JP5665950B2 - 薬物送達に有用なリポソーム - Google Patents

薬物送達に有用なリポソーム Download PDF

Info

Publication number
JP5665950B2
JP5665950B2 JP2013241469A JP2013241469A JP5665950B2 JP 5665950 B2 JP5665950 B2 JP 5665950B2 JP 2013241469 A JP2013241469 A JP 2013241469A JP 2013241469 A JP2013241469 A JP 2013241469A JP 5665950 B2 JP5665950 B2 JP 5665950B2
Authority
JP
Japan
Prior art keywords
liposomes
drug
liposome
lipid
liposomal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013241469A
Other languages
English (en)
Other versions
JP2014055172A (ja
Inventor
キーラング ホン
キーラング ホン
ダリル シー. ドラモンド
ダリル シー. ドラモンド
ドミトリ ビー. カーポティン
ドミトリ ビー. カーポティン
Original Assignee
ヘルメス バイオサイエンシズ インコーポレーティッド
ヘルメス バイオサイエンシズ インコーポレーティッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35320018&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5665950(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ヘルメス バイオサイエンシズ インコーポレーティッド, ヘルメス バイオサイエンシズ インコーポレーティッド filed Critical ヘルメス バイオサイエンシズ インコーポレーティッド
Publication of JP2014055172A publication Critical patent/JP2014055172A/ja
Application granted granted Critical
Publication of JP5665950B2 publication Critical patent/JP5665950B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4375Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/475Quinolines; Isoquinolines having an indole ring, e.g. yohimbine, reserpine, strychnine, vinblastine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome
    • A61K47/6913Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome the liposome being modified on its surface by an antibody
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • A61K9/1278Post-loading, e.g. by ion or pH gradient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H13/00Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
    • C07H13/12Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by acids having the group -X-C(=X)-X-, or halides thereof, in which each X means nitrogen, oxygen, sulfur, selenium or tellurium, e.g. carbonic acid, carbamic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery
    • Y10S977/907Liposome

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Dermatology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

発明の分野
本発明は一般にリポソームの分野に関し、より具体的には、治療または診断物質の送達に有用なリポソーム組成物に関する。
優先権の陳述
本出願は2004年3月3日に出願した米国仮特許出願第60/567,921号の優先権の恩典を主張し、この仮特許出願はすべての目的のために全体が参照として本明細書に組み入れられる。
発明の背景
リポソームまたは脂質二重層小胞は、研究、産業、および医学における様々な用途で用いられるかまたはそのような用途における使用が提案されており、特に、インビボでの診断または治療化合物の担体としての使用が提案されている。例えば、Lasic, D. Liposomes: from physics to applications. Elsevier, Amsterdam, 1993(非特許文献1)、Lasic, D, and Papahadjopoulos, D., eds. Medical Applications of Liposomes. Elsevier, Amsterdam, 1998(非特許文献2)を参照されたい。リポソームは通常、微細な袋または小胞を形成する1つまたは複数の二重層の膜によって、外部の媒体から隔離された内部空間を有することを特徴とする。リポソームの二重層膜は典型的には、脂質、すなわち空間的に分離された親水性ドメインおよび疎水性ドメインを含む合成または天然起源の両親媒性分子によって形成される。例えば、Lasic D., 1993、前記を参照されたい。リポソームの二重層膜はまた、両親媒性ポリマーおよび界面活性剤によって形成され得る(ポリマーソーム、ニオソーム)。リポソームは典型的に、これらに限定されないが、化合物、化合物の組み合わせ、合成もしくは天然起源の超分子複合体、遺伝物質、生体、有用な特性を有し得るまたは有用な活性を発揮し得るそれらの部分、またはそれらの誘導体などの物質の担体としての機能を果たす。このため、リポソームは、所望の物質をリポソームに取り込んだ形態で含むように調製される。所望の物質をリポソーム内に取り込む工程は、多くの場合「充填(loading)」と称される。リポソームに取り込まれた物質は、リポソームの内部空間内に完全にもしくは部分的に位置し得るか、リポソームの二重層膜内に位置し得るか、またはリポソーム膜の外表面と会合し得る。リポソーム内への物質の取り込みは、封入または捕捉とも称され、これら3つの用語は本明細書において同じ意味を有して互換的に用いられる。物質をリポソームに封入する意図は、多くの場合、封入された物質が、そのような活性が有利である部位または環境においてその活性を主に発揮し、そのような活性が無益であるかまたは望ましくないと考えられる他の部位ではその活性を発揮しにくい機会を提供しつつ、物質を破壊的環境から保護することにある。この現象は送達と称される。例えば、リポソーム内の薬物物質は体内で酵素による破壊から保護され得るが、疾患部位においてリポソームから放出されて治療を提供し得る。
理想的には、そのようなリポソームは、(i) 高い充填効率、すなわち封入工程に持ち込まれた量に対して高い割合の封入物質で;(ii) リポソーム二重層材料の単位につき多量の封入物質で;(iii) 高濃度の封入物質で;および(iv) 安定した形態、すなわち、保存に際して、または一般にリポソームに捕捉された物質がその意図される活性を発揮するよう期待される部位もしくは環境にリポソームが現れる前に、封入物質がほとんど放出(漏出)されない形態で、所望の化合物を含むように調製され得る。
したがって、当技術分野では、種々の化合物、特に治療、診断、または造影物質の送達に有用である様々なリポソーム組成物を提供する必要性が存在する。
Lasic, D. Liposomes: from physics to applications. Elsevier, Amsterdam, 1993 Lasic, D, and Papahadjopoulos, D., eds. Medical Applications of Liposomes. Elsevier, Amsterdam, 1998
本発明は、置換アンモニウムおよびポリアニオンが、物質のリポソーム内への充填およびリポソーム内での保持に有用であるという発見に基づく。したがって、本発明は、種々の物質、特に治療用物質、すなわち望ましくない病態(例えば、ヒト、植物、または動物などの生体における疾患)の診断、予後診断、試験、スクリーニング、治療、または予防に有用な物質の送達に有用な方法およびリポソーム組成物を提供する。
1つの態様において、本発明は、リポソームの内部が置換アンモニウム
Figure 0005665950
(式中、R1、R2、R3、およびR4はそれぞれ独立して水素または全体として最大で18個の炭素原子を包括的に有する有機基であって、R1、R2、R3、およびR4の少なくとも1つは有機基であり、有機基は独立して最大で8個の炭素原子を有する炭化水素基であり、任意にその炭化水素鎖内にエーテル、エステル、チオエーテル、アミン、またはアミド結合を形成するS、O、またはN原子を含むアルキル基、アルキリデン(alkylidene)基、複素環アルキル基、シクロアルキル基、アリール基、アルケニル基、もしくはシクロアルケニル基、またはそれらのヒドロキシ置換誘導体であり、R1、R2、R3、およびR4の少なくとも3つは有機基であるか、または置換アンモニウムは、例えば有機基の少なくとも1つがアンモニウム窒素原子に直接結合している第二級もしくは第三級炭素原子を有するような立体障害アンモニウムである)を含む、媒体中にリポソームを含む組成物を提供する。好ましくは、リポソーム内に封入される置換アンモニウム化合物は、外界温度において水溶液中で決定される少なくとも約8.0、少なくとも約8.5、少なくとも約9.0、少なくとも9.5、または少なくとも10.0という酸(脱プロトン化)解離定数の負の対数値(pKa)を有する。
別の態様において、本発明は、リポソームの内部空間がポリアニオンを含み、ポリアニオンがポリアニオン化(polyanionized)ポリオールまたはポリアニオン化糖である、媒体中にリポソームを含む組成物を提供する。リポソームは好ましくは、物質のリポソーム内への充填をもたらし得る膜間勾配を含む。1つの態様において、膜間勾配は、アンモニウム、第四級アンモニウム、または外界温度において希釈水溶液中で少なくとも約8.0、少なくとも約8.5、少なくとも約9.0、少なくとも9.5、もしくは少なくとも10.0という酸(脱プロトン化)解離定数の負の対数値(pKa)を有する第一級、第二級、もしくは第三級置換アンモニウム化合物の勾配である。リポソームは任意に、捕捉物質、例えば、治療用物質、検出マーカー、または全体的にカチオン性の有機分子を含む。
さらに別の態様において、本発明によって提供される組成物は、本発明のリポソーム中に封入された物質をさらに含む。好ましくは、物質はリポソームの内部空間内に封入される。例えば、リポソームの内部空間は抗新生物治療用物質をさらに含み、対象に対する本組成物の毒性レベルは、本組成物なしで対象に投与される抗新生物治療用物質の毒性レベルと少なくとも同等であるか、またはそれよりも低い。
さらに別の態様において、本発明によって提供される組成物は、カンプトテシン化合物を含むリポソーム組成物である。本組成物は、本組成物の非存在下で同様に投与されるカンプトテシン化合物よりも少なくとも2倍、4倍、または10倍高い抗癌活性を有するが、本組成物の毒性は、本組成物の非存在下で同様に投与されるカンプトテシン化合物の毒性を超えず、それよりも少なくとも2倍または少なくとも4倍低い。1つの態様において、カンプトテシン化合物はプロドラッグであり、リポソーム中に、例えば脂質などのリポソーム膜材料1 mg当たり少なくとも0.1 mg、少なくとも0.2 mg、少なくとも0.3 mg、少なくとも0.5 mg、または少なくとも1 mg含まれる。カンプトテシン化合物は好ましくは、実質的にリポソームの内部空間内に封入される。一例では、カンプトテシン化合物はイリノテカン(CPT-11)である。
さらに別の態様において、本発明によって提供される組成物は、ビンカアルカロイドまたはその誘導体のリポソーム組成物である。本組成物は、インビボにおける哺乳動物の血中への24時間曝露後に、元の薬物充填量の少なくとも50%、少なくとも60%、または少なくとも70%というリポソーム内24時間薬物保持を有する。ビンカアルカロイドまたはその誘導体は好ましくは、実質的にリポソームの内部空間内に封入される。哺乳動物の一例はラットである。例示的なビンカアルカロイドおよび誘導体は、ビンクリスチン、ビンブラスチン、およびビノレルビンである。
さらに別の態様において、本発明はリポソーム内に物質を封入する方法を提供する。本方法は、本発明のリポソームを物質、例えば治療用物質または検出物質と接触させる段階を含む。好ましくは、接触段階は、媒体中の本発明の置換アンモニウムまたはポリアニオンの濃度がリポソームの内部空間内の濃度よりも低い条件下で行われる。1つの態様において、リポソーム組成物は水性媒体中で物質と接触させられる。
さらに別の態様において、本発明はリポソーム内に物質を封入する方法を提供する。本方法は、本発明のリポソーム含有組成物を、ある条件下で物質に変換され得る前物質(pre-entity)と接触させる段階、およびリポソーム内でその条件を提供し、それによりリポソーム内で前物質を物質に変換する段階を含む。ある場合には、物質は有機化合物であり、前物質はその塩基性誘導体である。
さらに別の態様において、本発明は、リポソーム封入物質を作製するためのキットを提供する。本キットは、本発明のリポソームを含む容器、ならびに任意に、物質を含む容器、および/または例えば物質を封入するための使用者用の説明書を含む。
ラットにCPT-11充填リポソームを静脈内ボーラス投与した後の、リポソーム脂質(丸)および薬物(三角)の血中薬物動態を示す。リポソームはTEA-Pn法を用いて充填されている(実施例9を参照のこと)。 TEA-Pn法を用いてCPT-11を充填したリポソームを静脈内ボーラス投与した後の、インビボにおけるラットの血中の薬物-リポソーム脂質比の動学を示す(実施例9を参照のこと)。 ヌードマウスにおけるBT-474ヒト乳癌異種移植片に対する、遊離CPT-11およびリポソームCPT-11の抗腫瘍効果を示す。「対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例10を参照のこと)。 BT-474腫瘍を有するヌードマウスの、遊離CPT-11またはリポソームCPT-11による処置期間中の動物体重の動学を示す。「対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例10を参照のこと)。 TEA-SOS法を用いてCPT-11を充填したリポソームを静脈内ボーラス投与した後の、インビボにおけるラットの血中の薬物-リポソーム脂質比の動学を示す。(実施例14を参照のこと)。 ヌードマウスにおけるHT-29ヒト結腸癌異種移植片に対する、遊離CPT-11およびリポソームCPT-11の抗腫瘍効果を示す。パネル上の説明は、薬物充填法および注射当たりの投与用量を示す。「生理食塩水対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例15を参照のこと)。 HT-29腫瘍を有するヌードマウスの、CPT-11遊離製剤またはリポソーム製剤による処置期間中の動物体重の動学を示す。エラーバーはデータの標準偏差を表す。「生理食塩水対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例15を参照のこと)。 図8Aは、ラットにトポテカン充填リポソームを静脈内ボーラス投与した後の、リポソーム脂質の血中薬物動態を示す。パネル上の説明は、薬物充填法およびリポソームの薬物含量を示す。(実施例24を参照のこと)。図8Bは、トポテカンを充填したリポソームを静脈内ボーラス投与した後の、インビボにおけるラットの血中の薬物-リポソーム脂質比の動学を示す。パネル上の説明は、薬物充填法およびリポソームの薬物含量を示す。(実施例24を参照のこと)。 SKBr-3乳癌細胞に対する、遊離、リポソーム、またはHER2標的化イムノリポソームトポテカン(TEA-Pn法)のインビトロ細胞毒性を示す。(実施例27を参照のこと)。 SKBr-3乳癌細胞に対する、遊離、リポソーム、またはHER2標的化イムノリポソームトポテカン(TEA-SOS法)のインビトロ細胞毒性を示す。(実施例32を参照のこと)。 ヌードマウスにおけるBT-474ヒト乳癌異種移植片に対する、様々なトポテカン(TPT)製剤の抗腫瘍効果を示す。「生理食塩水対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例29を参照のこと)。 BT-474腫瘍を有するヌードマウスの、遊離トポテカン(TPT)、リポソームトポテカン(Ls-TPT)、または抗HER2イムノリポソームトポテカン(F5 ILs-TPT)よる処置期間中の動物体重の動学を示す。「対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例29を参照のこと)。 図13Aは、ヌードマウスにおけるBT-474ヒト乳癌異種移植片に対する、トポテカン製剤の抗腫瘍効果を示す。遊離トポテカン(遊離TPT)またはリポソームトポテカン(Ls-TPT)を、それらの最大耐量の1/8で投与した。エラーバーはデータの標準偏差を表す。「対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例31を参照のこと)。 図13Bは、ヌードマウスにおけるBT-474ヒト乳癌異種移植片に対する、トポテカン製剤の抗腫瘍効果を示す。遊離トポテカン(遊離TPT)またはリポソームトポテカン(Ls-TPT)を、それらの最大耐量の1/4で投与した。エラーバーはデータの標準偏差を表す。「対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例31を参照のこと)。 図13Cは、ヌードマウスにおけるBT-474ヒト乳癌異種移植片に対する、トポテカン製剤の抗腫瘍効果を示す。遊離トポテカン(遊離TPT)またはリポソームトポテカン(Ls-TPT)を、それらの最大耐量の1/2で投与した。エラーバーはデータの標準偏差を表す。「対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例31を参照のこと)。 図13Dは、ヌードマウスにおけるBT-474ヒト乳癌異種移植片に対する、トポテカン製剤の抗腫瘍効果を示す。遊離トポテカン(遊離TPT)またはリポソームトポテカン(Ls-TPT)を、それらの最大耐量で投与した。エラーバーはデータの標準偏差を表す。「対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例31を参照のこと)。 BT-474腫瘍を有するヌードマウスの、それらの最大耐量で投与した遊離トポテカン(遊離TPT)またはリポソームトポテカン(Ls-TPT)による処置期間中の平均体重の動学を示す。「対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例31を参照のこと)。 インビトロにおけるBT-474乳癌細胞に対する、遊離6-(3-アミノプロピル)-エリプチシン(遊離AE)、リポソーム6-(3-アミノプロピル)-エリプチシン(Ls-AE)、またはHER2標的化イムノリポソーム6-(3-アミノプロピル)-エリプチシン(F5 ILs-AE)の細胞毒性を示す。(実施例35を参照のこと)。 EGF受容体の低い(MCF-7)または高い(MDA-MB468)発現を有する乳癌細胞に対する、遊離6-(3-アミノプロピル)-エリプチシン(遊離APE)、リポソーム6-(3-アミノプロピル)-エリプチシン(Ls-APE)、またはEGFR標的化イムノリポソーム6-(3-アミノプロピル)-エリプチシン(C225-ILs-APE)のインビトロ細胞毒性を示す。(実施例36を参照のこと)。 リポソーム製剤化6-(3-アミノプロピル)エリプチシン(APE)の血中薬物動態特性:ラットにAPEリポソームを静脈内ボーラス投与した後の、リポソーム脂質(パネルA、白丸)、薬物(パネルA、黒丸)の血中薬物動態、および薬物-リポソーム脂質比の動学(パネルB)を示す。(実施例37を参照のこと)。 リポソーム(Ls-VRB)および抗HER2イムノリポソーム(F5-ILs-VRB)内に製剤化されたビノレルビンの血中薬物動態特性:ラットにビノレルビンリポソームを静脈内ボーラス投与した後の、リポソーム脂質(パネルA)、薬物(パネルB)の血中薬物動態、および薬物-リポソーム脂質比の動学(パネルC)を示す。(実施例43を参照のこと)。 ラットにビノレルビン充填リポソームを静脈内ボーラス投与した後の、リポソーム脂質の血中薬物動態を示す。リポソームは、予め捕捉されたデキストラン硫酸トリエチルアンモニウム(DS-TEA)、デキストラン硫酸アンモニウム(DS-A)、または硫酸アンモニウム(S-A)を用いて充填されている。(実施例44を参照のこと)。 予め捕捉されたデキストラン硫酸トリエチルアンモニウム(DS-TEA)、デキストラン硫酸アンモニウム(DS-A)、または硫酸アンモニウム(S-A)を用いてビノレルビンを充填したリポソームを静脈内ボーラス投与した後の、インビボにおけるラットの血中の薬物-リポソーム脂質比の動学を示す。(実施例44を参照のこと)。 ラットにビノレルビン充填リポソームを静脈内ボーラス投与した後の、リポソーム脂質の血中薬物動態を示す。リポソームは、予め捕捉されたスクロース8硫酸トリエチルアンモニウム(TEA-SOS)を用いて充填され、パネル上の説明に示す平均の大きさを有する。(実施例45を参照のこと)。 ビノレルビン充填リポソームを静脈内ボーラス投与した後の、インビボにおけるラットの血中の薬物-リポソーム脂質比の動学を示す。リポソームは、予め捕捉されたスクロース8硫酸トリエチルアンモニウム(TEA-SOS)を用いて充填され、パネル上の説明に示す平均の大きさを有する。(実施例45を参照のこと)。 TEA-SOS法を用いてリポソーム(Ls-VRB)または抗HER2イムノリポソーム(F5-ILs-VRB)内に製剤化されたビノレルビンを静脈内ボーラス投与した後の、ラットにおけるリポソーム脂質の血中薬物動態を示す。(実施例46を参照のこと)。 TEA-SOS法を用いてリポソーム(Ls-VRB)または抗HER2イムノリポソーム(F5-ILs-VRB)内に製剤化されたビノレルビンを静脈内ボーラス投与した後の、インビボにおけるラットの血中の薬物-リポソーム脂質比の動学を示す。(実施例46を参照のこと)。 HER2過剰発現ヒト乳癌細胞MDA-MB-453に対する、遊離ビノレルビン(遊離VRB)、リポソームビノレルビン(Ls-VRB)、またはHER2標的化イムノリポソームビノレルビン(F5-Ils-VRB)のインビトロ細胞毒性を示す。(実施例48を参照のこと)。 HER2過剰発現CaLu-3ヒト非小細胞肺癌細胞に対する、遊離ビノレルビン(遊離VRB)、リポソームビノレルビン(Ls-VRB)、またはHER2標的化イムノリポソームビノレルビン(F5-Ils-VRB)のインビトロ細胞毒性を示す。(実施例49を参照のこと)。 HER2過剰発現ヒト乳癌細胞SKBr-3に対する、遊離ビノレルビン(遊離VRB)、リポソームビノレルビン(Ls VRB/SOS-TEA)、またはHER2標的化イムノリポソームビノレルビン(F5-ILs VRB/SOS-TEA)のインビトロ細胞毒性を示す。(実施例50を参照のこと)。 ヌードマウスにおけるHT-29ヒト結腸癌異種移植片に対する、遊離ビノレルビン(遊離VRB)またはリポソームビノレルビン(Ls VRB)の抗腫瘍効果を示す。「生理食塩水」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。エラーバーはデータの標準偏差を表す。(実施例51を参照のこと)。 HT-29腫瘍を有するヌードマウスの、遊離ビノレルビン(遊離VRB)、リポソームビノレルビン(Ls VRB)、または媒体のみ(生理食塩水)による処置期間中の平均体重の動学を示す。エラーバーはデータの標準偏差を表す。(実施例51を参照のこと)。 同質遺伝子的C-26マウス結腸癌モデルにおける、遊離ビノレルビン(遊離VRB)またはリポソームビノレルビン(Ls VRB)の抗腫瘍効果を示す。注射当たりの薬物用量をパネル上の説明に示した。エラーバーはデータの標準偏差を表す。「食塩水」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例52を参照のこと)。 同質遺伝子的C-26マウス結腸癌腫瘍を有するマウスの、様々な用量の遊離ビノレルビン(遊離VRB)、リポソームビノレルビン(Ls VRB)、または媒体のみ(生理食塩水)による処置期間中の平均体重の動学を示す。注射当たりの薬物用量をパネル上の説明に示した。(実施例52を参照のこと)。 ヌードマウスにおけるHER2過剰発現ヒト乳癌(BT-474)異種移植片に対する、遊離ビノレルビン(遊離薬物)、またはTEA-SOS法により調製したscFv F5結合抗HER2イムノリポソームビノレルビン(F5-ILs-VRB TEA-SOS)、TEA-Pn法により調製したscFv F5結合抗HER2イムノリポソームビノレルビン(F5-ILs-VRB TEA-Pn)の抗腫瘍効果を示す。「生理食塩水」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例53を参照のこと)。 HER2過剰発現ヒト乳癌(BT-474)異種移植片を有するマウスの、遊離ビノレルビン、TEA-SOS法を用いて調製したscFv F5結合抗HER2イムノリポソームビノレルビン、TEA-Pn法により調製したscFv F5結合抗HER2イムノリポソームビノレルビン、または媒体のみによる処置期間中の平均体重の動学を示す。記号の説明については、図32の説明を参照されたい。(実施例53を参照のこと)。 ヌードマウスにおけるHER2過剰発現ヒト乳癌(BT-474)異種移植片に対する、遊離ビノレルビン(遊離薬物)、または様々な量のPEG-脂質を用いて調製したscFv F5結合抗HER2イムノリポソームビノレルビンの抗腫瘍効果を示す。エラーバーはデータの標準偏差である。「媒体対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例54を参照のこと)。 ヌードマウスにおけるEGFR過剰発現ヒト神経膠芽腫(U87)異種移植片に対する、遊離ビノレルビン(遊離NAV)、リポソームビノレルビン(NAV Lip)、またはFC225Fab'結合抗EGFRイムノリポソームビノレルビン(C225-NAV Lip)の抗腫瘍効果を示す。「生理食塩水」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例55を参照のこと)。 硫酸トリエチルアンモニウム法を用いてリポソーム内に製剤化されたドキソルビシンを静脈内ボーラス投与した後の、リポソーム脂質の血中薬物動態、およびラットの血中の薬物/リポソーム脂質比の動学を示す。(実施例56を参照のこと)。 ヌードマウスにおけるHER2過剰発現ヒト乳癌(BT-474)異種移植片に対する、様々な量のPEG-脂質を用いて調製したリポソームドキソルビシン(Ls-Dox)またはscFv F5結合抗HER2イムノリポソームドキソルビシン(F5 ILs-Dox)の抗腫瘍効果を示す。パネル上の説明は、リポソームリン脂質のmol%で表したPEG-脂質の量を示す。「生理食塩水対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例57を参照のこと)。 ラットにおけるリポソームビンブラスチンの血中薬物動態を示す。(実施例58を参照のこと)。 リポソームビンブラスチンを静脈内ボーラス投与した後の、ラットの血中の薬物/リポソーム脂質比の動学を示す。(実施例58を参照のこと)。 HER2過剰発現ヒト乳癌細胞SKBr-3に対する、遊離ビンクリスチン(遊離VCR)、リポソームビンクリスチン(Ls-VCR)、またはHER2標的化イムノリポソームビンクリスチン(F5-ILs-VCR)のインビトロ細胞毒性を示す。(実施例61を参照のこと)。 様々な平均の大きさ(パネル上の説明に示す)のリポソーム内に製剤化されたビンクリスチンを静脈内ボーラス投与した後の、リポソーム脂質の血中薬物動態を示す。(実施例62を参照のこと)。 様々な平均の大きさ(パネル上の説明に示す)のリポソーム内に製剤化されたビンクリスチンを静脈内ボーラス投与した後の、ラットの血中の薬物/リポソーム脂質比の動学を示す。(実施例62を参照のこと)。 ヌードマウスにおけるHER2過剰発現ヒト乳癌(BT-474)異種移植片に対する、遊離ビンクリスチン(遊離VCR)、クエン酸トリエチルアンモニウム法により調製したリポソームビンクリスチン(Ls-VCRクエン酸)、スクロース8硫酸トリエチルアンモニウム法により調製したリポソームビンクリスチン(Ls-VCR SOS)、またはスクロース8硫酸トリエチルアンモニウム法により調製したscFv F5結合抗HER2イムノリポソームビンクリスチン(F5 ILs-VCR SOS)の抗腫瘍効果を示す。「生理食塩水対照」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例64を参照のこと)。 HER2過剰発現ヒト乳癌(BT-474)異種移植片を有するマウスの、遊離ビンクリスチン(遊離VCR)、クエン酸トリエチルアンモニウム法により調製したリポソームビンクリスチン(Ls-VCRクエン酸)、スクロース8硫酸トリエチルアンモニウム法により調製したリポソームビンクリスチン(Ls-VCR SOS)、スクロース8硫酸トリエチルアンモニウム法により調製したscFv F5結合抗HER2イムノリポソームビンクリスチン(F5 ILs-VCR SOS)、または媒体のみ(生理食塩水対照)による処置期間中の平均体重の動学を示す。(実施例64を参照のこと)。 ヌードマウスにおけるEGFRvIII過剰発現ヒト脳腫瘍(U87)異種移植片に対する、遊離ビンクリスチン(ビンクリスチン)、リポソームビンクリスチン(nt-vcr)、またはC225 Fab'結合抗EGFRイムノリポソームビンクリスチン(c225-vcr)の抗腫瘍効果を示す。「生理食塩水」は、薬物およびリポソームを含まない媒体のみで処置したマウスを示す。(実施例65を参照のこと)。 リポソームCPT-11を静脈内ボーラス投与した後の、CPT-11の血中薬物動態、およびラットの血中に活性(ラクトン)型で存在するCPT-11の割合の動学を示す。(実施例69を参照のこと)。 CPT-11溶液(遊離CPT-11)を静脈内ボーラス投与した後の、CPT-11の血中薬物動態、およびラットの血中に活性(ラクトン)型で存在するCPT-11の割合の動学を示す。(実施例69を参照のこと)。
好ましい態様の説明
本発明は一般に、種々の物質、特に治療剤および造影剤の送達に有用な方法およびリポソーム組成物に関する。置換アンモニウムおよびポリアニオンが、物質、例えば化合物のリポソーム内への充填およびリポソーム内での保持に有用であるというのが、本発明の発見である。したがって、本発明は、置換アンモニウムおよび/またはポリアニオンを含むリポソーム組成物およびキット、ならびにこれらのリポソーム組成物を作製する方法を提供する。
本発明の1つの特徴に従って、本発明は、内部空間内に以下の式の1つまたは複数の置換アンモニウム化合物を含むリポソームの組成物を提供する。
Figure 0005665950
式中、R1、R2、R3、およびR4はそれぞれ独立して水素または有機基であり、R1、R2、R3、およびR4の少なくとも1つは、任意にその炭化水素鎖内に例えばその中でエーテル(アセタールまたはケタールを含む)、エステル、スルフィド(チオエーテル)、アミン、またはアミド結合を形成するS、O、またはN原子を含む、アルキル基、アルキリデン基、複素環アルキル基、シクロアルキル基、アリール基、アルケニル基、またはシクロアルケニル基、それらのヒドロキシ置換誘導体などの有機基である。R1、R2、R3、およびR4の2つ以下が有機基である場合は、本発明に従って、有機基の少なくとも1つおよび好ましくは2つは、アンモニウム窒素原子に直接結合している第二級または第三級炭素原子(すなわち、それぞれ2つまたは3つの炭素-炭素結合を有する炭素原子)を有する、すなわち置換アンモニウムは立体障害アンモニウムである。一般に、本発明のリポソームの内部空間内に、非置換アンモニウムイオン(NH4 +)などの滴定可能なアンモニウム、ならびに第一級および第二級直鎖アルキルアンモニウムイオンが存在することにより、例えば「能動的」、「遠隔」、または「膜間勾配駆動」充填の機構を介して、弱両親媒性塩基の封入の増大が提供されることが知られている(Haran, et al., Biochim. Biophys. Acta, 1993, v. 1152, p. 253-258;Maurer-Spurej, et al., Biochim. Biophys. Acta, 1999, v. 1416, p. 1-10)。しかし、これらのアンモニア化合物は、求核置換反応に容易に入り、そうでなければリポソーム捕捉物質と化学的に反応する水素原子を有し、したがってリポソーム充填(捕捉)工程中または工程後に物質の化学的完全性を損ない得る。そのため、捕捉される置換アンモニウム化合物は、不安定であるかまたは封入物質を含み得るリポソーム成分と容易に反応する化学的機能を欠いて、より化学的に不活性であることが望ましい。予想外にも、本発明者らは、置換可能な水素を有さない置換された第三級および第四級アンモニウム、またはアンモニウム窒素に結合している1つもしくは2つの第二級もしくは第三級炭素原子を有するような隣接する大きな有機基によってアンモニウム水素原子への接近が立体的に妨げられる、立体障害型の第一級もしくは第二級アンモニウムを内部空間内に含むリポソーム組成物が、顕著な物質充填能ばかりでなく、生体内におけるリポソームからの早期放出に対するリポソーム捕捉物質、例えば薬物の安定性の改善も示すことを発見した。
1つの態様において、リポソームに捕捉される置換アンモニウム化合物は薬学的に不活性であり、すなわちリポソーム捕捉物質の有効量を送達するのに十分なリポソーム膜材料の量の範囲内で生存対象(例えば、ヒトまたは動物)に投与された場合に、有害な生理学的反応を誘発しない。別の態様において、本発明の置換アンモニウムは、対象に対して許容可能なレベルの毒性を有する。通常、許容可能なレベルの毒性とは、本発明の置換アンモニウムの中毒量、例えば最大耐量(MTD)または50%致死性をもたらす用量(LD50)が、本発明のリポソーム内に充填されるリポソーム捕捉物質、例えば薬物の中毒量よりも少なくとも2倍、少なくとも4倍、少なくとも8倍、または少なくとも10倍高いことを意味する。例えば、硫酸トリエチルアンモニウムは、そのLD50が抗癌剤であるドキソルビシンのLD50よりも約40倍高いために、本発明による許容可能なレベルの毒性を有する。置換アンモニウムおよび関心対象の物質の毒性レベルまたは生理学的反応は、既知でない場合には、生物医学分野の当業者に周知である日常的技法により容易に確立することができる。例えば、S.C. Gad. Drug Safety Evaluation, Wiley, New York, 2002を参照されたい。遊離の薬物および/またはリポソームにより製剤化された薬物の毒性を定量化する1つの方法は、本明細書の実施例16に記載されている。
1つの好ましい態様において、R1、R2、R3、またはR4における置換有機基は、置換アンモニウムが水性環境中で実質的に真(分子)溶液を形成し、ミセル、二重層、または類似の自己組織化構造を形成しないことを確実にするのに十分な大きさおよび物理化学的特性のものである。したがって、本発明の置換アンモニウムは好ましくは、リポソームの二重層部分にほとんど分布しないかまたは実質的に分布せず、よって置換アンモニウムを捕捉しているリポソームの不安定化、可溶化、または透過化の危険性が最小限に抑えられる。
置換アンモニウムの有機基は典型的には、最大で8個の炭素原子、最大で6個の炭素原子、または最大で4個の炭素原子を包括的に含む炭化水素であり、全体として、置換基は最大で18、最大で16、最大で12、または最大で9個の炭素原子を包括的に含む。これらの置換炭化水素基は、連結された第一級、第二級、または第三級炭素原子、およびその末端でアンモニウム窒素に直接結合して複素環を形成するか、またはその末端でアンモニウム水素置換基の炭素原子に直接結合するシクロアルキル基の任意の組み合わせを含む。これらの置換アルキル基はまた、例えばエーテル、アセタール、アミン、またはスルフィド基などの機能基を形成する、およびアルキル炭素鎖に結合した例えばヒドロキシル基などの機能基を形成するヘテロ原子、例えば酸素、窒素、または硫黄をそれらの炭素鎖内に含み得る。本発明の有機基の例には、非限定的に、アルキル、アルキリデン、複素環アルキル、シクロアルキル、アリール、アルケニル、シクロアルケニル、またはそれらのヒドロキシ置換誘導体、例えば置換アンモニウム内でNを含めて環を形成するヒドロキシ置換アルキリデンが含まれる。
別の態様において、置換アンモニウムは以下のものである:複素環アンモニウム、すなわちR1、R2、R3、またはR4の少なくとも2つが環を形成するアンモニウム;立体障害型の第一級アンモニウム;または立体障害型の第二級アンモニウム。一般に、立体障害型の第一級または第二級アンモニウムには、R1、R2、R3、およびR4の1つまたは2つが分子を立体的に込み入らせるアルキル基で置換された任意の置換アンモニウム、例えばR1、R2、R3、およびR4の1つまたは2つが、置換アンモニウムの窒素に結合している少なくとも1つの第二級または第三級アルキル炭素原子を有する1つまたは2つのシクロアルキル基またはアルキル基で置換された任意の置換アンモニウムが含まれる。そのような複素環アンモニウム、立体障害型の第一級アンモニウム、および立体障害型の第二級アンモニウムの例には、非限定的に、イソプロピルエチルアンモニウム、イソプロピルメチルアンモニウム、ジイソプロピルアンモニウム、tert-ブチルエチルアンモニウム、ジシクロヘキシルアンモニウム、モルフォリン、ピリジン、ピペリジン、ピロリジン、ピペラジン、tert-ブチルアミン、2-アミノ-2-メチルプロパノール-1、2-アミノ-2-メチル-プロパンジオール-1,3、およびトリス-(ヒドロキシエチル)-アミノメタンのプロトン化型が含まれる。これらの置換アンモニウム化合物は一般に様々な塩の形態で市販されているか、または酸で中和することによりそれらの対応するアミンから容易に調製される。
さらに別の態様において、置換アンモニウムは第三級または第四級アンモニウムであり、これには非限定的に、トリメチルアンモニウム、トリエチルアンモニウム、トリブチルアンモニウム、ジエチルメチルアンモニウム、ジイソプロピルエチルアンモニウム、トリイソプロピルアンモニウム、N-メチルモルフォリニウム、N-ヒドロキシエチルピペリジニウム、N-メチルピロリジニウム、およびN,N'-ジメチルピペラジニウム、テトラメチルアンモニウム、テトラエチルアンモニウム、およびテトラブチルアンモニウムが含まれる。これらの置換アンモニウム化合物は一般に様々な塩の形態で市販されているか、または酸で中和することによりそれらの対応するアミンから容易に調製される。
さらに別の態様において、本発明による置換アンモニウム化合物は、全体的にカチオン性の化合物である、すなわち、典型的に約pH 2〜約pH 8のpHの水溶液中という物質封入条件下において、例えば窒素原子のイオン化(プロトン化)の結果として正味の正電荷を有する。
さらに別の態様において、リポソーム内に封入される置換された第一級、第二級、または第三級アンモニウム化合物は、外界温度(典型的に25℃)において希釈水溶液中で決定される少なくとも約8.0、少なくとも約8.5、少なくとも約9.0、少なくとも9.5、または少なくとも10.0という酸(脱プロトン化)解離定数の負の対数値(pKa)を有する。パラメータpKaは、一般にその塩基性特性の強度を特徴づけるアンモニウム化合物の周知の特徴であり、pKaの決定方法は当技術分野において慣習的でありかつ日常的である。多くのアミンおよびそれらのプロトン化型(アンモニウム)のpKa値は、化学および薬理学の参考図書に示されている。例えば、IUPAC Handbook of Pharmaceutical Salts, ed. by P.H. Stahl and C.G Wermuth, Wiley-VCH, 2002;CRC Handbook of Chemistry and Physics, 82nd Edition, ed. by D.R.Lide, CRC Press, Florida, 2001, p. 8-44 to 8-56を参照されたい。一般に、pKaが高いほどより強い塩基を特徴づける。例示的な置換アンモニウム化合物および非置換アンモニウム(それらの共役アミン塩基として記載される)は、以下のpKa値を有する:ピロリジン、11.31;ピペリジン、11.12;ジイソプロピルアミン、11.05;ジエチルアミン、10.93;トリエチルアミン、10.75;ジメチルアミン、10.73;tert-ブチルアミン、10.68;シクロヘキシルアミン、10.66;メチルアミン、10.66;エチルアミン、10.65;プロピルアミン、10.54;イソプロピルアミン、10.53;N-エチルピペリジン、10.45;ジシクロヘキシルアミン、10.4;N-メチルピペリジン、10.38;ジエチルメチルアミン、10.35;ジメチルプロピルアミン、10.15;トリメチルアミン、9.8;ピペラジン、9.73(I)、5.33(II);2-アミノ-2-メチルプロパノール、9.69;N,N'-ジメチルピペラジン、9.66(I)、5.2(II);ジエチル-(2-ヒドロキシエチル)アミン、9.58;エタノールアミン、9.5;N-ヒドロキシエチルピロリジン、9.44;ジエタノールアミン、9.28;アンモニア、9.27;ジメチル-(2-ヒドロキシエチル)アミン、8.83;2-アミノ-2-メチルプロパンジオール-1,3、8.8;モルフォリン、8.5;トリス-(ヒドロキシメチル)-アミノメタン、8.3;N-メチルグルカミン、8.03;トリエタノールアミン、7.76;N-エチルモルフォリン、7.67;N-ヒドロキシエチルモルフォリン、7.39;イミダゾール、7.03;ピリジン、5.23。原則として、アンモニウム化合物内で水素がアルキル基またはシクロアルキル基で置換されることにより、pKa値は上昇する。特に、置換アルキル基内に複数のヒドロキシルもしくはエーテル機能が存在するか、または窒素含有複素環基内に芳香族性が存在することで、ヒドロキシルまたはエーテル機能をもたない同様の置換アンモニアと比較してpKa値は低下する。2つ以上のアンモニウム基を有する化合物は通常、第1アンモニウム基よりもはるかに低い第2またはその次のアンモニウム基のpKaを有する。本発明者らは予想外にも、より高いpKa値を有する、すなわちより強力な塩基性アミンによって形成される置換アンモニウムが、リポソーム内の薬物の安定化において、より弱いアミンから形成される置換アンモニウムよりも効果的であることを発見した。例えば、トリエチルアンモニウム(pKa=10.75)のIHPおよびSOS塩はいずれも、インビボにおけるリポソーム内のイリノテカンの安定化において、トリエタノールアンモニウム(pKa=7.76)の対応する塩よりも顕著により効果的であった(実施例73)。
本発明のリポソーム組成物内に含まれる置換アンモニウムは、任意の適切な形態、例えば塩であってよい。適切な塩には、薬学的に許容される塩が含まれる。例えば、P.H.Stahl, C.G. Wermuth (eds), Handbook of Pharmaceutical Salts, Wiley-VCH, Weinheim, 2002を参照されたい。1つの態様において、置換アンモニウムは、本発明の1つまたは複数のポリアニオンを含む塩である。最適には、本発明の置換アンモニウム塩内の対イオン(アニオン)は、塩を水溶性にし、薬学的に不活性であり、治療用物質もしくは検出物質と接触した場合に沈殿もしくはゲルを形成し得、および/または置換アンモニウムもしくはその非解離アミン型よりもリポソーム膜を介した透過性が低い。一般に、本発明の置換アンモニウム塩は、リポソーム内の、例えば水性空間内で真溶液(true solution)を形成し、ミセル、二重層、ゲル、または結晶相などの、顕著な量の凝縮相を形成しない。置換アンモニウムと塩形成アニオン、例えばポリアニオンの相対量は、化学量論的に等量である点またはその近傍であり、典型的には、例えば置換アンモニウムイオンの共役塩基の解離定数に依存して、3〜9の範囲のpH、より頻繁にはpH 4〜8を有する。
一般に、置換アンモニウムは、本発明のリポソームの内部に、すなわち内部空間に含まれる。1つの態様において、置換アンモニウムは、リポソームを取り囲む外部の媒体から部分的に、または実質的に完全に除去される。そのような除去は、例えば希釈、イオン交換クロマトグラフィー、サイズ排除クロマトグラフィー、透析、限外濾過、沈殿など、当業者に周知である任意の適切な手段によって達成され得る。
本発明の別の特徴に従って、本発明は、ポリアニオンを含むリポソームの組成物を提供する。本発明のポリアニオンは、リポソーム内部の、例えば水性空間内で3単位以上の正味の負イオン電荷をもたらす、2つ以上の負電荷基を有する任意の適切な化学物質であってよい。本発明のポリアニオンは、二価アニオン、三価アニオン、多価アニオン、高分子多価アニオン、ポリアニオン化ポリオール、またはポリアニオン化糖であってよい。硫酸、リン酸、ピロリン酸、酒石酸、コハク酸、マレイン酸、ホウ酸、およびクエン酸は、非限定的に、そのような二価および三価アニオンの例である。1つの好ましい態様において、本発明のポリアニオンは、有機(炭素)または無機骨格、および複数のアニオン機能基、すなわち中性水溶液中で負電荷にイオン化し得、骨格に組み込まれるかまたは付加される機能基を有するポリアニオンポリマーである。ポリマーとは、それぞれ比較的軽くかつ単純な分子の、反復し連結された単位からなる、通常高分子量の天然または合成化合物である。例示的なポリアニオンポリマーは、ポリリン酸、ポリビニル硫酸、ポリビニルスルホン酸、アニオン化ポリアクリル酸ポリマー、アニオン化(例えば、ポリスルホン酸化)ポリアミン、例えば、ポリスルホン酸化ポリ(エチレンイミン)など;ポリ硫酸化、ポリカルボン酸化、またはポリリン酸化多糖;酸性ポリアミノ酸;ポリヌクレオチド;他のポリリン酸化、ポリ硫酸化、ポリスルホン酸化、ポリホウ酸化、またはポリカルボン酸化ポリマーである。そのような多価アニオンおよびポリマーは当技術分野において周知であり、多くは市販されている。本発明の高分子アニオンは好ましくは生分解性のものであり、すなわち生体内で非毒性単位に分解され得る。例示的な生分解性高分子アニオンは、ポリリン酸である。
別の好ましい態様において、ポリアニオンはポリアニオン化ポリオールまたはポリアニオン化糖である。ポリオールとは、例えば線状、分岐型、または環状炭素骨格に結合している複数のヒドロキシル基を有する有機分子である。したがっ、ポリオールは、その他の用語でポリヒドロキシル化化合物と特徴づけられ得る。好ましくは、ポリオール中の炭素原子の大部分がヒドロキシル化されている。ポリオール(多価アルコール)は、当技術分野において周知の分子である。直鎖状(線状または分岐型)および環状ポリオールのいずれも使用が可能である。本発明の例示的なポリオールは、非限定的に:エチレングリコール;グリセロール、トレイトール(treitol)、エリスリトール、ペンタエリスリトール、マンニトール、グルシトール、ソルビトール、ソルビタン、キシリトール、ラクチトール(lactitol)、マルチトール、フルクチトール(fructitol)、およびイノシトールである。糖は通常、連結された、主にヒドロキシル化された炭素原子の群内に、環状アセタール、環状ケタール、ケトン、もしくはアルデヒド基、またはそれらの付加化合物を含む。糖は多くの場合天然化合物である。水性媒体中で糖を加水分解することにより、単糖と称される単位が生じる。典型的には、水溶液中では、5個または6個の炭素原子の単糖糖分子は、環状構造の環状ヘミアセタールを形成する。好ましくは、本発明の糖は、単糖または二糖である、すなわちそれぞれ3〜7個、好ましくは3〜6個の炭素原子を有する1つまたは2つの単糖単位からなる。本発明の例示的な糖は、非限定的に、単糖六炭糖、例えば、グルコース(デキストロース)、ガラクトース、マンノース、フルクトースなど;単糖五炭糖、例えば、キシロース、リボース、アラビノースなど、ならびに二糖、例えば、ラクトース、トレハロース、スクロース、マルトース、およびセロビオースなどである。環を形成する、いくつかの連結された糖単位からなる化合物(シクロデキストリン)、およびその誘導体もまた使用することができる。糖の還元は、ポリオールを得る1つの方法である。スクロースまたはトレハロースなどの、より安定な「非還元性」および非代謝性二糖が好ましい。種々のポリオール、単糖、および二糖が市販されている。
ポリアニオン化ポリオールまたは糖とは、そのヒドロキシル基がアニオン基で完全にまたは部分的に修飾または置換された(アニオン化された)ポリオールまたは糖である。したがって、ポリアニオン化ポリオールまたはポリアニオン化糖は、ポリオール部分または糖部分に加えて、そこ結合しているアニオン基を含む。例示的なアニオン基には、非限定的に、カルボン酸、炭酸、チオ炭酸、ジチオ炭酸、リン酸、ホスホン酸、硫酸、スルホン酸、硝酸、およびホウ酸が含まれる。ポリアニオン化糖またはポリオールの少なくとも1つのアニオン基は、強力なアニオン基である、すなわち水性媒体中に存在する場合に、広範囲のpH、例えばpH 3〜12、好ましくはpH 2〜12において50%を超える割合でイオン化されているか、または3以下、好ましくは2以下のlog解離定数(pKa)を有することが好ましい。ポリオールまたは糖のポリアニオン化は、当技術分野において周知である種々の化学的工程によって達成され得る。例えば、ピリジンまたは2-ピコリン中でポリオールおよび/または糖を三酸化硫黄またはクロロスルホン酸と反応させることで、いくつかのまたはすべてのヒドロキシル基が硫酸残基でエステル化され(硫酸化され)、ポリ硫酸化糖またはポリオールが提供される。本発明の例示的な硫酸化糖は、非限定的にスクロース6硫酸、スクロース7硫酸、およびスクロース8硫酸を含む硫酸化糖である(Ochi. K., et al., 1980, Chem. Pharm. Bull., v. 28, p. 638-641を参照されたい)。同様に、塩基触媒の存在下においてオキシ塩化リンまたはジエチルクロロリン酸と反応させることで、ポリリン酸化ポリオールまたは糖が生じる。ポリリン酸化ポリオールはまた、天然源から単離される。例えば、イノシトール6リン酸(フィチン酸)などのイノシトールポリリン酸は、トウモロコシから単離される。本発明の実施に適した種々の硫酸化、スルホン酸化、およびリン酸化糖およびポリオールは、例えば、米国特許第5,783,568号および米国特許第5,281,237号に開示されており、これらは参照として本明細書に組み入れられる。強酸解離過程のみを有するポリアニオン化ポリヒドロキシル化化合物、例えば、硫酸モノエステル(pKa 1.0以下)などの、約3.0未満、好ましくは約2.0未満のpKaを有する群が、リン酸モノエステル(段階1、pKa約1.5;段階2、pKa約6.7;Stahl and Wermuth, Op. cit., 2002を参照のこと)などの、弱酸解離段階もまた有するポリアニオン化ポリヒドロキシル化化合物よりも良好な薬物保持を有するリポソーム封入を提供することが予想外にも見出された。以下の実施例73では、この発見を例証する。ポリオールおよび/または糖を2分子以上のホウ酸で錯体化することによっても、ポリアニオン化(ポリホウ酸化)産物が得られる。アルカリの存在下においてポリオールおよび/または糖を二硫化炭素と反応させると、ポリアニオン化(ポリジチオ炭酸化、ポリキサントゲン酸化)誘導体が生じる。ポリアニオン化ポリオールまたは糖誘導体は遊離酸の形態で単離され、適切な塩基で、例えばアルカリ金属水酸化物、水酸化アンモニウムで、または好ましくは本発明の置換アンモニウムのポリアニオン塩を提供するストレートな形態または水酸化置換アンモニウムの形態の置換アミン、例えば本発明の置換アンモニウムに相当するアミンで中和され得る。または、ポリアニオン化ポリオール/糖のナトリウム塩、カリウム塩、カルシウム塩、バリウム塩、またはマグネシウム塩が単離され、任意の周知の方法により、例えばイオン交換により、適切な形態、例えば置換アンモニウム塩の形態に変換され得る。
本発明のポリアニオンは通常、単位当たり、例えば炭素鎖内の炭素原子もしくは炭素環当たり、または糖内の単糖単位当たり、少なくとも2つ、3つ、または4つの負電荷基という電荷密度を有する。本発明のポリアニオン化糖または環状ポリオールは、好ましくは少なくとも75%の利用可能なポリアニオン化ヒドロキシル基、およびより好ましくは100%の利用可能なポリアニオン化ヒドロキシル基を有する。さらに、本発明のリポソーム内でのポリアニオン化は通常、リポソーム内に封入される物質の、意図する作用部位における送達および放出に適合するかまたはそれらを促進するが、封入物質の早期の、すなわちリポソームが意図する作用部位に到達する前の放出を減少させるレベルである。
本発明に従って、リポソーム内のポリアニオン化の程度を用いて、リポソーム内に封入された物質の放出特性、例えば放出速度および放出速度論を制御することができる。一般に、ポリアニオン化の程度は、全アニオン量に対するポリアニオン化糖またはポリオールの量に基づいて、またはポリアニオンがアニオンの唯一の種類である場合には、ポリアニオン、例えば本発明のリポソーム内のポリアニオン化糖もしくはポリオールまたはそれらの混合物の全ポリアニオン化能に対するポリアニオン化の割合に基づいて評価され得る。1つの態様において、ポリアニオン化糖またはポリオールは1つまたは複数の他のアニオンと混合されるが、他のアニオンの量に対するポリアニオン化糖またはポリオールの量が少ないほど、リポソームから物質が速く放出される。
通常、捕捉物質がその意図する作用部位においてリポソームから放出されるのが遅すぎる場合には、ポリアニオン化糖またはポリオールと1つまたは複数の他の一価アニオンまたは多価アニオン(例えば、塩素、硫酸、リン酸など)との混合物を使用することで、所望の物質放出速度を達成することができる。または、様々なポリアニオン化の程度を有するポリアニオン化糖またはポリオールの混合物を使用することができる。1つの態様において、本発明のリポソーム内のポリアニオン化の程度は、例えば封入物質を含むリポソーム内の全アニオンの0.1%〜99%、10%〜90%、または20%〜80%である。
一般に、本発明のリポソーム組成物は、任意の適切な形態の、例えば酸、またはポリアニオンおよびカチオンを含む塩の形態の、本発明の1つまたは複数のポリアニオンを含み得る。ポリアニオン、例えばポリアニオン化糖またはポリオールの量は、カチオンの量と化学量論的に等量であってもよいし、またはカチオンの量と異なってもよい。1つの態様において、本発明のリポソーム組成物はカチオンの1つまたは複数のポリアニオン塩を含み、リポソーム膜を介してカチオン濃度勾配またはpH勾配が存在する。別の態様において、本発明のリポソーム組成物は、本発明の1つまたは複数の置換アンモニウムポリアニオン塩を含む。さらに別の態様において、本発明のリポソーム組成物はリポソーム内にポリアニオンを含み、リポソームを含む媒体中のポリアニオンは、例えば、希釈、イオン交換クロマトグラフィー、サイズ排除クロマトグラフィー、透析、限外濾過、吸収、沈殿など、当業者に周知である任意の適切な手段により部分的にまたは実質的に除去される。さらに別の態様において、捕捉されたポリアニオン、例えばポリアニオン化ポリオールまたはポリアニオン化糖を含むリポソームはまた、リポソーム内に物質を保持するのに有効な膜間勾配を有する。そのような膜間勾配の例は、pH勾配、電気化学ポテンシャル勾配、アンモニウムイオン勾配、置換アンモニウムイオン勾配、または溶解度勾配である。置換アンモニウム勾配は典型的には、第一級、第四級、第三級、または第四級アンモニウムなど、少なくとも1つのC-N結合を含む置換型のアンモニウムイオンを含む。膜間勾配を生成する方法は、リポソームの技術分野において日常的である。
本発明のさらに別の特徴に従って、本発明のリポソーム組成物は、本発明の1つまたは複数の置換アンモニウムおよび/またはポリアニオン、ならびに化学物質または生物学的物質、例えば治療用物質または検出物質を含む。例えば、本発明のリポソーム組成物内に含まれる物質は、治療用物質、インク、色素、磁性化合物、肥料、疑似餌、生体触媒、味覚もしくは臭気修飾物質、漂白剤、または例えば核磁気共鳴画像法(MRI)、光学的画像法、蛍光/発光画像法、もしくは核画像法などの当技術分野において周知である任意の適切な手段によって検出可能な任意の物質であってよい。簡便には、本発明のリポソーム組成物内に含まれるかまたはリポソーム組成物に充填され得る物質は、弱塩基性でありかつ膜透過性(親油性)である物質、例えばアミン含有または窒素塩基物質である。
1つの態様において、本発明のリポソーム組成物内に含まれる物質は治療用物質である。
別の態様において、リポソーム組成物内に含まれる物質は抗癌物質である。一般に知られている商業的に認可された(または開発中の)抗新生物薬の一部を分類した部分的一覧を以下に示す。
構造に基づいたクラス:フルオロピリミジン系--5-FU、フルオロデオキシウリジン、フトラフール、5'-デオキシフルオロウリジン、UFT、S-1、カペシタビン;ピリミジンヌクレオシド系--デオキシシチジン、シトシンアラビノシド、5-アザシトシン、ゲムシタビン、5-アザシトシン-アラビノシド;プリン系--6-メルカプトプリン、チオグアニン、アザチオプリン、アロプリノール、クラドリビン、フルダラビン、ペントスタチン、2-クロロアデノシン;プラチナ類似体--シスプラチン、カルボプラチン、オキサリプラチン、テトラプラチン、プラチナ-DACH、オルマプラチン、CI-973、JM-216;アントラサイクリン系/アントラセンジオン系--ドキソルビシン、ダウノルビシン、エピルビシン、イダルビシン、ミトキサントロン;エピポドフィロトキシン系--エトポシド、テニポシド;カンプトテシン系--イリノテカン、トポテカン、ラートテカン(Lurtotecan)、シラテカン(Silatecan)、9-アミノカンプトテシン、10,11-メチレンジオキシカンプトテシン、9-ニトロカンプトテシン、TAS 103、7-(4-メチル-ピペラジノ-メチレン)-10,11-エチレンジオキシ-20(S)-カンプトテシン、7-(2-N-イソプロピルアミノ)エチル)-20(S)-カンプトテシン;ホルモンおよびホルモン類似体--ジエチルスチルベストロール、タモキシフェン、トレミフェン、トルムデックス(Tolmudex)、チミタック(Thymitaq)、フルタミド、ビカルタミド、フィナステリド、エストラジオール、トリオキシフェン、ドロルオキシフェン(Droloxifen)、酢酸メドロキシプロゲステロン、酢酸メゲステロール、アミノグルテチミド、テストラクトン他;酵素、タンパク質、および抗体--アスパラギナーゼ、インターロイキン類、インターフェロン類、ロイプロリド、ペグアスパラガーゼ他;ビンカアルカロイド系--ビンクリスチン、ビンブラスチン、ビノレルビン、ビンデシン;タキサン系--パクリタキセル、ドセタキセル。
作用機序に基づいたクラス:抗ホルモン剤--ホルモンおよびホルモン類似体についての分類を参照、アナストロゾール:葉酸代謝拮抗剤--メトトレキセート、アミノプテリン、トリメトレキセート、トリメトプリム、ピリトレキシム、ピリメタミン、エダトレキセート、MDAM;抗微小管剤--タキサン系およびビンカアルカロイド系;アルキル化剤(古典的または非古典的)--ナイトロジェンマスタード系(メクロレタミン、クロランブシル、メルファラン、ウラシルマスタード)、オキサザホスホリン系(イホスファミド、シクロホスファミド、ペルホスファミド、トロホスファミド)、アルキルスルホネート系(ブスルファン)、ニトロソ尿素系(カルムスチン、ロムスチン、ストレプトゾシン)、チオテパ、ダカルバジン他;代謝拮抗剤--上記のプリン系、ピリミジン系、およびヌクレオシド系;抗生物質--アントラサイクリン系/アントラセンジオン系、ブレオマイシン、ダクチノマイシン、マイトマイシン、プリカマイシン、ペントスタチン、ストレプトゾシン;トポイソメラーゼ阻害剤--カンプトテシン系(TopoI)、エピポドフィロトキシン系、m-AMSA、エリプチシン系(TopoII);抗ウイルス剤-AZT、ザルシタビン、ゲムシタビン、ジダノシン他;各種細胞毒性物質--ヒドロキシ尿素、ミトタン、融合毒素、PZA、ブリオスタチン、レチノイド類、酪酸および酪酸誘導体、ペントサン、フマギリン他。
上記に加えて、抗癌物質には非限定的に、任意のトポイソメラーゼ阻害剤、ビンカアルカロイド(例えば、ビンクリスチン、ビンブラスチン、ビノレルビン、ビンフルニン(vinflunine)、およびビンポセチン)、微小管脱重合剤または不安定化剤、微小管安定化剤(例えば、タキサン)、パクリタキセルまたはドセタキセルのアミノアルキルまたはアミノアシル類似体(例えば、2'-[3-(N,N-ジエチルアミノ)プロピオニル]パクリタキセル、7-(N,N-ジメチルグリシル)パクリタキセル、および7-L-アラニルパクリタキセル)、アルキル化剤、受容体結合剤、チロシンキナーゼ阻害剤、ホスファターゼ阻害剤、サイクリン依存性キナーゼ阻害剤、酵素阻害剤、オーロラ(aurora)キナーゼ阻害剤、ヌクレオチド、ポリヌクレオチド、およびファルネシルトランスフェラーゼ阻害剤が含まれる。
別の態様において、本発明のリポソーム組成物内に含まれる物質は、アントラサイクリン化合物もしくは誘導体、カンプトテシン化合物もしくは誘導体、エリプチシン化合物もしくは誘導体、ビンカアルカロイドもしくはビンカアルカロイド誘導体、ワートマンニン、その類似体および誘導体、またはオーロラキナーゼ阻害特性を有するピラゾロピリミジン化合物の治療用物質である。
さらに別の態様において、本発明のリポソーム組成物内に含まれる物質は、アントラサイクリン系薬剤、ドキソルビシン、ダウノルビシン、マイトマイシンC、エピルビシン、ピラルビシン、ルビドマイシン(rubidomycin)、カルシノマイシン(carcinomycin)、N-アセチルアドリアマイシン、ルビダゾン(rubidazone)、5-イミドダウノマイシン、N-アセチルダウノマイシン、ダウノリリン(daunoryline)、ミトキサントロン;カンプトテシン化合物、カンプトテシン、9-アミノカンプトテシン、7-エチルカンプトテシン、10-ヒドロキシカンプトテシン、9-ニトロカンプトテシン、10,11-メチレンジオキシカンプトテシン、9-アミノ-10,11-メチレンジオキシカンプトテシン、9-クロロ-10,11-メチレンジオキシカンプトテシン、イリノテカン、トポテカン、ラートテカン、シラテカン、(7-(4-メチルピペラジノメチレン)-10,11-エチレンジオキシ-20(S)-カンプトテシン、7-(4-メチルピペラジノメチレン)-10,11-メチレンジオキシ-20(S)-カンプトテシン、7-(2-N-イソプロピルアミノ)エチル)-(20S)-カンプトテシン;エリプチシン化合物、エリプチシン、6-3-アミノプロピル-エリプチシン、2-ジエチルアミノエチル-エリプチシニウムおよびその塩、ダテリプチウム(datelliptium)、レテリプチン(retelliptine)である。
さらに別の態様において、本発明のリポソーム内に含まれる物質は、非限定的に以下のいずれかを含む薬学的物質である:抗ヒスタミンエチレンジアミン誘導体(ブロムフェニファミン(bromphenifamine)、ジフェンヒドラミン);抗原虫薬:キノロン(ヨードキノール);アミジン類(ペンタミジン);抗蠕虫薬(ピランテル);抗住血吸虫薬(オキサムニキン);抗真菌トリアゾール誘導体(フルコナゾール、イトラコナゾール、ケトコナゾール、ミコナゾール);抗菌セファロスポリン類(セファゾリン、セフォニシド(cefonicid)、セフォタキシム、セフタジミド(ceftazimide)、セフオキシム(cefuoxime));抗菌βラクタム誘導体(アズトレオパム(aztreopam)、セフメタゾール、セフォキシチン);エリスロマイシン群の抗菌剤(エリスロマイシン、アジスロマイシン、クラリスロマイシン、オレアンドマイシン);ペニシリン類(ベンジルペニシリン、フェノキシメチルペニシリン、クロキサシリン、メチシリン、ナフシリン、オキサシリン、カルベニシリン);テトラサイクリン類;その他の抗菌抗生物質、ノボビオシン、スペクチノマイシン、バンコマイシン;抗ミコバクテリア薬:アミノサリチル酸、カプレオマイシン、エタンブトール、イソニアジド、ピラジナミド、リファブチン、リファンピン、クロファジム(clofazime);抗ウイルスアダマンタン類:アマンタジン、リマンタジン;キニジン誘導体:クロロキン、ヒドロキシクロロキン、プロマキン(promaquine)、キオノン(qionone);抗菌キオノロン(qionolone):シプロフロキサシン、エノキサシン、ロメフロキサシン、ナリジクス酸、ノルフロキサシン、オフロキサシン;スルホンアミド類;尿路抗菌剤:メテナミン、ニトロフラントイン、トリメトプリム;ニトロイミダゾール類:メトロニダゾール;コリン作動性第四級アンモニウム化合物(アンベチニウム(ambethinium)、ネオスチグミン、フィゾスチグミン);抗アルツハイマーアミノアクリジン類(タクリン);抗パーキンソン病薬(ベンズトロピン、ビペリデン、プロシクリジン、トリヘキシルフェニジル;抗ムスカリン剤(アトロピン、ヒヨスチアミン、スコポラミン、プロパンテリン);アドレナリン作動性ドーパミン類(アルブテロール、ドブタミン、エフェドリン、エピネフリン、ノルエピネフリン、イソプロテレノール、メタプロペレノール(metaproperenol)、サルメテロール、テルブタリン);エルゴタミン誘導体;筋弛緩剤またはキュレーン(curane)系;中枢作用筋弛緩剤;バクロフェン、シクロベンゼピン(cyclobenzepine)、ダントロレン;ニコチン;βアドレナリン遮断薬(アセブチル(acebutil)、アミオダロン);ベンゾジアゼピン類(ジルチアゼム);抗不整脈薬(ジソピラミド)、エンカイジン(encaidine)、局所麻酔系--プロカイン、プロカインアミド、リドカイン、フレカイニド)、キニジン;ACE阻害剤:カプトプリル、エナラプリラート、フォシノプリル、キナプリル、ラミプリル;抗高脂血症剤:フルバスタチン、ゲムフィブロジル、HMG-coA阻害剤(プラバスタチン);降圧剤:クロニジン、グアナベンズ、プラゾシン、グアネチジン、グラナドリル(granadril)、ヒドララジン;および非冠動脈血管拡張剤;ジピリダモール。
本発明に従って、本発明のリポソーム組成物内に含まれる物質はまた、前物質、例えば、プロドラッグ、またはpH変化もしくは不安定な結合の酵素切断などの条件下において、1つもしくは複数の変換段階で所望の物質に変換され得る物質であってよい。そのような変換は、薬物/リポソームの意図する作用部位においてプロドラッグがリポソーム内部から放出された後に起こり得る。しかし、前物質は、リポソームを送達媒体として使用する前、例えば患者に投与する前に、本発明のリポソーム内で所望の活性物質に変換され得る。例えば、物質は、リポソーム内に容易に充填され、次いで本発明のリポソーム内に入った時点で所望の物質に変換して戻され得るように、前物質に改変され得る。このような方法で、本発明に従って、一般に「能動的」、「遠隔」、または他の勾配に基づく充填方法に適していない物質を、元の未改変の形態でリポソーム内に、例えばリポソームの内部空間内に効率的に充填することができる。
全体的にカチオン性の化合物、すなわちリポソーム充填条件下において正味の正イオン電荷を獲得し得る化合物、特に滴定可能なアミンを含む化合物は、膜間イオン勾配を示すリポソーム内に効率的に充填されることが知られている。関心対象の物質が有機化合物であり、かつ滴定可能なアミンを有する全体的にカチオン性の化合物でない場合には、例えばWoodle et al.のWO 96/25147に記載されている方法に従って、適切な修飾により、必要なイオン特性を有するその誘導体を調製することができる。例えば、アミノ酸を有する物質のヒドロキシル基をエステル化することで、アミン基を導入することができる。または、リポソーム膜への分割、およびその後のリポソーム内区画、すなわちリポソーム内部へ向けた膜の横断を助けるために、疎水基を水溶性化合物に導入することができる。リポソームに充填可能な前物質を作製するのに有用な別の修飾は、カルボニル基付加化合物、例えばヒドラゾン、オキシム、アセタール、またはケタールの形成である。修飾されたアミノ含有基は、本発明の方法に従ってリポソーム内に修飾化合物が充填された後に、修飾化合物から加水分解され得るか、またはその他の方法で化学的に分割され得る。リポソーム内で前物質から物質を再生する典型的な工程は、加水分解、光分解、放射線分解、チオ開裂、加アンモニア分解、還元、置換、酸化、または除去である。これらの工程は、非限定的に、pH変化によってまたは酵素作用によって達成され得る。例えば、非イオン性物質であるパクリタキセルまたはドセタキセルは、弱塩基(前物質)である2'-(ジエチルアミノプロピオニル)-または7'-(ジエチルアミノプロピオニル)エステルに変換される。非限定的に、「能動的」、「遠隔」、「膜間勾配に基づく」、もしくは「溶解度勾配に基づく」方法を含む任意の周知の方法、および/または本発明の方法によってリポソーム内に充填された後に、リポソーム内の2'-(ジエチルアミノプロピオニル)-パクリタキセルは、pH 7.0を超えるpH上昇を通してその加水分解を促進し、本来のパクリタキセルに変換される。このようにして、タキサン分子の親水性共有結合修飾(例えば、PEGの付着による)、シクロデキストリンタキサン複合体、またはタキサン可溶化ミセル形成界面活性剤の支援なしに、その内部空間内に中性タキサン分子を封入しているリポソームが、リポソーム脂質のモル当たり0.05モルを超える薬物/脂質比で得られる。
本発明に従って、本発明のリポソーム組成物内に含まれるリポソームは、当技術分野において周知であるか、またはより最近発見された任意のリポソームであってよい。一般に、本発明のリポソームは、任意のリポソーム構造、例えば、1つもしくは複数の脂質二重層によって外部の媒体から隔離された内部空間を有する構造、または膜によって内部が隔離されている親油性の中央部分と共に半透性膜を有する任意のマイクロカプセルを有し得る。脂質二重層は、親水性部分(親水性成分)および疎水性部分(疎水性成分)によって特徴づけられる両親媒性分子の任意の配置であってよい。通常、二重層内の両親媒性分子は、疎水性成分がシートの内側を向いて配向し、親水性成分が外側を向いて配向する二次元シートになるよう配置される。本発明のリポソームを形成する両親媒性分子は、任意の周知の、またはより最近発見された両親媒性分子、例えば合成もしくは天然源の脂質または生体適合性脂質であってよい。本発明のリポソームはまた、例えばポリマーソームおよびニオソームのように、両親媒性ポリマーおよび界面活性剤によって形成され得る。本開示の目的上、非限定的に、これらのリポソーム形成材料を「脂質」とも称する。
本発明に従って、本発明のリポソーム組成物内に含まれるリポソームはまた、標的化リポソーム、例えばリポソームの表面上に1つまたは複数の標的化成分または体内分布修飾因子を含むリポソームであってよい。標的化成分は、所望の標的と特異的に結合し得る、または相互作用し得る任意の物質であってよい。1つの態様において、標的化成分はリガンドである。リガンドは、本発明によれば、リポソーム捕捉物質がその所望の効果を発揮する細胞(標的細胞)に結合するおよび/または内部移行することが好ましい。リガンドは通常、第2メンバーが標的細胞上もしくは細胞内、または標的細胞を含む組織内に存在する結合対のメンバーである。本発明に適したリガンドの例は:葉酸、タンパク質、例えば、トランスフェリン、増殖因子、酵素、ペプチド、受容体、抗体、または抗体断片(例えば、Fab'、Fv、一本鎖Fv、単一ドメイン抗体、または抗体分子の抗原結合配列(CDR)を含む任意の他のポリペプチドなど)である。標的化成分が抗体であるかまたはその標的抗原結合断片であるリガンド標的化リポソームは、イムノリポソームと称される。好ましい態様において、標的化成分、例えばリガンドを保有するリポソームは、標的細胞によって内部に取り込まれ得る。さらに別の態様において、標的化成分は、例えば、EGFR、HER2、HER3、HER4、PD-GFR、VEGFR、bFGFR、またはIGFR受容体などのチロシンキナーゼ受容体と特異的に相互作用するリガンドである。さらに別の態様において、標的化成分は、増殖因子受容体、血管新生因子受容体、トランスフェリン受容体、細胞接着分子、またはビタミン受容体と特異的に相互作用する。
本発明の別の態様に従って、リポソーム組成物内に含まれるリポソームは、本発明の置換アンモニウムおよび/またはポリアニオンの膜間濃度勾配を示す。好ましくは、リポソームの内部(内側)空間内の濃度の方が高い。さらに、本発明のリポソーム組成物は、本発明の置換アンモニウムおよび/またはポリアニオンによって生成される勾配に加えて、1つまたは複数の膜間勾配を含み得る。例えば、本発明のリポソーム組成物内に含まれるリポソームは、膜間pH勾配、イオン勾配、電気化学ポテンシャル勾配、および/または溶解度勾配をさらに含み得る。
本発明のさらに別の態様に従って、本発明のリポソーム組成物は、リポソームを含む容器、ならびに任意に、物質を含む容器および説明書(例えば、1つまたは複数の用途におけるリポソーム組成物の使用に関する手順または情報)を含むキットにて提供され得る。そのような説明書は、任意の媒体、例えば硬調印画紙コピー、電子媒体、または説明書を含むデータベースもしくはウェブサイトへのアクセスを介して提供され得る。
本発明のリポソーム膜組成物は、当業者に周知であるか、または当業者によって最近発見された任意の適切な方法によって作製され得る。一般に、様々な脂質成分を用いて本発明のリポソームを作製することができる。脂質成分には、これらに限定されないが、(1) 非電荷脂質成分、例えば、コレステロール、セラミド、ジアシルグリセロール、アシル(ポリエーテル)、またはアルキルポリ(エーテル);(2) 中性リン脂質、例えば、ジアシルホスファチジルコリン、スフィンゴミエリン、およびジアシルホスファチジルエタノールアミン、(3) アニオン性脂質、例えば、ジアシルホスファチジルセリン、ジアシルホスファチジルグリセロール、ジアシルホスファチジン酸、カルジオリピン、ジアシルホスファチジルイノシトール、ジアシルグリセロールヘミコハク酸、ジアシルグリセロールヘミグルラテート(diacylglycerolhemigluratate)、コレステリルヘミコハク酸、コレステリルヘミグルタレートなど;(4) ポリマー結合脂質、例えば、N-[メトキシ-(ポリ(エチレングリコール)ジアシルホスファチジルエタノールアミン、ポリ(エチレングリコール)-ジアシルグリセロール、ポリ(エチレングリコール)-セラミド;ならびに(5) カチオン性脂質、例えば、1,2-ジアシル-3-トリメチルアンモニウム-プロパン(DOTAP)、ジメチルジオクタデシルアンモニウムブロミド(DDAB)、および1,2-ジアシル-sn-グリセロ-3-エチルホスホコリンが含まれる。これらの脂質のモノアシル置換誘導体、ならびにジアルキルおよびモノアルキル類似体もまた使用可能である。
種々の脂質成分は、1つまたは複数の所望の機能を満たす、改変する、または付与するように選択され得る。例えば、リン脂質は主要な小胞形成脂質として使用され得る。コレステロールを含めることは、膜の剛性の維持および薬物漏出の減少に有用である。ポリマー結合脂質は、肝臓および脾臓によるリポソーム排除を減少させることにより循環の寿命を延ばすため、または循環延長効果が存在しない場合、保存期間中の凝集に対するリポソームの安定性を改善するために、リポソーム製剤中に用いられ得る。PEG-脂質をリポソーム脂質の1 mol%以上の量含めると、リポソームの血中循環時間が数倍延長されることが主張されているが(例えば、米国特許第5,013,556号を参照されたい)、本発明者は驚くべきことに、本発明のリポソームが極めて長時間循環し、リポソーム組成物にPEG-脂質を付加しても、仮にあったとしても2倍未満しか循環寿命が延長されないことを見出した。さらに、電荷修飾(滴定可能)脂質を使用して、一部のクラスの物質がエンドソーム経路の範囲から逃れるのを促進することにより、リポソーム封入物質のサイトゾルまたは核標的への送達を支持することができる。
1つの態様において、本発明のリポソームは、レシチン、コレステロール、および両親媒性ポリマーを含む。本発明のリポソーム中に含まれるレシチンは、天然レシチン、水素化天然レシチン、合成レシチン、1,2-ジステアロイル-レシチン、ジパルミトイルレシチン、ジミリストイルレシチン、ジオレオイルレシチン、1-ステアロイル-2-オレオイルレシチン、または1-パルミトイル-2-オレオイルレシチンであってよく、両親媒性ポリマーは、ポリエチレングリコール-脂質誘導体、例えば、ポリエチレングリコールホスファチジルエタノールアミン、ポリエチレングリコール-ジアシルグリセロール、またはポリエチレングリコール-セラミド誘導体であってよく、この場合、ポリ(エチレングリコール)部分は約250〜約20,000、最も一般的には約500〜約5,000の分子量を有する。別の態様において、本発明のリポソーム中のレシチンとコレステロールの比は、モルで約3:2である。さらに別の態様において、両親媒性ポリマーは、本発明のリポソーム中のリポソーム形成脂質の少なくとも0.1モル%である。さらに別の態様において、両親媒性ポリマーの量は、本発明のリポソーム中のリポソーム形成脂質の0.1モル%〜1モル%である。好ましくは、両親媒性ポリマーは中性ポリマー、すなわち薬物充填条件下において正味のイオン電荷がゼロであり、例えばPEG-ジアシルグリセロール、PEG-ジアルキルグリセロール、またはPEG-セラミドである。イオン的に中性である両親媒性脂質を、全脂質の約5.7 mol%のPEG-脂質含量まで含めると、例えばビノレルビンなどのビンカアルカロイドのリポソーム充填が高効率になるが、アニオン的に荷電したPEG-DSPEの場合には、1.6 mol%以上のPEG-脂質含量で充填効率が著しく減少することが意外にも見出された(実施例72)。
さらに別の態様において、本発明のリポソームは、カンプトテシン誘導体、例えばイリノテカンなどのカンプトテシンプロドラッグを含み、例えばモルで約3:2という比のレシチンおよびコレステロール、ならびにリポソーム形成脂質の少なくとも0.1モル%または1%未満の量の両親媒性ポリマーからなる。
本発明のリポソームは、当技術分野において周知であるか、または知られるようになるであろう任意の方法によって作製され得る。例えば、G. Gregoriadis (editor), Liposome Technology, vol. 1-3, 1st edition, 1983; 2nd edition, 1993, CRC Press, Boca Raton, FLを参照されたい。本発明のリポソーム組成物の作製に適した方法の例には、押し出し、逆相蒸発、超音波処理、溶媒(例えばエタノール)注入、マイクロフルイダイゼーション(microfluidisation)、界面活性剤透析、エーテル注入、および脱水/再水和が含まれる。リポソームの大きさは、低圧押し出しに用いられる膜のポアサイズ、もしくはマイクロフルイダイゼーションに利用される流路の圧力および数を調節することによって、または任意の他の適切な方法により調節され得る。1つの態様において、所望の脂質はまず薄膜水和により、またはエタノール注入によって水和され、次いで規定のポアサイズ;最も一般的には0.05μm、0.08μm、または0.1μmの膜を通して押し出すことにより、一定の大きさに作製される。
リポソームの内部に本発明の置換アンモニウムおよび/またはポリアニオンを含むリポソーム組成物は、任意の適切な方法、例えば(例えば、塩の形態をした)本発明の置換アンモニウムおよび/またはポリアニオンの存在下でリポソームを形成することによって作製され得る。リポソームの外部の置換アンモニウムおよび/またはポリアニオンは、リポソームを形成した後に、または所望の物質を充填もしくは捕捉する前に、除去または希釈され得る。または、本発明の置換アンモニウムおよび/またはポリアニオンを含むリポソーム組成物は、直接イオン交換法を経て、または中間の遊離酸段階を経て作製され得り、本発明の置換アンモニウム(例えば、ポリアニオン化糖またはポリオールの置換アンモニウム塩)の勾配を有する。そのようなリポソームは、アミンまたは揮発性酸を有するその塩(例えば炭酸塩)を用いて中和され得る。得られたリポソーム溶液は直接使用することもできるし、または必要に応じてその中に含まれている塩を、例えば蒸発および結晶化し、その後の水性媒体への溶解によって除去することもできる。
好ましくは、本発明のリポソーム組成物は、置換アンモニウムおよび/またはポリアニオンの膜間濃度勾配を有し、例えば、リポソーム内の置換アンモニウムおよび/またはポリアニオン塩の濃度の方が、リポソームの外部媒体中の置換アンモニウムおよび/またはポリアニオンの濃度よりも高く、通常は少なくとも100倍高い。
1つの態様において、リポソーム内の置換アンモニウムおよび/またはポリアニオン塩の濃度は、リポソームの外部媒体中の置換アンモニウムおよび/またはポリアニオン塩の濃度よりも少なくとも100倍高く、置換アンモニウムに基づいて計算したモル濃度で少なくとも約10 mM、50 mM、0.1 M、0.2 M、0.5 M、0.6 M、0.7 M、または1.0 Mの濃度である。別の態様において、リポソーム内の置換アンモニウムおよび/またはポリアニオン塩の濃度は、リポソームの外部媒体中の置換アンモニウムおよび/またはポリアニオン塩の濃度よりも少なくとも100倍高く、約0.65 Mまたは約1.0 Mという濃度である。
さらに、本発明のリポソーム組成物は、通常、充填工程における所望の物質の安定性および高い充填効率(例えば約90%を超える捕捉)の維持と適合するか、またはその維持に役立つpHを外部に有する。例えば、4〜7という範囲のpHまたはpH 4.5〜6.5が好ましい。特に、本発明によれば、カンプトテシン化合物(例えば、トポテカンまたはイリノテカン)の充填は、約4.0〜約7.0、より好ましくは約pH 5.0〜pH 6.5の範囲という外部媒体のpHで最も良好に達成される。ビンカ誘導体(例えば、ビンクリスチン、ビノレルビン、またはビンブラスチン)の充填は、pH約5.0〜約7.0、より好ましくはpH約6.5で最も良好に達成される。
本発明に従って、所望の物質は、適切な温度の水性媒体中で所望の物質を本発明のリポソームと共にインキュベートすることによって、リポソーム内に充填または捕捉され得り、適切な温度は、例えば、充填中は成分脂質の相転移温度よりも高い温度であるが、物質の充填後は相転移温度よりも低くする。インキュベーション時間は通常、成分脂質の性質、リポソームに充填する物質、およびインキュベーション温度に基づく。典型的には、数分〜数時間のインキュベーション時間で十分である。85%を超える、典型的には90%を超える高い捕捉効率が達成されるため、通常は捕捉されなかった物質を除去する必要はない。しかしそのような必要がある場合には、例えばサイズ排除クロマトグラフィー、透析、限外濾過、吸着、または沈殿などの種々の手段によって、捕捉されなかった物質を組成物から除去することができる。特にカンプトテシン誘導体またはビンカアルカロイド誘導体などの物質と本発明のリポソームとのインキュベーション中に低いイオン強度を維持し、その後インキュベーションの終了時点でのイオン強度の上昇で、高い充填効率、非捕捉薬物の良好な除去、および凝集に対する良好なリポソーム安定性がもたらされることが予想外にも見出された。典型的には、インキュベーションは、50 mM NaClと同等のイオン強度未満、またはより好ましくは30 mM NaClと同等のイオン強度未満のイオン強度の、例えば水溶液中で行われる。インキュベーション後、濃縮した塩(例えばNaCl)溶液を添加して、50 mM NaClのイオン強度よりも高く、より好ましくは100 mM NaClのイオン強度よりも高くなるようイオン強度を上昇させることができる。理論によって縛られないが、本発明者らは、イオン強度の上昇が、リポソームの内部空間内に封入された実質的にすべての物質をそのままにしておきながら、リポソーム膜から物質を解離するのに役立つと仮定する。
一般に、物質-脂質比、例えば物質の充填によって得られる薬物充填比は、リポソームの内部に捕捉される物質の量、捕捉されている置換アンモニウムおよび/またはポリアニオン(例えば塩)の濃度、捕捉される物質の生理化学的特性、ならびに対イオン(アニオン)(例えば、使用するポリアニオン)の種類に依存する。本発明の組成物において、および/または本発明の方法によって高い充填効率が達成されるため、リポソーム内に捕捉される物質の物質-脂質比は、充填工程に持ち込まれた物質およびリポソームの量に基づいて計算される物質-脂質比(「インプット」比)の80%を超える、90%を超える、および典型的には95%を超える。実際に、事実上100%の(定量的)封入が一般的である。リポソーム内の物質-脂質比は、重量比(リポソーム脂質の重量またはモル単位当たりの物質の重量)またはモル比(リポソーム脂質の重量またはモル単位当たりの物質のモル)の点から特徴づけられ得る。物質-脂質比の1つの単位は、以下に例証されるような日常的な計算によって他の単位に変換され得る。本発明のリポソーム内の物質の重量比は典型的には、脂質1 mg当たり少なくとも0.05、0.1、0.2、0.35、0.5、または少なくとも0.65 mgの物質である。モル比に関しては、本発明による物質-脂質比は、リポソーム脂質1モル当たり少なくとも約0.02〜約5、好ましくは少なくとも0.1〜約2、より好ましくは約0.15〜約1.5モルの薬物である。1つの態様において、物質-脂質比、例えばカンプトテシン誘導体の薬物充填比は、少なくとも0.1(例えばリポソーム脂質1モル当たりカンプトテシン誘導体0.1モル)、および好ましくは少なくとも0.2である。別の態様において、物質-脂質比、例えば薬物充填量は、リポソーム形成脂質1 mg当たり少なくとも約300 mgの物質(例えば、ビンカアルカロイドまたはその誘導体)である。さらに別の態様において、物質-脂質比、例えば薬物充填量は、リポソーム形成脂質1 mg当たり少なくとも約500 mgの物質(例えば、カンプトテシン誘導体またはカンプトテシンプロドラッグ)である。驚くべきことに、本発明により、リポソーム脂質1 g当たり0.8 mmolを超える物質、リポソーム脂質1 g当たり1.3 mmolを超える物質、およびさらにはリポソーム脂質1 g当たり1.7 mmolもの多量の物質という薬物-脂質比で、例えばイリノテカンなどのカンプトテシン誘導体薬物の安定でありかつほぼ定量的なリポソーム捕捉が提供される(実施例74を参照のこと)。
リポソームがリン脂質を含む場合には、リポソームリン脂質のモル単位当たりの薬物の重量(質量)、例えばmg薬物/mmolリン脂質という単位で物質含量を表すことが簡便である。しかし、当業者であれば、薬物含量は、リポソーム内のリン脂質の存在とは独立した方法で同等に表され得ること、およびさらにリポソーム脂質内容物の単位(質量またはモル)当たりの薬物のモル量に換算して同等に表され得ることを理解するであろう。例えば、リポソームが3モルの割合のジステアロイルホスファチジルコリン(DSPC、分子量790)、2モルの割合のコレステロール(分子量387)、および0.015モルの割合のポリ(エチレングリコール)誘導体化ジステアロイルホスファチジルエタノールアミン(PEG-DSPE、分子量2750)を含み、かつ150 mg/mmolリン脂質という薬物/脂質比で薬物ドキソルビシン(分子量543.5)を含む場合、同じ薬物含量は以下のようにmg薬物/mg総脂質に換算して同等に表され得る。
(a) リポソームリン脂質の総モル量で成分のモル量を割って、リポソームリン脂質(この例ではDSPCおよびPEG-DSPE)のモル単位に対して標準化されたリポソーム脂質成分のモル量を計算する。
DSPC 3/(3+0.015) = 0.99502
コレステロール 2/(3+0.015) = 0.66335
PG-DSPE 0.015/(3+0.015) = 0.00498
(b) リポソームリン脂質の単位モル量および成分分子量に対応する総リポソーム脂質の質量を計算する。
mg総脂質/mmolリン脂質 = 0.99502x790 + 0.66335x387 + 0.00498x2750 = 1056.48
(c) リン脂質のモル単位当たりの質量単位で表された薬物含量を段階(b)で得られた数値で割って、総脂質の質量単位当たりの薬物の質量を計算する。
mgドキソルビシン/mg総脂質 = 150/1056.48 = 0.14198
(d) 段階(c)で得られた数値を薬物分子量(この場合、543.5)で割って、総脂質の単位質量当たりの薬物のモル量を計算する。
mmolドキソルビシン/g総脂質 = 0.14198/543.5x1000 = 0.261
(e) リポソーム脂質マトリックス中のリン脂質のモルの割合を計算する。
リン脂質のモルの割合= (リン脂質の総モル)/(脂質の総モル量) = (3+0.015)/(3+2+0.015) = 0.6012
(f) 総脂質に対するドキソルビシンのモル比を計算する。
molドキソルビシン/mol総脂質 = (リン脂質のモルの割合)x(gドキソルビシン/モルリン脂質)/(ドキソルビシン分子量) = 0.6012x150/543.5 = 0.166
このように、様々な単位で表される薬物-脂質比と薬物-リン脂質比の間の関係が容易に確立される。本明細書で用いる「脂質」には、非限定的に、例えばポリマーおよび/または界面活性剤などの、リポソーム膜の任意の膜形成成分が含まれる。
本発明のリポソームに捕捉された置換アンモニウムおよび/またはポリアニオン塩溶液は、通常、リポソームの充填能を犠牲にすることなく、浸透圧損傷(膨張および/または破裂)に対してリポソームを安定に保つのに役立つ浸透力(モル浸透圧)を有する。1つの態様において、本発明のリポソーム組成物のモル浸透圧は、0.1〜1.5 mol/kg、または好ましくは0.2〜1.0 mol/kgの範囲にある。驚くべきことに、本発明者らは、本発明のリポソームが、薬物充填に及ぼす高いリポソーム内浸透力の悪影響に対して安定であることを見出した。0.727 mol/kgもの高いリポソーム内浸透圧が十分に許容され、その結果、薬物およびリポソームを同時にインキュベーションする際のリポソーム外水性媒体の浸透圧が約0.3 mol/kgという生理的値にたとえ近くとも、リポソーム内置換アンモニウムイオンの薬物分子との化学量論的交換の理論的最大値まで(イリノテカンの場合、1つの置換アンモニウムイオン当たり1つの薬物分子)、事実上定量的な薬物の充填がもたらされる(実施例74)。
一般に、本発明のリポソーム組成物は、例えば、本発明のリポソームの内部に物質が最初に充填されてから一定期間後の、リポソームの外部に放出された、またはリポソームの内部に依然として維持されている捕捉物質の割合によって表されるように、保存期間中に極めて安定である。本発明のリポソーム組成物は4℃で少なくとも6ヶ月間安定であり、例えば物質の最初の充填から6ヵ月後、放出された捕捉物質は10%に満たない。1つの態様において、本発明のリポソーム組成物は4℃で少なくとも2年間安定であり、例えば物質の最初の充填から2年後、放出された捕捉物質は20%に満たない。
リポソーム捕捉物質は、リポソームがその意図する作用部位(例えば、リポソーム抗腫瘍薬を患者に投与する場合には、腫瘍)に到達するまでリポソーム内に封入されたままであることが有利である。本発明のリポソームは、インビボ条件下で、例えば哺乳動物の血中で、捕捉物質の放出(漏出)に対して驚くべき安定性を示した。インビボにおけるラットの血中で、リポソームから捕捉物質(例えば薬物)が50%放出されるのに必要な曝露時間(半放出時間(half-release time))は、24時間を超えた。特に、ビンカアルカロイド薬物(例えば、ビンブラスチン、ビンクリスチン、およびビノレルビン)を充填したリポソームは、少なくとも24時間の半放出時間を有して、またはインビボにおける血中で24時間後に封入されたままである物質の量が投与前の値の少なくとも約50%であり、インビボでの薬物漏出に対して顕著な安定性を示した。典型的には、33時間を超える半放出時間、またはインビボにおける血中で24時間後に封入されたままである封入物質の量が少なくとも約60%であることが認められ;さらに46時間を超える半放出時間、またはインビボにおける血中での24時間後の封入物質の量が投与前の値の約70%であることも一般的であった。場合によっては、インビボにおける血中の封入薬物の半放出時間は93時間を超え、さらには120時間を超えた。トポテカンなどのカンプトテシン誘導体を充填したリポソームもまた、元の薬物充填量の79〜85%が24時間後に封入されたままであり、血中における並外れたインビボ安定性を示した。顕著なことには、本発明のリポソームは、血中循環においてそのように低いインビボ薬物放出速度を有するが、遊離薬物(すなわち、溶液として投与される)の活性に勝る実質的なインビボ抗腫瘍活性を示した。
本発明のリポソームにより、治療用物質の高効率の捕捉および低毒性の予期せぬ組み合わせが提供された。一般に、本発明によるリポソームに封入された治療用物質の活性、例えば哺乳動物におけるカンプトテシン誘導体の抗新生物活性は、例えば本発明のリポソーム組成物を用いずに、その日常的な非リポソーム製剤によって同量を投与した場合の治療用物質の活性と少なくとも同等であるか、その活性よりも少なくとも2倍高いか、または少なくとも4倍高いが、リポソームに封入された物質の毒性は、同じ用量およびスケジュールで、しかし遊離の非封入形態で投与された同じ治療用物質の毒性を超えないか、その毒性よりも少なくとも2倍、少なくとも3倍、または少なくとも4倍低い。例えば、他の研究者らが公表している方法による抗癌カンプトテシン誘導体のリポソーム封入は、非封入薬物と比較して毒性の増加(最大耐量の低下、50%致死量の低下)をもたらすことが一般に知られている。米国特許第6,355,268号;米国特許第6,465,008号;Colbern, et al. Clinical Cancer Res. 1998, v. 4, p. 3077-3082;Tardi, et al. Cancer Res., 2000, v. 60, p.3389-3393;Emerson, et al. Clinical Cancer Res. 2000, v. 6, p.2903-2912を参照されたい。リポソームに封入された、水溶性でありカチオン性のカンプトテシンプロドラッグ誘導体であるイリノテカン(CPT-11)などのカンプトテシンプロドラッグは、例えば遊離(溶液)形態の、リポソーム製剤の非存在下の薬物よりも実質的に高い、例えば少なくとも4倍、さらには10倍高い、インビボ腫瘍モデルで評価される抗腫瘍活性を有する。このことは、治療化合物、例えばカンプトテシンプロドラッグは、例えば内因性の非特異的カルボキシルエステラーゼの作用による酵素的活性化を必要とするが、本発明に従ってリポソームの内部空間内に実質的に封入されていることから、さらに注目に値する。一方、驚くべきことに、本発明によるリポソーム形態をした(0.1を超える、例えば0.2〜0.6またはそれ以上の薬物/脂質質量比)CPT-11などのカンプトテシンプロドラッグの毒性は、遊離(非封入)プロドラッグCPT-11の毒性よりも2倍を超えて、3倍を超えて、さらには4倍を超えて低い。さらに、血流に投与されてから24時間後に元の薬物含量の50%を超える、さらには70%を超える(79〜86%)含量がリポソーム内に依然として維持され、また24時間を超える、典型的には48時間を越える半放出時間を有して、インビボにおけるCPT-11リポソームからの薬物放出の長期化が達成された。インビボにおけるリポソーム内の薬物残存の長期化は、抗腫瘍効果の上昇と関連した。驚くべきことに、最も遅いインビボCPT-11放出および最も高い抗腫瘍活性は、高分子アニオン(ポリリン酸)よりもむしろ、低分子ポリアニオン化糖誘導体(スクロース8硫酸)を含むリポソームで認められた(実施例15)。
本発明の別の態様に従って、本発明のリポソーム組成物は、本発明のリポソーム組成物および担体(例えば、薬学的に許容される担体)を含む薬学的組成物として提供され得る。薬学的に許容される担体の例は、通常の生理食塩水、等張デキストロース、等張スクロース、リンゲル液、およびハンクス液である。保存安定性に最適なpHを提供するよう、緩衝物質が添加され得る。例えば、約6.0〜約7.5のpH、より好ましくはpH約6.5が、リポソーム膜脂質の安定性に最適であり、捕捉物質の良好な保持を提供する。典型的に2〜20 mM濃度のヒスチジン、ヒドロキシエチルピペラジン-エチルスルホン酸(HEPES)、モルフォリポ(morpholipo)-エチルスルホン酸(MES)、コハク酸、酒石酸、およびクエン酸は、例示的な緩衝物質である。他の適切な担体には、例えば、水、緩衝水溶液、0.4% NaCl、0.3%グリシンなどが含まれる。例えばゼラチン、アルブミン、デキストラン、またはポリビニルピロリドンなどのタンパク質、炭水化物、または高分子安定剤および張度調整剤も添加され得る。組成物の張度は、グルコースまたはより不活性な化合物(ラクトース、スクロース、マンニトール、またはデキストリン)を用いて、0.25〜0.35 mol/kgという生理的レベルに調節され得る。これらの組成物は、従来の周知の滅菌法により、例えば濾過により滅菌され得る。得られた水溶液は、使用のために包装され得るか、または無菌条件下で濾過されて凍結乾燥され得り、凍結乾燥調製品は投与前に無菌水性媒体と混合される。
薬学的リポソーム組成物はまた、pH調整剤および緩衝剤、張度調整剤など(例えば、酢酸ナトリウム、乳酸ナトリウム、塩化ナトリウム、塩化カリウム、塩化カルシウムなど)のような、生理的条件に近づけるために必要な他の薬学的に許容される補助剤を含み得る。さらに、リポソーム懸濁液は、保存の際にフリーラジカル損傷および脂質過酸化損傷から脂質を保護する脂質保護剤を含み得る。αトコフェロールなどのフリーラジカル失活剤、およびフェリオキサミンなどの水溶性鉄特異的キレート剤が適している。
液体薬学的製剤中の本発明のリポソームの濃度は、大きく(すなわち、通常約0.05重量%未満または少なくとも約2〜10重量%から、30〜50重量%ほどまで)異なり得り、選択した特定の投与形態に従って、主に液量、粘度などにより選択されることになる。例えば、治療に付随する液量を減らすために濃度を高めることができる。これは、アテローム性動脈硬化関連うっ血性心不全または重症高血圧を有する患者において特に好ましいと考えられる。または、刺激性脂質から構成されるリポソーム薬学的組成物は、投与部位における炎症を軽減するために、低濃度になるよう希釈することができる。
投与するリポソーム薬学的組成物の量は、リポソームの内部に捕捉されている特定の治療用物質、治療する疾患状態、使用するリポソームの種類、および臨床医の判断に依存することになる。一般に、投与するリポソーム薬学的組成物の量は、特定の治療用物質の治療的有効量を送達するのに十分である。
治療的有効量を送達するために必要なリポソーム薬学的組成物の量は、薬物試験の分野において一般的である日常的なインビトロおよびインビボ方法によって決定され得る。例えば、D.B.Budman, A.H.Calvert, E.K.Rowinsky (editors). Handbook of Anticancer Drug Development, LWW, 2003を参照されたい。様々な治療用物質の治療的有効量は当業者に周知であり;本発明によれば、本発明の薬学的リポソーム組成物によって送達される治療用物質により、その日常的な非リポソーム製剤で同量の治療用物質を投与することによって得られる活性と少なくとも同等であるか、またはその活性よりも2倍、4倍、もしくは10倍高い活性が提供される。典型的には、本発明のリポソーム薬学的組成物の投与量は、治療用物質約0.005〜約500 mg/キログラム体重、より頻繁には治療用物質約0.1〜約100 mg/kg体重の範囲である。
典型的には、本発明のリポソーム薬学的組成物は、液体溶液または懸濁液のいずれかの局所剤または注射剤として調製される。しかし、注射前に液体溶媒で溶液または懸濁液とするのに適した固体形態もまた調製され得る。組成物はまた、当技術分野で周知の方法に従って、腸溶性錠剤またはゲルカプセルに製剤化され得る。
本発明のリポソーム組成物は、治療する状態または損傷に依存し得る、医学的に許容される任意の方法によって投与され得る。可能な投与経路には、筋肉内、皮下、静脈内、動脈内、腹腔内、関節内、硬膜外内、くも膜下腔内、またはその他のような非経口経路による注射、および経口、経鼻、点眼、経直腸、腟内、局所、または経肺(例えば、吸入による)が含まれる。本発明に従って製剤化されたリポソーム薬物を中枢神経系の腫瘍に送達するには、腫瘍へのリポソームの直接的な緩徐型徐放性頭蓋内注入(運搬促進送達またはCEO)が特に有利である。Saito, et al., Cancer Reseearch, vol.64, p. 2572-2579, 2004;Mamot, et al., J. Neuro-Oncology, vol. 68, p. 1-9, 2004を参照されたい。組成物はまた、組織表面に直接適用され得る。例えば蓄積注射または侵食性埋込錠のような手段による、徐放投与、pH依存的放出投与、または他の特定の化学的条件もしくは環境条件による放出投与もまた、本発明に明確に含まれる。
以下の実施例は、本発明を任意の方法、形状、または形態で明確にまたは暗黙に例証することを意図するものであって、限定することを意図していない。これらは、使用することができる典型的なものであるが、当業者に周知である他の手順、方法、または技法を使用することも可能である。
実施例1. 置換アンモニウム塩溶液の調製
薬物(例えば、ドキソルビシン)をリポソーム内に充填するのに有用な硫酸トリアルキルアンモニウムおよび硫酸ジアルキルアンモニウム溶液を、硫酸を0.25 Mの濃度になるよう水で希釈し、次いで種々のアミンのうちの1つで硫酸溶液を滴定することによって調製した。本実施例で使用した置換アミンは、トリエチルアミン、トリメチルアミン、ジメチルアミン、ジエチルアミン、またはジエタノールアミンであった。アミンを添加した後、得られた溶液を最終濃度0.2 Mの置換アンモニウム塩になるよう希釈した。露点浸透圧計を用いて、モル浸透圧を測定した。得られた置換アルキルアンモニウム硫酸塩溶液の特性を以下の表1に示す。
(表1)種々の硫酸ジアルキルアンモニウムおよび硫酸トリアルキルアンモニ溶液の特性
Figure 0005665950
実施例2. ジアルキルアンモニウムおよびトリアルキルアンモニウム塩を捕捉したリポソームの調製、ならびにこれらのリポソーム内への物質の充填
ジステアロイルホスファチジルコリン(DSPC)、コレステロール(Chol)、およびN-(メトキシ-ポリ(エチレングリコール)-オキシカルボニル)-ジステアロイルホスファチジルエタノールアミン(PEG-DSPE)(分子量2,000のポリ(エチレングリコール)から調製)を3:2:0.015のモル比でクロロホルム中に共溶解し、回転蒸発により55〜60℃でクロロホルムを除去した。次いで、実施例1に記載した各硫酸ジアルキルアンモニウムまたは硫酸トリアルキルアンモニウムのうちの1つの溶液中で、乾燥脂質フィルムを60℃で30分間水和させた。脂質懸濁液を、ポアサイズ0.1μmを有する2枚重ねポリカーボネートトラックエッチ膜フィルター(Corning Nuclepore)を通して、加圧下で押し出した。準弾性光散乱により測定したリポソームの大きさは約110〜120 nmであった。架橋デキストランゲル(Sephadex G-75、Amersham Pharmacia Biotechnology)カラムを使用し、HEPES緩衝生理食塩水、pH 7.2〜7.4で溶出してゲル濾過することによって、封入されなかったトリアルキルアンモニウムまたはジアルキルアンモニウム塩をリポソームの外部媒体から除去し、リポソームをカラムの空隙容量画分中に回収した。塩酸ドキソルビシンUSP(重量割合でドキソルビシン1に対してラクトース5を含む凍結乾燥粉末)を、150μg薬物/μmolリポソームリン脂質の濃度でリポソームに添加した。混合物を55℃で45分間インキュベートし、氷上で10分間冷却し、次いでSephadex G-75カラムを使用してHEPES緩衝生理食塩水、pH 7.4で溶出するゲル濾過クロマトグラフィーにより、封入されなかった薬物を除去した。遊離ドキソルビシンの存在(ゆっくりと移動する赤色バンドの出現によって特徴づけられる)は視覚的に検出されなかった。精製されたドキソルビシン充填リポソームを、リン脂質およびドキソルビシンについてそれぞれ実施例70および71(分光光度法)に従って解析した。結果として得られた薬物充填効率を表2に示す。
(表2)ジアルキルアンモニウムおよびトリアルキルアンモニウム塩溶液を捕捉しているリポソーム内へのドキソルビシンの充填
インプット薬物/リン脂質比150μg/μmol
Figure 0005665950
実施例3. 様々なジアルキル-、トリアルキル-、および複素環-置換アンモニウム硫酸塩を含むリポソームの調製、ならびにこれらのリポソーム内へのドキソルビシンの充填
市販のアルキル置換、ヒドロキシアルキル置換、および複素環アミンを使用して、実施例1のように置換アンモニウム硫酸塩溶液を調製した。リポソームは、脂質フィルム水和段階の代わりに、ストレートの脂質をエタノール中に溶解し(リン脂質50μmolにつきエタノール約100μl)、生成される脂質分散液が約10容量%のエタノールを含むように置換アンモニウム塩溶液と60〜65℃で混合すること以外は、実施例1の通りに形成した。
ドキソルビシンの充填は、155μg薬物/μmolリポソームリン脂質(PL)の比率でドキソルビシン溶液(HEPES緩衝生理食塩水pH 6.5中に2 mg/ml)をリポソームに添加し、湯浴中で58℃で45分間加熱することによって達成した。得られたリポソームは、実施例1の通りに、残存する非封入ドキソルビシンから分離し、薬物および脂質含量について解析した。結果を表3に示す。
(表3)立体障害型の置換アルキル、ジアルキル-、トリアルキル-、および複素環アンモニウム塩溶液を捕捉しているリポソーム内へのドキソルビシンの充填
Figure 0005665950
実施例4. ポリリン酸トリエチルアンモニウム(TEA-Pn)溶液の調製
1分子当たり13〜18のリン酸単位を有する線状ポリ(リン酸)ナトリウム(リン酸塩ガラス;CALGON(登録商標)、Sigma Chemical Companyから入手)を、約1.3 Mリン酸の濃度になるよう水に希釈した。120 mLの水素型のスルホン酸化ポリスチレン-ジビニルベンゼン共重合体カチオン交換樹脂ビーズ(Dowex 50Wx8-200、Dow Chemical Co.)が充填されたカラムに、この溶液を通した。カラムは樹脂を水素型にするために3〜3.6 M HCl水溶液で予め平衡化し、脱イオン水で中性pHになるまで洗浄した。ポリリン酸ナトリウム溶液15 mlをカラムに供し、脱イオンH2Oで溶出した。伝導度検出器を用いて、カラム溶離液をモニターした。伝導度ピークに相当するカラム流出物を、ストレートのトリエチルアミンでpH 5.5〜6.0になるまで滴定した。溶液を、ナトリウム感受性ガラス電極を用いる電位差測定法により残存するナトリウムに関して、および実施例1におけるような無機リン酸アッセイを用いてリン酸含量について解析した。1%未満の残存ナトリウム含量を有する溶液を、最終リン酸濃度0.55 Mになるよう希釈した。溶液は典型的には、TEA濃度0.52〜0.55 M、pH 5.5〜6.0、およびモル浸透圧430〜480 mmol/kgを有する。
実施例5. リポソーム調製物からの非捕捉ポリリン酸塩の除去
Kirpotin, et al., Biochemistry 36:66-75, 1997に従って、蛍光マーカー8-ヒドロキシピレントリスルホン酸を捕捉するリポソーム(大きさ120 nm)を調製し、ポリリン酸ナトリウム溶液と混合した。混合物を、架橋デキストランビーズ(Sephadex G-75)、6%アガロースビーズ(Sepharose 6B-CL)、または4%アガロースビーズ(Sepharose 4B-CL)(すべてAmersham Pharmaciaによる)を含むサイズ排除カラムに添加し、MES-デキストロース緩衝液(pH 5.5)で溶出した。溶出液を、Bartlett (1959)のリン酸アッセイを用いてリン酸含量について、および分光蛍光法によってリポソーム含量について解析した。検討したゲルクロマトグラフィー担体のうち、Sepharose CL-6Bが、試料/カラム総容積比13でリポソームからのポリリン酸の完全な分離を提供した。
実施例6. スクロース8硫酸トリエチルアンモニウム(TEA-SOS)溶液の調製
スクロース8硫酸ナトリウム(当量144.8)は、すべてのヒドロキシル基が硫酸エステルを形成しているスクロース誘導体のナトリウム塩である。スクロース8硫酸(SOS)ナトリウム塩は、Toronto Research Chemicals、カナダ、トロントから購入した(p/n S699020)。最終濃度約2.5 Nの硫酸基が生じるよう、スクロース8硫酸ナトリウム6グラムを脱イオン水16.57 mlに溶解した。この溶液を、実施例4の通りにイオン交換によって処理した。次いで、イオン交換カラム流出液として得られたスクロース8硫酸溶液を、ストレートのトリエチルアミンでpH 5.7(中和点)になるまで滴定し、溶液のpHおよびモル浸透圧を測定した。得られた溶液は、計算上のトリエチルアンモニウム濃度0.643 M、pH 5.7、およびモル浸透圧530 mmol/kgを有した。残存ナトリウムの存在は、電位差測定法によって検出されなかった(0.1%未満)。
実施例7. 置換アンモニウム塩を用いてイリノテカン(CPT-11)を充填したリポソーム:調製、および血漿存在下におけるインビトロ薬物放出
本実施例では、硫酸、クエン酸、ピロリン酸、三リン酸、および線状ポリリン酸(13〜18mer)を、リポソームに捕捉される置換アンモニウム塩溶液中のアニオンとして検討した。リン酸ポリマーは、生分解性であることから、またポリリン酸が他の合成高分子アニオン(ポリアクリル酸、硫酸デキストランなど)とは対照的に細胞中に天然に見出されることから、選択した。また、低分子量ポリリン酸の粘度は他のポリマーの粘度よりも低く、ポリリン酸をより加工しやすくした。
以下の材料を塩溶液の調製に使用した。
1. ポリリン酸ナトリウム、NaO-[PO3Na]n-Na、n=13〜18、Sigmaから購入(製品番号P-8510、「リン酸ガラス、実用等級」、ヘキサメタリン酸ナトリウムとして、またはブランド名CALGONによっても知られる);
2. トリポリリン酸5ナトリウム、Na5P3O10、Sigmaから購入(製品番号T-5883);
3. ピロリン酸4ナトリウム十水和物、Na4P2O7・10H2O、Sigmaから購入(製品番号P-9146);
4. Sigmaから購入したイオン交換樹脂Dowex 50Wx4(4%架橋スルホン酸化ポリスチレン樹脂、100〜200メッシュ)(製品番号50X4-200)またはSigmaから購入したイオン交換樹脂Dowex HCR-W2(8%架橋スルホン酸化ポリスチレン樹脂、50〜100メッシュ)(製品番号I-8880)を互換的に使用した。樹脂は以下の順でデカンテーションにより洗浄した:脱イオン水で3回、1N HClで2回(容量で、樹脂の3倍過剰)、水で3回、1N NaOHで2回、水で3回、1N HClで3回、および水で3回。デカンテーション後、樹脂はH+型であった。
5. トリメチルアミン(TMA)、水溶液40%、Aldrich Chemical Co.による(製品番号43, 326-8)。濃度は、酸滴定によって約5.9 Nであると確証された。
6. トリエチルアミン(TEA)、99%、HPLC等級、Fisherによる(製品番号04884)。酸滴定による濃度は6.9〜7.1 Nであった。
水は逆浸透、イオン交換、および有機物除去によって精製し、有機物フリー「16〜18 Mオーム」品質を達成した。
ピロリン酸、三リン酸、およびポリリン酸塩の水溶液を、イオン交換法によって調製した。ポリリン酸ナトリウム(水25 mL中3 g)、ピロリン酸ナトリウム(水27 mL中4 g)、またはポリリン酸ナトリウム(水30 mL中6.7 g)を、上記のように調製したイオン交換樹脂100 mL(総容積)を含むカラムに添加した。カラムを水で溶出し、画分を回収した。酸性pH(pH<3)を示す画分をプールした。リン酸を含むプール画分の0.5-mL分割量を三つ組にて、水20 mLで希釈し、pH 4.5〜5.0の終点まで0.100 N NaOHで滴定し(Fisher分析用溶液)、規定度を決定した。イオン交換後のプール画分を、(トリメチルアンモニウム塩を得るために)トリメチルアミンでpH 5.4〜5.5になるまで滴定した。滴定後、溶液を必要に応じて希釈して、0.5 Nに近い最終濃度のトリメチルアンモニウムを得た。
硫酸トリメチルアンモニウムおよび硫酸トリエチルアンモニウムは、濃(17.9 M)硫酸1.39 mLを水80 mLで希釈し、pHメーターの管理下でこの希釈溶液をストレートのトリエチルアミンまたはトリエチルアミン水溶液で当量点(pH 5.1〜5.5)になるまで滴定することによって調製した。容量が100 mLになるように水で調整した。
クエン酸トリメチルアンモニウム溶液は、Sigmaによるクエン酸一水和物ACS(製品番号C-1909)1.572 gを水20 mLに溶解し、この溶液をトリメチルアミン水溶液で当量点になるまで滴定することによって調製した。容量が25 mLになるように水で調整した。
溶液は、陽圧により0.2-μm酢酸セルロースフィルターを通して濾過した。溶液のモル浸透圧およびpHを、それぞれ蒸気圧浸透圧計およびガラス-カロメル電極pHメーターを用いて測定した。リン酸溶液中のアニオンの規定度は、酸加水分解(5分、100℃、3N H2SO4)後に、青色リンモリブデン酸分光光度アッセイ(実施例70を参照のこと)により決定した。アニオン規定度は、pH 5.5で実質的にイオン化される酸性機能基のみを考慮に入れた。カチオン規定度は、添加したトリアルキルアンモニウム塩基に基づいて決定した。得られた溶液は以下の特性を有した(表4)。
(表4)リポソーム内にCPT-11を充填するための置換アンモニウム塩溶液の特性
Figure 0005665950
コレステロールおよびDSPCは、Avanti Polar Lipids、米国、アラバマ州、アラバスターから購入した。PEG-DSPE(PEG分子量2,000)は、Shearwater Polymers、米国、アラバマ州、ハンツビルによる。重量比3:1:0.1(モル比約3:2:0.03)のDSPC、コレステロール、およびPEG-DSPEを、60 mg/mL DSPCでクロロホルム(Fisher;至適等級、アミレンで安定化)に溶解した。チューブ当たりDSPC 30 mg(0.5 mL)で溶液をPyrexチューブに分注し、回転蒸発器を用いて減圧にて、60℃でゆっくりと蒸発させた。脂質フィルムを、室温で30〜60分間、真空下で(100ミクロン水銀、油ポンプ)乾燥させた。
乾燥脂質フィルムを、上記の塩水溶液中で60℃で15〜20分間穏やかに振盪することにより水和させた。脂質は乳状の懸濁液(多重膜小胞)を形成した。この乳状懸濁液を、5サイクルの、ドライアイスおよびイソプロパノール混合物中での凍結(-80℃、3分間)、ならびに60℃の水浴中での3分間の融解に供した。次いで、60℃に加熱した手動操作往復押し出し機(Avanti Polar Lipids)を用いて、脂質懸濁液を、2枚重ねポリカーボネート膜フィルター(Nucleopore、Whatman、ポアサイズ0.1μm)を通して10回(二重ストローク)押し出した。
押し出されたリポソームは60℃で5分間保持し、氷水中(0〜4℃)で5分間急冷した。次いで、Sephadex G-75でのゲルクロマトグラフィーにより、リポソームを、勾配形成塩溶液から充填緩衝液MES-デキストロース(50 g/LデキストロースACS、0.975 g/L 2-(N-モルフォリノ)-エタンスルホン酸(MES)、およびpHを6.4にするための十分量の5 M NaOH)中に分離した。リポソームは空隙容量画分(カラム総容積の約30%)に出現する。
固体1 mg当たりCPT-11塩基0.860 mgを含むCPT-11(塩酸イリノテカン)調製物を、0.001 N HClに溶解して、16.5 mg/mL CPT-11塩基という保存溶液を作製した。この溶液を、リポソームリン脂質1μmol当たり150μg CPT-11という比率になるよう、MES-デキストロース緩衝液中のリポソームと混合した。混合物を水浴中で時々穏やかに撹拌しながら(およそ5分おきに)55℃で30分間インキュベートし、次いで氷水中(0〜4℃)で急冷した。MES-デキストロースを溶離液として使用して、Sephadex G-75でのゲルクロマトグラフィーにより、リポソームを非封入薬物から分離した。分光光度アッセイ(実施例71)により封入薬物を測定し、抽出アッセイ(実施例70)を用いてリン脂質を測定した。
このようにして得られたCPT-11充填リポソームからの、50%ヒト血漿の存在下におけるインビトロ薬物放出を、以下のように調べた。凍結ヒトドナー血漿を37℃で融解し、14,500 gで10分間遠心分離し、次いで0.45-μm酢酸セルロースシリンジフィルターを通して濾過した。CPT-11を充填したリポソーム調製物は、0.2-μm界面活性剤フリー酢酸セルロース(SFCA)滅菌シリンジフィルターを通して滅菌した。滅菌1.5-mL共重合体Eppendorfチューブ中で、リポソーム0.5-mLを血漿0.5 mLと混合し、密封し、振動プラットホーム上で37℃で24時間インキュベートした。空試料は、リポソームの代わりに滅菌MES-デキストロース0.5 mLを含んだ。144 mM NaCl、5 mM HEPES-Na、pH 7.4緩衝液(HBS-5)を用いるビーズ架橋2%アガロースゲル(Sepharose CL-2B、Pharmacia;総容積10 mL)でのゲルクロマトグラフィーにより、リポソームを単離した。リポソームは空隙容量画分に出現するのに対し、血漿タンパク質および放出された薬物(存在する場合)はゲルによって遅延された。リポソーム画分をCPT-11およびリン脂質について解析し、薬物/リン脂質比(アウトプット比)を決定した。空試料(血漿のみ)の読み取り値を、リポソーム含有試料の読み取り値から減算した。アウトプット薬物/脂質比をインプット薬物/脂質比(血漿と共にインキュベートする前の薬物/脂質比)で割って、インキュベーション後にリポソーム中に残存する薬物の割合を決定した。充填および放出データを表5に要約する。
(表5)第三級アルキルアンモニウム塩を用いたCPT-11のリポソーム内への充填、およびヒト血漿の存在下における薬物のインビトロ放出
Figure 0005665950
実施例8. ピロリン酸、三リン酸、ポリリン酸、クエン酸、および硫酸トリアルキルアンモニウム塩を用いてCPT-11を充填したリポソームのインビボ安定性
カンプトテシンリポソームはインビトロにおいて血漿中への許容可能な薬物漏出を示し得るが、薬物はインビボにおいてより迅速に血液循環中に漏出する可能性がある。したがって、マウスにおいて単一時点アッセイを用いることで、一連のCPT-11リポソーム製剤を、インビボにおける血液循環中の薬物安定性に関してスクリーニングした。
以下の変更を加えて、実施例6に記載した通りにリポソームを調製し、CPT-11を充填した。Shearwater PolymersのPEG-DSPEを使用する代わりに、Avanti Polar Lipidsによる同様のPEG-DSPEを使用した。血液/組織試料中のリポソーム脂質マトリックスの定量化を提供するため、非交換性放射性標識、[3H]-コレステリルへキサデシルエーテル([3H]-CHE;(Amersham、米国)を、0.25 mCi/mmolリン脂質の量で脂質のクロロホルム溶液に添加した。脂質溶液をDSPC 12 mg/チューブでPyrexチューブに分注し、回転蒸発/真空乾燥により脂質フィルムを形成した。脂質フィルムを、勾配形成置換アンモニウム塩溶液0.7 mL中で水和させた。リン酸含有塩を捕捉したリポソーム中の脂質濃度は、放射能シンチレーション計数により決定した。リン酸含有塩を捕捉していない調製物はまた、実施例70に記載される通りに抽出なしでリン脂質に関してアッセイし、脂質放射能標準物質として使用した。充填のために調製したリポソーム-薬物混合物の一部を確保しておき、充填する前の、添加したCPT-11とリポソーム脂質の充填前比(「インプット比」)を確認するためにアッセイした。リポソームの大きさの分布の体積平均化平均値および標準偏差は、ガウスモデルを用いて準弾性光散乱(QELS)により決定した。これらのリポソームの特性を表6に要約する。
(表6)インビボ安定性試験用の[3H]-CHE標識リポソーム内へのCPT-11充填の特徴づけ
Figure 0005665950
6週齢雌CD-1マウス(Charles River)に、二つ組で、これらのリポソームCPT-11製剤を10 mg/kg用量で尾静脈注射した(0.2 mg CPT-11/マウス)。8時間後、マウスに麻酔をかけ、心臓切開穿刺によりマウスを放血させた。血液をヘパリン化シリンジ(10〜20μlの1000 U/mlヘパリンUSP)中に回収し、0.04% EDTA(Gibco BRL)を含むリン酸緩衝生理食塩水(PBS) 0.4 mlを含む秤量済みのチューブに移し、氷上で保持した。チューブを秤量して血液試料の重量を決定し、9,000 gで5分間の遠心分離によって血液細胞を分離し、PBS希釈血漿を含む上清を、薬物およびリポソーム脂質アッセイのために保存した。CPT-11は、蛍光分析アッセイ(実施例71)により定量化した。リポソーム脂質は、消光補正した放射能シンチレーション計数により定量化した。リポソームおよびリン脂質-放射能標準物質を、血漿試料と平行して計数した。注射したリポソームの薬物/放射能比で血漿試料中の薬物/放射能比を割ることで、封入されたままの薬物の割合を計算した。遊離CPT-11は血液から即座に排除され(実施例69を参照のこと)、また[3H]-CHEは脂質交換に対して安定であることが周知であることから、アッセイの読み取り値はリポソームCPT-11および脂質の血中含量を示すと見なされた。注射したボーラスの100%が循環に入った;血液量はマウス体重の6.3%である、およびヘマトクリット値が45%であると仮定して、循環中に残存している、注射した脂質用量に対する割合(% I.D.)を計算した。結果を表7に要約する。
(表7)マウスにおける注射後単一時点(8時間)での、CPT-11封入のインビボ安定性およびCPT-11充填リポソームの循環寿命
%I.D.、注射した用量の%
Figure 0005665950
すべての調製物が、注射前レベルの70〜80%という、インビボにおける血中での8時間後の薬物封入レベルを示したが、ポリリン酸を含むリポソームが最も安定であった(薬物封入は約100%に保たれる)。
実施例9. ポリリン酸リエチルアンモニウム(riethylammonium)を用いて調製したCPT-11リポソームの血中薬物動態
トリエチルアンモニウムポリリン酸塩を用いたリポソームCPT-11製剤を、実施例3に概説したように調製した。脂質‐DSPC、コレステロール、およびN-(メトキシ-ポリ(エチレングリコール)(M.w. 2000)-オキシカルボニル)-DSPE(PEG-DSPE)(すべてAvanti Polar Lipids, Inc.による)−を乾燥粉末としてモル比3:2:0.015で混合し、100%エタノール(USP等級、約0.15 mL/脂質100 mg)に62〜65℃で溶解した。薬物動態研究のため、3H-コレステリルへキサデシルエーテル(3H-CHE、Amersham Pharmaciaから入手)を、非交換性放射性脂質標識として、0.5 mCi/mmolリン脂質の量で脂質に添加した。TEA-Pnの水溶液(0.5 Mトリエチルアンモニウム、pH 5.7〜6.2)を実施例4の通りに調製した。TEA-Pn溶液(添加したエタノールの10倍量)を脂質溶液と60〜65℃で混合し、多重膜小胞の均一な乳状懸濁液が形成されるまでこの温度で撹拌した。この懸濁液を、アルゴン圧押し出し機(Lipex Biomembranes)を用いて、60〜65℃で、ポアサイズ100 nmを有する2枚重ねポリカーボネートトラックエッチフィルター(Corning Nuclepore)を通して15回押し出し、得られた単層リポソームを氷中で急冷し、その後外界温度に到達させた。エタノールおよび取り込まれなかったポリリン酸塩は、Sepharose CL-4BカラムにてMES-デキストロース緩衝液(5 mM MES、50 g/Lデキストロース、NaOHでpHを6.5に調整)で溶出するゲルクロマトグラフィーによって除去した。
水中に20 mg/mLイリノテカン塩基を含むCPT-11(塩酸イリノテカン)の保存溶液を、150〜200 mg/mmolリン脂質の薬物/脂質比でリポソームに添加し、混合物を時々撹拌ながら60〜62℃で45〜60分間インキュベートした。インキュベーション混合物を急冷し、0℃で10分間インキュベートし、次いで外界温度に到達させた。生理的イオン強度に調整し、また(リポソーム内部に封入されている薬物とは対照的に)膜結合CPT-11の除去を改善するために、1/20量の2.88 M NaClを添加した。Sephadex G-25またはG-75カラム(Amersham Pharmacia)にてHBS-6.5緩衝液(5 mM 2-(4-(2-ヒドロキシエチル)-ピペラジノ)-エチルスルホン酸(HEPES)、144 mM NaCl、pH 6.5)で溶出するゲルクロマトグラフィーにより、封入されなかった薬物を除去した。空隙容量に溶出されたリポソーム画分を混合し、0.2ミクロン濾過によって滅菌し、使用するまで4〜6℃で保存した。リポソームは、実施例7の通りに、脂質濃度、薬物濃度、および粒径によって特徴づけた。リポソームは、平均の大きさ108 nm、および139±18 mg CPT-11塩基/mmolリン脂質というCPT-11含量を有した。
血中のリポソーム脂質およびリポソーム薬物の寿命、ならびにインビボにおけるリポソームからの薬物放出の特徴を、中心静脈カテーテルを留置した雌Sprague-Dawleyラット(190〜210 g)で試験した。3H-CHE標識イリノテカンリポソームの0.2〜0.3 mLボーラス(0.05 mmolリン脂質、または7〜8 mg CPT-11/kg体重)をラットに注射した。血液試料(0.2〜0.3 mL)を、ヘパリン処理シリンジを用いて、注射後様々な時点で採取した。リン酸緩衝生理食塩水を用いて、採取した血液量に補充した。血液試料を0.04% EDTAを含む氷冷PBS 0.3 mlで希釈し、秤量し、遠心分離によって血液細胞を分離した。上清液を回収し、実施例71の蛍光分析手順を用いてCPT-11に関して、および従来法を用いてシンチレーション放射能計数によりリポソーム脂質標識に関してアッセイした。既知の薬物および3H-CHE-脂質濃度を有するリポソーム調製物を、標準物質として使用した。放射能標準物質は、消光を明らかにするために等量の希釈ラット血漿を含む。血液量(ml)は体重(グラム)の6.5%、およびヘマトクリット値は40%と仮定して、血中のCPT-11およびリポソーム脂質の量を計算した。注射した用量の%(% I.D.、%ID)として血中の脂質および薬物の総量を表し、注射後の時間に対してこれをプロットした。リポソーム中に残存している薬物の割合は、注射したリポソームの薬物/脂質比(100%とする)で血液試料中の薬物/脂質比を割って計算した。プロットは一般に、単一指数関数的速度論との良好な一致(半対数目盛りで直線性)を示したため、薬物、脂質、およびリポソームからの薬物放出の血中半減期は、Microsoft EXCELコンピュータプログラム(Microsoft Corp.、米国)のTRENDオプションを使用して、単一指数関数的減衰方程式へのデータの最良適合から計算した。結果を図1に示す。最良適合パラメータから、脂質および薬物の血中半減期は、それぞれ16.4時間および6.61時間であった。これらの条件下では、遊離のCPT-11は循環から非常に迅速に排除される(実施例69を参照のこと)。
血中薬物/脂質比から、リポソームからのCPT-11放出の二相性特性が明らかになった(図2)。最初の24時間では、追跡した薬物放出は時間に対して線形であり(R=0.992)、ゼロ次放出速度論の証拠が提供された。24時間の時点で薬物の約75%が放出されて初めて、さらなる放出は線形ではなくなった。24時間の間、リポソームは最初の充填量の約3.6%/時間という一定速度で薬物を放出した。したがって、薬物の50%が約14時間の期間をかけて放出された。薬物のゼロ次放出は、薬物放出の速度が時間に対して一定のままであるため、持続性製剤における魅力的な性質である。
実施例10. ポリリン酸トリエチルアンモニウムを用いて調製したCPT-11リポソームのヌードマウスにおける乳癌異種移植片に対する抗腫瘍効果
CPT-11リポソームの抗腫瘍効果を、C-ErbB2(HER2)受容体を過剰発現するエストロゲン依存性乳管腺癌であるヒト乳癌BT-474のモデルにおいて試験した。BT-474は、アメリカンタイプカルチャーコレクション(メリーランド州、ロックビル)から入手した。より高い腫瘍増殖速度を有するBT-474亜株を、以下に記載するように産生させた急成長する異種移植片腫瘍小結節から確立した。細胞は、T-150フラスコ中、10%ウシ胎児血清、0.1 mg/mL硫酸ストレプトマイシン、および100 U/mlペニシリンGを添加したRPMI-1640培地でインビトロで増殖させ、毎週1:3に分割した。NCR nu/nu雌マウス(4〜6週齢;Taconic Farms)に、60日徐放性0.72-mg 17β-エストラジオール埋込錠(Innovative Research of America, Inc.)を皮下移植し(尾の基部に)、2日後、細胞増殖培地中に2x107 BT-474細胞を含む0.1 mL懸濁液をこのマウスの背上部に皮下接種した。週に2回、触診、ならびに最長軸(長さ)および最短軸(幅)に沿った腫瘍のノギス測定によって、腫瘍増殖をモニターした。以下の式(Geran, R.I., et al., 1972 Cancer Chemother. Rep. 3:1-88)を用いて、週に2回、ノギス測定値から腫瘍の大きさを決定した。
腫瘍体積 = [(長さ) x (幅)2] / 2
接種後13日目に、腫瘍は平均の大きさが200 mm3に達し、動物を13〜15匹の3つの群にランダムに割り当てた。
リポソームCPT-11を実施例8の通りに調製した(薬物/脂質比192 mg/mmol;平均のリポソームの大きさ86.8 nm)。遊離CPT-11およびリポソームCPT-11を、5 mg/mlのCPT-11塩基となるようにMES-デキストロース媒体で希釈した。腫瘍接種後14日、18日、21日、および25日目に、動物に遊離CPT-11、リポソームCPT-11、または媒体のみを尾静脈から注射した。薬物含有製剤は注射当たり50 mg CPT-11/kgの用量で与えたが、これは、齧歯動物腫瘍モデルにおけるCPT-11研究に関する文献で報告されている用量の平均である。
処置に関連する毒性を評価するため、同様に週に2回、動物の体重を測定した。エストロゲン補充埋込錠が使い尽くされる接種後60日目まで、観察を行った。群の平均腫瘍体積を時間と共にプロットし、比較した。図3に示すように、遊離CPT-11は腫瘍増殖速度を減少させたが、リポソーム処置を施した群では腫瘍が劇的に退行した。36日目には、対照群において腫瘍は平均して3,500 mm3の最大許容の大きさに達し、46日目には、遊離薬物で処置した群において腫瘍は平均して約1,000 mm3であり、これと同じ時点において、リポソーム処置した群の動物はいずれも触診可能な腫瘍を有さなかった。
処置に関連する毒性を、動物体重の動学により評価した(図4)。いずれの群も有意な毒性を示さなかった。対照群の動物の体重は、一貫して増加していた。リポソームCPT-11を与えた動物の平均体重に、最後の処置の日に約3.3%というわずかな減少が見られた。しかし、この体重減少は回復し、動物はその予想体重に到達した。平均体重のこの減少は、処置前の体重と比較したスチューデントのt検定により、統計的に有意ではなかった(p=0.274)。したがって、すべての処置が有意な毒性なしに許容された。
このように、予め捕捉されたポリアニオン性生分解性ポリマー(ポリリン酸)の立体障害置換アンモニウム塩(トリエチルアンモニウム)を介して薬物を充填することにより得られたCPT-11のリポソーム製剤は、毒性の明らかな増加なしに、血中寿命の延長、徐放特性、および試験した腫瘍モデルにおける抗腫瘍活性の増加を示した。
実施例11. 予め捕捉されたトリエチルアンモニウム塩を用いて調製したCPT-11充填リポソームの比較評価:リポソームの大きさ、薬物/脂質比、および予め捕捉されたアニオンの性質の影響
一方は予めTEA-Pnを捕捉したリポソーム、およびもう一方は予めTEA-SOSを捕捉したリポソームを用いて、CPT-11充填リポソームの2つの原型製剤を調製した。これらのリポソームの調製は、以下の製造段階を含んだ。
1) エタノール中に共溶解することによる脂質の混合
脂質マトリックス組成物は、1,2-ジステアロイル-SN-ホスファチジルコリン(DSPC)(分子量790)3モルの割合(59.8 mol%);コレステロール(Chol)(分子量387)2モルの割合(39.9 mol%);およびN-(オメガ-メトキシ-ポリ(エチレングリコール)-オキシカルボニル)-1,2-ジステアロイルホスファチジルエタノールアミン(分子量2787)(PEG-DSPE)0.015モルの割合(約0.3 mol%)からなった。DSPCおよびPEG-DSPEは、Avanti Polar Lipids、アラバマ州、バーミングハムから購入した。コレステロール(最高純度等級)は、Calbiochemから購入した。乾燥脂質をホウケイ酸ガラス容器中で±0.1 mgの精度で秤量し、以下の脂質分散段階に適した比率で、無水エタノールと混合した。DSPCの転移温度は高いため(55℃)、溶解は典型的には、透明な溶液が得られるまで55〜60℃で行った。
2) TEA-PnおよびTEA-SOS溶液の調製
ポリリン酸ナトリウム(n=13〜18)は、Sigma Chemical Co.によった(p/n P 8510)。スクロース8硫酸ナトリウムは、Toronto Research Chemicals、カナダ、トロントから購入した(p/n S699020)。これらの塩を秤量して水に溶解し、1.2〜2.5 N溶液を得た。H+型のアニオン交換体Dowex 50Wx8-200またはDowex HCR-W2(Sigmaから入手可能)を用いて、ナトリウム塩を遊離酸に変換した。最初に使用する前に、樹脂を、3倍量の以下の溶液と共に撹拌し、その後デカンテーションすることにより洗浄した:(1) 1.0〜1.2 M HCl水溶液、2回;(2) 水、2回;(3) 1.0〜1.2 M NaOH水溶液、2回;(4) 水、2回;(5) 1.0〜1.2 M HCL水溶液、2回。洗浄した樹脂の水中懸濁液を、ナトリウム塩溶液1 mLに対して少なくとも8 mLの充填樹脂を有するように、適切な大きさのクロマトグラフィーカラム内に重力流下で充填した。2カラム量の3.0〜3.6 M HCL水溶液を通し、その後5カラム量の水を通すか、または溶出液の伝導度が1マイクロ-Sを下回るまで水を通して、樹脂をさらに平衡化した。使用後は、以下を順次に通過させてカラムを再生し:1.〜1.2 M HCl‐3カラム量;3.0〜3.6 M HCl‐2カラム量;水‐少なくとも5カラム量、または溶出液の伝導度が1μSを下回るまで、0.2-um濾過した水中で室温で保存した。PnおよびSOSナトリウム塩溶液を、排出したカラム表面上に供し(充填樹脂量4 mlに対して約1 ml)、75〜150 mLの樹脂ベッドサイズの場合、重力下で約1〜2 ml/分の速度で流した。カラムを水で溶出した。溶出液を伝導度について試験した。10 mS以上の伝導度を有する画分を回収した。より濃縮されたポリ酸溶液が必要な場合には、勾配形成塩のいく分高い損失を犠牲にするが、回収を20〜50 mSで開始することができる。ポリリン酸の場合、低pHにおけるホスホジエステル結合の加水分解による不安定性のために、回収した溶液はアミン滴定段階まで冷却して保持する(0〜4℃)。回収した溶出液は、0.7未満(典型的に約0.4)のpHおよび伝導度約120〜200 mSを有する。任意に、低pHにおけるポリリン酸の安定性のために、アミン滴定段階は即刻行う。FisherのHPLC等級トリエチルアミン(99.5+%純度)(p/n 04884)を用いて、イオン交換から得られた酸溶液を滴定した。ストレートなTEAの規定度は、電位差滴定により決定した。TEAの0.100-mL分割量(0.100 ml)を、三つ組で、水20 mlに入れた。この分割量を、0.1 N HCl標準溶液で5.5〜6.0のpH終点(ガラス電極)になるまで滴定した。計算上の規定度(7.07 N)は、理論値7.17 Nに近かった。測定量のポリリン(Pn)酸またはスクロース8硫(SOS)酸溶液を、pH(ガラス)電極の管理下でストレートなTEAで滴定した。アミンを分散させるために、徹底的な撹拌を必要とした。滴定終点はpH 5.6〜6.2であった。添加したTEAの量を正確に記録した。滴定した溶液の量を測定し、添加したTEA量および規定度に基づいてTEAの濃度を計算した。以下に示すように、必要とされる0.55±0.05 Nまたは0.65±0.03 NにTEA濃度を調整するため、必要に応じて水を添加した。得られたTEA-PnまたはTEA-SOS溶液中の残存ナトリウムの量を、ナトリウム選択的ガラス電極(Corning)を用いて電位測定法によって決定した。溶液1 mLを水19 mLで希釈し、電極製造業者の手引書に従って、増分法によりナトリウム濃度を決定した。残存ナトリウムの量は1 mM未満、典型的には0.5 mM未満であった。得られたTEA-PnまたはTEA-SOS溶液は、陽圧送を用いて0.2μm酢酸セルロース滅菌フィルターを通した。溶液の最終pHおよびモル浸透圧を測定し、記録した。pH測定にはpHカロメルマイクロ複合全ガラス電極を使用し、またモル浸透圧測定には蒸気圧/露点浸透圧計を使用する。溶液は、使用するまで冷却して保存した。
3) 脂質のエタノール溶液を勾配形成緩衝液と混合することによる、勾配形成緩衝液中の脂質分散液の調製
エタノール混合法を用いて、脂質を勾配形成塩溶液中に分散させた。全段階を60〜65℃で行った。耐薬品性ガラス梨型フラスコまたはチューブ中で、脂質を、約0.5〜0.6 M DSPCの濃度で100%エタノールUSP中に溶解した。勾配形成塩溶液(TEA-PnまたはTEA-SOS)を60〜65℃に予熱し、エタノール脂質溶液に速やかに添加し、旋回および/またはボルテックスすることで完全に混合した。エタノールの最終量は約10容量%であった。0.1 mmolリン脂質を超える規模の調製物の場合には、得られた懸濁液を60〜65℃の回転蒸発器に設置し、気泡形成の終了によって明らかになるように、エタノールの発生が停止するまで、回転しながら真空にした。0.1 mmolリン脂質またはそれ以下の規模の場合には、この段階で脂質分散液からエタノールを除去しなかった。得られた脂質懸濁液は60〜65℃で保持し、押し出し段階に直ちに使用した。
4) 規定孔の膜を通した脂質分散液の連続押し出し
脂質懸濁液量が1 mLまでの場合には、Avanti Polar Lipidsによって提供される手動操作往復押し出し機を使用した。押し出し機には19 mmトラックエッチフィルター膜が装填され、また金属加熱ブロックにより温度が自動調節される。1〜10 mL量の場合には、Lipex Biomembranesの自動調温ガス圧作動性一方向流動押し出し機を使用した。押し出し機には、25 mmフィルター膜を装填する。脂質懸濁液を、公称ポアサイズ100 nm、80 nm、または50 nmを有する一連の2枚重ねポリカーボネート膜フィルター(Corning-NucleporeおよびOsmonics Corp.のフィルターが同等に適していた)を通して、必要に応じて手送りまたはアルゴンガス圧により、60〜65℃で繰り返し押し出した。リポソームの大きさの影響が関心対象である場合には、押し出しは100 nm、80 nm、または50 nm段階で終了した。使用したフィルターの正確な種類および押し出し回数は、各実験に関して以下に示す。押し出されたリポソームは60〜65℃で約15分間保持し、氷浴中で2〜4℃まで急冷した。氷浴中に15分置いた後、リポソームを室温に到達させた。
5) リポソーム外勾配形成緩衝液の除去およびリポソームの薬物充填緩衝液中への移行
サイズ排除クロマトグラフィー(SEC)を用いて、封入されなかった勾配形成塩を除去し、リポソームを薬物充填緩衝液中に移した。スケールアップ製造では、平行流濾過、中空繊維透析、または他の拡大縮小が可能な段階を用いることができる。リポソームをアニオン交換樹脂(例えば、Dowex-1またはDowex-2第四級アンモニウム架橋ポリスチレンビーズ)で処理することにより、リポソーム外ポリアニオンの完全な除去を確実にすることが有利である。薬物充填緩衝液は、水中に50 g/L無水デキストロースUSPおよび5 mM組織培養保証HEPESを含み、NaOHでpH 6.5に調整した。緩衝液は、0.2ミクロンナイロンフィルター(Whatman)を通して、真空濾過した。押し出したリポソームをSepharose CL-4B(Pharmacia)を含むカラムでクロマトグラフにかけ、薬物充填緩衝液で溶出した。リポソームは空隙容量画分に出現し、溶出液の濁度に基づいて、供した量の約2倍の量でこれを回収した。溶出されたリポソームは、実施例70に従ってリン脂質濃度について、QELSにより粒径についてアッセイし、4〜6℃で保存した。
6) リポソームと薬物とのインキュベーション
リポソームと混合する直前に、20 mg/mL薬物塩基の濃度になるように塩酸イリノテカンを水に溶解して、CPT-11(塩酸イリノテカン)の保存液を調製した。溶液のpHは4.0〜5.0であった。薬物溶液を、陽圧により0.2ミクロンポリエーテルスルホン(PES)滅菌フィルターを通して濾過した。上記の段階5で生成された薬物充填緩衝液中のリポソームの一定分量を、薬物/脂質インプット比がリポソームリン脂質1 mmol当たり0.15〜0.55 g薬物の範囲となるように、保存イリノテカン溶液と室温で混合した。特定のインプット薬物/脂質比は、必要に応じて以下に示す。混合物のpHを1 M NaOHで6.5に調整し、ガラスバイアル中の混合物をゆっくりと撹拌しながら58〜62℃の恒温水浴中で30〜45分間インキュベートし、氷水浴中(0〜2℃)で急冷し、この温度で15分間置いた。次いで、次の段階(非封入薬物の除去および保存緩衝液中への移行)のために、リポソームを室温まで加温した。この段階により、検討した薬物/脂質比の全範囲で95%を超える、典型的には98〜100%の封入効率が得られた。
7) 非封入CPT-11の除去、リポソームの保存緩衝液中への移行、最終的な濾過、および保存
サイズ排除クロマトグラフィーを用いて、封入されなかった薬物を除去し、リポソームを保存緩衝液中に移した。保存緩衝液は、水中に20 mM HEPES、135 mM NaCl、pH 6.5(NaOHで調整)を含み、使用前に0.2-ミクロンの真空濾過を行った。Sephadex G-75(Amersham Pharmacia Biotech)でのゲルクロマトグラフィーを、本質的に上記の段階2に記載した通りに行った。カラムから溶出されたCPT-11リポソーム(空隙容量画分)を、リポソームリン脂質およびCPT-11について(分光光度法による、実施例70および71を参照のこと)、ならびにQELSにより体積加重平均粒径についてアッセイした。必要に応じて、薬物濃度を2.0〜4.0 mg/mLの範囲になるよう調節した。リポソームは0.2ミクロンポリエーテルスルホン滅菌フィルターを通して濾過し、滅菌ポリプロピレンバイアル(Corning Cryo-Vials)またはPTFE張りねじ口ホウケイ酸4 mLガラスバイアルのバイアル容積の約70〜80%まで、無菌的に分注した。バイアルを無菌的に閉じ(空中)、ラベルを貼り、4〜6℃で保存した。
実施例12. TEA-Pn含有リポソームの薬物充填効率およびインビボ薬物保持に及ぼす薬物/脂質比の影響
TEA-Pnの0.65 N水溶液、pH 6.1、モル浸透圧531 mmol/kgを捕捉したリポソームを、実施例11の手順に従って調製した。脂質分散液は、2枚重ね100 nmポアサイズポリカーボネートフィルターを通して10回押し出した。リポソーム脂質マトリックスはまた、0.5 mCi/mmolリン脂質の[3H]-CHEを含んだ。薬物充填前のリポソームの大きさは、98.5±34.3 nmであった。リポソームに、200、300、400、および500 mg CPT-11/mmolリン脂質の初期薬物-脂質比で充填した。リポソーム中の薬物量およびリン脂質量はそれぞれ、実施例71に従って分光光度法により、および実施例72のリン脂質抽出-消化-青色リンモリブデン酸アッセイにより決定した。
インビボ薬物放出速度を評価するため、実施例8の方法に従った。6週齢雌Swiss Websterマウス(体重18〜22 g)に、5 mg CPT-11/kg用量のリポソームを尾静脈から注射した。注射の8時間後および24時間後に、3匹の群のマウスに麻酔をかけ、心臓切開穿刺によりマウスを放血させた。血液をPBS中の氷冷0.04% EDTA 0.4 mLと混合し、遠心分離によって血液細胞を分離し、CPT-11の血漿濃度を実施例71に記載する分光蛍光法により測定した。消光補正した液体シンチレーション計数を用いて[3H]-CHEの量を測定することで脂質を決定し、決定した薬物/脂質比を注射したリポソームの薬物/脂質比で割って、リポソーム内に保持された薬物量を計算した。遊離CPT-11は血中クリアランスが速く、よって血中レベルが低いため、アッセイされた薬物はすべてリポソーム形態であると仮定した。
結果を表8に示す。群間の薬物保持の差は、統計的に有意ではなかった。これらの試験の結果として、本発明者らは、薬物充填量を500 mg/mmolまで上げても、薬物充填にもインビボ安定性にも悪影響を及ぼさないと結論づけた。この比率をさらなる試験に採用した。
(表8)イリノテカンTEA-Pnリポソームにおける薬物充填およびインビボ薬物保持に及ぼす薬物/脂質比の影響(平均±標準偏差)
Figure 0005665950
実施例13. TEA-SOS含有リポソーム中へのCPT-11充填の薬物充填効率:リポソームの大きさの影響およびマウスにおけるインビボ薬物保持
0.643 N TEA-SOS、pH 5.7、モル浸透圧530 mmol/kgを有する勾配形成溶液を用いて、実施例11の通りに、捕捉溶液を含むリポソームを調製した。脂質分散液は、ポアサイズ50 nm、80 nm、または100 nmの2枚重ねポリカーボネートフィルターを通して10回押し出した。リポソーム脂質マトリックスはまた、1.5 mCi/mmolリポソームリン脂質の[3H]-CHEを含んだ。リポソームの大きさは、動的光散乱により決定した。リポソームに、約550 mgイリノテカン/mmolリン脂質の初期薬物-リン脂質比でCPT-11を充填した。薬物充填リポソームはQELSにより大きさを決定し、実施例70および71に記載する通りにアッセイした。
雌Swiss Websterマウス(8〜10週齢、平均27〜30グラム)に、10 mg/kgの薬物用量でこれらのCPT-11リポソーム製剤を尾静脈から注射した。24時間目にマウスを屠殺し、血液を回収し、実施例11の通りにCPT-11およびリポソーム脂質についてアッセイした。結果を表9に要約する。
(表9)TEA-SOSリポソームにおけるイリノテカン充填およびインビボ薬物保持
Figure 0005665950
驚くべきことに、非高分子ポリアニオン化有機ヒドロキシル化有機化合物(糖)であるスクロース8硫酸のトリエチルアンモニウム塩を含むリポソームは、ポリアニオンポリマー(ポリリン酸)を含む同様のリポソームと比較して、劇的に良好な(4〜5倍)インビボ薬物保持を提供した。
実施例14. ラットにおけるCPT-11充填SOS-TEAリポソームの血中薬物動態
リポソーム(押し出し膜ポアサイズ100 nm)を、実施例12の通りに調製した。中心静脈カテーテルを留置した2匹の9週齢雌Sprague Dawleyラット(Harlan)(体重約200 g)に、10 mg CPT-11/kg(17.6μmolリン脂質/kg)の用量でリポソームを静脈内投与した。所定の時点で血液試料を採取し、実施例9の通りに薬物およびリポソーム脂質含量について解析した。データは、各時点における%注射脂質用量/ml血漿および%リポソーム内薬物保持として表し、注射後時間に対してプロットし、単一指数関数的速度論モデルへの最良適合により、リポソーム脂質の半減期およびリポソームからの薬物放出の半減期を計算した(図5)。CPT-11充填TEA-SOSリポソームからの薬物放出の半減期は、類似のTEA-Pnリポソームの半減期よりもはるかに長く56.8時間であった。
実施例15. ヒト結腸癌(HT-29)の皮下異種移植片を有する胸腺欠損ヌードマウスにおける遊離CPT-11ならびにTEA-PnおよびTEA-SOS含有リポソームに封入されたCPT-11の抗腫瘍活性
実施例11の通りに、0.65 M TEA、pH 6.1、およびモル浸透圧531 mmol/kgを有するTEA-Pn溶液、または0.643 M TEA、pH 5.7、およびモル浸透圧530 mmol/kgを有するTEA-SOS溶液を用いてリポソームを調製した。押し出しは、ポアサイズ100 nmを有する2枚重ねポリカーボネート膜を介した10回の通過を含んだ。得られたTEA-PnおよびTEA-SOSリポソームは、それぞれ112.3±15.5 nmおよび120.5±42.5 nm(大きさの分布の平均値±SD)の大きさを有した。リポソームに、500 mg/mmolのインプット薬物/リン脂質比でCPT-11を充填した。得られたリポソームは、TEA-PnおよびTEA-SOS製剤に関して、それぞれ465.6±26.5 mg(充填効率93%)および499.9±22.5 mg(充填効率100%)CPT-11/mmolリン脂質の薬物含量を有した。
HT-29細胞はアメリカンタイプカルチャーコレクション、メリーランド州、ロックビルから入手し、供給者の推奨する通りに、10%ウシ胎児血清、50 U/mlペニシリンG、および50μg/mL硫酸ストレプトマイシンを添加したDMEM培地中で37℃、5% CO2にて増殖させた。NCR nu/nuホモ接合性胸腺欠損雄ヌードマウス(6週齢;体重少なくとも16 g)は、Charles Riverから入手した。マウスの右腹側に、抗生物質を含まない増殖培地中に懸濁された5 x 106細胞を含む懸濁液0.1 mLを皮下接種した。11日後、150 mm3〜350 mm3の大きさの腫瘍を有する動物を、以下の方法に従って処置群に割り当てた。動物は腫瘍の大きさに従って順位づけし、腫瘍の大きさが減少していく6つのカテゴリーに分類した。各処置群内にすべての腫瘍の大きさが同等に表されるように、それぞれの大きさのカテゴリーから動物1匹をランダムに選択することによって動物11匹/群の6つの処置群を形成した。13日目から開始し、動物に以下の調製物を4日間の間隔で4回尾静脈注射した:1) 対照(HEPES緩衝生理食塩水pH 6.5);2) 遊離CPT-11 50 mg/kg、新たに調製した非緩衝生理食塩水中の5 mg/mL溶液として投与;3) 注射当たり25 mg/kgのTEA-PnリポソームCPT-11;4) 注射当たり50 mg/kgのTEA-PnリポソームCPT-11;5) 注射当たり25 mg/kgのTEA-SOSリポソームCPT-11;6) 注射当たり50 mg/kgのTEA-SOSリポソームCPT-11。実施例10に記載したように、動物の体重および腫瘍の大きさを週に2回モニターした。動物の秤量結果から腫瘍重量を減算して、動物体重を得た。動物は腫瘍接種後60日間観察した。群内の腫瘍がマウス体重の20%に達した時点で、その群内の動物を安楽死させた。試験終了時点において、いくつかの群では、腫瘍再増殖の徴候なしに完全な腫瘍退行が見られた。これらの動物の腫瘍接種部位に由来する組織を採取し、残存する腫瘍細胞の病理学的解析のために保存した。
本試験の結果を図6および図7に示す。遊離CPT-11は、腫瘍増殖に対してわずかな効果しか有さなかった。リポソームはいずれも明白な効果を有し、大部分の動物において腫瘍退行をもたらし、その後再増殖をもたらした。TEA-PnおよびTEA-SOS CPT-11リポソームのいずれにおいても、50 mg/kg用量の方が25 mg/kg用量よりも効果的であった。腫瘍の大きさのデータ(図7)から計算した平均腫瘍倍加時間は以下の通りであった:対照‐4.2日;遊離薬物、50 mg/kg‐4.8日;TEA-Pnリポソーム薬物、25 mg/kg‐43.6日;TEA-Pnリポソーム薬物、50 mg/kg‐47.5日;25 mg/kgのTEA-SOSリポソーム薬物‐48.2日;および50 mg/kgのTEA-SOSリポソーム薬物‐超56日(倍加時間に到達しなかった)。このように、本発明に従って調製したリポソームCPT-11は、同じ用量およびスケジュールで投与した遊離薬物よりも少なくとも約10倍活性が高かった。予想外にも、TEA-SOS CPT-11リポソームは、同じ用量で投与したTEA-Pn CPT-11リポソームよりも、腫瘍増殖の低下に顕著に効果的であった。注射当たり50 mg/kgの遊離薬物およびTEA-Pnリポソーム薬物で処置した群では、腫瘍再増殖の見られない動物は存在しなかったのに対して、25 mg/kgの各リポソーム製剤を投与した群では、試験終了時点で動物1匹(9.1%)に腫瘍がなく、50 mg/kgのTEA-SOSリポソームCPT-11製剤を投与した群では、試験終了時点で動物4匹(36.4%)に再増殖の徴候がなく腫瘍が認められなかった。
薬物はいくらかの毒性を示した。遊離CPT-11を投与した動物は、薬物注射から約1時間後に一時的な病的状態(注意力の欠如、背を丸めた姿勢、毛の逆立ち、運動性の低下)を経験したが、リポソームCPT-11ではこのようなことはなかった。遊離CPT-11を投与した動物は、処置中に永続的に体重が約6%減少し、回復することはなかった。いずれのリポソームCPT-11製剤を投与した動物も、2回目の注射と3回目の注射の間の時点で、処置前の値の平均約5%(25 mg/kgで)または約9%(50 mg/kgで)という一過性の体重減少を経験したが、最終的には正常な体重に到達した。このように、リポソーム薬物の毒性は遊離(非リポソーム)薬物の毒性以下であり、その上リポソーム薬物の有効性の方が実質的に高かった。体重減少は薬物処置が終了した時点で回復し、すべての動物が末期的病的状態もなく中毒死もせずに体重を回復した。その後、動物は腫瘍退行と同時に体重が増加した。生理食塩水対照群では、大きな腫瘍を生じた動物は、腫瘍に関連した病的状態のために明らかに体重減少を経験した。概して、予めポリアニオン化糖(スクロース8硫酸)を捕捉しているリポソーム内に薬物を充填したリポソーム薬物製剤は、非リポソーム薬物よりも毒性が低いと同時に、最も効果的であることが判明した。
実施例16. マウスにおける遊離CPT-11およびリポソームCPT-11の毒性
標準(免疫正常)マウスにおける単回静脈内注射後の最大耐量(MTD)を決定することにより、遊離CPT-11と本発明に従って調製したリポソーム封入CPT-11の急性毒性を比較した。
以下の材料を使用した。
1) 塩酸イリノテカン98.9%(HPLCによる)および水分7.6%を有するCPT-11(塩酸イリノテカン)調製物。本試験では、薬物製剤は、水分含量またはイリノテカン塩基含量を補正せずに「そのまま」調製した。
2) リポソームCPT-11(Ls-CPT-11)は、実施例11の通りに、DSPC 200 molの割合、コレステロール133 molの割合、PEG-DSPE 1 molの割合の脂質マトリックスを使用し;0.65 M TEA、pH 6.4を有するTEA-SOS溶液を捕捉し;5 mM HEPES緩衝液、5%デキストロース、pH 6.5中のリポソームに、500 mg薬物/mmolリン脂質のインプット薬物/脂質比で薬物を60℃で30分間充填して調製した。充填効率は>99%であった。リポソームの大きさ(QELSによる体積平均平均値±標準偏差):101±37 nm。リポソームは、媒体、20 mM HEPES-Na、135 mM NaCl;pH 6.5中で製剤化した。注射した製剤の薬物濃度は、以下の表中に記載する。
3) 遊離CPT-11溶液。遊離薬物保存溶液は、5%デキストロース水溶液中に22 mg/mLの塩酸イリノテカンを溶解し、0.2-μm濾過により滅菌して調製した。この保存溶液は、注射する前に滅菌5%デキストロースで希釈した。
4) 動物。雌Swiss Websterマウス、6〜8週齢は、Harlan、米国によった。
MTDの決定は一般に、米国国立癌研究所開発途上治療プログラムによって採用されている手順に従った。手順は以下の3つの段階を含んだ。
段階1):用量増大係数1.8での範囲模索段階。動物2匹の群に、60 mg/kgの用量から開始し、急性致死または末期的病的状態(注射後>1日以内)が動物のいずれかに認められるまで、用量増大係数1.8を継続して、遊離イリノテカンまたはリポソームイリノテカンを尾静脈注射した。致死/末期的病的状態用量の1段階下の用量を記録する。
段階2):用量増大係数1.15での範囲模索段階。動物2匹の群に、段階1で記録した用量から開始し、急性致死または末期的病的状態(注射後>1日以内)が動物のいずれかに認められるまで、用量増大係数1.15を継続して、遊離イリノテカンまたはリポソームイリノテカンを尾静脈注射した。致死/末期的病的状態用量の1段階下の用量を、仮のMTDとして記録する。
段階3):検証段階。動物5匹の群に、段階2で決定した仮のMTDの遊離イリノテカンまたはリポソームイリノテカンを静脈内(尾静脈)注射する。動物を7日間追跡し、動物の体重を週に2回記録して注射前の体重と比較する。動物の一般健康状態を観察する(注意力、毛づくろい、摂食、排泄物、皮膚、毛、および粘膜状態、歩行運動、呼吸、姿勢)。観察期間中に、致死、病的状態の進行、または注射前体重の15%を超える体重減少が認められない場合には、その用量を急性単回注射MTDとして確証されると見なす。これらの影響のいずれかが生じた場合には、係数1.15による次の低い用量でこの実験を繰り返す。
検証段階のさらなる統計を得るため、生存動物の体重動学を注射後11日目まで追跡した。324 mg/kgを超える用量のリポソームイリノテカンは、濃度および注射量の限界から投与が不可能であった。結果を表10に示す。
(表10)マウスにおけるCPT-11製剤のMTD模索試験
結果
Figure 0005665950
このように、遊離CPT-11のMTDは80 mg/kgであるのに対して、リポソームCPT-11のMTDは、驚いたことに324 mg/kgの最高投与用量でさえも達成されなかった。したがって、本発明によるCPT-11のリポソーム封入は、薬物毒性を少なくとも4倍減少させた。
実施例17. CPT-11充填TEA-SOSリポソームの薬物漏出に対する保存安定性
TEA-SOS方法(実施例11)を使用し、500〜550 mg/mmolリン脂質の薬物/脂質インプット比で、5バッチのリポソームCPT-11を調製した。リポソームは、以下の表に示すように、80 nmまたは100 nmポアサイズを有するポリカーボネート膜を通す膜押し出しにより調製した。リポソームは0.2-μmのフィルター滅菌をし、135 mM NaCl、20 mM HEPES-Na、pH 6.5(保存緩衝液)中、CPT-11 3.4〜14.5 mg/mLで、4〜8℃にて保存した。表示の保存期間後、保存緩衝液を溶離液として使用するSephadex G-75でのゲルクロマトグラフィーにより、漏出した薬物を除去した。ゲルクロマトグラフィー前後のリポソーム中の薬物およびリン脂質濃度を、それぞ実施例70および71に記載する通りに分光光度法および酸消化-青色リンモリブデン酸法を用いてアッセイした。本発明に従って調製したCPT-11リポソームは、非常に安定であった。保存期間中のこれらのリポソームからのCPT-11の漏出は、6ヶ月にわたって5%未満であった(表10)。
(表11)保存期間中のCPT-11リポソームの封入安定性(データは平均値±SDで示す)
Figure 0005665950
実施例18. トポテカンを充填したリポソーム
TEA-Pn溶液およびTEA-SOS溶液を捕捉したリポソームを、実施例11の通りに調製した。塩酸トポテカン(GlaxoSmithKline、米国、ペンシルバニア州)の保存溶液は、リポソームと混合する直前に、トポテカン塩酸を実際のトポテカンHCl含量で計算して15〜20 mg/mlで水に溶解することにより調製した。1 N HClでpHを3.0に調整した。薬物溶液は、陽圧により0.2ミクロンポリエーテルスルホン(PES)滅菌フィルターを通して濾過した。薬物充填緩衝液中のTEA-PnまたはTEA-SOS含有リポソームの一定分量を、薬物/脂質インプット比が0.15〜0.45 g/mmolリポソームリン脂質の範囲となるように、保存トポテカンHCl溶液と室温で混合した。好ましい比率は、リポソームリン脂質1 mmol当たりトポテカンHCl0.35 gであった。ガラス容器中の混合物をゆっくりと撹拌しながら55〜62℃の恒温水浴中で30〜60分間インキュベートし、氷水浴中(0〜2℃)で急冷し、この温度で5〜15分間置いた。この段階により、89〜90%(TEA-Pn勾配)または97〜100%(TEA-SOS勾配)の封入効率が得られた。サイズ排除カラムクロマトグラフィーを用いて、封入されなかったトポテカンを除去し、リポソームを保存填緩衝液中に移した。カラムに供す前に、1/20量の2.88 M塩化ナトリウム水溶液と混合してリポソーム調製物のイオン強度を上げ、この混合液を約15分間インキュベートした。本発明者らは、予想外にも、リポソーム媒体のイオン強度を充填時の低い値(典型的には、20 mM NaCl未満と同等)から20 mM NaClを超えるより高い値へ、好ましくは50 mM NaCl以上に調整することで、おそらくはリポソーム内部に封入されている薬物ではなく膜結合トポテカンの除去を促進することにより、非封入薬物の除去が改善され、凝集に対するトポテカン充填リポソームの安定性が増すことを見出した。手順の残りの部分は実施例11、段階7に従った。結果を以下の表12に示す。
実施例19. トポテカンの抗HER2-イムノリポソーム製剤の調製
HER2過剰発現細胞内への高い内部移行に関してファージディスプレイライブラリーから選択された抗HER2一本鎖ヒトFv抗体断片、F5(Poul, et al., 2000, J. Molecular Biology, v. 301, P.1149-1161)にトポテカンリポソームを結合して、HER2(C-ErbB-2)表面受容体チロシンキナーゼ癌タンパク質を過剰発現する癌細胞によって特異的に内部に取り込まれ得るトポテカンイムノリポソームを調製した。F5は、約150 nMの親和性でHER2受容体の細胞外ドメインに結合して、迅速な内部移行をもたらす27-KDaタンパク質である(Neve, et al., 2001, Biophys. Biochim. Res. Commun. v. 280, p.274-279)。リポソームの結合に関しては、一般に米国特許第6,210,707号およびNielsen, et al. (2002), Biochim. Biophys. Acta, v. 1591, p.109-118の方法に従った。まず、F5の親水性リポポリマー複合体を調製した。F5アミノ酸鎖のC末端は、付加された末端システイン基を有した(F5Cys)。F5Cys構築物を大腸菌(E.coli)で発現させ、プロテインAカラムクロマトグラフィーにより細菌溶解液からこれを単離した。プロテインA溶出画分をアニオン交換樹脂に吸収させて発熱物質および宿主DNAを除去し、末端システインのチオール基を遊離させるためにチオール還元剤で処理した。還元されたF5Cysを、SP Sepharose Fast Flow(Amersham Pharmacia)を用いてイオン交換クロマトグラフィーによりさらに精製した。精製されたタンパク質を、チオール反応性脂質-ポリ(エチレングリコール)リンカー、Avanti Polar Lipids, Inc.、米国、アラバマ州により市販されている、分子量2,000を有するPEGの誘導体(図4.1)であるN-(3-(N-マレイミド)プロピオニルアミド)-ポリ(オキシエチレン)-オキシカルボニル)-1,2-ジステアロイルホスファチジルエタノールアミン(Mal-PEG-DSPE)に結合させた。タンパク質とリンカーを1:4のモル比で緩衝水溶液中でインキュベートし、未反応のリンカーを1 mMシステインで失活させた。反応中に、F5Cysの末端システインはリンカーのマレイミド基に共有結合される。得られたF5-PEG-DSPE複合体は、大きな見かけの分子量(500〜800 KDa)を有するミセルの形態で水溶性であり、サイズ排除クロマトグラフィーにより未反応のタンパク質(約25%)から分離した。280 nmでのUV分光光度法により精製複合体中のタンパク質の量を決定し、リン脂質の定量化に用いられるのと同じ分光光度法(実施例70を参照のこと)を用いてリンカーの量をアッセイした。精製F5-PEG-DSPE複合体は水中で安定であり、十分に免疫反応性であり、65℃で少なくとも1時間および37℃で少なくとも3ヶ月間、変性および反応性の喪失に対して安定であった。
抗HER2イムノリポソームトポテカンを調製するため、実施例18のトポテカン充填リポソームを、水性生理食塩緩衝液中、リン脂質1マイクロモル当たりタンパク質15マイクログラムの比率(リポソーム当たり約45 F5コピー)でF5-PEG-DSPEと混合した。混合物を60℃で40分間インキュベートし、氷上で冷却し、Sepharose CL-4B(架橋4%アガロースビーズ、Amersham Pharmacia)を含むカラムでクロマトグラフにかけ、残存ミセル複合体、非結合タンパク質、およびインキュベーション中に放出された可能性のある微量のリポソーム外薬物を除去した。膜に取り込まれたF5-PEG-DSPEを有するリポソームを5 mM HEPES-144 mM NaCl緩衝液pH 7.4で溶出し、カラムの空隙容量中に回収し、滅菌濾過し、分注して保存した(4〜6℃)。リポソームに取り込まれたF5の量は典型的には、添加した複合体の>80%であった。これは、リポソームをSDS-PAGEにかけ、クマシー染色されたF5バンドをデンシトメトリーにより定量化して決定した。イムノリポソーム調製物中の薬物および脂質濃度は、非標的リポソームと同様に決定した。トポテカンリポソームおよびF5-イムノリポソームの特性(実施例18〜19)を表12に要約する。
(表12)トポテカンリポソームおよびイムノリポソームの特性
Figure 0005665950
実施例20. リポソーム内へのトポテカンの充填に及ぼす充填緩衝液pHおよび薬物/脂質比の影響
0.5 N TEA-Pn、pH 6.2、モル浸透圧413 mmol/kgを捕捉したリポソーム(DSPC/Chol/PEG-DSPE、3:2:0.015モル比)は、エタノール注入法(実施例18)を使用し、100 nmポアサイズを有する2枚重ねポリカーボネートフィルターを通して5回、および50 nmポアサイズを有する2枚重ねポリカーボネートフィルターを通して10回押し出して調製した。充填緩衝液は、5.0〜6.5の範囲の様々なpHに調整した5 mM MES、50 g/Lデキストロースであった。リポソームの大きさは、QELSにより73.1±21.3 nmであった。100 mg/mmolのインプット薬物-リン脂質比でトポテカン保存溶液(20 mg/ml)を充填緩衝液中のリポソームと混合し、混合物を60℃で45分間インキュベートし、氷上で15分間急冷し、さらにSephadex G-75カラムを用いて20 mM HEPES、135 mM NaCl、pH 6.5で溶出して非封入薬物を除去することで、リポソームに充填した。トポテカンおよびリン脂質は、分光光度法(実施例70および71)によって定量化した。結果(表13)から、トポテカンの充填は、pH 5.5〜6.5の範囲でほぼ定量的であることが示された。
(表13)TEA-Pnを封入したリポソーム内へのトポテカン封入の%に及ぼす充填緩衝液pHの影響
Figure 0005665950
充填効率に及ぼす薬物と脂質の比(0.15〜0.45 mg/mmolリン脂質)の影響についても検討した。TEA-Pn(0.5 M TEA、pH 5.8、モル浸透圧480 mmol/kg)を捕捉したリポソームは、最終押し出し段階が2枚重ね0.08μmポリカーボネートフィルターを通して10回であったこと以外は、上記の通りに調製した。充填はpH6.5で行った。リポソームの大きさは、QELSにより93.1±15.1 nmであった。結果(表14)から、薬物充填効率は、試験した薬物/脂質比の全範囲において85%を超えることが示された。
(表14)TEA-Pnを含むリポソーム内への封入効率に及ぼす薬物/脂質比の影響
Figure 0005665950
実施例21. 血漿の存在下におけるインビトロでのトポテカンリポソーム安定性
0.5 N TEA-Pn、pH 6.2、モル浸透圧413 mmol/kgを捕捉したリポソーム(DSPC/Chol/PEG-DSPE、モル比3:2:0.015)を、実施例18に記載した通りに調製した。2枚重ね100 nmポアサイズポリカーボネートフィルターを通して10回押し出すことで、96.4±29.3 nmの大きさを有するリポソームが生成された。血漿中のリポソーム脂質を定量化するため、脂質溶液中に0.5μCi/μmol DSPCの[3H]-CHEを含めた。トポテカンを、150 mg/mmolの薬物/リン脂質比で、pH 6.0、58℃で45分間充填した。充填効率は148.48±10.26μgトポテカン/μmolリン脂質(99.0±6.8%)であった。
マルチウェル微小透析装置(Spectra-Por MicroDialyzer 10ウェル、Spectrum、米国)中で、リポソームを50%ヒト血漿と共にインキュベートした。ヒトドナー血漿を、0.02%アジ化ナトリウムを含む等量のHEPES緩衝生理食塩水(20 mM HEPES、135 mM NaCl)、pH 6.5で希釈し、透析器の下の容器(32 mL)に入れた。ウェル(0.4 mL)は、30 nmポアサイズを有するポリカーボネート膜によって容器から分離されており、血漿タンパク質および小分子の自由な通過は提供されたが、リポソームの自由な通過は提供されなかった。リポソームを、2.5 mMリン脂質および50容量%血漿の濃度となるように計算した量の血漿およびHEPES緩衝生理食塩水と混合した。装置を37℃でインキュベートし、容器の内容物をゆっくりと撹拌した。インキュベーションの8時間後、下の容器の内容物を新鮮な50%血漿と交換した。所与の時点で(以下を参照のこと)ウェルから50-μL分割量を採取し、2.2〜2.4 mLのSepharose CL-2Bを含むカラム、溶離液HEPES緩衝生理食塩水でクロマトグラフにかけ、血漿タンパク質および遊離薬物からリポソームを分離した。リポソームは空隙容量画分中に回収された。90%イソプロパノール水溶液-0.1 N HCl中で血漿試料を可溶化した後に、384 nmでの励起および524 nmでの発光を用いて蛍光光度法によりトポテカンを定量化し、[3H]-CHEのシンチレーション計数により脂質を定量化した(消光補正)。その時点で決定された薬物-脂質比をインキュベーション前の初期比と比較して、各時点で封入されて残存したトポテカンの%を得た。インキュベーションの8時間後、リポソーム内に残存している薬物の量は初期値の約55%であった(表15)。
(表15)50%ヒト血漿中における37℃でのTEA-Pn勾配によって充填したリポソームからのトポテカンのインビトロ放出
Figure 0005665950
実施例22. 捕捉されたTEA-Pn勾配を用いた様々な薬物/脂質比のトポテカンリポソーム:マウスにおけるインビボ薬物保持および循環寿命
勾配形成塩溶液(0.5 N TEA-Pn、pH 6.2、モル浸透圧413 mmol/kg)を封入したリポソーム(0.5 mCi/mmol DSPCの[3H]-CHEを含有する、3:2:0.015モル比のDSPC/Chol/PEG-DSPE)は、2枚重ね100 nmポアサイズポリカーボネートフィルターを通す12回の押し出しを用いて、実施例18のように調製した。リポソームの大きさは、QELSにより107.7±19.1 nmであった。5 mM HEPES、50 g/Lデキストロース、pH 6.5中のリポソームを、130〜360μg/μmolの範囲の薬物/リン脂質比でトポテカンの保存水溶液(20 mg/ml)と混合し、その後58℃で45分間インキュベートし、氷上に15分間置き、Sephadex G-75クロマトグラフィーにより非封入薬物を除去した。12週齢雌FvBマウスに、三つ組で、リポソームを5 mgトポテカン/kg体重の用量で尾静脈注射した(約0.2 mgトポテカン/動物)。表示の時点で、典型的には注射の8時間後または24時間後に、マウスに麻酔をかけ、放血させ、血液試料を実施例8のように薬物およびリポソーム脂質に関してアッセイした。結果を表16に示す。24時間後、初期薬物充填量の約6〜32%が封入されて残存した。薬物の充填量が高いほど(>200 mg/mmolリン脂質)、薬物保持は長期であった。
(表16)様々な薬物/脂質比に対する、TEA-Pn勾配法を用いて充填した原型トポテカンリポソームのインビボ薬物保持および循環寿命
Figure 0005665950
実施例23. 様々な捕捉アンモニウム塩およびトリエチルアンモニウム塩を用いて充填したトポテカンリポソームのインビボ薬物保持および循環寿命
押し出し段階が2枚重ね200-nm孔フィルターの通過10回、2枚重ね100-nm孔フィルターの通過10回、および2枚重ね50-nm孔フィルターの通過20回を含むこと以外は実施例18のようにして、DSPE、コレステロール、およびPEG-DSPE(重量で3:1:0.1)から構成され、0.22 mCi/mmol DSPEの[3H]-CHEをさらに含むリポソームを調製した。リポソームは以下の塩溶液を含んだ。
0.5 Nデキストラン硫酸アンモニウム溶液(A-DS)は、Sigmaから購入したデキストラン硫酸ナトリウム(M.w. 5000)から、これを実施例4の手順に類似したイオン交換手順によってアンモニウム塩に変換して調製した。デキストラン硫酸溶液は、12.4 Mアンモニア水で直ちに滴定した。A-DS溶液は、pH 5.66、モル浸透圧208 mmol/kgを有した。
0.48 N スクロース8硫酸アンモニウム(A-SOS)は、実施例6と同様に調製したが、水酸化アンモニウムを滴定に使用した。この溶液は、pH 6.27、モル浸透圧258 mmol/kgを有した。
0.47 N スクロース8硫酸トリエチルアンモニウム(TEA-SOS)は、実施例6の通りに調製した。この溶液は、pH 6.6、モル浸透圧297 mmol/kgを有した。
346±1 mg/mmolのインプット薬物/リン脂質比でリポソームと薬物を61〜62℃で40分間インキュベートし、その後氷上で10分間インキュベートすることで、10 mM MES-Na、50 g/Lデキストロース、pH 6.5の水溶液中のリポソームにトポテカンを充填した。Sephadex G-25、溶離液‐2 mMヒスチジン、144 mM NaCl水溶液、pH 6.6(HCl)でのクロマトグラフィーにより、リポソームを非封入薬物から精製した。
7〜9週齢雌Swiss Websterマウスに、三つ組で、これらのリポソームトポテカン製剤を5 mgトポテカン/kg体重の用量で尾静脈注射した(約0.2 mgトポテカン/動物)。注射の8時間後または24時間後に、血液を回収し、実施例22の通りにトポテカンおよびリポソーム脂質について解析した。
結果を以下の表17に示す。3つのリポソーム製剤はいずれも、注射後24時間で注射用量の約23〜28%が血中に残存して、非常に近接したリポソーム循環寿命を示したが、意外なことには、TEA-SOSリポソームおよびA-SOSリポソームにおける薬物保持は、規模(薬物保持の約2倍の改善)および統計的有意性(両側の対応のないスチューデントt検定による95%信頼水準での統計的有意性はそれぞれp=0.0257およびp=0.00995であり;マンU検定によればα=0.01で差は有意であった)の両方の点から、A-DSリポソームにおける薬物保持よりも良好であった。TEA-SOS含有トポテカンリポソームにおける薬物保持は、A-SOS含有トポテカンリポソームにおける薬物保持よりも良好であった。
(表17)TEA-SOS、アンモニウム-SOS(A-SOS)、およびデキストラン硫酸アンモニウム(A-DS)を用いて調製したトポテカンリポソームのインビボ薬物保持および循環持続
Figure 0005665950
実施例24. ラットにおけるリポソームトポテカンの薬物および脂質血漿薬物動態
循環寿命およびトポテカン放出パラメータをラットにおいて評価した。エタノール混合/押し出し法によりリポソーム(DSPC/コレステロール/PEG-DSPEモル比3:2:0.015)を調製し、実施例18に記載した通りにTEA-Pn勾配またはTEA-スクロース8硫酸(TEA-SOS)勾配を用いて、および様々な薬物/脂質比(15〜450 mg/mmolリン脂質)で、トポテカンを充填した。脂質マトリックスの定量化のため、脂質リポソームは0.5〜1.5 mCi/mmol DSPCの[3H]-CHEを含んだ。中心静脈カテーテルを留置した雌Sprague-Dawleyラット(6〜8週齢;体重約200 g)に、4〜5 mg/kg体重の用量でトポテカンリポソームを静脈内(カテーテルを介して)注射した。カテーテルに生理食塩水を流した。選択した時点において(注射後48時間まで)、血液試料(0.2〜0.3 mL)をカテーテルからヘパリン処理シリンジ中に採取して、0.04% EDTAを含む冷リン酸緩生理衝食塩水0.4 mLと混合し、遠心分離により血液細胞を分離し、3H-CHE放射能計数により脂質について(消光補正)、および蛍光光度法(実施例71)によりトポテカンについて上清(PBS希釈血漿)をアッセイした。アッセイの結果は、ヘマトクリット値を40%と仮定し、採取した血液試料の重量から計算して、血漿希釈度に関して補正した。薬物および脂質の総血中用量は、体重の6.5%として計算した血液量から推定した。所与の時点における薬物/脂質比と注射したリポソームの薬物/脂質比を比較することにより、リポソーム内に保持されたトポテカンの割合を計算した。以下の表18に、脂質、薬物の血中半減期、および薬物放出の半減期、ならびにリポソームの他の特性を要約する。薬物動態(PK)曲線を図8A(脂質)および8B(薬物/脂質比)に示す。要約すると、薬物および脂質の血中PK曲線は、単一指数モデルに良好に適合した(R2 0.984〜0.999)。90〜100 nmの大きさであることおよびPEG化脂質が非常に少量であること(0.3 mol%)にもかかわらず、リポソームは意外にも良好な循環寿命を示した(脂質成分の血漿半減期は11〜16時間の範囲であった)。トポテカンの最も遅い放出(半減期22.9時間)は、TEA-SOS法を用いて充填したリポソームで認められた。
(表18)ラットにおける脂質、薬物の循環半減期(t1/2)、および原型トポテカンリポソームからの薬物放出の半減期
Figure 0005665950
実施例25. トポテカンリポソームの保存期間中の漏出に対する薬物安定性
上記の試験用に調製したいくつかの原型製剤の試料を4〜6℃で様々な期間保存し、リポソームからの薬物漏出に対する封入トポテカンの保存安定性を評価した。リポソーム試料をSephadex G-75カラムに通し、20 mM HEPES、135 mM NaCl、pH 6.5で溶出してリポソーム外薬物を除去し、分光光度法により薬物含量について、および[3H]-CHE放射能計数により脂質について評価した。結果(表19)から、保存期間中、リポソーム内にトポテカンが良好に保持されることが示される。
(表19)保存期間中の原型トポテカンリポソームにおける薬物保持
Figure 0005665950
実施例26. HER2過剰発現癌細胞によるリポソームトポテカンおよびイムノリポソームトポテカンのインビトロ取り込み
本試験では、本発明に従って調製したトポテカン充填抗HER2-イムノリポソームが、細胞培養におけるHER2過剰発現細胞内に特異的にトポテカンを送達する能力について取り組んだ。実施例19のTEA-Pn法を用いて、(イムノ)リポソームを調製し、トポテカンを充填した。HER2過剰発現ヒト乳癌細胞(SKBr-3、ATCC)は、T-75フラスコ中、10%ウシ胎児血清、50μg/mL硫酸ストレプトマイシン、および50 U/mlペニシリンGを添加した(トリシンを含まない)改変McCoy 5A培地(完全増殖培地)で、37℃、5% CO2でコンフルエントになるまで培養した。トリプシン処理により細胞を回収し、完全増殖培地0.5 mL中、150,000細胞/ウェルで24ウェル細胞培養プレートに播種し、一晩順化させた。培地を、0.01〜0.1 mMリン脂質の範囲内の選択した濃度のトポテカン製剤を含む完全増殖培地0.5 mLと交換した。各条件について三つ組のウェルを使用した。対照ウェルは、薬物および/またはリポソームの非存在下でインキュベートした(薬物アッセイのバックグラウンド読み取り値を得るため)。プレートをゆっくり撹拌しながら37℃、5% CO2で4〜8時間インキュベートした。培地を吸引し、CaおよびMg塩を含む冷ハンクス平衡塩類溶液の1 mL部分で細胞を4回リンスした。水に溶解した1% Triton X-100 0.1 mLを添加して細胞を可溶化し、細胞溶解液中の薬物の量を蛍光光度法(実施例71)によって決定した。10〜2500 ngトポテカン/ウェルの範囲で検量線を得たが、細胞の自己蛍光バックグラウンドの減算後は(高い薬物濃度における自己消光を考慮して)二次多項式に適合した。マイクロプレート蛍光光度計を使用する場合、フィルター選択は励起に関しては400/30 nmであり、発光に関しては530/25 nmであった。キュベット蛍光光度計およびマイクロプレート蛍光光度計のいずれからも、同じ結果が得られた。
2つの実験の結果を、以下の表20に要約する。HER2標的化リポソーム薬物の顕著な細胞取り込み(非標的化リポソームトポテカンよりも50〜300倍高い)が認められた。興味深いことには、遊離トポテカンの取り込みもまた、HER2標的化イムノリポソームトポテカンよりも顕著に低かった。このことは、血清の存在する細胞増殖培地中でトポテカン分子のカンプトテシンラクトン環が迅速に加水分解され、低い細胞透過性および低い細胞毒性を有し得る薬物のカルボン酸体が生じることによって説明され得る。要約すると、細胞標的化された内部移行可能なリガンド結合イムノリポソームが、トポテカンを細胞内に送達する能力が確認された。
(表20)TEA-Pnを含むトポテカンリポソームおよび抗HER2イムノリポソームのインビトロ細胞取り込み(nd、測定せず)
リポソームの特性については表12を参照されたい。
Figure 0005665950
実施例27. インビトロでのHER2過剰発現癌細胞に対するリポソームトポテカンおよびイムノリポソームトポテカンの細胞毒性
抗HER2トポテカンイムノリポソームのHER2過剰発現癌細胞内への細胞内薬物送達の能力が確認された時点で(実施例26)、内部移行したリポソームが活性型の薬物を放出し得ることを確認することが重要であった。この目的のために、遊離トポテカン(すなわち、溶液として製剤化されたトポテカン)、リポソームトポテカン、および抗HER2-イムノリポソームトポテカンのインビトロ細胞毒性について検討した。リポソームトポテカン製剤を調製し、実施例26に記載した通りにSKBr-3細胞を培養し、回収した。細胞を、完全増殖培地0.1 mL中5,000細胞で96ウェル細胞培養プレートに三つ組で播種し、一晩順化させた。プレートの最も端の列および段は空のままにした。トポテカンリポソーム、イムノリポソーム、または遊離薬物(トポテカン20 mg/mL保存液、pH 3を2 mg/mLになるよう非緩衝生理食塩水に溶解して新たに調製した)の滅菌調製物を、90、30、または10μg/mLから開始する濃度になるよう完全薬物培地で希釈し、係数3で培地で段階希釈した。ウェル内の培地を薬物/リポソーム希釈物0.2 mLと置換し、特定の時間(4〜6時間)、37℃、5% CO2でインキュベートした。各列中の1つのウェルは薬物を含まない培地と共にインキュベートして、非処理対照とした。薬物含有培地をウェルから吸引し、薬物を含まない培地0.2 mLで細胞をリンスし、薬物を含まない新鮮な培地0.2 mLをすべてのウェルに添加した。プレートを37℃、5% CO2で4日間インキュベートした。培地交換をせずに、無血清培地中のテトラゾリウム色素(チアゾリルブルー、MTT)(Sigma Chemical Co.)2 mg/mL溶液0.03 mLを、各ウェルに添加した。プレートを37℃、5% CO2でさらに2〜3時間インキュベートした。培地を吸引し、ウェルを70容量%イソプロパノール水溶液、0.075 N HCl 0.2 mLで満たし、ホルマザン色素が溶解するまで(15〜30分)穏やかに撹拌した。540 nmにおいて、マイクロプレート光度計を用いてホルマザン溶液の吸光度を測定した。バックグラウンドについて補正した、実験ウェルにおける吸光度と非処理細胞を含むウェルにおける吸光度との比として、非処理対照の%としての細胞生存度を計算した。データを薬物濃度に対してプロットし、グラフを使って生存度-濃度曲線と50%生存度線の交点からIC50用量を概算した。
結果を図9に示す。遊離トポテカンまたは非標的化リポソームトポテカンの、50%増殖抑制(IC50)をもたらす薬物用量は30μg/mLを超過し;F5-イムノリポソームトポテカンの場合には0.15μg/mLであった。これらの結果は、標的化薬物取り込みデータと一致した。
実施例28. マウスにおけるリポソームトポテカンおよびF5-イムノリポソームトポテカンの比較安定性および血漿薬物動態
以下の条件下でエタノール脂質溶液混合-押し出し手順を使用し、実施例11および19に従って、1.5 mCi/mmolリン脂質の放射性脂質標識[3H]-CHEを含むトポテカンリポソームを調製した:勾配形成塩溶液:0.643 Nスクロース8硫酸トリエチルアンモニウム;ポリカーボネート膜押し出し:2枚重ねPCTEフィルター、80 nmポアサイズの15回の通過;トポテカン充填:薬物/リン脂質インプット比350 mg/mmol(トポテカン遊離塩基について計算);F5 scFv結合は実施例19に記載した通りに行った。リポソームは以下の特性を有した。
QELSによる大きさ:重量平均101.2 nm;標準偏差、20.1 nm。
薬物封入:トポテカンリポソーム(Topo-Ls)359.3±27.4 mg/mmolリン脂質;トポテカンF5scFv-イムノリポソーム(Topo-F5-ILs)326.3±15.9 mg/mmolリン脂質。
本試験は、一般に実施例22の通りに実施した。9匹の雄Swiss Websterマウス(8〜10週齢;24〜27 g)の群に、Topo-Ls、Topo-F5ILs、または新たに調製した非緩衝生理食塩水中のトポテカン1 mg/mLを、5 mgトポテカン塩基/kg体重の用量で(脂質用量14〜16μmolリン脂質/kg体重と同等)尾静脈注射した。注射後1時間、8時間、または24時間の時点で、時点当たり3匹の動物を、ケタミン/キシラジン麻酔下で心臓切開穿刺により放血させ、PBS-EDTAを含むチューブ中に血液を回収し、トポテカン(蛍光光度法)およびリポソーム脂質(放射能シンチレーション計数による)についてアッセイした。動物当たりの血液量を体重の6.3%、および圧縮血液細胞画分を45%と仮定し、投与用量を100%として、所与の時点で血中に残存している薬物および脂質用量の量を計算した。血漿試料の薬物/脂質放射能比を注射したリポソームのものと比較することにより、各時点におけるリポソーム内に封入されて残存した薬物の量を、それぞれの動物について個々に計算した。注射の1時間後に回収した血漿試料中の遊離トポテカンの量は、注射用量の1%未満であった(実際に、本発明者らのアッセイ法の検出限界未満であった);そのため、遊離トポテカン群のさらなる時点については試験しなかった。遊離トポテカンの血中クリアランスが速く、血中レベルが低いことから、本発明者らは、いずれの時点においても血中に見出されるトポテカンは本質的にすべてリポソームに封入されているトポテカンを表すと仮定した。
結果を以下の表21に要約する。顕著なことには、本発明に従って調製したリポソームは、動物の血流への注射から24時間後でさえも、元の薬物充填量の79〜85%を保持した。リポソーム群とイムノリポソーム群との間の脂質または薬物の平均血漿値の差は1.8〜13.6%の範囲内であり、非常に近接しているか、またはアッセイ誤差の範囲内であった。スチューデントt検定を用いて計算した、各時点における薬物または脂質値に関するリポソーム群とイムノリポソーム群との間の帰無仮説の確率は0.543〜0.938であった。本発明者らは、2つの調製物間の薬物または脂質の残存血中レベルの差は無視でき、統計的に識別不能であると結論づける。
(表21)静脈内注射後の様々な時点におけるマウスの血漿中のリポソーム脂質、トポテカン、およびリポソーム内に封入されて残存するトポテカンの量
Figure 0005665950
実施例29. BT-474異種移植片モデルにおけるリポソームトポテカンおよび抗HER2-イムノリポソームトポテカンの抗腫瘍効果
本試験では、薬物捕捉のためにポリリン酸トリエチルアンモニウム勾配を使用する最初の原型トポテカンイムノリポソームを使用した。リポソームは、一般に実施例11および19の方法に従って調製した。脂質マトリックス成分‐DSPC(Avanti Polar Lipids;3 molの割合)、コレステロール(Calbiochem、98.3%;2 molの割合)、およびメトキシ-PEG(2000)-DSPE(Avanti Polar Lipids;0.015 molの割合)‐を100%エタノールUSPと60℃で混合して、0.5 mMリン脂質を含む溶液を得た。エタノール脂質溶液をポリリン酸トリエチルアンモニウム水溶液(0.608 Mトリエチルアミン、0.65 Nリン酸、pH 6.1、モル浸透圧531 mmol/kg)により60℃で希釈し、完全に混合し、60℃で自動調温ガス圧押し出し機(Lipex Biomembranes)を用いて100 nmのポアサイズを有する2枚重ねポリカーボネート膜(Nuclepore、Corning)を通して10回押し出した。押し出したリポソームを氷上で冷却し、封入されなかったポリリン酸トリエチルアンモニウムを、5%デキストロース-5 mM HEPES-Na緩衝液、pH 6.5を溶離液として使用してSepharose CL-4Bでのゲルクロマトグラフィーにより除去した。リポソームの大きさは、QELSにより103.8±35.1 nmであった。0.35 mgトポテカン塩基/μmolリン脂質の比率で、この緩衝液中のリポソームを塩酸トポテカンと共に60℃で30分間インキュベートした。インキュベーションが終了した時点でリポソームを氷上で冷却し、Sephadex G-75、溶離液20 mM HEPES-Na、135 mM NaCl、pH 6.5でクロマトグラフにかけ、封入されなかった薬物を除去した。以前に報告したように、蛍光光度法により薬物含量を測定し、リン酸アッセイにより脂質含量を測定した。このようにして得られたリポソームトポテカンは、365.4±23.1 mgトポテカン塩基/mmolリン脂質を有する。HER2標的化トポテカンイムノリポソームを調製するため、このリポソームトポテカン調製物の一部を、一般に実施例19に記載した通りに、抗HER2 scFv F5とマレイミド-PEG-DSPEリンカーの精製複合体と共にインキュベートした。簡潔に説明すると、10%スクロース-10 mMクエン酸Na水溶液、pH 6.5中のF5-PEG-DSPE複合体を、15 mgタンパク質/mmolリポソームリン脂質の比率でトポテカンリポソームと混合し、60℃で30分間インキュベートした。インキュベーション混合物を氷上で冷却し、Sepharose CL-4B、溶離液20 mM HEPES-Na、135 mM NaCl、pH 6.5でクロマトグラフにかけ、取り込まれなかったscFv複合体を除去した。このさらなるインキュベーション後に、薬物-脂質比は14%まで減少した。
1〜2 mg/mLのトポテカンを含むトポテカンリポソームおよびトポテカンイムノリポソーム製剤を0.2ミクロン滅菌シリンジフィルターに通し、ポリプロピレンバイアルに無菌的に分注し、使用するまで最長1ヶ月間4〜6℃で保存した。
遊離トポテカンは、塩酸トポテカン粉末を2 mg/mLで5%デキストロース中に溶解して新たに調製し、0.2-ミクロンシリンジフィルターを通して滅菌した。
HER2過剰発現BT-474ヒト乳腺腺癌異種移植片モデルは、実施例10に記載した通りに確立した。腫瘍接種後13日目に、120〜350立方mmの腫瘍を有する動物を選択し、それぞれ動物12匹の3つの処置群および1つの対照群にランダムに割り当てた。腫瘍接種後14日、18日、および21日目に、マウスを、注射当たり5 mg用量/kg体重のトポテカン製剤または等量の生理食塩水の静脈内(尾静脈)注射により処置した。動物の一般健康状態を毎日モニターした。腫瘍の大きさおよび体重を、腫瘍接種後53日目まで週に2回モニターした。腫瘍が体重の20%に達した動物または20%以上に達する進行性体重減少を有する動物は、安楽死させた。
図11および図12は、それぞれ腫瘍増殖および動物体重データを示す。リポソームトポテカン製剤は腫瘍増殖抑制において遊離薬物よりも活性が高く、F5標的化リポソーム製剤は非標的化リポソーム製剤よりも活性が高かった。観察期間の終了時点における平均した腫瘍の大きさは、処置群間で有意に異なった(対応のない両側のスチューデントt検定によるp値は、遊離対イムノリポソーム薬物に関して1.2x10-6であり、遊離対リポソーム薬物に関して0.000114であり、またリポソーム対イムノリポソーム薬物に関して0.00718であった)。このように、リポソーム封入トポテカンは遊離薬物よりも活性が高く、抗HER2イムノリポソームトポテカンは非標的化リポソーム薬物よりも活性が高かった。リポソーム群およびイムノリポソーム群では、最初の退行後、腫瘍再増殖が最後の処置の10日以内に起こった。遊離薬物群では腫瘍退行は認められなかった。所与の用量のトポテカンのリポソーム製剤は、遊離薬物よりも毒性が高いことが認められた。消化管毒性が存在した。リポソームトポテカンを投与した動物は下痢を発症し、ピーク時には平均約14%の体重減少を経験した。非標的化リポソーム群では、試験の終了時に15%の持続的体重減少を有した1匹(12.5%)を除いて動物は回復したのに対し、F5標的化群では5匹の動物(41.6%)が末期的病的状態を発症して死亡し;さらに2匹(16.7%)が約15%の持続的体重減少を有した。対照群および遊離薬物群では、体重減少も処置に関連した病的状態も認められなかった。
実施例30. 週1回の静脈内注射を3回行ったマウスにおける遊離トポテカンおよびリポソームトポテカンの最大耐量(MTD)
本試験は、ポリリン酸トリエチルアンモニウム溶液を0.65 M トリエチルアンモニウム、pH 6.2を有するスクロース8硫酸トリエチルアンモニウム溶液に換え;100-nmの代わりに押し出し80-nmポリカーボネート膜フィルターを使用したこと以外は、実施例29のように調製したリポソームトポテカン製剤を使用した。ガウス近似での準弾性光散乱法(QELS)によって決定した体積加重のリポソームの大きさは、95.1±19.6 nm(平均値±SD)であった;薬物/脂質比は369.1±18.3 mg/mmolリン脂質であった。2匹の群の5〜6週齢雌Swiss-Websterマウス(18〜20 g)に、注射当たり2 mg/kgトポテカン塩基の用量から開始し、37.8 mg/kgの用量までそれぞれ次の群には係数1.8で増加させながら、1週間に1回のスケジュールで遊離トポテカンまたはリポソームトポテカンを3回静脈内(尾静脈)注射した。イムノリポソームトポテカンは本試験には含めなかった。動物体重および一般健康状態を毎日モニターした。処置開始から10日の期間内の、群内の2匹の動物のいずれかの任意の時点における20%を超える進行性体重減少または自然死を、中毒量を示すものと見なした。動物の死亡および体重データより、遊離トポテカンのMTDは11.7〜21 mg/kg、およびリポソーム(原型2)トポテカンのMTDは2.0〜3.6 mg/kgの範囲に入ると決定された。第2の試験では、マウスに、遊離トポテカン、リポソームトポテカン、またはF5-イムノリポソームトポテカン(実施例29に記載した通りに、本実施例のリポソームトポテカンから調製した)を、2.0 mg/kg(リポソーム/イムノリポソームトポテカン)または12 mg/kg(遊離トポテカン)から、確立されたMTD区間の上限範囲の次の用量に到達するまでそれぞれ次の群には係数1.15で増加させた用量で注射した。いずれの動物において死亡も末期的病的状態ももたらさなかった最も高い用量をMTDと見なし、これは遊離トポテカンでは18.4 mg/kg、リポソームトポテカンでは3.0 mg/kg、およびイムノリポソームトポテカンでは3.0 mg/kgであることが判明した。したがって、リポソームトポテカンは遊離薬物よりも高い毒性を示した。
実施例31. BT-474異種移植片モデルにおける0.125〜1.0xMTDの範囲のリポソームトポテカンの抗腫瘍効果
本試験では、実施例30のトポテカンリポソームおよびF5-イムノリポソームを使用した。実施例29のようにして、ヌードマウスにBT-474皮下異種移植片を生じさせた。腫瘍細胞接種後18日目に、腫瘍(105〜345立方mm、平均約200立方mm)を有する動物を、動物6匹/群の処置群および動物8匹/群の対照群にランダムに割り当てた。動物に、1xMTD、0.5xMTD、0.25xMTD、または0.125xMTDの遊離トポテカンまたはリポソームトポテカンを、腫瘍接種後19日、23日、および27日目での3回の静脈内(尾静脈)注射により投与した。対照群には生理食塩水を注射投与した。腫瘍の大きさおよび動物体重を、実施例29のようにモニターした。動物の体重測定値を得るには、動物の総重量測定値から腫瘍重量(腫瘍密度を1.0と仮定して、腫瘍の大きさから計算した)を減算した。MTDでの薬物製剤はすべて、抗腫瘍活性を示した(図13A〜13D)。それぞれのMTDで、またはその同一の割合(1/2、1/4、または1/8)で投与した遊離薬物とリポソーム薬物の有効性には、有意な差は認められなかった。したがって、TEA-SOS勾配を用いる薬物のリポソーム封入により、抗腫瘍活性の約6倍の増加、および薬物毒性の同様の増加がもたらされた。動物体重の動学から、後に解決される一次的な体重減少(処置前値の約15%)を示したMTDでの遊離トポテカンによる処置を除いて、すべての処置に毒性がないことが明らかになった(図14)。
実施例32. スクロ8硫酸(sucrooctasulfate)トリエチルアンモニウム捕捉法を用いて調製したトポテカンリポソームの調製および標的化インビトロ細胞毒性
643 mM TEA、pH 5.7、モル浸透圧530 mmol/kgを有するTEA-SOSの捕捉溶液、および170 mg/mmolの薬物/リン脂質比を使用し、概して実施例18の手順に従ってリポソームトポテカンを調製した。リポソームは、155 mg薬物/mmolリン脂質;90%の充填効率、および粒径105 nmを有した。これらのリポソームを、総じて実施例19に記載した通りに、約30 scFv/リポソーム(15 mg抗体/mmolリン脂質)で、F5-PEG-DSPE複合体のミセル溶液と共に60℃で1時間インキュベートした。Sepharose CL-4Bを用いてSECにより抗体結合リポソームを分離し、HBS-6.5 HEPES緩衝生理食塩水中に製剤化した。抗HER2 scFv(F5)の結合過程において、検出可能な薬物/脂質比の変化は認められなかった。
癌細胞によるトポテカン製剤の取り込みを、以下のようにして決定した。HER2過剰発現ヒト乳腺腺癌細胞(SK-Br-3、ATCC HTB-30)を、150,000細胞/ウェルで24ウェル細胞培養プレートにプレーティングし、一晩順化させた。細胞を、リポソーム濃度0.1 mMおよび0.01 mMの、完全増殖培地中のF5標的化および非標的化リポソームトポテカンと共に、37℃で4時間(三つ組で)インキュベートした。細胞をハンクス平衡塩類溶液で4回リンスし、0.1% Triton X-100‐70%酸性イソプロパノール混合物1:10で可溶化し、ウェル当たりの細胞結合トポテカンの量を蛍光光度法により測定した。結果(平均値±標準誤差)を表22に要約する。標的化リポソームは、非標的化リポソームよりも100〜300倍多くの薬物を標的細胞に送達した。
(表22)SK-Br-3乳癌細胞によるリポソームトポテカンの取り込み
Figure 0005665950
SKBr-3乳癌細胞に対するこれらのトポテカン製剤の細胞毒性を、実施例27に記載した通りに決定した。SKBr-3細胞を5,000細胞/ウェルで96ウェルプレートに播種し、一晩順化させ、細胞増殖培地中で、逓増的濃度(0.004〜30μg/mL)の遊離トポテカン、リポソームトポテカン、またはF5-イムノリポソームトポテカンと共に37℃で4時間インキュベートした。薬物を含む培地を除去し、薬物を含まない培地中で細胞を72時間増殖させた。ウェル当たりの生細胞数をチアゾリルブルー(MTT)テトラゾリウムアッセイを用いて測定し、対照(非処理)細胞の生細胞数の%として表した。結果を図10に示す。トポテカンイムノリポソーム(IC50 0.15〜0.5μg/mL)は、非標的化トポテカンリポソーム(IC50≧3.1.μg/mL)および遊離トポテカン(IC50≧2.3μg/mL)よりも細胞毒性が高かった。
実施例33. 異なる大きさのトポテカンリポソームのインビボ安定性
TEA-Pnを含むリポソームを、100 nmポアサイズポリカーボネート膜を12回通す、または加えて50 nmポアサイズポリカーボネート膜を12回通す押し出しにより、実施例22のように調製した。トポテカン(TPT)を150μg/μmolリン脂質の比で添加した。充填は湯浴中58℃で45分間行い、その後氷上で急冷した。50-nmおよび100-nmで押し出したリポソームの充填効率は、それぞれ126.80±19.24μg TPT/μmol PL(84.5±12.8%)および148.48±10.26μg TPT/μmol PL(99.0±6.8%)であった。3匹の群の雌Swiss Websterマウスに、5 mg TPT/kgの用量で、2つのLs-TPT製剤のうちの一方を静脈内注射した。6時間後マウスを屠殺し、血液を回収した。実施例22に記載した通りに、血漿をTPTおよびリポソーム脂質について解析した。結果を表23に示す。
(表23)TEA-Pn捕捉法を用いて充填した異なる大きさのLs-TPTのインビボ安定性
Figure 0005665950
実施例34. 6-(3-アミノプロピル)-エリプチシン(6-APE)の合成およびリポソーム封入
Werbel et al., J. Med. Chem. 1986, v.29, p.1321-1322による手順に基づく2段階方法で、エリプチシンから6-(3-アミノプロピル)-エリプチシンを調製した。エリプチシン塩基(NSC 71795)(Aldrich Chemical Co.)501.4 mgを、乾燥ジメチルホルムアミド(DMF)5 ml中、水素化ナトリウム(Sigma;無水石油エーテルで洗浄)約100 mgと共に室温で30分間撹拌した。この混合物に、乾燥DMF 2 mLにN-ブロモプロピルフタルイミド(Aldrich)678 mgを溶かした溶液を滴下した。紫色の反応混合物をアルゴン下で一晩撹拌し、水1 mLで処理し、水60 ml中に注いだ。この混合物を塩化メチレン25 mLで2回抽出し、抽出物を無水硫酸ナトリウム上で乾燥させ、中性アルミナの層に通した。アルミナ層を塩化メチレン10 mLで2回リンスし、混合した濾液とリンス液を真空中で乾燥状態にした。生成物を無水エタノール20 mlおよび無水ヒドラジン2 mlと共に室温で一晩撹拌した。得られたスラリーを真空下で濾過し、黄色の濾液を0.2 N NaOH 50mLで希釈し、二分割量(75 mlおよび50 ml)のクロロホルムで抽出した。クロロホルム抽出物をNa2SO4上で乾燥させ、真空中で乾燥状態にした。粗生成物(収量408 mg)をシリカ60カラムでクロマトグラフにかけ、乾燥トリエチルアミンで飽和したクロロホルム-メタノール混合物(容量で7:3)を用いて均一濃度で溶出した。未反応のエリプチシンに次いで2番目の黄色いバンド中に溶出された画分が、所望の化合物を約30%の収率で含むことが示された。1H-NMRにより構造を確認した。TLC:Rf 0.29〜0.31(シリカ60;トリエチルアミンで飽和した、容量で7:3のCHCl3-MeOH)。エリプチシン、Rf 0.81〜0.83。得られた化合物は、無水エタノール中に溶解し、乾燥イソプロパノール中の6N HCl溶液で滴定して二塩酸塩に変換した。6-APE二塩酸塩(NSC 176328)のオレンジ色の結晶を濾過除去し、エーテルでリンスし、真空中で乾燥させた。二塩酸塩の収率は86%であった。
DSPC、コレステロール、およびPEG(M.w. 2,000)-DSPE(3:2:0.015モル比)のストレートな脂質フィルムを、0.5 M TMA、pH 5.6のポリリン酸トリメチルアンモニウム(TMA-Pn)の溶液中で60℃で水和させ、その後迅速な凍結(-78℃)および融解(60℃)を6サイクル行い、2枚重ね50-nmポアサイズポリカーボネートフィルターを通して10回押し出すことにより、リポソームを調製した。封入されたなかったTMA-Pnは、Sepharose CL-4Bカラムを用いてHEPES-デキストロース(5 mM HEPES、5%デキストロース、pH 5.5)で溶出して除去した。リポソームの大きさは85.7±32.1 nmであった。
濃縮した6-APE溶液(10 mg/ml)を100μg APE/μmolリン脂質の薬物-リン脂質比でTMA-Pn含有リポソームに添加し、混合物を58℃で45分間インキュベートし、氷上で15分間急冷した。封入されなかった薬物は、Sephadex G-75カラムにてHEPES-デキストロース緩衝液(5 mM HEPES-Na、5%デキストロース、pH 6.5)で溶出するゲルクロマトグラフィーにより除去した。次いで、リポソームに捕捉されたAPEを実施例71のように分光光度法によって定量化し、リポソームリン脂質を実施例70の抽出アッセイを用いて測定した。薬物封入は事実上定量的であった。
実施例35. HER2標的化イムノリポソーム6-APEの調製およびインビトロにおけるHEP2過剰発現BT-474乳癌細胞に対する6-APE製剤の細胞毒性
上記の実施例34のようにして、6-APEを封入したリポソーム(Ls-APE)を調製した。6-APEを封入した抗HER2イムノリポソーム(F5-ILs-APE)は、実施例19の方法によりLs-APEから調製した。実施例27のMTTに基づく細胞生存度アッセイを用いて、溶液、Ls-APE、またはHER2標的化F5-ILs-APEとして送達した6-APEのHER2過剰発現ヒト乳癌細胞(BT-474)に対する細胞毒性を測定した。細胞を薬物含有培地に6時間曝露し、その後薬物を含まない培地中で3日間インキュベートした。結果を図15に示す。遊離APEのIC50は0.26μg APE/mlであり、F5-ILs-APEのIC50は0.756μg APE/mlであり、また非標的化Ls-APEのIC50は51.0μg APE/mlであった。標的化リポソーム6-APEと非標的化リポソーム6-APEの間には活性に67.5倍の差があり、かなりの標的化送達効果が示された。
実施例36. 6-APEのEGFR標的化イムノリポソーム製剤およびインビトロにおける癌細胞に対する細胞毒性
6-APE充填リポソームを実施例34に記載した通りに調製した。EGFR標的化イムノリポソームは、以下のようにEGFR特異的Fab'抗体断片を結合して調製した。EGFR特異的IgG MAb C225(セツキシマブ、ERBITUX(商標)、Imclone Systems)をペプシンで消化して、(Fab')2断片を生成した。精製した(Fab')2断片を、10〜20 mM 2-メルカプトエチルアミンで37℃で15分間処理して還元し、Sephadex G-25を用いたゲル濾過によりFab'断片を精製した。反応性チオール基の存在は典型的には、タンパク質1分子当たり約0.9チオール基であった(エルマン試薬を用いて定量化)。pH 6.2〜6.5および1:4のタンパク質-リンカーモル比の水溶液中で、C225Fab'を両親媒性リンカーMal-PEG-DSPE(Avanti Polar Lipids、アラバマ州)に、室温で2〜4時間、または4〜6℃で一晩共有結合させて、30〜50%のタンパク質収率でC225Fab'-PEG-DSPE複合体を得た。HBS-6.5緩衝液で溶出する3%アガロース-4%ポリアクリルアミドビーズゲル(Ultrogel AcA34、Sigma Chemical Co.から入手)でのサイズ排除カラムクロマトグラフィーにより、このミセル形成複合体を未反応のタンパク質から分離した。複合体は空隙容量画分に回収された。C225 Fab'-PEG-DSPEを有するこのリポソームを、30 mg C225タンパク質/mmolリポソームリン脂質の比で薬物充填リポソームと共に60℃で30分間インキュベートし、氷上で15分間急冷し、さらに同様にHBS-6.5緩衝液で溶出するSepharose CL-4Bカラムでのゲルクロマトグラフィーによりイムノリポソームを精製して(リポソームはカラムの空隙容量中またはその近傍に出現する)、イムノリポソーム6-APEを形成した。
MDA-MB-468 EGFR過剰発現ヒト乳癌細胞および低いEGFR発現を有するMCF-7ヒト乳癌細胞(ATCC、メリーランド州、ロックビル)を、供給者の推奨する増殖培地で培養し、これらの細胞に対する遊離6-APE、リポソーム6-APE、および抗EGFR-イムノリポソーム6-APEの細胞毒性を、実施例27の方法に従って試験した。細胞を薬物含有培地と共に6時間インキュベートし、その後薬物を含まない培地中で3日間インキュベートした。結果を図16に示す。MDA-MB-468細胞では、遊離APEのIC50は約0.1μg/mlであり、C225-ILs-APEのIC50は約0.9μg/mlであった。MCF-7細胞では、遊離6-APEのIC50は約0.5μg/mlであり、C225-ILs-APEのIC50は約14μg/mlであった。両細胞株におけるLs-APEのIC50は、>30μg/mlであった。したがって、EGFR標的化6-APE充填イムノリポソームは、EGFR過剰発現MDA-MB-468乳癌細胞において抗原特異的細胞毒性活性を示したが、EGFRを過剰発現しないMCF-7乳癌細胞ではそのような活性を示さなかった。MCF-7細胞では、標的化および非標的化6-APEリポソームは、同等の活性であった。
実施例37. ラットにおけるリポソーム6-APEの薬物動態
TEA-Pn溶液(557 mMリン酸基、500 mM TEA、pH 5.8、モル浸透圧480 mmol/kg)を捕捉し、DSPC、コレステロール、およびPEG-DSPE(モル比3:2:0.015)の脂質組成を有するリポソームを、上記の実施例11のように調製した。脂質のエタノール溶液を10倍量のTEA-Pn水溶液と60℃で混合し、2枚重ね80 nmポアサイズポリカーボネート膜を通して10回押し出した。封入されなかったTEA-Pnは、Sepharose CL-4Bカラムを使用しMES-デキストロース(5 mM MES-Na、5%デキストロース、pH 5.5)で溶出して除去した。リポソームの大きさは、QELSにより92.3±23.3 nmであった。非交換性放射性脂質標識[3H]-CHEを、脂質マトリックス中に0.5 mCi/mmolリン脂質で含めた。実施例34に記載した通りに、リポソームに6-APEを充填した。
薬物動態試験は、実施例9の手順に従った。雌Sim Albioラット(9週齢、200 g)に、10 mg 6-APE/kgの用量で静脈内注射した。所定の時点で血液を採取し、血漿を蛍光光度法により6-APEについて解析した。血漿の一定分量(0.05〜0.2 ml)を90%イソプロパノール水溶液-0.1 N HCl 1〜2 mLと混合し、実施例71のように蛍光により6-APEを定量化した。脂質は、[3H]-CHE放射能シンチレーション計数により定量化した。
結果を図17に示す。薬物の血中半減期(t1/2)は13.7時間であり、リポソーム脂質のt1/2は16.6時間であった(パネルA)。リポソームからの薬物放出の半減期は77.9時間であり、顕著な封入安定性が実証された(パネルB)。
実施例38. 2-(2-(N,N-ジエチルアミノ)エチル)エリプチシニウム(2-DAE)の合成およびリポソーム封入
2-(2-(N,N-ジエチルアミノ)エチル-エリプチシニウムクロリド(NSC 359449)は、トリエチルアミン存在下において、メタノール中でエリプチシンを2-(N,N-ジエチルアミノ)エチルクロリドでアルキル化することによって調製される抗癌エリプチシン誘導体である(Werbel, L.M., Angelo, M., Fry, D.M., and Worth, D.F. J. Med. Chem. 1986, 29:1321-1322を参照されたい)。捕捉されたTEA-Pnを含むリポソームを、実施例37に記載した通りに調製した。5 mM HEPES-Na、5%デキストロース、pH 7.4中、2-DAE.2HClを、100μg/μmolの2-DAE-リン脂質比でTEA-Pnリポソームと共にインキュベートした。充填された薬物の量は、88.2μg APE/μmol PL(効率88.2%)であった。
実施例39. ラットにおけるリポソーム2-DAEの薬物動態
実施例37のようにして、リポソーム2-DAE(実施例38)の血中薬物動態を試験した。2-DAEのt1/2は17.8時間であり、リポソーム脂質マトリックスのt1/2は18.2時間であった(A)。血中でのリポソームからの薬物放出の半減期は、t1/2=677時間であった(B)。したがって、このリポソームは血流中で薬物漏出に対して極めて安定であった。
実施例40. TEP-Pn法を用いるビノレルビンのリポソーム内への充填、pHの影響
0.608 M TEA、0.65 Mリン酸基、pH 6.1、およびモル浸透圧531 mmol/kgのTEA-Pn溶液、および2枚重ね100 nmポアサイズポリカーボネート膜を通す脂質懸濁液の15回の押し出しを使用し、実施例11のようにエタノール注入法によりリポソームを調製した。得られたリポソームの大きさは、QELSにより108.3±17.1 nmであった。二酒石酸ビノレルビン10 mg/mL USPという保存溶液形態のビノレルビン(VRB)を、5 mM HEPES-Na、5%デキストロース、pH 6.5水溶液中のリポソームに、350μg/μmolの薬物-リン脂質比で添加し、1〜5 N NaOHを用いてpHを所望の値に調整し、混合物を58±2℃で30分間インキュベートした。次いで、混合物を氷上で15分間冷却し、封入されなかった薬物をSephadex G-75ゲル濾過クロマトグラフィーにより、HBS-6.5緩衝液(20 mM HEPES-Na、135 mM NaCl、pH 6.5)で溶出して除去した。次いで、精製されたリポソームの一定分量を酸性イソプロパノール中で可溶化し、270 nmで分光光度法によりビノレルビンについて解析した。リポソームリン脂質は、メタノール-クロロホルム抽出後に、Bartlett(1959)のリン酸アッセイを用いて定量化した。
充填後に算出された薬物/脂質比を表24に示す。ビノレルビンの充填は定量的であり(すなわち、事実上100%)、試験した範囲のpHには依存しなかった。
(表24)外部緩衝液の様々なpH値におけるTEA-Pnを捕捉したリポソーム内へのビノレルビンの充填
Figure 0005665950
実施例41. 様々な薬物/脂質比でTEA-Pn法により調製したリポソームビノレルビン:封入効率およびマウスにおけるインビボ安定性
脂質マトリックス中に1.5 mCi/mmolリン脂質の[3H]-CHEを含めること以外は実施例40に従って、TEA-Pn溶液を捕捉したリポソームを調製した。リポソームの大きさは、QELSにより98.5±34.3 nmであった。5 mM HEPES-Na、5%デキストロース、pH 6.5の水性緩衝液中で、150〜450 mg VRB/mmolの薬物-リン脂質比でリポソームを二酒石酸ビノレルビンUSPと混合し、58±2℃で30分間インキュベートした。薬物の添加後に、pH調整は行わなかった。ビノレルビン充填リポソーム(Ls-VRB)を単離し、実施例40のように薬物およびリン脂質について解析した。
3匹の群の5〜6週齢雌Swiss Websterマウス(Harlan Bioresearch)に、5 mg VRB/kgの用量でLs-VRB-Pnを静脈内注射した。脂質用量は充填の程度によって異なり、上記の計算による薬物-脂質比から決定することができる。注射の8時間後または24時間後に動物に麻酔をかけ、放血させ、0.04% EDTAを添加した既知量のPBSを含む秤量済みのチューブ中に血液を氷上で回収した。血液細胞を遠心分離によって分離し、[3H]-CHE放射能シンチレーション計数によりリポソーム脂質に関して、および以下のようにHPLCを用いてビノレルビンに関して上清を解析した。試料にビンブラスチン(内部標準物質)を添加し、ジエチルエーテルで抽出し、蒸発させ、残渣を50 mM酢酸トリエチルアンモニウム水溶液(pH 5.5)およびアセトニトリル(容量で58:42)からなる移動相に溶解した。試料を、C-18ガードカラムが先行するC18逆相シリカカラム(Supelco C-18カラム、250 mm x 4 mm内径、粒径5μm)に添加した。カラムを、1.0 ml/分の流速で、上記の移動相により均一濃度で溶出した。280 nmで吸光度検出器を用いてVRBを検出した。VRBおよびビンブラスチン(内部標準物質)の典型的な保持時間は、それぞれ9.1分および7.8分であった。
結果を表25に示す。充填効率は薬物/脂質比の増加に伴って、150 mg/mmolでの事実上の100%から450 mg/mmolでの約66%まで減少した。250 mgビノレルビン/mmolリン脂質を超える比で二酒石酸ビノレルビンを添加すると、充填効率の減少をもたらすリポソーム懸濁液の実質的な酸性化(pH<4.0)が起こることが留意された。したがって、薬物充填段階時のpH調製の必要性が確証された。8時間後に血中に検出されたリポソームマトリックスの量は、注射した脂質の絶対量との明白な関係はなく、注射用量の30.4±6.6%(%id)〜38.6±5.2%idであった。24時間後、血中に検出される脂質マトリックスは、なお6.4%ID〜14.8%IDであった。8時間後に封入されて残存した薬物の量は、37%から63%まで様々であった。しかし、注射から24時間後には、薬物レベルは、使用した分析法の検出限界未満に減少した。
(表25)TEA-Pn法を用いて(充填緩衝液のpH調整を行わずに)様々な薬物/脂質比で調製したリポソームビノレルビンの封入効率およびインビボ薬物保持
薬物保持データは、平均値±SD(N=3)である。
Figure 0005665950
実施例42. 様々な薬物/脂質比におけるTEA-SOS法を用いたリポソーム内へのビノレルビン充填
TEA-Pn溶液の代わりに0.65 M TEA、pH 5.4、モル浸透圧521 mmol/kgを有するTEA-SOS溶液を使用し、リポソームを80 nmポアサイズポリカーボネート膜を通して押し出すこと以外は実施例40のようにして、薬物充填のためのTEA-SOSリポソームを調製した。リポソームの大きさは、QELSにより86.6±12.9 nmであった。5 mM HEPES-Na、5%デキストロース、pH 6.5水溶液中のリポソームに、VRBを様々な薬物-リン脂質比で添加し、続いて混合物を60℃で30分間インキュベートした。次いで、VRB充填リポソームを単離し、実施例40のように解析した。
VRBリポソームにおいて算出された薬物/脂質比を表26に示す。顕著なことには、高分子アニオン支援の充填とは対照的に、ポリアニオン化糖(スクロース8硫酸)を有するリポソーム内へのビノレルビン充填は、450 mg VRB/mmolリン脂質までは薬物/脂質比とは無関係に事実上定量的であり、550 mg VRB/mmolリン脂質でわずかに減少する(88%)にすぎなかった。
(表26)リポソーム内へのビノレルビン充填の薬物-脂質比への依存
Figure 0005665950
実施例43. TEA-Pn法によりビノレルビンを充填したHER2標的化イムノリポソームの調製、ならびにラットにおけるHER2標的化および非標的化ビノレルビンリポソームの比較血中薬物動態
抗HER2 scFv F5-PEG-DSPE複合体は、実施例19の通りに調製した。HER2標的化ビノレルビンイムノリポソームは、20 mM HEPES-Na、135 mM NaCl、pH 6.5水性緩衝液中、非標的化ビノレルビンリポソーム(実施例41、350 mg/mmolの薬物/脂質比で充填)を15 mg/mmolのタンパク質/リン脂質比でF5-PEG-DSPE複合体(実施例19)と共に60℃で30分間インキュベートすることにより調製した。取り込まれなかったF5複合体は、同じ緩衝液で溶出するSepharose 4Bカラムでのゲルクロマトグラフィーにより除去した。非標的化リポソーム(Ls-Pn-VRB)およびHER2標的化リポソーム(F5-ILs-Pn-VRB)を、雌Albinoラット(8〜9週齢;200 g)に5 mg VRB/kgの用量で静脈内投与した。様々な時点で、実施例9に記載した通りに血液を回収し、実施例41のようにVRBおよびリポソーム脂質について解析した。MICROSOFT EXCEL(Microsoft Corp.)表計算TREND関数を用いて単一指数関数的速度論への最良適合を見出すことにより、リポソーム脂質の血中半減期および50%薬物放出時間を、それぞれ脂質濃度-時間プロットまたは薬物/脂質比-時間プロットから計算した。結果(図18)から、標的化および非標的化ビノレルビンリポソームはいずれも、約12.1時間の脂質半減期および約4.3時間の50%薬物放出時間を有して、同一の薬物および脂質薬物動態を有することが示された。
実施例44. アンモニウム塩および置換アンモニウム塩を用いて調製したビノレルビンリポソームの調製および比較インビボ安定性
実施例4の方法に従って、分子量10,000を有するデキストラン硫酸(Sigma Chemocal Co.)から、それぞれ12.4 Mアンモニア水またはストレートなトリエチルアミンを用いて滴定することにより、pH 5.8、0.65 M NH4+、モル浸透圧390 mmol/kgを有するデキストラン硫酸アンモニウム(DS-A)溶液、およびpH 6.0、0.65 M NH4+、モル浸透圧465 mmol/kgを有するデキストラン硫酸トリエチルアンモニウム溶液(DS-TEA)を調製した。硫酸アンモニウム(S-A)水溶液325 mM pH 5.1、モル浸透圧703 mmol/kgは、分析等級の硫酸アンモニウムから調製した。3つの溶液はすべて、総カチオン含量の1%未満のNa+を含んでいた。これらの溶液を捕捉するリポソームを、実施例41のエタノール混合-押し出し法を用いて調製した(DSPC/コレステロール/PEG-DSPE 3:2:0.015モル比)。1.5 mCi/mmolリン脂質の放射性脂質標識[3H]-CHEを脂質マトリックス中に含めた。押し出し段階は、2枚重ね0.1μmポリカーボネート膜の10回の通過からなった。VRBを5 mM HEPES-Na、5%デキストロース、pH 6.5中のリポソームに350 mg/mmolの薬物-リン脂質比で添加し、1N NaOHを用いてpHを6.5に調整し、混合物を58〜60℃で30分間インキュベートした。次いで反応物を氷上で15分間冷却し、封入されなかった薬物をSephadex D-75ゲル濾過クロマトグラフィーにより20 mM HEPES-Na、135 mM NaCl水溶液、pH 6.5で溶出して除去した。精製されたビノレルビン充填リポソームを、分光光度法でVRBについて、およびBartlett(1959)のリン酸アッセイを用いてリン脂質について解析した(実施例70、71を参照のこと)。リポソーム脂質および薬物の血中薬物動態を、実施例43のようにラットにおいて試験した。
結果を図19〜20および表27に示す。デキストラン硫酸トリエチルアンモニウムを用いて充填したリポソームを、デキストラン硫酸のアンモニウム塩を用いて充填したリポソームと比較した。予期せぬことに、トリエチルアンモニウム塩を用いて充填したリポソームは、アンモニウム塩を用いて充填したリポソームよりもはるかに安定性が高かった。リポソーム担体自体の薬物動態は3つの異なる製剤で同様であり、したがって主に使用した脂質組成に依存した。デキストラン硫酸トリエチルアンモニウムを用いて充填したLs-VRBからのビノレルビンの漏出は、デキストラン硫酸アンモニウムを用いて充填したリポソームからの漏出よりも約3倍遅かった。硫酸アンモニウムを用いて充填したリポソームは、最も速い薬物漏出速度を有した。
(表27)捕捉されたアンモニウム塩および置換アンモニウム塩を用いるリポソーム内への薬物封入の比較インビボ安定性
Figure 0005665950
実施例45. 様々な大きさのビノレルビン充填リポソームの調製およびインビボ安定性
スクロース8硫酸トリエチルアンモニウムの溶液(0.65 M TEA、pH 6.4、モル浸透圧502 mmol/kg)を捕捉した[3H]-CHE標識リポソーム(1.5 mCi/mmolリン脂質)を、実施例11のエタノール混合-押し出し法により調製した。押し出し段階は、0.05、0.08、または0.1μmのポアサイズを有する2枚重ねポリカーボネート膜の15回の通過を含んだ。ビノレルビンの充填、ビノレルビンリポソームの単離、およびリポソームの特徴づけは、実施例40の方法に従った。雌Albinoラット(8〜9週齢;200 g)を用いて、リポソームインビボ安定性について試験した。リポソーム脂質および薬物の薬物動態を、実施例43の通りにラットにおいて試験した。
結果を図21、図22、および以下の表28に示す。0.05、0.08、および0.1μmポリカーボネートフィルターを通して押し出したリポソームを比較したところ、同様の薬物およびリポソーム担体薬物動態、ならびに同程度の内容物漏出を有することが示された。血中でのリポソームからの薬物放出は、24時間を優に上回り、約40〜80時間の50%放出時間によって特徴づけられた。
(表28)ビノレルビンリポソームの特徴づけ
Figure 0005665950
実施例46. TEA-SOS捕捉法を用いたHER2標的化ビノレルビンリポソームの調製、ならびにラットにおけるHER2 scFv標的化および非標的化イムノリポソームビノレルビンの薬物動態
TEA-Pn溶液に換えて実施例45のTEA-SOS溶液を使用すること以外は実施例43に記載した通りに、リポソームを調製し、350 mg/mmol薬物-リン脂質比でビノレルビンを充填し、解析した。押し出し段階は、0.08μmポアサイズポリカーボネートリルターの15回の通過を含んだ。リポソームの大きさは、QELSにより95.0±26.0 nmであった。このビノレルビンリポソームからF5scFv結合抗HER2ビノレルビンイムノリポソームを調製し、HER2標的化および非標的化リポソームビノレルビンのリポソーム脂質および薬物の血中薬物動態を、実施例43に記載した通りにラットにおいて試験した。F5-ILs-VRBおよびLs-VRBそれぞれについて、リポソーム脂質の循環半減期は11.4時間および10.3時間であり、50%薬物放出時間は30.9時間および30.3時間であった。したがって、Ls-VRBおよびF5-ILs-VRBの脂質および薬物の薬物動態は非常に近似しており、scFv-PEG-DSPE複合体の導入が担体自体の排除にも影響を及ぼさず、また循環時の担体からの薬物漏出の増加も生じないことが示された(図23、図24)。
実施例47. ポリ(エチレングリコール)の非イオン性脂質誘導体を含むビノレルビンリポソームの調製および薬物動態特性
合成C20-セラミドのメトキシ-PEG(分子量2,000)誘導体(PEG-セラミド)は、Northern Lipids, Inc.、カナダから入手した。メトキシ-PEG(分子量2,000)-ジステアロイルグリセロール(PEG-DSG)(SUNBRIGHT GS20)は、NOF Corp.、日本から入手した。
モル比3:2:0.3のDSPC、コレステロール、およびPEG-脂質(PEG-セラミドまたはPEG-DSG)の脂質組成を有し、TEA-SOS溶液(0.65 M TEA、pH 6.4、モル浸透圧502 mmol/kg)を捕捉したリポソームを、実施例11のエタノール混合/押し出し法によって調製した。押し出し段階は、ポアサイズ0.2μmを用いた2回およびポアサイズ0.08μmを用いた10回の、2枚重ねポリカーボネート膜フィルターの2通りの通過を含んだ。リポソームに350 mg/mmolの薬物/リン脂質比でビノレルビンを充填し、大きさ、薬物、および脂質濃度によって特徴づけ、それらの薬物動態を実施例46のようにラットにおいて試験した。いずれの製剤も、以下の表29に示すように、脂質マトリックスの長期の循環時間を示し、またインビボにおける血中で24時間後に薬物の少なくとも50%が封入されて残存して、インビボにおける薬物の徐放を示した。
(表29)様々なPEG-脂質を有するビノレルビンリポソームの特徴づけ
Figure 0005665950
注目すべきは、これらリポソームのPEG化の増加(総脂質の約5.7 mol%のPEG脂質含量)は、総脂質の約0.3 mol%という低いPEG化を有する大きさの一致する類似のリポソームと比較して(実施例45、109.6 nm、t1/2=14.3時間;98.5 nm、t1/2=13.0時間)、リポソーム血中循環寿命に対して実際には効果がなかった。
実施例48. HER2標的化リポソームビノレルビンの調製、ならびにインビトロでの遊離、HER2標的化、および非標的化リポソームビノレルビンのMDA-MB-453細胞に対する細胞毒性
pH 6.0および350μgビノレルビン/μmolリン脂質での薬物充填を用いて、実施例42のように([3H]-CHEなしで)、ビノレルビン充填リポソーム(Ls-VRB)を調製した。抗HER2イムノリポソームビノレルビン(F5-ILs-VRB)は、[3H]-CHEを添加しないこと以外は上記の実施例19および42に記載した通りに、このリポソームをF5-PEG-DSPE複合体と共にインキュベートすることで形成した。「遊離」ビノレルビンは、二酒石酸ビノレルビン10 mg/ml溶液USPを細胞培養液中に希釈して調製した。
MDA-MB-453は、HER2受容体を中程度に過剰発現する(約3x104〜1x105コピー/細胞)ヒト乳腺腺癌細胞(アメリカンタイプカルチャーコレクション、メリーランド州、ロックビル)である。細胞を10,000細胞/ウェルの密度で供給者の推奨する増殖条件下(10%ウシ胎児血清を含むLeibowitz L-15、CO2補充なし)で96ウェルマイクロタイタープレートにプレーティングし、薬物製剤を0.03〜0.1 mg/mlから開始して一連の1:3段階の希釈物として添加すること以外は実施例27に記載した通りにして、遊離薬物、非標的化リポソームビノレルビン、またはHER2標的化(F5)-イムノリポソームビノレルビンとして送達されるVRBのMDA-MB-453細胞に対する細胞毒性を決定した。細胞生存度のデータを薬物濃度に対してプロットし(図25)、細胞生存度を50%まで減少させるのに必要な薬物濃度(IC50)をグラフから推定した。F5標的化ビノレルビンリポソームのIC50(0.06μg/mg)は遊離薬物のIC50 (0.07μg/mg)に近く、非標的化リポソームのIC50(2.2μg/mg)よりも実質的に低かった。このことから、薬物の癌細胞特異的標的化送達の結果として37倍の活性増加が示された。
実施例49. インビトロにおける遊離、HER2標的化、および非標的化リポソームビノレルビンのCaLu-3細胞に対する細胞毒性
前実施例(実施例48)のリポソームおよび方法を用いて、遊離ビノレルビン、Ls-VRB、およびF5-ILs-VRBの細胞毒性を、HER2過剰発現ヒト非小細胞肺癌細胞CaLu-3(アメリカンタイプカルチャーコレクション、メリーランド州、ロックビル)において試験した。細胞は、5% CO2の存在下で、10%ウシ胎児血清を添加したRPMI-1460培地で培養した。結果を図26に示す。遊離VRBのIC50は1.2μg/mlであり、F5-ILs-VRBのIC50は10μg/mlであり、また非標的化Ls-VRBのIC50は50μg/mlであった。これにより、細胞への標的化送達の機能として、リポソーム封入薬物活性の5倍の増加が示される。
実施例50. インビトロでの遊離、HER2標的化、および非標的化リポソームビノレルビンのSKBr-3細胞に対する細胞毒性
細胞を、10%ウシ胎児血清を添加した改変McCoy 5A培地で5% CO2の存在下にて培養し、5,000細胞/ウェルの密度でプレーティングし、薬物を細胞と共に6時間インキュベートすること以外は実施例48のリポソームおよび方法を用いて、遊離ビノレルビン、Ls-VRB、およびF5-ILs-VRBの細胞毒性をHER2過剰発現ヒト乳癌細胞SKBr-3(アメリカンタイプカルチャーコレクション、メリーランド州、ロックビル)において試験した。
結果を図27に示す。遊離VRBのIC50は0.28μg/mlであり、F5-ILs-VRBのIC50は0.17μg/mlであり、また非標的化Ls-VRBのIC50は0.8μg/mlであった。これにより、標的化送達の機能として、薬物活性の4.7倍の増加が示される。
実施例51. マウスのHT29ヒト結腸癌異種移植片におけるリポソームビノレルビンのインビボ抗腫瘍効果
スクロース8硫酸トリエチルアンモニウムの水溶液(0.6Mトリエチルアンモニウム、pH 5.7〜6.2)中で濃縮エタノール溶液を水和させ、その後ポリカーボネート膜(ポアサイズ100 nm)を通して繰り返し押し出し、リポソーム外のポリアニオン塩を除去して、ジステアロイルホスファチジルコリン、コレステロール、およびPEG-DSPE(モル比3:2:0.045)から小さな単層小胞リポソーム(QELSにより93.2±26.4 nm)を調製し、実施例42に記載した通りに、等張緩衝液pH 6.5中、325 mg VRB/mmolリン脂質の薬物/脂質比でリポソームと共に60℃でインキュベートすることによりビノレルビンを充填した。
雌BALB/cホモ接合性ヌードマウス(6〜8週齢、体重17〜20 g)の腹側部に、1x106個のHT-29ヒト結腸癌細胞(アメリカンタイプカルチャーコレクション、メリーランド州、ロックビル)を皮下注射した。平均腫瘍径が5〜8 mmに到達した、腫瘍接種後16日目から開始して、マウスを動物6匹の3つの群にランダムに分割し、尾静脈から3日ごとに全部で4回注射をして、5 mg/kg用量の遊離またはリポソームビノレルビンで処置した。対照群では、マウスを等量の生理食塩水で処置した。各マウスの腫瘍の大きさをノギスで測定し、式:(腫瘍の長さ)x(腫瘍の幅)2/2を用いて腫瘍体積を計算した。処置に関連する毒性を評価するため、週に2回、動物の体重も測定した。リポソームビノレルビンは、遊離ビノレルビンよりもHT-29腫瘍の増殖の抑制においてはるかに有効であり、腫瘍の退行をもたらすことが示されたが、遊離薬物群では腫瘍は常に増殖し続けた(図28)。処置過程において動物体重にはほとんど変化がなく、処置が十分に許容されること、およびリポソーム化が薬物毒性を増大させないことが示された(図29)。
実施例52. C-26同質遺伝子的マウス結腸癌腫瘍に対するリポソームビノレルビンのインビボ抗腫瘍効果
リポソームビノレルビンおよび遊離ビノレルビンは、実施例48のように調製した。雄BALB/cマウス(6〜8週齢、体重17〜20 g)に、2x105個のC-26マウス結腸癌細胞を皮下接種した。平均腫瘍径が5〜8 mmに到達した注射後17日目に、マウスを動物5匹/群の6つの群にランダムに分割した。腫瘍を有するマウスに、6 mg/kg、8 mg/kg、または12 mg/kgの遊離ビノレルビン、および4 mg/kgまたは6 mg/kgのリポソームビノレルビンを、3日ごとに全部で4回尾静脈注射した。対照群では、マウスに等量の生理食塩水を注射した。腫瘍の大きさおよび動物体重については、実施例51に従った。リポソームビノレルビンは4 mg/kgでさえも、12 mg/kgの遊離薬物よりも腫瘍増殖の減少においてはるかに効果的であった(図30)。処置過程における動物体重はほとんど変化を示さず(<10%減少)、リポソームビノレルビンの毒性が遊離薬物の毒性と比較して増加していないことが示された(図31)。
実施例53. マウスのBT-474ヒト乳癌異種移植片腫瘍に対するHER2標的化リポソームビノレルビンのインビボ抗腫瘍効果:充填対イオンの効果
[3H]-CHEを添加しないこと以外は、それぞれ実施例41のTEA-Pn法および実施例42のTEA-SOS法により、99.5±10.2 nmの大きさのVRB充填リポソームを調製した。350 mg/mmolの薬物/リン脂質比でVRBを充填した。実施例43に記載したようにこれらのリポソームをF5-PEG-DSPE複合体(実施例19を参照のこと)と共にインキュベートして、HER2標的化リポソームビノレルビンを形成した。実施例10のようにして、ホモ接合性ヌードマウスにBT-474 HER2過剰発現ヒト乳癌異種移植片を生じさせた。腫瘍が約200 mm3の大きさ(144〜309 mm3の範囲)に到達した腫瘍細胞接種後25日目に、マウスを動物8匹/群の4つの群にランダムに割り当て、週に1回全部で3回静脈内注射して、5 mg/kg用量の遊離VRB、対イオンとしてPnを有するF5-ILs-VRB、または対イオンとしてSOSを有するF5-ILs-VRBで処置した。対照群には等量の生理食塩水を投与した。腫瘍および動物体重を、実施例10のようにモニターした。スクロース8硫酸を用いて充填したHER2標的化リポソームビノレルビンは、ポリ(リン酸)を用いて充填した同じ標的化構築物よりも腫瘍増殖の減少において顕著に有効であり、いずれのイムノリポソーム調製物も、5 mg VRB/kgで投与した場合に遊離ビノレルビンよりもはるかに有効であった(図32)。薬物処置したマウスは体重変化をほとんど示さず、処置が十分に許容されることが示された(図33)。
実施例54. マウスのBT-474ヒト乳癌異種移植片腫瘍に対するHER2標的化リポソームビノレルビンのインビボ抗腫瘍効果:PEG化の効果
実施例48に従って、モル比3:2:0.015(「0.5%PEG」)または3:2:0.3(「10%PEG」)のDSPC、コレステロール、およびPEG分子量2,000を有するPEG-ジステアロイルグリセロール(GS-20、NOF Corp.、日本)の脂質マトリックスを、エタノール溶液法によってスクロース8硫酸トリエチルアンモニウム水溶液中で水和させ、その後実施例48に従って膜を押し出しことで、モル比3:2のDSPCおよびコレステロールのリポソームを調製した。350 mg/mmolの薬物/リン脂質比で、VRBをリポソーム内に充填した。実施例43に記載したようにこれらのリポソームをF5-PEG-DSPE複合体(実施例19)と共にインキュベートして、F5イムノリポソームビノレルビンを形成した。BT-474異種移植片を有するヌードマウスを作製し、実施例53のように、5 mg/kgの遊離VRB、F5-ILs-VRB-「0.5%PEG」、またはF5-ILs-VRB-「10%PEG」を静脈注射してマウスを処置した。図34に示すように、非イオン性PEG脂質誘導体PEG-DSGを備えた、PEG化の高いF5-ILs-VRBは、PEG-DSG量の少ないF5-ILs-VRBよりも腫瘍増殖の減少において顕著に有効であり、いずれの調製物も遊離薬物よりも活性が高かった。
実施例55. マウスのU87ヒト脳腫瘍異種移植片腫瘍に対するEGFR標的化リポソームビノレルビンのインビボ抗腫瘍効果
実施例42に従って、0.65 M TEA-SOS溶液を封入したリポソーム(QELSによる大きさ86.6±12.9 nm)を調製し、VRBを充填した。実施例36に記載した通りに、VRBリポソームを抗EGFR抗体Fab'断片のPEG-DSPE複合体と共にインキュベートして、抗EGFR-イムノリポソームVRB(C225Fab'-ILs-VRB)を調製した。
雄NCR nu/nuマウス(5〜6週齢、体重17〜20 g)の腹側部に、全量で150μlの増殖培地に懸濁した1x107個のU87ヒト神経膠芽腫細胞(ATCC)を皮下接種した。腫瘍の平均の大きさが250 mm3に到達した時点で、マウスを動物10〜12匹の4つの群にランダムに分割した。5 mg VRB/kg用量の「遊離」VRB、非標的化Ls-VRB、またはC225Fab'-ILs-VRBを、週に1回、全部で3回静脈内注射して、マウスを処置した。対照群には等量の生理食塩水を投与した。腫瘍の大きさおよび動物体重を、実施例10のようにモニターした。C225Fab'-ILs-VRBは、等用量の非標的化リポソームビノレルビンまたは遊離ビノレルビンのどちらよりも、EGFR過剰発現ヒト脳腫瘍異種移植片腫瘍の増殖の抑制において顕著に有効であった(図35)。
実施例56. 硫酸トリエチルアンモニウム法を用いてリポソーム内に封入されたドキソルビシンの調製および薬物動態
実施例2に記載した通りに、様々な脂質マトリックス組成(以下の表に表示)を有するリポソームを形成した。N-グルタリル-DSPE(Glu-DSPE)は、Avanti Polar Lipids、米国、アラバマ州によった。回転蒸発によりクロロホルム中の脂質溶液からストレートな脂質フィルムを形成し、微量な揮発物を真空下(90μm Hg、2時間)で除去し、脂質フィルムを硫酸トリエチルアンモニウム(TEA-SO4)溶液(0.65 N TEA)中で水和させ、6サイクルの迅速な凍結および融解に供し、2枚重ね0.1μmポアサイズポリカーボネートフィルターを通して10回、および2枚重ね0.05μmポアサイズポリカーボネートフィルターを通して10回押し出した。血液試料中の脂質マトリックスを定量化するため、0.5〜1.5 mCi/mmolリン脂質の[3H]-CHEを脂質マトリックス中に含めた。実施例2に従って、TEA-SO4溶液を捕捉したリポソームにドキソルビシンを充填した。HEPES緩衝生理食塩水(20 mM HEPES-Na、135 mM NaCl,pH 6.5)中のリポソームを、塩酸ドキソルビシン(140〜170 mg/mmolの薬物/リン脂質比)と共に60℃で45分間インキュベートし、その後氷上で急冷し、封入されなかったドキソルビシンをゲルクロマトグラフィーにより除去した。分光光度法(実施例71)によりドキソルビシンについてアッセイし、Bartlett法(実施例70)によりリン脂質についてアッセイした。得られたリポソームの特性を以下の表30に要約する。
(表30)様々な脂質組成のリポソームドキソルビシンの特性
Figure 0005665950
DSPC/Chol/PEG-DSPE 2.7:2:0.3の脂質組成を有するこのドキソルビシン含有リポソームの血中薬物動態を、実施例9に記載した通りに、5 mgドキソルビシン/kgの用量を単回静脈内投与したラットにおいて試験した。リポソームは長い時間循環していた(約28時間の半減期)(図36)。安定なドキソルビシン-リン脂質比から、この製剤が、48時間を超えても薬物の25%未満しか失わずに、循環中の薬物漏出に対して際立って安定であることが示された。
実施例57. TEA-硫酸法により調製したドキソルビシン充填リポソームおよび抗HER2イムノリポソーム:調製、およびHER2過剰発現ヒト乳癌異種移植片に対するインビボ抗腫瘍効果
様々な脂質組成および特性(以下の表に記載)を有するドキソルビシン充填リポソームを、実施例56に記載した通りに調製した。ドキソルビシン充填抗HER2イムノリポソームは、実施例19に記載した通りに、抗HER2 scFv F5-PEG-DSPE複合体(約30 scFv/リポソーム)と共にインキュベートすることにより、ドキソルビシン充填リポソームから調製した。皮下ヒト乳癌異種移植片(BT-474)を有するNCR nu/nuマウスを作製し、週に1回の、5 mg/kg用量のリポソームまたは抗HER2イムノリポソームドキソルビシンで3週間処置し(動物10〜12匹の群)、腫瘍の平均の大きさが200 mm3に到達した時点で、実施例29に記載したように腫瘍の進行および動物体重をモニターした。非標的化ドキソルビシンリポソーム製剤では、PEG-DSPEを含まない、0.5 mol% PEG-DSPE、または10 mol% PEG-DSPEを含む脂質組成を試験し;F5-イムノリポソームドキソルビシンでは、0.5 mol% PEG-DSPEおよび10 mol% PEG-DSPEを有する製剤を試験した(ここでは、PEG-DSPEの量をリポソームリン脂質のmol%として表す)。結果(図37、表31)から、いずれのドキソルビシン処置も、腫瘍増殖の遅延に有効であることが実証された。接種後53日目の腫瘍の大きさに基づくと、全3つの非標的化リポソーム群内の腫瘍増殖抑制の差は統計的有意性を示さなかったが(ANOVA p=0.081)、イムノリポソームドキソルビシンは非標的化リポソームドキソルビシンよりも有意に有効であり(ANOVA p=5.5x10-10)、「10%PEG-DSPE」製剤は「0.5%PEG-DSPE」よりも有効であった(スチューデントのt検定、p=0.027)。「10%PEG-DSPE」F5-ILs群では、67%の動物において腫瘍が1 mm3以下まで退行し、「0.5%PEG-DSPE」F5-ILs群では、9%の動物しかそのように退行しなかった。対照群(生理食塩水処置)では、38〜43日目に、腫瘍は15%体重の許容可能な大きさの限界を上回った。
(表31)インビボ抗腫瘍効果試験におけるリポソームドキソルビシン:リポソームの特性および処置の結果
Figure 0005665950
実施例58 リポソームビンブラスチンの調製およびラットにおけるリポソームビンブラスチンの血中薬物動態
TEA-SOS水溶液(0.65 M TEA、pH 6.4、モル浸透圧502 mmol/kg)を充填し、99.5±10.2 nm(QELSによる平均値±SD)の大きさを有するリポソームを、実施例11の方法により、2枚重ね0.2μmポリカーボネート膜を通した2回および2枚重ね0.08μmポリカーボネート膜を通した10回の押し出しによって調製した。硫酸ビンブラスチンUSPの形態のビンブラスチン(VBL)を、150 mg/mmolの薬物-リン脂質比で添加した。薬物-リポソーム混合物のpHを1 N NaOHを用いて6.5に調整し、続いて混合物を60℃で30分間インキュベートした。次いで、混合物を氷上で15分間冷却し、封入されなかった薬物をSephadex G-75ゲル濾過クロマトグラフィーにより、5 mM HEPES-Na、135 mM NaCl、pH 6.5で溶出して除去した。次に、精製されたリポソームを、実施例70および71のように、分光光度法によりVBLについておよびBartlett法によりリン脂質について解析した。1.5 mCi/mmolリン脂質の比率で、[3H]-CHEを製剤中に含めた。リポソームビンブラスチンは、152.4±12.0 mg VBL/mmolリン脂質を有した(定量的封入)。
雌Albinoラット(8〜9週齢;200 g)における5 mg VBL/kg用量のリポソームビンブラスチンの血中薬物動態を、実施例9に記載した通りに試験した。血漿試料中のビンブラスチンは、実施例41に記載した通りに(内部標準物質としてビノレルビンを使用して)定量化した。ビンブラスチンリポソームは良好な循環寿命を示し(脂質成分の血漿半減期12.8±0.04時間)(図38)、また24時間後に最初のビンブラスチン充填量の70%を超える割合が封入されて残存して、リポソームからの薬物漏出に対して非常に良好な安定性を示した(図39)。封入薬物の50%の放出を達成する注射後の時間は、40.6±1.2時間であると判明した。
実施例59 TEA-SOS法を用いてビンクリスチンを充填したリポソームの調製および充填効率に及ぼすpHの影響
86.6±12.9 nm(QELSによる)の大きさ、モル比3:2:0.015のDSPC/Chol/PEG-DSPEの脂質組成を有し、TEA-SOS水溶液(0.65 M TEA、pH 5.4、モル浸透圧521 mmol/kg)を充填したリポソームを、実施例11の方法により、2枚重ね0.08μmポアサイズポリカーボネート膜を15回通過させる押し出し段階を用いて調製した。ビンクリスチン(VCR)を、350μgビンクリスチン/μmolリン脂質の薬物-リン脂質比で硫酸ビンクリスチンとして、5 mM HEPES-Na、5%デキストロース水性緩衝液中のリポソームに添加し、1N NaOHを用いてpHを表示の比率に調整し、混合物を60℃で30分間インキュベートし、氷上で15分間冷却し、さらにSephadex G-75ゲル濾過クロマトグラフィーによりHES-6.5(20 mM HEPES、135 mM NaCl、pH 6.5)で溶出して、封入されなかった薬物からリポソームを分離した。次いで、精製されたリポソームを、酸性イソプロパノール中で可溶化した後に、265 nmでの吸光度を用いる分光光度法によりビンクリスチンについて、およびBartlett(1959)のリン酸アッセイ法を用いてリン脂質含量について解析した。
結果を以下の表32に示す。薬物充填はpH 4.5〜7.5の範囲で90%を上回り、pH 5.0〜7.5では実際に定量的であった。薬物の充填後にpH調整を行わなかったリポソーム混合物中で観察されたpH 3.5では、充填はかなり低かった。
(表32)TEA-SOSを捕捉したリポソーム内へのビンクリスチン充填のpH依存性
Figure 0005665950
実施例60. TEA-SOS法を用いてビンクリスチンを充填したリポソームの調製:充填効率に及ぼす薬物/脂質比の影響
実施例59のようにSOS-TEA含有リポソームを調製し、実施例59の手順に従って、150〜550μgビンクリスチン/μmolリン脂質の薬物-リン脂質比で硫酸ビンクリスチンをpH 6.5にて充填した。次いで、封入されなかった薬物から精製したリポソームを、分光光度法によりVCRについて、およびBartlett(1959)のアッセイを用いてリポソームリン脂質について解析した。薬物充填効率は、試験したすべての範囲の薬物/脂質比において90%を上回り、150〜450μgビンクリスチン/μmolリン脂質の間で実際に定量的であった(表33)。
(表33)様々な薬物-脂質比でのTEA-SOS含有リポソーム内へのビンクリスチンの充填
Figure 0005665950
実施例61. イムノリポソームビンクリスチンの調製、ならびにインビボにおける癌細胞に対するリポソームおよびイムノリポソームビンクリスチンの細胞毒性
350 mg/mmolの薬物/リン脂質比を用いて、実施例59に記載した通りにリポソームビンクリスチン(Ls-VCR)を調製した。HER2特異的F5-イムノリポソームビンクリスチン(F5-ILs-VCR)は、実施例19に記載した通りに抗HER2 scFv F5-PEG-DSPE複合体と共にインキュベートすることによりリポソームビンクリスチンから調製した。「遊離」ビンクリスチン(VCR)溶液は、硫酸ビンクリスチンUSPを水に溶解し、その後滅菌濾過して調製した。VCR、Ls-VCR、およびF5-ILs-VCRのHER2過剰発現ヒト乳癌細胞SKBr-3(ATCC)に対する細胞毒性は、実施例27の手順を用いてMTTに基づく細胞生存度アッセイにより決定し、細胞を5,000細胞/ウェルで96ウェルマイクロタイタープレートに播種し、一晩順化させ、薬物含有培地と共に4時間インキュベートし、その後薬物を含まない培地中で3日間インキュベートした。結果を図40に示す。遊離VCRのIC50は75 ng/mlであり、F5-ILs-VCRのIC50は11 ng/mlであり、またLs-VCRのIC50は3μg/mlであった。本発明に従って調製した標的化リポソームビンクリスチンは、遊離薬物よりも活性が6.8倍高く、また非標的化リポソーム薬物よりも活性が273倍高く、細胞特異的薬物送達の機能としての抗癌活性の実質的な増加が示される。
実施例62. ラットにおけるLs-VCRの血中薬物動態
実施例11の方法により、ポアサイズ80 nmまたは100 nmを有する2枚重ねポリカーボネート膜を10回通過させる押し出し段階を用いて、SOS-TEA溶液(0.65 M TEA、pH 5.8、モル浸透圧530 mmol/kg)を捕捉し、DSPC/Chol/PEG-DSPE(モル比3:2:0.015)の脂質組成を有し、さらに1.5 mCi/mmolリン脂質の[3H]-CHEを含むリポソームを調製した。実施例59に記載した通りに、リポソームに、pH 6.5、350 mg/mmolの薬物/リン脂質比でVCRを充填した。VCR充填リポソームを雌アルビノラット(180〜220 g)に5 mg VCR/kgの用量で静脈内投与し、薬物およびリポソーム脂質の血中薬物動態を実施例9に記載した通りに試験した。血液試料中のVCRの量は、移動相中の酢酸トリエチルアンモニウム水溶液(pH 5.5)とアセトニトリルの容量比が65:35であること以外は実施例41に記載した通りに、HPLCにより定量化した。VCRの典型的な保持時間は8.8分であった。結果を図41および表34に示す。いずれの調製物も、非常に長い循環寿命を有した(12〜17時間の血中半減期)。リポソームビンクリスチンは、いずれの調製物においても薬物漏出に対して顕著に安定であった(120時間を超える半放出時間)(図42)。
(表34)TEA-SOS法を用いて350 mg/mmolリン脂質でビンクリスチンを充填したリポソームの特性
Figure 0005665950
実施例63. ラットにおける様々な薬物/脂質比のLs-VCRの血中薬物動態
実施例11の方法により、ポアサイズ50 nmまたは80 nmを有する2枚重ねポリカーボネート膜を10回通過させる押し出し段階を用いて、SOS-TEA溶液(0.65 M TEA、pH 6.4、モル浸透圧485 mmol/kg)を捕捉し、DSPC/Chol/PEG-DSPE(モル比3:2:0.015)の脂質組成を有し、さらに1.5 mCi/mmolリン脂質の[3H]-CHEを含むリポソームを調製した。実施例59に記載した通りに、20 mg/mL硫酸VCR保存水溶液を100、200、または350 mg/mmolリン脂質という算出された薬物/脂質比で添加することにより、pH 6.5でリポソームにVCRを充填した。薬物充填効率は、いずれの調製物においても96%を上回った。VCR充填リポソームを雌アルビノラット(8〜9週齢、190〜220 g)に5 mg VCR/kgの用量で静脈内投与し、薬物およびリポソーム脂質の血中薬物動態を実施例62に記載した通りに試験した。結果を表35に示す。リポソームビンクリスチンは良好な循環寿命を有し(薬物の血中半減期約20〜30時間)、試験したすべての大きさおよび薬物-脂質比において並外れて安定であった(93時間を超える薬物放出の半減期)。
(表35)TEA-SOS法を用いて様々な薬物/脂質比でビンクリスチンを充填したリポソームの特性
Figure 0005665950
実施例64. HER2標的化リポソームビンクリスチンの調製、ならびにマウスのHER2過剰発現ヒト乳癌異種移植片に対する非標的化およびHER2標的化リポソームビンクリスチンの抗腫瘍効果
TEA-SOS法を用いたビンクリスチン充填リポソーム(Ls-VCR-SOS)は、実施例63に従って([3H]-CHE成分は省略して)、50 nmポアサイズ膜の押し出し、および100 mg/mmolの薬物/脂質比での薬物充填を用いて調製した。F5イムノリポソームビンクリスチン(F5-ILs-VCR)は、実施例43に記載した通りに、Ls-VCR-SOSを抗HER2 scFv F5-PEG-DSPE複合体(実施例19)と共にインキュベートして形成した。TEA-クエン酸を用いたビンクリスチン充填リポソーム(Ls-VCR-Cit)は、TEA-SOS溶液の代わりにクエン酸トリエチルアンモニウム溶液(クエン酸水溶液をストレートなトリエチルアミンでpH 5.1になるまで滴定し、濃度が0.65 Mトリエチルアミンになるよう調整して調製した)を使用すること以外はLs-VCR-SOSリポソームと同様に調製した。処置試験の設計は、実施例10の方法に従った。BT-474ヒト乳癌の皮下異種移植片腫瘍をヌードマウスで生じさせ、腫瘍が250 mm3の大きさ(144〜309 mm3の範囲)に到達した時点で、8〜9匹の群のマウスを、週に1度の2 mg VCR/kgという静脈内投与用量の遊離VCR、Ls-VCR、またはF5-ILs-VCRで、腫瘍接種後19日目から開始して全部で3週間の間処置した。腫瘍の大きさおよび動物体重を、実施例10に記載したようにモニターした。対照群では、マウスを等量の生理食塩水で処置した。処置群間の腫瘍の大きさの差を、マン-ホイットニー試験を用いて腫瘍接種後63日目の時点で統計的に評価した。群内の腫瘍の平均の大きさの動学を図43に示す。F5-ILs-VCRは、Ls-VCRまたは遊離VCRと比較した場合に最大の有効性を示し、63日目の時点で、動物8匹のうち6匹(75%)において完全な腫瘍退行をもたらした。Ls-VCR-Citもまた有効であり、動物9匹のうち2匹(22%)において63日目になお認められる完全な腫瘍退行をもたらしたが、F5-ILs-VCRよりも効果は低かった(p<0.005)。Ls-VCR-SOSおよび遊離VCRは同等に有効であり(p>0.2)、F5-ILs-VCRまたはLs-VCR-Citのどちらよりも効果は低かった。このように、驚くべきことに、細胞標的化送達では、本発明の多価アニオンを用いて封入したリポソーム薬物が、非結合性の(non-binding)アニオンを介してリポソーム内に封入した薬物よりも効果的であることが判明した。動物体重の動学から、リポソームVCR調製物はいずれも遊離VCRより毒性が低く、処置過程において体重減少を起こしにくいことが示された(図44)。
実施例65. EGFR標的化リポソームビンクリスチンの調製、ならびにマウスのEGFR過剰発現ヒト脳腫瘍異種移植片に対する非標的化およびEGFR標的化リポソームビンクリスチンの抗腫瘍効果
ビンクリスチン充填リポソーム(Ls-VCR)は、実施例64のようにTEA-SOS法を用いて調製した。EGFR標的化イムノリポソームビンクリスチンは、実施例36に記載した通りに、リポソームを抗HER2 Fab' C225Fab-PEG-DSPE複合体と共にインキュベートして調製した。
雄NCR nu/nuマウス(5〜6週齢、体重17〜20 g)の腹側部に、上皮増殖因子受容体(HER1)変異体EGFRvIIIを安定して発現する1x107 U87ヒト神経膠芽腫細胞を含む細胞増殖培地0.15 mlを皮下注射した。腫瘍の平均の大きさが300〜400 mm3に到達した11日目に、マウスを動物10〜12匹/群の4つの群にランダムに分割した。腫瘍接種後11日、18日、および25日目に、1.5 mg/kg用量の遊離VCR(生理食塩水中の硫酸ビンクリスチン1 mg/mL)、Ls-VCR、またはC225Fab-ILs-VCRの静脈内投与による処置を施した。対照群のマウスには、等量の生理食塩水を同様に注射した。腫瘍の大きさおよびマウスの体重を、実施例10のようにモニターした。結果を図45に示す。VCR製剤で処置した動物はすべて、対照動物と比較して腫瘍増殖の遅延を示した。遊離VCR処置群とLs-VCR処置群の間に有意な差は見られなかった。EGFR標的化C225Fab-ILs-VCRは、遊離VCRまたは非標的化リポソームVCRよりも有効であった。
実施例66. イノシトール6リン酸トリエチルアンモニウム(TEA-IHP)溶液を捕捉したリポソームの調製
ポリアニオン化ポリオール、イノシトール6リン酸(IHP)12ナトリウム塩は、Sigma(ミズーリ州、セントルイス)から入手した。実施例4の手順に従って、Dowex 50Wx8-200架橋スルホン酸化ポリスチレン樹脂でイオン交換し、その後ストレートなTEAで滴定し、水で希釈することにより、0.65 Mトリエチルアンモニウムおよび0.681 Mリン酸基、pH 6.5、ならびにモル浸透圧718 mmol/kgを有する水溶液を調製した。残存したナトリウム含量は、総カチオンの1%未満であった。乾燥脂質(150μmol DSPC、100μmol Chol、0.75μmol PEG-DSPE)を100%エタノールUSP 0.5 mlに60℃で溶解し、同じ温度に予熱したイノシトール6リン酸トリエチルアンモニウム溶液4.5 mlと混合した。30〜40 mm Hgおよび40〜45℃での回転蒸発により、混合物が気泡発生を示さなくなるまで、エタノールを部分的に除去した。次いで、脂質懸濁液を、2枚重ね0.1μmポアサイズポリカーボネート膜を通して60〜65℃で15回押し出した。得られたリポソームは、QELSにより104.3±39.0 nmの大きさであった。封入されなかったIHPトリエチルアンモニウムを、Sepharose 4Bカラムで5 mM HEPES-Na、5%デキストロース、pH 6.5緩衝液で溶出するゲルクロマトグラフィーにより除去し、リポソームを、実施例70に従って抽出を伴うBartlett法を用いてリン脂質濃度により定量化した。
実施例67. TEA-IHP溶液を捕捉したリポソーム内への薬物の充填
実施例67のリポソームに、CPT11またはビノレルビンを充填した。ビノレルビンは175または350 g/molの薬物-脂質比で充填し、CPT11は250または500 g/molの比で充填した。薬物を、HEPES-デキストロース緩衝液(実施例67)中のリポソームに、以下に示す(表36を参照のこと)インプット薬物/リン脂質比で添加した。必要に応じて、1N NaOHを用いてpHを6.5〜6.8に調整した。混合物を60℃で30分間インキュベートし、氷上で15分間冷却し、Sephadex G-25ゲル濾過カラムでクロマトグラフにかけ、5 mM HEPES-Na、145 mM NaCl、pH 6.5で溶出した。精製されたリポソームの一定分量を酸性メタノール中で可溶化し、分光光度法により解析した(実施例71)。リン脂質は、抽出してBartlett(1959)の方法により定量化した(実施例70)。以下の表36に示すように、いずれの薬物もリポソーム内に定量的に(すなわち、事実上100%)充填された。
(表36)イノシトール6リン酸を捕捉するリポソーム内に充填された薬物の特性
Figure 0005665950
実施例68. インビトロにおけるマウス血漿存在下での遊離CPT-11またはリポソームCPT-11の化学安定性
体内で、プロドラッグであるCPT-11は化学転換を起こして、SN-38として知られる活性薬物代謝産物を形成する。SN-38およびCPT-11はまた、それらの活性ラクトン型から、カルボン酸SN-38またはCPT-11として知られる不活性産物に変換される。本実施例では、本発明によるCPT-11のリポソーム化が、血漿存在下におけるCPT-11のこれらの産物への化学変換に及ぼす影響について検討した。スクロース8硫酸トリエチルアンモニウム(0.65 M TEA、pH 6.4、モル浸透圧485 mmol/kg)を捕捉し、モル比3:2:0.015のDSPC、コレステロール、およびPEG-DSPEの脂質組成を有するリポソームを、実施例11に従って、2枚重ね0.08μmポリカーボネートフィルターを通す10回の押し出しにより調製した。リポソームは、QELSにより87.4±19.2 nmの大きさであった。CPT-11は、5 mM HEPES-Na、5%デキストロース水溶液、pH 6.5中で60℃で30分間インキュベートし、氷上で15分間急冷することにより、CPT-11塩基約500 mg/mmolリポソームリン脂質で充填した。次いで、CPT-11充填リポソームを、Sephadex G-75カラムでHEPES緩衝生理食塩水(5 mM HEPES、145 mM NaCl、pH 6.5)で溶出して精製した。得られたCPT-11リポソームは、536.5±20.1 mg CPT-11/mmolリン脂質を有した。遊離CPT-11溶液は、144 mM NaCl水溶液中に塩酸イリノテカンUSPを1 mg/mlで新たに溶解して調製し、希釈HClでpH 3に酸性化した。遊離もしくはリポソームCPT-11または遊離CPT-11の10-μl分割量を、ヘパリン安定化マウス血漿(Harlan Bioproducts、米国)90μlと混合し、振盪水浴中で37℃でインキュベートした。所与の時点で、三つ組のリポソーム試料を、Sepharose CL-4Bサイズ排除カラム(総容積2 ml)でクロマトグラフにかけ、HBS-6.5で溶出し、薬物含有画分を蛍光により検出した。第1(空隙容量)および第2(後続)薬物含量ピークを回収し、リポソーム封入薬物画分および放出薬物画分と見なした。試料は、氷冷メタノール400μlを用いて10秒間ボルテックスし、その後14,100xgで5分間遠心分離して抽出した。Warner and Burke, J Chromatogr., Ser. B Biomed. Sci. Appl. 1997, vol. 691, p.161-71による方法を改良して使用し、上清をHPLCによりCPT-11およびその変換産物について解析した。移動相は、14分間の20容量%B〜50容量%Bの直線勾配で1.0 ml/分で送達される、3%酢酸トリエチルアンモニウムpH 5.5(溶液A)およびアセトニトリル(溶液B)からなった。溶出された産物は、375 nmでの励起および500 nmでの発光を用いて蛍光により検出した。保持時間は、5.3分(カルボン酸CPT-11)、6.8分(カルボン酸SN-38)、9.3分(CPT-11)、および11.0分(SN-38)であった。結果(表37)から、遊離CPT-11およびリポソームから放出されたCPT-11は変換を起こし、リポソーム内CPT-11は極めて安定であることが示された。
(表37)インビトロにおけるマウス血漿中での遊離CPT-11およびリポソームCPT-11のSN-38およびカルボン酸型への変換
Figure 0005665950
実施例69. ラットにおける遊離CPT-11またはリポソームCPT-11のインビボ化学安定性
0.65 M TEA、pH 6.4、およびモル浸透圧502 mmol/kgを有するスクロース8硫酸トリエチルアンモニウムを用いて、実施例68のようにリポソームCPT-11を調製した。リポソームの大きさは98.5±18.4 nmであり、CPT-11封入は510.1±16.5 mg CPT-11/mmolリン脂質であった。中心静脈カテーテルを留置した雌Albinoラット(180〜220 g)に25mg/kg用量のリポソームCPT-11および遊離CPT-11を静脈内投与し、48時間にわたり間隔をおいて血液試料を採取した。血液試料を0.04% EDTAを含む氷冷PBSと混合し、速やかに遠心分離して血液細胞を除去した。上清液の一定分量を、上記の実施例68のようにHPLCにより、CPT-11、SN-38、およびそれらのカルボン酸型についてアッセイした。結果を図46および図47に示す。遊離CPT-11は非常に迅速に排除され、30分後には検出できないのに対し、リポソームCPT-11は循環中に存在し続け(t1/2 15.2時間)、24時間の時点で薬物の37.8%が血中に存在し、また48時間後には薬物の約10%が循環中になお存在した。リポソーム型のCPT-11では、SN-38またはカルボン酸型CPT-11のいずれへの変換も検出されなかった。遊離CPT-11、すなわち溶液として投与されたCPT-11は、循環から非常に速やかに排除され(約16分の半減期)、カルボン酸型薬物へのかなりの変換が認められた。
実施例70. リポソームリン脂質の定量化
酸消化-青色リンモリブデン酸改良法I
本方法はBartlett(1959)の改良法である。リポソームの10〜20 ml分割量を耐熱性ガラスチューブに入れ、10 N硫酸 0.5 mlと共に110〜130℃で2時間加熱して消化し、9%過酸化水素50 mlを添加して鉱化し、過酸化水素が指示薬紙片により検出されなくなるまでさらに30分間加熱する。外界温度の消化試料を0.2%モリブデン酸アンモニウム水溶液1 mlで希釈し、5%アスコルビン酸水溶液0.1 mlと混合し、沸騰水浴において10分間インキュベートする。還元されたリンモリブデン酸錯体の吸光度を800 nmで測定し、無機リン酸標準物質溶液を用いて同時に作成した検量線と比較する。
酸消化-青色リンモリブデン酸改良法II
本方法は、Morrison(1964)による方法の改良法である。1〜10 mMリン脂質を有するリポソームの5μl分割量を、耐熱性ガラスチューブ中で、濃硫酸60μlおよび30%過酸化水素10μlと混合する。混合物を200〜220℃で10分間加熱し、脱イオン水0.7μlで希釈し、10%亜硫酸ナトリウム水溶液10μlと混合し、沸騰水浴において5分間インキュベートし、外界温度になるまで冷却する。2%モリブデン酸アンモニウム水溶液200μlおよび10%アスコルビン酸水溶液10μlを添加し、試料を沸騰水浴において10分間インキュベートする。試料を外界温度まで急冷し、還元されたリンモリブデン酸錯体の吸光度を、空試料に対して825 nmで測定する。2、4、6、8、および10 mMリン酸二水素カリウムを含む標準物質溶液を用いて同時に行って得られた検量線から、リン脂質の量を決定する。
抽出法
リポソームの25〜100μl分割量を、メタノール-クロロホルム混合物(容量で1:2)の200μl部分量で3回抽出する。有機相を耐熱ガラスチューブ中で混合し、真空中で溶媒を除去する。残渣を10 N硫酸で処理し、上記の方法Iに従ってリンについてさらにアッセイする。
特記しない限り、解析データは、三つ組で実施した平均値±標準偏差として表す。
実施例71. リポソーム内の薬物の定量化
分光光度法による定量化
リポソームの一定分量(10〜50μl)を、0.075〜0.1 N HClを含む70容量%イソプロパノール水溶液1 mLと混合し、空試料に対する吸光度を以下の波長で測定する:ドキソルビシン、485 nm;CPT-11およびトポテカン、372 nm;エリプチシン類、306 nm、ビノレルビン、270 nm;ビンクリスチンおよびビンブラスチン、265 nm。同時に実施した検量線と比較して、薬物の量を決定する。
蛍光分析による定量化
リポソーム含有試料(例えば血漿)の一定分量を、酸性イソプロパノールで希釈する(0.02〜0.1 ml分割量:1 mLの70%イソプロパノール-0.075 N HCl;>0.1 ml分割量:90%イソプロパノール-0.1 N HClで1 mLにする)。タンパク質の沈殿が生じた場合には、試料を氷上で1〜2時間インキュベートし、12,100xgで10分間遠心分離して清澄化する。上清の蛍光を以下の波長で測定する:CPT-11、励起370 nm、発光423〜425 nm;トポテカン、励起380〜385 nm、発光520〜525 nm;エリプチシン類、励起306 nm、発光520 nm。薬物の量は、空蛍光を減じた後に、同時に実行した検量線から計算する。
実施例72. リポソーム内へのビノレルビンの充填効率に及ぼすリポポリマーの影響
実施例11の方法に従い、押し出し段階に80 nmポアサイズ膜を使用して、DSPC 200モルの割合、コレステロール133モルの割合、およびポリ(エチレングリコール)(分子量2,000)誘導体化脂質PEG-DSPE(1〜20モルの割合)またはPEG-DSG(20モルの割合)から構成され、封入された0.65 M TEA-SOS溶液を含むリポソームを調製した。リポソームに350 mg/mmolの薬物/リン脂質比でビノレルビンを充填し、実施例40の方法に従って封入されなかった薬物から精製した。リポソームを、実施例70、71に記載したように薬物および脂質含量について、ならびに体積加重ガウス近似を用いてQELSによりリポソームの大きさについてアッセイした。結果(表38)から、リポソームリン脂質の1モル%(総脂質の0.3モル%)を超える量のアニオン性PEG誘導体、PEG-DSPEは、薬物充填効率に悪影響を及ぼすのに対し、中性誘導体、PEG-DSGは驚くべきことに、リポソームリン脂質の9.1モル%(総脂質の5.7モル%)でさえも充填効率に影響しないことが示された。
(表38)様々な量のPEG-脂質誘導体でTEA-SOS法により調製したビノレルビンリポソームの特性
Figure 0005665950
実施例73. マウスにおけるCPT-11の血中寿命に及ぼすリポソーム内薬物捕捉剤の影響
実施例66の基本手順に従って、イノシトール6リン酸(IHP、フィチン酸)またはスクロース8硫酸のトリエチルアンモニウム(TEA)塩またはトリエタノールアンモニウム(TEOA)塩の0.65 N溶液を捕捉したリポソームを調製し、500 g/molリン脂質のCPT-11を充填した。リポソームを5 mg CPT-11/kg体重の用量で、Swiss-Websterマウスに静脈内投与した。24時間後、マウスに麻酔をかけ、心臓切開穿刺によりマウスを放血させた。血液を回収し、実施例68に記載した通りにHPLCによって血漿中のCPT-11含量について解析し、血中に残存している、注射用量の%(%ID)として薬物量を表した。TEOA-IHPは、TEA-IHP、TEOA-SOAS、およびTEA-SOSよりも血中寿命の改善において効果が低かった(表39)。
(表39)マウスにおけるCPT-11リポソームの静脈内投与24時間後の血中CPT-11残存
Figure 0005665950
実施例74. 1.05 Nスクロース8硫酸ジエチルアンモニウムを含むリポソーム内への薬物充填
ストレートなジエチルアミン(99.5%純度)を用いて、実施例6のイオン交換/滴定法により、1.05 Nスクロース8硫酸ジエチルアンモニウム(DEA-SOS)pH 6.0、浸透圧727 mmol/kgの水溶液を調製した。DEA-SOS溶液の存在下で、3モルの割合のDSPC、2モルの割合のコレステロール、および0.015モルの割合のPEG2000-DSPEの脂質マトリックスを製剤化してリポソームを形成し(体積加重平均の大きさ92.4 nm)、実施例11の方法を用いて様々な薬物/脂質インプット比でCPT-11をリポソーム内に充填した。封入されなかった薬物をゲルクロマトグラフィーによって除去し、単位脂質当たりの封入薬物の量(薬物/脂質アウトプット比)を決定した。インプット比に対する薬物/脂質アウトプット比の%として、封入効率を計算した。結果を表40に示す。充填は、約1.76 mol薬物/モルリン脂質(1.67〜1.70 mol薬物/g総脂質)の最大レベルを達成し、リポソーム内ジエチルアンモニウムイオンと薬物分子の化学量論的交換、および推定リポソーム内捕捉容量約1.7 l/molリン脂質を仮定すると、これはリポソームのジエチルアンモニウム含量に基づく量(1.78 molジエチルアンモニウム/molリン脂質)と十分に一致する。
(表40)1.05 N DEA-SOSを含むDSPC-Chol-PEG-DSPEリポソームにおけるCPT-11の充填
Figure 0005665950
特記しない限り、解析データは、三つ組で実施した平均値±標準偏差として表す。ラット血漿薬物動態データは、二つ組で実施した平均値±標準偏差である。
本発明を現時点で好ましい態様に関して記載したが、本発明の精神から逸脱することなく、様々な変更がなされ得ることが理解されるべきである。したがって、本発明の範囲は、添付の特許請求の範囲が権利を有する等価物の完全な範囲とともに、このような特許請求の範囲に関して決定されるべきである。特許出願および出版物をはじめとする、引用したすべての論文および参考文献の開示は、すべての目的のために参照として本明細書に組み入れられる。

Claims (24)

  1. 非電荷脂質成分および中性リン脂質を含む膜により水性媒体から分離された内部水性空間を有するリポソームを水性媒体中に含むリポソーム組成物であって、(1)カチオン性の薬学的物質およびスクロース8硫酸、または(2)カチオン性の薬学的物質およびスクロース8硫酸および置換アンモニウム化合物が、該リポソームの内部に捕捉され、該リポソームの内部に捕捉された薬剤が水性媒体中の該薬剤の濃度を超える濃度で存在する、リポソーム組成物。
  2. 置換アンモニウム化合物が以下の式:
    −(R−)N(−R)−R
    (式中、Nはアンモニウム窒素原子であり、
    、R、R、およびRはそれぞれ、独立して水素原子、またはそれぞれ独立して8個以下の炭素原子を有し、全体として18個以下の炭素原子を包括的に有する有機基であって、R、R、R、およびRの少なくとも1つは有機基であり;
    該有機基は独立して、エーテル、エステル、チオエーテル、アミン、またはアミド結合を形成するS、O、またはN原子を含んでいてもよい、アルキル、アルキリデン、複素環アルキル、シクロアルキル、アリール、アルケニル、シクロアルケニル、またはそれらのヒドロキシ置換誘導体であり;ならびに
    、R、R、およびRの少なくとも3つは有機基であるか;または有機基の少なくとも1つは、アンモニウム窒素原子に直接結合している第二級もしくは第三級炭素原子を有する)
    を有する、請求項1記載のリポソーム組成物。
  3. 置換アンモニウム化合物が、イソプロピルエチルアンモニウム、イソプロピルメチルアンモニウム、ジイソプロピルアンモニウム、tert−ブチルエチルアンモニウム、ジシクロヘキシルアンモニウム、モルフォリニウム、ピリジニウム、ピペリジニウム、ピロリジニウム、ピペラジニウム、tert−ブチルアンモニウム、2−アンモニオ−2−メチルプロパノール−1、2−アンモニオ−2−メチル−プロパンジオール−1,3、トリス−(ヒドロキシエチル)−アンモニオメタン、N,N’−ジエチル−エタノールアンモニウム、N,N’,N”−トリス−(2−ヒドロキシエチル)アンモニウム、N,N’−ビス−(2−ヒドロキシエチル)エチルアンモニウム、トリメチルアンモニウム、トリエチルアンモニウム、ジエチルメチルアンモニウム、ジイソプロピルエチルアンモニウム、トリイソプロピルアンモニウム、N−メチルモルフォリニウム、1−(2−ヒドロキシエチル)ピペリジニウム、1−メチルピロリジニウム、1,4−ジメチルピペラジニウム、テトラメチルアンモニウム、テトラエチルアンモニウム、およびテトラブチルアンモニウムからなる群より選択される、請求項1記載のリポソーム組成物。
  4. 置換アンモニウム化合物が、トリエチルアンモニウムである、請求項1記載のリポソーム組成物。
  5. 置換アンモニウム化合物が、ジエチルアンモニウムである、請求項1記載のリポソーム組成物。
  6. 膜が、ポリマー結合脂質を更に含む、請求項1記載のリポソーム組成物。
  7. ポリマー結合脂質がポリエチレングリコール結合脂質である、請求項6記載のリポソーム組成物。
  8. ポリエチレングリコール結合脂質が、N−(メトキシ−ポリ(エチレングリコール)−オキシカルボニル)−ジステアロイルホスファチジルエタノールアミン(PEG−DSPE)である、請求項7記載のリポソーム組成物。
  9. 非経口投与用の液体薬学的製剤である、請求項1記載のリポソーム組成物。
  10. 総脂質に対する薬学的物質のモル比が、少なくとも1.0である、請求項1記載のリポソーム組成物。
  11. 薬学的物質とスクロース8硫酸の相対量が、化学量論的に等量の点である、請求項1記載のリポソーム組成物。
  12. 薬学的物質およびスクロース8硫酸が、塩の形態で含まれる、請求項1記載のリポソーム組成物。
  13. 中性リン脂質がジアシルホスファチジルコリンを含む、請求項1記載のリポソーム組成物。
  14. ジアシルホスファチジルコリンが、1,2−ジステアロイル−sn−ホスファチジルコリン(DSPC)である、請求項13記載のリポソーム組成物。
  15. 水性媒体がHEPESおよびNaClを含む、請求項1記載のリポソーム組成物。
  16. 薬学的物質が水性媒体から部分的にまたは実質的に除去された、請求項1記載のリポソーム組成物。
  17. 薬学的物質が、抗ヒスタミン剤、抗原虫薬、抗住血吸虫薬、抗真菌剤、抗菌剤、抗ミコバクテリア薬、抗ウイルス剤、コリン作動性第四級アンモニウム化合物、抗アルツハイマーアミノアクリジン、抗パーキンソン病薬、抗ムスカリン剤、アドレナリン作動薬、エルゴタミン誘導体、中枢作用筋弛緩剤、βアドレナリン遮断薬、ベンゾジアゼピン、抗不整脈薬、局所麻酔薬、ACE阻害剤、抗高脂血症剤、HMG−coA阻害剤、降圧剤、および非冠動脈血管拡張剤からなる群より選択される、請求項1記載のリポソーム組成物。
  18. 薬学的物質が抗菌剤である、請求項17記載のリポソーム組成物。
  19. 薬学的物質が抗原虫薬である、請求項17記載のリポソーム組成物。
  20. 水性媒体中にリポソームを含む薬学的組成物であって、該リポソームは、
    (1)水性であり、(2)1つまたは複数の脂質を含む膜により水性媒体から分離され、かつ(3)スクロース8硫酸ポリアニオンおよびカチオン性の抗菌剤または抗原虫剤を含む、内部空間を含む、薬学的組成物。
  21. 1つまたは複数の脂質全体に対する薬剤のモル比が、少なくとも.05ある、請求項20記載の組成物。
  22. 脂質が、ポリエチレングリコール結合脂質を含む、請求項20記載の組成物。
  23. スクロース8硫酸ポリアニオン、およびカチオン性の抗菌剤または抗原虫剤が、塩の形態で含まれる、請求項20記載の組成物。
  24. 非経口投与用の液体製剤である、請求項20記載の組成物。
JP2013241469A 2004-05-03 2013-11-22 薬物送達に有用なリポソーム Active JP5665950B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US56792104P 2004-05-03 2004-05-03
US60/567,921 2004-05-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011266612A Division JP5502842B2 (ja) 2004-05-03 2011-12-06 薬物送達に有用なリポソーム

Publications (2)

Publication Number Publication Date
JP2014055172A JP2014055172A (ja) 2014-03-27
JP5665950B2 true JP5665950B2 (ja) 2015-02-04

Family

ID=35320018

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2007511506A Active JP4971142B2 (ja) 2004-05-03 2005-05-02 薬物送達に有用なリポソーム
JP2011266612A Active JP5502842B2 (ja) 2004-05-03 2011-12-06 薬物送達に有用なリポソーム
JP2013241469A Active JP5665950B2 (ja) 2004-05-03 2013-11-22 薬物送達に有用なリポソーム

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2007511506A Active JP4971142B2 (ja) 2004-05-03 2005-05-02 薬物送達に有用なリポソーム
JP2011266612A Active JP5502842B2 (ja) 2004-05-03 2011-12-06 薬物送達に有用なリポソーム

Country Status (20)

Country Link
US (22) US8147867B2 (ja)
EP (3) EP4218730B1 (ja)
JP (3) JP4971142B2 (ja)
KR (4) KR101462819B1 (ja)
CN (3) CN107811971B (ja)
AU (1) AU2005240131C1 (ja)
CA (4) CA3006109A1 (ja)
DK (1) DK1746976T3 (ja)
ES (2) ES2967961T3 (ja)
FR (1) FR17C1027I2 (ja)
HK (2) HK1200694A1 (ja)
LU (1) LUC00026I2 (ja)
NL (1) NL300885I2 (ja)
NO (2) NO345218B1 (ja)
PL (1) PL1746976T3 (ja)
PT (1) PT1746976T (ja)
RU (3) RU2424792C2 (ja)
TW (1) TWI359029B (ja)
UA (1) UA86063C2 (ja)
WO (1) WO2005107712A1 (ja)

Families Citing this family (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462819B1 (ko) * 2004-05-03 2014-11-21 헤르메스 바이오사이언스, 인코포레이티드 약물 전달에 유용한 리포좀
US8658203B2 (en) 2004-05-03 2014-02-25 Merrimack Pharmaceuticals, Inc. Liposomes useful for drug delivery to the brain
ES2594621T3 (es) * 2004-06-01 2016-12-21 Kabushiki Kaisha Yakult Honsha Preparación de irinotecán
EP1796689A4 (en) * 2004-09-20 2009-01-14 British Columbia Cancer Agency GEMCITABINE FREE OR ENCAPSULATED IN LIPOSOMES ONLY OR IN ASSOCIATION WITH FREE IDARUBICIN OR ENCAPSULATED IN LIPOSOMES
CA2584279C (en) * 2004-11-05 2015-01-27 Index Pharmaceuticals Corporation Compositions and methods for stabilizing liposomal drug formulations
US8349359B2 (en) * 2004-11-07 2013-01-08 Your Energy Systems, LLC Liposomal formulation for oral administration of glutathione (reduced)
EP1976485A4 (en) * 2005-12-22 2011-10-26 Celator Pharmaceuticals Inc LIPOSOMAL FORMULATIONS COMPRISING SECONDARY AND TERTIARY AMINES AND METHODS FOR THE PREPARATION OF SAID FORMULATIONS
DE102006015271A1 (de) * 2006-04-01 2007-10-11 Lohmann & Rauscher Gmbh & Co. Kg Biguanidhaltige Liposomen
WO2008008523A1 (en) * 2006-07-14 2008-01-17 Regents Of The University Of Minnesota COMPOUNDS THAT BIND α5β1 INTEGRIN AND METHODS OF USE
US20080118500A1 (en) * 2006-11-16 2008-05-22 Taiwan Liposome Company Sustained releasing composition via local injection for treating eye diseases
FR2910812B1 (fr) * 2006-12-29 2009-03-20 Pierre Fabre Medicament Sa Compositions pharmaceutiques injectables lyophilisees de derives hemi-synthetiques d'alcaloide de vinca stables a temperature ambiante
CN101209243B (zh) * 2006-12-29 2010-12-08 石药集团中奇制药技术(石家庄)有限公司 一种脂质体药物及其制备方法
WO2008088037A1 (ja) * 2007-01-18 2008-07-24 National University Corporation Chiba University 微粒子製剤
EP2146692A1 (en) * 2007-03-19 2010-01-27 Fresenius Kabi Oncology Limited Proliposomal and liposomal compositions
US20100173014A1 (en) * 2007-05-24 2010-07-08 Nanosolutions, Llc Methods of making and using nano scale particles
US20080305157A1 (en) * 2007-06-08 2008-12-11 University Of Maryland Office Of Technology Commercialization Encapsulation and separation of charged organic solutes inside catanionic vesicles
EP2200613B1 (en) 2007-09-21 2018-09-05 The Johns Hopkins University Phenazine derivatives and uses thereof
JP2011508780A (ja) * 2008-01-04 2011-03-17 ケラー,ブライアン,チャールズ 抗真菌薬の増強された送達
CN101536981B (zh) * 2008-03-19 2010-11-17 上海医药工业研究院 一种盐酸可乐定多囊脂质体及其制备方法
WO2009138806A1 (en) * 2008-05-13 2009-11-19 Dendrigen S.A. Novel liposome cocktail formulations containing doxorubicin and the potent multidrug resistance inhibitor amiodarone
EP2123258A1 (en) 2008-05-23 2009-11-25 Liplasome Pharma A/S Liposomes for drug delivery
CN104622809B (zh) 2008-05-23 2019-04-19 英属哥伦比亚大学 用于脂质体纳米颗粒的修饰的药物
PL2331092T3 (pl) 2008-08-21 2014-08-29 Univ Johns Hopkins Sposoby i kompozycje do podawania 3-halopirogronianiu i związków pochodnych w leczeniu nowotworu
CN101565384B (zh) * 2008-12-23 2012-12-26 南开大学 环糊精修饰单层石墨及其超分子复合物和制备方法及用途
EP2210589B1 (en) * 2009-01-22 2015-05-06 Ludwig-Maximilians-Universität München Vesicular phospholipid gels comprising proteinaceous substances
JP5588619B2 (ja) * 2009-03-11 2014-09-10 一丸ファルコス株式会社 pH応答性リポソーム
US9968583B2 (en) * 2009-03-30 2018-05-15 Eisai R & D Management Co., Ltd. Method of manufacture of liposome composition
CN102369008B (zh) 2009-03-30 2014-10-29 卫材R&D管理有限公司 脂质体组合物
JP5392707B2 (ja) * 2009-03-31 2014-01-22 株式会社Nttドコモ 膜小胞分裂システム
MX2011012267A (es) * 2009-05-19 2012-04-11 Vivia Biotech Sl Metodos para proveer pruebas de medicina personalizadas ex vivo en cuanto a neoplasmas hematologicos.
DK177532B1 (en) 2009-09-17 2013-09-08 Bio Bedst Aps Medical use of sPLA2 hydrolysable liposomes
CN102271659B (zh) * 2009-12-03 2013-09-18 江苏恒瑞医药股份有限公司 伊立替康或盐酸伊立替康脂质体及其制备方法
KR101000358B1 (ko) 2010-04-29 2010-12-13 서울대학교산학협력단 인테그린 αⅤβ3 결합성 지질 유도체 및 그를 포함하는 지질 나노입자
JP2013533211A (ja) 2010-05-04 2013-08-22 メリマック ファーマシューティカルズ インコーポレーティッド 上皮成長因子受容体(egfr)に対する抗体およびその使用
CN107261110A (zh) * 2010-06-19 2017-10-20 健康科学西部大学 Peg化脂质体包封的糖肽抗生素的新制剂
CN103313671B (zh) 2010-10-25 2017-06-06 美敦力Af卢森堡有限责任公司 用于神经调节治疗的估算及反馈的装置、系统及方法
JP2014503582A (ja) * 2011-01-28 2014-02-13 コーニンクレッカ フィリップス エヌ ヴェ 親水性プロドラッグの局所放出用担体
CN104159571A (zh) * 2011-04-26 2014-11-19 席德-西奈医疗中心 用于治疗mrsa感染的脂质体万古霉素
EP2717856B1 (en) * 2011-05-10 2016-11-23 The Penn State Research Foundation Ceramide anionic liposome compositions
CN102805729A (zh) * 2011-06-03 2012-12-05 齐鲁制药有限公司 一种长春氟宁脂质体制剂及其制备方法
US8691231B2 (en) 2011-06-03 2014-04-08 Merrimack Pharmaceuticals, Inc. Methods of treatment of tumors expressing predominantly high affinity EGFR ligands or tumors expressing predominantly low affinity EGFR ligands with monoclonal and oligoclonal anti-EGFR antibodies
LT2768942T (lt) * 2011-10-17 2020-04-10 Massachusetts Institute Of Technology Pristatymas į ląstelės vidų
WO2013152034A1 (en) 2012-04-02 2013-10-10 Merrimack Pharmaceuticals, Inc. Dosage and administration of monospecific and bispecific anti-igf-1r and anti-erbb3 antibodies
JP6245481B2 (ja) 2012-04-17 2017-12-13 メリマック ファーマシューティカルズ インコーポレーティッド 非侵襲的イメージングのための組成物および方法
US9717724B2 (en) 2012-06-13 2017-08-01 Ipsen Biopharm Ltd. Methods for treating pancreatic cancer using combination therapies
AU2013202947B2 (en) * 2012-06-13 2016-06-02 Ipsen Biopharm Ltd. Methods for treating pancreatic cancer using combination therapies comprising liposomal irinotecan
KR101949125B1 (ko) 2012-07-04 2019-02-18 고려대학교 산학협력단 pH 민감성 형광 발광의 폴리디아세틸렌 리포좀 및 이를 포함하는 약물 전달체
SG11201501010QA (en) * 2012-08-10 2015-04-29 Taiho Pharmaceutical Co Ltd Stable oxaliplatin-encapsulating liposome aqueous dispersion and method for stabilizing same
MX2015005992A (es) 2012-11-20 2016-03-07 Spectrum Pharmaceuticals Inc Metodo mejorado para la preparacion de la vincristina liposomal encapsulada para el uso terapeutico.
RU2514000C1 (ru) * 2012-12-14 2014-04-27 Общество с ограниченной ответственностью "Уральский центр биофармацевтических технологий" Липосомальная композиция и способ ее получения
KR102554628B1 (ko) 2013-02-01 2023-07-12 존원 파마, 인코포레이티드 리포좀 내로 난수용성 약물의 원격 부하
EP2964201B1 (en) 2013-03-05 2024-02-14 The Regents of the University of California Lipid bilayer coated mesoporous silica nanoparticles with a high loading capacity for one or more anticancer agents
US9993427B2 (en) 2013-03-14 2018-06-12 Biorest Ltd. Liposome formulation and manufacture
NZ711500A (en) * 2013-03-15 2020-05-29 Taiwan Liposome Co Ltd Engineering a control drug release profile via liposome compositions in both aqueous and non-aqueous compartments
US10220095B2 (en) 2013-03-15 2019-03-05 Taiwan Liposome Company, Ltd Controlled drug release liposome compositions and methods thereof
AU2014252808A1 (en) * 2013-04-09 2015-11-12 Cresset Biomolecular Discovery Ltd The treatment of inflammatory disorders
WO2014179760A1 (en) 2013-05-03 2014-11-06 The Regents Of The University Of California Cyclic di-nucleotide induction of type i interferon
ES2946767T3 (es) 2013-09-11 2023-07-25 Aim Targeted Therapies Inc Composiciones terapéuticas antimicrobianas hipertónicas
WO2015061592A1 (en) * 2013-10-23 2015-04-30 Merrimack Pharmaceuticals, Inc. Liposomes for non-invasive imaging and drug delivery
US9592198B2 (en) * 2013-10-28 2017-03-14 University Of Maryland, College Park Microfluidic liposome synthesis, purification and active drug loading
WO2015126942A1 (en) 2014-02-18 2015-08-27 Glenn Abrahmsohn Compositions and methods for pain relief without numbness
ES2836772T3 (es) * 2014-04-30 2021-06-28 Fujifilm Corp Composición liposomal y método para producirla
WO2015166987A1 (ja) * 2014-04-30 2015-11-05 富士フイルム株式会社 リポソーム組成物及びその製造方法
JP6263609B2 (ja) * 2014-04-30 2018-01-17 富士フイルム株式会社 リポソーム組成物及びその製造方法
MA39599A (fr) 2014-05-14 2016-10-05 Merrimack Pharmaceuticals Inc Dosage et administration d'agents thérapeutiques anti-egfr
EP3177269A4 (en) 2014-08-04 2018-02-28 Zoneone Pharma, Inc. Remote loading of sparingly water-soluble drugs into lipid vesicles
WO2016048242A1 (en) * 2014-09-24 2016-03-31 Nanyang Technological University Sustained timolol maleate delivery from liposomes for glaucoma therapy and ocular hypertension
WO2016094402A1 (en) 2014-12-09 2016-06-16 Merrimack Pharmaceuticals, Inc. Treatment of breast cancer with liposomal irinotecan
US11318131B2 (en) 2015-05-18 2022-05-03 Ipsen Biopharm Ltd. Nanoliposomal irinotecan for use in treating small cell lung cancer
WO2016191547A1 (en) * 2015-05-26 2016-12-01 Comfort Care For Animals Llc Liposome loading
US9855216B2 (en) * 2015-05-27 2018-01-02 Ghasem Amoabediny Targeted nano-liposome co-entrapping anti-cancer drugs
TWI678213B (zh) 2015-07-22 2019-12-01 美商史倍壯製藥公司 用於長春新鹼硫酸鹽脂質體注射之即可使用的調配物
CA2992789A1 (en) 2015-08-20 2017-02-23 Ipsen Biopharm Ltd. Combination therapy using liposomal irinotecan and a parp inhibitor for cancer treatment
JP2018528185A (ja) 2015-08-21 2018-09-27 イプセン バイオファーム リミティド リポソーム型イリノテカン及びオキサリプラチンを含む組み合わせ療法を使用して転移性膵臓癌を治療するための方法
EP3337457A4 (en) * 2015-08-21 2019-01-02 University of Otago Acoustic driven drug delivery systems
WO2017041051A1 (en) 2015-09-04 2017-03-09 Sqz Biotechnologies Company Intracellular delivery of biomolecules to cells comprising a cell wall
US10894044B2 (en) 2015-09-16 2021-01-19 Board Of Regents, The University Of Texas System Combination of topoisomerase-I inhibitors with immunotherapy in the treatment of cancer
CN105153339B (zh) * 2015-10-13 2017-10-24 浙江大学 一种氧化响应去正电荷的阳离子聚合物、制备方法和应用
JP6924431B2 (ja) * 2015-10-13 2021-08-25 株式会社ケーナインラボ ヒトを除く哺乳動物への薬剤の投与方法
US20170319573A1 (en) * 2015-10-16 2017-11-09 Ipsen Biopharm Ltd. Stabilizing Camptothecin Pharmaceutical Compositions
US10456360B2 (en) * 2015-10-16 2019-10-29 Ipsen Biopharm Ltd. Stabilizing camptothecin pharmaceutical compositions
KR102084340B1 (ko) 2015-11-02 2020-03-03 후지필름 가부시키가이샤 젬시타빈 리포솜 조성물을 포함하는 종양 치료제 및 키트
WO2017078009A1 (ja) * 2015-11-02 2017-05-11 富士フイルム株式会社 リポソーム組成物およびその製造方法
WO2017079563A1 (en) 2015-11-06 2017-05-11 The Johns Hopkins University Methods of treating liver fibrosis by administering 3-bromopyruvate
JP7017018B2 (ja) 2015-11-10 2022-02-08 チルドレンズ リサーチ インスティテュート、チルドレンズ ナショナル メディカル センター エキノマイシン製剤、その製造法および使用法
CN105287264B (zh) * 2015-11-25 2018-06-19 上海赢嘉实业有限公司 一种包封芳香油复合物的脂质体的制备方法和用途
US20180271998A1 (en) 2015-12-04 2018-09-27 Merrimack Pharmaceuticals, Inc. Disulfide-stabilized fabs
CN105496992A (zh) * 2015-12-08 2016-04-20 青岛正大海尔制药有限公司 氨溴索沙丁胺醇脂质固体分散体
EP4218739A3 (en) * 2016-01-08 2023-08-09 The Regents of The University of California Mesoporous silica nanoparticles with lipid bilayer coating for cargo delivery
CN108697811B (zh) 2016-01-11 2023-04-07 梅里麦克制药股份有限公司 抑制共济失调毛细血管扩张和Rad3相关蛋白(ATR)
WO2017123616A1 (en) * 2016-01-11 2017-07-20 Merrimack Pharmaceuticals, Inc. Inhibiting b-cell lymphoma 2 (bcl-2) and related proteins
CN108697681B (zh) * 2016-02-15 2022-01-25 建明(中国)科技有限公司 水溶性亲脂性材料
US11517539B2 (en) * 2016-02-15 2022-12-06 University Of Georgia Research Foundation, Inc. IPA-3-loaded liposomes and methods of use thereof
EP3429631A1 (en) 2016-03-16 2019-01-23 Merrimack Pharmaceuticals, Inc. Treating ephrin receptor a2 (epha2) positive cancer with targeted docetaxel-generating nano-liposome compositions
BR112018068000A2 (pt) 2016-03-16 2019-02-05 Merrimack Pharmaceuticals Inc composições de nanolipossomas de geração de docetaxel direcionados ao receptor a2 de efrina (epha2)
US12029724B2 (en) 2016-04-28 2024-07-09 Eisai R&D Management Co., Ltd. Method for inhibiting tumor growth
KR20190009319A (ko) * 2016-05-18 2019-01-28 입센 바이오팜 리미티드 소세포 폐암을 치료하는데 사용하기 위한 나노리포솜성 이리노테칸
US9655847B1 (en) * 2016-07-18 2017-05-23 National Guard Health Affairs Therapeutic liposome and method of treating a subject having cancer
US10583083B1 (en) 2016-08-10 2020-03-10 Verily Life Sciences Llc ROS-responsive multilamellar liposomal vesicles for targeting inflammatory macrophages
US10517823B1 (en) 2016-08-10 2019-12-31 Verily Life Sciences Llc ROS—responsive liposomes for specific targeting
US11344628B2 (en) 2016-08-12 2022-05-31 L.E.A.F. Holdings Group Llc Alpha polyglutamated antifolates and uses thereof
US20180236098A1 (en) * 2016-08-12 2018-08-23 L.E.A.F. Holdings Group Llc Alpha and gamma-d polyglutamated antifolates and uses thereof
EP3508268B1 (en) * 2016-08-31 2023-10-25 Kewpie Corporation Egg yolk phospholipid composition and fat emulsion and lipolysis formulation using egg yolk phospholipid composition
JP2019533006A (ja) 2016-09-09 2019-11-14 アイリシス・インコーポレイテッド リポソーム抗がん組成物
MA46709A (fr) 2016-11-02 2019-09-11 Ipsen Biopharm Ltd Traitement du cancer gastrique au moyen de polythérapies comprenant de l'oxaliplatine, du 5-fluoruracile (et de la leucovorine) et de l'irinotécan sous forme liposomale
US10800817B2 (en) * 2016-12-19 2020-10-13 Morehouse School Of Medicine Compositions and methods for treating diseases by inhibiting exosome release
AU2017258901A1 (en) 2016-12-30 2018-07-19 Allarity Therapeutics Europe ApS Methods for predicting drug responsiveness in cancer patients
IL268099B2 (en) * 2017-01-18 2024-05-01 Temasek Life Sciences Laboratory Ltd Hyperstabilized liposomes that increase targeting of mitotic cells
WO2018218052A1 (en) * 2017-05-24 2018-11-29 Northwestern University Nanoparticle-lipid composite carriers and uses thereof
CN108926719B (zh) * 2017-05-25 2020-09-01 北京格瑞特森生物医药科技有限公司 用c(RGD-ACP-K)修饰的长循环脂质体
JP7245012B2 (ja) * 2017-09-12 2023-03-23 オルガノ株式会社 電解液の精製装置および精製方法
WO2019054220A1 (ja) * 2017-09-12 2019-03-21 オルガノ株式会社 電解液の精製装置および精製方法
CN108047494B (zh) * 2017-11-15 2019-11-08 四川大学 植酸铵盐阻燃剂及其制备方法和用以制备的阻燃增韧聚乳酸材料
CN109364025A (zh) * 2017-11-17 2019-02-22 和龙 脂质体组合物、其制备方法及其应用
EP3749320A4 (en) * 2018-02-07 2022-03-09 L.E.A.F Holdings Group LLC ALPHA-POLYGLUTAMATED AMINOPTERIN AND ITS USES
US12076402B2 (en) 2018-02-07 2024-09-03 L.E.A.F. Holdings Group Llc Alpha polyglutamated antifolates and uses thereof
US20210338675A1 (en) * 2018-02-07 2021-11-04 L.E.A.F. Holdings Group Llc Alpha polyglutamated lometrexol and uses thereof
JP7491572B2 (ja) 2018-02-07 2024-05-28 エル.イー.エー.エフ. ホールディングス グループ エルエルシー アルファポリグルタミン酸化ペメトレキセドおよびその使用
EP3749311A4 (en) * 2018-02-07 2022-07-06 L.E.A.F Holdings Group LLC GAMMA POLYGLUTAMATED PEMETREXED AND USES THEREOF
EP3749316A4 (en) 2018-02-07 2021-10-27 L.E.A.F Holdings Group LLC PRALATREXATE ALPHA-POLYGLUTAMATE AND ASSOCIATED USES
US11771700B2 (en) 2018-02-14 2023-10-03 L.E.A.F. Holdings Group Llc Gamma polyglutamated lometrexol and uses thereof
WO2019160733A1 (en) * 2018-02-14 2019-08-22 L.E.A.F. Holdings Group Llc Gamma polyglutamated methotrexate and uses thereof
EP3755335A4 (en) 2018-02-14 2022-06-22 L.E.A.F Holdings Group LLC GAMMA POLYGLUTAMIC TETRAHYDROFOLATES AND THEIR USES
EP3752156A4 (en) * 2018-02-14 2021-10-27 L.E.A.F Holdings Group LLC PRALATREXATE GAMMA-POLYGLUTAMATE AND ASSOCIATED USES
CN112312895B (zh) * 2018-06-20 2023-05-09 富士胶片株式会社 包含内含药物的脂质体组合物及免疫检查点抑制剂的组合医药
US20210338583A1 (en) * 2018-07-23 2021-11-04 Robert B. Campbell Cell membrane lipid-extracted nanoparticles (clens) for selective targeting, image analysis and cancer therapy
CN112512509A (zh) 2018-08-02 2021-03-16 台湾微脂体股份有限公司 含有治疗抑郁症或焦虑症的治疗剂的缓释组合物及其用途
CN112543630B (zh) * 2018-08-08 2023-07-18 台湾微脂体股份有限公司 含有抗精神病药物的缓释药物组合物及其用途
TWI837189B (zh) * 2018-10-01 2024-04-01 日商富士軟片股份有限公司 包含內含藥物之脂質體組成物及鉑製劑之組合醫藥
CN113015520A (zh) * 2018-10-17 2021-06-22 台湾微脂体股份有限公司 含有免疫调节剂的缓释药物组合物及其用途
CN109528654B (zh) * 2018-12-14 2021-04-23 沈阳药科大学 一种盐酸伊立替康和盐酸阿霉素共载脂质体及其制备方法
CN109528655A (zh) * 2018-12-18 2019-03-29 沈阳药科大学 一种双载药脂质体及其制备和应用
BR112021016903A2 (pt) 2019-02-28 2021-11-03 Sqz Biotechnologies Co Administração de biomoléculas a pbmcs para modificação de uma resposta imune
WO2020210162A1 (en) 2019-04-08 2020-10-15 Sqz Biotechnologies Company Cartridge for use in a system for delivery of a payload into a cell
JP2022537500A (ja) * 2019-05-28 2022-08-26 ネバカー インジェクタブルズ インコーポレイテッド バンコマイシンリポソーム組成物および方法
EP3753549A1 (en) * 2019-06-20 2020-12-23 InnoMedica Holding AG Liposomal doxorubicin formulation, method for producing a liposomal doxorubicin formulation and use of a liposomal doxorubicin formulation as a medicament
CN114144198A (zh) * 2019-07-16 2022-03-04 科斯塔治疗公司 膜脂包覆的纳米颗粒的制备方法
US12036204B2 (en) 2019-07-26 2024-07-16 Eisai R&D Management Co., Ltd. Pharmaceutical composition for treating tumor
US11083705B2 (en) 2019-07-26 2021-08-10 Eisai R&D Management Co., Ltd. Pharmaceutical composition for treating tumor
US20230139328A1 (en) * 2020-03-12 2023-05-04 Aphios Corporation Dosage forms for improving organ transplantation, graft versus host disease and stem cells transplants
BR112022025918A2 (pt) 2020-06-18 2023-03-14 Akagera Medicines Inc Compostos de oxazolidinona, composições lipossomais que compreendem compostos de oxazolidinona e métodos de uso dos mesmos
CN112190715B (zh) * 2020-10-21 2022-09-30 中国人民解放军军事科学院军事医学研究院 纳米药物、其制备方法及医药应用
US11058637B1 (en) * 2020-11-25 2021-07-13 King Abdulaziz University Surface-modified emulsomes for intranasal delivery of drugs
EP4251170A1 (en) 2020-11-25 2023-10-04 Akagera Medicines, Inc. Lipid nanoparticles for delivery of nucleic acids, and related methods of use
WO2022153211A1 (en) 2021-01-13 2022-07-21 Sun Pharma Advanced Research Company Limited Liposomal composition of a camptothecin derivative
EP4291898A1 (en) 2021-02-12 2023-12-20 Institut National de la Santé et de la Recherche Médicale (INSERM) Method for prognosis and treating a patient suffering from cancer
CA3182955A1 (en) * 2021-07-16 2023-01-16 Celator Pharmaceuticals, Inc. Methods for preparing liposomal formulations
WO2023029041A1 (zh) * 2021-09-06 2023-03-09 北京茵诺医药科技有限公司 靶向动脉粥样硬化脂质体纳米载体递送系统及其制备方法
WO2023051799A1 (zh) * 2021-09-30 2023-04-06 上海济煜医药科技有限公司 一种酒石酸长春瑞滨脂质体及其原料组合物、制备方法和应用
EP4169928A1 (en) * 2021-10-25 2023-04-26 Sandoz Ag Process for the preparation of sucrose octasulfate octakistriethylammonium salt (tasos) powder and uses thereof
CN114099691A (zh) * 2021-11-22 2022-03-01 京东方科技集团股份有限公司 一种人造细胞及其制备方法
EP4448101A1 (en) 2021-12-15 2024-10-23 Immunyx Pharma Ltd. Neutrophil exocytosis inhibitors
CN114306243B (zh) * 2022-01-07 2023-03-28 中国人民解放军空军军医大学 一种靶向梭型柔性脂质体水凝胶及其制备方法和应用
WO2023230587A2 (en) 2022-05-25 2023-11-30 Akagera Medicines, Inc. Lipid nanoparticles for delivery of nucleic acids and methods of use thereof
WO2024199424A1 (zh) * 2023-03-30 2024-10-03 上海济煜医药科技有限公司 一种磷脂组合物及其制备方法及含氮化合物的应用
CN116602923A (zh) * 2023-07-20 2023-08-18 暨南大学附属第一医院(广州华侨医院) 一种用于关节炎治疗的靶向仿生纳米治疗载体系统

Family Cites Families (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES473087A1 (es) * 1977-09-06 1979-04-16 Studiengesellschaft Kohle Mbh Procedimiento para la preparacion de eritrocitos intactos modificados.
US4192869A (en) * 1977-09-06 1980-03-11 Studiengesellschaft Kohle Mbh. Controlled improvement of the O2 release by intact erythrocytes with lipid vesicles
DE2740053A1 (de) * 1977-09-06 1979-05-03 Klaus Prof Dr Med Gersonde Verwendung von allosterischen effektoren mit hilfe von lipidvesikeln ueber eine irreversible inkorporierung zwecks verbesserter o tief 2 -entladung des haemoglobins in erythrozyten
US4397846A (en) 1981-05-15 1983-08-09 Murray Weiner Storage-stable lipid vesicles and method of preparation
US5059591B1 (en) * 1983-05-26 2000-04-25 Liposome Co Inc Drug preparations of reduced toxicity
JPS6019790A (ja) 1983-07-14 1985-01-31 Yakult Honsha Co Ltd 新規なカンプトテシン誘導体
US4649155A (en) 1983-07-22 1987-03-10 Hoffmann-La Roche Inc. Injectable solutions
US5077056A (en) * 1984-08-08 1991-12-31 The Liposome Company, Inc. Encapsulation of antineoplastic agents in liposomes
US5736155A (en) * 1984-08-08 1998-04-07 The Liposome Company, Inc. Encapsulation of antineoplastic agents in liposomes
US4755388A (en) 1984-11-09 1988-07-05 The Regents Of The University Of California Liposome-encapsulated 5-fluoropyrimidines and methods for their use
DE3634392A1 (de) 1986-10-09 1988-04-14 Knoll Ag Verwendung polysulfatierter niedermolekularer dextransulfate
MX9203808A (es) * 1987-03-05 1992-07-01 Liposome Co Inc Formulaciones de alto contenido de medicamento: lipido, de agentes liposomicos-antineoplasticos.
JPH0720857B2 (ja) 1988-08-11 1995-03-08 テルモ株式会社 リポソームおよびその製法
IL91664A (en) * 1988-09-28 1993-05-13 Yissum Res Dev Co Ammonium transmembrane gradient system for efficient loading of liposomes with amphipathic drugs and their controlled release
US5043165A (en) * 1988-12-14 1991-08-27 Liposome Technology, Inc. Novel liposome composition for sustained release of steroidal drugs
US5043164A (en) 1989-01-17 1991-08-27 The University Of Tennessee Research Corporation Blood-stable, cholesterol-free liposomes
US4960790A (en) 1989-03-09 1990-10-02 University Of Kansas Derivatives of taxol, pharmaceutical compositions thereof and methods for the preparation thereof
US5618798A (en) * 1989-04-20 1997-04-08 Bar-Shalom; Daniel Use of sucralfate to treat baldness
ZA902710B (en) 1989-05-22 1991-12-24 Univ Georgia Res Found Enzyme luminescence assay
US5013556A (en) 1989-10-20 1991-05-07 Liposome Technology, Inc. Liposomes with enhanced circulation time
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
PL296382A1 (en) * 1991-02-02 1993-11-02 Nika Health Products Ltd Li Li Artificial membrane beads containing functionally active peptides responsible for fusion as a drug administering system
US5498420A (en) 1991-04-12 1996-03-12 Merz & Co. Gmbh & Co. Stable small particle liposome preparations, their production and use in topical cosmetic, and pharmaceutical compositions
DK0592446T3 (da) 1991-07-03 1996-01-29 Nexstar Pharmaceuticals Inc Fyldningsteknik til fremstilling af lægemiddelholdige liposomer
US5281237A (en) 1992-09-25 1994-01-25 Gimpelson Richard J Surgical stitching device and method of use
US5552156A (en) 1992-10-23 1996-09-03 Ohio State University Liposomal and micellular stabilization of camptothecin drugs
US5395619A (en) 1993-03-03 1995-03-07 Liposome Technology, Inc. Lipid-polymer conjugates and liposomes
US6350853B1 (en) 1993-04-26 2002-02-26 Peter E. Nielsen Conjugated peptide nucleic acids having enhanced cellular uptake
DE4320597A1 (de) 1993-06-22 1995-01-05 Heinz C Prof Dr Dr Schroeder Verwendung von Polyphosphaten zur antiviralen Therapie und als Immunmodulatoren
US6743917B2 (en) * 1993-06-30 2004-06-01 University Of Pittsburgh Camptothecin analogs and methods of preparation thereof
US5994341A (en) 1993-07-19 1999-11-30 Angiogenesis Technologies, Inc. Anti-angiogenic Compositions and methods for the treatment of arthritis
US5534241A (en) * 1993-07-23 1996-07-09 Torchilin; Vladimir P. Amphipathic polychelating compounds and methods of use
US5538954A (en) * 1994-06-24 1996-07-23 A/S Dumex (Dumex Ltd.) Salts of tetracyclines
GB9323588D0 (en) 1993-11-16 1994-01-05 Cortecs Ltd Hydrophobic preparation
DE69528355T2 (de) * 1994-02-04 2003-05-15 Lipocore Holding Ab Stockholm Doppelschicht-zusammensetzungen aus digalactosyldiacylglycerol enthaltendem galactolipid
US6312719B1 (en) 1994-03-04 2001-11-06 The University Of British Columbia Liposome compositions and methods for the treatment of atherosclerosis
US6110481A (en) * 1994-03-04 2000-08-29 Trustees Of The Stevens Institute Of Technology Controlled release device based on aqueous-organic partitioning in porous membranes
US5783568A (en) * 1994-06-10 1998-07-21 Sugen, Inc. Methods for treating cancer and other cell proliferative diseases
US5543152A (en) 1994-06-20 1996-08-06 Inex Pharmaceuticals Corporation Sphingosomes for enhanced drug delivery
US5741516A (en) 1994-06-20 1998-04-21 Inex Pharmaceuticals Corporation Sphingosomes for enhanced drug delivery
US5820873A (en) 1994-09-30 1998-10-13 The University Of British Columbia Polyethylene glycol modified ceramide lipids and liposome uses thereof
US6214388B1 (en) 1994-11-09 2001-04-10 The Regents Of The University Of California Immunoliposomes that optimize internalization into target cells
GB9424902D0 (en) 1994-12-09 1995-02-08 Cortecs Ltd Solubilisation Aids
AU4981896A (en) 1995-02-14 1996-09-04 Sequus Pharmaceuticals, Inc. Liposome composition and method for administering liposome-loadable drugs
US5800833A (en) 1995-02-27 1998-09-01 University Of British Columbia Method for loading lipid vesicles
US5858397A (en) 1995-10-11 1999-01-12 University Of British Columbia Liposomal formulations of mitoxantrone
DE19605024A1 (de) * 1996-01-31 1997-08-07 Schering Ag Neue selektive Taxane, Verfahren zu ihrer Herstellung und ihre pharmazeutische Verwendung
US5756475A (en) 1996-01-31 1998-05-26 Nisshin Flour Milling Co., Ltd. Isoprene derivatives
US6441025B2 (en) 1996-03-12 2002-08-27 Pg-Txl Company, L.P. Water soluble paclitaxel derivatives
DE69730218D1 (de) 1996-04-11 2004-09-16 Univ British Columbia Fusogene liposomen
US5997899A (en) 1996-10-01 1999-12-07 Skyepharma Inc. Method for producing liposomes with increased percent of compound encapsulated
US6056973A (en) 1996-10-11 2000-05-02 Sequus Pharmaceuticals, Inc. Therapeutic liposome composition and method of preparation
CA2269758C (en) * 1996-10-22 2008-01-08 Hermes Biosciences, Inc. Liposome compositions comprising ionizable compounds in stable precipitated form and methods for their preparation
US6210707B1 (en) 1996-11-12 2001-04-03 The Regents Of The University Of California Methods of forming protein-linked lipidic microparticles, and compositions thereof
ATE318515T1 (de) 1996-11-19 2006-03-15 Univ Georgetown Methode zur inhibierung von heregulin und seines rezeptors sowie verwendung zur inhibierung von krebszellen
US5827533A (en) 1997-02-06 1998-10-27 Duke University Liposomes containing active agents aggregated with lipid surfactants
CA2289531C (en) * 1997-05-15 2009-09-29 University Of Washington Composition and methods for treating alzheimer's disease and other amyloidoses
JP2000516641A (ja) * 1997-07-02 2000-12-12 エスディージー インコーポレイテッド 診断および治療用途の目標指向性リポソーム構成物
US6316612B1 (en) 1997-08-22 2001-11-13 Ribozyme Pharmaceuticals, Inc. Xylofuranosly-containing nucleoside phosphoramidites and polynucleotides
US6083923A (en) 1997-10-31 2000-07-04 Isis Pharmaceuticals Inc. Liposomal oligonucleotide compositions for modulating RAS gene expression
US6787132B1 (en) 1997-12-04 2004-09-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Combined chemo-immunotherapy with liposomal drugs and cytokines
US7244826B1 (en) 1998-04-24 2007-07-17 The Regents Of The University Of California Internalizing ERB2 antibodies
RU2130771C1 (ru) * 1998-06-01 1999-05-27 Автушенко Сергей Сергеевич Способ получения липосомальных препаратов
GB9813100D0 (en) 1998-06-18 1998-08-19 Secr Defence Method of forming liposomes
US6200598B1 (en) 1998-06-18 2001-03-13 Duke University Temperature-sensitive liposomal formulation
US6726925B1 (en) * 1998-06-18 2004-04-27 Duke University Temperature-sensitive liposomal formulation
AU1678900A (en) 1998-08-11 2000-03-06 All India Institute Of Medical Sciences A novel liposomal formulation useful in treatment of cancer and other proliferation diseases
DE69935435T2 (de) 1998-08-12 2007-12-06 Yissum Research Development Company Of The Hebrew University Of Jerusalem Mittels Ammoniumsulfatgradient hergestellte liposomale analgetische Zusammensetzungen
JP2002527466A (ja) 1998-09-16 2002-08-27 アルザ・コーポレーション リポソーム−閉込めトポイソメラーゼ阻害剤
US6291676B1 (en) * 1999-03-03 2001-09-18 University Of Kentucky Research Foundation Water-soluble derivatives of camptothecin/homocamptothecin
US7311924B2 (en) 1999-04-01 2007-12-25 Hana Biosciences, Inc. Compositions and methods for treating cancer
CA2371483A1 (en) * 1999-04-29 2000-11-09 Luke S. Guo Liposome compositions for improved drug retention
US6720001B2 (en) 1999-10-18 2004-04-13 Lipocine, Inc. Emulsion compositions for polyfunctional active ingredients
US6511676B1 (en) * 1999-11-05 2003-01-28 Teni Boulikas Therapy for human cancers using cisplatin and other drugs or genes encapsulated into liposomes
US20020049176A1 (en) * 1999-11-10 2002-04-25 Anderson Christen M. Modulation of mitochondrial mass and function for the treatment of diseases and for target and drug discovery
ES2272496T3 (es) * 2000-02-04 2007-05-01 Lipoxen Technologies Limited Procedimiento de deshidratacion/rehidritacion para la preparacion de lipososmas.
US6545010B2 (en) 2000-03-17 2003-04-08 Aventis Pharma S.A. Composition comprising camptothecin or a camptothecin derivative and a platin derivative for the treatment of cancer
EP1286671B1 (en) 2000-05-15 2006-04-05 Celgene Corporation Compositions for the treatment of colorectal cancer comprising thalidomide and irinotecan
IL153676A0 (en) 2000-06-30 2003-07-06 Inex Pharmaceuticals Corp Liposomal pharmaceutical compositions
US6486320B2 (en) 2000-09-15 2002-11-26 Aventis Pharma S.A. Preparation of camptothecin and of its derivatives
WO2002036073A2 (en) 2000-11-02 2002-05-10 Smithkline Beecham Corporation Receptor antagonist-lipid conjugates and delivery vehicles containing same
EP1230917A1 (de) 2001-02-08 2002-08-14 Vectron Therapeutics AG Invasomen zur Therapie von Erkrankungen, ihre Herstellung und Verwendung
CA2442261A1 (en) * 2001-03-26 2002-10-03 Alza Corporation Liposome composition for improved intracellular delivery of a therapeutic agent
US7219016B2 (en) 2001-04-20 2007-05-15 Yale University Systems and methods for automated analysis of cells and tissues
WO2003030864A1 (en) * 2001-05-29 2003-04-17 Neopharm, Inc. Liposomal formulation of irinotecan
US7850990B2 (en) 2001-10-03 2010-12-14 Celator Pharmaceuticals, Inc. Compositions for delivery of drug combinations
JP4822666B2 (ja) * 2001-10-03 2011-11-24 セレーター ファーマシューティカルズ インコーポレイテッド 金属イオンをローディングするリポソーム
ITBO20010610A1 (it) * 2001-10-05 2003-04-05 Haworth S P A Dispositivo per la connessione di gambe ad elementi di arredamento, ed elemento di arredamento comprendente tale dispositivo
AU2002340669A1 (en) 2001-11-13 2003-05-26 Celator Technologies, Inc. Lipid carrier compositions with enhanced blood stability
US20030129224A1 (en) * 2001-11-13 2003-07-10 Paul Tardi Lipid carrier compositions and methods for improved drug retention
US20030220284A1 (en) * 2002-02-22 2003-11-27 Patricia Yotnda Delivery of adenoviral DNA in a liposomal formulation for treatment of disease
WO2003092700A1 (en) 2002-04-29 2003-11-13 Gmp Oxycell, Inc. Inositol pyrophosphates, and methods of use thereof
EP3100719A3 (en) 2002-05-15 2017-02-22 California Pacific Medical Center Delivery of nucleic acid-like compounds
DK1519714T3 (da) 2002-06-28 2011-01-31 Protiva Biotherapeutics Inc Fremgangsmåde og apparat til fremstilling af liposomer
US20040243101A1 (en) * 2002-07-02 2004-12-02 Gillis Edward M. Minimally invasive drug delivery catheter
WO2004035032A2 (en) 2002-08-20 2004-04-29 Neopharm, Inc. Pharmaceutical formulations of camptothecine derivatives
AR036316A1 (es) 2002-08-29 2004-08-25 Monte Verde S A Una composicion farmaceutica de liposomas de tamano pequeno y metodo de preparacion
DE10242367A1 (de) 2002-09-12 2004-03-18 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Thermolabiles Liposom mit geregelter Freigabetemperatur
US20040170677A1 (en) 2002-11-26 2004-09-02 Ning Hu Method of drug loading in liposomes by gradient
US20060222694A1 (en) 2003-06-27 2006-10-05 Oh Choon K Stabilized topotecan liposomal composition and methods
CA2530224A1 (en) * 2003-07-09 2005-02-24 California Pacific Medical Center Remote detection of substance delivery to cells
KR20070057701A (ko) 2004-03-17 2007-06-07 토카이 유니버시티 에듀케이셔널시스템 면역응답 시스템을 이용한 약물전달 시스템
KR101462819B1 (ko) 2004-05-03 2014-11-21 헤르메스 바이오사이언스, 인코포레이티드 약물 전달에 유용한 리포좀
US8658203B2 (en) * 2004-05-03 2014-02-25 Merrimack Pharmaceuticals, Inc. Liposomes useful for drug delivery to the brain
ES2594621T3 (es) 2004-06-01 2016-12-21 Kabushiki Kaisha Yakult Honsha Preparación de irinotecán
JP2008502690A (ja) 2004-06-15 2008-01-31 アンドリュー シァン チェン, リン脂質組成物ならびにその調製方法および使用方法
SI1807009T1 (sl) * 2004-10-05 2015-04-30 Genzyme Corporation Stopničasta kanila
US20060129126A1 (en) * 2004-11-19 2006-06-15 Kaplitt Michael G Infusion device and method for infusing material into the brain of a patient
US20060127467A1 (en) 2004-12-14 2006-06-15 Watkin Kenneth L Nanoparticles for delivery of therapeutic agents using ultrasound and associated methods
DK2377546T3 (en) * 2004-12-21 2017-02-13 Musc Found For Res Dev Compositions and Methods to Promote Wound Healing and Tissue Regeneration
JP2006248978A (ja) 2005-03-10 2006-09-21 Mebiopharm Co Ltd 新規なリポソーム製剤
AU2006306108B2 (en) 2005-10-25 2012-10-04 Celator Pharmaceuticals, Inc. Fixed ratio drug combination treatments for solid tumors
EP1976485A4 (en) 2005-12-22 2011-10-26 Celator Pharmaceuticals Inc LIPOSOMAL FORMULATIONS COMPRISING SECONDARY AND TERTIARY AMINES AND METHODS FOR THE PREPARATION OF SAID FORMULATIONS
KR20080110681A (ko) 2006-04-20 2008-12-18 암겐 인코포레이티드 안정적 에멀젼 조제물
GB0614835D0 (en) 2006-07-26 2006-09-06 Isis Innovation Formation of bilayers of amphipathic molecules
DK2129396T3 (da) 2007-02-16 2013-11-25 Merrimack Pharmaceuticals Inc Antistoffer mod ErbB3 og anvendelser deraf
US20120003294A1 (en) 2007-08-17 2012-01-05 Celator Pharmaceuticals, Inc. Fixed ratio camptothecens/platinum agents
CA2700810A1 (en) 2007-09-28 2009-04-02 Universitatsspital Basel Immunoliposomes for treatment of cancer
WO2009059449A1 (en) 2007-11-05 2009-05-14 Celsion Corporation Novel thermosensitive liposomes containing therapeutic agents
US8067432B2 (en) 2008-03-31 2011-11-29 University Of Kentucky Research Foundation Liposomal, ring-opened camptothecins with prolonged, site-specific delivery of active drug to solid tumors
US8852630B2 (en) 2008-05-13 2014-10-07 Yale University Chimeric small molecules for the recruitment of antibodies to cancer cells
AU2013202947B2 (en) * 2012-06-13 2016-06-02 Ipsen Biopharm Ltd. Methods for treating pancreatic cancer using combination therapies comprising liposomal irinotecan
WO2016168451A1 (en) 2015-04-14 2016-10-20 Merrimack Pharmaceuticals, Inc. Compositions for improving the pharmacokinetics and therapeutic index of cancer treatment
CA2992789A1 (en) 2015-08-20 2017-02-23 Ipsen Biopharm Ltd. Combination therapy using liposomal irinotecan and a parp inhibitor for cancer treatment
US10456360B2 (en) * 2015-10-16 2019-10-29 Ipsen Biopharm Ltd. Stabilizing camptothecin pharmaceutical compositions
US20180110771A1 (en) 2016-10-21 2018-04-26 Ipsen Biopharm Ltd. Liposomal Irinotecan Preparations
US20170202840A1 (en) 2016-01-14 2017-07-20 Merrimack Pharmaceuticals, Inc. Treatment of pancreatic cancer with liposomal irinotecan
US20170333421A1 (en) 2016-05-18 2017-11-23 Ipsen Biopharm Ltd. Population Pharmacokinetics of Liposomal Irinotecan
MA46709A (fr) * 2016-11-02 2019-09-11 Ipsen Biopharm Ltd Traitement du cancer gastrique au moyen de polythérapies comprenant de l'oxaliplatine, du 5-fluoruracile (et de la leucovorine) et de l'irinotécan sous forme liposomale

Also Published As

Publication number Publication date
RU2006142766A (ru) 2008-06-20
NO2021004I1 (no) 2021-01-22
EP4218730A1 (en) 2023-08-02
KR20140000348A (ko) 2014-01-02
EP3173073A1 (en) 2017-05-31
FR17C1027I2 (fr) 2020-09-04
CN1980637B (zh) 2014-02-19
US20160338956A1 (en) 2016-11-24
US20160030342A1 (en) 2016-02-04
US20170079912A1 (en) 2017-03-23
CA2566007C (en) 2013-09-24
AU2005240131B2 (en) 2011-03-03
TWI359029B (en) 2012-03-01
CA2821167C (en) 2016-06-28
EP1746976A1 (en) 2007-01-31
NO20065532L (no) 2006-12-13
US20230181567A1 (en) 2023-06-15
RU2015155368A3 (ja) 2019-08-19
RU2011112461A (ru) 2012-10-10
US20180169014A1 (en) 2018-06-21
US10413510B2 (en) 2019-09-17
US20160106672A1 (en) 2016-04-21
FR17C1027I1 (ja) 2017-09-08
CA2928387A1 (en) 2005-11-17
JP2007536247A (ja) 2007-12-13
CN107811971A (zh) 2018-03-20
US20170079914A1 (en) 2017-03-23
US10350201B2 (en) 2019-07-16
KR20070036055A (ko) 2007-04-02
EP4218730B1 (en) 2023-11-01
RU2574926C9 (ru) 2020-06-16
US20170079913A1 (en) 2017-03-23
US8992970B2 (en) 2015-03-31
US10722508B2 (en) 2020-07-28
US20150182460A1 (en) 2015-07-02
RU2424792C2 (ru) 2011-07-27
US11052079B2 (en) 2021-07-06
KR101376895B1 (ko) 2014-03-25
US20170071858A1 (en) 2017-03-16
JP4971142B2 (ja) 2012-07-11
US8147867B2 (en) 2012-04-03
AU2005240131C1 (en) 2014-05-08
TW200605908A (en) 2006-02-16
US20180235954A1 (en) 2018-08-23
NO345218B1 (no) 2020-11-09
CN1980637A (zh) 2007-06-13
US20160095817A1 (en) 2016-04-07
CN107811971B (zh) 2021-10-29
US20170340624A1 (en) 2017-11-30
AU2005240131A1 (en) 2005-11-17
KR20120082039A (ko) 2012-07-20
US9782349B2 (en) 2017-10-10
EP1746976A4 (en) 2010-09-29
KR101462819B1 (ko) 2014-11-21
DK1746976T3 (en) 2017-04-10
ES2616047T3 (es) 2017-06-09
CN103948545A (zh) 2014-07-30
US20160030341A1 (en) 2016-02-04
PT1746976T (pt) 2017-04-24
US9730891B2 (en) 2017-08-15
NL300885I1 (ja) 2017-07-19
LUC00026I1 (ja) 2017-07-11
US9717723B2 (en) 2017-08-01
KR101462825B1 (ko) 2014-11-21
US8703181B2 (en) 2014-04-22
US20130122081A1 (en) 2013-05-16
US8329213B2 (en) 2012-12-11
KR101223366B1 (ko) 2013-01-16
CA2566007A1 (en) 2005-11-17
HK1252167A1 (zh) 2019-05-17
US20160095852A1 (en) 2016-04-07
JP2014055172A (ja) 2014-03-27
JP2012092119A (ja) 2012-05-17
RU2757110C2 (ru) 2021-10-11
EP1746976B1 (en) 2017-01-11
HK1200694A1 (en) 2015-08-14
JP5502842B2 (ja) 2014-05-28
US20160081928A1 (en) 2016-03-24
CA2821167A1 (en) 2005-11-17
PL1746976T3 (pl) 2017-09-29
US20140154298A1 (en) 2014-06-05
CN103948545B (zh) 2017-10-03
CA3006109A1 (en) 2005-11-17
UA86063C2 (ru) 2009-03-25
ES2967961T3 (es) 2024-05-06
RU2015155368A (ru) 2017-06-28
LUC00026I2 (ja) 2017-09-08
WO2005107712A1 (en) 2005-11-17
US9724303B2 (en) 2017-08-08
US20070116753A1 (en) 2007-05-24
US20210137914A1 (en) 2021-05-13
US20120171283A1 (en) 2012-07-05
KR20130032401A (ko) 2013-04-01
NL300885I2 (nl) 2022-02-24
US20160339014A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP5665950B2 (ja) 薬物送達に有用なリポソーム
AU2013207554B2 (en) Liposomes useful for drug delivery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5665950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R153 Grant of patent term extension

Free format text: JAPANESE INTERMEDIATE CODE: R153

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250