CN105330289B - 一种硫氧化钆(Gd2O2S)闪烁陶瓷制备方法 - Google Patents

一种硫氧化钆(Gd2O2S)闪烁陶瓷制备方法 Download PDF

Info

Publication number
CN105330289B
CN105330289B CN201410398953.8A CN201410398953A CN105330289B CN 105330289 B CN105330289 B CN 105330289B CN 201410398953 A CN201410398953 A CN 201410398953A CN 105330289 B CN105330289 B CN 105330289B
Authority
CN
China
Prior art keywords
sintering
gos
powder
scintillating
discharge plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410398953.8A
Other languages
English (en)
Other versions
CN105330289A (zh
Inventor
王燕春
张清军
李元景
陈志强
赵自然
刘以农
刘耀红
常建平
赵书清
张文剑
王永强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Nuctech Co Ltd
Original Assignee
Tsinghua University
Nuctech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Nuctech Co Ltd filed Critical Tsinghua University
Priority to CN201410398953.8A priority Critical patent/CN105330289B/zh
Priority to JP2015159731A priority patent/JP6199932B2/ja
Priority to DE102015215505.6A priority patent/DE102015215505B8/de
Priority to US14/827,258 priority patent/US9816028B2/en
Publication of CN105330289A publication Critical patent/CN105330289A/zh
Application granted granted Critical
Publication of CN105330289B publication Critical patent/CN105330289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/5156Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on rare earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0003Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability making use of electric or wave energy or particle radiation
    • C04B40/0007Electric, magnetic or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明涉及一种采用单轴加压放电等离子体烧结(SPS),任选地结合热等静压二次烧结技术,快速制备具有Pr,Ce,Tb,Eu中的至少一种元素掺杂的硫氧化钆(具有化学通式Gd2O2S,简称GOS)多晶闪烁陶瓷的方法。

Description

一种硫氧化钆(Gd2O2S)闪烁陶瓷制备方法
技术领域
本发明涉及一种采用单轴加压放电等离子体烧结(SPS),任选地结合热等静压二次烧结技术,快速制备具有Pr,Ce,Tb,Eu中的至少一种元素掺杂的硫氧化钆(具有化学通式Gd2O2S,简称GOS)多晶闪烁陶瓷的方法。
本发明另外涉及根据本发明的方法所制备的硫氧化钆多晶闪烁陶瓷及其用于计算机断层扫描仪(X-CT)、安检物品机和电离辐射探测器等X、γ高能射线探测装置的用途。
背景技术
离子掺杂的稀土硫氧化物(化学通式Re2O2S:Ln)是已知的,其中Re是稀土元素,Ln是掺杂离子,选自Pr、Ce、Eu、Tb、Yb、Dy、Sm、Ho、Tm、Dy和Er的至少一种元素。陶瓷闪烁体相对于传统的CsI、CdWO4等闪烁单晶同时兼具密度高、光产额高、化学性质稳定,制备工艺相对简单、加工时无解理等优点,成为X射线CT、高速X射线扫描仪、物品安检仪等辐射检查仪器或探测器理想的、综合性能优异的闪烁体材料。掺杂Pr和/或Ce离子的GOS闪烁陶瓷具有极低的余辉,成为CT辐射探测器的理想闪烁体。
GOS闪烁陶瓷的研究始于二十世纪后期,1988年Toshiba的专利US 4752424公开了GOS闪烁陶瓷的热等静压制备方法。该方法包括将闪烁粉体直接密封于金属容器内,然后将金属容器置于气体压力炉内进行热等静压烧结,要求其选用钼、钽等薄箔金属材料作为气密容器,金属包套完全气密。焊接前将GOS粉料装入金属包套并抽空包套内部的气体,然后采用电子束焊接方法焊接密封。这种方法的工艺难度非常高,且金属包套在热等静压烧结后需要进行仔细的脱模,整个工序耗时、昂贵。九十年代Siemens的专利US5296163、5518659报道了采用单轴热压方法制备GOS闪烁陶瓷的方法。但该方法要求闪烁粉体的粒度要小,以具有高的表面活性,通常要求粉末的表面活性达到至少BET 10m2/g。这样的粉末在大规模生产时工艺复杂,产率较低。2011年Philips的专利 US 8025817公开了一种采用由具有较大粒径的商业闪烁粉体通过真空热压方法制备GOS闪烁陶瓷的方法,该方法的优点在于粒径较大的闪烁粉体通常更容易获得。但该方法优选的参数要求热压压力高达约200-250MPa,耐压如此高的热压模具通常价格昂贵且不易获得,从而限制了该方法的应用。另外,真空热压方法烧结温度高、升温缓慢,致使石墨模具碳扩散影响严重,且耗时长,耗能高,生产效率低下,因此需要探索新的烧结方法。
发明内容
针对现有技术存在的问题,本发明的目的在于提供一种采用商业上容易获得的Gd2O2S闪烁粉体制备GOS闪烁陶瓷的方法。将商业Gd2O2S:Pr,Ce粉体与助烧剂LiF或Li2GeF6进行球磨混合和任选地细化得到Gd2O2S:Pr,Ce,F掺杂粉体,采用放电等离子烧结(SPS)法或放电等离子烧结与热等静压烧结(HIP)两步烧结法,实现了高密度GOS闪烁陶瓷的高效率制备。
放电等离子烧结可以在较低的温度下,实现由较大粒径GOS粉末快速制备GOS闪烁陶瓷,所制备的陶瓷具有晶粒细小,结构致密的优点。结合热等静压二次烧结可以进一步排除和/或减小陶瓷内部的气孔,提高陶瓷密度,增加透光率,从而增加最终GOS闪烁体的光输出。
所述的两步烧结法包括:第一步采用放电等离子体烧结(SPS)方法制备出具有封闭孔隙的一次烧结体;第二步采用惰性气体热等静压烧结方法,制备出最终的高密度的二次烧结体,将二次烧结体进行处理后即得到GOS闪烁陶瓷。
在本发明的一个实施方案中,提供了一种GOS闪烁陶瓷制造方法,其包括以下步骤:
1) 向中值粒径为5-9μm的Gd2O2S:Pr,Ce,闪烁粉体中添加烧结助剂,对混合粉末进行球磨和任选地细化,使其混合均匀,和/或得到细化;
2) 将球磨混合和任选地细化的粉体装入烧结模具;放入热炉内预先加压至20-40MPa,逐步增加电流至数千A,样品升温至1000℃-1100℃,保温10-30分钟,继续升温至1200℃-1500℃,同时将压力升至60-200MPa,保温5-30分钟,进行放电等离子烧结,降温冷却后得到GOS烧结体;
3) 将GOS烧结体在1000℃-1200℃温度范围内,优选地在马弗炉中进行空气退火处理;任选地,在1300℃-1500℃、150-250MPa的惰性气体、优选氩气或氮气、更优选氩气环境内进行热等静压二次烧结;在1000℃-1200℃温度范围内,优选地在马弗炉中进行二次退火处理;对所得GOS陶瓷进行切割、抛光处理后即得到GOS闪烁陶瓷。
在本发明的另一个实施方案中,提供了一种由本发明的方法获得的GOS闪烁陶瓷。
在本发明的另一个实施方案中,提供了由本发明的方法获得的GOS闪烁陶瓷用于X、γ高能射线探测装置的用途。
附图说明
下面将参照附图对本发明进行详细说明,其中:
图1为放电等离子烧结装置示意图;
图2 为GOS放电等离子烧结体晶粒与气孔微观示意图;
图3为热等静压二次烧结示意图;
图4 为GOS热等静压二次烧结体晶粒与气孔微观示意图;
图5为GOS热等静压二次烧结体内部结构剖面示意图。
具体实施方式
为了克服现有技术的一种或多种缺陷,本发明提供了一种GOS闪烁陶瓷的制备方法,其包括以下步骤:
1) 向中值粒径为5-9μm的Gd2O2S:Pr,Ce,闪烁粉体中添加烧结助剂,优选地,所述粉体是可商业获得的,其中Pr离子的掺杂量为质量含量500-800ppm,Ce离子的掺杂量为质量含量10-100ppm。另外,优选地其中所述烧结助剂为LiF和/或Li2GeF6;助烧剂的添加量为约0.02-1%、优选0.1-1%。对混合粉末进行球磨,使其混合均匀,和任选地得到细化,得到含有助烧剂的粉体。优选地所述球磨在行星球磨机上进行,更优选地以无水乙醇和氧化锆球为球磨介质。得到中值粒径为1-9μm含有助烧剂的Gd2O2S:Pr,Ce,F粉体,优选地可以得到以下两种含有助烧剂的粉体中的任意一种:粉体一,较短时间(0.5-3小时)球磨混合的粉体,中值粒径为4-9μm;粉体二,较长时间(4-36小时)球磨细化的粉体,中值粒径为1-4μm、优选2-3μm。球磨一个主要作用为细化粉体,为了得到细粒径的粉体,有人在化学制粉阶段加以控制,得到细粉,但是产率低,成本高;本发明采用在烧结前进行球磨的方法,成本低,产率高。
优选地在球磨完之后,将料浆抽滤,置于真空干燥箱真空干燥。研磨过筛。保存于真空干燥箱内备用。
2) 将球磨混合的粉体装入烧结模具。放入热炉内预先加压至20-40MPa,逐步增加电流至数千A,升温至1000℃-1100℃,保温10-30分钟,继续升温至1200℃-1500℃,同时将压力升至60-200MPa。优选地对于粉体一,温度优选1350℃-1500℃、更优选1400-1450℃,压力优选150-200MPa,最优选200MPa;对于粉体二,温度优选地为1200-1350℃,更优选地为1250-1300℃,压力优选地为50-150MPa,更优选地为60MPa。保温5-30分钟,进行放电等离子烧结,以10-100℃/min的速率降温冷却后得到GOS陶瓷。优选地降温开始时速率很高,最高可达100℃/min,降到约600度后速度开始减缓,最慢到10℃/min。
3) 将GOS烧结体在1000℃-1200℃温度范围内,优选地在马弗炉中进行空气退火处理,得到GOS陶瓷。
为了进一步提高GOS陶瓷的致密度,任选地将GOS陶瓷在1300℃-1500℃、150-250MPa的惰性气体如氩气或氮气环境内进行热等静压二次烧结。但热等静压二次烧结不是必需的,当SPS烧结工艺选取得当时,所制备出的陶瓷体已具有相当高的密度,透光率已满足X射线探测器的要求。对于SPS烧结后密度较低的GOS陶瓷,进行HIP二次烧结,可有效地提高GOS陶瓷密度,同时保持陶瓷晶粒均匀。在1000℃-1200℃温度范围内,优选地在马弗炉中进行二次退火处理。对所得GOS陶瓷进行粗磨,细磨,切割,抛光,即得到GOS闪烁陶瓷。
通过本发明的利用放电等离子烧结技术的方法,将粉体的成型与烧结一步完成,在较低的温度下(1400-1500℃),制备出相对密度最高可达99.9%的GOS闪烁陶瓷。烧结时间大大缩短,仅需数十分钟。获得的多晶GOS陶瓷呈半透明状态。任选地对放电等离子烧结相对密度不够高的烧结体进行热等静压二次烧结使其进一步致密化。该放电等离子烧结方法无需传统热等静压烧结方法中的GOS粉末金属包套真空密封工艺,降低了技术难度。采用较大粒径(中值粒径5-9μm)的商业Gd2O2S:Pr,Ce粉体,添加LiF或Li2GeF6助烧剂经球磨混合及细化处理得到所要烧结的粉体,而无需传统真空热压烧结方法中高比表面活性、细粒径的粉体制备技术,也无需高压强(200-250MPa)的热压烧结工艺及模具。通过本方法的放电等离子烧结一步或两步烧结法,控制放电等离子烧结电流、温度,升温速率,保温时间,压制压力等工艺参数,可以由市售的商业GOS粉体制备得到性能优异的透明GOS闪烁陶瓷,从而降低了技术难度和制造成本,缩短制备时间,提高生产效率。另外放电等离子烧结相对于真空热压烧结温度低和时间短,可有效抑制晶粒粗化进而使GOS陶瓷具有高的透光率。该制备方法有利于GOS闪烁陶瓷扩大应用范围,从传统的医疗辐射成像领域扩展到要求成本更低的安检辐射成像领域大规模应
下面结合附图,对本发明的几个主要步骤进行更详细的描述。
一、GOS粉体的处理
选用纯度为99.999%的中值粒径为5- 9μm的商业Gd2O2S:Pr,Ce闪烁粉末,按照0.02-1%质量比添加LiF或Li2GeF6助烧剂,置于彻底清洗的聚氨酯磨球罐中,加入经抛光的高密度氧化钇稳定氧化锆磨球,直径为10mm、6mm、3mm的大中小球按1:3:10的质量比例配置,球:粉料质量比为(3-10):1,球磨过程中将粉体浸没于MOS级高纯无水乙醇和/或惰性气体(优选氩气)保护气氛中,使GOS粉末在球磨过程中表面不被氧化。得到中值粒径为1-9μm的添加有助烧剂的粉体,优选地可以得到以下两种含有助烧剂的粉体中的任意一种:粉体一,较短时间(0.5-3小时)球磨混合的粉体,中值粒径为4-9μm;粉体二,较长时间(4-36小时)球磨细化的粉体,中值粒径为1-4μm。
二、GOS闪烁陶瓷烧结
放电等离子一次烧结装置如图1所示,将混合好的添加有助烧剂的粉体100装入烧结模具。为了减少模具中碳对闪烁陶瓷的扩散污染,热压模具内镶嵌BN陶瓷衬筒105,为了便于脱模在BN陶瓷筒和模具筒101之间垫石墨纸107。压杆102、103在接触闪烁粉体的一面先垫BN陶瓷片106再垫石墨纸108,最外侧是石墨或碳纤维复合材质压杆102、103。放入热炉内预先加压30MPa,由SPS设备电源110逐步施加电流至数千A以上,温度约为1000℃-1100℃,保温10-30分钟,继续提高烧结电流,升温至1300℃-1500℃,同时有上下压头111、112施加轴向压力至40-200MPa,保温10-30分钟,进行放电等离子烧结,保温结束卸载压力,以10-100℃/min的速率降温冷却后得到GOS烧结体。为了实现上述条件,烧结模具可以选用两种材质:高强度等静压石墨材质模具,耐压60MPa,成本较低;碳碳纤维复合材质模具,耐压200MPa,成本较高。
经过放电等离子烧结的GOS烧结体的相对密度已达到约98-99.9%,其内部存在少量的气孔,如图2所示,气孔203、204主要存在于多个晶粒/晶界的汇聚处或未烧结完全的小晶粒202之间的晶界205附近。大晶粒201内部也存在少量的气孔203。
在上述放电等离子烧结后将GOS烧结体在马弗炉中,1000℃-1200℃温度下进行空气退火处理。将密度低于99.8%的烧结体直接放入热等静压炉进行热等静压二次烧结,如图3所示,301是若干块经过放电等离子烧结的一次烧结体,302是高压惰性气体(通常采用氩气或氮气),挥惰性气体的压力均匀地施加在GOS一次烧结体的外表面,303是发热体。烧结在1300℃-1500℃、200-350MPa的氩气环境下保温保压2-5小时,随后缓慢降温。得到GOS陶瓷最终烧结体,经热等静压二次烧结后的GOS陶瓷内部的气孔已大大减少,内部密度得到进一步提高,示意图见图4。原本在晶粒会聚处的气孔403随着晶界闭合逐渐消失或减小为原体积的十几分之一到几十分之一,原本晶界附近的气孔404随着晶粒402的长大,也基本消失或显著减小,晶粒内部的气孔406被压缩体积显著减小。气孔的消失或显著减小降低了对可见光的散射增加了陶瓷的透光率。
经过热等静压二次烧结的GOS陶瓷烧结体示意图见图5,其表面一般具有0.1-1mm厚的不透光层502,不透光层的厚度随着一次烧结体密度的增大而减小。这是由于一次烧结体晶界生长不完全闭合,存在的小缝隙造成的,热等静压二次烧结时,部分原封闭不完全的晶界在惰性气体的高压下出现裂缝,致使氩气原子沿着晶界裂缝渗透进入陶瓷体内形成气孔,而随着惰性气体的逐渐深入,其压力逐减小,在约0.1-1mm内以后,晶界的裂缝逐渐消失,内部即是低气孔率、高致密度的GOS闪烁陶瓷501。切除、磨削掉表面不透光层502,内部陶瓷体501具有99.8%以上的相对密度。具有良好的可见光透过率。将所得GOS陶瓷块进行切割,粗磨,细磨,抛光,即得到GOS闪烁陶瓷。
为了二次烧结时能有效增加GOS陶瓷的致密度,必须使放电等离子烧结的烧结体相对理论密度达到95.5%以上、优选地97%以上,以形成封闭的气孔。另外为了避免一次烧结晶粒过分生长而不利于二次烧结时陶瓷致密化生长,需要控制一次烧结时的温度不能太高。较低的放电等离子烧结温度同时有利于减弱碳扩散污染。也即,在对应的粉末活性和压力条件下,要求一次热压烧结温度达到能够烧结形成封闭气孔的最低温度要求并尽可能低。对于1-9μm粒径的GOS粉体,在压力50-200MPa下,放电等离子烧结温度为1200-1500℃。若温度低于1200℃,则烧结不充分,烧结体没有全部形成封闭的气孔,无法通过热等静压二次烧结来提高致密度;若温度高于1500℃,则烧结过度,虽然密度可高达99.9%,但碳扩散污染严重透光性差,且晶粒过分生长而粗大,陶瓷体非常脆,难以进行后续闪烁体阵列加工。
下面将通过具体实施例来对本发明进行说明。应当清楚,这些实施例仅用于说明的目的,而不用于将本发明局限于此。
实施例1-6
称取100g纯度为99.999%的粒径分布为d(0.1)为4.0μm,d(0.5)为6.8μm,d(0.9)为11.8μm的商业Gd2O2S:Pr,Ce闪烁体粉末,添加0.2g Li2GeF6助烧剂,在氩气箱中装入内径为100mm,高100mm的聚氨酯球磨罐中,加入500g大小级配的高密度氧化钇强化氧化锆磨球,置于行星球磨机,在500转/分钟的速度下,球磨3小时,正反向运行间隔0.5小时。
聚氨酯球磨罐及氧化锆磨球预先清洗处理,具体方法如下:球磨罐内放入500g高密度氧化钇强化氧化锆磨球,其中直径为10mm的球35g、6mm的球105g、3mm的球360g,加入50g GOS粉末,加入500mL无水乙醇,在行星球磨机上球磨35小时。随后倒出球磨罐内液浆,加入MOS级高纯无水乙醇,重复球磨一次。之后用MOS级高纯无水乙醇清洗磨球及球磨罐3次。通过上述预先清洗处理,可以清洗氧化锆磨球表面的容易掉落的杂质。并且长时间球磨能尽可能地除去氧化锆磨球表面的疏松组织,留下致密牢固的磨球组织。对于减少球磨杂质污染很有益处。
球磨所得粉末粒径分布:d(0.1)为3.5μm, d(0.5)为6.4μm,d(0.9)为10.1μm。
将球磨得到的GOS粉料装入内径为30mm的石墨模具内,进行放电等离子一次烧结。烧结温度1300-1550℃,压力60MPa,炉内真空度1-15Pa,保温保压2小时。保温结束后,执行降温程序,降温速率为10℃/分钟,待冷却至室温后取出烧结体。
磨除掉GOS烧结体表面附着的BN杂质后,将烧结体置于马弗炉内1000℃退火2小时。随炉冷却后取出。将实施例1-5的样品置于热等静压炉内进行二次烧结,缓慢升温至1400℃,并充入氩气至200MPa的压力,保温保压烧结2小时。缓慢降温后取出样品并进行二次退火,条件同上。实施例5、6样品放电等离子一次烧结后已具有较高的密度,因此不做热等静压二次烧结。对实施例1-6样品粗磨、细磨、抛光,得到GOS:Pr,Ce,F闪烁陶瓷。
实施例7-10
采用与实施例1-6相同的方法进行闪烁粉体球磨混合,得到粒径分布相同的粉料。将粉料装入内径为30mm的碳纤维复合材质模具内,进行放电等离子一次烧结。温度在1200-1250℃下,压力200MPa,真空1-15Pa,保温保压2小时。保温结束后,执行降温程序,降温速率为10℃/分钟,待完全冷却至室温后取出,得到GOS一次烧结体。对实施例7、8样品采用与实施例1-5相同的退火及热等静压方法进行二次烧结及二次退火,得到二次烧结体。实施例9、10只进行退火处理不做热等静压二次烧结。对实施例7-10进行粗磨、细磨、抛光,得到GOS:Pr,Ce,F闪烁陶瓷。
实施例11、12
称取100g纯度为99.999%的粒径为d(0.1)为4.0μm,d(0.5)为6.8μm,d(0.9)为11.8μm的商业Gd2O2S:Pr,Ce闪烁体粉末,添加0.2g LiF助烧剂,与实施例1-6相同的操作方法置于行星球磨机,在500转/分钟的速度下,球磨混合细化7小时,正反运行间隔0.5小时。球磨混合所得粉末粒径分布d(0.1)为1.1μm, d(0.5)为2.1μm,d(0.9)为3.8μm。将粉料装入内径为30mm的石墨材质模具内,进行放电等离子一次烧结。温度分别在1300℃、1400℃下,压力60MPa,真空1-15Pa,保温保压2小时。烧结结束后,执行降温程序,降温速率为10℃/分钟,待完全冷却至室温后取出,即为GOS一次烧结体。对实施例11样品采用与实施例1-5相同的退火及热等静压方法进行二次烧结及二次退火,对实施例12样品只进行退火处理,由于其已具有高的相对密度,故不进行热等静压二次烧结。对实施例11、12样品进行粗磨、细磨、抛光,得到GOS:Pr,Ce,F闪烁陶瓷。
实施例13-15
采用与实施例11、12相同的方法进行闪烁粉体球磨混合细化,得到粒径分布相同的粉料。将粉料装入内径为30mm的碳纤维复合材质模具内,进行放电等离子一次烧结。温度分别在1200-1300℃下,压力200MPa,真空1-15Pa,保温保压2小时。保温结束后,执行降温程序,降温速率为10℃/分钟,待完全冷却至室温后取出,即为GOS一次烧结体。对实施例13采用与实施例1-5相同的退火及热等静压方法进行二次烧结及二次退火,得到二次烧结体。实施例14、15只进行退火处理不做热等静压二次烧结。对实施例13-15进行粗磨、细磨、抛光,得到GOS:Pr,Ce,F闪烁陶瓷。
表1. 样品参数比较
样品编号 粉末中值粒径/μm 一次烧结温度/℃ 一次烧结压力/MPa 一次烧结体相对密度 热等静压二次烧结/℃-MPa 最终性能
1 6.4 1300 60 95.2% 1400-200 良好
2 6.4 1350 60 96.6% 1400-200 良好
3 6.4 1400 60 97.9% 1400-200 极好
4 6.4 1450 60 99.5% 1400-200 极好
5 6.4 1500 60 99.7% 良好
6 6.4 1550 60 99.7% 1400-200 加工脆裂
7 6.4 1200 200 99.7% 1400-200 极好
8 6.4 1250 200 99.8% 1400-200 极好
9 6.4 1200 200 99.7% 良好
10 6.4 1250 200 99.8% 良好
11 2.1 1300 60 99.7% 1400-200 极好
12 2.1 1400 60 99.9% 良好
13 2.1 1200 200 99.6% 1400-200 极好
14 2.1 1250 200 99.9% 良好
15 2.1 1300 200 99.9% 极好
实施例6由于放电等离子一次烧结温度高,再经过热等静压二次烧结,使其晶粒过度长大,导致最终加工时发生脆裂。其余实施例所制备的GOS闪烁陶瓷在其发光波段处均具有良好的透过性能,2mm厚的陶瓷片在500-520nm范围内的积分透过率为30-35%,且加工性能良好。
本发明的GOS闪烁陶瓷可以:
用于检测电离辐射,如X射线,γ射线,和电子束等的固体闪烁探测器的闪烁体元件;尤其适合要求闪烁体具有低余辉的X射线计算机断层扫描设备(X-CT)和/或X射线行李扫描仪。
由于本发明的制造方法成本低廉,故所制备的闪烁体尤其适合应用于安检的X射线计算机断层扫描设备或X射线行李扫描仪。
该发明的闪烁陶瓷性能良好,也可用于医学成像领域的X-CT探测器。

Claims (17)

1.一种硫氧化钆GOS闪烁陶瓷的制备方法,其包括;
向闪烁陶瓷粉体中添加助烧剂并混合均匀,
其中通过球磨进行所述混合,以得到中值粒径为4-9μm的添加有助烧剂的闪烁陶瓷粉体一,或者,
其中通过球磨进行所述混合并通过球磨进行进一步细化,以得到中值粒径为1-4μm的添加有助烧剂的闪烁陶瓷粉体二;
将添加有助烧剂的闪烁陶瓷粉体一或闪烁陶瓷粉体二装入烧结模具内,进行放电等离子烧结,得到GOS烧结体;和
对所述GOS烧结体进行退火;和
任选地进行热等静压二次烧结及二次退火,得到GOS闪烁陶瓷,
其中所述放电等离子烧结包括预先加压至20-40MPa,逐步增加电流至数千A,升温至1000℃-1100℃保温10-30分钟,继续升温至1200℃-1500℃,同时将压力升至60-200MPa,进行放电等离子烧结,以得到GOS烧结体。
2.权利要求1所述的方法,其中通过球磨进行所述混合并通过球磨进行进一步细化,以得到中值粒径为2-3μm的添加有助烧剂的闪烁陶瓷粉体二。
3.权利要求1或2所述的方法,其中所述球磨在MOS级高纯无水乙醇和/或惰性气体保护下进行。
4.权利要求1或2所述的方法,其中所述助烧剂为LiF或Li2GeF6,且其添加量为闪烁陶瓷粉体质量的0.02-1%。
5.权利要求1或2所述的方法,其中对于粉体一,放电等离子烧结温度为1350℃-1500℃,压力为150-200MPa;对于粉体二,放电等离子烧结温度为1200-1350℃,压力为60-150MPa。
6.权利要求1或2所述的方法,其中所述退火和热等静压二次烧结及二次退火包括将GOS烧结体在1000℃-1200℃温度范围内,在马弗炉中,进行退火处理,然后在1300℃-1500℃、150-250MPa的惰性气体环境内进行热等静压二次烧结;然后对得到的二次烧结体进行二次退火,二次退火的条件与所述退火的条件一致。
7.权利要求1或2所述的方法,其中所述烧结模具为等静压石墨材质模具或碳纤维复合材质模具。
8.权利要求1或2所述的方法,其中所述烧结模具内镶嵌BN陶瓷衬筒,压轴方向接触闪烁粉体的一面先垫BN陶瓷片再垫石墨纸。
9.权利要求1或2所述的方法,其中所述闪烁陶瓷粉体为纯度为99.999%的中值粒径为5- 9μm的Gd2O2S:Pr,Ce闪烁陶瓷粉体。
10.权利要求1或2所述的方法,其中当放电等离子烧结后得到GOS烧结体的密度低于99.8%时,进行热等静压二次烧结。
11.权利要求1所述的方法,其中所述放电等离子烧结包括预先加压至25-35MPa。
12.权利要求1所述的方法,其中所述放电等离子烧结包括预先加压至30MPa。
13.权利要求4所述的方法,其中所述助烧剂的添加量为闪烁陶瓷粉体质量的0.1-1%。
14.权利要求5所述的方法,其中对于粉体一,放电等离子烧结温度为1400-1450℃,压力为200MPa;对于粉体二,放电等离子烧结温度为1250-1300℃,压力为60MPa。
15.权利要求6所述的方法,其中所述惰性气体为氮气或氩气。
16.由权利要求1-15任一项所述的方法获得的GOS闪烁陶瓷,对于2mm厚的样片在511nm波长处的积分透过率达到30%以上。
17.权利要求16的GOS闪烁陶瓷用于X、γ高能射线探测装置的用途。
CN201410398953.8A 2014-08-14 2014-08-14 一种硫氧化钆(Gd2O2S)闪烁陶瓷制备方法 Active CN105330289B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201410398953.8A CN105330289B (zh) 2014-08-14 2014-08-14 一种硫氧化钆(Gd2O2S)闪烁陶瓷制备方法
JP2015159731A JP6199932B2 (ja) 2014-08-14 2015-08-12 ガドリニウムオキシサルファイド(Gd2O2S)セラミックシンチレータ製造方法
DE102015215505.6A DE102015215505B8 (de) 2014-08-14 2015-08-13 Verfahren zur Herstellung von Gadoliniumoxysulfid (Gd2O2S) - Szintillationskeramiken
US14/827,258 US9816028B2 (en) 2014-08-14 2015-08-14 Process for the preparation of gadolinium oxysulfide (Gd2O2S) scintillation ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410398953.8A CN105330289B (zh) 2014-08-14 2014-08-14 一种硫氧化钆(Gd2O2S)闪烁陶瓷制备方法

Publications (2)

Publication Number Publication Date
CN105330289A CN105330289A (zh) 2016-02-17
CN105330289B true CN105330289B (zh) 2018-08-31

Family

ID=55235159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410398953.8A Active CN105330289B (zh) 2014-08-14 2014-08-14 一种硫氧化钆(Gd2O2S)闪烁陶瓷制备方法

Country Status (4)

Country Link
US (1) US9816028B2 (zh)
JP (1) JP6199932B2 (zh)
CN (1) CN105330289B (zh)
DE (1) DE102015215505B8 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106738210A (zh) 2016-12-26 2017-05-31 同方威视技术股份有限公司 一种模具及利用该模具制造gos闪烁陶瓷的方法
CN107686349A (zh) * 2017-08-03 2018-02-13 上海烁璞新材料有限公司 一种硫氧化物陶瓷闪烁体的制备方法
JP7040991B2 (ja) * 2018-04-26 2022-03-23 トーメイダイヤ株式会社 硬さの向上したダイヤモンド/炭化ケイ素複合体の製造方法及びかかる複合体
CN109550960A (zh) * 2018-11-06 2019-04-02 金堆城钼业股份有限公司 一种防止热等静压烧结件与包套粘连的方法
CN113340925B (zh) * 2021-04-02 2023-03-14 中国科学院上海硅酸盐研究所 一种应用于高分辨中子成像探测器的GOS:Tb透明陶瓷闪烁屏及其制备方法
CN113563885B (zh) * 2021-08-04 2022-05-17 北京科技大学 一种Gd2O2S:Tb超细荧光粉的激光液相烧蚀制备方法
CN114031403A (zh) * 2021-12-09 2022-02-11 安徽光智科技有限公司 一种硫氧化钆闪烁陶瓷的制备方法及其硫氧化钆闪烁陶瓷的应用
CN114773084A (zh) * 2022-03-21 2022-07-22 中国船舶重工集团公司第七二五研究所 一种制备硫氧化钆陶瓷空心微球的方法
CN116477921A (zh) * 2023-03-23 2023-07-25 李振达 一种提高酒体能量及纯化酒体的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253128A (zh) * 2005-07-25 2008-08-27 圣戈本陶瓷及塑料股份有限公司 稀土氧硫化物闪烁体及其生产方法
CN101370749A (zh) * 2006-01-18 2009-02-18 皇家飞利浦电子股份有限公司 利用单轴热压制和助熔剂制备gos陶瓷的方法
CN101993240A (zh) * 2010-11-09 2011-03-30 上海大学 一种Ce3+掺杂硅酸镥(Lu2SiO5)多晶闪烁光学陶瓷的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL68676A (en) * 1982-06-18 1986-07-31 Gen Electric Rare-earth-doped yttria gadolinia ceramic scintillators and methods for making
US4747973A (en) 1982-06-18 1988-05-31 General Electric Company Rare-earth-doped yttria-gadolina ceramic scintillators
JPH07121832B2 (ja) * 1986-01-30 1995-12-25 株式会社東芝 希土類オキシ硫化物セラミックスの製造方法
JP3122438B2 (ja) * 1998-09-30 2001-01-09 株式会社東芝 セラミックシンチレータの製造方法、セラミックシンチレータ、シンチレータブロック、x線検出器およびx線ct撮像装置
US6384417B1 (en) 1998-09-30 2002-05-07 Kabushiki Kaisha Toshiba Ceramic scintillator, method for producing same, and x-ray detector and x-ray CT imaging equipment using same
JP4426245B2 (ja) * 2003-10-07 2010-03-03 中部電力株式会社 金属酸化物焼結体の製造方法、及び金属酸化物焼結体
RU2350579C2 (ru) * 2004-05-17 2009-03-27 Федеральное Государственное Унитарное Предприятие "Научно-Исследовательский И Технологический Институт Оптического Материаловедения" Всероссийского Научного Центра "Государственный Оптический Институт Им. С.И.Вавилова" Флуоресцентная керамика
TWI485266B (zh) * 2009-07-27 2015-05-21 Univ Tokyo Sci Educ Found Aluminum-magnesium-silicon composite material and method for manufacturing the same, and thermoelectric conversion material, thermoelectric conversion element and thermoelectric conversion module using the composite material
JP5550013B2 (ja) * 2010-03-31 2014-07-16 学校法人同志社 磁性ナノコンポジット及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253128A (zh) * 2005-07-25 2008-08-27 圣戈本陶瓷及塑料股份有限公司 稀土氧硫化物闪烁体及其生产方法
CN101370749A (zh) * 2006-01-18 2009-02-18 皇家飞利浦电子股份有限公司 利用单轴热压制和助熔剂制备gos陶瓷的方法
CN101993240A (zh) * 2010-11-09 2011-03-30 上海大学 一种Ce3+掺杂硅酸镥(Lu2SiO5)多晶闪烁光学陶瓷的制备方法

Also Published As

Publication number Publication date
DE102015215505A1 (de) 2016-02-18
JP6199932B2 (ja) 2017-09-20
CN105330289A (zh) 2016-02-17
US9816028B2 (en) 2017-11-14
DE102015215505B4 (de) 2019-08-22
DE102015215505B8 (de) 2019-12-24
US20160046861A1 (en) 2016-02-18
JP2016041649A (ja) 2016-03-31

Similar Documents

Publication Publication Date Title
CN105330289B (zh) 一种硫氧化钆(Gd2O2S)闪烁陶瓷制备方法
JP6105690B2 (ja) ガドリニウムオキシサルファイドセラミックシンチレータの製造方法
CN103396121B (zh) 一种具有石榴石结构的新型透明闪烁陶瓷及其制备方法
Liu et al. High-pressure sintering mechanism of yttrium aluminum garnet (Y3Al5O12) transparent nanoceramics
CN110776311B (zh) 一种热压烧结制备钙钛矿型复合氧化物高熵陶瓷的方法
CN107935581B (zh) 两相均匀分布的复合石榴石闪烁陶瓷及其制备方法
CN114031403A (zh) 一种硫氧化钆闪烁陶瓷的制备方法及其硫氧化钆闪烁陶瓷的应用
CN108585853B (zh) 一种铕掺杂氧化钪闪烁体及其制备方法和用途
CN113121237B (zh) 一种碳化硼基复合陶瓷及其制备工艺
CN106673639B (zh) 共掺杂钇铝石榴石闪烁透明陶瓷及其制备方法
Kopylov et al. Fabrication and characterization of Eu3+-doped Lu2O3 scintillation ceramics
CN101575203B (zh) Ito溅射靶材的制备方法
CN111116206A (zh) 致密MoAlB陶瓷材料的制备方法、其产物及高纯MoAlB陶瓷粉的制备方法
TW201446705A (zh) 透光性金屬氧化物燒結體之製造方法及透光性金屬氧化物燒結體
JP2008143726A (ja) 多結晶透明y2o3セラミックス及びその製造方法
CN110282650B (zh) 一种x射线探测用硫氧化钆粉体及其闪烁陶瓷的制备方法
Xiong et al. Influence of sintering conditions on the microstructure and optical properties of Eu: CaF2 transparent ceramic
JP2004525848A (ja) シンチレーターセラミックの製造法および該シンチレーターセラミックの使用
Kanai et al. Hot‐Pressing Method to Consolidate Gd 3 (Al, Ga) 5 O 12: Ce Garnet Scintillator Powder for use in an X‐ray CT Detector
US8080175B2 (en) Scintillator having a MgAI2O4 host lattice
Wang et al. Fabrication of Gd2O2S: Pr, Ce, F scintillation ceramics by pressureless sintering in nitrogen atmosphere
Gan et al. The effects of the temperature and pressure on ZrO2-doped transparent yttria ceramics fabricated by a hot-pressing method
Gan et al. Fabrication of submicron-grained IR-transparent Y2O3 ceramics from commercial nano-raw powders
Chen et al. Fabrication of Ce:(Gd2Y)(Ga3Al2) O12 scintillator ceramic by oxygen-atmosphere sintering and hot isostatic pressing
CN101119945A (zh) 密度和硬度提高的无压烧结且热等静压后处理的b4c

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant