JP6150855B2 - 集積化センサの配列 - Google Patents

集積化センサの配列 Download PDF

Info

Publication number
JP6150855B2
JP6150855B2 JP2015157901A JP2015157901A JP6150855B2 JP 6150855 B2 JP6150855 B2 JP 6150855B2 JP 2015157901 A JP2015157901 A JP 2015157901A JP 2015157901 A JP2015157901 A JP 2015157901A JP 6150855 B2 JP6150855 B2 JP 6150855B2
Authority
JP
Japan
Prior art keywords
substrate
magnetic field
integrated circuit
field sensing
hall effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015157901A
Other languages
English (en)
Other versions
JP2016001186A (ja
JP2016001186A5 (ja
Inventor
ドゥーグ,マイケル・シー
テイラー,ウィリアム・ピー
マングタニ,ヴィジャイ
Original Assignee
アレグロ・マイクロシステムズ・エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38194995&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6150855(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by アレグロ・マイクロシステムズ・エルエルシー filed Critical アレグロ・マイクロシステムズ・エルエルシー
Publication of JP2016001186A publication Critical patent/JP2016001186A/ja
Publication of JP2016001186A5 publication Critical patent/JP2016001186A5/ja
Application granted granted Critical
Publication of JP6150855B2 publication Critical patent/JP6150855B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/162Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits the devices being mounted on two or more different substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/101Semiconductor Hall-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/08Circuits for altering the measuring range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Description

この発明は、全体的に、集積回路に関し、より詳細には、磁気感知素子を備える集積回路に関する。
当技術分野で知られているように、従来の電流センサの1つの型はホール効果素子を使用し、このホール効果素子は、導体を通過する電流に関連した電圧を磁界に応じて生成する。この型の代表的な電流センサには、誘電体材料、例えば回路基板に取り付けられたホール効果素子がある。一般に、ホール効果素子に近接して鉄コア(磁束集束器)が使用される。
従来の電流センサの他の型は、磁気抵抗素子を使用し、この磁気抵抗素子は、導体を通過する電流に関連した抵抗を磁界に応じて変化させる。一定の電流が磁気抵抗素子を通り抜けて向けられ、それによって、磁界に比例する電圧出力信号を生成する。この型の従来の電流センサは、誘電体材料、例えば回路基板に取り付けられた異方性磁気抵抗(AMR)素子を使用する。
様々なパラメータが、感度および直線性を含んだ電流センサの性能を特徴付ける。感度は、磁界の変化に応じた磁気抵抗素子の抵抗の変化またはホール効果素子からの出力電圧の変化に関係付けられる。直線性は、磁気抵抗素子の抵抗またはホール効果素子からの出力電圧が磁界に対して一直線の直線比例で変化する程度に関係付けられる。
磁界感知素子の様々な型(例えば、ホール効果素子および磁気抵抗素子)は、磁界に応じて異なる感度、異なる直線性、および、また、異なるヒステリシス特性を含むが、これらに限定されない異なる特性を有することが知られている。また、知られていることであるが、特定の型の磁界感知素子、例えばホール効果素子は、異なる材料、例えばシリコン(Si)およびガリウム砒素(GaAs)から成る基板に製作されたとき、実質的に異なる感度を有することがある。
一般的な電流センサは、高さと回路基板面積の両方の点で望ましくないほど大きくなりがちである。一般的な電流センサは、また、ダイナミックレンジが制限される傾向がある。すなわち、大きな磁界を生成する大電流で飽和する傾向があり、および/または、小さな磁界を生成する小さな感知電流で不正確である傾向がある。したがって、減少された大きさ、改善された精度、および/または改善されたダイナミックレンジを有する電流センサを提供することが望ましいだろう。
従来の電流センサは、特定の不利点を有するものとして、上で説明されたが、従来の外部磁界センサおよび従来の電気信号アイソレータも同じ不利点を欠点として持つことは理解される。したがって、減少された大きさ、改善された精度、および/または改善されたダイナミックレンジを有する外部磁界センサおよび電気信号アイソレータも提供することが望ましいだろう。
本発明に従って、集積回路は、リードフレームと、第1の表面および対向する第2の表面を有する第1の基板とを含む。第1の基板はリードフレームに結合されている。本集積回路は、また、第1の表面および対向する第2の表面を有する第2の基板を含む。第2の基板の第1の表面が第1の基板の第1の表面に近接し、かつ第2の基板の第2の表面が第
2の基板の第2の表面から遠位にあるように、第1の基板と第2の基板は結合されている。本集積回路は、また、第1の基板の第1の表面に配置された電子部品と、第2の基板の第1の表面に配置された磁界感知素子と、を含んでいる。
本発明の他の態様に従って、集積回路は、リードフレームと、第1の表面および対向する第2の表面を有する第1の基板と、を含む。第1の基板の第2の表面がリードフレームより上にあり、かつ第1の基板の第1の表面が第1の基板の第2の表面より上にあるように、第1の基板は、リードフレームに結合されている。本集積回路は、また、第1の表面および対向する第2の表面を有する第2の基板を含む。第2の表面の第2の表面が第1の基板の第1の表面より上にあり、かつ第2の基板の第1の表面が第2の基板の第2の表面より上にあるように、第1の基板と第2の基板は結合されている。本集積回路は、また、第1の基板の第1の表面に配置された電子部品と、第2の基板の第1の表面に配置された磁界感知素子と、を含んでいる。
本発明の他の態様に従って、集積回路は、リードフレームと、第1の表面および対向する第2の表面を有する第1の基板と、を含む。第1の基板の第2の表面がリードフレームより上にあり、かつ第1の基板の第1の表面が第1の基板の第2の表面より上にあるように、第1の基板はリードフレームに結合されている。本集積回路は、また、第1の表面および対向する第2の表面を有する第2の基板を含む。第2の基板の第2の表面がリードフレームより上にあり、かつ第2の基板の第1の表面が第2の基板の第2の表面より上にあるように、第2の基板は、リードフレームに結合されている。本集積回路は、また、第1の基板の第1の表面に配置された電子部品を含む。本集積回路は、また、第2の基板の第1の表面に配置された第1の磁界感知素子と、第1の基板の第1の表面に配置された第2の磁界感知素子と、を含んでいる。
本発明の他の態様に従って、集積回路は、リードフレームと、第1の表面および対向する第2の表面を有するベース基板と、を含む。ベース基板は、ベース基板の第2の表面がリードフレームより上にあり、かつベース基板の第1の表面がベース基板の第2の表面より上にあるように、リードフレームに結合されている。本集積回路は、また、第1の表面および対向する第2の表面を有する第1の基板を含む。第1の基板は、第1の基板の第1の表面がベース基板の第1の表面より上にあり、かつ第1の基板の第2の表面が第1の基板の第1の表面より上にあるように、ベース基板に結合されている。本集積回路は、また、第1の表面および対向する第2の表面を有する第2の基板を含んでいる。第2の基板は、第2の基板の第1の表面がベース基板の第1の表面より上にあり、かつ第2の基板の第2の表面が第2の基板の第1の表面より上にあるように、ベース基板に結合されている。本集積回路は、また、第1の基板の第1の表面に配置された電子部品と、第2の基板の第1の表面に配置された磁界感知素子と、を含んでいる。
本発明の他の態様に従って、集積回路は、リードフレームと、第1の表面および対向する第2の表面を有するベース基板と、を含む。ベース基板は、ベース基板の第2の表面がリードフレームより上にあり、かつベース基板の第1の表面がベース基板の第2の表面より上にあるように、リードフレームに結合されている。本集積回路は、また、第1の表面および対向する第2の表面を有する第1の基板を含む。第1の基板は、第1の基板の第2の表面がベース基板の第1の表面より上にあり、かつ第1の基板の第1の表面が第1の基板の第2の表面より上にあるように、ベース基板に結合されている。本集積回路は、また、第1の表面および対向する第2の表面を有する第2の基板を含む。第2の基板は、第2の基板の第2の表面がベース基板の第1の表面より上にあり、かつ第2の基板の第1の表面が第2の基板の第2の表面より上にあるように、ベース基板に結合されている。本集積回路は、また、第1の基板の第1の表面に配置された電子部品と、第2の基板の第1の表面に配置された磁界感知素子と、を含んでいる。
本発明の他の態様に従って、集積回路は、磁界に対して第1の感度を有する第1の磁界感知素子と、磁界に対して第2の異なる感度を有する第2の磁界感知素子と、を含んでいる。本集積回路は、また、第1および第2の磁界感知素子に結合された回路を含んでいる。この回路は、磁界に応じて第1の感度範囲および第2の異なる感度範囲を集積回路に与えるように動作することができる。
本発明の他の態様に従って、集積回路は、第1の基板と、第1の基板の表面に配置された回路素子と、を含む。本集積回路は、さらに、第1の基板に結合された第2の基板と、第2の基板の表面に配置されたホール効果素子と、を含んでいる。
本発明の他の態様に従って、集積回路は、第1の基板と、第1の基板の表面に配置された回路素子と、含む。ホール効果素子が第1の基板の表面に配置されている。本集積回路はまた、第1の基板に結合された第2の基板と、第2の基板の表面に配置された磁気抵抗素子と、を含んでいる。
本発明の他の態様に従って、集積回路は、基板と、この基板の表面に配置された第1の磁界感知素子と、基板の表面に配置された第2の異なる型の磁界感知素子と、を含んでいる。本発明自体だけでなく本発明の前述の特徴も、図面についての以下の詳細な説明からいっそう完全に理解される可能性がある。
第1および第2の基板を備える集積回路を示す図であり、第2の基板はフリップチップである。 図1の集積回路を示す断面図である。 第1および第2の基板を備える他の集積回路を示す図である。 図1の集積回路を示す断面図である。 第1および第2の基板を備える他の集積回路を示す図である。 図3の集積回路を示す断面図である。 第1および第2の基板およびベース基板を備える集積回路を示す図である。 図4の集積回路を示す断面図である。 第1および第2の基板およびベース基板を備える他の集積回路を示す図である。 図5の集積回路を示す断面図である。 第1および第2の基板を備え、さらに集積化電流通過導体を備える例示の集積化電流センサを示す分解組立図である。 第1および第2の基板を備え、さらにリードフレームのリードを結合することによって形成された集積化電流通過導体を備える他の例示の集積化電流センサを示す図である。 図7の集積回路を示す断面図である。 第1および第2の基板および3個の磁界センサを備え、さらにリードフレームのリードを結合することによって形成された集積化電流通過導体を備える他の例示の集積化電流センサを示す図である。 図8の集積回路を示す断面図である。
本発明を説明する前に、いくつかの予備的な概念および用語が説明される。本明細書で使用されている「磁界感知素子」という用語は、磁界に対して反応し、かつ磁界を測定するために使用されてもよい電子部品を記述するために使用される。磁界感知素子は、ホール効果素子および磁気抵抗素子を含むがこれらに限定されない型のものとすることができ
る。ホール効果素子は、横型または縦型であってもよい。磁気抵抗素子は、巨大磁気抵抗(GMR)素子、異方性磁気抵抗(AMR)素子、およびトンネル磁気抵抗(TMR)素子を含むがこれらに限定されない型のものとすることができる。
本明細書で使用されている「磁界センサ」という用語は、磁界感知素子を含み、磁界に対して反応し、かつ磁界を測定するために使用されてもよい電子回路を記述するために使用される。本明細書で使用されている「電流センサ」という用語は、磁界感知素子を含み、導体中の電流に対して反応し、かつ導体中の電流を測定するために使用されてもよい電子回路を記述するために使用される。
導体中の電流が電流方向の周りに環状に配置された磁界を生成することは、本明細書で理解されるだろう。したがって、電流センサで使用されるような磁界感知素子は、導体中を流れる電流を測定するために使用することができる。しかし、磁界センサで使用されるような磁界感知素子は、他の磁界、例えば地球に関連した磁界を測定するために使用されてもよい。
図1および図1Aを参照すると、これらの図では同様な要素は同様な参照名称が付して示されており、例示の集積回路10はリードフレーム12を含み、リードフレーム12は、ここではリードフレームのほんの一部として示されている。理解されることであろうが、リードフレームは、ベースプレートおよび関連したリードを備えることがある。リードは図1および図1Aに示されていない。
集積回路10は、また、第1の表面および対向する第2の表面14aおよび14bをそれぞれ有する第1の基板14を含んでいる。第1の基板14の第2の表面14bがリードフレーム12より上にあり、かつ第1の基板14の第1の表面14aが第1の基板14の第2の表面14bより上にあるように、第1の基板14がリードフレーム12に結合されている。
集積回路10は、また、第1の表面および対向する第2の表面26aおよび26bをそれぞれ有する第2の基板26を含んでいる。第2の基板26の第1の表面26aが第1の基板14の第1の表面14aより上にあり、かつ第2の基板26の第2の表面26bが第2の基板26の第1の表面26aより上にあるように、第1の基板14と第2の基板26が結合されている。
第1および第2の基板14、26は、Si、GaAs、InP、InSb、InGaAs、InGaAsP、SiGe、セラミック、またはガラスを含むがこれらに限定されない様々な材料をそれぞれ含んでもよい。第1および第2の基板14、26は、それぞれ、同じ材料を含んでもよく、または異なる材料を含んでもよい。1つの特定の実施形態では、第1の基板14はシリコン(Si)から成り、第2の基板26はガリウム砒素(GaAs)から成る。
半田ボール、金バンプ、共晶または高鉛半田バンプ、無鉛半田バンプ、金スタッドバンプ、重合体導電バンプ、異方性導電ペースト、または導電膜のうちから選択された1つを用いて、第2の基板26の第1の表面26aは、第1の基板14の第1の表面14aに結合されてもよい。そのような4つの結合部(カップリング)34a〜34dが示されている。しかし、集積回路10が、4よりも多いまたは4よりも少ないそのような結合部を備えることができることは、理解されるであろう。
集積回路10は、また、第1の基板14の第1の表面14aに配置された少なくとも1つの電子部品18を含む。電子部品18は、受動電子部品、例えば抵抗器、コンデンサ、
またはインダクタ、および能動電子部品、例えばトランジスタ、増幅器、または他の集積回路を含むことができるが、これらに限定されない。
集積回路10は、また、第2の基板26の第1の表面26aに配置された第1の磁界感知素子30を含む。認められることであろうが、この配列は、第1の基板14に対して第2の基板26のいわゆる「フリップチップ」配列を形成している。
いくつかの実施形態では、集積回路10は、第1の基板14の第1の表面14aに配置された第2の磁界感知素子20をさらに含んでいる。第1および第2の磁界感知素子30、20は、それぞれ、上述のようにホール効果素子および磁気抵抗素子のうちから選択された1つであってもよい。幾つかの実施形態では、第1および第2の磁界感知素子30、20は、それぞれ、同じ型の磁界感知素子であり、他の実施形態では、第1および第2の磁界感知素子30、20は、それぞれ、異なる型の磁界感知素子である。
一つの特定の実施形態では、第1の磁界感知素子30はホール効果素子であり、第2の磁界感知素子20は磁気抵抗素子、例えば巨大磁気抵抗(GMR)素子である。他の特定の実施形態では、第1および第2の磁界感知素子30、20は、それぞれ、両方ともホール効果素子であり、第1の基板はシリコンから成り、第2の基板26はGaAsから成る。いくつかの実施形態では、第2の磁界感知素子20が存在しない。
いくつかの実施形態では、集積回路10はまた、第1および第2の磁界感知素子30、20のうちの関連した1つにそれぞれ近接して各々配置された1つまたは複数の第1または第2の磁束集束器32、22をそれぞれ含むことができる。理解されることであろうが、いくつかの材料、例えば、フェライト、パーマロイ、または他の軟磁性材料は、磁束を集める傾向があり、これらが近接することは、磁界の増大をもたらすことができる。したがって、磁束集束器32、22は、第1および第2の磁界感知素子30、20にそれぞれ近接して増加された磁界を生成することができ、磁界、例えば導体中の電流に起因する磁界に対する第1および第2の磁界感知素子30、20の感度向上をもたらす。
いくつかの実施形態では、集積回路10は、また、第2の基板26に形成された1つまたは複数の第1の抵抗器28または第1の基板14に形成された第2の抵抗器24を含んでいる。第1および第2の抵抗器28、24は、例えば、ある期間にわたって、またはある温度にわたって、第1および第2の基板14、26の抵抗率変化をそれぞれ測定するために、集積回路10によってそれぞれ使用されることがある。当業者は、この目的を達成するために1つまたは複数の抵抗器24、28に結合して回路をどのように組み立てるかを理解しているであろう。いくつかの配列では、第1および第2の抵抗器28、24のうちの1つは存在せず、第1および第2の抵抗器28、24のうちの残りの1つが、第1および第2の基板14、26の1つの抵抗率変化を検出するためにそれぞれ使用される。
集積回路は、また、複数の接合パッドを含むことができ、これらを接合パッド16a〜16cが代表している。接合ワイヤ40a〜40cは、第1および/または第2の基板14、26をリードフレーム12のリード(図示されない)にそれぞれ結合することができる。
図示されているような配列では、認められることであろうが、第1および第2の基板14、26をそれぞれ包むために使用されることがあるパッケージ材料(図示されない)、例えばプラスチックは、第2の基板26に対して応力および歪みをもたらす傾向があるかもしれない。結果として生じた応力および歪みは、第2の基板26に結合された磁界感知素子30の感度および直線性に影響を及ぼす傾向があるかもしれない。フリップチップ配列は、磁界感知素子30がパッケージ材料に直接接触しないようにする傾向があり、した
がって、その応力および歪みを減少させる。応力および歪みをさらに減少させるために、いくつかの実施形態では、集積回路10は、第1の基板14の第1の表面14aと第2の基板26の第1の表面26aの間に配置された下充填材料42を含むことがある。下充填材料は、パッケージ材料、例えばプラスチックが磁界感知素子30に接触しないようにする傾向があり、磁界感知素子30および第2の基板26に対する応力および歪みのさらなる減少をもたらす。
下充填材料42は、例えば、Staychip(商標)NUF−31071E下充填材料(Cookson Electronics Equipment,New Jerse
y)から成ってもよい。
理解されるべきことであるが、集積回路10の部分を集積回路の他の部分から電気的に分離するために、様々な絶縁層(図示されない)が使用されることがある。例えば、第1の基板14の第1の表面14aと磁束集束器22の間に、絶縁層(図示されない)が配置されることがある。また、第2の基板26の第2の表面26bと磁束集束器32の間に、絶縁層(図示されない)が配置されることがある。
いくつかの実施形態では、磁束集束器32は、代わりに、第2の基板26の第1の表面26aに近接して配置される。他の実施形態では、磁束集束器は、第2の基板26の第1と第2の表面26a、26bの両方にそれぞれ配置されることがある。
第2の磁界感知素子20を備える実施形態では、いくつかの配列において、第2の磁界感知素子20は、第1の磁界感知素子30に比べて、磁界(すなわち、電流)に対して異なる感度を有することがある。したがって、これらの配列では、集積回路10は、1よりも多い「範囲」すなわち拡張された範囲を有することができる。これらの配列では、集積回路10は、より広い範囲の感知電流、すなわち磁界強度にわたって動作することができる。
特に、第2の基板26がGaAsから成り、第1の基板がシリコンから成り、さらに両方の磁界感知素子30、20がホール効果素子である実施形態では、磁界感知素子30の感度は、第2の磁界感知素子20の感度よりも高い。したがって、ホール効果素子だけを使用しながら、拡張された動作範囲が得られることがある。
さらに、第2の基板26がGaAsから成り磁界感知素子30がホール効果素子であり、かつ第1の基板14がシリコンから成り第2の磁界感知素子20が存在しない実施形態では、シリコンをベースにしたホール効果素子だけを備える配列の場合よりも高い感度が達成されることがある。この配列では、シリコン基板14に配置され回路18を備えることの知られたコスト有利が達成されることがある。
第1の基板14はリードフレーム12に従来の方法で取り付けられるように示されているが、すなわち、第1の基板14の第1の表面14aはリードフレーム12から見て外の方を向いているが、他の配列では、第1の基板14は基板12を基準にしてひっくり返されることがある。この配列では、第1の基板14の第1の表面14aは、リードフレームに近接し、半田ボール、金バンプ、共晶または高鉛半田バンプ、無鉛半田バンプ、金スタッドバンプ、重合体導電バンプ、異方性導電ペースト、または導電膜のうちから選択された1つを用いて、リードフレームに結合される。この配列では、第2の基板26の第1の表面26aは、図示されるように第1の基板14の第1の表面14aに結合されたままであり、基板14、26の第1の表面14a、26aは、それぞれ互いに近接している。
ここで図2および図2Aを参照すると、これらの図で同様な要素は同様な参照名称が付
いて示されており、集積回路50は、図1および図1Aの集積回路10と同様な態様を含むが、図1および図1Aのフリップチップ配列がない。
集積回路50はリードフレーム52を含んでいる。集積回路50はまた、第1の表面および対向する第2の表面54a、54bをそれぞれ有する第1の基板54を含んでいる。第1の基板54の第2の表面54bがリードフレーム52より上にあり、かつ第1の基板54の第1の表面54aが第1の基板54の第2の表面54bより上にあるように、第1の基板54がリードフレーム52に結合されている。
集積回路50はまた、第1の表面および対向する第2の表面66aおよび66bをそれぞれ有する第2の基板66を含んでいる。第2の基板66の第2の表面66bが第1の基板54の第1の表面54aより上にあり、かつ第2の基板66の第1の表面66aが第2の基板66の第2の表面66bより上にあるように、第1の基板54と第2の基板66が結合されている。
第1および第2の基板54、66は、Si、GaAs、InP、InSb、InGaAs、InGaAsP、SiGe、セラミック、またはガラスを含むがこれらに限定されない様々な材料をそれぞれ含んでもよい。第1および第2の基板54、66は、それぞれ、同じ材料を含んでもよく、または異なる材料を含んでもよい。1つの特定の実施形態では、第1の基板54はシリコン(Si)から成り、第2の基板66はガリウム砒素(GaAs)から成る。
第2の基板66の第1の表面66aは、ワイヤ接合部74a〜74dを用いて第1の基板54の第1の表面54aに結合されてもよい。4つのそのような結合部74a〜74dが示されている。しかし、理解されることであろうが、集積回路50は、4よりも多いまたは4よりも少ないそのような結合部を備えることができる。
集積回路50は、また、第1の基板54の第1の表面54aに配置された少なくとも1つの電子部品56を含む。電子部品56は、受動電子部品、例えば抵抗器、コンデンサ、またはインダクタ、および能動電子部品、例えばトランジスタ、増幅器、または他の集積回路を含むことができるが、これらに限定されない。
集積回路50は、また、第2の基板66の第1の表面66aに配置された第1の磁界感知素子70を含んでいる。いくつかの実施形態では、集積回路50は、第1の基板54の第1の表面54aに配置された第2の磁界感知素子58をさらに含む。第1および第2の磁界感知素子70、58は、それぞれ、上述のようにホール効果素子および磁気抵抗素子のうちから選択された1つであってもよい。いくつかの実施形態では、第1および第2の磁界感知素子70、58は、それぞれ、同じ型の磁界感知素子であり、他の実施形態では、第1および第2の磁界感知素子70、58は、それぞれ、異なる型の磁界感知素子である。
一つの特定の実施形態では、第1の磁界感知素子70はホール効果素子であり、第2の磁界感知素子58は磁気抵抗素子、例えば巨大磁気抵抗(GMR)素子である。他の特定の実施形態では、第1および第2の磁界感知素子70、58は、それぞれ、両方ともホール効果素子であり、第1の基板54はシリコンから成り、第2の基板66はGaAsから成る。いくつかの実施形態では、第2の磁界感知素子58は存在しない。
いくつかの実施形態では、集積回路50は、また、第1および第2の磁界感知素子70、58のうちの関連した1つにそれぞれ近接して各々配置された1つまたは複数の第1または第2の磁束集束器71、59をそれぞれ含むことができる。磁束集束器71、59は
、第1および第2の磁界感知素子70、58に近接して磁界の増大をもたらし、さらに磁界、例えば導体中の電流に起因する磁界に対する第1および第2の磁界感知素子70、58の対応する感度向上をもたらすことができる。
いくつかの実施形態では、集積回路50はまた、第2の基板66に形成された1つまたは複数の第1の抵抗器68または第1の基板54に形成された第2の抵抗器60を含んでいる。第1および第2の抵抗器68、60は、例えば、ある期間にわたって、またはある温度にわたって、第1および第2の基板54、66の抵抗率変化をそれぞれ測定するために、集積回路50によってそれぞれ使用されることがある。図1および図1Aに関連して上で説明されたように、当業者は、この目的を達成するために1つまたは複数の抵抗器68、60に結合して回路をどのように組み立てるかを理解しているであろう。いくつかの配列では、第1および第2の抵抗器68、60のうちの1つは存在せず、第1および第2の抵抗器68、60のうちの残りの1つが、第1および第2の基板54、66の1つの抵抗率変化を検出するためにそれぞれ使用される。
集積回路50は、また、複数の接合パッドを含むことができ、これらを接合パッド76a〜76cが代表している。接合ワイヤ78a〜78cは、第1および/または第2の基板54、66をリードフレーム52のリード(図示されない)にそれぞれ結合することができる。
理解されるべきことであるが、集積回路50の部分を集積回路50の他の部分から電気的に分離するために、様々な絶縁層が使用されてもよい。例えば、第1の基板14の第1の表面14aと第2の基板66の第2の表面66bの間に、絶縁層64が配置されることがある。
第2の磁界感知素子58を備える実施形態では、いくつかの配列において、第2の磁界感知素子58は、第1の磁界感知素子70に比べて、磁界(すなわち、電流)に対して異なる感度を有することがある。したがって、これらの配列では、集積回路10は、1つよりも多い「範囲」すなわち拡張された範囲を有することができる。これらの配列では、集積回路50は、より広い範囲の感知電流、すなわち磁界強度にわたって動作することができる。
磁界感知素子および基板材料の型の例示の組合せが、図1および図1Aに関連して上でさらに説明される。少なくとも同じ組合せが、集積回路50に当てはまる。ここで図3および図3Aを参照すると、これらの図で同様な要素は同様な参照名称が付いて示されており、集積回路100は、図1および図1Aの集積回路10と同様な態様を含んでいる。
集積回路100はリードフレーム102を含んでいる。集積回路100はまた、第1の表面および対向する第2の表面114aおよび114bをそれぞれ有する第1の基板114を含んでいる。集積回路100はまた、第1の表面および対向する第2の表面104aおよび104bをそれぞれ有する第2の基板104を含んでいる。
第1の基板114の第2の表面114bがリードフレーム102より上にあり、かつ第1の基板114の第1の表面114aが第1の基板114の第2の表面114bより上にあるように、第1の基板114がリードフレーム102に結合されている。第2の基板104の第2の表面104bがリードフレーム102より上にあり、かつ第2の基板104の第1の表面104aが第2の基板104の第2の表面104bより上にあるように、第2の基板104がリードフレーム102に結合されている。
第1および第2の基板114、104は、Si、GaAs、InP、InSb、InG
aAs、InGaAsP、SiGe、セラミック、またはガラスを含むがこれらに限定されない様々な材料をそれぞれ含んでもよい。第1および第2の基板114、104は、それぞれ、同じ材料を含んでもよく、または異なる材料を含んでもよい。1つの特定の実施形態では、第1の基板114はシリコン(Si)から成り、第2の基板104はガリウム砒素(GaAs)から成る。
第2の基板104の第1の表面104aは、ワイヤ接合部112a〜112dを用いて、第1の基板114の第1の表面114aに結合されてもよい。4つのそのような結合部112a〜112dが示されている。しかし、集積回路100が、4よりも多いまたは4よりも少ないそのような結合部を備えることができることは、理解されるであろう。
集積回路100は、また、第1の基板114の第1の表面114aに配置された少なくとも1つの電子部品118を含む。電子部品118は、受動電子部品、例えば抵抗器、コンデンサ、またはインダクタ、および能動電子部品、例えばトランジスタ、増幅器、または他の集積回路を含むことができるが、これらに限定されない。
集積回路100はまた、第2の基板104の第1の表面104aに配置された第1の磁界感知素子106を含んでいる。いくつかの実施形態では、集積回路100は、第1の基板114の第1の表面114aに配置された第2の磁界感知素子116を更に含んでいる。第1および第2の磁界感知素子106、116は、それぞれ、上述のようにホール効果素子および磁気抵抗素子のうちから選択された1つであってもよい。いくつかの実施形態では、第1および第2の磁界感知素子106、116は、それぞれ、同じ型の磁界感知素子であり、他の実施形態では、第1および第2の磁界感知素子106、116は、それぞれ、異なる型の磁界感知素子である。
一つの特定の実施形態では、第1の磁界感知素子106はホール効果素子であり、第2の磁界感知素子116は磁気抵抗素子、例えば巨大磁気抵抗(GMR)素子である。他の特定の実施形態では、第1および第2の磁界感知素子106、116は、それぞれ、両方ともホール効果素子であり、第1の基板114はシリコンから成り、第2の基板104はGaAsから成る。いくつかの実施形態では、第2の磁界感知素子116が存在しない。
いくつかの実施形態では、集積回路100は、また、第1および第2の磁界感知素子106、116のうちの関連した1つに近接して各々配置された1つまたは複数の第1または第2の磁束集束器(図示されない)をそれぞれ含むことができる。磁束集束器(図示されない)は、第1および第2の磁界感知素子106、116に近接して磁界の増大をもたらし、更に、磁界、例えば導体中の電流に起因する磁界に対する第1および第2の磁界感知素子106、116の対応する感度向上をもたらすことができる。
いくつかの実施形態では、集積回路100は、また、第2の基板104に形成された1つまたは複数の第1の抵抗器108または第1の基板114に形成された第2の抵抗器120を含んでいる。第1および第2の抵抗器108、120は、例えば、ある期間にわたって、またはある温度にわたって、第1および第2の基板114、104の抵抗率変化をそれぞれ測定するために、集積回路100によってそれぞれ使用されてもよい。図1に関連して上で説明されたように、当業者は、この目的を達成するために、1つまたは複数の抵抗器108、120に結合して回路をどのように組み立てるかを理解しているであろう。いくつかの配列では、第1および第2の抵抗器108、120のうちの1つは存在せず、第1および第2の抵抗器108、120のうちの残りの1つが、第1および第2の基板114、104の1つの抵抗率変化を検出するためにそれぞれ使用される。
集積回路100は、また、複数の接合パッドを含むことができ、これらを接合パッド1
24a〜124cが代表している。接合ワイヤ126a〜126cは、第1の基板114をリードフレーム102のリード(図示されない)に結合することができる。
理解されるべきことであるが、集積回路100の部分を集積回路100の他の部分から電気的に分離するために、様々な絶縁層が使用されてもよい。例えば、第1の基板114の第2の表面114bとリードフレーム102の間に、また第1の基板104の第2の表面104bとリードフレーム102の間に、絶縁層(図示されない)が配置されることがある。
第2の磁界感知素子116を備える実施形態では、いくつかの配列において、第2の磁界感知素子116は、第1の磁界感知素子106に比べて、磁界(すなわち、電流)に対して異なる感度を有することがある。したがって、これらの配列では、集積回路100は、1つよりも多い「範囲」すなわち拡張された範囲を有することができる。これらの配列では、集積回路100は、より広い範囲の感知電流、すなわち磁界強度にわたって動作することができる。
磁界感知素子および基板材料の型の例示の組合せが、図1および図1Aに関連して上でさらに説明される。少なくとも同じ組合せが、集積回路100に当てはまる。ここで図4および図4Aを参照すると、これらの図で同様な要素は同様な参照名称が付いて示されており、集積回路150は、図1および図1Aの集積回路10と同様な態様を含み、図1および図1Aに示されているようなフリップチップ配列を含んでいる。
集積回路150はリードフレーム152と、第1の表面および対向する第2の表面154aおよび154bをそれぞれ有するベース基板154とを含む。ベース基板は、様々な材料、例えば、セラミック、ガラス、重合体すなわちFR−4、または半導体を含んでもよい。集積回路150は、また、第1の表面および対向する第2の表面156aおよび156bをそれぞれ有する第1の基板156、および第1の表面および対向する第2の表面166aおよび166bをそれぞれ有する第2の基板166を含んでいる。
ベース基板154の第2の表面154bがリードフレーム152より上にあり、かつベース基板154の第1の表面154aがベース基板154の第2の表面154bより上にあるように、ベース基板154がリードフレーム152に結合されている。第1の基板156の第1の表面156aがベース基板154の第1の表面154aより上にあり、かつ第1の基板156の第2の表面156bが第1の基板156の第1の表面156aより上にあるように、第1の基板156がベース基板154に結合されている。第2の基板166の第1の表面166aがベース基板154の第1の表面154aより上にあり、かつ第2の基板166の第2の表面166bが第2の基板166の第1の表面166aより上にあるように、第2の基板166がベース基板154に結合されている。
第1および第2の基板156、166は、Si、GaAs、InP、InSb、InGaAs、InGaAsP、SiGe、セラミック、またはガラスを含むがこれらに限定されない様々な材料をそれぞれ含んでもよい。第1および第2の基板156、166は、それぞれ、同じ材料を含んでもよく、または異なる材料を含んでもよい。1つの特定の実施形態では、第1の基板156はシリコン(Si)から成り、第2の基板166はガリウム砒素(GaAs)から成る。
例えば、半田ボール、金バンプ、共晶または高鉛半田バンプ、無鉛半田バンプ、金スタッドバンプ、重合体導電バンプ、異方性導電ペースト、または導電膜の導電性要素を用いて、第2の基板166の第1の表面166aが、ベース基板154の第1の表面154aに結合されてもよい。そのような4つの結合部172a〜172cが示されている。しか
し、集積回路150が、4よりも多いまたは4よりも少ないそのような結合部を備えることができることは、理解されるであろう。
半田ボール、金バンプ、共晶または高鉛半田バンプ、無鉛半田バンプ、金スタッドバンプ、重合体導電バンプ、異方性導電ペースト、または導電膜のうちから選択された1つを用いて、第2の基板156の第1の表面156aが、ベース基板154の第1の表面154aに結合されてもよい。そのような4つの結合部164a〜164cが示されている。しかし、集積回路150が、4よりも多いまたは4よりも少ないそのような結合部を備えることができることは、理解されるであろう。
この配列では、ベース基板154は、第1の基板156を第2の基板166に結合し、さらにパッド174a〜cに結合するために、導電性トレースまたは同様なもの(図示されない)を備えることができる。
集積回路150は、また、第1の基板156の第1の表面156aに配置された少なくとも1つの電子部品158を含む。電子部品158は、受動電子部品、例えば抵抗器、コンデンサ、またはインダクタを、さらに能動電子部品、例えばトランジスタ、増幅器、または他の集積回路を含むことができるが、これらに限定されない。
集積回路150は、また、第2の基板166の第1の表面166aに配置された第1の磁界感知素子168を含んでいる。いくつかの実施形態では、集積回路150は、第1の基板156の第1の表面156aに配置された第2の磁界感知素子160をさらに含んでいる。第1および第2の磁界感知素子168、160は、それぞれ、上述のようにホール効果素子および磁気抵抗素子のうちから選択された1つであってもよい。いくつかの実施形態では、第1および第2の磁界感知素子168、160は、それぞれ、同じ型の磁界感知素子であり、他の実施形態では、第1および第2の磁界感知素子168、160は、それぞれ、異なる型の磁界感知素子である。
一つの特定の実施形態では、第1の磁界感知素子168はホール効果素子であり、第2の磁界感知素子160は磁気抵抗素子、例えば巨大磁気抵抗(GMR)素子である。他の特定の実施形態では、第1および第2の磁界感知素子168、160は、それぞれ、両方ともホール効果素子であり、第1の基板156はシリコンから成り、第2の基板166はGaAsから成る。いくつかの実施形態では、第2の磁界感知素子160が存在しない。
いくつかの実施形態では、集積回路150は、また、第1および第2の磁界感知素子168、160のうちの関連した1つに近接して各々配置された1つまたは複数の第1または第2の磁束集束器(図示されない)をそれぞれ含むことができる。磁束集束器(図示されない)は、第1および第2の磁界感知素子168、160に近接して磁界の増大をもたらし、さらに磁界、例えば導体中の電流に起因する磁界に対する第1および第2の磁界感知素子168、160の対応する感度向上をもたらすことができる。
いくつかの実施形態では、集積回路150は、また、第2の基板166に形成された1つまたは複数の第1の抵抗器170または第1の基板156に形成された第2の抵抗器162を含む。第1および第2の抵抗器170、162は、例えば、ある期間にわたって、またはある温度にわたって、第1および第2の基板156、166の抵抗率変化をそれぞれ測定するために、集積回路150によってそれぞれ使用されてもよい。図1および図1Aに関連して上で説明されたように、当業者は、この目的を達成するために、1つまたは複数の抵抗器170、162に結合して回路をどのように組み立てるかを理解しているであろう。いくつかの配列では、第1および第2の抵抗器170、162のうちの1つは存在せず、第1および第2の抵抗器170、162のうちの残りの1つが、第1および第2
の基板156、166の1つの抵抗率変化を検出するためにそれぞれ使用される。
集積回路150は、また、複数の接合パッドを含むことができ、これらを接合パッド174a〜174cが代表している。接合ワイヤ176a〜176cは、第1および/または第2の基板156、166をリードフレーム152のリード(図示されない)にそれぞれ結合することができる。
理解されるべきことであるが、集積回路150の部分を集積回路150の他の部分から電気的に分離するために、様々な絶縁層(図示されない)が使用されることがある。第2の磁界感知素子160を備える実施形態では、いくつかの配列において、第2の磁界感知素子160は、第1の磁界感知素子168に比べて、磁界(すなわち、電流)に対して異なる感度を有することがある。したがって、これらの配列では、集積回路150は、1つよりも多い「範囲」すなわち拡張された範囲を有することができる。これらの配列では、集積回路150は、より広い範囲の感知電流、すなわち磁界強度にわたって動作することができる。
磁界感知素子および基板材料の型の例示の組合せが、図1および図1Aに関連して上でさらに説明される。少なくとも同じ組合せが、集積回路150に当てはまる。第1および第2の基板156、166だけが、それぞれ、ベース基板154に結合されているように示されたが、他の配列では、ベース基板154に結合された2よりも多いまたは2よりも少ない基板があることがある。
ここで図5および図5Aを参照すると、これらの図で同様な要素は同様な参照名称が付いて示されており、集積回路200は、図1および図1Aの集積回路10と同様な態様を含んでいる。
集積回路200はリードフレーム202と、第1の表面および対向する第2の表面204a、204bをそれぞれ有するベース基板204とを含む。ベース基板は、様々な材料、例えば、セラミック、ガラス、重合体すなわちFR−4、または半導体を含んでもよい。集積回路200は、また、第1の表面および対向する第2の表面216a、216bをそれぞれ有する第1の基板216、および第1の表面および対向する第2の表面206aおよび206bをそれぞれ有する第2の基板206を含んでいる。
ベース基板204の第2の表面204bがリードフレーム202より上にあり、かつベース基板204の第1の表面204aがベース基板204の第2の表面204bより上にあるように、ベース基板204がリードフレーム202に結合されている。第1の基板216の第2の表面216bがベース基板204の第1の表面204aより上にあり、かつ第1の基板216の第1の表面216aが第1の基板216の第2の表面216bより上にあるように、第1の基板216がベース基板204に結合されている。第2の基板206の第2の表面206bがベース基板204の第1の表面204aより上にあり、かつ第2の基板206の第1の表面206aが第2の基板206の第2の表面206bより上にあるように、第2の基板206がベース基板204に結合されている。
第1および第2の基板216、206は、Si、GaAs、InP、InSb、InGaAs、InGaAsP、SiGe、セラミック、またはガラスを含むがこれらに限定されない様々な材料をそれぞれ含んでもよい。第1および第2の基板216、206は、それぞれ、同じ材料を含んでもよく、または異なる材料を含んでもよい。1つの特定の実施形態では、第1の基板216はシリコン(Si)から成り、第2の基板206はガリウム砒素(GaAs)から成る。
第2の基板206の第1の表面206aは、ワイヤ接合部214a〜214dを用いて第1の基板216の第1の表面216aに結合されることがある。4つのそのような結合部214a〜214dが示されている。しかし、集積回路200が、4よりも多いまたは4よりも少ないそのような結合部を備えることができることは、理解されるであろう。
集積回路200は、また、第1の基板216の第1の表面216aに配置された少なくとも1つの電子部品220を含む。電子部品220は、受動電子部品、例えば抵抗器、コンデンサ、またはインダクタ、および能動電子部品、例えばトランジスタ、増幅器、または他の集積回路を含むことができるが、これらに限定されない。
集積回路200は、また、第2の基板206の第1の表面206aに配置された第1の磁界感知素子208を含んでいる。いくつかの実施形態では、集積回路200は、第1の基板216の第1の表面216aに配置された第2の磁界感知素子218をさらに含んでいる。第1および第2の磁界感知素子208、218は、それぞれ、上述のようにホール効果素子および磁気抵抗素子のうちから選択された1つであってもよい。いくつかの実施形態では、第1および第2の磁界感知素子208、218は、それぞれ、同じ型の磁界感知素子であり、他の実施形態では、第1および第2の磁界感知素子208、218は、それぞれ、異なる型の磁界感知素子である。
一つの特定の実施形態では、第1の磁界感知素子208はホール効果素子であり、第2の磁界感知素子218は磁気抵抗素子、例えば巨大磁気抵抗(GMR)素子である。他の特定の実施形態では、第1および第2の磁界感知素子208、218は、それぞれ、両方ともホール効果素子であり、第1の基板216はシリコンから成り、第2の基板206はGaAsから成る。いくつかの実施形態では、第2の磁界感知素子218が存在しない。
いくつかの実施形態では、集積回路200は、また、第1および第2の磁界感知素子208、218のうちの関連した1つに近接して各々配置された1つまたは複数の第1または第2の磁束集束器(図示されない)をそれぞれ含むことができる。磁束集束器(図示されない)は、第1および第2の磁界感知素子208、218にそれぞれ近接して磁界の増大をもたらし、さらに磁界、例えば導体中の電流に起因する磁界に対する第1および第2の磁界感知素子208、218の対応する感度向上をもたらすことができる。
いくつかの実施形態では、集積回路200は、また、第2の基板206に形成された1つまたは複数の第1の抵抗器210または第1の基板216に形成された第2の抵抗器222を含む。第1および第2の抵抗器210、222は、例えば、ある期間にわたって、またはある温度にわたって、第1および第2の基板216、206の抵抗率変化をそれぞれ測定するために、集積回路200によってそれぞれ使用されてもよい。図1および図1Aに関連して上で説明されたように、当業者は、この目的を達成するために、1つまたは複数の抵抗器210、222に結合して回路をどのように組み立てるかを理解できるであろう。いくつかの配列では、第1および第2の抵抗器210、222のうちの1つは存在せず、第1および第2の抵抗器210、222のうちの残りの1つが、第1および第2の基板216、206の1つの抵抗率変化を検出するためにそれぞれ使用される。
集積回路200は、また、複数の接合パッドを含むことができ、これらを接合パッド232a〜232cが代表している。接合ワイヤ234a〜234cは、第1および/または第2の基板216、206をリードフレーム202のリード(図示されない)にそれぞれ結合することができる。
理解されるべきことであるが、集積回路200の部分を集積回路200の他の部分から電気的に分離するために、様々な絶縁層(図示されない)が使用されることがある。第2
の磁界感知素子218を備える実施形態では、いくつかの配列において、第2の磁界感知素子218は、第1の磁界感知素子208に比べて、磁界(すなわち、電流)に対して異なる感度を有することができる。したがって、これらの配列では、集積回路200は、1つよりも多い「範囲」すなわち拡張された範囲を有することができる。これらの配列では、集積回路200は、より広い範囲の感知電流、すなわち磁界強度にわたって動作することができる。
磁界感知素子および基板材料の型の例示の組合せが、図1および図1Aに関連して上でさらに説明される。少なくとも同じ組合せが、集積回路200に当てはまる。ここで図6を参照すると、集積回路250は、分解組立図で示され、第1の基板252、第2の基板254、およびリードフレーム257を含んでいる。第1の基板252、第2の基板254、およびリードフレーム257は、それぞれ、図1〜図1A、図2〜図2A、図3〜図3A、図4〜図4A、および図5〜図5Aのどの集積回路10、50、100、150、および200の同様な素子とも同じであるか、または似ていることがある。
第2の基板254は、磁界感知素子256を含み、この磁界感知素子256は、ホール効果素子または磁気抵抗素子のうちから選択された1つであってもよい。理解されることであろうが、磁界感知素子256の位置は、感知されることになる磁界に対する磁界感知素子256の感度の軸に従って選ばれてもよい。集積回路250は、また、電流通過導体258および磁気コア260(本明細書で磁束集束器とも呼ばれる)を含む。磁気コア260は、実質的にC字状であり、中心領域260aおよびこの中心領域260aから延びる一対の実質的に平行な脚部260b、260cを備える。組み立てられたとき、脚部260bがリードフレーム257の下に配置され、他方の脚部260cが第2の基板254より上に配置されるように、磁束集束器260は形作られる。
リードフレーム275は、プリント回路基板(図示されない)に取り付けるように構成されたリード259を備える。リード259は、例えば、電源またはVcc、接続、接地接続、および導体258を通過する電流に比例した出力信号を伝えるように構成された出力接続を含むことができる。出力信号は、電流または電圧であってもよい。
第1の基板252は、ホール効果素子256の出力信号を処理する回路(図示されない)を含んでいる。導体258は、銅などの様々な導電性材料から成ってもよく、導体258に供給される測定電流が通過するプリント回路基板に取り付けるように構成されている。この目的のために、回路基板のビアの中に半田付けするのに適した曲がったリードまたはタブ258a、258b(258bは図示されていない)が、導体258の端部に設けられている。ネジ端子などの、曲がったタブ258a、258b以外の機構が、集積回路250を回路基板に取り付けるために使用され、関連付けられることがある。代わりの実施形態では、集積回路250が回路基板以外のものに取り付けられるようにするために、同じまたは他の取付け機構が使用されることがある。例えば、集積回路250は、集積回路250がワイヤと直列に結合されるようにするワイヤ結合部(図示されない)を備えてもよい。
導体258(曲がったタブ258a、258bを除く)は、図示のように実質的に平らであってもよく、プリント回路基板から離れるように集積回路250の高さを高くする傾向があるかもしれないz軸226の方へ延びる特徴はない。使用中に、導体258の面は、プリント回路基板面に近く位置付けされ、それによって薄型集積回路を実現する。
磁束集束器260は、ホール効果素子256を横切る磁界を調整する傾向がある。磁束集束器260は、フェライト、鋼、鉄化合物、パーマロイ、または他の軟磁性材料を含むがこれらに限定されない様々な材料を含んでもよい。磁束集束器260の材料は、最大測
定電流および磁束集束器260によって与えられる所望の磁気遮蔽量のような要素に基づいて選ばれる。他の要素には、ある温度にわたっての比透磁率の安定性およびヒステリシス(磁性体残留磁気)がある。例えば、低ヒステリシスは、導体258を通過する小電流に対してより高い精度を保証する。磁束集束器260の材料および大きさは、また、導体258を通過する所望のフルスケール電流に従って選ばれ、飽和磁束密度(Bsat)のより大きな磁気コア材料が、導体258を流れる所定電流に対してより小さなコアを使用することを可能にする。理解されることであろうが、磁束集束器260を使用することは、集積回路の磁化率を漂遊磁界まで大きく減少させる。
ここで図7および図7Aを参照すると、これらの図で同様な要素は同様な参照名称が付いて示されており、集積回路300は、複数のリード302a〜302h、第1の基板306、および第2の基板307を備えるリードフレーム302を含んでいる。
リード302aおよび302bは、電流路、すなわち幅w1の狭い部分304のある電流導体を形成するようにリード302cおよび302dに結合されている。第1の基板306は、第1の表面306aおよび対向する第2の表面306bを有し、第2の基板307は、第1の表面307aおよび対向する第2の表面307bを有している。第1の基板306は、磁界感知素子308を備えることができ、この磁界感知素子308は、いくつかの実施形態では、第1の表面306aに拡散された、または、別の方法で第1の基板306の第1の表面306aに配置されたホール効果素子308であってもよい。同様に、第2の基板307は、磁界感知素子309を備えることができ、この磁界感知素子309は、いくつかの実施形態では、第1の表面307aに拡散された、または、別の方法で第2の基板307の第1の表面307aに配置されたホール効果素子309であってもよい。
第1および第2の基板306、307は、図1の集積回路10と同様なフリップチップ配列で互いに結合されるようにそれぞれ示されている。図1および図1Aに関連して上で説明されたように、図1および図1Aの第1の基板14は、フリップチップ配列で基板12に取り付けられてもよく、この配列が図7に示されている。しかし、他の実施形態では、集積回路300と同様な集積回路が、図2〜図2A、図3〜図3A、図4〜図4A、および図5〜図5Aのどの配列のからでも形成されることがあることは、認められるべきである。
第1の表面306aが電流導体部分304に近接し、第2の表面306bが電流導体部分304から遠位にあるように、より具体的には、ホール効果素子308が電流導体部分304に密接しているように、基板306が、リードフレーム302より上に配置されている。同様に、第2の基板307の磁界感知素子309は、電流導体部分304に密接している。例示の実施形態では、基板が集積回路パッケージの中に取り付けられている従来の向きに対して、基板306は、上下反対の向きになっている(すなわち、第1の表面306aが下の方に向けられている)。
第1の基板306は、第1の表面306aに接合パッド310a〜310cを備え、これらの接合パッドに接合ワイヤ312a〜312cが結合されている。接合ワイヤは、さらに、リードフレーム302のリード302e、302f、302hに結合されている。
絶縁体314が、リードフレーム302から基板306を隔離し且つ電気的に分離している。絶縁体314は、様々なやり方で設けられることがある。例えば、1つの実施形態では、絶縁体314の第1の部分は、基板306の第1の表面306aに直接堆積されたBCB樹脂材料の厚さ4μmの層を含んでいる。絶縁体314の第2の部分は、リードフレーム302に堆積されたStaychip(商標)NUF−31071E下充填材料(
Cookson Electronics Equipment, New Jersey)の層を含んでいる。そのような配列は、基板306とリードフレーム302の間に1000ボルト超の絶縁を実現する。
理解されることであろうが、電流導体部分304は、電流が流れる全経路のほんの一部である。例えば、矢印316で示された方向を持つ電流は、ここでは電気的に並列に結合されているように示されたリード302c、302dへ流れ込み、電流導体部分304を通って、ここでは同じく並列に結合されているように示されたリード302a、302bから外に流れ出る。
この配列では、電流導体部分304を矢印316で示された方向に通過する電流によって生成される磁界が、ホール効果素子308、309の最大応答軸と実質的に一直線に合わされた方向であるように、ホール効果素子308、309は、電流導体部分304に密接しかつ電流導体部分304に対して予め決められた位置に配置される。ホール効果素子308、309は、磁界に比例した、したがって電流導体部分304を流れる電流に比例したそれぞれの電圧出力を生成する。例示のホール効果素子308、309は、z軸324と実質的に一直線に合わされた最大応答軸を有する。電流に対応して生成される磁界は、電流導体部分304の周りに環状であるので、ホール効果素子308、309は、図示のように、電流導体部分304のまさに側面に(すなわち、y軸322に沿って僅かに片寄って)配置され、この場所で、磁界は、z軸324に実質的に沿って向けられている。この位置は、ホール効果素子308、309からより大きな電圧出力をもたらし、したがって、感度の改善をもたらす。しかし、他の方向に合わされた最大応答軸を持つ一つの縦型ホール効果素子、または他の型の磁界センサ、例えば磁気抵抗素子が、電流導体部分304に対して他の位置に、例えば、電流導体部分304の上(z軸324に沿った方向)に配置されてもよい。
図7の実施形態では、ホール効果素子308、309と電流導体304の密接は、ホール効果素子308を第1の基板306の第1の表面306aに設けることによって、さらにホール効果素子309を第2の基板307の第1の表面307aに設けることによって、達成される。
ここで図8および図8Aを参照すると、これらの図で同様な要素は同様な参照名称が付いて示され、他の例示の集積回路350は、複数のリード352a〜352hを備えるリードフレーム352および、第1の電流導体部分354aと第2の電流導体部分354bの組合せとして形成された電流導体部分354を含んでいる。集積回路350はまた、第1の表面356aおよび対向する第2の表面356bを有する基板356を含んでいる。基板356は、第1の表面356aに拡散された、または別の方法で第1の表面356aに配置された、または第1の表面356aで支持されたホール効果素子358を備えている。基板356はまた、基板356の第1の表面356aに配置された、またはそうでなければ第1の表面356で支持された2つの磁気抵抗素子360a、360bを備える。ホール効果素子358および磁気抵抗素子360a、360bが電流導体部分354に密接するように、基板356はリードフレーム352に配置される。
例示の実施形態では、基板356は、集積回路パッケージの中に取り付けられた基板の従来の向きに対して上下反対の向きになっている(すなわち、第1の表面356aが下の方に向けられている)。基板356は、基板356の第1の表面356aに半田ボール362a〜362eが付いたフリップチップである。半田ボール362a〜362eは、リード352e〜352hに直接結合する。絶縁体(図示されない)が、リードフレーム352から基板356を隔離し、かつ電気的に分離する。
一つの特定の実施形態では、第2の電流導体部分354bは、2つの磁気抵抗素子360a、360bを避けながら、または、そうでなければ2つの磁気抵抗素子360a、360bから絶縁されながら、基板356の第1の表面356aに配置されている。第2の電流導体部分354bは、スパッタリングおよび電気メッキを含むがこれらに限定されない従来のどんな集積回路用堆積技術によって、堆積されてもよい。他の実施形態では、第2の電流導体部分354bは、基板356の第1の表面356aから分離しているが近接した導電構造である。
この配列では、電流導体部分354を通過する電流によって生成される磁界が、ホール効果素子358の最大応答軸および磁気抵抗素子360a、360bの最大応答軸と実質的に一直線に合わされた方向にあるように、ホール効果素子358および磁気抵抗素子360a、360bは、電流導体部分354に密接しかつ電流導体部分354に対して予め決められた位置に配置される。ここで、ホール効果素子358は、z軸368と実質的に一直線に合わされた最大応答軸を有し、2つの磁気抵抗素子は、x軸364と実質的に一直線に合わされた最大応答軸を有する。したがって、ホール効果素子358は、図示のように、電流導体部分354のまさに側面に(すなわち、y軸324に沿って僅かに片寄って)配置され、この場所で、磁界は、z軸328に実質的に沿って向けられている。しかし、磁気抵抗素子360a、360bは、電流導体部分354に対してz軸合わせで配列される。
動作中に、電流316は、並列に結合されたリード352c、352dへ流れ込み、電流導体部分354を通って、同じく並列に結合されたリード352a、352bから外へ流れ出る。電流導体部分354を流れる電流316は磁界を生成し、この磁界は、ホール効果素子358と、2つの基板を備える実施形態に関して上で説明されたのと全く同じやり方で2レベル電流センサまたは拡張された範囲の電流センサを実現する2つの磁気抵抗素子360a、360bと、によって感知される。
他の実施形態では、磁気抵抗素子360a、360bは、縦型ホール効果素子に取り替えられることがある。上で説明されたように、ホール効果素子358および磁気抵抗素子360a、360bは、電流導体部分354に非常に密接し、かつ電流によって生成される磁界がこれらの素子の最大応答軸と実質的に一直線に合わされる、電流導体部分354に対して予め決められた位置にある。この配置は、ホール効果素子358および磁気抵抗素子360a、360bからより大きな電圧出力をもたらし、したがって、より高い感度をもたらす。
この配列では、理解されることであろうが、電流導体部分354を流れる電流は、第1と第2の電流導体部分354a、354bにそれぞれ分かれる。リードフレーム352は、回路基板に表面取付けするのに適した曲がったリード352a〜352hを有するように示されているが、真っ直ぐな形をした貫通孔リードを含むがこれに限定されない他の形のリードを備えるリードフレームも使用されてもよいことは、理解されるであろう。
1つのホール効果素子358だけが基板356の第1の表面356aに示されているが、1よりも多いホール効果素子が使用されてもよいことは理解されるであろう。さらに、2つの磁気抵抗素子360a、360bが示されたが、2よりも多いまたは2よりも少ない磁気抵抗素子が使用されてもよいことは理解されるであろう。他の回路、例えば増幅器が、また、基板356の第1および/または第2の表面356a、356bに拡散されてもよく、または、そうではなく、基板356の第1および/または第2の表面356a、356bに結合されるか支持されてもよい。
5つの半田ボール320a〜320eが示されたが、基板356を安定化するためのダ
ミー半田ボールを含んで任意の数の半田ボールが設けられてもよい。また、半田ボール320a〜320eが示されたが、また、金バンプ、共晶または高鉛半田バンプ、無鉛半田バンプ、金スタッドバンプ、重合体導電バンプ、異方性導電ペースト、導電膜、およびワイヤ接合部を含むが、これらに限定されない他の接続方法も使用されてもよい。
基板356はフリップチップ配列で示されたが、他の実施形態では、集積回路350が回路基板の最上面に普通に取り付けられたとき第1の表面356aが第2の表面356bより上にあるように、基板356は、従来の方法で取り付けられてもよい。この配列では、第1および第2の電流導体部分354a、354bの各々は、それぞれ基板356の第1の表面356aより上にある。
図1、図1A、図2、図2A、図3、図3A、図4、図5A、図5および図5Aに関連して、上で説明された集積回路は、電流センサで使用されるように述べられたが、これらの集積回路に配置された様々な磁界感知素子は、導体を通過する電流によって生成される磁界に反応する。しかし、他の配列では、本集積回路は、集積回路の外の磁界に反応する磁界センサで使用される。さらに他の配列では、本集積回路は、可動鉄物体または他の軟磁性材料、例えば回転する歯車に関連した磁界に反応する近接センサで使用される。さらに他の配列では、本集積回路は、可動永久磁石または硬磁性物体によって生成される磁界に反応する近接センサで使用される。さらに他の配列では、本集積回路は、導体またはコイルのパルス信号に応答するアイソレータで使用される。
図1、図1A、図2、図2A、図3、図3A、図4、図4A、図5および図5Aに関連して上で説明された集積回路は、2つの基板に配置された2つの磁界感知素子を備えるものとして説明された。しかし、他の実施形態では、2つの基板を備える代わりに、集積回路はただ1つの基板を備えることがあり、2つの磁界感知素子のドーピングおよび/または材料が異なる。例えば、いくつかの実施形態では、単一Si基板の領域が、SiGeホール効果素子を作るためにGeを打ち込まれることがあり、一方で、別個のSiホール効果素子が同じ基板のどこかに形成されることがある。これらの配列では、2つの磁界感知素子は、異なる感度を持つことがあり、または同じ感度を持つことがある。
図1、図1A、図2、図2A、図3、図3A、図4、図4A、図5および図5Aに関連して、上で説明された電子部品18、56、118、158、および220は、それぞれの基板の表面にそれぞれ配置されてもよい。これらの電子部品は、発明者Michael
C. Doogue、Vijay MangtaniおよびWilliam P. Taylorで代理人整理番号ALLEG−039CUSである、「Current Sens
or」という名称の2006年1月20日に出願された米国特許出願第11/336,602号に記載された回路から成ってもよく、この出願は、これに言及することによりその全体が参考として組み込まれている。
本明細書で引用された全ての文献は、これによって、その全体が参照して本明細書に組み込まれる。本発明の好ましい実施形態を説明したので、これらの概念を取り込んだ他の実施形態が使用される可能性があることは、今や、当業者には明らかになるであろう。したがって、これらの実施形態は開示された実施形態に限定されるべきでなく、それどころか、添付の特許請求の範囲の精神および範囲によってのみ限定されるべきであると感じられる。

Claims (3)

  1. 第1の基板(306)と、
    前記第1の基板(306)の表面に配置された回路素子と、
    前記第1の基板(306)の表面に配置された縦型ホール効果素子(308)であって、磁界に対して第1の感度を有する前記縦型ホール効果素子(308)と、
    前記第1の基板(306)に結合された第2の基板(307)であって、該第2の基板(307)の主表面に直交する方向がz軸(324)方向である前記第2の基板(307)と、
    前記第2の基板(307)の表面に配置された横型ホール効果素子(309)であって、磁界に対して第2の異なる感度を有する前記横型ホール効果素子(309)と、を備えている集積回路であり、
    該集積回路は、前記横型ホール効果素子(309)に応じた第1の動作範囲と、前記縦型ホール効果素子(308)に応じた第2の異なる動作範囲、を有し、且つ前記横型ホール効果素子(309)はz軸方向に最大の応答軸を有し、且つ前記縦型ホール効果素子(308)は前記z軸方向とは異なる他の方向に最大応答軸を有する、集積回路。
  2. 請求項1に記載の集積回路において、前記第1の基板が、Si、GaAs、InP、InSb、InGaAs、InGaAsP、SiGe、セラミック、またはガラスのうちから選択された1つを含んでおり、前記第2の基板が、Si、GaAs、InP、InSb、InGaAs、InGaAsP、SiGe、セラミック、またはガラスのうちから選択された1つを含んでいる、集積回路。
  3. 請求項1に記載の集積回路において、電流導体部分(304)を備えており、前記横型ホール効果素子(309)と前記縦型ホール効果素子(308)とが、該電流導体部分(304)によって流される電流(316)によって発生される磁界に反応するようになされている、集積回路。
JP2015157901A 2006-01-20 2015-08-10 集積化センサの配列 Active JP6150855B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/335,944 US7768083B2 (en) 2006-01-20 2006-01-20 Arrangements for an integrated sensor
US11/335,944 2006-01-20

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013189638A Division JP5902657B2 (ja) 2006-01-20 2013-09-12 集積化センサの配列

Publications (3)

Publication Number Publication Date
JP2016001186A JP2016001186A (ja) 2016-01-07
JP2016001186A5 JP2016001186A5 (ja) 2017-02-09
JP6150855B2 true JP6150855B2 (ja) 2017-06-21

Family

ID=38194995

Family Applications (8)

Application Number Title Priority Date Filing Date
JP2008551281A Active JP5748393B2 (ja) 2006-01-20 2007-01-04 集積化センサの配列
JP2011264267A Active JP5635966B2 (ja) 2006-01-20 2011-12-02 集積化センサの配列
JP2013085409A Withdrawn JP2013178259A (ja) 2006-01-20 2013-04-16 集積化センサの配列
JP2013189638A Active JP5902657B2 (ja) 2006-01-20 2013-09-12 集積化センサの配列
JP2014028213A Active JP5848382B2 (ja) 2006-01-20 2014-02-18 集積化センサの配列
JP2015045607A Active JP6376995B2 (ja) 2006-01-20 2015-03-09 集積化センサの配列
JP2015157901A Active JP6150855B2 (ja) 2006-01-20 2015-08-10 集積化センサの配列
JP2017173831A Pending JP2018036267A (ja) 2006-01-20 2017-09-11 集積化センサの配列

Family Applications Before (6)

Application Number Title Priority Date Filing Date
JP2008551281A Active JP5748393B2 (ja) 2006-01-20 2007-01-04 集積化センサの配列
JP2011264267A Active JP5635966B2 (ja) 2006-01-20 2011-12-02 集積化センサの配列
JP2013085409A Withdrawn JP2013178259A (ja) 2006-01-20 2013-04-16 集積化センサの配列
JP2013189638A Active JP5902657B2 (ja) 2006-01-20 2013-09-12 集積化センサの配列
JP2014028213A Active JP5848382B2 (ja) 2006-01-20 2014-02-18 集積化センサの配列
JP2015045607A Active JP6376995B2 (ja) 2006-01-20 2015-03-09 集積化センサの配列

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017173831A Pending JP2018036267A (ja) 2006-01-20 2017-09-11 集積化センサの配列

Country Status (6)

Country Link
US (6) US7768083B2 (ja)
EP (4) EP2290380B1 (ja)
JP (8) JP5748393B2 (ja)
KR (1) KR101366007B1 (ja)
AT (4) ATE550672T1 (ja)
WO (1) WO2007087121A2 (ja)

Families Citing this family (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7259545B2 (en) * 2003-02-11 2007-08-21 Allegro Microsystems, Inc. Integrated sensor
US7768083B2 (en) * 2006-01-20 2010-08-03 Allegro Microsystems, Inc. Arrangements for an integrated sensor
US7687882B2 (en) * 2006-04-14 2010-03-30 Allegro Microsystems, Inc. Methods and apparatus for integrated circuit having multiple dies with at least one on chip capacitor
US7573112B2 (en) * 2006-04-14 2009-08-11 Allegro Microsystems, Inc. Methods and apparatus for sensor having capacitor on chip
US20070279053A1 (en) * 2006-05-12 2007-12-06 Taylor William P Integrated current sensor
US20080013298A1 (en) 2006-07-14 2008-01-17 Nirmal Sharma Methods and apparatus for passive attachment of components for integrated circuits
US7816772B2 (en) * 2007-03-29 2010-10-19 Allegro Microsystems, Inc. Methods and apparatus for multi-stage molding of integrated circuit package
US7564237B2 (en) * 2007-10-23 2009-07-21 Honeywell International Inc. Integrated 3-axis field sensor and fabrication methods
US8009442B2 (en) * 2007-12-28 2011-08-30 Intel Corporation Directing the flow of underfill materials using magnetic particles
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US7816905B2 (en) * 2008-06-02 2010-10-19 Allegro Microsystems, Inc. Arrangements for a current sensing circuit and integrated current sensor
US8093670B2 (en) 2008-07-24 2012-01-10 Allegro Microsystems, Inc. Methods and apparatus for integrated circuit having on chip capacitor with eddy current reductions
US20100052424A1 (en) * 2008-08-26 2010-03-04 Taylor William P Methods and apparatus for integrated circuit having integrated energy storage device
US8486755B2 (en) 2008-12-05 2013-07-16 Allegro Microsystems, Llc Magnetic field sensors and methods for fabricating the magnetic field sensors
US9222992B2 (en) 2008-12-18 2015-12-29 Infineon Technologies Ag Magnetic field current sensors
US20100188078A1 (en) * 2009-01-28 2010-07-29 Andrea Foletto Magnetic sensor with concentrator for increased sensing range
US20100193906A1 (en) * 2009-02-05 2010-08-05 Northern Lights Semiconductor Corp. Integrated Circuit Package for Magnetic Capacitor
US20110133732A1 (en) * 2009-12-03 2011-06-09 Allegro Microsystems, Inc. Methods and apparatus for enhanced frequency response of magnetic sensors
US20110210956A1 (en) * 2010-02-26 2011-09-01 Dev Alok Girdhar Current sensor for a semiconductor device and system
US8384183B2 (en) * 2010-02-19 2013-02-26 Allegro Microsystems, Inc. Integrated hall effect element having a germanium hall plate
US20110210411A1 (en) * 2010-02-26 2011-09-01 Sound Design Technologies, Ltd. Ultra thin flip-chip backside device sensor package
JP5067676B2 (ja) * 2010-03-12 2012-11-07 株式会社デンソー センサユニット及び、集磁モジュール
US8760149B2 (en) 2010-04-08 2014-06-24 Infineon Technologies Ag Magnetic field current sensors
US20120007597A1 (en) * 2010-07-09 2012-01-12 Invensense, Inc. Micromachined offset reduction structures for magnetic field sensing
EP2598896B1 (fr) * 2010-07-30 2014-10-29 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Capteur integre de mesure de tension ou de courant a base de magnetoresistances
DE102010047128A1 (de) * 2010-09-30 2012-04-05 Infineon Technologies Ag Hallsensoranordnung zum redundanten Messen eines Magnetfeldes
US8339134B2 (en) * 2010-10-08 2012-12-25 Allegro Microsystems, Inc. Apparatus and method for reducing a transient signal in a magnetic field sensor
JP5794777B2 (ja) 2010-12-22 2015-10-14 三菱電機株式会社 半導体装置
US8975889B2 (en) 2011-01-24 2015-03-10 Infineon Technologies Ag Current difference sensors, systems and methods
US8963536B2 (en) 2011-04-14 2015-02-24 Infineon Technologies Ag Current sensors, systems and methods for sensing current in a conductor
US8907437B2 (en) 2011-07-22 2014-12-09 Allegro Microsystems, Llc Reinforced isolation for current sensor with magnetic field transducer
US8952686B2 (en) 2011-10-25 2015-02-10 Honeywell International Inc. High current range magnetoresistive-based current sensor
US8629539B2 (en) 2012-01-16 2014-01-14 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US8791533B2 (en) * 2012-01-30 2014-07-29 Broadcom Corporation Semiconductor package having an interposer configured for magnetic signaling
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9812588B2 (en) * 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
JP6243602B2 (ja) * 2012-03-22 2017-12-06 旭化成エレクトロニクス株式会社 磁場方向計測装置及び回転角度計測装置
US10215550B2 (en) 2012-05-01 2019-02-26 Allegro Microsystems, Llc Methods and apparatus for magnetic sensors having highly uniform magnetic fields
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US9588134B2 (en) * 2012-05-10 2017-03-07 Infineon Technologies Ag Increased dynamic range sensor
US9372242B2 (en) * 2012-05-11 2016-06-21 Memsic, Inc. Magnetometer with angled set/reset coil
CN102809665B (zh) * 2012-06-04 2016-08-03 江苏多维科技有限公司 一种磁电阻齿轮传感器
JP5911065B2 (ja) * 2012-06-12 2016-04-27 公立大学法人大阪市立大学 漏電検出装置
US20140005527A1 (en) * 2012-06-29 2014-01-02 General Electric Company Method and system for dynamic referencing and registration used with surgical and interventional procedures
US9482700B2 (en) * 2013-01-20 2016-11-01 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Current detector to sense current without being in series with conductor
US9164155B2 (en) 2013-01-29 2015-10-20 Infineon Technologies Ag Systems and methods for offset reduction in sensor devices and systems
CH707687B1 (de) * 2013-03-08 2016-09-15 Melexis Technologies Nv Stromsensor.
US10345343B2 (en) 2013-03-15 2019-07-09 Allegro Microsystems, Llc Current sensor isolation
US9190606B2 (en) 2013-03-15 2015-11-17 Allegro Micosystems, LLC Packaging for an electronic device
US10725100B2 (en) 2013-03-15 2020-07-28 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an externally accessible coil
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US9733106B2 (en) 2013-05-24 2017-08-15 Allegro Microsystems, Llc Magnetic field sensor to detect a magnitude of a magnetic field in any direction
US9664752B2 (en) 2013-05-24 2017-05-30 Allegro Microsystems, Llc Magnetic field sensor for detecting a magnetic field in any direction above thresholds
JP6116061B2 (ja) * 2013-07-16 2017-04-19 横河電機株式会社 電流センサ
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
JP5945976B2 (ja) * 2013-12-06 2016-07-05 トヨタ自動車株式会社 バスバモジュール
JP6123687B2 (ja) * 2014-01-29 2017-05-10 株式会社デンソー 磁気センサ
US9605983B2 (en) * 2014-06-09 2017-03-28 Infineon Technologies Ag Sensor device and sensor arrangement
US9823168B2 (en) 2014-06-27 2017-11-21 Infineon Technologies Ag Auto tire localization systems and methods utilizing a TPMS angular position index
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9857398B2 (en) 2015-01-30 2018-01-02 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Inter-circuit board connector with current sensor
US9857437B2 (en) 2015-04-10 2018-01-02 Allegro Microsystems, Llc Hall effect sensing element
DE102015007190B4 (de) * 2015-06-09 2017-03-02 Micronas Gmbh Magnetfeldmessvorrichtung
US10130807B2 (en) 2015-06-12 2018-11-20 Cochlear Limited Magnet management MRI compatibility
US20160381473A1 (en) 2015-06-26 2016-12-29 Johan Gustafsson Magnetic retention device
US10917730B2 (en) 2015-09-14 2021-02-09 Cochlear Limited Retention magnet system for medical device
US10411498B2 (en) 2015-10-21 2019-09-10 Allegro Microsystems, Llc Apparatus and methods for extending sensor integrated circuit operation through a power disturbance
US9976876B2 (en) 2015-11-24 2018-05-22 Allegro Microsystems, Llc Methods and apparatus for phase selection in ring magnet sensing
US10145906B2 (en) 2015-12-17 2018-12-04 Analog Devices Global Devices, systems and methods including magnetic structures
US10283699B2 (en) 2016-01-29 2019-05-07 Avago Technologies International Sales Pte. Limited Hall-effect sensor isolator
US10114085B2 (en) 2016-03-04 2018-10-30 Allegro Microsystems, Llc Magnetic field sensor with improved response immunity
US9910087B2 (en) * 2016-03-14 2018-03-06 Allegro Microsystems, Llc Integrated circuit and method for detecting a stress condition in the integrated circuit
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10036785B2 (en) * 2016-07-18 2018-07-31 Allegro Microsystems, Llc Temperature-compensated magneto-resistive sensor
US10114044B2 (en) 2016-08-08 2018-10-30 Allegro Microsystems, Llc Current sensor
EP3293889B1 (en) 2016-09-13 2019-02-27 Allegro MicroSystems, LLC Signal isolator having bidirectional diagnostic signal exchange
KR200483900Y1 (ko) 2016-11-10 2017-07-07 한윤식 자연대류와 난방이 되는 조립식 돔 하우스
US10760981B2 (en) * 2016-11-18 2020-09-01 Asahi Kasei Microdevices Corporation Hall sensor
US10352969B2 (en) 2016-11-29 2019-07-16 Allegro Microsystems, Llc Systems and methods for integrated shielding in a current sensor
US11595768B2 (en) 2016-12-02 2023-02-28 Cochlear Limited Retention force increasing components
US10324144B2 (en) 2016-12-20 2019-06-18 Infineon Technologies Austria Ag Lateral transmission of signals across a galvanic isolation barrier
US9958482B1 (en) * 2016-12-20 2018-05-01 Allegro Microsystems, Llc Systems and methods for a high isolation current sensor
US9941999B1 (en) * 2017-03-08 2018-04-10 Allegro Microsystems, Llc Methods and apparatus for communication over an isolation barrier with monitoring
US10481181B2 (en) * 2017-04-25 2019-11-19 Allegro Microsystems, Llc Systems and methods for current sensing
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10692362B2 (en) 2017-06-14 2020-06-23 Allegro Microsystems, Llc Systems and methods for comparing signal channels having different common mode transient immunity
US10636285B2 (en) 2017-06-14 2020-04-28 Allegro Microsystems, Llc Sensor integrated circuits and methods for safety critical applications
US10380879B2 (en) 2017-06-14 2019-08-13 Allegro Microsystems, Llc Sensor integrated circuits and methods for safety critical applications
US10622549B2 (en) 2017-08-29 2020-04-14 Allegro Microsystems, Llc Signal isolator having interposer
US10718825B2 (en) * 2017-09-13 2020-07-21 Nxp B.V. Stray magnetic field robust magnetic field sensor and system
US10257974B1 (en) 2017-09-22 2019-04-16 Cnh Industrial America Llc Seed meter with multiple sensors for seed cell status monitoring
DE102017124542B4 (de) * 2017-10-20 2023-12-21 Infineon Technologies Ag Magnetfeldsensoranordnung und verfahren zum messen eines externen magnetfelds
US10236932B1 (en) 2017-11-02 2019-03-19 Allegro Microsystems, Llc Signal isolator having magnetic signal latching
US10509058B2 (en) * 2018-01-12 2019-12-17 Allegro Microsystems, Llc Current sensor using modulation of or change of sensitivity of magnetoresistance elements
EP3531076B1 (en) * 2018-02-23 2021-07-14 Allegro MicroSystems, LLC Angle sensor using eddy currents
US10753968B2 (en) 2018-02-27 2020-08-25 Allegro Microsystems, Llc Integrated circuit having insulation breakdown detection
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10978897B2 (en) 2018-04-02 2021-04-13 Allegro Microsystems, Llc Systems and methods for suppressing undesirable voltage supply artifacts
US10605874B2 (en) 2018-08-06 2020-03-31 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements having varying sensitivity
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US10921391B2 (en) 2018-08-06 2021-02-16 Allegro Microsystems, Llc Magnetic field sensor with spacer
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10866122B2 (en) * 2019-01-23 2020-12-15 Allegro Microsystems, Llc Magnetic field sensor for detecting an absolute position of a target object
US10816366B2 (en) 2019-01-23 2020-10-27 Allegro Microsystems, Llc Magnetic field sensor for detecting an absolute position of a target object
US11112465B2 (en) 2019-02-05 2021-09-07 Allegro Microsystems, Llc Integrated circuit having insulation monitoring with frequency discrimination
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US11029373B2 (en) 2019-07-16 2021-06-08 Allegro Microsystems, Llc Magnetic field sensors having a magnetic anti-aliasing filter
US10914765B1 (en) 2019-07-31 2021-02-09 Allegro Microsystems, Llc Multi-die integrated current sensor
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US11115244B2 (en) 2019-09-17 2021-09-07 Allegro Microsystems, Llc Signal isolator with three state data transmission
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
WO2021120060A1 (zh) * 2019-12-18 2021-06-24 上海麦歌恩微电子股份有限公司 一种基于垂直霍尔和各向异性磁阻的传感器及其使用方法
US11600498B2 (en) * 2019-12-31 2023-03-07 Texas Instruments Incorporated Semiconductor package with flip chip solder joint capsules
US11150273B2 (en) 2020-01-17 2021-10-19 Allegro Microsystems, Llc Current sensor integrated circuits
US11183436B2 (en) 2020-01-17 2021-11-23 Allegro Microsystems, Llc Power module package and packaging techniques
US11604058B2 (en) 2020-02-25 2023-03-14 Allegro Microsystems, Llc Reducing stray magnetic field effect on an angle sensor
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11346688B2 (en) 2020-07-06 2022-05-31 Allegro Microsystems, Llc Magnetic field sensors for detecting absolute position of multi-track targets
US11422167B2 (en) * 2020-07-17 2022-08-23 Texas Instruments Incorporated Integrated current sensor with magnetic flux concentrators
US11408945B2 (en) 2020-11-18 2022-08-09 Allegro Microsystems, Llc Magnetic field sensor with stacked transducers and capacitive summing amplifier
US11366141B1 (en) 2021-01-28 2022-06-21 Allegro Microsystems, Llc Multipath wide bandwidth current sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents
US11644485B2 (en) 2021-10-07 2023-05-09 Allegro Microsystems, Llc Current sensor integrated circuits
US11768230B1 (en) 2022-03-30 2023-09-26 Allegro Microsystems, Llc Current sensor integrated circuit with a dual gauge lead frame
US11994541B2 (en) 2022-04-15 2024-05-28 Allegro Microsystems, Llc Current sensor assemblies for low currents
US11719769B1 (en) 2022-06-14 2023-08-08 Allegro Microsystems, Llc Method and apparatus for sensor signal path diagnostics
DE102022120256A1 (de) 2022-08-11 2024-02-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren und Vorrichtung zu einer In-situ-AC-Strommessung an Stromschienen zwischen Pulswechselrichter und Verbraucher

Family Cites Families (230)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283643A (en) 1979-05-25 1981-08-11 Electric Power Research Institute, Inc. Hall sensing apparatus
CH651151A5 (de) 1979-11-27 1985-08-30 Landis & Gyr Ag Messwandler zum messen eines insbesondere von einem messstrom erzeugten magnetfeldes.
JPS5687273A (en) 1979-12-17 1981-07-15 Sanyo Electric Co Ltd Automatic head leading device
US4343026A (en) 1980-07-09 1982-08-03 Spin Physics, Inc. Magnetoresistive head employing field feedback
JPS6311672Y2 (ja) * 1980-12-22 1988-04-05
JPS57105977A (en) 1980-12-23 1982-07-01 Toshiba Corp Air cell
CH651701A5 (de) 1980-12-24 1985-09-30 Landis & Gyr Ag Kompensierter messwandler.
CH651671A5 (de) 1980-12-24 1985-09-30 Landis & Gyr Ag Anordnung zur messung elektrischer leistung oder energie.
JPS57187671A (en) 1981-05-15 1982-11-18 Nec Corp Magnetism sensor
JPS629970Y2 (ja) 1981-05-25 1987-03-09
JPS5879430A (ja) 1981-11-06 1983-05-13 株式会社東芝 変圧器の内部部分放電自動監視装置
JPS58155761A (ja) * 1982-03-10 1983-09-16 Sharp Corp ホ−ル効果半導体集積回路
JPS58155761U (ja) 1982-04-13 1983-10-18 三洋電機株式会社 筒型電池
JPS58187004U (ja) 1982-06-04 1983-12-12 松下電器産業株式会社 スロツトイン式磁気記録再生装置
JPS59132091U (ja) 1983-02-22 1984-09-04 京都機械株式会社 布帛の連続染色用乾燥装置
DE3426784A1 (de) 1984-07-20 1986-01-30 Bosch Gmbh Robert Magnetoresistiver sensor zur abgabe von elektrischen signalen
CA1248222A (en) 1984-08-27 1989-01-03 Yutaka Souda Magnetic transducer head utilizing magnetoresistance effect
JPH0627150B2 (ja) 1985-07-08 1994-04-13 三菱油化株式会社 電気絶縁用エチレン共重合物架橋体
JPS6243260A (ja) 1985-08-20 1987-02-25 Canon Inc フアクシミリ装置
DE3632624C1 (de) * 1986-09-25 1988-03-10 Balluff Gebhard Feinmech Stoerfeldunempfindlicher Naeherungsschalter
CH669852A5 (ja) 1986-12-12 1989-04-14 Lem Liaisons Electron Mec
JPS63150384A (ja) 1986-12-15 1988-06-23 Hitachi Ltd 潤滑剤
US4772929A (en) 1987-01-09 1988-09-20 Sprague Electric Company Hall sensor with integrated pole pieces
JPS63150384U (ja) * 1987-03-24 1988-10-04
KR910004261B1 (ko) 1987-04-09 1991-06-25 후지쓰 가부시끼가이샤 자전 변환 소자를 이용한 검지기
JPS63263782A (ja) 1987-04-22 1988-10-31 Hitachi Ltd 磁電変換素子
EP0300635B1 (en) 1987-07-07 1995-09-13 Nippondenso Co., Ltd. Current detecting device using ferromagnetic magnetoresistance element
JPS6475969A (en) 1987-09-17 1989-03-22 Mitsubishi Electric Corp Measuring device of current
US4823075A (en) 1987-10-13 1989-04-18 General Electric Company Current sensor using hall-effect device with feedback
CH674089A5 (ja) 1987-10-16 1990-04-30 Lem Liaisons Electron Mec
GB8725467D0 (en) 1987-10-30 1987-12-02 Honeywell Control Syst Making current sensor
US4939459A (en) 1987-12-21 1990-07-03 Tdk Corporation High sensitivity magnetic sensor
US5227721A (en) 1987-12-25 1993-07-13 Sharp Kabushiki Kaisha Superconductive magnetic sensor having self induced magnetic biasing
JPH01251763A (ja) 1988-03-31 1989-10-06 Res Dev Corp Of Japan 縦型ホール素子と集積化磁気センサ
JPH0216475A (ja) 1988-07-04 1990-01-19 Sharp Corp 超電導磁気測定装置
US5041780A (en) 1988-09-13 1991-08-20 California Institute Of Technology Integrable current sensors
US4847584A (en) 1988-10-14 1989-07-11 Honeywell Inc. Magnetoresistive magnetic sensor
US4926116A (en) 1988-10-31 1990-05-15 Westinghouse Electric Corp. Wide band large dynamic range current sensor and method of current detection using same
JPH02170061A (ja) 1988-12-23 1990-06-29 Fujitsu Ltd 電力検知装置
JPH02212789A (ja) * 1989-02-13 1990-08-23 Nec Corp 磁気センサ
JPH02238372A (ja) 1989-03-13 1990-09-20 Fujitsu Ltd 電流検出器
JP2796391B2 (ja) 1990-01-08 1998-09-10 株式会社日立製作所 物理量検出方法および物理量検出装置あるいはこれらの方法あるいは装置を利用したサーボモータおよびこのサーボモータを使用したパワーステアリング装置
JPH03214783A (ja) * 1990-01-19 1991-09-19 Aichi Tokei Denki Co Ltd 積層型センサ
JPH03263383A (ja) * 1990-03-13 1991-11-22 Fujitsu Ltd 磁気抵抗素子
JPH0627150Y2 (ja) 1990-12-28 1994-07-27 陽 小川 足踏み健康器
JPH04290979A (ja) 1991-03-20 1992-10-15 Hitachi Ltd 磁気センサ、磁気センサを持つ位置検出装置および磁気センサを利用したトルク検出装置、モータ制御装置、あるいはこのトルク検出装置を有する電動パワーステアリング装置
JP3093813B2 (ja) * 1991-03-29 2000-10-03 科学技術振興事業団 磁気センサ
JP3206027B2 (ja) 1991-07-05 2001-09-04 株式会社村田製作所 微小電流センサ
EP0537419A1 (de) 1991-10-09 1993-04-21 Landis & Gyr Business Support AG Anordnung mit einem integrierten Magnetfeldsensor sowie einem ferromagnetischen ersten und zweiten Magnetfluss-Konzentrator und Verfahren zum Einbau einer Vielzahl von Anordnungen in je einem Kunststoffgehäuse
JPH05126865A (ja) 1991-10-22 1993-05-21 Hitachi Ltd 電流検出装置あるいは電流検出方法
JPH05264701A (ja) * 1992-01-23 1993-10-12 Fujitsu Ltd 磁気センサ
DE4212737C1 (en) 1992-04-16 1993-07-08 Leica Mikroskopie Und Systeme Gmbh Compact bridge-connected sensor - has thin-film resistors on substrate
CH683469A5 (de) 1992-07-03 1994-03-15 Landis & Gyr Business Support Anordnung mit einem einen Magnetfeldsensor enthaltenden Halbleiterplättchen zwischen einem ersten und einem zweiten Polschuh und Verfahren zur Herstellung einer Vielzahl der Anordnungen.
JPH0627150A (ja) * 1992-07-07 1994-02-04 Honda Motor Co Ltd ホール素子型電流センサ
US5402064A (en) 1992-09-02 1995-03-28 Santa Barbara Research Center Magnetoresistive sensor circuit with high output voltage swing and temperature compensation
JPH06177454A (ja) * 1992-12-04 1994-06-24 Fujitsu Ltd 強磁性薄膜磁気抵抗素子とそれを用いた磁気センサ
DE4243358A1 (de) 1992-12-21 1994-06-23 Siemens Ag Magnetowiderstands-Sensor mit künstlichem Antiferromagneten und Verfahren zu seiner Herstellung
DE4300605C2 (de) 1993-01-13 1994-12-15 Lust Electronic Systeme Gmbh Sensorchip
US5442283A (en) 1993-09-03 1995-08-15 Allegro Microsystems, Inc. Hall-voltage slope-activated sensor
JP3234394B2 (ja) * 1994-02-04 2001-12-04 株式会社日本自動車部品総合研究所 電流測定装置
US6002553A (en) 1994-02-28 1999-12-14 The United States Of America As Represented By The United States Department Of Energy Giant magnetoresistive sensor
US5583725A (en) 1994-06-15 1996-12-10 International Business Machines Corporation Spin valve magnetoresistive sensor with self-pinned laminated layer and magnetic recording system using the sensor
US5500590A (en) 1994-07-20 1996-03-19 Honeywell Inc. Apparatus for sensing magnetic fields using a coupled film magnetoresistive transducer
JP3214783B2 (ja) 1994-07-25 2001-10-02 本田技研工業株式会社 燃料タンクの支持構造
DE4436876A1 (de) 1994-10-15 1996-04-18 Lust Antriebstechnik Gmbh Sensorchip
JPH08130338A (ja) * 1994-10-31 1996-05-21 Nec Corp 薄膜磁気センサ
US5561368A (en) 1994-11-04 1996-10-01 International Business Machines Corporation Bridge circuit magnetic field sensor having spin valve magnetoresistive elements formed on common substrate
US5570034A (en) 1994-12-29 1996-10-29 Intel Corporation Using hall effect to monitor current during IDDQ testing of CMOS integrated circuits
US5488294A (en) 1995-01-18 1996-01-30 Honeywell Inc. Magnetic sensor with means for retaining a magnet at a precise calibrated position
FR2734058B1 (fr) 1995-05-12 1997-06-20 Thomson Csf Amperemetre
US5717327A (en) * 1995-09-22 1998-02-10 Bradford; Melvin J. Current sensor
EP0772046B1 (de) 1995-10-30 2002-04-17 Sentron Ag Magnetfeldsensor und Strom- oder Energiesensor
JPH09166612A (ja) 1995-12-18 1997-06-24 Nissan Motor Co Ltd 磁気センサ
JPH09257835A (ja) 1996-03-22 1997-10-03 Toshiba Corp 電流検出装置
US5929636A (en) 1996-05-02 1999-07-27 Integrated Magnetoelectronics All-metal giant magnetoresistive solid-state component
DE19619806A1 (de) 1996-05-15 1997-11-20 Siemens Ag Magnetfeldempfindliche Sensoreinrichtung mit mehreren GMR-Sensorelementen
FR2749664B1 (fr) 1996-06-05 1998-07-24 Chauvin Arnoux Dispositif de mesure de courants faibles par pince amperemetrique
FR2750769B1 (fr) * 1996-07-05 1998-11-13 Thomson Csf Capteur de champ magnetique en couche mince
US5831426A (en) 1996-08-16 1998-11-03 Nonvolatile Electronics, Incorporated Magnetic current sensor
US5896030A (en) * 1996-10-09 1999-04-20 Honeywell Inc. Magnetic sensor with components attached to transparent plate for laser trimming during calibration
DE19650078A1 (de) 1996-12-03 1998-06-04 Inst Mikrostrukturtechnologie Sensorelement zur Bestimmung eines Magnetfeldes oder eines Stromes
JPH10293141A (ja) 1997-04-18 1998-11-04 Yasusuke Yamamoto 電流センサー
EP0874244B1 (de) 1997-04-19 2002-01-30 LUST ANTRIEBSTECHNIK GmbH Verfahren zum Messen von elektrischen Strömen in n Leitern sowie Vorrichtung zur Durchführung des Verfahrens
US5877705A (en) 1997-04-22 1999-03-02 Nu-Metrics, Inc. Method and apparatus for analyzing traffic and a sensor therefor
WO1998057188A1 (en) 1997-06-13 1998-12-17 Koninklijke Philips Electronics N.V. Sensor comprising a wheatstone bridge
US5952825A (en) 1997-08-14 1999-09-14 Honeywell Inc. Magnetic field sensing device having integral coils for producing magnetic fields
US6356068B1 (en) 1997-09-15 2002-03-12 Ams International Ag Current monitor system and a method for manufacturing it
US5883567A (en) 1997-10-10 1999-03-16 Analog Devices, Inc. Packaged integrated circuit with magnetic flux concentrator
US6094330A (en) 1998-01-14 2000-07-25 General Electric Company Circuit interrupter having improved current sensing apparatus
US6300617B1 (en) 1998-03-04 2001-10-09 Nonvolatile Electronics, Incorporated Magnetic digital signal coupler having selected/reversal directions of magnetization
JP3544141B2 (ja) * 1998-05-13 2004-07-21 三菱電機株式会社 磁気検出素子および磁気検出装置
JP3623367B2 (ja) 1998-07-17 2005-02-23 アルプス電気株式会社 巨大磁気抵抗効果素子を備えたポテンショメータ
JP3623366B2 (ja) 1998-07-17 2005-02-23 アルプス電気株式会社 巨大磁気抵抗効果素子を備えた磁界センサおよびその製造方法と製造装置
US6809515B1 (en) 1998-07-31 2004-10-26 Spinix Corporation Passive solid-state magnetic field sensors and applications therefor
US6424018B1 (en) 1998-10-02 2002-07-23 Sanken Electric Co., Ltd. Semiconductor device having a hall-effect element
TW434411B (en) 1998-10-14 2001-05-16 Tdk Corp Magnetic sensor apparatus, current sensor apparatus and magnetic sensing element
TW534999B (en) 1998-12-15 2003-06-01 Tdk Corp Magnetic sensor apparatus and current sensor apparatus
JP3414292B2 (ja) 1998-12-25 2003-06-09 株式会社豊田中央研究所 磁界検出装置及び磁界検出素子
JP3249810B2 (ja) 1999-01-21 2002-01-21 ティーディーケイ株式会社 電流センサ装置
EP1031844A3 (fr) 1999-02-25 2009-03-11 Liaisons Electroniques-Mecaniques Lem S.A. Procédé de fabrication d'un capteur de courant électrique
US6331773B1 (en) 1999-04-16 2001-12-18 Storage Technology Corporation Pinned synthetic anti-ferromagnet with oxidation protection layer
JP3583649B2 (ja) 1999-04-27 2004-11-04 Tdk株式会社 薄膜磁気ヘッドおよびその製造方法ならびに磁気抵抗効果装置
DE10017374B4 (de) 1999-05-25 2007-05-10 Siemens Ag Magnetische Koppeleinrichtung und deren Verwendung
GB2352522B (en) 1999-05-28 2003-08-06 Caithness Dev Ltd A sensor
US6501678B1 (en) 1999-06-18 2002-12-31 Koninklijke Philips Electronics N.V. Magnetic systems with irreversible characteristics and a method of manufacturing and repairing and operating such systems
JP3696448B2 (ja) 1999-09-02 2005-09-21 矢崎総業株式会社 電流検出器
JP2001084535A (ja) 1999-09-16 2001-03-30 Tdk Corp 薄膜磁気ヘッドの製造方法および磁気抵抗効果装置の製造方法
DE60044568D1 (de) 1999-10-01 2010-07-29 Nve Corp Gerät zur Überwachung eines magnetischen digitalen Überträgers
US6445171B2 (en) 1999-10-29 2002-09-03 Honeywell Inc. Closed-loop magnetoresistive current sensor system having active offset nulling
US6462541B1 (en) 1999-11-12 2002-10-08 Nve Corporation Uniform sense condition magnetic field sensor using differential magnetoresistance
JP2001165963A (ja) 1999-12-09 2001-06-22 Sanken Electric Co Ltd ホール素子を備えた電流検出装置
JP3852554B2 (ja) 1999-12-09 2006-11-29 サンケン電気株式会社 ホール素子を備えた電流検出装置
JP4164615B2 (ja) 1999-12-20 2008-10-15 サンケン電気株式会社 ホ−ル素子を備えた電流検出装置
US6433981B1 (en) 1999-12-30 2002-08-13 General Electric Company Modular current sensor and power source
JP4216984B2 (ja) 2000-02-14 2009-01-28 パナソニック株式会社 部品振り分け制御装置、部品振り分け方法、および部品振り分けシステム。
JP2001227902A (ja) * 2000-02-16 2001-08-24 Mitsubishi Electric Corp 半導体装置
WO2001071713A1 (en) 2000-03-22 2001-09-27 Nve Corporation Read heads in planar monolithic integrated circuit chips
DE10028640B4 (de) 2000-06-09 2005-11-03 Institut für Physikalische Hochtechnologie e.V. Wheatstonebrücke, beinhaltend Brückenelemente, bestehend aus einem Spin-Valve-System, sowie ein Verfahren zu deren Herstellung
JP2002082136A (ja) 2000-06-23 2002-03-22 Yazaki Corp 電流センサ
JP2002026419A (ja) 2000-07-07 2002-01-25 Sanken Electric Co Ltd 磁電変換装置
US6429640B1 (en) 2000-08-21 2002-08-06 The United States Of America As Represented By The Secretary Of The Air Force GMR high current, wide dynamic range sensor
JP2002107382A (ja) 2000-09-27 2002-04-10 Asahi Kasei Corp 半導体装置およびその製造方法、並びに電流センサ
JP2002131342A (ja) 2000-10-19 2002-05-09 Canon Electronics Inc 電流センサ
DE20018538U1 (de) 2000-10-27 2002-03-07 Mannesmann Vdo Ag Sensormodul
JP2002163808A (ja) 2000-11-22 2002-06-07 Tdk Corp 磁気抵抗効果装置およびその製造方法ならびに薄膜磁気ヘッドおよびその製造方法
GB0029815D0 (en) 2000-12-06 2001-01-17 Pace Micro Tech Plc Voltage measuring apparatus
US6833615B2 (en) * 2000-12-29 2004-12-21 Intel Corporation Via-in-pad with off-center geometry
US20020093332A1 (en) 2001-01-18 2002-07-18 Thaddeus Schroeder Magnetic field sensor with tailored magnetic response
DE10108640A1 (de) 2001-02-22 2002-09-19 Infineon Technologies Ag Sensoranordnung zur kontaktlosen Strommessung
US6661083B2 (en) 2001-02-27 2003-12-09 Chippac, Inc Plastic semiconductor package
DE10159607B4 (de) 2001-03-09 2010-11-18 Siemens Ag Analog/Digital-Signalwandlereinrichtung mit galvanischer Trennung in ihrem Singalübertragungsweg
JP3284130B1 (ja) 2001-04-25 2002-05-20 ティーディーケイ株式会社 磁気抵抗効果装置およびその製造方法、薄膜磁気ヘッドおよびその製造方法、ヘッドジンバルアセンブリならびにハードディスク装置
DE10120408B4 (de) 2001-04-25 2006-02-02 Infineon Technologies Ag Elektronisches Bauteil mit einem Halbleiterchip, elektronische Baugruppe aus gestapelten Halbleiterchips und Verfahren zu deren Herstellung
JP3260740B1 (ja) 2001-04-25 2002-02-25 ティーディーケイ株式会社 磁気抵抗効果装置の製造方法および薄膜磁気ヘッドの製造方法
US6563629B2 (en) 2001-05-18 2003-05-13 Redc Optical Networks Ltd. Method and apparatus for full C-band amplifier with high dynamic gain range
US6946834B2 (en) 2001-06-01 2005-09-20 Koninklijke Philips Electronics N.V. Method of orienting an axis of magnetization of a first magnetic element with respect to a second magnetic element, semimanufacture for obtaining a sensor, sensor for measuring a magnetic field
DE10128150C1 (de) 2001-06-11 2003-01-23 Siemens Ag Magnetoresistives Sensorsystem
US6542375B1 (en) 2001-06-14 2003-04-01 National Semiconductor Corporation Hybrid PCB-IC directional coupler
EP1267173A3 (en) 2001-06-15 2005-03-23 Sanken Electric Co., Ltd. Hall-effect current detector
JP4164626B2 (ja) 2001-06-15 2008-10-15 サンケン電気株式会社 ホ−ル素子を備えた電流検出装置
EP1273921A1 (en) 2001-07-06 2003-01-08 Sanken Electric Co., Ltd. Hall-effect current detector
JP2003043074A (ja) * 2001-07-26 2003-02-13 Asahi Kasei Corp 電流検出装置及びその製造方法
DE10140043B4 (de) 2001-08-16 2006-03-23 Siemens Ag Schichtensystem mit erhöhtem magnetoresistiven Effekt sowie Verwendung desselben
US6949927B2 (en) 2001-08-27 2005-09-27 International Rectifier Corporation Magnetoresistive magnetic field sensors and motor control devices using same
DE10142120A1 (de) 2001-08-30 2003-03-27 Infineon Technologies Ag Elektronisches Bauteil mit wenigstens zwei gestapelten Halbleiterchips sowie Verfahren zu seiner Herstellung
DE10142114C1 (de) 2001-08-30 2003-02-13 Infineon Technologies Ag Elektronisches Bauteil mit wenigstens zwei Halbleiterchips sowie Verfahren zu seiner Herstellung
DE10142118B4 (de) 2001-08-30 2007-07-12 Infineon Technologies Ag Elektronisches Bauteil mit wenigstens zwei gestapelten Halbleiterchips sowie Verfahren zu seiner Herstellung
DE10143437A1 (de) 2001-09-05 2003-03-27 Hella Kg Hueck & Co Vorrichtung zur Ermittlung der Position eines Schaltstocks oder eines Wählhebels eines Fahrzeuggetriebes
KR100746546B1 (ko) 2001-11-01 2007-08-06 아사히 가세이 일렉트로닉스 가부시끼가이샤 전류 센서 및 전류 센서 제조 방법
DE10155423B4 (de) 2001-11-12 2006-03-02 Siemens Ag Verfahren zur homogenen Magnetisierung eines austauschgekoppelten Schichtsystems eines magneto-resistiven Bauelements, insbesondere eines Sensor-oder Logikelements
US6667682B2 (en) 2001-12-26 2003-12-23 Honeywell International Inc. System and method for using magneto-resistive sensors as dual purpose sensors
DE10202287C1 (de) 2002-01-22 2003-08-07 Siemens Ag Verfahren zur Herstellung einer monolithischen Brückenschaltung bestehend aus mehreren, als magneto-resistive Elemente ausgebildeten Brückengliedern und eine hiernach hergestellte monolithische Brückenschaltung
US6815944B2 (en) 2002-01-31 2004-11-09 Allegro Microsystems, Inc. Method and apparatus for providing information from a speed and direction sensor
US6984978B2 (en) 2002-02-11 2006-01-10 Honeywell International Inc. Magnetic field sensor
DE10222395B4 (de) 2002-05-21 2010-08-05 Siemens Ag Schaltungseinrichtung mit mehreren TMR-Sensorelementen
WO2003107018A1 (ja) 2002-06-18 2003-12-24 旭化成株式会社 電流測定方法および電流測定装置
DE10228764B4 (de) 2002-06-27 2006-07-13 Infineon Technologies Ag Anordnung zum Testen von Halbleitereinrichtungen
JP4180321B2 (ja) * 2002-07-30 2008-11-12 旭化成エレクトロニクス株式会社 磁気センサおよび磁気センサの製造方法
US6781359B2 (en) 2002-09-20 2004-08-24 Allegro Microsystems, Inc. Integrated current sensor
JP3896590B2 (ja) 2002-10-28 2007-03-22 サンケン電気株式会社 電流検出装置
JP2004158668A (ja) * 2002-11-07 2004-06-03 Asahi Kasei Corp ハイブリッド磁気センサ及びその製造方法
JP4200358B2 (ja) * 2002-12-13 2008-12-24 サンケン電気株式会社 ホール素子を備えた電流検出装置
US7259545B2 (en) * 2003-02-11 2007-08-21 Allegro Microsystems, Inc. Integrated sensor
FI114854B (fi) 2003-02-11 2005-01-14 Liekki Oy Menetelmä nesteen syöttämiseksi liekkiruiskutuslaitteistoon
US6995957B2 (en) 2003-03-18 2006-02-07 Hitachi Global Storage Technologies Netherland B.V. Magnetoresistive sensor having a high resistance soft magnetic layer between sensor stack and shield
DE10314602B4 (de) 2003-03-31 2007-03-01 Infineon Technologies Ag Integrierter differentieller Magnetfeldsensor
JP2004356338A (ja) 2003-05-28 2004-12-16 Res Inst Electric Magnetic Alloys 薄膜磁気センサ及びその製造方法
JP2006527497A (ja) 2003-06-11 2006-11-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気層構造体を備えるデバイスを製造する方法
US7075287B1 (en) 2003-08-26 2006-07-11 Allegro Microsystems, Inc. Current sensor
US7709754B2 (en) 2003-08-26 2010-05-04 Allegro Microsystems, Inc. Current sensor
US7166807B2 (en) 2003-08-26 2007-01-23 Allegro Microsystems, Inc. Current sensor
US20060219436A1 (en) 2003-08-26 2006-10-05 Taylor William P Current sensor
FR2860592B1 (fr) 2003-10-06 2006-01-21 Michel Remy Jean Combier Dispositif de mesure de courant sans contact, a grande dynamique, robuste et a bas cout.
JP5197961B2 (ja) 2003-12-17 2013-05-15 スタッツ・チップパック・インコーポレイテッド マルチチップパッケージモジュールおよびその製造方法
JP2005195427A (ja) 2004-01-06 2005-07-21 Asahi Kasei Electronics Co Ltd 電流測定装置、電流測定方法および電流測定プログラム
DE102004003369A1 (de) 2004-01-22 2005-08-18 Siemens Ag Magnetisches Bauelement mit hoher Grenzfrequenz
DE602004030160D1 (de) 2004-02-19 2010-12-30 Mitsubishi Electric Corp Magnetfelddetektor und stromdetektionseinrichtung, positionsdetektionseinrichtung und rotationsdetektionseinrichtung mit dem magnetfelddetektor
JP4433820B2 (ja) 2004-02-20 2010-03-17 Tdk株式会社 磁気検出素子およびその形成方法ならびに磁気センサ、電流計
DE102004009267B3 (de) 2004-02-26 2005-09-22 Siemens Ag Ausleseeinrichtung wenigstens eines magnetoresistiven Elementes
US7422930B2 (en) 2004-03-02 2008-09-09 Infineon Technologies Ag Integrated circuit with re-route layer and stacked die assembly
JP4511219B2 (ja) 2004-03-04 2010-07-28 三洋電機株式会社 モータ駆動回路
DE102004062474A1 (de) 2004-03-23 2005-10-13 Siemens Ag Vorrichtung zur potenzialfreien Strommessung
DE102004017191B4 (de) 2004-04-07 2007-07-12 Infineon Technologies Ag Vorrichtung und Verfahren zur Ermittlung einer Richtung eines Objekts
US20050246114A1 (en) 2004-04-29 2005-11-03 Rannow Randy K In-line field sensor
DE102004021862B4 (de) 2004-05-04 2014-08-07 Infineon Technologies Ag Stromsenor
US7961431B2 (en) 2004-05-04 2011-06-14 Illinois Tool Works Inc. Additive-free fiber for metal texture of hard disk drives
JP2005331437A (ja) * 2004-05-21 2005-12-02 Nsk Ltd 多極磁石エンコーダの出力検査方法
DE102004027273A1 (de) 2004-06-04 2005-12-29 Infineon Technologies Ag Halbleiterbaustein mit einer ersten und mindestens einer weiteren Halbleiterschaltung und Verfahren
WO2006017727A2 (en) 2004-08-05 2006-02-16 Ivax Corporation Glycosides and salts thereof
DE102004038847B3 (de) 2004-08-10 2005-09-01 Siemens Ag Einrichtung zur potenzialfreien Messung eines in einer elektrischen Leiterbahn fließenden Stromes
DE102004040079B3 (de) 2004-08-18 2005-12-22 Siemens Ag Magnetfeldsensor
DE102005037905A1 (de) 2004-08-18 2006-03-09 Siemens Ag Magnetfeldsensor zum Messen eines Gradienten eines magnetischen Feldes
DE102004043737A1 (de) 2004-09-09 2006-03-30 Siemens Ag Vorrichtung zum Erfassen des Gradienten eines Magnetfeldes und Verfahren zur Herstellung der Vorrichtung
JP4360998B2 (ja) 2004-10-01 2009-11-11 Tdk株式会社 電流センサ
US7777607B2 (en) 2004-10-12 2010-08-17 Allegro Microsystems, Inc. Resistor having a predetermined temperature coefficient
JP4105142B2 (ja) 2004-10-28 2008-06-25 Tdk株式会社 電流センサ
DE102004053551A1 (de) 2004-11-05 2006-05-18 Siemens Ag Vorrichtung zum Erfassen eines beweglichen oder bewegbaren elektrisch und/oder magnetisch leitenden Teiles
JP4105145B2 (ja) 2004-11-30 2008-06-25 Tdk株式会社 電流センサ
JP4105147B2 (ja) 2004-12-06 2008-06-25 Tdk株式会社 電流センサ
JP4131869B2 (ja) 2005-01-31 2008-08-13 Tdk株式会社 電流センサ
US7476953B2 (en) * 2005-02-04 2009-01-13 Allegro Microsystems, Inc. Integrated sensor having a magnetic flux concentrator
EP1691204B1 (en) 2005-02-15 2007-12-12 C.R.F. Società Consortile per Azioni A surface-mounted integrated current sensor
DE102006008257B4 (de) 2005-03-22 2010-01-14 Siemens Ag Magnetoresistives Mehrschichtensystem vom Spin Valve-Typ mit einer magnetisch weicheren Elektrode aus mehreren Schichten und dessen Verwendung
EP1880422B1 (en) 2005-05-04 2011-08-03 Nxp B.V. A device comprising a sensor module
US7358724B2 (en) 2005-05-16 2008-04-15 Allegro Microsystems, Inc. Integrated magnetic flux concentrator
JP2007003237A (ja) 2005-06-21 2007-01-11 Denso Corp 電流センサ
DE102006021774B4 (de) 2005-06-23 2014-04-03 Siemens Aktiengesellschaft Stromsensor zur galvanisch getrennten Strommessung
JP4466487B2 (ja) 2005-06-27 2010-05-26 Tdk株式会社 磁気センサおよび電流センサ
US7541804B2 (en) 2005-07-29 2009-06-02 Everspin Technologies, Inc. Magnetic tunnel junction sensor
DE102005038655B3 (de) 2005-08-16 2007-03-22 Siemens Ag Magnetfeldsensitive Sensoreinrichtung
DE102005040539B4 (de) 2005-08-26 2007-07-05 Siemens Ag Magnetfeldsensitive Sensoreinrichtung
JP2007064851A (ja) 2005-08-31 2007-03-15 Tdk Corp コイル、コイルモジュールおよびその製造方法、ならびに電流センサおよびその製造方法
JP4415923B2 (ja) 2005-09-30 2010-02-17 Tdk株式会社 電流センサ
JP4298691B2 (ja) 2005-09-30 2009-07-22 Tdk株式会社 電流センサおよびその製造方法
JP4224483B2 (ja) 2005-10-14 2009-02-12 Tdk株式会社 電流センサ
DE102005052688A1 (de) 2005-11-04 2007-05-24 Siemens Ag Magnetfeldsensor mit einer Messbrücke mit MR-Sensor
US7768083B2 (en) 2006-01-20 2010-08-03 Allegro Microsystems, Inc. Arrangements for an integrated sensor
JP2007218700A (ja) 2006-02-15 2007-08-30 Tdk Corp 磁気センサおよび電流センサ
DE102006007770A1 (de) 2006-02-20 2007-08-30 Siemens Ag Sensoreinrichtung zur Erfassung einer Magnetfeldgröße
US20070279053A1 (en) 2006-05-12 2007-12-06 Taylor William P Integrated current sensor
DE202006020504U1 (de) 2006-06-06 2008-09-25 Insta Elektro Gmbh Elektrisches/elektronisches Gerät
DE102006028250A1 (de) 2006-06-20 2007-12-27 Carl Zeiss Microimaging Gmbh Verfahren zur Überwachung von Laserbearbeitungsprozessen
DE102006028698B3 (de) 2006-06-22 2007-12-13 Siemens Ag OMR-Sensor und Anordnung aus solchen Sensoren
KR101279116B1 (ko) 2006-06-30 2013-06-26 엘지디스플레이 주식회사 듀얼 뷰 디스플레이 장치 및 듀얼 뷰 액정 디스플레이 장치
DE102006046739B4 (de) 2006-09-29 2008-08-14 Siemens Ag Verfahren zum Betreiben eines Magnetfeldsensors und zugehöriger Magnetfeldsensor
DE102006046736B4 (de) 2006-09-29 2008-08-14 Siemens Ag Verfahren zum Betreiben eines Magnetfeldsensors und zugehöriger Magnetfeldsensor
US7816905B2 (en) * 2008-06-02 2010-10-19 Allegro Microsystems, Inc. Arrangements for a current sensing circuit and integrated current sensor
US8203332B2 (en) 2008-06-24 2012-06-19 Magic Technologies, Inc. Gear tooth sensor (GTS) with magnetoresistive bridge
AT508554B1 (de) 2009-08-26 2011-02-15 Univ Wien Tech Chalkon-hydroxylase
DE102012012759A1 (de) 2012-06-27 2014-01-02 Sensitec Gmbh Anordnung zur Strommessung

Also Published As

Publication number Publication date
WO2007087121A3 (en) 2008-04-03
US20130277782A1 (en) 2013-10-24
EP1974223A2 (en) 2008-10-01
US9859489B2 (en) 2018-01-02
JP5748393B2 (ja) 2015-07-15
US20170110652A1 (en) 2017-04-20
EP1974223B1 (en) 2012-03-21
KR101366007B1 (ko) 2014-02-21
US8629520B2 (en) 2014-01-14
ATE550671T1 (de) 2012-04-15
US8952471B2 (en) 2015-02-10
KR20080086919A (ko) 2008-09-26
EP2290380B1 (en) 2012-03-28
JP2013178259A (ja) 2013-09-09
US20150243882A1 (en) 2015-08-27
ATE550672T1 (de) 2012-04-15
US20130277783A1 (en) 2013-10-24
JP5635966B2 (ja) 2014-12-03
JP2009524053A (ja) 2009-06-25
ATE551609T1 (de) 2012-04-15
EP2290381A1 (en) 2011-03-02
JP2016001186A (ja) 2016-01-07
US7768083B2 (en) 2010-08-03
ATE550673T1 (de) 2012-04-15
JP2015108640A (ja) 2015-06-11
US9082957B2 (en) 2015-07-14
JP5848382B2 (ja) 2016-01-27
JP2014132269A (ja) 2014-07-17
WO2007087121A2 (en) 2007-08-02
JP2018036267A (ja) 2018-03-08
EP2290379B1 (en) 2012-03-21
EP2290381B1 (en) 2012-03-21
JP5902657B2 (ja) 2016-04-13
JP6376995B2 (ja) 2018-08-22
EP2290379A1 (en) 2011-03-02
EP2290380A1 (en) 2011-03-02
JP2012088325A (ja) 2012-05-10
US20070170533A1 (en) 2007-07-26
US20100237450A1 (en) 2010-09-23
JP2014029340A (ja) 2014-02-13
US10069063B2 (en) 2018-09-04

Similar Documents

Publication Publication Date Title
JP6150855B2 (ja) 集積化センサの配列
US7816905B2 (en) Arrangements for a current sensing circuit and integrated current sensor
US7518354B2 (en) Multi-substrate integrated sensor
US8907669B2 (en) Circuits and techniques for adjusting a sensitivity of a closed-loop current sensor
US20220091195A1 (en) Magnetic field sensor on integrated circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160701

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160929

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20161221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170523

R150 Certificate of patent or registration of utility model

Ref document number: 6150855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250