお、図2(A)に示す発光装置は、第1の基板201上のトランジスタ(FET)202と発光素子(203R、203G、203B、203W)が電気的に接続されてなるアクティブマトリクス型の発光装置であり、複数の発光素子(203R、203G、203B、203W)は、共通のEL層204を有し、また、各発光素子の発光色に応じて、各発光素子の電極間の光学距離が調整されたマイクロキャビティ構造を有する。また、EL層204から得られた発光が第2の基板205に形成されたカラーフィルタ(206R、206G、206B)を介して射出されるトップエミッション型の発光装置である。
図2(A)に示す発光装置は、第1の電極207を反射電極として機能するように形成する。また、第2の電極208を半透過・半反射電極として機能するように形成する。なお、第1の電極207および第2の電極208を形成する電極材料としては、他の実施の形態の記載を参照し、適宜用いればよい。
また、図2(A)において、例えば、発光素子203Rを赤色発光素子、発光素子203Gを緑色発光素子、発光素子203Bを青色発光素子、発光素子203Wを白色発光素子とする場合、図2(B)に示すように発光素子203Rは、第1の電極207と第2の電極208との間が光学距離200Rとなるように調整し、発光素子203Gは、第1の電極207と第2の電極208との間が光学距離200Gとなるように調整し、発光素子203Bは、第1の電極207と第2の電極208との間が光学距離200Bとなるように調整する。なお、図2(B)に示すように、発光素子203Rにおいて導電層210Rを第1の電極207に積層し、発光素子203Gにおいて導電層210Gを第1の電極207に積層することにより、光学調整を行うことができる。
第2の基板205には、カラーフィルタ(206R、206G、206B)が形成されている。なお、カラーフィルタは、可視光のうち特定の波長域を通過させ、特定の波長域を阻止するフィルタである。従って、図2(A)に示すように、発光素子203Rと重なる位置に赤の波長域のみを通過させるカラーフィルタ206Rを設けることにより、発光素子203Rから赤色発光を得ることができる。また、発光素子203Gと重なる位置に緑の波長域のみを通過させるカラーフィルタ206Gを設けることにより、発光素子203Gから緑色発光を得ることができる。また、発光素子203Bと重なる位置に青の波長域のみを通過させるカラーフィルタ206Bを設けることにより、発光素子203Bから青色発光を得ることができる。但し、発光素子203Wは、カラーフィルタを設けることなく白色発光を得ることができる。なお、1種のカラーフィルタの端部には、黒色層(ブラックマトリックス)209が設けられていてもよい。さらに、カラーフィルタ(206R、206G、206B)や黒色層209は、透明な材料を用いたオーバーコート層で覆われていても良い。
図2(A)では、第2の基板205側に発光を取り出す構造(トップエミッション型)の発光装置を示したが、図2(C)に示すようにFET202が形成されている第1の基板201側に光を取り出す構造(ボトムエミッション型)の発光装置としても良い。なお、ボトムエミッション型の発光装置の場合には、第1の電極207を半透過・半反射電極として機能するように形成し、第2の電極208を反射電極として機能するように形成する。また、第1の基板201は、少なくとも透光性の基板を用いる。また、カラーフィルタ(206R’、206G’、206B’)は、図2(C)に示すように発光素子(203R、203G、203B)よりも第1の基板201側に設ければよい。
また、図2(A)において、発光素子が、赤色発光素子、緑色発光素子、青色発光素子、白色発光素子の場合について示したが、本発明の一態様である発光素子はその構成に限られることはなく、黄色の発光素子や橙色の発光素子を有する構成であっても良い。なお、これらの発光素子を作製するためにEL層(発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、電荷発生層など)に用いる材料としては、他の実施の形態の記載を参照し、適宜用いればよい。なお、その場合には、また、発光素子の発光色に応じてカラーフィルタを適宜選択する必要がある。
以上のような構成とすることにより、複数の発光色を呈する発光素子を備えた発光装置を得ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。
(実施の形態4)
本実施の形態では、本発明の一態様である発光装置について説明する。
本発明の一態様である発光素子の素子構成を適用することで、アクティブマトリクス型の発光装置やパッシブマトリクス型の発光装置を作製することができる。なお、アクティブマトリクス型の発光装置は、発光素子とトランジスタ(FET)とを組み合わせた構成を有する。従って、パッシブマトリクス型の発光装置、アクティブマトリクス型の発光装置は、いずれも本発明の一態様に含まれる。なお、本実施の形態に示す発光装置には、他の実施の形態で説明した発光素子を適用することが可能である。
本実施の形態では、アクティブマトリクス型の発光装置について図3を用いて説明する。
なお、図3(A)は発光装置を示す上面図であり、図3(B)は図3(A)を鎖線A−A’で切断した断面図である。アクティブマトリクス型の発光装置は、第1の基板301上に設けられた画素部302、駆動回路部(ソース線駆動回路)303と、駆動回路部(ゲート線駆動回路)(304a、304b)を有する。画素部302および駆動回路部(303、304a、304b)は、シール材305によって、第1の基板301と第2の基板306との間に封止される。
また、第1の基板301上には、引き回し配線307が設けられる。引き回し配線307は、外部入力端子であるFPC308と電気的に接続される。なお、FPC308は、駆動回路部(303、304a、304b)に外部からの信号(例えば、ビデオ信号、クロック信号、スタート信号、リセット信号等)や電位を伝達する。また、FPC308にはプリント配線基板(PWB)が取り付けられていても良い。なお、これらFPCやPWBが取り付けられた状態は、発光装置に含まれる。
次に、図3(B)に断面構造を示す。
画素部302は、FET(スイッチング用FET)311、FET(電流制御用FET)312、およびFET312と電気的に接続された第1の電極313を有する複数の画素により形成される。なお、各画素が有するFETの数は、特に限定されることはなく、必要に応じて適宜設けることができる。
FET309、310、311、312は、特に限定されることはなく、例えば、スタガ型や逆スタガ型などのトランジスタを適用することができる。また、トップゲート型やボトムゲート型などのトランジスタ構造であってもよい。
なお、これらのFET309、310、311、312に用いることのできる半導体の結晶性については特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。なお、結晶性を有する半導体を用いることで、トランジスタ特性の劣化を抑制できるため好ましい。
また、これらの半導体としては、例えば、第14族の元素、化合物半導体、酸化物半導体、有機半導体などを用いることができる。代表的には、シリコンを含む半導体、ガリウムヒ素を含む半導体、インジウムを含む酸化物半導体などを適用することができる。
駆動回路部303は、FET309とFET310とを有する。なお、FET309とFET310は、単極性(N型またはP型のいずれか一方のみ)のトランジスタを含む回路で形成されても良いし、N型のトランジスタとP型のトランジスタを含むCMOS回路で形成されても良い。また、外部に駆動回路を有する構成としても良い。
第1の電極313の端部は、絶縁物314により覆われている。なお、絶縁物314には、ネガ型の感光性樹脂や、ポジ型の感光性樹脂(アクリル樹脂)などの有機化合物や、酸化シリコン、酸化窒化シリコン、窒化シリコン等の無機化合物を用いることができる。絶縁物314の上端部または下端部には、曲率を有する曲面を有するのが好ましい。これにより、絶縁物314の上層に形成される膜の被覆性を良好なものとすることができる。
第1の電極313上には、EL層315及び第2の電極316が積層形成される。EL層315は、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、電荷発生層等を有する。
なお、本実施の形態で示す発光素子317の構成は、他の実施の形態で説明した構成や材料を適用することができる。なお、ここでは図示しないが、第2の電極316は外部入力端子であるFPC308に電気的に接続されている。
また、図3(B)に示す断面図では発光素子317を1つのみ図示しているが、画素部302において、複数の発光素子がマトリクス状に配置されているものとする。画素部302には、3種類(R、G、B)の発光が得られる発光素子をそれぞれ選択的に形成し、フルカラー表示可能な発光装置を形成することができる。また、3種類(R、G、B)の発光が得られる発光素子の他に、例えば、ホワイト(W)、イエロー(Y)、マゼンタ(M)、シアン(C)等の発光が得られる発光素子を形成してもよい。例えば、3種類(R、G、B)の発光が得られる発光素子に上述の数種類の発光が得られる発光素子を追加することにより、色純度の向上、消費電力の低減等の効果が得ることができる。また、カラーフィルタと組み合わせることによってフルカラー表示可能な発光装置としてもよい。なお、カラーフィルタの種類としては、赤(R)、緑(G)、青(B)、シアン(C)、マゼンタ(M)、イエロー(Y)等を用いることができる。
第1の基板301上のFET(309、310、311、312)や、発光素子317は、第2の基板306と第1の基板301とをシール材305により貼り合わせることにより、第1の基板301、第2の基板306、およびシール材305で囲まれた空間318に備えられた構造を有する。なお、空間318には、不活性気体(窒素やアルゴン等)や有機物(シール材305を含む)で充填されていてもよい。
シール材305には、エポキシ系樹脂やガラスフリットを用いることができる。なお、シール材305には、できるだけ水分や酸素を透過しない材料を用いることが好ましい。また、第2の基板306は、第1の基板301に用いることができるものを同様に用いることができる。従って、他の実施の形態で説明した様々な基板を適宜用いることができるものとする。基板としてガラス基板や石英基板の他、FRP(Fiber−Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル樹脂等からなるプラスチック基板を用いることができる。シール材としてガラスフリットを用いる場合には、接着性の観点から第1の基板301及び第2の基板306はガラス基板であることが好ましい。
以上のようにして、アクティブマトリクス型の発光装置を得ることができる。
また、アクティブマトリクス型の発光装置を可撓性基板に形成する場合、可撓性基板上にFETと発光素子とを直接形成しても良いが、剥離層を有する別の基板にFETと発光素子を形成した後、熱、力、レーザ照射などを与えることによりFETと発光素子を剥離層で剥離し、さらに可撓性基板に転載して作製しても良い。なお、剥離層としては、例えば、タングステン膜と酸化シリコン膜との無機膜の積層や、ポリイミド等の有機樹脂膜等を用いることができる。また可撓性基板としては、トランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、又はゴム基板などが挙げられる。これらの基板を用いることにより、耐久性や耐熱性に優れ、軽量化および薄型化を図ることができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、本発明の一態様である発光素子、本発明の一態様である発光素子を有する発光装置を適用して完成させた様々な電子機器や自動車の一例について、説明する。なお、発光装置は、本実施の形態で説明する電子機器において、主に表示部に適用することができる。
図4(A)乃至図4(C)に示す電子機器は、筐体7000、表示部7001、スピーカ7003、LEDランプ7004、操作キー7005(電源スイッチ、又は操作スイッチを含む)、接続端子7006、センサ7007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン7008、等を有することができる。
図4(A)はモバイルコンピュータであり、上述したものの他に、スイッチ7009、赤外線ポート7010、等を有することができる。
図4(B)は記録媒体を備えた携帯型の画像再生装置(たとえば、DVD再生装置)であり、上述したものの他に、第2表示部7002、記録媒体読込部7011、等を有することができる。
図4(C)はテレビ受像機能付きデジタルカメラであり、上述したものの他に、アンテナ7014、シャッターボタン7015、受像部7016、等を有することができる。
図4(D)は携帯情報端末である。携帯情報端末は、表示部7001の3面以上に情報を表示する機能を有する。ここでは、情報7052、情報7053、情報7054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末を収納した状態で、携帯情報端末の上方から観察できる位置に表示された情報7053を確認することもできる。使用者は、携帯情報端末をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
図4(E)は携帯情報端末(スマートフォンを含む)であり、筐体7000に、表示部7001、操作キー7005、等を有することができる。なお、携帯情報端末は、スピーカ、接続端子、センサ等を設けてもよい。また、携帯情報端末は、文字や画像情報をその複数の面に表示することができる。ここでは3つのアイコン7050を表示した例を示している。また、破線の矩形で示す情報7051を表示部7001の他の面に表示することもできる。情報7051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールやSNSなどの題名、送信者名、日時、時刻、バッテリーの残量、アンテナ受信の強度などがある。または、情報7051が表示されている位置にはアイコン7050などを表示してもよい。
図4(F)は、大型のテレビジョン装置(テレビ、又はテレビジョン受信機ともいう)であり、筐体7000、表示部7001、等を有することができる。また、ここでは、スタンド7018により筐体7000を支持した構成を示している。また、テレビジョン装置の操作は、別体のリモコン操作機7111、等により行うことができる。なお、表示部7001にタッチセンサを備えていてもよく、指等で表示部7001に触れることで操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7001に表示される画像を操作することができる。
図4(A)乃至図4(F)に示す電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能、等を有することができる。さらに、複数の表示部を有する電子機器においては、一つの表示部を主として画像情報を表示し、別の一つの表示部を主として文字情報を表示する機能、または、複数の表示部に視差を考慮した画像を表示することで立体的な画像を表示する機能、等を有することができる。さらに、受像部を有する電子機器においては、静止画を撮影する機能、動画を撮影する機能、撮影した画像を自動または手動で補正する機能、撮影した画像を記録媒体(外部又はカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有することができる。なお、図4(A)乃至図4(F)に示す電子機器が有することのできる機能はこれらに限定されず、様々な機能を有することができる。
図4(G)は、腕時計型の携帯情報端末であり、例えばスマートウォッチとして用いることができる。この腕時計型の携帯情報端末は、筐体7000、表示部7001、操作用ボタン7022、7023、接続端子7024、バンド7025、マイクロフォン7026、センサ7029、スピーカ7030等を有している。表示部7001は、表示面が湾曲しており、湾曲した表示面に沿って表示を行うことができる。また、この携帯情報端末は、例えば無線通信可能なヘッドセットとの相互通信によりハンズフリーでの通話が可能である。なお、接続端子7024により、他の情報端末と相互にデータ伝送を行うことや、充電を行うこともできる。充電動作は無線給電により行うこともできる。
ベゼル部分を兼ねる筐体7000に搭載された表示部7001は、非矩形状の表示領域を有している。表示部7001は、時刻を表すアイコン、その他のアイコン等を表示することができる。また、表示部7001は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。
なお、図4(G)に示すスマートウォッチは、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能、等を有することができる。
また、筐体7000の内部に、スピーカ、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン等を有することができる。
なお、本発明の一態様である発光装置および本発明の一態様である発光素子を有する表示装置は、本実施の形態に示す電子機器の各表示部に用いることができ、長寿命な電子機器を実現できる。
また、発光装置を適用した電子機器として、図5(A)乃至(C)に示すような折りたたみ可能な携帯情報端末が挙げられる。図5(A)には、展開した状態の携帯情報端末9310を示す。また、図5(B)には、展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末9310を示す。さらに、図5(C)には、折りたたんだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。
表示部9311はヒンジ9313によって連結された3つの筐体9315に支持されている。なお、表示部9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。また、表示部9311は、ヒンジ9313を介して2つの筐体9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたたんだ状態に可逆的に変形させることができる。なお、本発明の一態様の発光装置は、表示部9311に用いることができる。また、長寿命な電子機器を実現できる。表示部9311における表示領域9312は折りたたんだ状態の携帯情報端末9310の側面に位置する表示領域である。表示領域9312には、情報アイコンや使用頻度の高いアプリやプログラムのショートカットなどを表示させることができ、情報の確認やアプリなどの起動をスムーズに行うことができる。
また、発光装置を適用した自動車について、図6(A)(B)に示す。すなわち、発光装置を、自動車と一体にして設けることができる。具体的には、図6(A)に示す自動車の外側のライト5101(車体後部も含む)、タイヤのホイール5102、ドア5103の一部または全体などに適用することができる。また、図6(B)に示す自動車の内側の表示部5104、ハンドル5105、シフトレバー5106、座席シート5107、インナーリアビューミラー5108等に適用することができる。その他、ガラス窓の一部に適用してもよい。
以上のようにして、本発明の一態様である発光装置や表示装置を適用した電子機器や自動車を得ることができる。なお、その場合には、長寿命な電子機器を実現できる。なお、適用できる電子機器や自動車は、本実施の形態に示したものに限らず、あらゆる分野において適用することが可能である。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
(実施の形態6)
本実施の形態では、本発明の一態様である発光装置、またはその一部である発光素子を適用して作製される照明装置の構成について図7を用いて説明する。
図7(A)、(B)は、照明装置の断面図の一例を示す。なお、図7(A)は基板側に光を取り出すボトムエミッション型の照明装置であり、図7(B)は、封止基板側に光を取り出すトップエミッション型の照明装置である。
図7(A)に示す照明装置4000は、基板4001上に発光素子4002を有する。また、基板4001の外側に凹凸を有する基板4003を有する。発光素子4002は、第1の電極4004と、EL層4005と、第2の電極4006を有する。
第1の電極4004は、電極4007と電気的に接続され、第2の電極4006は電極4008と電気的に接続される。また、第1の電極4004と電気的に接続される補助配線4009を設けてもよい。なお、補助配線4009上には、絶縁層4010が形成されている。
また、基板4001と封止基板4011は、シール材4012で接着されている。また、封止基板4011と発光素子4002の間には、乾燥剤4013が設けられていることが好ましい。なお、基板4003は、図7(A)のような凹凸を有するため、発光素子4002で生じた光の取り出し効率を向上させることができる。
図7(B)の照明装置4200は、基板4201上に発光素子4202を有する。発光素子4202は第1の電極4204と、EL層4205と、第2の電極4206とを有する。
第1の電極4204は、電極4207と電気的に接続され、第2の電極4206は電極4208と電気的に接続される。また第2の電極4206と電気的に接続される補助配線4209を設けてもよい。また、補助配線4209の下部に、絶縁層4210を設けてもよい。
基板4201と凹凸のある封止基板4211は、シール材4212で接着されている。また、封止基板4211と発光素子4202の間にバリア膜4213および平坦化膜4214を設けてもよい。なお、封止基板4211は、図7(B)のような凹凸を有するため、発光素子4202で生じた光の取り出し効率を向上させることができる。
また、これらの照明装置の応用例としては、室内の照明用であるシーリングライトが挙げられる。シーリングライトには、天井直付型や天井埋め込み型等がある。なお、このような照明装置は、発光装置を筐体やカバーと組み合わせることにより構成される。
その他にも床面に灯りを照射し、足元の安全性を高めることができる足元灯などへの応用も可能である。足元灯は、例えば、寝室や階段や通路などに使用するのが有効である。その場合、部屋の広さや構造に応じて適宜サイズや形状を変えることができる。また、発光装置と支持台とを組み合わせて構成される据え置き型の照明装置とすることも可能である。
また、シート状の照明装置(シート状照明)として応用することも可能である。シート状照明は、壁面に張り付けて使用するため、場所を取らず幅広い用途に用いることができる。なお、大面積化も容易である。なお、曲面を有する壁面や筐体に用いることもできる。
なお、上記以外にも室内に備えられた家具の一部に本発明の一態様である発光装置、またはその一部である発光素子を適用し、家具としての機能を備えた照明装置とすることができる。
以上のように、発光装置を適用した様々な照明装置が得られる。なお、これらの照明装置は本発明の一態様に含まれるものとする。
また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。
≪合成例1≫
本実施例では、実施の形態1の構造式(100)で表される本発明の一態様である有機化合物、8−(1,1’−ビフェニル−4−イル)−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジン(略称:8BP−4mDBtPBfpm)の合成方法について説明する。なお、8BP−4mDBtPBfpmの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000032
<8−(1,1’−ビフェニル−4−イル)−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジンの合成>
8−クロロ−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジン1.37g、4−ビフェニルボロン酸0.657g、リン酸三カリウム1.91g、ジエチレングリコールジメチルエーテル(diglyme)30mL、t−ブタノール0.662gを三口フラスコに入れ、フラスコ内を減圧下攪拌することで脱気し、窒素置換した。
この混合物を60℃に加熱し、酢酸パラジウム(II)23.3mg、ジ(1−アダマンチル)−n−ブチルホスフィン66.4mgを加え、120℃で27時間攪拌した。この反応液に水を加えて吸引ろ過し、得られたろ物を水、エタノール及びトルエンで洗浄した。このろ物を熱したトルエンで溶解し、セライト、アルミナ、セライトの順に充填したろ過補助剤に通した。得られた溶液を濃縮、乾固し、トルエンにて再結晶することにより、目的物である白色固体を収量1.28g、収率74%で得た。
この白色固体1.26gを、トレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2.56Pa、アルゴンガスを流量10mL/minで流しながら、310℃で固体を加熱した。昇華精製後、目的物の淡黄色固体を1.01g、回収率80%で得た。この合成スキームを下記式(a−1)に示す。
Figure JPOXMLDOC01-appb-C000033
なお、上記反応で得られた淡黄色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図8に示す。この結果から、本実施例において、上述の構造式(100)で表される本発明の一態様である有機化合物、8BP−4mDBtPBfpmが得られたことがわかった。
H−NMR.δ(CDCl):7.39(t,1H)、7.47−7.53(m,4H)、7.63−7.67(m,2H)、7.68(d,2H)、7.75(d,2H)、7.79−7.83(m,4H)、7.87(d,1H)、7.98(d,1H)、8.02(d,1H)、8.23−8.26(m,2H)、8.57(s,1H)、8.73(d,1H)、9.05(s,1H)、9.34(s,1H)。
≪8BP−4mDBtPBfpmの物性について≫
次に、8BP−4mDBtPBfpmのトルエン溶液および固体薄膜の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。
トルエン溶液中の吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用いた。また、トルエン溶液中の発光スペクトルの測定には、蛍光光度計((株)浜松ホトニクス製 FS920)を用いた。得られたトルエン溶液の吸収スペクトルおよび発光スペクトルの測定結果を図9(A)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。
図9(A)より、8BP−4mDBtPBfpmのトルエン溶液は332nm、316nm及び281nm付近に吸収ピークが見られ、発光波長のピークは406nm(励起波長318nm)であった。
固体薄膜の吸収スペクトルの測定には、石英基板上に真空蒸着法にて作製した固体薄膜を用い、紫外可視分光光度計(日立ハイテクノロジーズ製 U4100型)を用いて測定した。また、固体薄膜の発光スペクトルの測定には、上記同様の固体薄膜を用い、蛍光光度計((株)浜松ホトニクス製 FS920)を用いて測定した。得られた固体薄膜の吸収スペクトルおよび発光スペクトルの測定結果を図9(B)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、上記同様の固体薄膜を用い、顕微PL装置 LabRAM HR−PL ((株)堀場製作所)を用い、測定温度は10K、励起光として波長が325nmのHe−Cdレーザを用い、検出器にはCCD検出器を用いて低温(10K)の発光スペクトルを測定した。
図9(B)より、8BP−4mDBtPBfpmの固体薄膜では、341nm、308nm、286nm、273nm及び243nm付近に吸収ピークが見られ、428nm(励起波長340nm)付近に発光波長のピークが見られた。また、低温(10K)の発光スペクトルの結果より、8BP−4mDBtPBfpmの発光スペクトルの燐光成分の最も短波長側のピーク(ショルダーを含む)の波長は482nmであった。したがって、上記ピーク波長より、8BP−4mDBtPBfpmのT1準位は2.57eVと算出された。
本発明の一態様である有機化合物、8BP−4mDBtPBfpmは、高いT1準位を有し、緑色から赤色付近で発光する燐光材料(ゲスト材料)に適したホスト材料であるといえる。なお、本発明の一態様である有機化合物、8BP−4mDBtPBfpmは、可視域の燐光発光物質のホスト材料や発光物質としても利用可能である。
≪合成例2≫
本実施例では、実施の形態1の構造式(101)で表される本発明の一態様である有機化合物、8−(1,1’−ビフェニル−3−イル)−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジン(略称:8mBP−4mDBtPBfpm)の合成方法について説明する。なお、8mBP−4mDBtPBfpmの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000034
<8−(1,1’−ビフェニル−3−イル)−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジンの合成>
8−クロロ−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジン1.37g、3−ビフェニルボロン酸0.664g、リン酸三カリウム1.90g、t−ブタノール0.663g、ジグリム30mLを三口フラスコに入れ、減圧下攪拌することで脱気し、窒素置換した。この混合物を60℃に加熱し、酢酸パラジウム(II)21.4mg及びジ(1−アダマンチル)−n−ブチルホスフィン65.6mgを加え、120℃で21時間攪拌した。
この反応物に酢酸パラジウム(II)23.5mg及びジ(1−アダマンチル)−n−ブチルホスフィン66.4mgを加え、120℃で8時間攪拌した。この反応物に水を加えて吸引ろ過し、得られたろ物を水、エタノール及びトルエンで洗浄した。このろ物を熱したトルエンで溶解し、セライト、アルミナ、セライトの順に充填したろ過補助剤に通した。得られた溶液を濃縮、乾固し、トルエンにて再結晶することにより、目的物である白色固体を収量1.10g、収率64%で得た。
この白色固体1.10gを、トレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2.57Pa、アルゴンガスを流量10mL/minで流しながら、300℃で固体を加熱した。昇華精製後、目的物の淡黄色固体を0.895g、回収率81%で得た。この合成スキームを下記式(b−1)に示す。
Figure JPOXMLDOC01-appb-C000035
なお、上記反応で得られた淡黄色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図10に示す。この結果から、本実施例において、上述の構造式(101)で表される本発明の一態様である有機化合物、8mBP−4mDBtPBfpmが得られたことがわかった。
H−NMR.δ(CDCl):7.39(t,1H)、7.47−7.50(m,4H)、7.57(t,1H)、7.62−7.64(m,3H)、7.67−7.69(m,3H)、7.77−7.80(m,2H)、7.86(d,1H)、7.92(s,1H)、7.79(d,1H)、8.00(d,1H)、8.21−8.23(m,2H)、8.57(s,1H)、8.71(d,1H)、9.03(s,1H)、9.32(s,1H)。
≪8mBP−4mDBtPBfpmの物性について≫
次に、8mBP−4mDBtPBfpmのトルエン溶液および固体薄膜の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。
トルエン溶液中の吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用いた。また、トルエン溶液中の発光スペクトルの測定には、蛍光光度計((株)浜松ホトニクス製 FS920)を用いた。得られたトルエン溶液の吸収スペクトルおよび発光スペクトルの測定結果を図11(A)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。
図11(A)より、8mBP−4mDBtPBfpmのトルエン溶液は331nm、315nm及び280nm付近に吸収ピークが見られ、発光波長のピークは389nm(励起波長320nm)であった。
固体薄膜の吸収スペクトルの測定には、石英基板上に真空蒸着法にて作製した固体薄膜を用い、紫外可視分光光度計(日立ハイテクノロジーズ製 U4100型)を用いて測定した。また、固体薄膜の発光スペクトルの測定には、上記同様の固体薄膜を用い、蛍光光度計((株)浜松ホトニクス製 FS920)を用いて測定した。得られた固体薄膜の吸収スペクトルおよび発光スペクトルの測定結果を図11(B)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、上記同様の固体薄膜を用い、顕微PL装置 LabRAM HR−PL ((株)堀場製作所)を用い、測定温度は10K、励起光として波長が325nmのHe−Cdレーザを用い、検出器にはCCD検出器を用いて低温(10K)の発光スペクトルを測定した。
図11(B)より、8mBP−4mDBtPBfpmの固体薄膜では、343nm、319nm及び245nm付近に吸収ピークが見られ、411nm(励起波長320nm)付近に発光波長のピークが見られた。また、低温(10K)の発光スペクトルの結果より、8mBP−4mDBtPBfpmの発光スペクトルの燐光成分の最も短波長側のピーク(ショルダーを含む)の波長は456nmであった。したがって、上記ピーク波長より、8mBP−4mDBtPBfpmのT1準位は2.72eVと算出された。
本発明の一態様である有機化合物、8mBP−4mDBtPBfpmは、高いT1準位を有し、緑色から赤色付近で発光する燐光材料(ゲスト材料)に適したホスト材料であるといえる。なお、本発明の一態様である有機化合物、8mBP−4mDBtPBfpmは、可視域の燐光発光物質のホスト材料や発光物質としても利用可能である。
≪合成例3≫
本実施例では、実施の形態1の構造式(102)で表される本発明の一態様である有機化合物、8−[(2,2’−ビナフタレン)−6−イル]−4−[3−(ジベンゾチオフェン−4−イル)フェニル−[1]ベンゾフロ[3,2−d]ピリミジン(略称:8(βN2)−4mDBtPBfpm)の合成方法について説明する。なお、8(βN2)−4mDBtPBfpmの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000036
<8−[(2,2’−ビナフタレン)−6−イル]−4−[3−(ジベンゾチオフェン−4−イル)フェニル−[1]ベンゾフロ[3,2−d]ピリミジンの合成>
8−クロロ−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジン1.21g、[2,2’−ビナフタレン]−6−イルボロン酸0.857g、リン酸三カリウム1.67g、ジグリム26mL、t−ブタノール0.583gを三口フラスコに入れ、フラスコ内を減圧下攪拌することで脱気し、窒素置換した。
この混合物を60℃に加熱し、酢酸パラジウム(II)18.9mg、ジ(1−アダマンチル)−n−ブチルホスフィン61.1mgを加え、120℃で10時間攪拌した。この反応液に水を加えて吸引ろ過し、得られたろ物を水、エタノールおよびトルエンで洗浄した。このろ物を熱したトルエンで溶解し、セライト、アルミナ、セライトの順に充填したろ過補助剤に通した。得られた溶液を濃縮、乾固し、白色固体を得た。
得られた固体全量、[2,2’−ビナフタレン]−6−イルボロン酸0.348g、リン酸三カリウム0.621g、ジグリム13mL、t−ブタノール0.239gを三口フラスコに入れ、フラスコ内を減圧下攪拌することで脱気し、窒素置換した。この混合物を60℃に加熱し、酢酸パラジウム(II)8.7mg、ジ(1−アダマンチル)−n−ブチルホスフィン25.1mgを加え、120℃で18.5時間攪拌した。この反応液に水を加えて吸引ろ過し、得られたろ物を水、エタノールおよびトルエンで洗浄した。
このろ物を熱したトルエンで溶解し、セライト、アルミナ、セライトの順に充填したろ過補助剤に通した。得られた溶液を濃縮、乾固し、トルエンにて再結晶することで、目的物である白色固体を収量1.16g、収率65%で得た。得られた白色固体1.15gをトレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2.64Pa、アルゴンガスを流量10mL/minで流しながら、365℃で固体を加熱した。昇華精製後、本発明である8(βN2)−4mDBtPBfpmを0.958g(回収率83%,白色固体)で得た。この合成スキームを下記式(c−1)に示す。
Figure JPOXMLDOC01-appb-C000037
なお、上記反応で得られた白色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図12に示す。この結果から、本実施例において、上述の構造式(102)で表される本発明の一態様である有機化合物、8(βN2)−4mDBtPBfpmが得られたことがわかった。
H−NMR.δ(CDCl):7.50−7.7.57(m,4H)、7.64−7.67(m,2H)、7.82(t,1H)、7.86−8.00(m,9H)、8.05−8.09(m,2H)、8.14(d,1H)、8.22−8.26(m,5H)、8.69(s,1H)、8.74(d,1H)、9.07(s,1H)、9.35(s,1H)。
≪8(βN2)−4mDBtPBfpmの物性について≫
次に、8(βN2)−4mDBtPBfpmのトルエン溶液および固体薄膜の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。
トルエン溶液中の吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用いた。また、トルエン溶液中の発光スペクトルの測定には、蛍光光度計((株)浜松ホトニクス製 FS920)を用いた。得られたトルエン溶液の吸収スペクトルおよび発光スペクトルの測定結果を図13(A)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。
図13(A)より、8(βN2)−4mDBtPBfpmのトルエン溶液は333nm、325nm及び280nm付近に吸収ピークが見られ、発光波長のピークは414nm(励起波長329nm)であった。
固体薄膜の吸収スペクトルの測定には、石英基板上に真空蒸着法にて作製した固体薄膜を用い、紫外可視分光光度計(日立ハイテクノロジーズ製 U4100型)を用いて測定した。また、固体薄膜の発光スペクトルの測定には、上記同様の固体薄膜を用い、蛍光光度計((株)浜松ホトニクス製 FS920)を用いて測定した。得られた固体薄膜の吸収スペクトルおよび発光スペクトルの測定結果を図13(B)に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、上記同様の固体薄膜を用い、顕微PL装置 LabRAM HR−PL ((株)堀場製作所)を用い、測定温度は10K、励起光として波長が325nmのHe−Cdレーザを用い、検出器にはCCD検出器を用いて低温(10K)の発光スペクトルを測定した。
図13(B)より、8(βN2)−4mDBtPBfpmの固体薄膜では、328nm、266nm及び245nm付近に吸収ピークが見られ、451nm(励起波長340nm)付近に発光波長のピークが見られた。また、低温(10K)の発光スペクトルの結果より、8(βN2)−4mDBtPBfpmの発光スペクトルの燐光成分の最も短波長側のピーク(ショルダーを含む)の波長は543nmであった。したがって、上記ピーク波長より、8(βN2)−4mDBtPBfpmのT1準位は2.28eVと算出された。
本発明の一態様である有機化合物、8(βN2)−4mDBtPBfpmは、高いT1準位を有し、黄色から赤色付近で発光する燐光材料(ゲスト材料)に適したホスト材料であといえる。なお、本発明の一態様である有機化合物、8(βN2)−4mDBtPBfpmは、可視域の燐光発光物質のホスト材料や発光物質としても利用可能である。
本実施例では、本発明の一態様である発光素子として、実施例3で説明した8−[(2,2’−ビナフタレン)−6−イル]−4−[3−(ジベンゾチオフェン−4−イル)フェニル−[1]ベンゾフロ[3,2−d]ピリミジン(略称:8(βN2)−4mDBtPBfpm)(構造式(102))を発光層に用いた発光素子1、比較として4−[3−(ジベンゾチオフェン−4−イル)フェニル]−8−(ナフタレン−2−イル)−[1]ベンゾフロ[3,2−d]ピリミジン(略称:8βN−4mDBtPBfpm)(構造式(301))を発光層に用いた比較発光素子2、比較として4,8−ビス[3−(ジベンゾチオフェン−4−イル)フェニル]ベンゾフロ[3,2−d]ピリミジン(略称:4,8mDBtP2Bfpm)(構造式(302))を発光層に用いた比較発光素子3について、素子構造、作製方法およびその特性について説明する。なお、本実施例で用いる発光素子の素子構造を図14に示し、具体的な構成について表1に示す。また、本実施例で用いる材料の化学式を以下に示す。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-C000039
≪発光素子の作製≫
本実施例で示す発光素子は、図14に示すように基板900上に形成された第1の電極901上に正孔注入層911、正孔輸送層912、発光層913、電子輸送層914、電子注入層915が順次積層され、電子注入層915上に第2の電極903が積層された構造を有する。
まず、基板900上に第1の電極901を形成した。電極面積は、4mm(2mm×2mm)とした。また、基板900には、ガラス基板を用いた。また、第1の電極901は、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により、70nmの膜厚で成膜して形成した。
ここで、前処理として、基板の表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、第1の電極901上に正孔注入層911を形成した。正孔注入層911は、真空蒸着装置内を10−4Paに減圧した後、1,3,5−トリ(ジベンゾチオフェン−4−イル)ベンゼン(略称:DBT3P−II)と酸化モリブデンとを、DBT3P−II:酸化モリブデン=2:1(質量比)とし、膜厚が60nmとなるように共蒸着して形成した。
次に、正孔注入層911上に正孔輸送層912を形成した。正孔輸送層912は、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)を用い、膜厚が20nmになるように蒸着して形成した。
次に、正孔輸送層912上に発光層913を形成した。
発光層913は、発光素子1の場合は、8(βN2)−4mDBtPBfpmおよびN−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)に加えて、ゲスト材料(燐光発光材料)として、ビス[4,6−ジメチル−2−(2−キノリニル−κN)フェニル−κC](2,4−ペンタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmpqn)(acac)])を用い、重量比が8(βN2)−4mDBtPBfpm:PCBBiF:[Ir(dmpqn)(acac)]=0.75:0.25:0.1となるように共蒸着した。なお、膜厚は、40nmとした。また、比較発光素子2の場合は、8βN−4mDBtPBfpmおよびPCBBiFに加えて、ゲスト材料(燐光発光材料)として、[Ir(dmpqn)(acac)]を用い、重量比が8βN−4mDBtPBfpm:PCBBiF:[Ir(dmpqn)(acac)]=0.75:0.25:0.1となるように共蒸着した。なお、膜厚は、40nmとした。また、比較発光素子3の場合は、4,8mDBtP2BfpmおよびPCBBiFに加えて、ゲスト材料(燐光発光材料)として、[Ir(dmpqn)(acac)]を用い、重量比が4,8mDBtP2Bfpm:PCBBiF:[Ir(dmpqn)(acac)]=0.75:0.25:0.1となるように共蒸着した。なお、膜厚は、40nmとした。
次に、発光層913上に電子輸送層914を形成した。
電子輸送層914は、発光素子1の場合は、8(βN2)−4mDBtPBfpmの膜厚が25nm、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBphen)の膜厚が15nmとなるように順次蒸着して形成した。また、比較発光素子2の場合は、8βN−4mDBtPBfpmの膜厚が25nm、NBphenの膜厚が15nmとなるように順次蒸着して形成した。また、比較発光素子3の場合は、4,8mDBtP2Bfpmmの膜厚が25nm、NBphenの膜厚が15nmとなるように順次蒸着して形成した。
次に、電子輸送層914上に電子注入層915を形成した。電子注入層915は、フッ化リチウム(LiF)を用い、膜厚が1nmになるように蒸着して形成した。
次に、電子注入層915上に第2の電極903を形成した。第2の電極903は、アルミニウムを蒸着法により、膜厚が200nmとなるように形成した。なお、本実施例において、第2の電極903は、陰極として機能する。
以上の工程により、基板900上に一対の電極間にEL層902を挟んでなる発光素子を形成した。なお、上記工程で説明した正孔注入層911、正孔輸送層912、発光層913、電子輸送層914、電子注入層915は、本発明の一態様におけるEL層を構成する機能層である。また、上述した作製方法における蒸着工程では、全て抵抗加熱法による蒸着法を用いた。
また、上記に示すように作製した発光素子は、別の基板(図示せず)により封止される。なお、別の基板(図示せず)を用いた封止の際は、窒素雰囲気のグローブボックス内において、紫外光により固化するシール剤を塗布した別の基板(図示せず)を基板900上に固定し、基板900上に形成された発光素子の周囲にシール剤が付着するよう基板同士を接着させた。封止時には365nmの紫外光を6J/cm照射しシール剤を固化し、80℃にて1時間熱処理することによりシール剤を安定化させた。
≪発光素子の動作特性≫
作製した各発光素子の動作特性について測定した。なお、測定は室温(25℃に保たれた雰囲気)で行った。また、各発光素子の動作特性の結果として電流密度−輝度特性を図15、電圧−輝度特性を図16、輝度−電流効率特性を図17、電圧−電流特性を図18にそれぞれ示す。
また、1000cd/m付近における各発光素子の主な初期特性値を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000040
また、発光素子1、比較発光素子2および比較発光素子3に2.5mA/cmの電流密度で電流を流した際の発光スペクトルを、図19に示す。図19に示す通り、発光素子1、比較発光素子2、および比較発光素子3の発光スペクトルは、626nm付近にピークを有しており、いずれも発光層913に含まれる、[Ir(dmpqn)(acac)]の発光に由来していることが示唆される。
次に、発光素子1、比較発光素子2、および比較発光素子3に対する信頼性試験を行った。信頼性試験の結果を図20に示す。図20において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子の駆動時間(h)を示す。なお、信頼性試験は、75mA/cmの電流密度で一定の電流を流した定電流駆動試験を行った。
信頼性試験の結果より、発光素子1は、比較発光素子2および比較発光素子3に比べて、駆動初期における劣化が少ないことが分かった。本発明の一態様である有機化合物、8(βN2)−4mDBtPBfpm(構造式(102))を用いることは発光素子の素子特性を向上させる上で有用であると言える。なお、比較発光素子2に用いた8βN−4mDBtPBfpm(構造式(301))は、ベンゾフロピリミジン骨格の8位にナフチル基が結合した構造を有し、比較発光素子3に用いた4,8mDBtP2Bfpm(構造式(302))は、ベンゾフロピリミジン骨格の8位にフェニル基を介してジベンゾチオフェンが結合した構造を有するが、発光素子1に用いた8(βN2)−4mDBtPBfpmは、ベンゾフロピリミジン骨格の8位にアリーレン基が複数連結した構造、具体的には、同じナフチル基が2つ連結したビナフチル基を有する分子構造を有する。
従って、本発明の一態様である有機化合物のようにベンゾフロピリミジン骨格またはベンゾチエノピリミジン骨格の8位にビアリーレン基を有する構造の有機化合物を発光素子に用いることで、発光素子1の初期輝度から5%低下する時間(LT95)が173時間であるのに対し、比較発光素子2のLT95は86時間、比較発光素子3のLT95は32時間と、発光素子の初期劣化の抑制に効果があり、信頼性の高い発光素子を提供することができるといえる。
本実施例では、本発明の一態様である発光素子として、実施例1で説明した8BP−4mDBtPBfpm(構造式(100))を発光層に用いた発光素子4、実施例2で説明した8mBP−4mDBtPBfpm(構造式(101))を発光層に用いた発光素子5、比較として8Ph−4mDBtPBfpm(構造式(300))を発光層に用いた比較発光素子6、比較として8DBt−4mDBtPBfpm(構造式(303))を発光層に用いた比較発光素子7、を作製し、その特性について測定した結果を示す。
なお、本実施例で作製した発光素子4、発光素子5、比較発光素子6、および比較発光素子7の素子構造は、実施例4で示した図14と同様の構造であるが、素子構造を構成する各層の具体的な構成については表3に示す通りである。また、本実施例で用いる材料の化学式を以下に示す。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-C000042
≪各発光素子の動作特性≫
作製した発光素子4、発光素子5、比較発光素子6、および比較発光素子7の動作特性について測定した。なお、測定は室温(25℃に保たれた雰囲気)で行った。
各発光素子の電流密度−輝度特性を図21、電圧−輝度特性を図22、輝度−電流効率特性を図23、電圧−電流特性を図24にそれぞれ示す。
また、1000cd/m付近における各発光素子の主な初期特性値を以下の表4に示す。
Figure JPOXMLDOC01-appb-T000043
また、各発光素子に2.5mA/cmの電流密度で電流を流した際の発光スペクトルを、図25に示す。図25に示す通り、各発光素子の発光スペクトルは、560nm付近にピークを有しており、発光層913に含まれる、[Ir(ppy)(4dppy)]の発光に由来していることが示唆される。
次に、各発光素子に対する信頼性試験を行った。信頼性試験の結果を図26に示す。図26において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子の駆動時間(h)を示す。なお、信頼性試験は、50mA/cmの電流密度で一定の電流を流した定電流駆動試験を行った。
信頼性試験の結果より、本発明の一態様である有機化合物、8BP−4mDBtPBfpm(構造式(100))を発光層に用いた発光素子4は、初期輝度から5%低下する時間(LT95)が131時間であり、8mBP−4mDBtPBfpm(構造式(101))を発光層に用いた発光素子5は、LT95が112時間であり、比較の有機化合物、8Ph−4mDBtPBfpm(構造式(300))を発光層に用いた比較発光素子6は、LT95が98時間であり、8DBt−4mDBtPBfpm(構造式(303))を発光層に用いた比較発光素子7は、LT95が62時間と、本発明の一態様である有機化合物を発光層に用いた発光素子の初期劣化が抑制されていた。これは、本発明の一態様である有機化合物、8BP−4mDBtPBfpmおよび8mBP−4mDBtPBfpmが、ベンゾフロピリミジン骨格の8位にアリーレン基が複数連結した構造、より好ましくは同じフェニル基が2つ連結したビフェニル基を有することによる効果である。従って、本発明の一態様である有機化合物を用いることは発光素子の信頼性を向上させる上で有用であると言える。
本実施例では、本発明の一態様である発光素子とし、実施例1で説明した8BP−4mDBtPBfpm(構造式(100))を発光層に用いた発光素子8、実施例2で説明した8mBP−4mDBtPBfpm(構造式(101))を発光層に用いた発光素子9、比較として8Ph−4mDBtPBfpm(構造式(300))を発光層に用いた比較発光素子10、比較として8DBt−4mDBtPBfpm(構造式(303))を発光層に用いた比較発光素子11、を作製し、その特性について測定した結果を示す。
なお、本実施例で作製した発光素子8、発光素子9、比較発光素子10、および比較発光素子11の素子構造は、実施例4で示した図14と同様の構造であるが、素子構造を構成する各層の具体的な構成については表5に示す通りである。また、本実施例で用いる材料の化学式を以下に示す。
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-C000045
≪各発光素子の動作特性≫
作製した発光素子8、発光素子9、比較発光素子10、および比較発光素子11の動作特性について測定した。なお、測定は室温(25℃に保たれた雰囲気)で行った。
各発光素子の電流密度−輝度特性を図27、電圧−輝度特性を図28、輝度−電流効率特性を図29、電圧−電流特性を図30にそれぞれ示す。
また、1000cd/m付近における各発光素子の主な初期特性値を以下の表6に示す。
Figure JPOXMLDOC01-appb-T000046
また、各発光素子に2.5mA/cmの電流密度で電流を流した際の発光スペクトルを、図31に示す。図31に示す通り、発光素子の発光スペクトルは、524nm付近にピークを有しており、発光層913に含まれる、[2−(4−メチル−5−フェニル−2−ピリジニル−κN)フェニル−κC]ビス[2−(2−ピリジニル−κN)フェニル−κC]イリジウム(略称:[Ir(ppy)(mdppy)])の発光に由来していることが示唆される。
次に、各発光素子に対する信頼性試験を行った。信頼性試験の結果を図32に示す。図32において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子の駆動時間(h)を示す。なお、信頼性試験は、50mA/cmの電流密度で一定の電流を流した定電流駆動試験を行った。
信頼性試験の結果より、本発明の一態様である有機化合物、8BP−4mDBtPBfpm(構造式(100))を発光層に用いた発光素子8は、初期輝度から5%低下する時間(LT95)が30時間であり、および8mBP−4mDBtPBfpm(構造式(101))を発光層に用いた発光素子9は、LT95が28時間であり、比較の有機化合物、8DBt−4mDBtPBfpm(構造式(303))を発光層に用いた比較発光素子11は、LT95が15時間であり、本発明の一態様である有機化合物の初期劣化が抑制されていた。また、比較の有機化合物、8Ph−4mDBtPBfpm(構造式(300))を発光層に用いた比較発光素子10はLT95が29時間と良好ではあるが、長期劣化の傾きは本発明の一態様である有機化合物よりも急峻になっていた。これらは、本発明の一態様である有機化合物、8BP−4mDBtPBfpmおよび8mBP−4mDBtPBfpmが、ベンゾフロピリミジン骨格の8位にアリーレン基が複数連結した構造、より好ましくは同じフェニル基が2つ連結したビフェニル基を有することによる効果である。従って、本発明の一態様である有機化合物を用いることは発光素子の信頼性を向上させる上で有用であると言える。
≪参考合成例1≫
本参考合成例では、実施例5の比較発光素子6、および実施例6の比較発光素子10に用いた下記構造式で表される有機化合物、4−[3−(ジベンゾチオフェン−4−イル)フェニル]−8−フェニル−[1]ベンゾフロ[3,2−d]ピリミジン(略称:8Ph−4mDBtPBfpm)(構造式(300))の合成例を具体的に例示する。
Figure JPOXMLDOC01-appb-C000047
<8Ph−4mDBtPBfpmの合成>
8−クロロ−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジン3.00g、フェニルボロン酸0.95g、リン酸三カリウム4.12g、ジグリム65mL、t−ブタノール1.44gを三口フラスコに入れ、フラスコ内を減圧下攪拌することで脱気し、窒素置換した。この混合物に酢酸パラジウム(II)42.7mg、ジ(1−アダマンチル)−n−ブチルホスフィン140mgを加え、120℃で15.5時間攪拌した。
この反応液に酢酸パラジウム(II)45.2mg、ジ(1−アダマンチル)−n−ブチルホスフィン140mgを加え、120℃で6時間、次いで140℃で3時間攪拌した。この反応液に水を加えて吸引ろ過し、得られたろ物を酢酸エチルおよびヘキサンで洗浄した。このろ物を熱したトルエンで溶解し、セライト、アルミナ、セライトの順に充填したろ過補助剤に通した。得られた溶液を濃縮、乾固し、トルエンにて再結晶することにより、目的物を含む白色固体を収量1.50gで得た。
得られた白色固体1.50gをトレインサブリメーション法により昇華精製した。昇華精製条件は、圧力3.48Pa、アルゴンガスを流量15mL/minで流しながら、280℃で固体を加熱した。昇華精製後、目的物を得た(白色固体1.02g、回収率68%)。合成スキームを下記式(d−1)に示す。
Figure JPOXMLDOC01-appb-C000048
なお、上記で得られた白色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。これにより、8Ph−4mDBtPBfpmが得られたことがわかった。
H−NMR.δ(CDCl):7.42(t,1H)、7.49−7.53(m,4H)、7.64−7.66(m,2H)、7.71(d,2H)、7.79−7.82(m,2H)、7.87(d,1H)、7.97(t,2H)、8.23−8.25(m,2H)、8.52(s,1H)、8.72(d,1H)、9.05(s,1H)、9.33(s,1H)。
≪参考合成例2≫
本参考合成例では、実施例4の比較発光素子2に用いた下記構造式で表される有機化合物、4−[3−(ジベンゾチオフェン−4−イル)フェニル]−8−(ナフタレン−2−イル)−[1]ベンゾフロ[3,2−d]ピリミジン(略称:8βN−4mDBtPBfpm)(構造式(301))の合成例を具体的に例示する。
Figure JPOXMLDOC01-appb-C000049
<8βN−4mDBtPBfpmの合成>
まず、8−クロロ−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジン1.5gと、2−ナフタレンボロン酸0.73gと、フッ化セシウム1.5gと、メシチレン32mLを加え、100mLの三口フラスコ内を窒素置換し、2’−(ジシクロヘキシルホスフィノ)アセトフェノンエチレンケタール70mgと、トリス(ジベンジリデンアセトン)ジパラジウム(0)(略称:Pd(dba))89mgを加え、窒素気流下にて120℃にて5時間加熱した。得られた反応物に水を加えてろ過し、水およびエタノールを順次用いてろ物を洗浄した。
このろ物をトルエンに溶解させ、セライト、アルミナ、セライトの順に充填したろ過補助剤を用いてろ過した。得られた溶液の溶媒を濃縮して、再結晶することにより目的物の淡黄色固体を収量1.5g、収率64%で得た。合成スキームを下記式(e−1)に示す。
Figure JPOXMLDOC01-appb-C000050
得られた淡い黄色固体1.5gを、トレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2.0Pa、アルゴンガスを流量10mL/minで流しながら、290℃で固体を加熱した。昇華精製後、目的物の黄色固体を0.60g、回収率39%で得た。
得られた黄色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。この結果から、8βN−4mDBtPBfpmが得られたことがわかった。
H−NMR.δ(TCE−d):7.45−7.50(m,4H)、7.57−7.62(m,2H)、7.72−7.93(m,8H)、8.03(d,1H)、8.10(s,1H)、8.17(d,2H)、8.60(s,1H)、8.66(d,1H)、8.98(s,1H)、9.28(s,1H)。
≪合成例4≫
本実施例では、実施の形態1の構造式(103)で表される本発明の一態様である有機化合物、8−(1,1’−ビフェニル−4−イル)−4−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]−[1]ベンゾフロ[3,2−d]ピリミジン(略称:8BP−4mDBtBPBfpm)の合成方法について説明する。なお、8BP−4mDBtBPBfpmの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000051
<8BP−4mDBtBPBfpmの合成>
8−クロロ−4−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]−[1]ベンゾフロ[3,2−d]ピリミジン2.26g、4−ビフェニルボロン酸0.915g、フッ化セシウム1.27g、メシチレン42mLを三口フラスコに入れ、減圧下攪拌することで脱気し、窒素置換した。この混合物を60℃に加熱し、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.116g、2’−(ジシクロヘキシルホスフィノ)アセトフェノンエチレンケタール90.2mgを加え、100℃で13.5時間加熱し、次いで120℃で7.5時間攪拌した。この混合物にトリス(ジベンジリデンアセトン)ジパラジウム(0)0.115g、2’−(ジシクロヘキシルホスフィノ)アセトフェノンエチレンケタール90.3mgを加え、120℃で28時間攪拌した。この反応液に水を加えて吸引ろ過し、得られたろ物を水、エタノール及びトルエンで洗浄した。このろ物を熱したトルエンに溶かし、セライト、アルミナ、セライトの順に充填したろ過補助剤に通した。得られた溶液を濃縮、乾固し、トルエンにて再結晶することにより、目的物である淡黄色固体を収量1.93g、収率70%で得た。得られた淡黄色固体1.93gを、トレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2.35Pa、アルゴンガスを流量10mL/minで流しながら、355℃で固体を加熱した。昇華精製後、目的物の淡黄色固体を1.66g、回収率86%で得た。この合成スキームを下記式(f−1)に示す。
Figure JPOXMLDOC01-appb-C000052
なお、上記反応で得られた白色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図33に示す。この結果から、本実施例において、上述の構造式(103)で表される本発明の一態様である有機化合物、8BP−4mDBtBPBfpmが得られたことがわかった。
H−NMR.δ(CDCl):7.37−7.40(m,1H)、7.46−7.52(m,4H)、7.60−7.85(m,14H)、7.92−7.98(m,2H)、8.19−8.23(m,3H)、8.57(m,1H)、8.64−8.66(m,1H)、8.98−8.99(m,1H)、9.33(s,1H)。
≪8BP−4mDBtBPBfpmの物性について≫
次に、8BP−4mDBtBPBfpmのトルエン溶液および固体薄膜の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。
トルエン溶液中の吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用いた。また、トルエン溶液中の発光スペクトルの測定には、蛍光光度計((株)浜松ホトニクス製 FS920)を用いた。得られたトルエン溶液の吸収スペクトルおよび発光スペクトルの測定結果を図34に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。
図34より、8BP−4mDBtBPBfpmのトルエン溶液は332nm、316nm及び281nm付近に吸収ピークが見られ、発光波長のピークは406nm(励起波長318nm)であった。
固体薄膜の吸収スペクトルの測定には、石英基板上に真空蒸着法にて作製した固体薄膜を用い、紫外可視分光光度計(日立ハイテクノロジーズ製 U4100型)を用いて測定した。また、固体薄膜の発光スペクトルの測定には、上記同様の固体薄膜を用い、蛍光光度計((株)浜松ホトニクス製 FS920)を用いて測定した。得られた固体薄膜の吸収スペクトルおよび発光スペクトルの測定結果を図35に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。
図35より、8BP−4mDBtBPBfpmの固体薄膜では、340nm、310nm、290nm、270nm及び245nm付近に吸収ピークが見られ、426nm(励起波長330nm)付近に発光波長のピークが見られた。
≪合成例5≫
本実施例では、実施の形態1の構造式(105)で表される本発明の一態様である有機化合物、8−[(2,2’−ビナフタレン)−6−イル]−4−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]−[1]ベンゾフロ[3,2−d]ピリミジン(略称:8(βN2)−4mDBtBPBfpm)の合成方法について説明する。なお、8(βN2)−4mDBtBPBfpm)の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000053
<8(βN2)−4mDBtBPBfpmの合成>
8−クロロ−4−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]−[1]ベンゾフロ[3,2−d]ピリミジン2.11g、[2,2’−ビナフタレン]−6−イルボロン酸1.26g、リン酸三カリウム2.55g、ジグリム40mL、t−ブタノール0.93gを三口フラスコに入れ、フラスコ内を減圧下攪拌することで脱気し、窒素置換した。この混合物を60℃に加熱し、酢酸パラジウム(II)27.0mg、ジ(1−アダマンチル)−n−ブチルホスフィン77.8mgを加え、120℃で14時間攪拌した。酢酸パラジウム(II)27.5mg、ジ(1−アダマンチル)−n−ブチルホスフィン76.4mgを加え、120℃で16時間攪拌した。さらにこの反応物に酢酸パラジウム(II)27.6mg、ジ(1−アダマンチル)−n−ブチルホスフィン77.9mgを加え、120℃で14.5時間、次いで130℃で6.5時間攪拌した。
この反応物に水を加えて吸引ろ過し、得られたろ物を水およびトルエンで洗浄した。このろ物を熱したトルエンで溶解し、セライト、アルミナ、セライトの順に充填したろ過補助剤に通した。得られた溶液を濃縮、乾固し、トルエンにて再結晶することにより目的物である白色固体を収量1.56g、収率52%で得た。
この白色固体1.15gを、トレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2.33Pa、アルゴンガスを流量10mL/minで流しながら、375℃で固体を加熱した。昇華精製後、目的物の淡黄色固体を1.06g、回収率92%で得た。この合成スキームを下記式(g−1)に示す。
Figure JPOXMLDOC01-appb-C000054
なお、上記反応で得られた白色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図36に示す。この結果から、本実施例において、上述の構造式(105)で表される本発明の一態様である有機化合物、8(βN2)−4mDBtBPBfpmが得られたことがわかった。
H−NMR.δ(CDCl):7.46−7.57(m,4H)、7.62−7.63(m,2H)、7.70(t,1H)、7.75−7.87(m,5H)、7.90−8.00(m,7H)、8.06−8.10(m,3H)、8.20−8.24(m,6H)、8.66−8.68(m,2H)、9.00(s,1H)、9.34(s,1H)。
≪8(βN2)−4mDBtBPBfpmの物性について≫
次に、8(βN2)−4mDBtBPBfpmの固体薄膜の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。
固体薄膜の吸収スペクトルの測定には、石英基板上に真空蒸着法にて作製した固体薄膜を用い、紫外可視分光光度計(日立ハイテクノロジーズ製 U4100型)を用いて測定した。また、固体薄膜の発光スペクトルの測定には、上記同様の固体薄膜を用い、蛍光光度計((株)浜松ホトニクス製 FS920)を用いて測定した。得られた固体薄膜の吸収スペクトルおよび発光スペクトルの測定結果を図37に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。
図37より、8(βN2)−4mDBtBPBfpmの固体薄膜では、328nm、290nm、267nm及び246nm付近に吸収ピークが見られ、446nm(励起波長330nm)付近に発光波長のピークが見られた。
≪合成例6≫
本実施例では、実施の形態1の構造式(126)で表される本発明の一態様である有機化合物、8−(1,1’:3’,1’’−テルフェニル−4−イル)−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジン(略称:8pmTP−4mDBtPBfpm)の合成方法について説明する。なお、8pmTP−4mDBtPBfpmの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000055
<ステップ1:4−ブロモ−1,1’:3’,1’’−テルフェニルの合成>
3−ビフェニルボロン酸0.50g、1−ブロモ−4−ヨードベンゼン1.06g、炭酸ナトリウム0.80g、トルエン17mL、エタノール4mLを枝付きフラスコに入れ、フラスコ内を減圧下攪拌することで脱気し、窒素置換した。この混合物にテトラキス(トリフェニルホスフィン)パラジウム(0)86.7mgを加えて120℃で26時間攪拌した。この反応物に水を加えて吸引ろ過し、得られたろ液を濃縮して褐色固体を得た。この固体をトルエンと酢酸エチルの混合液で溶かし、得られた溶液にシリカゲルを添加して濃縮した。得られた濃縮物をシリカゲルカラムクロマトグラフィにより、展開溶媒をヘキサンとして精製したところ、目的物である白色固体を収量0.30g、収率39%で得た。この合成スキームを下記式(h−1)に示す。
Figure JPOXMLDOC01-appb-C000056
<ステップ2:1,1’:3’,1’’−テルフェニル−4−ボロン酸の合成>
ステップ1で合成した4−ブロモ−1,1’:3’,1’’−テルフェニル2.94gを三ツ口フラスコに入れ、フラスコ内を窒素置換し、脱水テトラヒドロフラン53mLを加えて−78℃に冷却した。この混合物にn−ブチルリチウム(1.6M−ヘキサン溶液)8.9mLをゆっくり滴下して−78℃条件下で1時間攪拌した。この反応物にホウ酸トリメチル1.6mLを滴下し、室温にて一晩攪拌した。この反応物に塩酸を加えて酢酸エチルで抽出し、得られた有機層を水および飽和食塩水で洗浄して硫酸マグネシウムで乾燥した。この混合物を自然ろ過し、ろ液を濃縮して固体を得た。得られた固体を酢酸エチルとヘキサンの混合溶液で洗浄して目的の白色固体を収量1.57g、収率60%で得た。この合成スキームを下記式(h−2)に示す。
Figure JPOXMLDOC01-appb-C000057
<ステップ3:8pmTP−4mDBtPBfpmの合成>
ステップ2で合成した1,1’:3’,1’’−テルフェニル−4−ボロン酸1.12g、8−クロロ−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジン1.35g、フッ化セシウム1.70g、メシチレン26mLを三口フラスコに入れ、減圧下攪拌することで脱気し、窒素置換した。
この混合物にトリス(ジベンジリデンアセトン)ジパラジウム(0)343mg、ジ(1−アダマンチル)−n−ブチルホスフィン127mg、2’−(ジシクロヘキシルホスフィノ)アセトフェノンエチレンケタール126mgを加え、120℃で43.5時間攪拌した。この反応物に水を加えて吸引ろ過した。得られたろ物は、水、エタノール及びトルエンで洗浄した後、熱したトルエンで溶解し、セライト、アルミナ、セライトの順に充填したろ過補助剤に通し、濃縮、乾固して、2相に分離する溶媒としてトルエン/エタノールを用いた拡散法にて再結晶することにより、目的物である白色固体を収量702mg、収率37%で得た。
また、前述の反応物の吸引ろ過により得られたろ液にヘキサンを加え、析出した固体を吸引ろ過し、シリカゲルカラムクロマトグラフィ(トルエン:酢酸エチル=50:1)で精製し、トルエン/エタノールで再結晶し、目的物である白色固体を収量0.18g、収率9.5%で得た。これらの目的物を混合し、633mgの白色固体を、トレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2.52Pa、アルゴンガスを流量10mL/minで流しながら、330℃で固体を加熱した。昇華精製後、目的物の淡黄色固体を460mg、回収率73%で得た。この合成スキームを下記式(h−3)に示す。
Figure JPOXMLDOC01-appb-C000058
なお、上記反応で得られた淡黄色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図38に示す。この結果から、本実施例において、上述の構造式(126)で表される本発明の一態様である有機化合物、8pmTP−4mDBtPBfpmが得られたことがわかった。
H−NMR.δ(CDCl):7.40(t,1H)、7.47−7.70(m,11H)、7.79−7.89(m,8H)、7.98−8.04(m,2H)、8.24−8.26(m,2H)、8.59(d,1H)、8.73(d,1H)、9.05(t,1H)、9.34(s,1H)。
≪8pmTP−4mDBtPBfpmの物性について≫
 次に、8pmTP−4mDBtPBfpmのトルエン溶液および固体薄膜の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。
トルエン溶液中の吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用いた。また、トルエン溶液中の発光スペクトルの測定には、蛍光光度計((株)浜松ホトニクス製 FS920)を用いた。得られたトルエン溶液の吸収スペクトルおよび発光スペクトルの測定結果を図39に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。
図39より、8pmTP−4mDBtPBfpmのトルエン溶液は315nm及び282nm付近に吸収ピークが見られ、発光波長のピークは406nm(励起波長310nm)であった。
固体薄膜の吸収スペクトルの測定には、石英基板上に真空蒸着法にて作製した固体薄膜を用い、紫外可視分光光度計(日立ハイテクノロジーズ製 U4100型)を用いて測定した。また、固体薄膜の発光スペクトルの測定には、上記同様の固体薄膜を用い、蛍光光度計((株)浜松ホトニクス製 FS920)を用いて測定した。得られた固体薄膜の吸収スペクトルおよび発光スペクトルの測定結果を図40に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。
図40より、8BP−4mDBtBPBfpmの固体薄膜では、340nm、310nm、288nm、270nm及び243nm付近に吸収ピークが見られ、426nm(励起波長330nm)付近に発光波長のピークが見られた。
≪合成例7≫
本実施例では、実施の形態1の構造式(128)で表される本発明の一態様である有機化合物、8−(1,1’:4’,1’’−テルフェニル−3−イル)−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジン(略称:8mpTP−4mDBtPBfpm)の合成方法について説明する。なお、8mpTP−4mDBtPBfpmの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000059
<ステップ1:2−ヒドロキシ−5−(1,1’:4’,1’’−テルフェニル−3−イル)ベンゾニトリルの合成>
5−ブロモ−2−ヒドロキシベンゾニトリル6.98g、β−[1,1’:4’,1’’−ターフェニル]−3−イルボロン酸10.9g、炭酸カリウム11.0g、トルエン370mL、エタノール40mL、水40mLを三口フラスコに入れ、減圧下攪拌することで脱気し、窒素置換した。この混合物に酢酸パラジウム(II)467mg、トリス(2−メチルフェニル)ホスフィン1.34gを加え、80℃で4.0時間攪拌した。この反応物に水を加えて吸引ろ過し、得られたろ物を水、エタノール、トルエン及び酢酸エチルで洗浄し、目的物である灰色固体を収量12.0g、収率98%で得た。この合成スキームを下記式(i−1)に示す。
Figure JPOXMLDOC01-appb-C000060
<ステップ2:3−アミノ−5−(1,1’:4’,1’’−テルフェニル−3−イル)ベンゾ[b]フラン−2−カルボン酸エチルの合成>
次に、ステップ1で合成した2−ヒドロキシ−5−(1,1’:4’,1’’−テルフェニル−3−イル)ベンゾニトリル12.0g、ブロモ酢酸エチル7.05g、炭酸カリウム9.64g、ジメチルホルムアミド90mLを三口フラスコに入れた。この混合物を100℃で7.0時間撹拌した。この反応液に水を加えて吸引ろ過し、得られたろ物を水及びエタノールで洗浄した。このろ物を熱した酢酸エチルで溶解し、吸引濾過した。得られた溶液を濃縮し、目的物である灰色固体を収量11.9g、収率79%で得た。この合成スキームを下記式(i−2)に示す。
Figure JPOXMLDOC01-appb-C000061
<ステップ3:8−(1,1’:4’,1’’−テルフェニル−3−イル)[1]ベンゾフロ[3,2−d]ピリミジン−4(3H)−オンの合成>
次に、ステップ2で合成した3−アミノ−5−(1,1’:4’,1’’−テルフェニル−3−イル)ベンゾ[b]フラン−2−カルボン酸エチル11.9g、ホルムアミジン酢酸塩5.81g、ホルムアミド120mLを三口フラスコに入れた。この混合物を160℃で12.0時間撹拌した。この反応液に水を加えて吸引ろ過し、得られたろ物を水及びエタノールで洗浄し、目的物である茶色固体を収量10.6g、収率93%で得た。この合成スキームを下記式(i−3)に示す。
Figure JPOXMLDOC01-appb-C000062
<ステップ4:4−クロロ−8−(1,1’:4’,1’’−テルフェニル−3−イル)[1]ベンゾフロ[3,2−d]ピリミジンの合成>
次に、ステップ3で合成した8−(1,1’:4’,1’’−テルフェニル−3−イル)[1]ベンゾフロ[3,2−d]ピリミジン−4(3H)−オン10.6g、塩化ホスホリル40mL、ジメチルホルムアミド0.02mLを三口フラスコに入れた。この混合物を窒素気流下、90℃で12.0時間撹拌した。得られた反応物を氷水へ入れて、この溶液を水酸化ナトリウム、次いで飽和重曹水を用いて中和し、1時間攪拌した。この混合物を吸引ろ過し、このろ物を熱したトルエンで溶解し、セライト、アルミナ、セライトの順に充填したろ過補助剤に通した。得られた溶液を濃縮し、2相に分離する溶媒としてトルエン/エタノールを用いた拡散法により再結晶を行い、目的物である黄色固体を収量8.99g、収率81%で得た。この合成スキームを下記式(i−4)に示す。
Figure JPOXMLDOC01-appb-C000063
<ステップ5:8−(1,1’:4’,1’’−テルフェニル−3−イル)−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジンの合成>
次に、ステップ4で得られた4−クロロ−8−(1,1’:4’,1’’−テルフェニル−3−イル)[1]ベンゾフロ[3,2−d]ピリミジン1.98g、3−(ジベンゾチオフェン−4−イル)フェニルボロン酸1.69g、炭酸カリウム1.64g、トルエン45mL、エタノール5.0mL及び水5.0mLを三口フラスコへ入れ、減圧下で攪拌することにより脱気して窒素置換した。
この混合物にビス(トリフェニルホスフィン)パラジウム(II)ジクロリド(略称:Pd(PPhCl)407mgを加えて90℃で9.0時間攪拌した。得られた反応物に水を加え、吸引ろ過した。得られたろ物を水、エタノール及びトルエンで洗浄し、熱したトルエンに溶かしてセライト,アルミナ,セライトの順に充填したろ過補助剤に通した。得られた溶液を濃縮、乾固し、2相に分離する溶媒としてトルエン/エタノールを用いた拡散法にて再結晶することにより目的物である白色固体を収量2.57g、収率85%で得た。
この白色固体2.30gを、トレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2.5Pa、アルゴンガスを流量15mL/minで流しながら、350℃で固体を加熱した。昇華精製後、目的物である8−(1,1’:4’,1’’−テルフェニル−3−イル)−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジンを収量1.69g(回収率74%、白色固体)で得た。この合成スキームを下記式(i−5)に示す。
Figure JPOXMLDOC01-appb-C000064
なお、上記反応で得られた淡黄色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図41に示す。この結果から、本実施例において、上述の構造式(128)で表される本発明の一態様である有機化合物、8mpTP−4mDBtPBfpmが得られたことがわかった。
H−NMR.δ(CDCl):7.38(t,1H)、7.47−7.53(m,4H)、7.59−7.74(m,9H)、7.77−7.88(m,5H)、7.97−7.99(m,2H)、8.03−8.05(m,1H)、8.23−8.25(m,2H)、8.61(d,1H)、8.73(d,1H)、9.05(t,1H)、9.34(s,1H)。
≪合成例8≫
本実施例では、実施の形態1の構造式(143)で表される本発明の一態様である有機化合物、8−(1,1’:3’1’’−テルフェニル−5’−イル)−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジン(略称:8mTP−4mDBtPBfpm)の合成方法について説明する。なお、8mTP−4mDBtPBfpmの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000065
<ステップ1:8mTP−4mDBtPBfpmの合成>
8−クロロ−4−[3−(ジベンゾチオフェン−4−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジン503mg、(3,5−ジフェニルフェニル)ボロン酸923mg、リン酸三カリウム1.23g、tert−ブチルアルコール700mg、ジエチレングリコールジメチルエーテル36mLを三口フラスコに入れ、減圧下攪拌することで脱気し、窒素置換した。この混合物に酢酸パラジウム(II)58.3mg、ジ(1−アダマンチル)−n−ブチルホスフィン166mgを加え、120℃で7.5時間攪拌した。
この反応物に水を加えて吸引ろ過し、得られたろ物を水、エタノール及びトルエンで洗浄した。このろ物を熱したトルエンで溶解し、セライト、アルミナ、セライトの順に充填したろ過補助剤に通した。得られた溶液を濃縮、乾固し、2相に分離する溶媒としてトルエン/エタノールを用いた拡散法にて再結晶することにより、目的物である白色固体を収量302mg、収率25%で得た。
この白色固体292mgを、トレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2.6Pa、アルゴンガスを流量10mL/minで流しながら、340℃で固体を加熱した。昇華精製後、目的物である、8mTP−4mDBtPBfpmを収量161mg(回収率55%、白色固体)で得た。この合成スキームを下記式(j−1)に示す。
Figure JPOXMLDOC01-appb-C000066
なお、上記反応で得られた淡黄色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図42に示す。この結果から、本実施例において、上述の構造式(143)で表される本発明の一態様である有機化合物、8mTP−4mDBtPbfpmが得られたことがわかった。
H−NMR.δ(CDCl):7.40−7.43(m,2H)、7.47−7.53(m,6H)、7.63−7.66(m,2H)、7.74−7.76(m,4H)、7.79−7.87(m,4H)、7.91(m,2H)、7.97−7.99(m,1H)、8.08−8.09(m,1H)、8.22−8.26(m,2H)、8.66(m,1H)、8.72−8.73(m、1H)、9.05−9.06(m、1H)、9.34(s、1H)。
≪合成例9≫
本実施例では、実施の形態1の構造式(144)で表される本発明の一態様である有機化合物、8−(1,1’−ビフェニル−4−イル)−4−[3−(9H−カルバゾール−9−イル)フェニル]−[1]ベンゾフロ[3,2−d]ピリミジン(略称:8BP−4mCzPBfpm)の合成方法について説明する。なお、8BP−4mCzPBfpmの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000067
なお、上記8BP−4mCzPBfpmは、下記式(k−1)で表される合成スキームに従い、合成することができる。
Figure JPOXMLDOC01-appb-C000068
本実施例では、本発明の一態様である発光素子として、実施例8で説明した8(βN2)−4mDBtBPBfpm(構造式(105))、PCBBiF、およびゲスト材料(燐光発光材料)を発光層に用いて発光素子を作製し、その特性について測定した結果を示す。なお、本実施例において、ゲスト材料として、[Ir(dmpqn)(acac)]を用いた発光素子を発光素子12、ゲスト材料として、ビス{4,6−ジメチル−2−[5−(5−シアノ−2−メチルフェニル)−3−(3,5−ジメチルフェニル)−2−ピラジニル−κN]フェニル−κC}(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κ2O,O’)イリジウム(III)(略称:[Ir(dmdppr−m5CP)(dpm)]を用いた発光素子を発光素子13とする。
なお、本実施例で作製した発光素子12および発光素子13の素子構造は、実施例4で示した図14と同様の構造であるが、素子構造を構成する各層の具体的な構成については表7に示す通りである。また、本実施例で用いる材料の化学式を以下に示す。
Figure JPOXMLDOC01-appb-T000069
Figure JPOXMLDOC01-appb-C000070
≪各発光素子の動作特性≫
作製した発光素子12および発光素子13の動作特性について測定した。なお、測定は室温(25℃に保たれた雰囲気)で行った。
各発光素子の電流密度−輝度特性を図43、電圧−輝度特性を図44、輝度−電流効率特性を図45、電圧−電流特性を図46にそれぞれ示す。
また、1000cd/m付近における各発光素子の主な初期特性値を以下の表8に示す。
Figure JPOXMLDOC01-appb-T000071
また、各発光素子に2.5mA/cmの電流密度で電流を流した際の発光スペクトルを、図47に示す。図47に示す通り、発光素子12の発光スペクトルは、628nm付近にピークを有しており、発光層913に含まれる、[Ir(dmpqn)(acac)]の発光に由来していることが示唆される。また、発光素子13の発光スペクトルは、648nm付近にピークを有しており、発光層913に含まれる、[Ir(dmdppr−m5CP)(dpm)]の発光に由来していることが示唆される。
次に、各発光素子に対する信頼性試験を行った。信頼性試験の結果を図48に示す。図48において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子の駆動時間(h)を示す。なお、信頼性試験は、75mA/cmの電流密度で一定の電流を流した定電流駆動試験を行った。
信頼性試験の結果より、本発明の一態様である有機化合物、8(βN2)−4mDBtBPBfpm(構造式(105))を発光層に用いた発光素子12は、初期輝度から5%低下する時間(LT95)が115時間であり、発光素子13は、LT95が62時間であった。これは、本発明の一態様である有機化合物、8(βN2)−4mDBtBPBfpmが、ベンゾフロピリミジン骨格の8位にナフチル基が複数連結した構造を有することによる効果である。従って、本発明の一態様である有機化合物を用いることは発光素子の信頼性を向上させる上で有用であると言える。
本実施例では、本発明の一態様である発光素子として、実施例9で説明した8pmTP−4mDBtPBfpm(構造式(126))、PCCP、および[Ir(ppy)(mdppy)]を発光層に用いた発光素子14、実施例7で説明した8BP−4mDBtBPBfpm(構造式(103))、PCCP、および[Ir(ppy)(mdppy)]を発光層に用いた発光素子15を作製し、その特性について測定した結果を示す。
なお、本実施例で作製した発光素子14および発光素子15の素子構造は、実施例4で示した図14と同様の構造であるが、素子構造を構成する各層の具体的な構成については表9に示す通りである。また、本実施例で用いる材料の化学式を以下に示す。
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-C000073
≪各発光素子の動作特性≫
作製した発光素子14および発光素子15の動作特性について測定した。なお、測定は室温(25℃に保たれた雰囲気)で行った。
各発光素子の電流密度−輝度特性を図49、電圧−輝度特性を図50、輝度−電流効率特性を図51、電圧−電流特性を図52にそれぞれ示す。
また、1000cd/m付近における各発光素子の主な初期特性値を以下の表10に示す。
Figure JPOXMLDOC01-appb-T000074
また、各発光素子に2.5mA/cmの電流密度で電流を流した際の発光スペクトルを、図53に示す。図53に示す通り、各発光素子の発光スペクトルは、526nm付近にピークを有しており、発光層913に含まれる、[Ir(ppy)(mdppy)]の発光に由来していることが示唆される。
次に、各発光素子に対する信頼性試験を行った。信頼性試験の結果を図54に示す。図54において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子の駆動時間(h)を示す。なお、信頼性試験は、50mA/cmの電流密度で一定の電流を流した定電流駆動試験を行った。
信頼性試験の結果より、本発明の一態様である有機化合物、8pmTP−4mDBtPBfpm(構造式(126))を発光層に用いた発光素子14は、初期輝度から5%低下する時間(LT95)がおよそ30時間であり、8BP−4mDBtBPBfpm(構造式(103))を発光層に用いた発光素子15は、LT95が21時間であった。これは、本発明の一態様である有機化合物、8pmTP−4mDBtPBfpmおよび8BP−4mDBtBPBfpmが、ベンゾフロピリミジン骨格の8位にアリーレン基が複数連結した構造、より好ましくは同じフェニル基が2つ連結したビフェニル基を有することによる効果である。従って、本発明の一態様である有機化合物を用いることは発光素子の信頼性を向上させる上で有用であると言える。
101:第1の電極、102:第2の電極、103:EL層、103a、103b:EL層、104、104a、104b:電荷発生層、111、111a、111b:正孔注入層、112、112a、112b:正孔輸送層、113、113a、113b、113c:発光層、114、114a、114b:電子輸送層、115、115a、115b:電子注入層、200R、200G、200B:光学距離、201:第1の基板、202:トランジスタ(FET)、203R、203G、203B、203W:発光素子、204:EL層、205:第2の基板、206R、206G、206B:カラーフィルタ、206R’、206G’、206B’:カラーフィルタ、207:第1の電極、208:第2の電極、209:黒色層(ブラックマトリックス)、210R、210G:導電層、301:第1の基板、302:画素部、303:駆動回路部(ソース線駆動回路)、304a、304b:駆動回路部(ゲート線駆動回路)、305:シール材、306:第2の基板、307:引き回し配線、308:FPC、309:FET、310:FET、311:FET、312:FET、313:第1の電極、314:絶縁物、315:EL層、316:第2の電極、317:発光素子、318:空間、900:基板、901:第1の電極、902:EL層、903:第2の電極、911:正孔注入層、912:正孔輸送層、913:発光層、914:電子輸送層、915:電子注入層、4000:照明装置、4001:基板、4002:発光素子、4003:基板、4004:第1の電極、4005:EL層、4006:第2の電極、4007:電極、4008:電極、4009:補助配線、4010:絶縁層、4011:封止基板、4012:シール材、4013:乾燥剤、4200:照明装置、4201:基板、4202:発光素子、4204:第1の電極、4205:EL層、4206:第2の電極、4207:電極、4208:電極、4209:補助配線、4210:絶縁層、4211:封止基板、4212:シール材、4213:バリア膜、4214:平坦化膜、5101:ライト、5102:ホイール、5103:ドア、5104:表示部、5105:ハンドル、5106:シフトレバー、5107:座席シート、5108:インナーリアビューミラー、7000:筐体、7001:表示部、7002:第2表示部、7003:スピーカ、7004:LEDランプ、7005:操作キー、7006:接続端子、7007:センサ、7008:マイクロフォン、7009:スイッチ、7010:赤外線ポート、7011:記録媒体読込部、7014:アンテナ、7015:シャッターボタン、7016:受像部、7018:スタンド、7021:外部接続部、7022、7023:操作用ボタン、7024:接続端子、7025:バンド、7026:マイクロフォン、7027:時刻を表すアイコン、7028:その他のアイコン、7029:センサ、7030:スピーカ、7052、7053、7054:情報、9310:携帯情報端末、9311:表示部、9312:表示領域、9313:ヒンジ、9315:筐体

Claims (20)

  1.  一般式(G1)で表される有機化合物。
    Figure JPOXMLDOC01-appb-C000001
     (式中、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、Aは総炭素数12乃至100の基であり、かつ、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、トリフェニレン環、ジベンゾチオフェン環を含む複素芳香環、ジベンゾフラン環を含む複素芳香環、カルバゾール環を含む複素芳香環、ベンゾイミダゾール環、トリフェニルアミン構造のいずれか一または複数を有する。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。)
  2.  一般式(G2)で表される有機化合物。
    Figure JPOXMLDOC01-appb-C000002
     (式中、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArは同一の基を表し、それぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、αは置換もしくは無置換のフェニレン基を表し、tは0乃至4の整数を表す。また、Htuniは正孔輸送性を有する骨格を表す。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。)
  3.  一般式(G3)で表される有機化合物。
    Figure JPOXMLDOC01-appb-C000003
     (式中、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、Htuniは正孔輸送性を有する骨格を表す。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。)
  4.  一般式(G4)で表される有機化合物。
    Figure JPOXMLDOC01-appb-C000004
     (式中、Qは酸素または硫黄を表す。Ar、Ar、Ar、およびArはそれぞれ独立に、置換もしくは無置換の芳香族炭化水素環を表し、前記芳香族炭化水素環の置換基は、炭素数1乃至6のアルキル基、または炭素数1乃至6のアルコキシ基、または炭素数5乃至7の単環式飽和炭化水素基、または炭素数7乃至10の多環式飽和炭化水素基、またはシアノ基のいずれか一であり、前記芳香族炭化水素環を形成する炭素数は6以上25以下である。また、mおよびnはそれぞれ0または1である。また、Htuniは正孔輸送性を有する骨格を表す。また、Rは、水素、炭素数1乃至6のアルキル基、置換もしくは無置換の炭素数5乃至7の単環式飽和炭化水素基、置換もしくは無置換の炭素数7乃至10の多環式飽和炭化水素基、置換もしくは無置換の炭素数6乃至13のアリール基、または置換もしくは無置換の炭素数3乃至12のヘテロアリール基を表す。)
  5.  請求項2乃至請求項4のいずれか一において、
     前記Htuniは、ピロール環構造、フラン環構造、またはチオフェン環構造のいずれか一を有する有機化合物。
  6.  請求項2乃至請求項4のいずれか一において、
     前記Htuniは、下記一般式(Ht−1)~(Ht−26)のいずれか一で表される有機化合物。
    Figure JPOXMLDOC01-appb-C000005
     (式中、Qは酸素または硫黄を表す。また、R~R71はそれぞれ1乃至4の置換基を表し、かつそれぞれ独立に水素、炭素数1~6のアルキル基、置換もしくは無置換のフェニル基のいずれか一を表す。また、Arは、置換もしくは無置換の炭素数6乃至13のアリール基を表す。)
  7.  請求項1乃至請求項6のいずれか一において、Ar、Ar、Ar、およびArがそれぞれ独立に、置換もしくは無置換のベンゼン環またはナフタレン環である有機化合物。
  8.  請求項1乃至請求項7のいずれか一において、Ar、Ar、Ar、およびArが同一である有機化合物。
  9.  請求項1乃至請求項8のいずれか一において、Ar、Ar、Ar、およびArが無置換である有機化合物。
  10.  請求項1乃至請求項6のいずれか一において、
     前記一般式G1乃至G4中の部分構造である下記一般式(G−X)が、下記構造式(G−X−p1)~(G−X−p12)および(G−X−n1)~(G−X−n6)のいずれか一で表される有機化合物。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
  11.  構造式(100)、(101)または(102)で表される有機化合物。
    Figure JPOXMLDOC01-appb-C000008
  12.  請求項1乃至請求項11のいずれか一に記載の有機化合物を用いた発光素子。
  13.  一対の電極間にEL層を有し、
     前記EL層は、請求項1乃至請求項11のいずれか一に記載の有機化合物を有する発光素子。
  14.  一対の電極間にEL層を有し、
     前記EL層は、発光層を有し、
     前記発光層は、請求項1乃至請求項11のいずれか一に記載の有機化合物を有する発光素子。
  15.  一対の電極間にEL層を有し、
     前記EL層は、発光層を有し、
     前記発光層は、請求項1乃至請求項11のいずれか一に記載の有機化合物と、燐光材料とを有する発光素子。
  16.  一対の電極間にEL層を有し、
     前記EL層は、発光層を有し、
     前記発光層は、請求項1乃至請求項11のいずれか一に記載の有機化合物と、燐光材料と、カルバゾール誘導体と、を有する発光素子。
  17.  請求項16において、
     前記カルバゾール誘導体は、ビカルバゾール誘導体またはカルバゾリル基を有する芳香族アミンである発光素子。
  18.  請求項12乃至請求項17のいずれか一に記載の発光素子と、
     トランジスタ、または基板の少なくとも一と、
     を有する発光装置。
  19.  請求項18に記載の発光装置と、
     マイク、カメラ、操作用ボタン、外部接続部、または、スピーカの少なくとも一と、
     を有する電子機器。
  20.  請求項18に記載の発光装置と、
     筐体、カバー、または、支持台の少なくとも一と、
     を有する照明装置。
PCT/IB2019/054166 2018-05-31 2019-05-21 有機化合物、発光素子、発光装置、電子機器、および照明装置 WO2019229583A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/058,435 US20210363151A1 (en) 2018-05-31 2019-05-21 Organic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device, and Lighting Device
JP2020521633A JP7203839B2 (ja) 2018-05-31 2019-05-21 有機化合物および発光素子
CN201980036626.9A CN112204033B (zh) 2018-05-31 2019-05-21 有机化合物、发光元件、发光装置、电子设备及照明装置
KR1020207034387A KR20210015825A (ko) 2018-05-31 2019-05-21 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP2022209874A JP7441297B2 (ja) 2018-05-31 2022-12-27 混合材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018105410 2018-05-31
JP2018-105410 2018-05-31

Publications (1)

Publication Number Publication Date
WO2019229583A1 true WO2019229583A1 (ja) 2019-12-05

Family

ID=68697454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/054166 WO2019229583A1 (ja) 2018-05-31 2019-05-21 有機化合物、発光素子、発光装置、電子機器、および照明装置

Country Status (6)

Country Link
US (1) US20210363151A1 (ja)
JP (2) JP7203839B2 (ja)
KR (1) KR20210015825A (ja)
CN (1) CN112204033B (ja)
TW (1) TWI828697B (ja)
WO (1) WO2019229583A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022090108A1 (de) 2020-10-27 2022-05-05 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2023052377A1 (de) 2021-09-30 2023-04-06 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006763A (ja) * 2017-06-22 2019-01-17 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、および照明装置
US11576506B2 (en) * 2018-06-21 2023-02-14 Mcs Industries, Inc. Mirror apparatus
CN117343059B (zh) * 2023-12-04 2024-02-06 烟台九目化学股份有限公司 一种萘并咪唑并咔唑类化合物及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017109637A1 (en) * 2015-12-25 2017-06-29 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
KR20180022608A (ko) * 2016-08-23 2018-03-06 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2018060307A1 (de) * 2016-09-30 2018-04-05 Merck Patent Gmbh Verbindungen mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
JP2018127402A (ja) * 2017-02-06 2018-08-16 国立大学法人山形大学 新規なベンゾフロピリミジン化合物、及びそれを用いた有機el素子
WO2019058200A1 (ja) * 2017-09-20 2019-03-28 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、および照明装置
WO2019066282A1 (ko) * 2017-09-26 2019-04-04 삼성에스디아이 주식회사 유기 화합물,조성물, 유기 광전자 소자 및 표시 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200541401A (en) 2004-02-13 2005-12-16 Idemitsu Kosan Co Organic electroluminescent device
KR102257137B1 (ko) * 2013-03-26 2021-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 화합물, 유기 화합물, 디스플레이 모듈, 조명 모듈, 발광 장치, 표시 장치, 조명 장치 및 전자 기기
WO2015105316A1 (ko) * 2014-01-10 2015-07-16 삼성에스디아이 주식회사 축합환 화합물, 및 이를 포함한 유기 발광 소자
KR102287012B1 (ko) * 2014-05-28 2021-08-09 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JP6840931B2 (ja) 2015-03-09 2021-03-10 東ソー株式会社 縮環芳香族化合物の製造方法
WO2017199163A1 (en) 2016-05-20 2017-11-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10529461B2 (en) * 2016-06-03 2020-01-07 Sfc Co., Ltd. Heterocyclic compounds and organic light-emitting diode including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017109637A1 (en) * 2015-12-25 2017-06-29 Semiconductor Energy Laboratory Co., Ltd. Compound, light-emitting element, display device, electronic device, and lighting device
KR20180022608A (ko) * 2016-08-23 2018-03-06 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
WO2018060307A1 (de) * 2016-09-30 2018-04-05 Merck Patent Gmbh Verbindungen mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
JP2018127402A (ja) * 2017-02-06 2018-08-16 国立大学法人山形大学 新規なベンゾフロピリミジン化合物、及びそれを用いた有機el素子
WO2019058200A1 (ja) * 2017-09-20 2019-03-28 株式会社半導体エネルギー研究所 有機化合物、発光素子、発光装置、電子機器、および照明装置
WO2019066282A1 (ko) * 2017-09-26 2019-04-04 삼성에스디아이 주식회사 유기 화합물,조성물, 유기 광전자 소자 및 표시 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022090108A1 (de) 2020-10-27 2022-05-05 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2023052377A1 (de) 2021-09-30 2023-04-06 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung

Also Published As

Publication number Publication date
TW202000671A (zh) 2020-01-01
CN112204033B (zh) 2024-02-06
US20210363151A1 (en) 2021-11-25
JPWO2019229583A1 (ja) 2021-07-26
JP7203839B2 (ja) 2023-01-13
KR20210015825A (ko) 2021-02-10
TWI828697B (zh) 2024-01-11
CN112204033A (zh) 2021-01-08
JP2023055691A (ja) 2023-04-18
JP7441297B2 (ja) 2024-02-29

Similar Documents

Publication Publication Date Title
JP6487103B1 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7441297B2 (ja) 混合材料
JP7458452B2 (ja) 発光素子
JP2023002574A (ja) 発光素子
JP7143310B2 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7170930B1 (ja) 発光デバイス、発光装置、電子機器、および照明装置
JP2023025011A (ja) 発光素子
JP7354100B2 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP2019189540A (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP7297758B2 (ja) 発光素子、発光装置、電子機器、および照明装置
JP2022166086A (ja) 化合物
JP2021107386A (ja) 化合物、発光デバイス、発光装置、電子機器、および照明装置
JP2021024863A (ja) 有機化合物、発光デバイス、発光装置、電子機器、および照明装置
WO2018178818A1 (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
JP2019127483A (ja) 有機化合物、発光素子、発光装置、電子機器、および照明装置
WO2020058811A1 (ja) 有機化合物、発光デバイス、発光装置、電子機器、および照明装置
WO2020109922A1 (ja) 発光デバイス用組成物
JP2024059723A (ja) 発光素子
WO2019207409A1 (ja) 有機化合物、発光デバイス、発光装置、電子機器、および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811696

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811696

Country of ref document: EP

Kind code of ref document: A1