JPWO2005059202A1 - 薄膜形成方法並びに該方法により薄膜が形成された基材 - Google Patents

薄膜形成方法並びに該方法により薄膜が形成された基材 Download PDF

Info

Publication number
JPWO2005059202A1
JPWO2005059202A1 JP2005516295A JP2005516295A JPWO2005059202A1 JP WO2005059202 A1 JPWO2005059202 A1 JP WO2005059202A1 JP 2005516295 A JP2005516295 A JP 2005516295A JP 2005516295 A JP2005516295 A JP 2005516295A JP WO2005059202 A1 JPWO2005059202 A1 JP WO2005059202A1
Authority
JP
Japan
Prior art keywords
electric field
thin film
frequency electric
gas
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005516295A
Other languages
English (en)
Inventor
井 宏元
宏元 井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2005059202A1 publication Critical patent/JPWO2005059202A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

窒素のような安価な放電ガスを用いても、高密度プラズマが達成でき、良質な薄膜を高速で製膜できる薄膜形成方法を提供し、これにより良質で緻密な薄膜を有する基材を安価に提供できる。前記薄膜形成方法として、大気圧もしくはその近傍の圧力下、放電空間に窒素元素を有するガスを含有するガスを供給し、前記放電空間に第1の高周波電界および第2の高周波電界を重畳した高周波電界を印加することにより基材上に窒化膜を形成する薄膜形成方法であって、前記第1の高周波電界の周波数ω1より前記第2の高周波電界の周波数ω2が高く、前記第1の高周波電界の強さV1、前記第2の高周波電界の強さV2及び放電開始電界の強さIVとの関係が、V1≧IV>V2又はV1>IV≧V2を満たし、前記第2の高周波電界の出力密度が、1W/cm2以上である薄膜形成方法である。

Description

本発明は、大気圧プラズマ放電処理を用いた新規な薄膜形成方法並びに該薄膜形成方法により薄膜が形成された基材に関する。
機能性薄膜形成において、スパッタリング法、CVD法など様々な製膜方法が存在するが、真空を必要としない大気圧プラズマ法がプロセス技術として注目されている。例えば特許文献1には、パルス電源を用いることにより、窒素ガスのような放電開始電圧の高いガスでも放電が達成できる大気圧プラズマ製膜技術が、特許文献2には大気圧プラズマ法により窒化膜を形成する技術が、また特許文献3には大気圧プラズマ法において、プラズマ空間中で原料を分解し、窒化膜を形成する技術が、それぞれ開示されている。
[特許文献1]特開平10−154598号公報
[特許文献2]特開2002−324795号公報
[特許文献3]特開2002−151513号公報
しかしながら、上記特許文献1の技術ではプラズマ密度が低く、良質な膜が得られない。また特許文献2の技術ではプラズマにより励起した窒素をシリコン基板に直接吹き付けてシリコン基板のごく表面(数nm)を窒素で置換しているにすぎず、基板の選択性において十分な技術とはいえない。また本発明者らが特許文献3に開示されている技術を検証したところ、確かに酸化珪素の膜はできるものの、原料のテトラメチルシランの分解が不十分で、窒化珪素膜中に炭素成分が多く混入し、十分な窒化珪素膜の機能を発現できていないことがわかった。また、放電ガスに高価なアルゴンやヘリウムを使用していることから工業的な利点があるとはいえない。
本発明は、上記の課題に鑑みなされたもので、本発明の目的は、窒素を含有する良質な薄膜を高速で製膜できる薄膜形成方法を提供し、これにより良質で高性能な薄膜を安価に提供することにある。
本発明者らは、鋭意検討の結果、特定の高周波電界を印加することで、窒素等の放電開始電界強度の高い放電ガスでも、高密度プラズマの発生が達成でき、良質な薄膜が得られ、高速に製膜でき、更には、安価、且つ安全に運転でき、環境負荷の低減も達成できることを見いだした。
即ち本発明は、以下の構成よりなる。
(構成1) 大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスを含有するガスを供給し、前記放電空間に高周波電界を印加することにより前記ガスを励起し、基材を励起した前記ガスに晒すことにより前記基材上に薄膜を形成する薄膜形成方法において、前記ガスは窒素元素を有するガスを含有し、前記基材上に形成される薄膜が窒化膜であり、前記高周波電界が、第1の高周波電界および第2の高周波電界を重畳したものであり、前記第1の高周波電界の周波数ωより前記第2の高周波電界の周波数ωが高く、前記第1の高周波電界の強さV、前記第2の高周波電界の強さV及び放電開始電界の強さIVとの関係が、
≧IV>V
又は V>IV≧V を満たし、
前記第2の高周波電界の出力密度が、1W/cm以上であることを特徴とする薄膜形成方法。
(構成2) 前記放電空間が、対向する第1電極と第2電極とで構成されることを特徴とする構成1に記載の薄膜形成方法。
(構成3) 前記第2の高周波電界の出力密度が、50W/cm以下であることを特徴とする構成1又は2に記載の薄膜形成方法。
(構成4) 前記第2の高周波電界の出力密度が、20W/cm以下であることを特徴とする構成3に記載の薄膜形成方法。
(構成5) 前記第1の高周波電界の出力密度が1W/cm以上であることを特徴とする構成1〜4の何れか1構成に記載の薄膜形成方法。
(構成6) 前記第1の高周波電界の出力密度が、50W/cm以下であることを特徴とする構成5に記載の薄膜形成方法。
(構成7) 前記第1の高周波電界および前記第2の高周波電界がサイン波であることを特徴とする構成1〜6の何れか1構成に記載の薄膜形成方法。
(構成8) 前記第1の高周波電界を前記第1電極に印加し、前記第2の高周波電界を前記第2電極に印加することを特徴とする構成2〜7の何れか1構成に記載の薄膜形成方法。
(構成9) 前記放電空間に供給される全ガス量の90〜99.9体積%が放電ガスであることを特徴とする構成1〜8の何れか1構成に記載の薄膜形成方法。
(構成10) 前記放電ガスが、50〜100体積%の窒素ガスを含有することを特徴とする構成9に記載の薄膜形成方法。
(構成11) 前記放電ガスが、50体積%未満の希ガスを含有することを特徴とする構成9又は10に記載の薄膜形成方法。
(構成12) 前記薄膜形成ガスが、有機金属化合物、ハロゲン化金属、金属水素化合物から選ばれる少なくとも一つを含有することを特徴とする構成1〜11の何れか1構成に記載の薄膜形成方法。
(構成13) 前記有機金属化合物が、有機珪素化合物、有機チタン化合物、有機錫化合物、有機亜鉛化合物、有機インジウム化合物および有機アルミニウム化合物から選ばれる少なくとも一つの化合物を含有することを特徴とする構成12に記載の薄膜形成方法。
(構成14) 構成1〜13の何れか1構成に記載の薄膜形成方法により形成された薄膜を有することを特徴とする基材。
第1図は本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。
第2図は本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。
第3図は導電性の金属質母材とその上に被覆されている誘電体を有するロール回転電極の一例を示す斜視図である。
第4図は角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。
本発明において、プラズマ放電処理は、大気圧もしくはその近傍の圧力下で行われるが、大気圧もしくはその近傍の圧力とは20kPa〜110kPa程度であり、本発明に記載の良好な効果を得るためには、93kPa〜104kPaが好ましい。
本発明の薄膜形成方法において、対向電極間(放電空間)に供給するガスは、少なくとも、電界により励起する放電ガスと、そのエネルギーを受け取ってプラズマ状態あるいは励起状態になり薄膜を形成する薄膜形成ガスを含んでいる。そして窒素元素を有するガスを含有することを特徴とする。本発明における放電条件は、放電空間に、第1の高周波電界と第2の高周波電界とを重畳し、前記第1の高周波電界の周波数ωより前記第2の高周波電界の周波数ωが高く、且つ、前記第1の高周波電界の強さV、前記第2の高周波電界の強さV及び放電開始電界の強さIVとの関係が、
≧IV>V
又は V>IV≧V を満たし、
前記第2の高周波電界の出力密度が、1W/cm以上であることを特徴とする。高周波とは、少なくとも0.5kHzの周波数を有するものを言う。重畳する高周波電界が、ともにサイン波である場合、第1の高周波電界の周波数ωと該周波数ωより高い第2の高周波電界の周波数ωとを重ね合わせた成分となり、その波形は周波数ωのサイン波上に、それより高い周波数ωのサイン波が重なった鋸歯状の波形となる。
本発明において、放電開始電界の強さとは、実際の薄膜形成方法に使用される放電空間(電極の構成など)及び反応条件(ガス条件など)において放電を起こすことのできる最低電界強度のことを指す。放電開始電界強度は、放電空間に供給されるガス種や電極の誘電体種又は電極間距離などによって多少変動するが、同じ放電空間においては、放電ガスの放電開始電界強度に支配される。上記で述べたような高周波電界を放電空間に印加することによって、薄膜形成可能な放電を起こし、高品位な薄膜形成に必要な高密度プラズマを発生することができると推定される。ここで重要なのは、このような高周波電界が対向する電極に印加され、すなわち、同じ放電空間に印加されることである。印加電極を2つ併置し、離間した異なる放電空間それぞれに、異なる高周波電界を印加する方法では、本発明の薄膜形成は達成できない。なお上記でサイン波等の連続波の重畳について説明したが、これに限られるものではなく、両方パルス波であっても、一方が連続波でもう一方がパルス波であってもかまわない。また、更に第3の電界を有していてもよい。
本発明における窒素元素を含有するガスとしては、具体的には窒素(N)、窒化酸素(NO)、二窒化酸素(NO)、アンモニア(NH)、ヒドラジン(N)、モノメチルヒドラジン(CH)、1,1−ジメチルヒドラジン(C)、1,2−ジメチルヒドラジン(C)等が挙げられ、好ましくは窒素(N)、窒化酸素(NO)、二窒化酸素(NO)、アンモニア(NH)である。本発明における窒化膜とは、XPS(X−ray Photoelectoron Spectroscopy)測定法おいて窒素元素を10%以上含有する膜のことである。又、このときに測定される炭素元素の比率は低いほうが好ましい。具体的には窒素元素は20%以上、炭素元素は3%以下が好ましい。本発明の特徴は、高周波の印加方法を工夫することによりプラズマ密度がアップし、原料の分解が十分になされ、原料中の炭素成分の形成膜への混入を極めて低くすることができることである。また、放電ガスに窒素を用いる場合にはプラズマにより励起した活性窒素元素により窒化膜をより効率よく作成することが可能になる。
上記本発明の高周波電界を、同一放電空間に印加する具体的な方法は、対向電極を構成する第1電極に周波数ωであって電界強度Vである第1の高周波電界を印加する第1電源を接続し、第2電極に周波数ωであって電界強度Vである第2の高周波電界を印加する第2電源を接続した大気圧プラズマ放電処理装置を用いることである。上記の大気圧プラズマ放電処理装置には、対向電極間に、放電ガスと薄膜形成ガスとを供給するガス供給手段を備える。更に、電極の温度を制御する電極温度制御手段を有することが好ましい。また、第1電極、第1電源又はそれらの間の何れかには第1フィルタを、また第2電極、第2電源又はそれらの間の何れかには第2フィルタを接続することが好ましく、第1フィルタは第1電源から第1電極への第1の高周波電界の電流を通過しやすくし、第2の高周波電界の電流をアースして、第2電源から第1電源への第2の高周波電界の電流を通過しにくくする。また、第2フィルタはその逆で、第2電源から第2電極への第2の高周波電界の電流を通過しやすくし、第1の高周波電界の電流をアースして、第1電源から第2電源への第1の高周波電界の電流を通過しにくくする機能が備わっているものを使用する。ここで、通過しにくいとは、好ましくは、電流の20%以下、より好ましくは10%以下しか通さないことをいう。逆に通過しやすいとは、好ましくは電流の80%以上、より好ましくは90%以上を通すことをいう。
更に、本発明の大気圧プラズマ放電処理装置の第1電源は、第2電源より高い高周波電界強度を印加できる能力を有していることが好ましい。ここで、本発明でいう高周波電界強度(印加電界強度)と放電開始電界強度は、下記の方法で測定されたものをいう。
高周波電界強度V及びV(単位:kV/mm)の測定方法:
各電極部に高周波電圧プローブ(P6015A)を設置し、該高周波電圧プローブの出力信号をオシロスコープ(Tektronix社製、TDS3012B)に接続し、電界強度を測定する。
放電開始電界強度IV(単位:kV/mm)の測定方法:
電極間に放電ガスを供給し、この電極間の電界強度を増大させていき、放電が始る電界強度を放電開始電界強度IVと定義する。測定器は上記高周波電界強度測定と同じである。
本発明で規定する放電条件をとることにより、例え窒素ガスのように放電開始電界強度が高い放電ガスでも、放電を開始し、高密度で安定なプラズマ状態を維持でき、高性能な薄膜形成を行うことができるのである。上記の測定により放電ガスを窒素ガスとした場合、その放電開始電界強度IV(1/2Vp−p)は3.7kV/mm程度であり、従って、上記の関係において、第1の高周波電界強度を、V≧3.7kV/mmとして印加することによって窒素ガスを励起し、プラズマ状態にすることができる。ここで、第1電源の周波数としては、200kHz以下を好ましく用いることができる。またこの電界波形としては、連続波でもパルス波でもよい。下限は1kHz程度が望ましい。一方、第2電源の周波数としては、800kHz以上が好ましく用いられる。この第2電源の周波数が高い程、プラズマ密度が高くなり、緻密で良質な薄膜が得られる。上限は200MHz程度が望ましい。このような2つの電源から高周波電界を印加するのは、第1の高周波電界によって高い放電開始電界強度を有する放電ガスの放電を開始するのが必要であり、また第2の高周波電界の高い周波数および高い出力密度によりプラズマ密度を高くして緻密で良質な薄膜を形成することが本発明の重要な点である。
また、第1の高周波電界の出力密度を高くすることで、放電の均一性を維持したまま、第2の高周波電界の出力密度を向上させることができる。これにより、更なる均一高密度プラズマが生成でき、更なる製膜速度の向上と、膜質の向上が両立できる。
本発明に用いられる大気圧プラズマ放電処理装置において、前記第1フィルタは、第1電源から第1電極への第1の高周波電界の電流を通過しやすくし、第2の高周波電界の電流をアースして、第2電源から第1電源への第2の高周波電界の電流を通過しにくくする。また、第2フィルタはその逆で、第2電源から第2電極への第2の高周波電界の電流を通過しやすくし、第1の高周波電界の電流をアースして、第1電源から第2電源への第1の高周波電界の電流を通過しにくくする。本発明において、かかる性質のあるフィルタであれば制限無く使用できる。例えば、第1フィルタとしては、第2電源の周波数に応じて数10pF〜数万pFのコンデンサ、もしくは数μH程度のコイルを用いることができる。第2フィルタとしては、第1電源の周波数に応じて10μH以上のコイルを用い、これらのコイルまたはコンデンサを介してアース接地することでフィルタとして使用できる。
本発明に用いられる大気圧プラズマ放電処理装置は、上述のように、対向電極の間で放電させ、前記対向電極間に導入したガスをプラズマ状態とし、前記対向電極間に静置あるいは電極間を移送される基材を該プラズマ状態のガスに晒すことによって、該基材の上に薄膜を形成させるものである。また他の方式として、大気圧プラズマ放電処理装置は、上記同様の対向電極間で放電させ、該対向電極間に導入したガスを励起しまたはプラズマ状態とし、該対向電極外にジェット状に励起またはプラズマ状態のガスを吹き出し、該対向電極の近傍にある基材(静置していても移送されていてもよい)を晒すことによって該基材の上に薄膜を形成させるジェット方式の装置がある。
第1図は、本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。ジェット方式の大気圧プラズマ放電処理装置は、プラズマ放電処理装置、二つの電源を有する電界印加手段の他に、第1図では図示してない(後述の第2図に図示してある)が、ガス供給手段、電極温度調節手段を有している装置である。プラズマ放電処理装置10は、第1電極11と第2電極12から構成されている対向電極を有しており、該対向電極間に、第1電極11からは第1電源21からの周波数ω、電界強度V、電流I1の第1の高周波電界が印加され、また第2電極12からは第2電源22からの周波数ω、電界強度V、電流I2の第2の高周波電界が印加されるようになっている。第1電源21は第2電源22より高い高周波電界強度(V>V)を印加でき、また第1電源21の第1の周波数ωは第2電源22の第2の周波数ωより低い周波数を印加できる。第1電極11と第1電源21との間には、第1フィルタ23が設置されており、第1電源21から第1電極11への電流を通過しやすくし、第2電源22からの電流をアースして、第2電源22から第1電源21への電流が通過しにくくなるように設計されている。
また、第2電極12と第2電源22との間には、第2フィルター24が設置されており、第2電源22から第2電極への電流を通過しやすくし、第1電源21からの電流をアースして、第1電源21から第2電源への電流を通過しにくくするように設計されている。第1電極11と第2電極12との対向電極間(放電空間)13に、後述の第2図に図示してあるようなガス供給手段からガスGを導入し、第1電極11と第2電極12から高周波電界を印加して放電を発生させ、ガスGをプラズマ状態にしながら対向電極の下側(紙面下側)にジェット状に吹き出させて、対向電極下面と基材Fとで作る処理空間をプラズマ状態のガスG°で満たし、図示してない基材の元巻き(アンワインダー)から巻きほぐされて搬送して来るか、あるいは前工程から搬送して来る基材Fの上に、処理位置14付近で薄膜を形成させる。薄膜形成中、後述の第2図に図示してあるような電極温度調節手段から媒体が配管を通って電極を加熱または冷却する。プラズマ放電処理の際の基材の温度によっては、得られる薄膜の物性や組成等は変化することがあり、これに対して適宜制御することが望ましい。温度調節の媒体としては、蒸留水、油等の絶縁性材料が好ましく用いられる。プラズマ放電処理の際、幅手方向あるいは長手方向での基材の温度ムラができるだけ生じないように電極の内部の温度を均等に調節することが望まれる。
また、第1図に前述の高周波電界強度(印加電界強度)と放電開始電界強度の測定に使用する測定器を示した。25及び26は高周波電圧プローブであり、27及び28はオシロスコープである。
ジェット方式の大気圧プラズマ放電処理装置を複数基接して直列に並べて同時に同じプラズマ状態のガスを放電させることができるので、何回も処理され高速で処理することもできる。また各装置が異なったプラズマ状態のガスをジェット噴射すれば、異なった層の積層薄膜を形成することもできる。
第2図は本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。本発明の大気圧プラズマ放電処理装置は、少なくとも、プラズマ放電処理装置30、二つの電源を有する電界印加手段40、ガス供給手段50、電極温度調節手段60を有している装置である。第2図は、ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との対向電極間(放電空間)32で、基材Fをプラズマ放電処理して薄膜を形成するものである。ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との間の放電空間(対向電極間)32に、ロール回転電極(第1電極)35には第1電源41から周波数ω、電界強度V、電流I1の第1の高周波電界を、また角筒型固定電極群(第2電極)36には第2電源42から周波数ω、電界強度V、電流I2の第2の高周波電界をかけるようになっている。ロール回転電極(第1電極)35と第1電源41との間には、第1フィルタ43が設置されており、第1フィルタ43は第1電源41から第1電極への電流を通過しやすくし、第2電源42からの電流をアースして、第2電源42から第1電源への電流を通過しにくくするように設計されている。また、角筒型固定電極群(第2電極)36と第2電源42との間には、第2フィルタ44が設置されており、第2フィルター44は、第2電源42から第2電極への電流を通過しやすくし、第1電源41からの電流をアースして、第1電源41から第2電源への電流を通過しにくくするように設計されている。なお、本発明においては、ロール回転電極35を第2電極、また角筒型固定電極群36を第1電極としてもよい。何れにしろ第1電極には第1電源が、また第2電極には第2電源が接続される。第1電源は第2電源より高い高周波電界強度(V>V)を印加することが好ましい。
また、周波数はω<ωとなる能力を有している。また、電流はI1<I2となることが好ましい。第1の高周波電界の電流I1は、好ましくは0.3〜20mA/cm、さらに好ましくは1.0〜20mA/cmである。また、第2の高周波電界の電流I2は、好ましくは10〜100mA/cm、さらに好ましくは20〜100mA/cmである。
ガス供給手段50のガス発生装置51で発生させたガスGは、流量を制御して給気口52よりプラズマ放電処理容器31内に導入する。基材Fを、図示されていない元巻きから巻きほぐして搬送して来るか、又は前工程から搬送して来て、ガイドロール64を経てニップロール65で基材に同伴されて来る空気等を遮断し、ロール回転電極35に接触したまま巻き回しながら角筒型固定電極群36との間に移送し、ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との両方から電界をかけ、対向電極間(放電空間)32で放電プラズマを発生させる。基材Fはロール回転電極35に接触したまま巻き回されながらプラズマ状態のガスにより表面に薄膜が形成される。基材Fは、ニップロール66、ガイドロール67を経て、図示してない巻き取り機で巻き取るか、次工程に移送する。
放電処理済みの処理排ガスG′は排気口53より排出する。薄膜形成中、ロール回転電極(第1電極)35及び角筒型固定電極(第2電極)36を加熱または冷却するために、電極温度調節手段60で温度を調節した媒体を、送液ポンプPで配管61を経て両電極に送り、電極内側から温度を調節する。なお、68及び69はプラズマ放電処理容器31と外界とを仕切る仕切板である。
第3図は、第2図に示したロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。第3図において、ロール電極35aは導電性の金属質母材35Aとその上に誘電体35Bが被覆されたものである。プラズマ放電処理中の電極表面温度を制御するため、温度調節用の媒体(水もしくはシリコンオイル等)が循環できる構造となっている。
第4図は、角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。第4図において、角筒型電極36aは、導電性の金属質母材36Aに対し、第3図同様の誘電体36Bの被覆を有しており、該電極の構造は金属質のパイプになっていて、それがジャケットとなり、放電中の温度調節が行えるようになっている。なお、角筒型固定電極の数は、上記ロール電極の円周より大きな円周上に沿って複数本設置されていおり、該電極の放電面積はロール回転電極35に対向している全角筒型固定電極面の面積の和で表される。第2図に示した角筒型電極36aは、円筒型電極でもよいが、角筒型電極は円筒型電極に比べて、放電範囲(放電面積)を広げる効果があるので、本発明に好ましく用いられる。第3図及び第4図において、ロール電極35a及び角筒型電極36aは、それぞれ導電性の金属質母材35A及び36Aの上に誘電体35B及び36Bとしてのセラミックスを溶射後、無機化合物の封孔材料を用いて封孔処理したものである。セラミックス誘電体は片肉で1mm程度の被覆であればよい。溶射に用いるセラミックス材としては、アルミナ、窒化珪素等が好ましく用いられるが、この中でもアルミナが加工し易いので、特に好ましく用いられる。また、誘電体層が、ライニングにより無機材料を設けたライニング処理誘電体であってもよい。
導電性の金属質母材35A及び36Aとしては、チタン金属またはチタン合金、銀、白金、ステンレススティール、アルミニウム、鉄等の金属等や、鉄とセラミックスとの複合材料またはアルミニウムとセラミックスとの複合材料を挙げることができるが、後述の理由からはチタン金属またはチタン合金が特に好ましい。
対向する第1電極および第2の電極の電極間距離は、電極の一方に誘電体を設けた場合、該誘電体表面ともう一方の電極の導電性の金属質母材表面との最短距離のことを言う。双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距離のことを言う。電極間距離は、導電性の金属質母材に設けた誘電体の厚さ、印加電界強度の大きさ、プラズマを利用する目的等を考慮して決定されるが、いずれの場合も均一な放電を行う観点から0.1〜20mmが好ましく、特に好ましくは0.5〜2mmである。
本発明に有用な導電性の金属質母材及び誘電体についての詳細については後述する。
プラズマ放電処理容器31はパイレックス(R)ガラス製の処理容器等が好ましく用いられるが、電極との絶縁がとれれば金属製を用いることも可能である。例えば、アルミニウムまたは、ステンレススティールのフレームの内面にポリイミド樹脂等を張り付けても良く、該金属フレームにセラミックス溶射を行い絶縁性をとってもよい。第1図において、平行した両電極の両側面(基材面近くまで)を上記のような材質の物で覆うことが好ましい。
本発明の大気圧プラズマ放電処理装置に設置する第1電源(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
A1 神鋼電機 3kHz SPG3−4500
A2 神鋼電機 5kHz SPG5−4500
A3 春日電機 15kHz AGI−023
A4 神鋼電機 50kHz SPG50−4500
A5 ハイデン研究所 100kHz* PHF−6k
A6 パール工業 200kHz CF−2000−200k
A7 パール工業 400kHz CF−2000−400k
等の市販のものを挙げることができ、何れも使用することができる。
また、第2電源(高周波電源)としては、
印加電源記号 メーカー 周波数 製品名
B1 パール工業 800kHz CF−2000−800k
B2 パール工業 2MHz CF−2000−2M
B3 パール工業 13.56MHz CF−5000−13M
B4 パール工業 27MHz CF−2000−27M
B5 パール工業 150MHz CF−2000−150M
等の市販のものを挙げることができ、何れも好ましく使用できる。なお、上記電源のうち、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。本発明においては、このような電界を印加して、均一で安定な放電状態を保つことができる電極を大気圧プラズマ放電処理装置に採用することが好ましい。
本発明において、対向する電極間に印加する電力は、第2電極(第2の高周波電界)に1W/cm以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第2電極に供給する電力の上限値としては、好ましくは50W/cm、より好ましくは20W/cmである。下限値は、好ましくは1.2W/cmである。なお、放電面積(cm)は、電極において放電が起こる範囲の面積のことを指す。また、第1電極(第1の高周波電界)にも、1W/cm以上の電力(出力密度)を供給することにより、第2の高周波電界の均一性を維持したまま、出力密度を向上させることができる。これにより、更なる均一高密度プラズマを生成でき、更なる製膜速度の向上と膜質の向上が両立できる。好ましくは5W/cm以上である。第1電極に供給する電力の上限値は、好ましくは50W/cmである。ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続サイン波状の連続発振モードと、パルスモードと呼ばれるON/OFFを断続的に行う断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第2電極側(第2の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好ましい。このような大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも、性能的にも過酷な条件に耐えられるものでなければならない。このような電極としては、金属質母材上に誘電体を被覆したものであることが好ましい。
本発明に使用する誘電体被覆電極においては、様々な金属質母材と誘電体との間に特性が合うものが好ましく、その一つの特性として、金属質母材と誘電体との線熱膨張係数の差が10×10−6/℃以下となる組み合わせのものである。好ましくは8×10−6/℃以下、更に好ましくは5×10−6/℃以下、更に好ましくは2×10−6/℃以下である。なお、線熱膨張係数とは、周知の材料特有の物性値である。線熱膨張係数の差が、この範囲にある導電性の金属質母材と誘電体との組み合わせとしては、
1:金属質母材が純チタンまたはチタン合金で、誘電体がセラミックス溶射被膜
2:金属質母材が純チタンまたはチタン合金で、誘電体がガラスライニング
3:金属質母材がステンレススチールで、誘電体がセラミックス溶射被膜
4:金属質母材がステンレススチールで、誘電体がガラスライニング
5:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がセラミックス溶射被膜
6:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がガラスライニング
7:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がセラミックス溶射皮膜
8:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がガラスライニング等がある。
線熱膨張係数の差という観点では、上記1項、2項及び5〜8項が好ましく、特に1項が好ましい。
本発明において、金属質母材は、上記の特性からはチタンまたはチタン合金が特に有用である。金属質母材をチタンまたはチタン合金とすることにより、誘電体を上記とすることにより、使用中の電極の劣化、特にひび割れ、剥がれ、脱落等がなく、過酷な条件での長時間の使用に耐えることができる。
本発明に有用な電極の金属質母材は、チタンを70質量%以上含有するチタン合金またはチタン金属である。本発明において、チタン合金またはチタン金属中のチタンの含有量は、70質量%以上であれば、問題なく使用できるが、好ましくは80質量%以上のチタンを含有しているものが好ましい。本発明に有用なチタン合金またはチタン金属は、工業用純チタン、耐食性チタン、高力チタン等として一般に使用されているものを用いることができる。工業用純チタンとしては、TIA、TIB、TIC、TID等を挙げることができ、何れも鉄原子、炭素原子、窒素原子、酸素原子、水素原子等を極僅か含有しているもので、チタンの含有量としては、99質量%以上を有している。また、チタン合金としては、アルミニウムを含有し、その他バナジウムや錫を含有しているT64、T325、T525、TA3等を好ましく用いることができ、これらのチタン含有量としては、85質量%以上を含有しているものである。これらのチタン合金またはチタン金属はステンレススチール、例えばAISI316に比べて、熱膨張係数が1/2程度小さく、金属質母材としてチタン合金またはチタン金属の上に施された後述の誘電体との組み合わせがよく、高温、長時間での使用に耐えることができる。
一方、誘電体に求められる特性としては、具体的には、比誘電率が6〜45の無機化合物であることが好ましく、また、このような誘電体としては、アルミナ、窒化珪素等のセラミックス、あるいは、ケイ酸塩系ガラス、ホウ酸塩系ガラス等のガラスライニング材等がある。この中では、後述のセラミックスを溶射したものやガラスライニングにより設けたものが好ましい。特にアルミナを溶射して設けた誘電体が好ましい。または、上述のような大電力に耐える仕様の一つとして、誘電体の空隙率が10体積%以下、好ましくは8体積%以下であることで、好ましくは0体積%を越えて5体積%以下である。なお、誘電体の空隙率は、BET吸着法や水銀ポロシメーターにより測定することができる。後述の実施例においては、島津製作所製の水銀ポロシメーターにより金属質母材に被覆された誘電体の破片を用い、空隙率を測定する。誘電体が、低い空隙率を有することにより、高耐久性が達成される。このような空隙を有しつつも空隙率が低い誘電体としては、後述の大気プラズマ溶射法等による高密度、高密着のセラミックス溶射被膜等を挙げることができる。更に空隙率を下げるためには、封孔処理を行うことが好ましい。
上記、大気プラズマ溶射法は、セラミックス等の微粉末、ワイヤ等をプラズマ熱源中に投入し、溶融または半溶融状態の微粒子として被覆対象の金属質母材に吹き付け、皮膜を形成させる技術である。プラズマ熱源とは、分子ガスを高温にし、原子に解離させ、更にエネルギーを与えて電子を放出させた高温のプラズマガスである。このプラズマガスの噴射速度は大きく、従来のアーク溶射やフレーム溶射に比べて、溶射材料が高速で金属質母材に衝突するため、密着強度が高く、高密度な被膜を得ることができる。詳しくは、特開2000−301655号に記載の高温被曝部材に熱遮蔽皮膜を形成する溶射方法を参照することができる。この方法により、上記のような被覆する誘電体(セラミック溶射膜)の空隙率にすることができる。また、大電力に耐える別の好ましい仕様としては、誘電体の厚みが0.5〜2mmであることである。この膜厚変動は、5%以下であることが望ましく、好ましくは3%以下、更に好ましくは1%以下である。誘電体の空隙率をより低減させるためには、上記のようにセラミックス等の溶射膜に、更に、無機化合物で封孔処理を行うことが好ましい。前記無機化合物としては、金属酸化物が好ましく、この中では特に酸化ケイ素(SiOx)を主成分として含有するものが好ましい。
封孔処理の無機化合物は、ゾルゲル反応により硬化して形成したものであることが好ましい。封孔処理の無機化合物が金属酸化物を主成分とするものである場合には、金属アルコキシド等を封孔液として前記セラミック溶射膜上に塗布し、ゾルゲル反応により硬化する。無機化合物がシリカを主成分とするものの場合には、アルコキシシランを封孔液として用いることが好ましい。ここでゾルゲル反応の促進には、エネルギー処理を用いることが好ましい。エネルギー処理としては、熱硬化(好ましくは200℃以下)や、紫外線照射などがある。更に封孔処理の仕方として、封孔液を希釈し、コーティングと硬化を逐次で数回繰り返すと、よりいっそう無機質化が向上し、劣化の無い緻密な電極ができる。
本発明に係る誘電体被覆電極の金属アルコキシド等を封孔液として、セラミックス溶射膜にコーティングした後、ゾルゲル反応で硬化する封孔処理を行う場合、硬化した後の金属酸化物の含有量は60モル%以上であることが好ましい。封孔液の金属アルコキシドとしてアルコキシシランを用いた場合には、硬化後のSiOx(xは2以下)含有量が60モル%以上であることが好ましい。硬化後のSiOx含有量は、XPS(X線光電子分光法)により誘電体層の断層を分析することにより測定する。
本発明の薄膜形成方法に係る電極においては、電極の少なくとも基材と接する側のJIS B 0601で規定される表面粗さの最大高さ(Rmax)が10μm以下になるように調整することが、本発明に記載の効果を得る観点から好ましいが、更に好ましくは、表面粗さの最大値が8μm以下であり、特に好ましくは、7μm以下に調整することである。このように誘電体被覆電極の誘電体表面を研磨仕上げする等の方法により、誘電体の厚み及び電極間のギャップを一定に保つことができ、放電状態を安定化できること、更に熱収縮差や残留応力による歪やひび割れを無くし、且つ、高精度で、耐久性を大きく向上させることができる。誘電体表面の研磨仕上げは、少なくとも基材と接する側の誘電体において行われることが好ましい。更にJIS B 0601で規定される中心線平均表面粗さ(Ra)は0.5μm以下が好ましく、更に好ましくは0.1μm以下である。
本発明に使用する誘電体被覆電極において、大電力に耐える他の好ましい仕様としては、耐熱温度が100℃以上であることである。更に好ましくは120℃以上、特に好ましくは150℃以上である。また上限は500℃である。なお、耐熱温度とは、大気圧プラズマ処理で用いられる電圧において絶縁破壊が発生せず、正常に放電できる状態において耐えられる最も高い温度のことを指す。このような耐熱温度は、上記のセラミックス溶射や、泡混入量の異なる層状のガラスライニングで設けた誘電体を適用したり、上記金属質母材と誘電体の線熱膨張係数の差の範囲内の材料を適宜選択する手段を適宜組み合わせることによって達成可能である。
次に、放電空間に供給するガスについて説明する。
供給するガスは、少なくとも放電ガスおよび薄膜形成ガスを含有する。放電ガスと薄膜形成ガスは混合して供給してもよいし、別々に供給してもかまわない。放電ガスとは、薄膜形成可能なグロー放電を起こすことのできるガスである。放電ガスとしては、窒素、希ガス、空気、水素ガス、酸素などがあり、これらを単独で放電ガスとして用いても、混合して用いてもかまわない。本発明において、放電ガスとして好ましいのは窒素である。放電ガスの50〜100体積%が窒素ガスであることが好ましい。このとき、放電ガスとして窒素以外の放電ガスとしては、希ガスを50体積%未満含有することが好ましい。また、放電ガスの量は、放電空間に供給する全ガス量に対し、90〜99.9体積%含有することが好ましい。薄膜形成ガスとは、それ自身が励起して活性となり、基材上に化学的に堆積して薄膜を形成する原料のことである。
次に、本発明に使用する薄膜を形成するために放電空間に供給するガスについて説明する。基本的に放電ガスと薄膜形成ガスであるが、更に、添加ガスを加えることもある。放電空間に供給する全ガス量中、放電ガスを90〜99.9体積%含有することが好ましい。
本発明に使用する薄膜形成ガスとしては、有機金属化合物、ハロゲン金属化合物、金属水素化合物等を挙げることができる。本発明に有用な有機金属化合物は下記の一般式(I)で示すものが好ましい。
一般式(I)
xMRyR
式中、Mは金属、Rはアルキル基、Rはアルコキシ基、Rはβ−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基であり、金属Mの価数をmとした場合、x+y+z=mであり、x=0〜m、またはx=0〜m−1であり、y=0〜m、z=0〜mで、何れも0または正の整数である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基等を挙げることができる。Rのアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、3,3,3−トリフルオロプロポキシ基等を挙げることができる。またアルキル基の水素原子をフッ素原子に置換したものでもよい。Rのβ−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基としては、β−ジケトン錯体基として、例えば、2,4−ペンタンジオン(アセチルアセトンあるいはアセトアセトンともいう)、1,1,1,5,5,5−ヘキサメチル−2,4−ペンタンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、1,1,1−トリフルオロ−2,4−ペンタンジオン等を挙げることができ、β−ケトカルボン酸エステル錯体基として、例えば、アセト酢酸メチルエステル、アセト酢酸エチルエステル、アセト酢酸プロピルエステル、トリメチルアセト酢酸エチル、トリフルオロアセト酢酸メチル等を挙げることができ、β−ケトカルボン酸として、例えば、アセト酢酸、トリメチルアセト酢酸等を挙げることができ、またケトオキシとして、例えば、アセトオキシ基(またはアセトキシ基)、プロピオニルオキシ基、ブチリロキシ基、アクリロイルオキシ基、メタクリロイルオキシ基等を挙げることができる。これらの基の炭素原子数は、上記例有機金属示化合物を含んで、18以下が好ましい。また例示にもあるように直鎖または分岐のもの、また水素原子をフッ素原子に置換したものでもよい。
本発明において取り扱いの問題から、有機金属化合物が好ましく、分子内に少なくとも一つ以上の酸素を有する有機金属化合物が好ましい。このようなものとしてRのアルコキシ基を少なくとも一つを含有する有機金属化合物、またRのβ−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基を少なくとも一つ有する金属化合物が好ましい。
本発明において、放電空間に供給するガスには、放電ガス、薄膜形成性ガスの他に、薄膜形成の反応を促進する添加ガスを混合してもよい。添加ガスとしては、酸素、オゾン、過酸化水素、二酸化炭素、一酸化炭素、水素、アンモニア等を挙げることができるが、酸素、一酸素化炭素及び水素が好ましく、これらから選択される成分を混合させるのが好ましい。その含有量はガス全量に対して0.01〜5体積%含有させることが好ましく、それによって反応促進され、且つ、緻密で良質な薄膜を形成することができる。上記形成された酸化物または複合化合物の薄膜の膜厚は、0.1〜1000nmの範囲が好ましい。
本発明において、薄膜形成性ガスに使用する有機金属化合物、ハロゲン化金属、金属水素化合物の金属として、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等を挙げることができる。
本発明の薄膜形成方法で、上記のような有機金属化合物、ハロゲン金属化合物、金属水素化合物等の金属化合物を放電ガスと共に使用することにより高機能性のSi、NbN、TiN等の薄膜を得ることができる。なお本発明はこれに限られるものではない。なお、前記窒化物の窒化度はあくまでも一例であり、金属との組成比は適宜変化して良い。また、薄膜には、上記金属化合物以外に、炭素化合物、窒素化合物、水素化合物等の不純物が含有されてもよい。
本発明において、特に好ましい金属化合物の金属は、上記のうちSi(珪素)、Ti(チタン)、Sn(錫)、Zn(亜鉛)、In(インジウム)及びAl(アルミニウム)であり、これらの金属と結合する金属化合物のうち、上記一般式(I)で示した有機金属化合物が好ましい。本発明に有用な錫化合物としては、有機錫化合物、錫水素化合物、ハロゲン化錫等であり、有機錫化合物としては、例えば、ジブチルジエトキシ錫、ブチル錫トリス(2,4−ペンタンジオナート)、テトラエトキシ錫、メチルトリエトキシ錫、ジエチルジエトキシ錫、トリイソプロピルエトキシ錫、エチルエトキシ錫、メチルメトキシ錫、イソプロピルイソプロポキシ錫、テトラブトキシ錫、ジエトキシ錫、ジメトキシ錫、ジイソプロポキシ錫、ジブトキシ錫、ジブチリロキシ錫、ジエチル錫、テトラブチル錫、錫ビス(2,4−ペンタンジオナート)、エチル錫アセトアセトナート、エトキシ錫(2,4−ペンタンジオナート)、ジメチル錫ジ(2,4−ペンタンジオナート)、ジアセトメチルアセタート錫、ジアセトキシ錫、ジブトキシジアセトキシ錫、ジアセトオキシ錫ジアセトアセトナート等、ハロゲン化錫としては、二塩化錫、四塩化錫等を挙げることができ、何れも本発明において、好ましく用いることができる。また、これらの薄膜形成性ガスを2種以上同時に混合して使用してもよい。
本発明に有用なチタン化合物としては、有機チタン化合物、チタン水素化合物、ハロゲン化チタン等があり、有機チタン化合物としては、例えば、トリエトキシチタン、トリメトキシチタン、トリイソプロポキシチタン、トリブトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、メチルジメトキシチタン、エチルトリエトキシチタン、メチルトリイソプロポキシチタン、トリエチルチタン、トリイソプロピルチタン、トリブチルチタン、テトラエチルチタン、テトライソプロピルチタン、テトラブチルチタン、テトラジメチルアミノチタン、ジメチルチタンジ(2,4−ペンタンジオナート)、エチルチタントリ(2,4−ペンタンジオナート)、チタントリス(2,4−ペンタンジオナート)、チタントリス(アセトメチルアセタート)、トリアセトキシチタン、ジプロポキシプロピオニルオキシチタン等、ジブチリロキシチタン、チタン水素化合物としてはモノチタン水素化合物、ジチタン水素化合物等、ハロゲン化チタンとしては、トリクロロチタン、テトラクロロチタン等を挙げることができ、何れも本発明において好ましく用いることができる。またこれらの薄膜形成性ガスを2種以上を同時に混合して使用することができる。
本発明に有用な珪素化合物としては、有機珪素化合物、珪素水素化合物、ハロゲン化珪素化合物等を挙げることができ、有機珪素化合物としては、例えば、テトラエチルシラン、テトラメチルシラン、テトライソプロピルシラン、テトラブチルシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、ジメチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルシランジ(2,4−ペンタンジオナート)、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン等、珪素水素化合物としては、テトラ水素化シラン、ヘキサ水素化ジシラン等、ハロゲン化珪素化合物としては、テトラクロロシラン、メチルトリクロロシラン、ジエチルジクロロシラン等を挙げることができ、何れも本発明において好ましく用いることができる。また、前記フッ素化合物を使用することができる。これらの薄膜形成性ガスを2種以上を同時に混合して使用することができる。また、屈折率の微調整にこれら錫化合物、チタン化合物、珪素化合物を適宜2種以上同時に混合して使用してもよい。薄膜形成性ガスについて、放電プラズマ処理により基材上に均一な薄膜を形成する観点から、全ガス中の含有率は、0.01〜10体積%で有することが好ましいが、更に好ましくは、0.01〜1体積%である。
本発明に用いられる基材について説明する。本発明に用いられる基材としては、板状、シート状またはフィルム状の平面形状のもの、あるいはレンズその他成形物等の立体形状のもの等の薄膜をその表面に形成できるものであれば特に限定はない。基材が静置状態でも移送状態でもプラズマ状態の混合ガスに晒され、均一の薄膜が形成されるものであれば基材の形態または材質には制限ない。形態的には平面形状、立体形状でもよく、平面形状のものとしては、ガラス板、樹脂フィルム等を挙げることができる。材質的には、ガラス、樹脂、陶器、金属、非金属等様々のものを使用できる。具体的には、ガラスとしては、ガラス板やレンズ等、樹脂としては、樹脂レンズ、樹脂フィルム、樹脂シート、樹脂板等を挙げることができる。樹脂フィルムは本発明に係る大気圧プラズマ放電処理装置の電極間または電極の近傍を連続的に移送させて透明導電膜を形成することができるので、スパッタリングのような真空系のようなバッチ式でない、大量生産に向き、連続的な生産性の高い生産方式として好適である。樹脂フィルム、樹脂シート、樹脂レンズ、樹脂成形物等成形物の材質としては、セルローストリアセテート、セルロースジアセテート、セルロースアセテートプロピオネートまたはセルロースアセテートブチレートのようなセルロースエステル、ポリエチレンテレフタレートやポリエチレンナフタレートのようなポリエステル、ポリエチレンやポリプロピレンのようなポリオレフィン、ポリ塩化ビニリデン、ポリ塩化ビニル、ポリビニルアルコール、エチレンビニルアルコールコポリマー、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリエーテルイミド、ポリアミド、フッ素樹脂、ポリメチルアクリレート、アクリレートコポリマー等を挙げることができる。これらの素材は単独であるいは適宜混合されて使用することもできる。中でもゼオネックスやゼオノア(日本ゼオン(株)製)、非晶質シクロポリオレフィン樹脂フィルムのARTON(ジェイエスアール(株)製)、ポリカーボネートフィルムのピュアエース(帝人(株)製)、セルローストリアセテートフィルムのコニカタックKC4UX、KC8UX(コニカミノルタ(株)製)などの市販品を好ましく使用することができる。更に、ポリカーボネート、ポリアリレート、ポリスルフォン及びポリエーテルスルフォンなどの固有複屈折率の大きい素材であっても、溶液流延製膜、溶融押し出し製膜等の条件、更には縦、横方向に延伸条件等を適宜設定することにより使用することができるものを得ることができる。これらのうち光学的に等方性に近いセルロースエステルフィルムが本発明の光学素子に好ましく用いられる。セルロースエステルフィルムとしては、上記のようにセルローストリアセテートフィルム、セルロースアセテートプロピオネートが好ましく用いられるものの一つである。セルローストリアセテートフィルムとしては市販品のコニカタックKC4UX等が有用である。これらの樹脂の表面にゼラチン、ポリビニルアルコール、アクリル樹脂、ポリエステル樹脂、セルロースエステル樹脂等を塗設したものも使用できる。またこれら樹脂フィルムの薄膜側に防眩層、クリアハードコート層、バリア層、防汚層等を設けてもよい。また、必要に応じて接着層、アルカリバリアコート層、ガスバリア層や耐溶剤性層等を設けてもよい。また、本発明に用いられる基材は、上記の記載に限定されない。フィルム形状のものの膜厚としては10〜1000μmが好ましく、より好ましくは40〜200μmである。
本発明を実施例により詳述するが、これらに限定されない。
[実施例1]
基材としてコニカタックKC4UXの長尺フィルム(1500m巻きフィルム)を用い、下記のように裏面側にバックコート層及び表側にハードコート層を塗設し、フィルムロールとして巻き取った。この基材を使用し、第2図の装置を用いてフィルム上に窒化珪素膜を作製した。すなわち、基材を該フィルムロールのアンワインダーから巻きほぐし、ハードコート層の上に大気圧プラズマ放電処理装置でバリアフィルム(試料No.1〜9)を作製した。
〔基材の準備〕
〈クリアハードコート層塗布済み基材の作製〉
コニカタックKC4UXの片面に下記のバックコート層塗布組成物を設け、他の面に、乾燥膜厚で4μmの中心線表面粗さ(Ra)15nmのクリアハードコート層を設け、クリアハードコート層塗布済み基材を作製した。
《バックコート層塗布組成物》
アセトン 30質量部
酢酸エチル 45質量部
イソプロピルアルコール 10質量部
ジアセチルセルロース 0.5質量部
アエロジル200V(日本アエロジル社製)の2質量%アセトン分散液
0.1質量部
《クリアハードコート層塗布組成物》
ジペンタエリスリトールヘキサアクリレート単量体 60質量部
ジペンタエリスリトールヘキサアクリレート2量体 20質量部
ジペンタエリスリトールヘキサアクリレート3量体以上の成分
20質量部
ジメトキシベンゾフェノン 4質量部
酢酸エチル 50質量部
メチルエチルケトン 50質量部
イソプロピルアルコール 50質量部
〔電極の作製〕
前述の第2図の大気圧プラズマ放電処理装置において、誘電体で被覆したロール電極及び同様に誘電体を被覆した複数の角筒型電極のセットを以下のように作製した。第1電極となるロール電極は、冷却水による冷却手段を有するチタン合金T64製ジャケットロール金属質母材に対して、大気圧プラズマ法により高密度、高密着性のアルミナ溶射膜を被覆し、ロール径1000mmφとなるようにした。
封孔処理及び被覆した誘電体表面研磨を行い、Rmaxを5μmとした。最終的な誘電体の空隙率(貫通性のある空隙率)はほぼ0体積%、このときの誘電体層のSiOx含有率は75mol%、また、最終的な誘電体の膜厚は1mm、誘電体の比誘電率は10であった。更に導電性の金属質母材と誘電体の線熱膨張係数の差は1.7×10−6で、耐熱温度は260℃であった。
一方、第2電極の角筒型電極は、中空の角筒型のチタン合金T64に対し、上記同様の誘電体を同条件にて被覆し、対向する角筒型固定電極群とした。この角筒型電極の誘電体については上記ロール電極のものと、誘電体表面のRmax、誘電体層のSiOx含有率、また誘電体の膜厚と比誘電率、金属質母材と誘電体の線熱膨張係数の差、更に電極の耐熱温度は、第1電極とほぼ同じ物性値に仕上がった。この角筒型電極をロール回転電極のまわりに、対向電極間隙を1mmとして25本配置した。角筒型固定電極群の放電総面積は、150cm(幅手方向の長さ)×4cm(搬送方向の長さ)×25本(電極の数)=15000cmであった。なお、何れもフィルターは適切なものを設置した。
[バリアフィルムの作製]
プラズマ放電中、第1電極(ロール回転電極)及び第2電極(角筒型固定電極群)が80℃になるように調節保温し、ロール回転電極はドライブで回転させて次のように薄膜形成を行った。第1電界と第2電界については以下の条件とし、ぞれぞれをアースに接地した。
(第1電界)
電源種類 ;A5
周波数ω ;100kHz
電界強度V ;8kV/mm
(第2電界)
電源種類 ;B3
周波数ω ;13.56M
電界強度V ;0.8kV/mm
圧力は103kPaとし、下記の混合ガスをそれぞれの放電空間及びプラズマ放電処理装置内部へ導入し、上記バックコート層及びクリアハードコート層塗布済み基材のクリアハードコート層の上にプラズマ放電薄膜形成を行い、バリアフィルムを作製し試料1〜9とした。なお、この系での窒素ガスの放電開始電圧は3.7kV/mmであった。何れもフィルターを設置して実施した。
《混合ガス組成物》
放電ガス:窒素 98.9体積%
薄膜形成性ガス:テトラチタンイソプロポキシ 0.1体積%
(リンテック社製気化器にてアルゴンガスに混合して気化)
添加ガス:N2Oガス 1体積%
なお表1のように窒素含有ガス、放電ガス種、を採用してバリアフィルム1〜9とした。製膜した膜厚を測定したところ、100nmであった。
〔膜の評価〕
《炭素含有率・窒素含有率の測定》
炭素元素・窒素元素の含有率はXPS表面分析装置を用いて測定した。本実施例においてはVGサイエンティフィックス社製ESCALAB−200Rを用いた。X線アノードにはMgを用い、出力600W(加速電圧15kV,エミッション電流40mA)で測定した。エネルギー分解能は、Ag3d5/2ピークの半値幅で規定したとき、1.5〜1.7eVとなるように設定した。
《ガスバリア性の評価》
酸素透過試験器(Modern Contorol社製;OX−TRAN2/20)により、対象のフィルムの23℃、相対湿度80%の雰囲気下における酸素透過度を測定した。以上の結果を表1に示す。
Figure 2005059202
本発明の薄膜形成方法で作製した窒化チタン膜は、炭素原子比率が低く、酸素ガスの透過率が比較例よりも低く、バリア性が良好であった。
本発明により、窒素のような安価且つ安全な放電ガスを用いて、高密度プラズマを発生させることができ、また緻密な薄膜を得ることができ、更に良質な薄膜を高速で製膜できる薄膜形成方法を提供できる。これにより良質で高性能の薄膜を有する基材を安価に提供できる。

Claims (14)

  1. 大気圧もしくはその近傍の圧力下、放電空間に薄膜形成ガスを含有するガスを供給し、前記放電空間に高周波電界を印加することにより前記ガスを励起し、励起した前記ガスに基材を晒すことにより前記基材上に薄膜を形成する薄膜形成方法において、前記ガスは窒素元素を有するガスを含有し、前記基材上に形成される薄膜が窒化膜であり、前記高周波電界が、第1の高周波電界および第2の高周波電界を重畳したものであり、前記第1の高周波電界の周波数ωより前記第2の高周波電界の周波数ωが高く、前記第1の高周波電界の強さV、前記第2の高周波電界の強さV及び放電開始電界の強さIVとの関係が、
    ≧IV>V
    又は V>IV≧V を満たし、前記第2の高周波電界の出力密度が、1W/cm以上であることを特徴とする薄膜形成方法。
  2. 前記放電空間が、対向する第1電極と第2電極とで構成されることを特徴とする請求の範囲第1項記載の薄膜形成方法。
  3. 前記第2の高周波電界の出力密度が、50W/cm以下であることを特徴とする請求の範囲第1項記載の薄膜形成方法。
  4. 前記第2の高周波電界の出力密度が、20W/cm以下であることを特徴とする請求の範囲第3項記載の薄膜形成方法。
  5. 前記第1の高周波電界の出力密度が1W/cm以上であることを特徴とする請求の範囲第1項記載の薄膜形成方法。
  6. 前記第1の高周波電界の出力密度が、50W/cm以下であることを特徴とする請求の範囲第5項記載の薄膜形成方法。
  7. 前記第1の高周波電界及び前記第2の高周波電界がサイン波であることを特徴とする請求の範囲第1項記載の薄膜形成方法。
  8. 前記第1の高周波電界を前記第1電極に印加し、前記第2の高周波電界を前記第2電極に印加することを特徴とする請求の範囲第2項記載の薄膜形成方法。
  9. 前記放電空間に供給される全ガス量の90〜99.9体積%が放電ガスであることを特徴とする請求の範囲第1項記載の薄膜形成方法。
  10. 前記放電ガスが、50〜100体積%の窒素ガスを含有することを特徴とする請求の範囲第9項記載の薄膜形成方法。
  11. 前記放電ガスが、50体積%未満の希ガスを含有することを特徴とする請求の範囲第9項記載の薄膜形成方法。
  12. 前記薄膜形成ガスが、有機金属化合物、ハロゲン化金属、金属水素化合物から選ばれる少なくとも一つを含有することを特徴とする請求の範囲第1項記載の薄膜形成方法。
  13. 前記有機金属化合物が、有機珪素化合物、有機チタン化合物、有機錫化合物、有機亜鉛化合物、有機インジウム化合物及び有機アルミニウム化合物から選ばれる少なくとも一つの化合物を含有することを特徴とする請求の範囲第12項記載の薄膜形成方法。
  14. 請求の範囲第1項〜第13項の何れか1項記載の薄膜形成方法により形成された薄膜を有することを特徴とする基材。
JP2005516295A 2003-12-16 2004-12-02 薄膜形成方法並びに該方法により薄膜が形成された基材 Withdrawn JPWO2005059202A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003417706 2003-12-16
JP2003417706 2003-12-16
PCT/JP2004/018322 WO2005059202A1 (ja) 2003-12-16 2004-12-02 薄膜形成方法並びに該方法により薄膜が形成された基材

Publications (1)

Publication Number Publication Date
JPWO2005059202A1 true JPWO2005059202A1 (ja) 2007-07-12

Family

ID=34697077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005516295A Withdrawn JPWO2005059202A1 (ja) 2003-12-16 2004-12-02 薄膜形成方法並びに該方法により薄膜が形成された基材

Country Status (2)

Country Link
JP (1) JPWO2005059202A1 (ja)
WO (1) WO2005059202A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6817028B1 (en) 1999-06-11 2004-11-09 Scientific-Atlanta, Inc. Reduced screen control system for interactive program guide
US7010801B1 (en) 1999-06-11 2006-03-07 Scientific-Atlanta, Inc. Video on demand system with parameter-controlled bandwidth deallocation
US7992163B1 (en) 1999-06-11 2011-08-02 Jerding Dean F Video-on-demand navigational system
US8516525B1 (en) 2000-06-09 2013-08-20 Dean F. Jerding Integrated searching system for interactive media guide
US7200857B1 (en) 2000-06-09 2007-04-03 Scientific-Atlanta, Inc. Synchronized video-on-demand supplemental commentary
US7975277B1 (en) 2000-04-03 2011-07-05 Jerding Dean F System for providing alternative services
US7934232B1 (en) 2000-05-04 2011-04-26 Jerding Dean F Navigation paradigm for access to television services
US8069259B2 (en) 2000-06-09 2011-11-29 Rodriguez Arturo A Managing removal of media titles from a list
US7962370B2 (en) 2000-06-29 2011-06-14 Rodriguez Arturo A Methods in a media service system for transaction processing
US7340759B1 (en) 2000-11-10 2008-03-04 Scientific-Atlanta, Inc. Systems and methods for adaptive pricing in a digital broadband delivery system
US7526788B2 (en) 2001-06-29 2009-04-28 Scientific-Atlanta, Inc. Graphic user interface alternate download options for unavailable PRM content
US7512964B2 (en) 2001-06-29 2009-03-31 Cisco Technology System and method for archiving multiple downloaded recordable media content
US8006262B2 (en) 2001-06-29 2011-08-23 Rodriguez Arturo A Graphic user interfaces for purchasable and recordable media (PRM) downloads
US7496945B2 (en) 2001-06-29 2009-02-24 Cisco Technology, Inc. Interactive program guide for bidirectional services
US7334251B2 (en) 2002-02-11 2008-02-19 Scientific-Atlanta, Inc. Management of television advertising
US8161388B2 (en) 2004-01-21 2012-04-17 Rodriguez Arturo A Interactive discovery of display device characteristics
US8189472B2 (en) 2005-09-07 2012-05-29 Mcdonald James F Optimizing bandwidth utilization to a subscriber premises
JP6473889B2 (ja) * 2014-09-19 2019-02-27 パナソニックIpマネジメント株式会社 プラズマ処理装置及び方法、電子デバイスの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3414934B2 (ja) * 1996-06-06 2003-06-09 松下電器産業株式会社 薄膜形成方法
JP4514911B2 (ja) * 2000-07-19 2010-07-28 東京エレクトロン株式会社 プラズマ処理装置
JP3897582B2 (ja) * 2000-12-12 2007-03-28 キヤノン株式会社 真空処理方法、真空処理装置、半導体装置の製造方法および半導体装置
JP4984367B2 (ja) * 2001-09-28 2012-07-25 コニカミノルタホールディングス株式会社 基材、及び表示装置
JP4433680B2 (ja) * 2002-06-10 2010-03-17 コニカミノルタホールディングス株式会社 薄膜形成方法
JP4686956B2 (ja) * 2002-08-28 2011-05-25 コニカミノルタホールディングス株式会社 機能体の形成方法

Also Published As

Publication number Publication date
WO2005059202A1 (ja) 2005-06-30

Similar Documents

Publication Publication Date Title
JP5115522B2 (ja) 薄膜形成方法
JP4433680B2 (ja) 薄膜形成方法
JP5082242B2 (ja) 薄膜形成方法
JPWO2005059202A1 (ja) 薄膜形成方法並びに該方法により薄膜が形成された基材
WO2006033268A1 (ja) 透明導電膜
WO2007077871A1 (ja) 防湿性セルロースエステルフィルム、偏光板保護フィルム及び偏光板
JPWO2006025356A1 (ja) ガスバリア積層体及びその製造方法
WO2006067952A1 (ja) ガスバリア性薄膜積層体、ガスバリア性樹脂基材、有機elデバイス
JP2005272957A (ja) 表面処理方法及び該表面処理方法により表面処理された基材
JPWO2008047549A1 (ja) 透明導電膜基板及びこれに用いる酸化チタン系透明導電膜の形成方法
JP4899863B2 (ja) 薄膜形成装置及び薄膜形成方法
JP4686956B2 (ja) 機能体の形成方法
JP4534081B2 (ja) 薄膜形成装置
JP4349052B2 (ja) ディスプレイ用フレネルレンズの製造方法
JP4821324B2 (ja) 透明でガスバリア性の高い基材及びその製造方法
JP2007056329A (ja) 透明導電膜及びその形成方法
JP2005060770A (ja) 薄膜形成装置
JP2005200737A (ja) 透明導電膜形成方法
JP2006175633A (ja) ガスバリア性薄膜積層体、及びガスバリア性樹脂基材、及び有機elデバイス
JP2006002224A (ja) 薄膜形成方法
JP4432429B2 (ja) ディスプレイ用レンチキュラーレンズの製造方法
JP2006267347A (ja) 薄膜、反射防止基材、半導体デバイスと微粒子製造方法及び薄膜製造方法
JP4345284B2 (ja) 薄膜製膜装置
JP2004246241A (ja) 光学素子及びその製造方法
JP4269754B2 (ja) 透明導電膜積層体およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100826