JP5115522B2 - 薄膜形成方法 - Google Patents
薄膜形成方法 Download PDFInfo
- Publication number
- JP5115522B2 JP5115522B2 JP2009137019A JP2009137019A JP5115522B2 JP 5115522 B2 JP5115522 B2 JP 5115522B2 JP 2009137019 A JP2009137019 A JP 2009137019A JP 2009137019 A JP2009137019 A JP 2009137019A JP 5115522 B2 JP5115522 B2 JP 5115522B2
- Authority
- JP
- Japan
- Prior art keywords
- electric field
- thin film
- gas
- electrode
- frequency electric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/54—Apparatus specially adapted for continuous coating
- C23C16/545—Apparatus specially adapted for continuous coating for coating elongated substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/30—Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/453—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating passing the reaction gases through burners or torches, e.g. atmospheric pressure CVD
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
- H05H1/4645—Radiofrequency discharges
- H05H1/466—Radiofrequency discharges using capacitive coupling means, e.g. electrodes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/47—Generating plasma using corona discharges
- H05H1/473—Cylindrical electrodes, e.g. rotary drums
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H2240/00—Testing
- H05H2240/10—Testing at atmospheric pressure
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Chemical Vapour Deposition (AREA)
- Plasma Technology (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Formation Of Insulating Films (AREA)
Description
V1≧IV>V2
または V1>IV≧V2 を満たし、
前記第2の高周波電界の出力密度が、1W/cm2以上であり、かつ前記対向する電極間の距離が0.5〜2mmであることを特徴とする薄膜形成方法。
(2) 前記第2の高周波電界の出力密度が、50W/cm2以下であることを特徴とする(1)に記載の薄膜形成方法。
(3) 前記第2の高周波電界の出力密度が、20W/cm2以下であることを特徴とする(2)に記載の薄膜形成方法。
(4) 前記第1の高周波電界の出力密度が1W/cm2以上であることを特徴とする(1)乃至(3)の何れか1項に記載の薄膜形成方法。
(5) 前記第1の高周波電界の出力密度が、50W/cm2以下であることを特徴とする(1)乃至(4)の何れか1項に記載の薄膜形成方法。
(6) 前記第1の高周波電界および前記第2の高周波電界がサイン波であることを特徴とする(1)乃至(5)の何れか1項に記載の薄膜形成方法。
(7) 前記放電空間に供給される全ガス量の90〜99.9体積%が放電ガスであることを特徴とする(1)乃至(6)の何れか1項に記載の薄膜形成方法。
(8) 前記放電ガスが、50〜100体積%の窒素ガスを含有することを特徴とする(7)に記載の薄膜形成方法。
(9) 前記放電ガスが、50体積%未満の希ガスを含有することを特徴とする(7)または(8)に記載の薄膜形成方法。
(10) 前記薄膜形成ガスが、有機金属化合物、ハロゲン化金属、金属水素化合物から選ばれる少なくとも一つを含有することを特徴とする(1)乃至(9)の何れか1項に記載の薄膜形成方法。
(11) 前記有機金属化合物が、有機珪素化合物、有機チタン化合物、有機錫化合物、有機亜鉛化合物、有機インジウム化合物および有機アルミニウム化合物から選ばれる少なくとも一つの化合物を含有することを特徴とする(10)に記載の薄膜形成方法。
(12) 前記周波数ω1が、200kHz以下であることを特徴とする(1)乃至(11)の何れか1項に記載の薄膜形成方法。
(13) 前記周波数ω2が、800kHz以上であることを特徴とする(1)乃至(12)の何れか1項に記載の薄膜形成方法。
V1≧IV>V2
または V1>IV≧V2を満たすことを特徴とする(105)に記載の薄膜形成方法。
V1≧IV>V2
または V1>IV≧V2を満たすことを特徴とする薄膜形成方法。
V1≧IV>V2
または V1>IV≧V2 を満たし、
前記第2の高周波電界の出力密度が、1W/cm2以上である。
各電極部に高周波電圧プローブ(P6015A)を設置し、該高周波電圧プローブの出力信号をオシロスコープ(Tektronix社製、TDS3012B)に接続し、電界強度を測定する。
電極間に放電ガスを供給し、この電極間の電界強度を増大させていき、放電が始まる電界強度を放電開始電界強度IVと定義する。測定器は上記高周波電界強度測定と同じである。
印加電源記号 メーカー 周波数 製品名
A1 神鋼電機 3kHz SPG3−4500
A2 神鋼電機 5kHz SPG5−4500
A3 春日電機 15kHz AGI−023
A4 神鋼電機 50kHz SPG50−4500
A5 ハイデン研究所 100kHz* PHF−6k
A6 パール工業 200kHz CF−2000−200k
A7 パール工業 400kHz CF−2000−400k
等の市販のものを挙げることが出来、何れも使用することが出来る。
印加電源記号 メーカー 周波数 製品名
B1 パール工業 800kHz CF−2000−800k
B2 パール工業 2MHz CF−2000−2M
B3 パール工業 13.56MHz CF−5000−13M
B4 パール工業 27MHz CF−2000−27M
B5 パール工業 150MHz CF−2000−150M
等の市販のものを挙げることが出来、何れも好ましく使用出来る。
1:金属質母材が純チタンまたはチタン合金で、誘電体がセラミックス溶射被膜
2:金属質母材が純チタンまたはチタン合金で、誘電体がガラスライニング
3:金属質母材がステンレススティールで、誘電体がセラミックス溶射被膜
4:金属質母材がステンレススティールで、誘電体がガラスライニング
5:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がセラミックス溶射被膜
6:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がガラスライニング
7:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がセラミックス溶射皮膜
8:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がガラスライニング
等がある。線熱膨張係数の差という観点では、上記1項または2項および5〜8項が好ましく、特に1項が好ましい。
R1 xMR2 yR3 z
式中、Mは金属、R1はアルキル基、R2はアルコキシ基、R3はβ−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基であり、金属Mの価数をmとした場合、x+y+z=mであり、x=0〜m、またはx=0〜m−1であり、y=0〜m、z=0〜mで、何れも0または正の整数である。R1のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基等を挙げることが出来る。R2のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、3,3,3−トリフルオロプロポキシ基等を挙げることが出来る。またアルキル基の水素原子をフッ素原子に置換したものでもよい。R3のβ−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基としては、β−ジケトン錯体基として、例えば、2,4−ペンタンジオン(アセチルアセトンあるいはアセトアセトンともいう)、1,1,1,5,5,5−ヘキサメチル−2,4−ペンタンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、1,1,1−トリフルオロ−2,4−ペンタンジオン等を挙げることが出来、β−ケトカルボン酸エステル錯体基として、例えば、アセト酢酸メチルエステル、アセト酢酸エチルエステル、アセト酢酸プロピルエステル、トリメチルアセト酢酸エチル、トリフルオロアセト酢酸メチル等を挙げることが出来、β−ケトカルボン酸として、例えば、アセト酢酸、トリメチルアセト酢酸等を挙げることが出来、またケトオキシとして、例えば、アセトオキシ基(またはアセトキシ基)、プロピオニルオキシ基、ブチリロキシ基、アクリロイルオキシ基、メタクリロイルオキシ基等を挙げることが出来る。これらの基の炭素原子数は、上記例有機金属示化合物を含んで、18以下が好ましい。また例示にもあるように直鎖または分岐のもの、また水素原子をフッ素原子に置換したものでもよい。
誘電体保護膜:SiO2、SiO、Si3N4、Al2O3、Al2O3、Y2O3
透明導電膜:In2O3、SnO2
エレクトロクロミック膜:WO3、IrO2、MoO3、V2O5
蛍光膜:ZnS、ZnS+ZnSe、ZnS+CdS
磁気記録膜:Fe−Ni、Fe−Si−Al、γ−Fe2O3、Co、Fe3O4、Cr、SiO2、AlO3
超導電膜:Nb、Nb−Ge、NbN
太陽電池膜:a−Si、Si
反射膜:Ag、Al、Au、Cu
選択性吸収膜:ZrC−Zr
選択性透過膜:In2O3、SnO2
反射防止膜:SiO2、TiO2、SnO2
シャドーマスク:Cr
耐摩耗性膜:Cr、Ta、Pt、TiC、TiN
耐食性膜:Al、Zn、Cd、Ta、Ti、Cr
耐熱膜:W、Ta、Ti
潤滑膜:MoS2
装飾膜:Cr、Al、Ag、Au、TiC、Cu
尚、上記窒化物の窒化度、酸化物の酸化度、硫化物の硫化度、炭化物の炭化度はあくまでも一例であり、金属との組成比は適宜変化して良い。また、薄膜には、上記金属化合物以外に、炭素化合物、窒素化合物、水素化合物等の不純物が含有されてもよい。
〔電極の作製〕
次のように電極を作製した。長さ50mm、幅600mm、高さ50mmの、肉厚10mm(中空のジャケット)のチタン合金T64製の2個の平板印加電極を以下のように作製した。該2個共、平板電極の互いに対向する面(面積300cm2)に大気プラズマ法により高密度、高密着性のアルミナ溶射膜を被覆した。その後、テトラメトキシシランを酢酸エチルで希釈した溶液を塗布乾燥後、紫外線照射により硬化させ封孔処理を行った。このようにして被覆した誘電体表面を研磨し、平滑にして、Rmaxが5μmとなるように加工した。最終的な誘電体の空隙率は5体積%であった。この時の誘電体層のSiOX含有率は75mol%であった。また、最終的な誘電体の膜厚は、1mm(膜厚変動±1%以内)、誘電体の比誘電率は10であった。更に導電性の金属質母材と誘電体の線熱膨張係数の差は、1.6×10−6/℃であり、また耐熱温度は250℃であった。
図1に示した大気圧プラズマ放電処理装置を使用し、上記で作製した2個の電極を電極間隙を1mmとして平行に対向させ、表1に示す第1電界及び第2電界を設置した。尚、電源A5は、連続モード100kHzで使用した(以下の実施例においても同様)。また、試料No.16は、第1電界に直流パルス電源を用い、ON/OFFの繰り返し周波数を10kHzとした。両電極は80℃になるように調節保温した。なお、何れもフィルタは各電極からの電流が逆流しないようなものを設置した。
基材としてのコニカタックKC8UXの上に、下記組成の混合ガスを用い、表1に示す電界を電極間に印加し、放電を行って薄膜を形成し、試料1〜16を作製した。なお、この系での放電開始電界強度は3.7kV/mmであった。
放電ガス:窒素 97.9体積%
薄膜形成性ガス:テトライソプロポキシチタン 0.1体積%
添加ガス:水素 2.0体積%
〔評価〕
〈放電状態〉
対向電極間で放電の状況を下記のランクに分けた。
△:放電はしているがやや不安定
×:全く放電が起こらない。
各試料につき分光光度計U−4000型(日立製作所製)を用いて、5度正反射の条件で反射スペクトルの測定を行った。測定は反射防止フィルムの反射防止層のない側の面を粗面化処理した後、黒色スプレーを用いて光吸収処理を行い反射防止フィルムの裏面の光の反射を防止して、400〜700nmの波長の反射スペクトルを測定し、該スペクトルのλ/4値より光学膜厚を算出し、それをもとに屈折率を算出した。なお、屈折率が低いということは、層の構造に緻密さに欠けて孔が多数あり、測定時に孔に空気が入ることによる現象や、放電空間で生じたパーティクルが膜中にとり込まれる場合があり不良な膜である。
第1及び第2電極から印加した第1及び第2の高周波電界の周波数(ω1、ω2)の関係、第1及び第2の高周波電界の強さ(V1、V2)と放電ガスの放電開始電界の強さ(IV)との関係および第2の高周波電界の出力密度が、本発明の関係にある試料No.1〜10については、放電状況もよく、緻密な薄膜(屈折率の大きさによって判断出来る)が形成された。これに対して、本発明の関係以外の高周波電界の試料11〜16では、放電は良好であっても薄膜形成する能力が不足し、孔が多く緻密な薄膜が得られなかったり(屈折率が小さい)、または、放電が起こらず薄膜の形成が出来なかった。
表2に示した第1電界及び第2電界に変更し、また表2に示した第1フィルター及び第2フィルターを設置した以外は実施例1と同様に行い、試料17〜23を作製した。
本発明の大気圧プラズマ放電処理装置を用い、表2に示したようにフィルタを設置し、薄膜形成を行った試料17〜20は、放電は正常に行われ、薄膜も正常に形成された。これに対して、試料21では、第1電界と第2電界の周波数に対し、フィルターの組み合わせを適性化してないため、放電が発生せず、薄膜の形成が出来なかった。試料22及び23は、通常の大気圧放電プラズマ薄膜形成装置で、対向電極が印加電極とアース電極としたもの(フィルターは使用しない)で、試料22では、その印加電極に通常使用するより高周波印加電源から印加したが、放電せず、薄膜の形成が出来ず、また試料23では印加電源が、より低周波のものを用いて印加したが、放電はするものの、良好な薄膜の形成が出来なかった。
基材としてコニカタックKC4UXの長尺フィルム(1500m巻きフィルム)を用い、下記のように裏面側にバックコート層及び表側にハードコート層を塗設し、フィルムロールとして巻き取った。この基材を使用し、図2の装置を3基直列に連結して反射防止フィルムを作製した。基材を該フィルムロールをアンワインダーから巻きほぐし、ハードコート層の上に1基目の大気圧プラズマ放電処理装置で中屈折率層を形成し、続いて、中屈折率層の上に2基目の同様の装置で高屈折率層を積層して形成し、更に続いて、高屈折率層の上に3基目の同様な装置で低屈折率層を積層して形成し、バックコート層/基材F/ハードコート層/中屈折率層/高屈折率層/低屈折率層の反射防止フィルム(試料No.24〜27)を作製した。
〈クリアハードコート層塗布済み基材の作製〉
コニカタックKC4UXの片面に下記のバックコート層塗布組成物を設け、他の面に、乾燥膜厚で4μmの中心線表面粗さ(Ra)15nmのクリアハードコート層を設け、クリアハードコート層塗布済み基材を作製した。
アセトン 30質量部
酢酸エチル 45質量部
イソプロピルアルコール 10質量部
ジアセチルセルロース 0.5質量部
アエロジル200V(日本アエロジル社製)の2質量%アセトン分散液
0.1質量部
《クリアハードコート層塗布組成物》
ジペンタエリスリトールヘキサアクリレート単量体 60質量部
ジペンタエリスリトールヘキサアクリレート2量体 20質量部
ジペンタエリスリトールヘキサアクリレート3量体以上の成分
20質量部
ジメトキシベンゾフェノン 4質量部
酢酸エチル 50質量部
メチルエチルケトン 50質量部
イソプロピルアルコール 50質量部
〔電極の作製〕
前述の図2の大気圧プラズマ放電処理装置において、誘電体で被覆したロール電極及び同様に誘電体を被覆した複数の角筒型電極のセットを以下のように作製した。
プラズマ放電中、第1電極(ロール回転電極)及び第2電極(角筒型固定電極群)が80℃になるように調節保温し、ロール回転電極はドライブで回転させて次のように薄膜形成を行った。3基それぞれの第1電界及び第2電界については表3に示したものと3基とも同じものを用いた。ぞれぞれをアースに接地した。圧力は103kPaとし、下記の混合ガスをそれぞれの放電空間及びプラズマ放電処理装置内部へ導入し、上記バックコート層及びクリアハードコート層塗布済み基材のクリアハードコート層の上に中屈折率層、高屈折率層、低屈折率層の順に連続してプラズマ放電薄膜形成を行い、3層積層の反射防止フィルムを作製し試料24〜27とした。
放電ガス:窒素 99.4体積%
薄膜形成性ガス:ジブチルジアセトキシ錫 0.1体積%
(リンテック社製気化器にてアルゴンガスに混合して気化)
添加ガス:酸素 0.5体積%
《中屈折率層条件》
出力密度:第1電極側 1W/cm2
:第2電極側 5W/cm2
《高屈折率層混合ガス組成物》
放電ガス:窒素 99.4体積%
薄膜形成性ガス:テトライソプロポキシチタン 0.1体積%
(リンテック社製気化器にてアルゴンガスに混合して気化)
添加ガス:酸素ガス 0.5体積%
《高屈折率層条件》
出力密度:第1電極側 1W/cm2
:第2電極側 5W/cm2
《低屈折率層混合ガス組成物》
放電ガス:窒素 98.9体積%
薄膜形成性ガス:テトラエトキシシラン 0.1体積%
(リンテック社製気化器にてアルゴンガスに混合して気化)
添加ガス:酸素ガス 1体積%
《低屈折率層条件》
出力密度:第1電極側 1W/cm2
:第2電極側 3W/cm2
試料24〜27について、放電状態については実施例1と同様に評価を行い、且つ、下記評価を行い、その結果を表3に示した。
〈平均分光反射率〉
放電を開始して10分経過した後に試料をサンプリングし、分光光度計U−4000型(日立製作所製)を用いて、5度正反射の条件で反射率を測定した。測定は反射防止フィルムの反射防止層のない側の面を粗面化処理した後、黒色スプレーを用いて光吸収処理を行い反射防止フィルムの裏面の光の反射を防止して、400〜700nmの波長の反射スペクトルを測定し、その内の500〜650nmの波長について平均分光反射率を求めた。
○:0.2超、0.5未満
△:0.5以上
×:薄膜形成充分にされず測定不能
本発明の方法により、薄膜を3層積層して形成した反射防止フィルム(試料24及び25)は、平均分光反射率が目標通りのものが得られた。なお、全ての装置での放電状態は正常であった。これに対して、本発明以外の方法で電界を印加した試料26は、放電状態はよかったが、平均分光反射率が本発明より劣っていた。また、試料27は放電せず薄膜は得られなかった。
図2に示したようなプラズマ放電処理装置1基の大気圧プラズマ放電処理装置を使用し、電極及び誘電体は実施例3と同じものを使用及び同じ加工をした。電極及び誘電体の物性値は実施例3と同じように仕上げた。尚、第1電極の温度を150℃に、第2電極の温度を80℃に調節保温するように、電極温度調整手段を構成し、次のように薄膜形成を行った。電界は、表4に示したものを使用した。基材として、厚さ100μmのARTONフィルム(非晶質シクロポリオレフィン樹脂フィルム、JSR社製)を使用した。圧力は103kPaとし、下記の混合ガスを処理室内及びプラズマ放電処理装置へ導入し、下記基材の上に透明導電膜を形成し、透明導電フィルムの試料28〜32を作製した。なお、何れもフィルターは適切なものを設置した。
放電ガス:窒素 98.65体積%
薄膜形成性ガス1:トリス(2,4−ペンタンジオナート)インジウム
1.2体積%
薄膜形成性ガス2:ジブチルジアセトキシ錫 0.05体積%
添加ガス:水素 0.1体積%
上記試料28〜32について下記評価を行い、結果を表4に示した。
〈比抵抗値(Ω・cm)〉
JIS R 1637に従い、四端子法により求めた。なお、測定には三菱化学製ロレスタ−GP、MCP−T600を用いた。
JIS R 1635に従い、日立製作所製分光光度計1U−4000型を用いて550nmの波長での透過光で測定を行った。
本発明の試料28〜31は薄膜形成性及び薄膜の緻密性が優れ、透過率が高く、また比抵抗値も非常に小さく高性能の透明導電膜を有する基材が得られた。これに対して比較の試料32は放電が起こらず薄膜の形成が出来なかった。
実施例4に於いて、電極に印加する出力密度を表5に示すように変化させた以外は、同じ条件にて薄膜形成を行い、試料33〜40を作製した。
〔評価〕
〈膜厚分布〉
各試料につき分光光度計U−4000型(日立製作所製)を用いて、5度正反射の条件で反射スペクトルの測定を行った。測定は製膜していない側の面を粗面化処理した後、黒色スプレーを用いて光吸収処理を行い基材の裏面の光の反射を防止して、400〜700nmの波長の反射スペクトルを測定し、該スペクトルのλ/4値より光学膜厚を算出した。この膜厚測定を1cmピッチで行い、膜厚の分布を測定した。そして膜厚分布として、以下の算出式により求めた値を用いて評価した。
○:膜厚分布1%以上3%未満
△:膜厚分布3%以上10%未満
×:膜厚分布10%以上
〈製膜レート〉
上記方法により得られた平均膜厚を、放電空間に曝される時間(製膜時間)で割った値を製膜レートと定義し、評価した。例えば、放電長1mの場合、基材の搬送速度が1m/minの場合、製膜時間は1minとなる。この1minの間に60nmの膜厚が製膜されると製膜速度1nm/secとなる。
本発明の方法により、第1電界の出力を高めることにより、均一性及び製膜速度を更に向上させることができることが確認された。
11 第1電極
12 第2電極
20 電界印加手段
21 第1電源
22 第2電源
Claims (13)
- 大気圧もしくはその近傍の圧力下、対向する第1電極と第2電極とで構成される放電空間に薄膜形成ガスおよび窒素ガスを含有するガスを供給し、
前記放電空間に高周波電界を印加することにより前記ガスを励起し、基材を励起した前記ガスに晒すことにより前記基材上に薄膜を形成する薄膜形成方法であって、
前記高周波電界が、電力を第1電極に供給して形成された第1の高周波電界および電力を第2電極に供給して形成された第2の高周波電界を重畳したものであり、
前記第1の高周波電界の周波数ω1より前記第2の高周波電界の周波数ω2が高く、
前記第1の高周波電界の強さV1、前記第2の高周波電界の強さV2および放電開始電界の強さIVとの関係が、
V1≧IV>V2
または V1>IV≧V2 を満たし、
前記第2の高周波電界の出力密度が、1W/cm2以上であり、
かつ前記対向する電極間の距離が0.5〜2mmであることを特徴とする薄膜形成方法。 - 前記第2の高周波電界の出力密度が、50W/cm2以下であることを特徴とする請求項1に記載の薄膜形成方法。
- 前記第2の高周波電界の出力密度が、20W/cm2以下であることを特徴とする請求項2に記載の薄膜形成方法。
- 前記第1の高周波電界の出力密度が1W/cm2以上であることを特徴とする請求項1乃至3の何れか1項に記載の薄膜形成方法。
- 前記第1の高周波電界の出力密度が、50W/cm2以下であることを特徴とする請求項1乃至4の何れか1項に記載の薄膜形成方法。
- 前記第1の高周波電界および前記第2の高周波電界がサイン波であることを特徴とする請求項1乃至5の何れか1項に記載の薄膜形成方法。
- 前記放電空間に供給される全ガス量の90〜99.9体積%が放電ガスであることを特徴とする請求項1乃至6の何れか1項に記載の薄膜形成方法。
- 前記放電ガスが、50〜100体積%の窒素ガスを含有することを特徴とする請求項7に記載の薄膜形成方法。
- 前記放電ガスが、50体積%未満の希ガスを含有することを特徴とする請求項7または8に記載の薄膜形成方法。
- 前記薄膜形成ガスが、有機金属化合物、ハロゲン化金属、金属水素化合物から選ばれる少なくとも一つを含有することを特徴とする請求項1乃至9の何れか1項に記載の薄膜形成方法。
- 前記有機金属化合物が、有機珪素化合物、有機チタン化合物、有機錫化合物、有機亜鉛化合物、有機インジウム化合物および有機アルミニウム化合物から選ばれる少なくとも一つの化合物を含有することを特徴とする請求項10に記載の薄膜形成方法。
- 前記周波数ω1が、200kHz以下であることを特徴とする請求項1乃至11の何れか1項に記載の薄膜形成方法。
- 前記周波数ω2が、800kHz以上であることを特徴とする請求項1乃至12の何れか1項に記載の薄膜形成方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009137019A JP5115522B2 (ja) | 2002-06-10 | 2009-06-08 | 薄膜形成方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002168392 | 2002-06-10 | ||
JP2002168392 | 2002-06-10 | ||
JP2009137019A JP5115522B2 (ja) | 2002-06-10 | 2009-06-08 | 薄膜形成方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003069588A Division JP4433680B2 (ja) | 2002-06-10 | 2003-03-14 | 薄膜形成方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010126608A Division JP2010185144A (ja) | 2002-06-10 | 2010-06-02 | 誘電体被覆電極及びそれを用いたプラズマ放電処理装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009235576A JP2009235576A (ja) | 2009-10-15 |
JP5115522B2 true JP5115522B2 (ja) | 2013-01-09 |
Family
ID=29561717
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009137019A Expired - Fee Related JP5115522B2 (ja) | 2002-06-10 | 2009-06-08 | 薄膜形成方法 |
JP2010126608A Pending JP2010185144A (ja) | 2002-06-10 | 2010-06-02 | 誘電体被覆電極及びそれを用いたプラズマ放電処理装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010126608A Pending JP2010185144A (ja) | 2002-06-10 | 2010-06-02 | 誘電体被覆電極及びそれを用いたプラズマ放電処理装置 |
Country Status (7)
Country | Link |
---|---|
US (2) | US6759100B2 (ja) |
EP (1) | EP1371752B1 (ja) |
JP (2) | JP5115522B2 (ja) |
KR (1) | KR100937789B1 (ja) |
CN (1) | CN100354453C (ja) |
DE (1) | DE60320717D1 (ja) |
TW (1) | TWI273143B (ja) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002048428A1 (en) * | 2000-12-12 | 2002-06-20 | Konica Corporation | Method for forming thin film, article having thin film, optical film, dielectric coated electrode, and plasma discharge processor |
JP2002322558A (ja) * | 2001-04-25 | 2002-11-08 | Konica Corp | 薄膜形成方法、光学フィルム、偏光板及び画像表示装置 |
US20030207093A1 (en) * | 2001-12-03 | 2003-11-06 | Toshio Tsuji | Transparent conductive layer forming method, transparent conductive layer formed by the method, and material comprising the layer |
TWI273143B (en) | 2002-06-10 | 2007-02-11 | Konica Corp | Layer formation method, and substrate with a layer formed by the method |
US20040175498A1 (en) * | 2003-03-06 | 2004-09-09 | Lotfi Hedhli | Method for preparing membrane electrode assemblies |
EP1609884B1 (en) * | 2003-03-31 | 2013-08-28 | Konica Minolta Holdings, Inc. | Thin film forming apparatus and method for forming thin film |
CN1780935B (zh) * | 2003-07-16 | 2010-05-05 | 柯尼卡美能达控股株式会社 | 薄膜制造方法以及具有由此薄膜制造方法形成的薄膜的基材 |
US20070253051A1 (en) * | 2003-09-29 | 2007-11-01 | Kunihiko Ishihara | Optical Device |
US20060040067A1 (en) * | 2004-08-23 | 2006-02-23 | Thomas Culp | Discharge-enhanced atmospheric pressure chemical vapor deposition |
JPWO2006067952A1 (ja) * | 2004-12-20 | 2008-06-12 | コニカミノルタホールディングス株式会社 | ガスバリア性薄膜積層体、ガスバリア性樹脂基材、有機elデバイス |
US8138104B2 (en) * | 2005-05-26 | 2012-03-20 | Applied Materials, Inc. | Method to increase silicon nitride tensile stress using nitrogen plasma in-situ treatment and ex-situ UV cure |
US7732342B2 (en) * | 2005-05-26 | 2010-06-08 | Applied Materials, Inc. | Method to increase the compressive stress of PECVD silicon nitride films |
US7566655B2 (en) * | 2005-05-26 | 2009-07-28 | Applied Materials, Inc. | Integration process for fabricating stressed transistor structure |
US8129290B2 (en) * | 2005-05-26 | 2012-03-06 | Applied Materials, Inc. | Method to increase tensile stress of silicon nitride films using a post PECVD deposition UV cure |
EP1982348A1 (en) | 2006-02-09 | 2008-10-22 | Fuji Film Manufacturing Europe B.V. | Short pulse atmospheric pressure glow discharge method and apparatus |
WO2007139379A1 (en) * | 2006-05-30 | 2007-12-06 | Fujifilm Manufacturing Europe B.V. | Method and apparatus for deposition using pulsed atmospheric pressure glow discharge |
JP2009079233A (ja) * | 2006-06-16 | 2009-04-16 | Kobe Steel Ltd | 薄膜形成方法 |
TWI275658B (en) * | 2006-09-13 | 2007-03-11 | Ind Tech Res Inst | Method of improving surface frame resistance of a substrate |
KR20090079934A (ko) | 2006-10-12 | 2009-07-22 | 씨-쓰리 인터내셔널, 엘엘씨 | 유체 가공 시스템 및 그의 성분을 위한 예방적 표면 처리를 제공하기 위한 방법 |
US8338307B2 (en) | 2007-02-13 | 2012-12-25 | Fujifilm Manufacturing Europe B.V. | Substrate plasma treatment using magnetic mask device |
DE102007025152B4 (de) * | 2007-05-29 | 2012-02-09 | Innovent E.V. | Verfahren zum Beschichten eines Substrats |
JP5597551B2 (ja) | 2008-02-01 | 2014-10-01 | フジフィルム マニュファクチュアリング ヨーロッパ ビー.ヴィ. | 移動基材のプラズマ表面処理の装置、方法および当該方法の使用 |
JP5473946B2 (ja) | 2008-02-08 | 2014-04-16 | フジフィルム マニュファクチュアリング ヨーロッパ ビー.ヴィ. | Wvtrバリア性を改善した多層スタック構造体の製造方法 |
EP2245647B1 (en) | 2008-02-21 | 2012-08-01 | Fujifilm Manufacturing Europe B.V. | Method for treatment of a substrate with atmospheric pressure glow discharge electrode configuration |
EP2396452A1 (en) | 2009-02-12 | 2011-12-21 | Fujifilm Manufacturing Europe BV | Two layer barrier on polymeric substrate |
EP2226832A1 (en) | 2009-03-06 | 2010-09-08 | FUJIFILM Manufacturing Europe B.V. | Substrate plasma treatment using side tabs |
GB201012225D0 (en) | 2010-07-21 | 2010-09-08 | Fujifilm Mfg Europe Bv | Method for manufacturing a barrier layer on a substrate and a multi-layer stack |
GB201012226D0 (en) | 2010-07-21 | 2010-09-08 | Fujifilm Mfg Europe Bv | Method for manufacturing a barrier on a sheet and a sheet for PV modules |
US20130181331A1 (en) * | 2010-09-28 | 2013-07-18 | Ndsu Research Foundation | Atmospheric-pressure plasma-enhanced chemical vapor deposition |
CN104220630B (zh) | 2012-02-23 | 2017-03-08 | 特来德斯通技术公司 | 耐腐蚀且导电的金属表面 |
US9018108B2 (en) | 2013-01-25 | 2015-04-28 | Applied Materials, Inc. | Low shrinkage dielectric films |
US10332840B2 (en) * | 2017-03-21 | 2019-06-25 | Macronix International Co., Ltd. | Semiconductor device with physically unclonable function (PUF) and apparatus including the same |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH051375A (ja) * | 1991-06-25 | 1993-01-08 | Canon Inc | 真空処理装置 |
US5430859A (en) * | 1991-07-26 | 1995-07-04 | Sundisk Corporation | Solid state memory system including plural memory chips and a serialized bus |
JPH05166595A (ja) * | 1991-12-12 | 1993-07-02 | Fuji Denpa Koki Kk | 高気圧高密度プラズマ発生方法 |
JPH0892747A (ja) * | 1994-09-22 | 1996-04-09 | Sekisui Chem Co Ltd | 基板の表面処理方法 |
US5727208A (en) * | 1995-07-03 | 1998-03-10 | Dell U.S.A. L.P. | Method and apparatus for configuration of processor operating parameters |
JP3040358B2 (ja) | 1996-05-24 | 2000-05-15 | 積水化学工業株式会社 | グロー放電プラズマ処理方法及びその装置 |
JPH1116696A (ja) | 1997-06-25 | 1999-01-22 | Seiko Epson Corp | 大気圧プラズマ生成方法および装置並びに表面処理方法 |
JP3530021B2 (ja) * | 1998-05-25 | 2004-05-24 | 株式会社日立製作所 | 真空処理装置及びその処理台 |
JP3959906B2 (ja) * | 1998-10-26 | 2007-08-15 | 松下電工株式会社 | プラズマ処理装置及びプラズマ処理方法 |
JP4120087B2 (ja) * | 1999-03-30 | 2008-07-16 | 松下電工株式会社 | プラズマ処理装置及びプラズマ処理方法 |
JP3982153B2 (ja) * | 1999-07-27 | 2007-09-26 | 松下電工株式会社 | プラズマ処理装置及びプラズマ処理方法 |
JP4075237B2 (ja) * | 1999-08-17 | 2008-04-16 | 松下電工株式会社 | プラズマ処理システム及びプラズマ処理方法 |
EP1153886B1 (en) * | 1999-10-18 | 2007-02-14 | Kyowa Chemical Industry Co., Ltd. | Dye-fixing agent for aqueous ink, ink jet recording medium and porous hydrotalcite compound |
JP2002009138A (ja) * | 2000-06-21 | 2002-01-11 | Mitsubishi Heavy Ind Ltd | 静電チャックの製造方法および静電チャック |
JP2002158219A (ja) | 2000-09-06 | 2002-05-31 | Sekisui Chem Co Ltd | 放電プラズマ処理装置及びそれを用いた処理方法 |
JP2002110397A (ja) | 2000-09-27 | 2002-04-12 | Sekisui Chem Co Ltd | 常圧パルスプラズマ発生方法 |
US6769069B1 (en) * | 2000-10-19 | 2004-07-27 | International Business Machines Corporation | Service processor control of module I / O voltage level |
KR100464902B1 (ko) * | 2001-02-12 | 2005-01-05 | (주)에스이 플라즈마 | 대기압에서 저온 플라즈마를 발생시키는 장치 |
US6441554B1 (en) * | 2000-11-28 | 2002-08-27 | Se Plasma Inc. | Apparatus for generating low temperature plasma at atmospheric pressure |
US6845444B2 (en) * | 2001-08-23 | 2005-01-18 | Silicon Integrated Systems Corp. | Method and apparatus for reducing strapping devices |
US6510099B1 (en) * | 2001-09-28 | 2003-01-21 | Intel Corporation | Memory control with dynamic driver disabling |
JP4282923B2 (ja) * | 2001-11-01 | 2009-06-24 | 株式会社神戸製鋼所 | プラズマ処理方法及び装置 |
JP4433680B2 (ja) * | 2002-06-10 | 2010-03-17 | コニカミノルタホールディングス株式会社 | 薄膜形成方法 |
TWI273143B (en) * | 2002-06-10 | 2007-02-11 | Konica Corp | Layer formation method, and substrate with a layer formed by the method |
-
2003
- 2003-03-04 TW TW092104574A patent/TWI273143B/zh not_active IP Right Cessation
- 2003-03-04 US US10/378,695 patent/US6759100B2/en not_active Expired - Lifetime
- 2003-03-11 EP EP03004977A patent/EP1371752B1/en not_active Expired - Lifetime
- 2003-03-11 DE DE60320717T patent/DE60320717D1/de not_active Expired - Lifetime
- 2003-03-21 CN CNB031076246A patent/CN100354453C/zh not_active Expired - Fee Related
- 2003-03-21 KR KR1020030017639A patent/KR100937789B1/ko not_active IP Right Cessation
-
2004
- 2004-05-07 US US10/841,115 patent/US7166335B2/en not_active Expired - Fee Related
-
2009
- 2009-06-08 JP JP2009137019A patent/JP5115522B2/ja not_active Expired - Fee Related
-
2010
- 2010-06-02 JP JP2010126608A patent/JP2010185144A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
US7166335B2 (en) | 2007-01-23 |
JP2010185144A (ja) | 2010-08-26 |
US6759100B2 (en) | 2004-07-06 |
EP1371752A3 (en) | 2004-01-14 |
JP2009235576A (ja) | 2009-10-15 |
CN100354453C (zh) | 2007-12-12 |
DE60320717D1 (de) | 2008-06-19 |
TWI273143B (en) | 2007-02-11 |
US20030232136A1 (en) | 2003-12-18 |
CN1467302A (zh) | 2004-01-14 |
KR100937789B1 (ko) | 2010-01-20 |
KR20030095214A (ko) | 2003-12-18 |
EP1371752B1 (en) | 2008-05-07 |
EP1371752A2 (en) | 2003-12-17 |
US20040213920A1 (en) | 2004-10-28 |
TW200307760A (en) | 2003-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5115522B2 (ja) | 薄膜形成方法 | |
JP4433680B2 (ja) | 薄膜形成方法 | |
JP5082242B2 (ja) | 薄膜形成方法 | |
JPWO2005059202A1 (ja) | 薄膜形成方法並びに該方法により薄膜が形成された基材 | |
JP2005272957A (ja) | 表面処理方法及び該表面処理方法により表面処理された基材 | |
JP4899863B2 (ja) | 薄膜形成装置及び薄膜形成方法 | |
JP4686956B2 (ja) | 機能体の形成方法 | |
JP4534081B2 (ja) | 薄膜形成装置 | |
JP4140289B2 (ja) | 大気圧プラズマ放電処理装置、大気圧プラズマ放電処理方法及び光学素子 | |
JP4349052B2 (ja) | ディスプレイ用フレネルレンズの製造方法 | |
JP2004198590A (ja) | 薄膜有するを物品、その製造方法及び低反射体並びに透明導電性体 | |
JP4539059B2 (ja) | 透明導電膜積層体の製造方法 | |
JP4254190B2 (ja) | 薄膜形成方法 | |
JP4797318B2 (ja) | 透明導電膜積層体及びその形成方法 | |
JP2005060770A (ja) | 薄膜形成装置 | |
JP4432429B2 (ja) | ディスプレイ用レンチキュラーレンズの製造方法 | |
JP2006267347A (ja) | 薄膜、反射防止基材、半導体デバイスと微粒子製造方法及び薄膜製造方法 | |
JP2005200737A (ja) | 透明導電膜形成方法 | |
JP4821324B2 (ja) | 透明でガスバリア性の高い基材及びその製造方法 | |
JP2004246241A (ja) | 光学素子及びその製造方法 | |
JP4269754B2 (ja) | 透明導電膜積層体およびその製造方法 | |
JP2004143525A (ja) | 薄膜形成方法、薄膜、透明導電膜及び大気圧プラズマ処理装置 | |
JP4432433B2 (ja) | ディスプレイ用前面板の製造方法 | |
JP2006002224A (ja) | 薄膜形成方法 | |
JP2004068094A (ja) | 薄膜、その形成方法及びその製造に用いられる大気圧プラズマ処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120626 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120918 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121001 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151026 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |