JP5629920B2 - アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール - Google Patents

アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール Download PDF

Info

Publication number
JP5629920B2
JP5629920B2 JP2010167008A JP2010167008A JP5629920B2 JP 5629920 B2 JP5629920 B2 JP 5629920B2 JP 2010167008 A JP2010167008 A JP 2010167008A JP 2010167008 A JP2010167008 A JP 2010167008A JP 5629920 B2 JP5629920 B2 JP 5629920B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
magnesium
aluminum
composite material
silicon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010167008A
Other languages
English (en)
Other versions
JP2011049538A (ja
Inventor
努 飯田
努 飯田
直樹 福島
直樹 福島
坂本 達也
達也 坂本
洋彦 水戸
洋彦 水戸
宏邦 難波
宏邦 難波
田口 豊
豊 田口
昌保 赤坂
昌保 赤坂
守 立川
守 立川
日野 賢一
賢一 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Original Assignee
Tokyo University of Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science filed Critical Tokyo University of Science
Priority to JP2010167008A priority Critical patent/JP5629920B2/ja
Publication of JP2011049538A publication Critical patent/JP2011049538A/ja
Application granted granted Critical
Publication of JP5629920B2 publication Critical patent/JP5629920B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C24/00Alloys based on an alkali or an alkaline earth metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/8556Thermoelectric active materials comprising inorganic compositions comprising compounds containing germanium or silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、アルミニウム・マグネシウム・ケイ素複合材料;熱電変換材料、熱電変換素子、及び熱電変換モジュール;並びにアルミニウム・マグネシウム・ケイ素複合材料の製造方法に関する。
近年、環境問題の高まりに応じて、各種のエネルギーを効率的に利用する様々な手段が検討されている。特に、産業廃棄物の増加等に伴って、これらを焼却する際に生じる廃熱の有効利用が課題となっている。例えば大型廃棄物焼却施設では、廃熱により高圧の蒸気を発生させ、この蒸気により蒸気タービンを回転させて発電することにより廃熱回収が行われている。しかし、廃棄物焼却施設の大多数を占める中型・小型廃棄物焼却施設では、廃熱の排出量が少ないため、蒸気タービン等により発電する廃熱の回収方法は採用できていない。
このような中型・小型の廃棄物焼却施設において採用することが可能な廃熱を利用した発電方法としては、例えば、ゼーベック効果或いはペルチェ効果を利用して可逆的に熱電変換を行う熱電変換材料・熱電変換素子・熱電変換モジュールを用いた方法が提案されている。
熱電変換モジュールとしては、例えば図1及び図2に示すようなものが挙げられる。この熱電変換モジュールでは、熱伝導率の小さいn型半導体及びp型半導体がそれぞれn型熱電変換部101及びp型熱電変換部102の熱電変換材料として用いられる。並置されたn型熱電変換部101及びp型熱電変換部102の上端部には電極1015,1025が、下端部には電極1016,1026がそれぞれ設けられる。そして、n型熱電変換部及びp型熱電変換部の上端部にそれぞれ設けられた電極1015,1025が接続されて一体化された電極を形成すると共に、n型熱電変換部及びp型熱電変換部の下端部にそれぞれ設けられた電極1016,1026は分離されて構成される。
ここで、図1に示すように、電極1015,1025の側を加熱し、電極1016,1026の側から放熱することで、電極1015,1025と、電極1016,1026との間に正の温度差(Th−Tc)が生じ、熱励起されたキャリアによってp型熱電変換部102がn型熱電変換部101よりも高電位となる。このとき、電極1016と電極1026との間に負荷として抵抗3を接続することで、p型熱電変換部102からn型熱電変換部101へと電流が流れる。
一方、図2に示すように、直流電源4によってp型熱電変換部102からn型熱電変換部101へと直流電流を流すことで、電極1015,1025において吸熱作用が生じ、電極1016,1026において発熱作用が生じる。また、n型熱電変換部101からp型熱電変換部102へと直流電流を流すことで、電極1015,1025において発熱作用が生じ、電極1016,1026において吸熱作用が生じる。
熱電変換モジュールの他の例としては、例えば図3及び図4に示すようなものが挙げられる(例えば特許文献1を参照)。この熱電変換モジュールでは、熱伝導率の小さいn型半導体のみが熱電変換材料として用いられる。n型熱電変換部103の上端部には電極1035が、下端部には電極1036がそれぞれ設けられる。
この場合、図3に示すように、電極1035側を加熱し、電極1036側から放熱することで、電極1035と電極1036との間に正の温度差(Th−Tc)が生じ、電極1035側が電極1036側よりも高電位となる。このとき、電極1035と電極1036との間に負荷として抵抗3を接続することで、電極1035側から電極1036側へと電流が流れる。
一方、図4に示すように、直流電源4によって電極1036側からn型熱電変換部103を経て電極1035側へと直流電流を流すことで、電極1035において吸熱作用が生じ、電極1036において発熱作用が生じる。また、直流電源4によって電極1035側からn型熱電変換部103を経て電極1036へと直流電流を流すことで、電極1035において発熱作用が生じ、電極1036において吸熱作用が生じる。
このように極めてシンプルな構成で効率的に熱電変換を行うことができる熱電変換素子は、従来特殊な用途を中心に応用展開されている。
ここで、従来、Bi−Te系、Co−Sb系、Zn−Sb系、Pb−Te系、Ag−Sb−Ge−Te系等の熱電変換材料により、燃料電池、自動車、ボイラー・焼却炉・高炉等の約200℃から800℃程度の廃熱源を利用して電気に変換する試みが行われてきた。しかし、このような熱電変換材料には有害物質が含まれるため、環境負荷が大きくなるという問題があった。
また、高温用途で用いるものとしては、BC等、ホウ素を多量に含むホウ化物、LaS等のレアアース金属カルコゲナイト等が研究されているが、BCやLaS等の金属間化合物を主体とする非酸化物系の材料は、真空中で比較的高い性能を発揮するものの、高温下で結晶相の分解が生じる等、高温領域での安定性が劣るという問題があった。
一方、環境負荷が少ないMgSi(例えば特許文献2及び3、非特許文献1〜3を参照)、MgSi1−x(例えば非特許文献4を参照)等のシリサイド系(珪化物系)の金属間化合物を含む材料も研究されている。
特開平11−274578号公報 特開2005−314805号公報 国際公開第03/027341号
Semiconducting Properties of Mg2Si Single Crystals Physical Review Vol.109,No.6,March 15,1958,p.1909−1915 Seebeck Effect In Mg2Si Single Crystals J.Phys.Chem.Solids Program Press 1962.Vol.23,pp.601−610 Bulk Crystals Growth of Mg2Si by the vertical Bridgman method Science Direct Thin Solid Films 461(2004)86−89 Thermoelectric Properties of Mg2Si Crystal Grown by the Bridgeman method
しかし、上記Mgを含有するシリサイド系の金属間化合物を含む材料は、熱電変換性能が低いといった問題点があり、Mgを含有するシリサイド系の金属間化合物を含む材料を実際に熱電変換モジュールに実用化するには至っていなかった。
例えば、特許文献2,3に記載のマグネシウム−ケイ素複合材料については、これが有する熱電特性については、全く検討されていない。しかし、本発明者らが検討したところによれば、特許文献2,3に記載のマグネシウム−ケイ素複合材料は、本願で必要とされるマグネシウム−ケイ素複合材料の特性を有しないものであった。
本発明は、以上の課題に鑑みてなされたものであり、Al、Mg、及びSiからなる合金を含み、熱電変換モジュールの材料として好適に使用可能なアルミニウム・マグネシウム・ケイ素複合材料であって、優れた熱電変換特性を有するアルミニウム・マグネシウム・ケイ素複合材料を提供することを目的とする。
本発明者らは、上記課題を解決するため鋭意研究を行った。その結果、Al、Mg、及びSiからなる合金を含むアルミニウム・マグネシウム・ケイ素複合材料が優れた熱電変換特性を有すると共に、熱電変換性能を決定する要因のうち、特に電気伝導率が高いものであることを見出し、本発明を完成するに至った。具体的には、本発明は以下のものを提供する。
[1] Al、Mg、及びSiからなる合金を含み、300Kにおける電気伝導率σが1000〜3000S/cmであるアルミニウム・マグネシウム・ケイ素複合材料。
[1]に記載の発明は、Al、Mg、及びSiからなる合金を含み、高い電気伝導率を有するアルミニウム・マグネシウム・ケイ素複合材料である。ここで、熱電変換材料の熱電変換特性を示す性能指数は、一般に以下の数式(1)によって導出され、上記性能指数に絶対温度Tを乗じた数値が無次元性能指数ZTとなる。
Figure 0005629920
[上記式(1)において、αはゼーベック係数を、σは電気伝導率を、κは熱伝導率を示す。]
上記数式(1)から明らかなように、電気伝導率が高い材料は無次元性能指数も高くなる傾向にある。このため、[1]に記載の発明によれば、熱電変換特性に優れたアルミニウム・マグネシウム・ケイ素複合材料を得ることができる。
なお、[1]に記載の発明における複合材料は、「Al、Mg、及びSiからなる合金」を含むものであり、例えばMgSi等のマグネシウムシリサイドに、不純物程度のアルミニウムを含有する、アルミニウムをドープした材料とは異なるものである。本発明において、上記複合材料としては、通常、Al元素の含有量が0.5at%以上のものを指す。
[2] Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合することにより得られ、Alの含有量が1〜10at%である組成原料から合成される[1]に記載のアルミニウム・マグネシウム・ケイ素複合材料。
[2]に記載の発明は、[1]に記載のアルミニウム・マグネシウム・ケイ素複合材料を製造する際の組成原料を規定したものである。したがって、[2]に記載の発明によれば、[1]に記載の発明と同等の効果を得ることができる。
[3] 前記組成原料中のAlの含有量が3.5〜6.0at%である[2]に記載のアルミニウム・マグネシウム・ケイ素複合材料。
[3]に記載の発明は、[2]に記載のアルミニウム・マグネシウム・ケイ素複合材料を製造する際の組成原料中の好ましいAlの含有量を規定したものである。この[3]に記載の発明によれば、[2]に記載の発明の効果に加え、焼結体の機械的強度に優れるという効果を得ることができる。
[4] Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合することにより得られ、Alの含有量が1〜10at%である組成原料を、開口部と前記開口部を覆う蓋部とを備え、前記開口部の辺縁における前記蓋部への接触面と、前記蓋部における前記開口部への接触面とが共に研磨処理された耐熱容器中で加熱溶融する工程を有するアルミニウム・マグネシウム・ケイ素複合材料の製造方法。
[4]に記載の発明は、[1]又は[2]に記載の発明を、製造方法の発明として規定したものである。したがって、[4]に記載の発明によれば、[1]又は[2]に記載の発明と同等の効果を得ることができる。
[5] [1]から[3]のいずれかに記載のアルミニウム・マグネシウム・ケイ素複合材料からなる熱電変換材料。
[6] 熱電変換部と、該熱電変換部に設けられた第1電極及び第2電極とを備え、前記熱電変換部が[1]から[3]のいずれかに記載のアルミニウム・マグネシウム・ケイ素複合材料を用いて製造される熱電変換素子。
[7] [6]に記載の熱電変換素子を備える熱電変換モジュール。
[5]から[7]に記載の発明は、[1]から[3]のいずれかに記載の発明を熱電変換材料、熱電変換素子、及び熱電変換モジュールの発明として規定したものである。したがって、[5]から[7]に記載の発明によれば、[1]から[3]のいずれかに記載の発明と同等の効果を得ることができる。
[8] [1]から[3]のいずれかに記載のアルミニウム・マグネシウム・ケイ素複合材料が用いられてなる耐食性材料、軽量構造材、摩擦材、セラミックス基板、誘電体磁器組成物、水素吸蔵組成物、又はシラン発生装置。
本発明に係るマグネシウム−ケイ素複合材料の用途としては、好ましくは、熱電変換材料、熱電変換素子、及び熱電変換モジュールの用途を挙げることができるが、例えば、耐食性材料、軽量構造材、摩擦材、セラミックス基板、誘電体磁器組成物、水素吸蔵組成物、シラン発生装置等の用途に用いることもできる。
本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、Al、Mg、及びSiからなる合金を含み、高い電気伝導率を有するアルミニウム・マグネシウム・ケイ素複合材料である。ここで、電気伝導率が高い材料は無次元性能指数も高くなる傾向にあるため、本発明によれば、熱電変換特性に優れたアルミニウム・マグネシウム・ケイ素複合材料を得ることができる。
熱電変換モジュールの一例を示す図である。 熱電変換モジュールの一例を示す図である。 熱電変換モジュールの一例を示す図である。 熱電変換モジュールの一例を示す図である。 焼結装置の一例を示す図である。 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料における無次元性能指数と温度との関係を示す図である。 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料における電気伝導率とアルミニウムの組成比との関係を示す図である。 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料における無次元性能指数と電気伝導率との関係を示す図面である。 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料における無次元性能指数とアルミニウムの組成比との関係を示す図である。 本発明に係るアルミニウム・マグネシウム・ケイ素複合材料における圧縮強度とアルミニウムの組成比との関係を示す図である。
以下、本発明の実施形態について図面を挙げて詳細に説明する。
<アルミニウム・マグネシウム・ケイ素複合材料>
[アルミニウム・マグネシウム・ケイ素複合材料の特性]
本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、Al、Mg、及びSiからなる合金を含み、300Kにおける電気伝導率σが1000〜3000S/cmである。ここで、熱電変換材料の性能指数を示す上記の数式(1)から明らかなように、電気伝導率σが高い材料は、性能指数も高くなる傾向にある。このため、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、優れた熱電変換性能を有する傾向にある。アルミニウム・マグネシウム・ケイ素複合材料が優れた電気伝導率を示すことにより、例えば、アルミニウム・マグネシウム・ケイ素複合材料を熱電変換素子、熱電変換モジュールに使用する場合に、高い熱電変換性能を得ることができる。なお、上記電気伝導率は、1100〜2500S/cmであることが好ましく、1200〜2000S/cmであることが更に好ましい。
ここで、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、組成原料を加熱溶融し、好ましくは加熱溶融後の試料を粉砕した後のものであっても、粉砕後の試料を焼結した後のものであってもよいが、アルミニウム・マグネシウム・ケイ素複合材料の電気伝導率に言及するとき、Al、Mg、及びSiを含む組成原料を加熱溶融し、加熱溶融後の試料を粉砕して、粉砕後の試料を焼結した後に測定されたものを指すものとする。同様に、アルミニウム・マグネシウム・ケイ素複合材料の無次元性能指数に言及するとき、Al、Mg、及びSiを含む組成原料を加熱溶融し、加熱溶融後の試料を粉砕して、粉砕後の試料を焼結した後に測定されたものを指すものとする。
すなわち、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料とは、組成原料の加熱溶融物、当該加熱溶融物の粉砕物及び当該粉砕物の焼結体を包含した意味をなし、これらの加熱溶融物、粉砕物、及び焼結体は、それぞれ単独で商品としての価値を有するものである。本発明に係る熱電変換材料自体及び熱電変換素子を構成する熱電変換部は、当該焼結体から構成されるものである。
上述したとおり、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、「Al、Mg、及びSiからなる合金」を含むものであり、例えばMgSi等のマグネシウムシリサイドに、不純物程度のAlを含有する、Alをドープした材料とは異なるものである。本発明において上記複合材料としては、通常、Alの含有量が0.5at%以上のものを指す。
また、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、860Kにおける無次元性能指数が0.47以上であることが好ましく、0.55以上であることがより好ましい。無次元性能指数が上記範囲内にあることにより、アルミニウム・マグネシウム・ケイ素複合材料を熱電変換材料として用いたときに、優れた熱電変換性能を得ることができる。
なお、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、インゴット状のもの、粉末状のもの、粉末状のものを焼結したもの等、いかなる形態のものであってもよいが、粉末状のものを焼成したものであることが好ましい。更に、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料の用途としては、好ましくは、後述する熱電変換材料、熱電変換素子、及び熱電変換モジュールの用途を挙げることができるが、このような用途に限定されるものではなく、例えば、耐食性材料、軽量構造材、摩擦材、セラミックス基板、誘電体磁器組成物、水素吸蔵組成物、シラン発生装置等の用途に用いることもできる。
更に、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、機械的強度に優れるものである。このため、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、これを容易に熱電変換素子等に加工することができる。
<熱電変換材料、熱電変換素子、及び熱電変換モジュール>
本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、熱電変換材料として好適に使用できるものである。即ち、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、300Kにおける電気伝導率が1000〜3000S/cmのものであるので、熱電変換性能に優れる傾向にあり、これを熱電変換材料として熱電変換素子、熱電変換モジュールに使用する場合に、高い熱電変換性能を得ることができる。
<アルミニウム・マグネシウム・ケイ素複合材料の製造方法等>
本発明に係るアルミニウム・マグネシウム・ケイ素複合材料の製造方法は、Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合することにより得られ、Alの含有量が1〜10at%である組成原料を、開口部とこの開口部を覆う蓋部とを有し、上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面とが共に研磨処理された耐熱容器中で加熱溶融する工程を有するものである。
また、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料の製造方法は、加熱溶融工程において得られた試料を粉砕する粉砕工程と、粉砕された上記試料を焼結する焼結工程とを有することが好ましい。
なお、組成原料中におけるAlの含有量は、3.5〜6.0at%であることがより好ましく、3.8〜5.8at%であることが更に好ましい。Alの含有量をこのような範囲とすることにより、焼結体の機械的強度に優れるようになる。したがって、例えばブレードソーによって焼結体を所望の大きさに切り出す際にも、素子が破損することを防止できる。
(混合工程)
混合工程においては、Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合して、Alの含有量が1〜10at%、好ましくは3.5〜6.0at%、より好ましくは3.8〜5.8at%である組成原料を得る。
Siとしては、例えば3N以上、好ましくは6N以上のシリコンを利用することができる。ここで、シリコンとしては、具体的には、例えばLSI用高純度シリコン原料、太陽電池用高純度シリコン原料、高純度金属シリコン、高純度シリコンインゴット、高純度シリコンウエハ等を挙げることができる。
混合工程においてAl及びMgの原料としてAl及びMgの混合物を用いる場合、Mgとしては、99.5wt%程度以上の純度を有するものであり、実質的に不純物を含有しないものである限り、特に限定されるものではないが、例えば、Si、Mn、Al、Fe、Cu、Ni、Cl等の不純物を含むものであっても差し支えない。
また、混合工程においてAl及びMgの原料としてAl及びMgの混合物を用いる場合、Alとしては、99.5wt%程度以上の純度を有するものであり、実質的に不純物を含有しないものである限り、特に限定されるものではないが、例えば、Si、Mn、Mg、Fe、Cu、Ni、Cl等の不純物を含むものであっても差し支えない。
更に、混合工程においてAl及びMgの原料としてAlを含有するMg合金を用いる場合には、Alを2.0〜8.2at%、好ましくは3.5〜6.0at%、より好ましくは3.8〜5.8at%含有する合金を挙げることができる。このような合金としては、具体的には、AM20、AZ31B、AM60B、及びAZ91Dを挙げることができる。このような合金は、市場の様々な製品からリサイクル可能であるため、アルミニウム・マグネシウム・ケイ素複合材料の製造コストを低減することができる。
混合工程において用いられる組成原料は、Mgの含有量がMg及びSiの合計含有量に基づく原子量比で66.17〜66.77at%であり、Siの含有量がMg及びSiの合計含有量に基づく原子量比で33.23〜33.83at%である。
なお、Mgの含有量は、Mg及びSiの合計含有量に基づく原子量比で66.27〜66.67at%であることが好ましく、このときのSiの含有量は、Mg及びSiの合計含有量に基づく原子量比で33.33〜33.73at%であることが好ましい。
(加熱溶融工程)
加熱溶融工程においては、Al、Mg、及びSiを含む組成原料を還元雰囲気下且つ好ましくは減圧下において、Mg及びAlの融点を超えSiの融点を下回る温度条件下で熱処理してAl、Mg、及びSiからなる合金を溶融合成することが好ましい。ここで、「還元雰囲気下」とは、特に水素ガスを5体積%以上含み、必要に応じてその他の成分として、不活性化ガスを含む雰囲気を指す。斯かる還元雰囲気下で加熱溶融工程を行うことにより、Mg、Al、及びSiを確実に反応させることでき、アルミニウム・マグネシウム・ケイ素複合材料を合成することができる。
加熱溶融工程における圧力条件としては、大気圧でもよいが、1.33×10−3Pa〜大気圧が好ましく、安全性を考慮すれば、例えば0.08MPa程度の減圧条件とすることが好ましい。
また、加熱溶融工程における加熱条件としては、700℃以上1410℃未満、好ましくは1085℃以上1410℃未満で、例えば3時間程度熱処理することができる。ここで、熱処理の時間は2〜10時間であってもよい。熱処理を長時間のものとすることにより、得られるアルミニウム・マグネシウム・ケイ素複合材料をより均一化することができる。なお、Alの融点は660.4℃、Siの融点は1410℃である。
ここで、Mgの融点である693℃以上に加熱することによりMgが溶融した場合、Al及びSiがその中に溶け込んで反応を開始するが、反応速度がやや遅いものとなる。一方、Mgの沸点である1090℃以上に加熱した場合、反応速度は速いものとなるが、Mgが急激に蒸気となって飛散するおそれがあるので注意して合成する必要がある。
また、組成原料を熱処理する際の昇温条件としては、例えば、150℃に達するまでは150〜250℃/hの昇温条件、1100℃に達するまでは350〜450℃/hの昇温条件を挙げることができ、熱処理後の降温条件としては、900〜1000℃/hの降温条件を挙げることができる。
なお、加熱溶融工程を行う際には、開口部とこの開口部を覆う蓋部とを備え、上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面とが共に研磨処理された耐熱容器中で行う必要がある。このように研磨処理することで、組成原料の組成比率に近い組成比率を有するアルミニウム・マグネシウム・ケイ素複合材料を得ることができる。これは、上記蓋部と上記開口部の辺縁との接触面において隙間が形成されず、耐熱容器が密閉されるため、蒸発したMgやAlの耐熱容器外への飛散を抑制することができるためと考えられる。
上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面との研磨処理については特に限定されず、研磨処理されたものでありさえすればよい。しかし、特に、当該接触面の表面粗さRaを0.2〜1μmとすると密着状態を形成するのに好ましく、0.2〜0.5μmとすると更に好ましい。表面粗さが1μmを超えると、開口部の辺縁と蓋部との密着性が不十分になる場合がある。一方、表面粗さRaが0.2μm未満の場合、必要以上の研磨を行うこととなり、コスト面で好ましくない。また、上記接触面は、表面うねりRmaxが0.5〜3μmであることが好ましく、0.5〜1μmであることが更に好ましい。表面うねりRmaxが0.5μm未満の場合、必要以上の研磨を行うこととなり、コスト面で好ましくない。
ここで、このような耐熱容器としては、アルミナ、マグネシア、ジルコニア、白金、イリジウム、シリコンカーバイト、ボロンナイトライド、パイロライティックボロンナイトライド、パイロライティックグラファイト、パイロライティックボロンナイトライドコート、パイロライティックグラファイトコート、及び石英からなる密閉容器を挙げることができる。また、上記耐熱容器の寸法としては、容器本体が内径12〜300mm、外径15〜320mm、高さ50〜250mmで、蓋部の直径が15〜320mmのものを挙げることができる。
更に、上記開口部の辺縁における上記蓋部への接触面と、上記蓋部における上記開口部への接触面とを密着させるため、必要に応じて、上記蓋部の上面を直接又は間接におもりにて加圧することができる。当該加圧の際の圧力は、1〜10kgf/cmであることが好ましい。
加熱溶融工程を還元雰囲気下において行うために使用するガスとしては、100体積%の水素ガスでもよいが、水素ガス5体積%以上を含む窒素ガス又はアルゴンガス等、水素ガスと不活性ガスとの混合ガスを挙げることができる。このように、加熱溶融工程を還元雰囲気下で行う理由としては、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料を製造するにあたって、酸化ケイ素のみならず、酸化マグネシウムの生成を極力避ける必要があることを挙げることができる。
加熱溶融された試料は、自然冷却及び強制冷却によって冷却することができる。
(粉砕工程)
粉砕工程は、加熱溶融された試料を粉砕する工程である。粉砕工程においては、加熱溶融された試料を、微細で、狭い粒度分布を有する粒子に粉砕することが好ましい。微細で、狭い粒度分布を有する粒子に粉砕することにより、これを焼結する際に、粉砕された粒子同士がその表面の少なくとも一部において融着し、空隙(ボイド)の発生がほとんど観察されない程度に焼結することができ、理論値の約70%から理論値とほぼ同程度の密度を有する焼結体を得ることができる。
粉砕した上記試料は、好ましくは、平均粒径が0.01〜100μmのものを使用することができる。具体的には、75μm篩パスの粒子を使用することができる。
なお、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料を熱電変換材料として利用する場合には、粉砕工程の後にドーパントを所定量添加することにより焼結工程でドーピングを行ってもよい。
ドーパントの具体例としては、例えば、2価のMgサイトにドープするホウ素、ガリウム、インジウム等の3価のドーパント;4価のSiサイトにドープするリン、ビスマス等の5価のドーパントを挙げることができる。これらのドーパントの1種以上を必要量添加して、n型熱電変換材料として用いられるアルミニウム・マグネシウム・ケイ素複合材料を製造することができる。
また、ドーパントの他の具体例としては、例えば、2価のMgサイトにドープするAg、Cu、Au等の1価のドーパント;4価のSiサイトにドープするホウ素、ガリウム、インジウム等の3価のドーパントを挙げることができる。これらのドーパントの1種以上を必要量添加して、p型熱電変換材料として用いられるアルミニウム・マグネシウム・ケイ素複合材料を製造することができる。
加圧圧縮焼結して安定して高い熱電変換性能を発揮できる焼結体が得られる限り、ドーパントとしては、MgSiを焼結する際に使用する反応装置等からアルミニウム・マグネシウム・ケイ素複合材料に溶け込んでドープされるドーパントが、焼結体のドーパントの全部であってもよく、焼結体のドーパントの一部であってもよい。
なお、一般に、加熱溶融工程でドーパントを添加する場合、熱平衡状態下での固溶限界濃度まで可能であるが、後述する焼結工程でドーピングを行う場合、固溶限界濃度を超えてドーパントの添加を行うことができる。
(焼結工程)
焼結工程は、粉砕した上記試料を焼結する工程である。焼結工程における焼結の条件としては、場合によってドーパントを添加した上記試料を、加圧圧縮焼結法により真空又は減圧雰囲気下で焼結圧力5〜60MPa、焼結温度600〜1000℃で焼結する方法を挙げることができる。
焼結圧力が5MPa未満である場合、理論密度の約70%以上の十分な密度を有する焼結体を得ることが難しくなり、得られた試料が強度的に実用に供することができないものとなるおそれがある。一方、焼結圧力が60MPaを超える場合、コストの面で好ましくなく、実用的でない。また、焼結温度が600℃未満では、粒子同士が接触する面の少なくとも一部が融着して焼成された理論密度の70%から理論密度に近い密度を有する焼結体を得ることが難しくなり、得られた試料が強度的に実用に供することができないものとなるおそれがある。また、焼結温度が1000℃を超える場合には、温度が高すぎるために試料の損傷が生じるばかりでなく、場合によってはMgが急激に蒸気となって、飛散するおそれがある。
具体的な焼結条件としては、例えば、焼結温度を600〜800℃の範囲内のものとし、焼結温度が600℃に近い温度にあるときには、焼結圧力を60MPaに近い圧力とし、焼結温度が800℃に近い温度であるときには、焼結圧力を5MPaに近い圧力として、5〜60分間程度、好ましくは10分間程度焼結する焼結条件を挙げることができる。斯かる焼結条件の下で焼結を行うことで、高い機械的強度と、理論密度とほぼ同等の密度とを有し、安定して高い熱電変換性能を発揮できる焼結体を得ることができる。
また、気体が存在する環境下で焼結工程を行う場合、窒素やアルゴン等の不活性ガスを使用した雰囲気下で焼結することが好ましい。
焼結工程において、加圧圧縮焼結法を採用する場合、ホットプレス焼結法(HP)、熱間等方圧焼結法(HIP)、及び放電プラズマ焼結法を採用することができる。これらの中でも、放電プラズマ焼結法が好ましい。
放電プラズマ焼結法は、直流パルス通電法を用いた加圧圧縮焼結法の一種で、パルス大電流を種々の材料に通電することによって加熱・焼結する方法であり、原理的には金属・グラファイト等の導電性材料に電流を流し、ジュール加熱により材料を加工・処理する方法である。
このようにして得られた焼結体は、高い機械的強度を有し、且つ安定して高い熱電変換性能を発揮できる焼結体となり、風化せず、耐久性に優れて、安定性及び信頼性に優れた熱電変換材料として使用できる。
(熱電変換素子)
本発明に係る熱電変換素子は、熱電変換部と、該熱電変換部に設けられた第1電極及び第2電極とを備え、この熱電変換部が本発明に係るアルミニウム・マグネシウム・ケイ素複合材料を用いて製造されるものである。
(熱電変換部)
熱電変換部としては、上記の焼結工程にて得られた焼結体を、ワイヤーソー等を用いて所望の大きさに切り出したものを用いることができる。
この熱電変換部は、通常、1種類の熱電変換材料を用いて製造されるが、複数種類の熱電変換材料を用いて複層構造を有する熱電変換部としてもよい。複層構造を有する熱電変換部は、焼結前の複数種類の熱電変換材料を所望の順序で積層した後、焼結することにより製造することができる。
(電極)
上記第1電極及び第2電極の形成方法は特に限定されるものではないが、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料を用いて製造された熱電変換素子は、メッキ法により電極を形成できることが特徴の1つである。
通常、アルミニウム・マグネシウム・ケイ素複合材料を用いて製造された熱電変換部にメッキ法で電極を形成しようとした場合、材料中に残留する金属マグネシウムに起因して水素ガスが発生し、メッキの接着性が悪くなる。一方、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料を用いて製造された熱電変換部の場合には、材料中に金属マグネシウムが殆ど含まれないため、メッキ法により接着性の高い電極を形成することが可能である。メッキ法としては、特に限定されないが、無電界ニッケルメッキが好ましい。
メッキ法により電極を形成する前の焼結体の表面に、メッキを行うのに支障となる凹凸がある場合には、研磨して平滑にすることが好ましい。
このようにして得られたメッキ層付きの焼結体を、ワイヤーソーやブレードソーのような切断機で所定の大きさにカットして、第1電極、熱電変換部、及び第2電極からなる熱電変換素子が作製される。
また、第1電極及び第2電極は、アルミニウム・マグネシウム・ケイ素複合材料の焼結時に一体して形成することも可能である。即ち、電極材料、アルミニウム・マグネシウム・ケイ素複合材料、電極材料をこの順で積層し、加圧圧縮焼結することにより、両端に電極が形成された焼結体を得ることができる。
本発明における加圧圧縮焼結法による電極の形成方法として、2つの方法について説明する。
第1の方法は、例えばグラファイトダイ及びグラファイト製パンチからなる円筒型の焼結用冶具内にその底部から順次、SiOのような絶縁性材料粉末の層、Niのような電極形成用金属粉末の層、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料の粉砕物の層、上記電極形成用金属粉末の層、上記絶縁性材料粉末の層を所定の厚さで積層した後、加圧圧縮焼結を行う。
上記絶縁性材料粉末は、焼結装置から電極形成用金属粉末に電気が流れるのを防止し、溶融を防ぐために有効であり、焼結後、形成された電極から該絶縁性材料を分離する。
第1の方法においては、カーボンペーパーを絶縁性材料粉末層と電極形成用金属粉末層との間に挟み、さらに円筒型焼結用冶具の側内壁表面にカーボンペーパーを設置しておけば、粉末同士の混合を防止し、また焼結後に電極と絶縁材料層を分離するのに有効である。
このようにして得られた焼結体の上下表面の多くは、凹凸が形成されるため、研磨して平滑にする必要があり、その後、ワイヤーソーやブレードソーのような切断機で所定の大きさにカットして、第1電極、熱電変換部、及び第2電極からなる熱電変換素子が作製される。
絶縁性材料粉末を用いない従来の方法によると、電流によって電極形成用金属粉末を溶融させてしまうため、大電流を使用できず電流の調整が難しく、したがって、得られた焼結体から電極が剥離してしまう問題があった。一方、第1の方法では絶縁性材料粉末層を設けることによって、大電流を用いることができ、その結果、初期の焼結体を得ることができる。
第2の方法は、上記第1の方法における絶縁性材料粉末層を用いないで、円筒型の焼結用冶具内にその底部から順次、Niのような電極形成用金属粉末の層、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料の粉砕物の層、上記電極形成用金属粉末の層を積層し、上記電極形成用金属粉末の層に接する焼結用冶具の上記グラファイトダイの表面に、BNのような絶縁性、耐熱性、且つ離型性のセラミックス粒子を塗布又はスプレーして、加圧圧縮焼結を行う。この場合、第1の方法のようにカーボンペーパーを使用する必要はない。
この第2の方法は、第1の方法の利点を全て有する上に、得られた焼結体の上下表面が平滑であるため、殆ど研磨する必要がないという利点を有する。
得られた焼結体を所定の大きさにカットして、第1電極、熱電変換部、及び第2電極からなる熱電変換素子を作製する方法は上記第1の方法と同様である。
(熱電変換モジュール)
本発明に係る熱電変換モジュールは、上記のような本発明に係る熱電変換素子を備えるものである。
熱電変換モジュールの一例としては、例えば図1及び図2に示すようなものが挙げられる。この熱電変換モジュールでは、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料から得られたn型半導体及びp型半導体がそれぞれn型熱電変換部101及びp型熱電変換部102の熱電変換材料として用いられる。並置されたn型熱電変換部101及びp型熱電変換部102の上端部には電極1015,1025が、下端部には電極1016,1026がそれぞれ設けられる。そして、n型熱電変換部及びp型熱電変換部の上端部にそれぞれ設けられた電極1015,1025が接続されて一体化された電極を形成すると共に、n型熱電変換部及びp型熱電変換部の下端部にそれぞれ設けられた電極1016,1026は分離されて構成される。
また、熱電変換モジュールの他の例としては、例えば図3及び図4に示すようなものが挙げられる。この熱電変換モジュールでは、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料から得られたn型半導体がn型熱電変換部103の熱電変換材料として用いられる。n型熱電変換部103の上端部には電極1035が、下端部には電極1036がそれぞれ設けられる。
本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、Al、Mg、及びSiからなる合金を含み、高い電気伝導率を有するアルミニウム・マグネシウム・ケイ素複合材料である。ここで、電気伝導率σが高い材料は、無次元性能指数も高くなる傾向にあるため、本発明によれば、熱電変換特性に優れたアルミニウム・マグネシウム・ケイ素複合材料を得ることができる。
以下、本発明について、実施例を挙げて詳細に説明する。なお、本発明は以下に示す実施例に何ら限定されるものではない。なお、実施例1、2、3及び5は参考例である。
<<試験例1;熱電特性の測定>>
<実施例1>
[混合工程]
高純度シリコン36.23質量部、マグネシウム62.72質量部、及びアルミニウム1.06質量部を混合し、MgとSiとの組成比が、Mg:Si=66.0:33.0、Alの含有量が1.0at%の組成原料(1.0at%Al、66.0at%Mg、33.0at%Si)を得た。なお、高純度シリコンとしては、MEMC Electronic Materials社製で、純度が99.9999999%の半導体グレード、直径4mm以下の粒状のものを用いた。また、マグネシウムとしては、日本サーモケミカル社製で、純度が99.93%、大きさ1.4mm×0.5mmのマグネシウム片を用いた。また、アルミニウムとしては、フルウチ化学株式会社社製で、純度が99.99%、大きさ3〜7mmのチップ状のものを用いた。
[加熱溶融工程]
上記組成原料を、Al製の溶融ルツボ(日本化学陶業社製、内径34mm、外径40mm、高さ150mm;蓋部は直径40mm、厚さ2.5mm)に投入した。当該溶融ルツボは、開口部の辺縁の蓋部への接触面と、蓋部の開口部の辺縁への接触面とが、表面粗さRaが0.5μm、表面うねりRmaxが1.0μmとなるように研磨されたものを用いた。溶融ルツボの開口部の辺縁と、蓋部とを密着させて、加熱炉内に静置し、加熱炉の外部からセラミック棒を介して、3kgf/cmとなるようにおもりで加圧した。
次いで、加熱炉の内部を、ロータリーポンプで5Pa以下となるまで減圧し、次いで拡散ポンプで1.33×10−2Paとなるまで減圧した。この状態で、加熱炉内を200℃/hで150℃に達するまで加熱し、150℃で1時間保持して組成原料を乾燥させた。この際、加熱炉内には、水素ガスとアルゴンガスとの混合ガスを充填し、水素ガスの分圧を0.005MPa、アルゴンガスの分圧を0.052MPaとした。
その後、400℃/hで1100℃に達するまで加熱し、1100℃で3時間保持した。次いで、100℃/hで900℃にまで冷却し、1000℃/hで室温にまで冷却した。
[粉砕工程・焼結工程]
加熱溶融後の試料は、陶製乳鉢を用いて75μmにまで粉砕し、75μmの篩に通した粉末を得た。そして、図5に示すように、内径15mmのグラファイトダイ10と、グラファイト製パンチ11a,11bとで囲まれた空間に、粉砕したマグネシウム−ケイ素複合材料1.0gを仕込んだ。粉末の上下端には、パンチへのマグネシウム−ケイ素複合材料固着防止のためにカーボンペーパーを挟んだ。その後、放電プラズマ焼結装置(ELENIX社製、「PAS−III−Es」)を用いてアルゴン雰囲気下で焼結を行い、焼結体を得た。焼結条件は下記のとおりである。
焼結温度:750℃
圧力:30.0MPa
昇温レート:100℃/min×5min(〜500℃)
0℃/min×10min(500℃)
20℃/min×12.5min(500〜750℃)
0℃/min×2min(750℃)
冷却条件:真空放冷
雰囲気:Ar 60Pa(冷却時は真空)
なお、図6〜図9において、本実施例に由来するサンプルはy=0.01で示すものとする。
<実施例2>
混合工程において、アルミニウムの添加量を2.11質量部とし、組成原料中のアルミニウムの含有量を2.0at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
なお、図6〜図9において、本実施例に由来するサンプルはy=0.02で示すものとする。
<実施例3>
混合工程において、アルミニウムの添加量を3.16質量部とし、組成原料中のアルミニウムの含有量を3.0at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
なお、図6〜図9において、本実施例に由来するサンプルはy=0.03で示すものとする。
<実施例4>
混合工程において、アルミニウムの添加量を6.11質量部とし、組成原料中のアルミニウムの含有量を5.0at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
なお、図6〜図9において、本実施例に由来するサンプルはy=0.05で示すものとする。
<実施例5>
混合工程において、アルミニウムの添加量を10.5質量部とし、組成原料中のアルミニウムの含有量を10at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
なお、図6〜図9において、本実施例に由来するサンプルはy=0.10で示すものとする。
<実施例6>
混合工程において、高純度シリコン36.44g、及びアルミニウムを含有するマグネシウム合金(AM60)63.58gを混合し、MgとSiとの組成比を、Mg:Si=66.0:33.0、Alの含有量を3.8at%とした組成原料を用いた点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
なお、図6〜図9において、本実施例に由来するサンプルはy=0.038で示すものとする。
<実施例7>
混合工程において、高純度シリコン36.28g、及びアルミニウムを含有するマグネシウム合金(AZ91)63.75gを混合し、MgとSiとの組成比を、Mg:Si=66.0:33.0、Alの含有量を5.8at%とした組成原料を用いた点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
なお、図6〜図9において、本実施例に由来するサンプルはy=0.058で示すものとする。
<比較例1>
混合工程において、アルミニウムを添加しなかった点以外は、実施例1と同様の方法により、マグネシウム・ケイ素複合材料(焼結体)を得た。
なお、図6〜図9において、本比較例に由来するサンプルはy=0で示すものとする。
<比較例2>
混合工程において、アルミニウムの添加量を0.16質量部とし、組成原料中のアルミニウムの含有量を0.15at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
なお、図6〜図9において、本比較例に由来するサンプルはy=0.0015で示すものとする。
<比較例3>
混合工程において、アルミニウムの添加量を0.35質量部とし、組成原料中のアルミニウムの含有量を0.33at%とした点以外は、実施例1と同様の方法により、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を得た。
なお、図6〜図9において、本比較例に由来するサンプルはy=0.0033で示すものとする。
<評価>
[ゼーベック係数、熱伝導率、及び電気伝導率の測定]
実施例1〜7、比較例1〜3で得られた焼結体を、熱起電力・熱伝導率測定装置(アルバック理工社製、「ZEM2」)及びレーザーフラッシュ法熱伝導率測定装置(アルバック理工社製、「TC・7000H」)を用い、動作温度330〜860Kにおけるゼーベック係数α、熱伝導率κ、及び電気伝導率σを測定すると共に、300Kにおける電気伝導率を別途測定した。測定した各種パラメーターを元に、上記数式(1)に従って、無次元性能指数ZTを算出した。結果を表1及び図6〜図9に示す。
Figure 0005629920
表1より、組成原料中のAlの含有量が1〜10at%である実施例1〜7のアルミニウム・マグネシウム・ケイ素複合材料は、比較例1〜3の複合材料と比較して優れた熱電変換性能が得られていることが分かる。この結果より、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、熱電変換材料として好適に使用できることが分かる。
<<試験例2;塑性の評価>>
試験例1に倣って、Alが0.0at%、1.0at%、3.0at%、5.8at%、又は10at%の組成原料から、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)又はマグネシウム・ケイ素複合材料(焼結体)を調製した。これらの各焼結体につき、ダイヤモンドワイヤーソーを用いて切断し、切断後の断面におけるクラックの有無を調べた。ここで、クラックが入ったものを×、クラックが入っていないものを○とした。結果を表2に示す。
Figure 0005629920
表2より、組成原料中のAlの含有量が1〜10at%である本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、マグネシウム・ケイ素複合材料と比べても優れた塑性を有することが分かる。この結果より、本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、熱電変換素子への加工が容易であると推察される。
<<試験例3;圧縮強度の評価>>
試験例1の実施例2,6,7に倣って、Alが2at%、3.8at%、又は5.8at%の組成原料から、アルミニウム・マグネシウム・ケイ素複合材料(焼結体)を調製した。これらの各焼結体につき、ダイヤモンドワイヤーソーを用いて2.7mm×2.7mm×10mmの大きさに切断し、オートグラフ(島津製作所製、「AG−10TA」)を用いて圧縮強度(N)を測定した。このときの試験速度は0.375mm/minとした。なお、測定は4回行い、最高値及び最低値を省いた2点の測定値及びその平均値を求めた。結果を図10に示す。
図10より、組成原料中のAlの含有量が3.5〜6.0at%の範囲では、圧縮強度が特に優れることが分かる。この結果より、Alの含有量が3.5〜6.0at%である組成原料を用いて調製したアルミニウム・マグネシウム・ケイ素複合材料(焼結体)は、例えばブレードソーによって焼結体を所望の大きさに切り出す際にも、素子が破損することを防止できると考えられる。
なお、図示しないが、組成原料中のAlの含有量が6.0at%を超えると、圧縮強度は低下した。
本発明に係るアルミニウム・マグネシウム・ケイ素複合材料は、Al、Mg、及びSiからなる合金を含み、高い電気伝導率を有するアルミニウム・マグネシウム・ケイ素複合材料である。ここで、電気伝導率が高い材料は無次元性能指数も高くなる傾向にあるため、本発明によれば、熱電変換特性に優れたアルミニウム・マグネシウム・ケイ素複合材料を得ることができる。
101 n型熱電変換部
1015,1016 電極
102 p型熱電変換部
1025,1026 電極
103 n型熱電変換部
1035,1036 電極
3 負荷
4 直流電源
10 グラファイトダイ
11a,11b グラファイト製パンチ

Claims (6)

  1. Al、Mg、及びSiで構成される合金からなり、300Kにおける電気伝導率σが1000〜3000S/cmであり、
    Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合することにより得られ、Alの含有量が3.5〜6.0at%であり、Mgの含有量がMg及びSiの合計含有量に基づく原子量比で66.17〜66.77at%であり、Siの含有量がMg及びSiの合計含有量に基づく原子量比で33.23〜33.83at%である組成原料から合成されるアルミニウム・マグネシウム・ケイ素複合材料。
  2. 300Kにおける電気伝導率σが1100〜2500S/cmである請求項1に記載のアルミニウム・マグネシウム・ケイ素複合材料。
  3. Al、Mg、及びSiで構成される合金からなるアルミニウム・マグネシウム・ケイ素複合材料の製造方法であって、
    Alを含有するMg合金、並びに/又はAl及びMgの混合物と、Siとを混合することにより得られ、Alの含有量が3.5〜6.0at%であり、Mgの含有量がMg及びSiの合計含有量に基づく原子量比で66.17〜66.77at%であり、Siの含有量がMg及びSiの合計含有量に基づく原子量比で33.23〜33.83at%である組成原料を、開口部と前記開口部を覆う蓋部とを備え、前記開口部の辺縁における前記蓋部への接触面と、前記蓋部における前記開口部への接触面とが共に研磨処理された耐熱容器中で加熱溶融する工程を有するアルミニウム・マグネシウム・ケイ素複合材料の製造方法。
  4. 請求項1又は2に記載のアルミニウム・マグネシウム・ケイ素複合材料からなる熱電変換材料。
  5. 熱電変換部と、該熱電変換部に設けられた第1電極及び第2電極とを備え、
    前記熱電変換部が請求項1又は2に記載のアルミニウム・マグネシウム・ケイ素複合材料を用いて製造される熱電変換素子。
  6. 請求項に記載の熱電変換素子を備える熱電変換モジュール。
JP2010167008A 2009-07-27 2010-07-26 アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール Expired - Fee Related JP5629920B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010167008A JP5629920B2 (ja) 2009-07-27 2010-07-26 アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009174428 2009-07-27
JP2009174428 2009-07-27
JP2010167008A JP5629920B2 (ja) 2009-07-27 2010-07-26 アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール

Publications (2)

Publication Number Publication Date
JP2011049538A JP2011049538A (ja) 2011-03-10
JP5629920B2 true JP5629920B2 (ja) 2014-11-26

Family

ID=43529264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010167008A Expired - Fee Related JP5629920B2 (ja) 2009-07-27 2010-07-26 アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール

Country Status (7)

Country Link
US (2) US20120118343A1 (ja)
EP (1) EP2461384A1 (ja)
JP (1) JP5629920B2 (ja)
KR (1) KR101365251B1 (ja)
CN (1) CN102473831B (ja)
TW (1) TWI485266B (ja)
WO (1) WO2011013609A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029256B2 (ja) * 2009-06-30 2016-11-24 学校法人東京理科大学 マグネシウム−ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール
JP5641474B2 (ja) * 2010-11-08 2014-12-17 日立化成株式会社 Mg2Si基化合物から成る熱電材料の製造方法
JP5737566B2 (ja) * 2011-03-10 2015-06-17 日立化成株式会社 マグネシウムシリサイド焼結体の製造方法及びそれを用いた熱電変換素子の製造方法
WO2013047474A1 (ja) * 2011-09-26 2013-04-04 学校法人東京理科大学 焼結体、熱電変換素子用焼結体、熱電変換素子及び熱電変換モジュール
CN104205382A (zh) 2012-01-25 2014-12-10 阿尔法贝特能源公司 用于热回收系统的模块化热电单元及其方法
TWI499101B (zh) 2012-07-13 2015-09-01 Ind Tech Res Inst 熱電轉換結構及使用其之散熱結構
US9257627B2 (en) 2012-07-23 2016-02-09 Alphabet Energy, Inc. Method and structure for thermoelectric unicouple assembly
US9065017B2 (en) * 2013-09-01 2015-06-23 Alphabet Energy, Inc. Thermoelectric devices having reduced thermal stress and contact resistance, and methods of forming and using the same
CN105330289B (zh) * 2014-08-14 2018-08-31 清华大学 一种硫氧化钆(Gd2O2S)闪烁陶瓷制备方法
US10930834B2 (en) 2015-02-09 2021-02-23 University Of Houston System Synthesis of N-type thermoelectric materials, including Mg—Sn—Ge materials, and methods for fabrication thereof
TWI569499B (zh) * 2015-05-22 2017-02-01 國立成功大學 複合電極材料及其製作方法、包含該複合電極材料之複合電極及其製作方法、以及包含該複合電極之鋰電池
JP6811539B2 (ja) * 2016-03-07 2021-01-13 古河機械金属株式会社 熱電変換材料の製造方法
JP6390662B2 (ja) * 2016-04-22 2018-09-19 トヨタ自動車株式会社 熱電材料の製造方法
JP6536615B2 (ja) 2017-03-31 2019-07-03 トヨタ自動車株式会社 熱電変換材料及びその製造方法
EP3627573B1 (en) * 2017-05-19 2023-08-30 Nitto Denko Corporation Method of producing semiconductor sintered body, electrical/electronic member and semiconductor sintered body
JP7248157B2 (ja) * 2017-06-29 2023-03-29 三菱マテリアル株式会社 熱電変換材料、及び、熱電変換材料の製造方法
JP7176248B2 (ja) * 2017-06-29 2022-11-22 三菱マテリアル株式会社 熱電変換材料、熱電変換素子、熱電変換モジュール、及び、熱電変換材料の製造方法
JP7121227B2 (ja) * 2017-06-29 2022-08-18 三菱マテリアル株式会社 熱電変換材料、及び、熱電変換材料の製造方法
JP7159854B2 (ja) * 2018-12-26 2022-10-25 三菱マテリアル株式会社 熱電変換材料、熱電変換素子、及び、熱電変換モジュール
KR102199791B1 (ko) * 2019-07-02 2021-01-07 울산과학기술원 마찰 전계 효과를 이용한 열전발전소자

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999022411A1 (en) * 1997-10-24 1999-05-06 Sumitomo Special Metals Co., Ltd. Silicon based conductive material and process for production thereof
JPH11274578A (ja) 1998-03-19 1999-10-08 Matsushita Electric Ind Co Ltd 熱電変換材料の製造方法および熱電変換モジュール
JP3600486B2 (ja) * 1999-08-24 2004-12-15 セイコーインスツル株式会社 熱電変換素子の製造方法
US6277351B1 (en) * 2000-03-20 2001-08-21 Carl Francis Swinehart Crucible for growing macrocrystals
JP2002194472A (ja) * 2000-12-28 2002-07-10 Kanazawa Inst Of Technology 軽量高強度マグネシウム又はマグネシウム合金、及びその製造方法
JP2002368291A (ja) * 2001-06-04 2002-12-20 Tokyo Yogyo Co Ltd 熱電材料
WO2003027341A1 (fr) 2001-09-25 2003-04-03 Center For Advanced Science And Technology Incubation, Ltd. Materiau composite a base de magnesium
JP2005129765A (ja) * 2003-10-24 2005-05-19 Hitachi Metals Ltd 熱発電モジュールおよびそれに用いる型枠
JP2005314805A (ja) 2004-03-29 2005-11-10 Toudai Tlo Ltd マグネシウム化合物、金属材料およびマグネシウム化合物の製造方法
KR100985310B1 (ko) * 2004-06-30 2010-10-04 스미토모덴키고교가부시키가이샤 마그네슘 합금재의 제조방법
JP4496365B2 (ja) * 2004-10-27 2010-07-07 独立行政法人産業技術総合研究所 熱電材料及びその製造方法
JP2008001558A (ja) * 2006-06-22 2008-01-10 Sumitomo Metal Electronics Devices Inc 窒化アルミニウム成形体の焼成方法と焼成用治具
KR20090107491A (ko) * 2006-12-20 2009-10-13 소와 케이디이 가부시키가이샤 열전변환 재료, 그 제조 방법 및 열전변환 소자

Also Published As

Publication number Publication date
WO2011013609A1 (ja) 2011-02-03
CN102473831A (zh) 2012-05-23
KR101365251B1 (ko) 2014-02-20
US20150207056A1 (en) 2015-07-23
EP2461384A1 (en) 2012-06-06
US20120118343A1 (en) 2012-05-17
CN102473831B (zh) 2015-03-25
TW201127966A (en) 2011-08-16
KR20120049286A (ko) 2012-05-16
TWI485266B (zh) 2015-05-21
JP2011049538A (ja) 2011-03-10

Similar Documents

Publication Publication Date Title
JP5629920B2 (ja) アルミニウム・マグネシウム・ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール
JP6029256B2 (ja) マグネシウム−ケイ素複合材料及びその製造方法、並びに該複合材料を用いた熱電変換材料、熱電変換素子、及び熱電変換モジュール
Zheng et al. High thermoelectric performance of mechanically robust n-type Bi 2 Te 3− x Se x prepared by combustion synthesis
JP5765776B2 (ja) Mg2Si1−xSnx系多結晶体およびその製造方法
JP7042517B2 (ja) 多結晶性マグネシウムシリサイドおよびその利用
Wang et al. High performance n-type (Bi, Sb) 2 (Te, Se) 3 for low temperature thermoelectric generator
JP2013179322A (ja) 熱電変換材料、その製造方法および熱電変換素子
US9115420B2 (en) Thermoelectric material formed of Mg2Si-based compound and production method therefor
Chen et al. Thermoelectric properties of cold-pressed higher manganese silicides for waste heat recovery
WO2014084163A1 (ja) Mg-Si系熱電変換材料及びその製造方法、熱電変換用焼結体、熱電変換素子、並びに熱電変換モジュール
WO2013047474A1 (ja) 焼結体、熱電変換素子用焼結体、熱電変換素子及び熱電変換モジュール
JP6176885B2 (ja) p型熱電材料、熱電素子およびp型熱電材料の製造方法
Boldrini et al. Ultrafast high-temperature sintering and thermoelectric properties of n-doped Mg2Si
WO2013047475A1 (ja) マグネシウムシリサイド、熱電変換材料、焼結体、熱電変換素子用焼結体、熱電変換素子、及び熱電変換モジュール
JP4123388B2 (ja) 亜鉛アンチモン化合物焼結体
JP2021005593A (ja) マグネシウムシリサイド及びその利用
JP3564541B2 (ja) 亜鉛アンチモン化合物焼結体及びその製造法
Trivedi et al. Magnesium and manganese silicides for efficient and low cost thermo-electric power generation
JP2003138327A (ja) 亜鉛アンチモン化合物焼結体及びその製造法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140916

R150 Certificate of patent or registration of utility model

Ref document number: 5629920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees