JP4912513B2 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
JP4912513B2
JP4912513B2 JP2011535822A JP2011535822A JP4912513B2 JP 4912513 B2 JP4912513 B2 JP 4912513B2 JP 2011535822 A JP2011535822 A JP 2011535822A JP 2011535822 A JP2011535822 A JP 2011535822A JP 4912513 B2 JP4912513 B2 JP 4912513B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
solid
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011535822A
Other languages
English (en)
Other versions
JPWO2011111662A1 (ja
Inventor
富士雄 舛岡
望 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unisantis Electronics Singapore Pte Ltd
Original Assignee
Unisantis Electronics Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisantis Electronics Singapore Pte Ltd filed Critical Unisantis Electronics Singapore Pte Ltd
Priority to JP2011535822A priority Critical patent/JP4912513B2/ja
Application granted granted Critical
Publication of JP4912513B2 publication Critical patent/JP4912513B2/ja
Publication of JPWO2011111662A1 publication Critical patent/JPWO2011111662A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/63Noise processing, e.g. detecting, correcting, reducing or removing noise applied to dark current
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Description

本発明は、固体撮像装置に関し、特に、低残像化、低暗電流化、低ノイズ化、低混色化および高画素密度化を図った固体撮像装置に関する。
現在、CCDおよびCMOS固体撮像装置は、各種ビデオカメラ、スチールカメラ等に広く用いられている。そして、固体撮像装置の高解像度化および高感度化に関する性能向上が常に求められている。固体撮像装置の高解像度化を実現するために、画素高密度化による技術革新が行われてきた。また、固体撮像装置の高感度化を実現するために、低ノイズ化による技術革新が行われてきた。
従来の固体撮像装置の一例が非特許文献1に開示されている。非特許文献1に開示されている従来のCMOS固体撮像装置を図24(a)に示す。図24(a)はCMOS固体撮像装置の1画素構成図である。このCMOS固体撮像装置は、PNフォトダイオードPDと、PNフォトダイオードPDに繋がった転送ゲートTGと、転送ゲートTG電極下のチャネル20に繋がった浮遊ダイオードFDと、増幅MOSトランジスタ21と、増幅MOSトランジスタ21に接続された第1の画素選択MOSトランジスタ22と、リセットMOSトランジスタ23と、転送ゲートTGに接続された第2の画素選択MOSトランジスタ24から構成される。PNフォトダイオードPDは、フォトダイオードN層27の表面にフォトダイオード表面P層19を有し、フォトダイオード表面P層19は、チャネルストッパP層18に接続されている。また、増幅MOSトランジスタ21は、浮遊ダイオードFDに接続されたゲートAGを有する。また、リセットMOSトランジスタ23は、浮遊ダイオードFDに接続されたリセットゲートRG(n)とリセットドレインRDダイオードを有する。第1および第2の画素選択MOSトランジスタ22,24のゲートは、列選択線RL(m)に繋がった列走査回路に接続されている。第2の画素選択MOSトランジスタ24のソースに繋がった行選択線CL(n)とリセットMOSトランジスタ23のゲートRG(n)は、行走査回路に接続されている。また、リセットMOSトランジスタ23のリセットドレインRDと増幅MOSトランジスタ21のドレインは、電圧Vddの電源線に接続されている。そして、第1の画素選択MOSトランジスタ22のソースは、信号線25に接続されている。
光照射により発生した信号電荷(この場合は電子)はPNフォトダイオードPDに蓄積される。この蓄積された信号電荷は、転送ゲートTGにオン電圧が印加されることにより浮遊ダイオードFDに転送される。これにより、浮遊ダイオードFDの電位が信号電荷量に応じて変化する。同時に、浮遊ダイオードFDに繋がった増幅MOSトランジスタ21のゲート電圧がこの信号電荷量に応じて変化する。第1の画素選択MOSトランジスタ22のゲートにオン電圧が印加されると、信号電荷の量に応じて変化した増幅MOSトランジスタ21のゲート電圧に応じた信号電流が信号線25に流れる。この電流が出力として読み出される。
図24(b)に転送ゲートTGにオン電圧が印加されてフォトダイオードPDに蓄積されていた信号電荷が浮遊ダイオードFDに転送されるときの、図24(a)における切断線A―Aに沿った電位分布を示す。なお、図24(b)では区別のため、信号電荷26a,26bおよび電荷26cをハッチングで示す。フォトダイオードPDに蓄積された信号電荷26aは浮遊ダイオードFDに移される。浮遊ダイオードFDから転送された信号電荷26bは増幅MOSトランジスタ21のゲート電圧を変調する。ここで、信号電荷がないときのフォトダイオードPDの最も深い電位Φmpと転送ゲートTGにオン電圧が印加されているときのチャネル20の電位Φtgと信号電荷が転送されていないときの浮遊ダイオードFDの電位Φfgとの関係が、Φfgが最も深く、続いてΦtgが深く、Φmpが最も浅くなっている。この画素では信号電荷は電子であるので、Φfg>Φtg>Φmpの関係になっている。そして、チャネルストッパP層18の電位は0Vである。この電位分布関係によりフォトダイオードPDの信号電荷のほとんどが浮遊ダイオードFDに転送される。これにより、動く被写体を撮像したときの尾引き残像を防止することができる。さらに、このような構成により、感度低下の原因となるkTCノイズ発生も抑えることができる。浮遊ダイオードFDにある信号電荷26bは、リセットゲートRG(n)に電圧を印加してリセットドレインRDに除去される。この場合、浮遊ダイオードFDには、所定の電荷26cが残存している。
このフォトダイオードPDから浮遊ダイオードFDへの信号電荷の完全転送は、0Vが印加されているチャネルストッパP層18に、フォトダイオードPDのN層27表面に設けられたP層(以下、フォトダイオード表面P層)19が接続されて、フォトダイオード表面P層19の電位が0Vに固定(ピンニング)されていることにより可能となっている。図24(c)に、図24(a)の切断線B−Bに沿ったSiO膜、フォトダイオード表面P層19、フォトダイオードN層27、フォトダイオードP層28の電位分布を示す。なお、図24(c)では区別のため、信号電荷26dをハッチングで示す。信号電荷がないときのフォトダイオードPDにおける最も深い電位ΦmpはフォトダイオードN層27内にある。このため信号電荷26dは電位固定されたフォトダイオード表面P層19より内側のフォトダイオードN層27、フォトダイオードP層28側に存在する。フォトダイオード表面P層19にはホール29が蓄積されており、ホール29はSiO−Si界面準位より熱的に励起される電子と再結合して、信号電荷26dへの混入を防止している。これにより、暗電流の発生が抑制される。
他の固体撮像装置として、図25に示すように、1つの島状半導体30に1画素を構成するものがある(例えば、特許文献1を参照)。この画素においては、基板上に信号線N層31が形成されている。また、信号線N層31に繋がった島状半導体30の外周部にP形半導体層32、絶縁膜33a,33b、ゲート導体層34a,34bよりなるMOSトランジスタが形成されている。さらに、このMOSトランジスタに繋がって、光照射による発生電荷を蓄積するフォトダイオードが島状半導体30の外周部に形成されている。このフォトダイオードは、N形半導体層35a,35bとP形半導体層32とから構成される。このフォトダイオードで囲まれたP形半導体層32をチャネルとし、このフォトダイオードをゲートとし、フォトダイオード上に形成され画素選択線37a,37bに繋がったP層36と信号線N層31近傍のP形半導体層32をソースとドレインにした増幅接合トランジスタが形成されている。
この固体撮像装置の基本動作は、光照射により形成された信号電荷(この場合は電子)をフォトダイオードに蓄積する信号電荷蓄積動作と、信号線N層31近傍のP形半導体32とP層36との間に流れるソース・ドレイン電流を前述の蓄積信号電荷に応じたフォトダイオード電圧によるゲート電圧により変調し、これを信号電流として読み出す信号読み出し動作と、この信号読み出し動作後、フォトダイオードに蓄積されている信号電荷をMOSトランジスタのゲート導体層34a,34bにオン電圧を印加して信号線N層31に除去するリセット動作よりなる。
国際公開第2009/034623号
K.Yonemoto, H.Sumi, R.Suzuki, T.Ueno,: "A CMOS Image Sensor with a Simple FPN-Reduction Technology and a Hole Accumulated Diode", 2000 International Solid-State Circuits Conference, Digest Papers, MP6.1 (2000) H.Takato, K.Sunouchi, N.Okabe, A.Nitayama, K.Hieda, F.Horiguchi, F.Masuoka: "Impact of Surrounding Gate Transistor(SGT) for Ultra-High-Density LSI's", IEEE Transactions on Electron devices, Vol.38, No.3, pp.573-578 (1991)
図24(a)に示されるCMOS固体撮像装置においては、0Vに電位固定されたチャネルストッパP層18に繋がったフォトダイオードPD表面P層19が無ければ、フォトダイオードPDを直接、増幅MOSトランジスタ21のゲートAGに接続することができる。これにより、フォトダイオードPDに蓄積した信号電荷量に応じて増幅用MOSトランジスタ21のゲートAGの電圧を直接、変化させることができ、撮像動作が可能になる。しかしながら、このような構成では、前述のように残像、kTCノイズ、および暗電流が増加する恐れがある。これに対し、フォトダイオードPD表面P層19を設けると、フォトダイオードPD上部よりコンタクトホールを空けて金属配線によりフォトダイオードPDを増幅MOSトランジスタ21のゲートAGに繋げることが出来ない。このために、新たに転送ゲートTGと浮遊ダイオードFDが必要になっている。このような新たな領域の付加は画素高密度化を損なう原因になっている。
また、図25に示した固体撮像装置では、図24(a)に示すようなチャネルストッパP層18はなく、島状半導体30間の絶縁層(または空気層)38a,38bにより画素間が分離されている。そのため、この固体撮像装置は、図24(a)に示される固体撮像装置と異なり、N形半導体層35a,35bの表面に、0Vに固定(ピンニング)されたP層を有していない。このため、この固体撮像装置は、前述の残像、kTCノイズおよび暗電流ノイズが高いという問題を持っている。これに対し、例えばP層36とN形半導体層35a,35bとの間に、0Vの外部配線に繋がったグランドP層と、このグランドP層に繋がった、N形半導体層35a,35b上のP層と、グランド配線と、グランド配線とグランドP層とを繋ぐコンタクトホールとを設けると、画素構造を複雑にさせ、製造工程が増えることによって画素高密度化を損なう問題がある。
また、上述したような構造の固体撮像装置においては、画像30に斜め方向に入った入射光39aの一部は、図25において破線で示すように、隣接画素への漏洩光39bとなり、隣接画素で信号電荷を発生する。このため、白黒固体撮像装置における解像度の低下、そしてカラー固体撮像装置での混色を生じる。解像度低下、特にカラー撮像における混色は、大きな画質低下を生じる問題もある。
本発明は、上記の事情を鑑みてなされたものであり、低残像、低暗電流、低ノイズおよび高画素密度の固体撮像装置を実現することを目的とする。また、本発明は、解像度低下およびカラー撮像における混色を抑制した固体撮像装置を実現することを他の目的とする。
上記目的を達成するために、本発明の固体撮像装置は、1個または複数の画素を有する固体撮像装置であって、前記画素が、基板上に形成された第1の半導体層と、該第1の半導体層上に形成された第2の半導体層と、前記第2の半導体層の下部の側面に形成された第1の絶縁膜と、前記第1の絶縁膜を介して前記第2の半導体層の下部の側面に形成されたゲート導体層と、前記第2の半導体層の上部の側面に形成された第3の半導体層と、前記第2の半導体層の側面と対向していない前記第3の半導体層の側面に形成された第4の半導体層と、前記第2の半導体層と前記第3の半導体層の上に形成され、且つ、前記第4の半導体層と電気的に接続された、第5の半導体層と、からなり、少なくとも、前記第3の半導体層と、前記第2の半導体層のうち該第3の半導体層が形成された上部領域と、前記第4の半導体層と、前記第5の半導体層とが、島状形状内に形成され、前記第2の半導体層と前記第3の半導体層とはダイオードを形成し、前記ダイオードはゲートとして機能し、且つ、前記第1の半導体層と前記第5の半導体層との間の前記第2の半導体層がチャネルとして機能することで接合トランジスタが形成され、前記第1の半導体層と前記第3の半導体層の間にある第2の半導体層はチャネルとして機能し、且つ、前記ゲート導体層はゲートとして機能することでMOSトランジスタが形成され、前記ダイオードに電磁エネルギー波の照射により発生した信号電荷を蓄積し、前記ダイオードに蓄積された信号電荷量に応じて変化する、前記接合トランジスタに流れる電流が信号として検知され、前記ダイオードに蓄積された信号電荷が、前記MOSトランジスタのチャネルを通じて、前記第1の半導体層に除去され、前記第4の半導体層と前記第5の半導体層との電圧が同一の電圧であることを特徴とする。
好ましくは、本発明の固体撮像装置は、遮光性の導電性材料から構成され、前記島状形状内に形成された前記第3の半導体層と前記第2の半導体層の前記上部領域と前記第4の半導体層とを囲むように前記第4の半導体層の側面領域に第1の絶縁膜を介して形成された第1の導体層をさらに備え、該第1の導体層は、前記第5の半導体層に接続されていてもよい。
本発明によれば、低残像、低暗電流、低ノイズおよび高画素密度の固体撮像装置を提供することができる。
また、島状形状内に形成された半導体層の外周部を囲むように遮光性の層を備えることにより、混色および解像度低下を抑制することができる。
本発明の第1の実施形態に係る固体撮像装置の画素構造図である。 本発明の第1の実施形態の変形例に係る固体撮像装置の画素構造図である。 第1の実施形態に係る固体撮像装置の回路構成図である。 第1の実施形態を説明するための画素構造図と電位分布図である。 第1の実施形態を説明するための画素構造図と電位分布図である。 本発明の第2の実施形態を説明するための画素構造図である。 本発明の第3の実施形態に係る固体撮像装置の画素構造図である。 本発明の第4の実施形態に係る固体撮像装置の画素構造図である。 本発明の第5の実施形態に係る固体撮像装置の画素構造図である。 本発明の第6の実施形態に係る固体撮像装置の画素構造図である。 本発明の第7の実施形態に係る固体撮像装置の画素構造図である。 本発明の第8の実施形態に係る固体撮像装置の画素構造図である。 本発明の第9の実施形態に係る固体撮像装置の画素構造図である。 第9の実施形態に係る固体撮像装置の製造方法を説明するための図である。 第9の実施形態に係る固体撮像装置の製造方法を説明するための図である。 第9の実施形態に係る固体撮像装置の製造方法を説明するための図である。 第9の実施形態に係る固体撮像装置の製造方法を説明するための図である。 第9の実施形態に係る固体撮像装置の製造方法を説明するための図である。 第9の実施形態に係る固体撮像装置の製造方法を説明するための図である。 第9の実施形態に係る固体撮像装置の製造方法を説明するための図である。 第9の実施形態に係る固体撮像装置の製造方法を説明するための図である。 第9の実施形態に係る固体撮像装置の製造方法を説明するための図である。 本発明の第10の実施形態に係る固体撮像装置の断面図である。 本発明の第11の実施形態に係る固体撮像装置の断面図である。 第1の従来の固体撮像装置およびその動作を説明するための画素構成図と電位分布図である。 第2の従来の固体撮像装置を説明するための画素構造図である。
以下、本発明の実施の形態を図1A〜図23を参照しながら説明する。
(第1の実施形態)
以下、図1A〜図4を参照しながら、本発明の第1の実施形態に係る固体撮像装置100について説明する。
図1Aに第1の実施形態に係る固体撮像装置100の画素構造を示す。各画素11には、基板上に第1の走査方向に繋がる配線XLに接続された第1の半導体層N層1が形成されている。第1の半導体層N層1上には、反対導電型の第2の半導体層P層2と絶縁膜3a,3bとゲート導体層4a,4bとから構成されるMOSトランジスタ111が形成され、MOSトランジスタ111に繋がって第2の半導体層P層2と第3の半導体層N層5a,5bとから構成されるフォトダイオード112が形成されている。また、フォトダイオード112表面に第4の半導体層P層6a,6bが設けられ、第4の半導体層P層6a,6bと繋がる第5の半導体層P層7が形成されている。第5の半導体層P層7は、第1の走査方向と直交した方向に延びる配線YLに接続されている。また、少なくともフォトダイオード112が形成される領域(第2の半導体層P層2のうち第3の半導体層N層5a,5bが配置されている上部領域および第3の半導体層N層5a,5b)と第4の半導体層P層6a,6bと第5の半導体層P層7とが島状形状内に形成されている。なお、本実施形態においては、配線XLは信号線であり、配線YLは画素選択線であるが、配線XLが画素選択線で、配線YLが信号線であってもよい。
第1の実施形態において、第2の半導体層は、P型導電型半導体からなるP層2であるが、図1Bに示すように、P層2の代わりに、真正型の半導体層からなるi層2iであってもよい。真正型の半導体とは、実質的に一種の元素からなる半導体である。真正型の半導体は、不純物が混入しないように製造されるが、実際には不可避的に極微量の不純物を含む。i層2iを構成する真正型の半導体層は、固体撮像装置100としての機能を阻害しない程度であれば、微量のアクセプタ或いはドナー不純物を含んでいても構わない。こうした構成によれば、第3の半導体N層5a,5bと第2の半導体層i層2iによりフォトダイオードが形成され、そして第5の半導体層P層7と信号線N層1との間に十分な電圧が印加されると、前記第5の半導体層P層7の正孔(ホール)は、第2の半導体層i層2iの内部に生じた電位勾配によって、信号線N層1に向かって流れる。このようにして、第2の半導体層i層2iは、図1Aにおける第2の半導体層P層2と同様に接合トランジスタのチャネルとして機能する。
図2に本実施形態に係る固体撮像装置100の回路構成の一例を示す。固体撮像装置100は、2次元のマトリクス状に配列された複数の画素11a〜11dと、垂直走査回路201と、水平走査回路202と、リセット回路203と、画素選択線YL1,YL2と、信号線XL1,XL2と、リセット線RSLと、信号線MOSトランジスタTr1,Tr2と、相関二重サンプリング(CDS)出力回路204と、を主に備えている。本実施形態においては、画素が2行2列に配列された場合について説明するが、本発明に係る固体撮像装置は、これに限定されるものではない。
図2に示すように、各画素11a〜11dに画素選択信号を入力する垂直走査回路201が、画素選択線YL1,YL2を介して行毎に各画素11a〜11dに接続されている。各画素11a〜11dはまた、列毎に信号線XL1,XL2を介してCDS出力回路204に接続されている。各信号線に配置された信号線MOSトランジスタTr1,Tr2のゲート電極は、これらゲート電極に信号線選択信号を入力する水平走査回路202に接続されている。信号線XL1,XL2はまた、切替スイッチ部SW1,SW2に接続されている。また、リセット動作のためのMOSトランジスタ111のゲート導体層4a,4bは、リセット線RSLを介して、ゲート導体層4a,4bにリセット信号を入力するリセット回路203に接続されている。このような回路構成の動作により、画素11a〜11dの信号電流が逐次CDS出力回路204から読出される。
次に、図2〜図4を参照しながら、本実施形態に係る固体撮像装置100の基本動作について説明する。なお、図3および図4の電位分布図において、区別のため、蓄積した信号電荷はハッチングで示す。
固体撮像装置100の基本動作は、信号電荷蓄積動作と信号読み出し動作とリセット動作よりなる。信号電荷蓄積動作においては、光照射により発生した信号電荷を第3の半導体層N層5a,5bおよび第3の半導体層N層5a,5b近傍の第2の半導体層P層2(以下、「フォトダイオード領域」という)に蓄積する。信号読み出し動作においては、第1の半導体層N層1近傍の第2の半導体層P層2と第5の半導体層P層7との間に流れる電流を測定することにより、この蓄積された信号電荷を測定する。第1の半導体層N層1近傍の第2の半導体層P層2と第5の半導体層P層7との間に流れる電流は、フォトダイオード領域に蓄積された信号電荷に応じて変化するので、この電流を測定することにより、蓄積された信号電荷量を測定することができる。リセット動作においては、MOSトランジスタ111のゲート導体層4a,4bにオン電圧を印加して第1の半導体層N層1と第3の半導体層N層5a,5bとの間にチャネルを形成する。これにより、フォトダイオード領域に蓄積された信号電荷を第1の半導体層N層1に流して除去する。
図3(a)は、信号読み出し期間においてフォトダイオード領域に信号電荷が蓄積されていないときの画素構造図であり、その場合におけるフォトダイオード112の空乏層8a,8bを破線で示している。本実施形態においては、フォトダイオード領域に信号電荷が蓄積されていない場合、フォトダイオード112の空乏層8a,8bは、第2の半導体層P層2のうちフォトダイオード112が形成される上部領域の一部に形成されている。
図3(b)は図3(a)のA−A線に沿った電位分布図を示している。信号読み出し期間においては、第1の半導体層N層1の電位(VXLR)、第5の半導体層P層7の電位(VYLR)、信号電荷が蓄積されていないときの第3の半導体層N層5a,5b内の最も深い電位ΦPRの順番に深くさせる。本実施形態において信号電荷は電子であるため、各電位が、ΦPR>VYLR>VXLRの電位関係になるように設定されている。
また、フォトダイオード表面P層(第4の半導体層P層)6a,6bは第5の半導体層P層7と電気的に繋がっているので、フォトダイオード表面P層6a,6bの電位はVYLRとなっている。そして、フォトダイオード表面P層6a,6bには第5の半導体層P層7よりホール29が供給され蓄積している。
図3(c)は、信号読み出し期間においてフォトダイオード領域に信号電荷が蓄積されているときの画素構造図であり、図3(d)は、図3(c)のA−A線に沿った電位分布図を示している。信号読み出し期間では、図3(d)に示すように、フォトダイオード領域に信号電荷が蓄積され、蓄積信号電荷によってフォトダイオード電位ΦGRが変化する。そして、図3(c)に示すように、蓄積信号電荷によって生じるフォトダイオード電位ΦGRに応じて、空乏層8a,8b幅が減少する。これにより、増幅用接合トランジスタのチャネルとして働く第2の半導体層P層2の幅が変化し、第1の半導体層N層1近傍の第2の半導体層P層2および第5の半導体層P層7の間に流れる電流が変化する。
図3(e)は、信号読み出し期間において、信号電荷が更に蓄積され、蓄積信号電荷として、読み出す最大信号電荷量QSRMに加えて過剰信号電荷Qexがフォトダイオード領域に蓄積されているときの、図3(c)のA−A線に沿った電位分布を模式的に示す。本実施形態では、フォトダイオード電位ΦGRがVYLRになるまで、信号電荷がフォトダイオード領域に蓄積される。これ以上の光照射による過剰信号電荷Qexはフォトダイオード表面P層6a,6bに蓄積されているホール29と再結合して消滅する。本実施形態においては、電位関係がVXLR<VYLRに設定されているので、過剰信号電荷Qexが第2の半導体層P層2に流れ出ることはない。これにより、特別な過剰信号電荷除去のためのドレインを形成することなく、フォトダイオード領域で光照射により生成した過剰信号電荷を除去することができる。従って、図25に示した従来の固体撮像装置のように、過剰な信号電荷が増幅用接合トランジスタのチャネルに混入することがない。
図4(a)は、信号電荷蓄積期間において、フォトダイオード領域に信号電荷が蓄積されていないときの空乏層8a,8bを記入した画素構造図である。本実施形態においては、フォトダイオード領域に信号電荷が蓄積されていない場合、フォトダイオード112の空乏層8a,8bは、第2の半導体層P層2の上部領域の一部に形成されている。
図4(b)は、図4(a)のA−A線に沿った電位分布図を示す。信号電荷蓄積期間においては、例えば、第1の半導体層N層1の電圧VXLRを0V、第5の半導体層P層7の電圧VYLRを0V、MOSトランジスタ111のゲート導体層4a,4bを0Vに設定する。これにより、光照射に応じて、図4(b)に示すように、蓄積信号電荷QSSがフォトダイオード領域に蓄積される。読み出す最大信号電荷量QSRMより多く蓄積信号電荷QSSが蓄積されると、信号読み出し動作に移行した際、上述したように、過剰な電荷が、第4の半導体層P層6a,6bに蓄積されているホール29と再結合して除去される。
図4(c)にリセット期間における図1AのA−A線に沿った電位分布図を示す。リセット期間においては、第5の半導体層P層7の電位(VYLR)、信号電荷が蓄積されていないときの第3の半導体層N層5a,5bの最も深い電位ΦPM、MOSトランジスタ111のゲート導体層4a,4bにオン電圧が印加されたときの第2の半導体層P層2のMOSトランジスタのチャネル電位ΦRG、第1の半導体層N層1の電位(VXLR)の順番で深くさせる。本実施形態において信号電荷は電子であるため、各電位が、VYLR<ΦPM<ΦRG<VXLRの電位関係になるように設定されている。例えば、VYLR=0V、VXLR=2V、ゲート導体層4a,4bの電圧を1.5Vに設定することができる。これによって、リセット期間においてフォトダイオード領域に蓄積されている信号電荷は、フォトダイオード領域に残存することなく第1の半導体層N層1に流され、除去される。
これにより、図24(a)で示した固体撮像装置における残像とkTCノイズ発生を抑制することができる。
(第2の実施形態)
図5(a)〜図5(c)に本発明の第2の実施形態に係る固体撮像装置を説明するための画素構造を示す。なお、第1の実施形態に係る固体撮像装置と同一部分には同一符号を付す。
第1の実施形態と異なる点は、信号読み出し期間において、図5(a)に示すように、フォトダイオード領域に信号電荷が蓄積されていないときにフォトダイオード112の空乏層8cが、第2の半導体層P層2のうちフォトダイオード112が形成される上部領域を占有していることである。なお、このようなフォトダイオード112は、第3の半導体層N層5a,5bおよび第2の半導体層P層2の層厚、不純物濃度などを適宜調整することによって形成され得る。
空乏層8cが、第2の半導体層P層2の上部領域を占有している場合には、増幅用接合トランジスタの第5の半導体層P層7と第1の半導体層N層1近傍の第2の半導体層P層2との間に電流を流すためのチャネルは形成されていない。
フォトダイオード領域に信号電荷が蓄積されていると、信号読み出し期間では、図5(b)に示すようにフォトダイオード112の空乏層8a,8b幅(厚さ)が減少し、第2の半導体層P層2に増幅用接合トランジスタのチャネルが形成されて、蓄積信号電荷に応じた電流がこのチャネルに流れる。
図5(c)は、信号電荷蓄積期間において、フォトダイオード領域に信号電荷が蓄積されていないときの空乏層8cを記入した画素構造図である。信号電荷蓄積期間においては、通常、例えば第1の半導体層N層1の電圧VXLR=0V、第5の半導体層P層7の電圧VYLR=0Vに設定する。
図5(c)に示すように、信号電荷蓄積期間において、信号電荷が蓄積されていないときには、フォトダイオード112の空乏層8cが第2の半導体層P層2の上部領域を占有して形成されている。空乏層8cが第2の半導体層P層2を占有していないと、空乏層8cがない第2の半導体層P層2で発生した信号電荷は拡散して、第5の半導体層P層7または第1の半導体層N層1に到達する。これにより第2の半導体層P層2で発生した信号電荷は、信号に対して無効となる。それに対して、空乏層8cが第2の半導体層P層2の上部領域を占有することにより、特に照射光量の少ない状態において、発生する信号電荷を効果的にフォトダイオード112に捕獲し、蓄積することができる。
また、信号電荷が蓄積されていないときは、増幅用接合トランジスタのチャネルがピンチオフされているので、例えば、信号読み出し期間以外の期間に、画素選択線YLへの飛び込みノイズにより、第5の半導体層P層7からホールが第2の半導体層P層2に注入されようとしても、空乏層8cによりこのようなホール注入が防止される。
このように、信号読み出し期間において、フォトダイオード領域に信号電荷が蓄積されていないときにフォトダイオード112の空乏層8cが第2の半導体層P層2の上部領域を占有するように形成されることによって、良好な低照度特性を有する固体撮像装置を提供することができる。
(第3の実施形態)
図6に本発明の第3の実施形態に係る固体撮像装置を説明するための2画素の画素断面を示す。なお、第1の実施形態に係る固体撮像装置と同一部分には同一の数字を付す。また区別のため、画素11eに含まれる部分にはaaおよびabを、画素11fに含まれる部分にはbaおよびbbを付す。前述の第1および第2の実施形態に係る固体撮像装置においては、リセット動作のためのMOSトランジスタ111のゲート導体層4a,4bが、MOSトランジスタ111のチャネル上にのみ形成されている。これに対し、本実施形態に係る固体撮像装置では、リセット動作のためのMOSトランジスタ111のゲート導体層4aa,4ab,4ba,4bbがフォトダイオード表面P層(第4の半導体層P層)6aa,6ab,6ba,6bbも被覆するように、延在して形成されている。ここで、ゲート導体層4aa,4ab,4ba,4bbは、画素(島状半導体)11e,11f周辺を囲んで形成されている。ゲート導体層4aa,4ab,4ba,4bbは、例えばポリシリコン、金属等の遮光性の導電性材料より形成され、照射光線を吸収または反射する。
画素前面(図6においては上側)より角度を持って第1の画素11eに入射した光線(入射光)10aは、上述した第1の実施形態に係る画素構造では、入射光10aの一部が、隣接する第2の画素11fに到達して、信号電荷を生じさせる。これは、本来第1の画素11eに入射して生じる信号電荷が隣接画素に漏洩することを意味している。これによって、解像度の低下、特にカラー撮像装置では画素ごとに決められた色光線のみを受け取るようになっているため、隣接画素への信号電荷の漏洩による混色を発生する恐れがある。さらに、解像度低下、特にカラー撮像における混色は、大きな画質低下を生じる恐れがある。
これに対し、本実施形態においては、斜め入射光10aは、遮光性の材料から構成されるゲート導体層4aa,4ab,4ba,4bbで吸収または反射される。この反射光10cは入射した画素11eにとどまり、前述のような隣接画素11fへの信号電荷の漏洩は生じない。
本実施形態では、フォトダイオード表面P層6aa,6ab,6ba,6bbは、第2の配線YL3,YL4の電圧が印加された第5の半導体層P層7a,7bに繋がっている。このため、フォトダイオード表面P層6aa,6ab,6ba,6bbの電位は第2の配線YL3,YL4の電位に固定されている。このフォトダイオード表面P層6aa,6ab,6ba,6bbのシールド効果により、増幅用接合トランジスタのチャネル幅を変化させるフォトダイオード電位は、リセット動作のためのMOSトランジスタ111のゲート導体層4aa,4ab,4ba,4bbの電位が時間的に変化しても、影響を受けづらいため、安定な動作がなされる。
(第4の実施形態)
図7を参照しながら、本発明の第4の実施形態に係る固体撮像装置について説明する。なお、第3の実施形態に係る固体撮像装置と同一部分には同一符号を付す。上述した第3の実施形態に係る固体撮像装置においては、リセット動作のためのMOSトランジスタ111のゲート導体層4aa,4ab,4ba,4bbがフォトダイオード表面P層(第4の半導体層P層)6aa,6ab,6ba,6bb上まで延在している。これに対し、本実施形態に係る固体撮像装置では、第5の半導体層P層7a,7bに繋がった第1の導体層13aa,13ab,13ba,13bbがフォトダイオード表面P層6aa,6ab,6ba,6bbを被覆している。第1の導体層13aa,13ab,13ba,13bbは島状半導体11e,11f周辺を囲んで形成されている。また、第1の導体層13aa,13ab,13ba,13bbは、遮光性の導電性材料から構成されている。
これにより、第3の実施形態に係る固体撮像装置と同じく、画素前面より角度を持って第1の画素11eに入射した入射光10aは、第1の導体層13aa,13ab,13ba,13bbまたはゲート導体層4aa,4ab,4ba,4bbで吸収または反射される。この反射光10cは入射した画素11eにとどまり、隣接画素11fへの信号電荷の漏洩は生じない。
また、上述した第3の実施形態に係る固体撮像装置では、フォトダイオード表面P層6aa,6ab,6ba,6bbをゲート導体層4aa,4ab,4ba,4bbが被覆している。増幅用接合トランジスタのチャネル幅を変化させるフォトダイオード電位は、MOSトランジスタ111のゲート導体層4aa,4ab,4ba,4bbの電圧変化から、配線YL3,YL4の電圧に固定されたフォトダイオード表面P層6aa,6ab,6ba,6bbによりシールドされているが、容量結合等による影響を受け易い。これに対し、本実施形態に係る固体撮像装置では、フォトダイオード表面を被覆する第1の導体層13aa,13ab,13ba,13bbは、フォトダイオード表面P層6aa,6ab,6ba,6bbと電気的に接続されているので、フォトダイオード表面P層6aa,6ab,6ba,6bbと同電位である。このため、フォトダイオード表面P層6aa,6ab,6ba,6bbの電位は、配線YL3,YL4の電圧変化以外の電圧変動の影響を受けづらくなっている。これにより、増幅用接合トランジスタのチャネル幅を変化させるフォトダイオード電位が安定に動作し、本実施形態に係る固体撮像装置が安定に動作することができる。
(第5の実施形態)
図8を参照して、本発明の第5の実施形態に係る固体撮像装置について説明する。なお、第4の実施形態に係る固体撮像装置と同一部分には同一符号を付す。通常の2次元固体撮像装置においては、各画素の画素選択線、画素信号線、画素電源線、画素MOSトランジスタのゲートなどは、固体撮像装置の周辺に設けられた走査回路、電源回路、信号処理回路、ゲートパルス電圧発生回路などに接続されている。これらの接続線は第1の配線方向、または第2の配線方向に配置されている。例えば、第1の半導体層N層1a,1bが信号線に接続され、第5の半導体層P層7a,7bが画素選択線に接続されている。図8に示すように、信号線XL3,XL4が図面垂直方向に配置されると、画素選択線は、通常、図面水平方向に配置される。この場合、画素選択線は、第5の半導体層P層7a,7bを接続している第1の導体層13aa,13ab,13ba,13bbおよび隣接した画素の第1の導体層13aa,13ab,13ba,13bb同士を接続する第1の配線導体層14a〜14cから構成される。本実施形態では、隣接した画素の第1の導体層13aa,13ab,13ba,13bb同士は、MOSトランジスタのゲート導体層4aa,4ab,4ba,4bbに近接した場所で接続されている。また、第1の導体層13aa,13ab,13ba,13bbおよび第1の配線導体層14a〜14cは、遮光性の導電性材料から構成されている。なお、本実施形態において、第1の導体層13aa,13ab,13ba,13bbと第1の配線導体層14a〜14cとは、一体に形成されている。
これにより、図8に示すように、第3および第4の実施形態に係る固体撮像装置と同じく、画素前面より角度を持って第1の画素11eに入射した入射光10aは、第1の導体層13aa,13ab,13ba,13bbまたはゲート導体層4aa,4ab,4ba,4bbで吸収または反射される。この反射光10cは入射した画素11eにとどまり、隣接画素11fへの信号電荷の漏洩は生じない。また、画素11eと画素11fとの間の隙間に入射した光が、第5半導体層P層7a,7bに繋がった第1の導体層13ab,13baとMOSトランジスタのゲート導体層4ab,4baとの間の隙間から、第2の半導体層P層2a,2bに漏洩することを効果的に防止することができる。また、図8に示すように、一度画素11e内に入射し、第1の導体層13abとゲート導体層4abとの間の隙間から出た光16は、第1の配線導体層14bで吸収または反射されるので、さらに隣接する画素11fの第1の導体層13baとゲート導体層4baとの間の隙間から、隣接画素11fの第2の半導体層P層2bに漏洩することを効果的に防止することができる。本実施形態とは異なり、例えば、第1の導体層13abが、隣接する画素の第5の半導体層P+層7bに接続された第1の導体層13baと、光入射側である上部で接続されていると、図8において、水平方向に配置されている画素選択線間からの光の回り込みによる隣接画素への光漏洩、およびゲート導体層4ab,4baと第1の導体層13ab,13baとの間の隙間からの光漏洩が生じ易くなる。本実施形態に係る固体撮像装置では、この光漏洩をより効果的に防止することができる。
(第6の実施形態)
図9を参照して、本発明の第6の実施形態に係る固体撮像装置について説明する。上述した第4の実施形態と同一部分には同一符号を付す。本実施形態に係る固体撮像装置においては、MOSトランジスタ111のゲート導体層4aa,4ab,4ba,4bbが、図9の水平方向に設けられている。また、各画素11e,11fのゲート導体層4aa,4ab,4ba,4bbは、MOSトランジスタの上部で、第2の配線導体層15a〜15cによって接続されている。第2の配線導体層15a〜15cは、遮光性の導電性材料から構成されている。本実施形態においては、ゲート導体層4aa,4ab,4ba,4bbと第2の配線導体層15a〜15cとは、一体に形成されている。
このような構成によって、図9に示すように、上記第3〜第5の実施形態に係る固体撮像装置と同様に、画素前面より角度を持って第1の画素11eに入射した入射光10aは、第1の導体層13aaおよび13ba、または、ゲート導体層4aaおよび4abで吸収または反射される。この反射光10cは入射した画素11eにとどまり、隣接画素11fへの信号電荷の漏洩は生じない。また、上述した第5の実施形態に係る固体撮像装置と同様に、画素間の隙間に入射した光がゲート導体層4ab,4baと第1の導体層13ab,13baとの間の隙間から、隣接画素の第2の半導体層P層2a,2bに漏洩することを効果的に防止することができる。また、一度画素11e内に入射し、ゲート導体層4abと第1の導体層13abとの間の隙間から出た光16は、第2の配線導体層15bで吸収または反射されるので、隣接画素11fのゲート導体層4baと第1の導体層13baとの間の隙間から隣接画素の第2の半導体層P層2bに漏洩することを効果的に防止することができる。
(第7の実施形態)
図10を参照して、本発明の第7の実施形態に係る固体撮像装置を説明する。なお、第4の実施形態に係る固体撮像装置と同一部分には同一符号を付す。第4の実施形態に係る固体撮像装置と異なるのは、各画素11e,11f間の隙間の、第1の導体層13aa,13ab,13ba,13bbの間およびゲート導体層4aa,4ab,4ba,4bbの間の両方において、もしくはどちらか一方において、埋め込み導体層(第2の導体層)16a〜16c,17a〜17cを埋め込んでいる点である。本実施形態においては、第1の導体層13aa,13ab,13ba,13bbの間およびゲート導体層4aa,4ab,4ba,4bbの間の両方に埋め込み導体層16a〜16c,17a〜17cを埋め込んだ場合について説明する。この場合、第5の半導体層P層7a,7bに繋がった第2の配線YL3,YL4とMOSトランジスタ111のゲート導体層4aa,4ab,4ba,4bbの配線の方向が同じである。第2の配線YL3,YL4とゲート導体層4aa,4ab,4ba,4bbの配線が直交した方向に取り出されている場合は、第1の導体層13aa,13ab,13ba,13bbの間およびゲート導体層4aa,4ab,4ba,4bbの間のうち、いずれか一方にのみ埋め込み導体層16a〜16c,17a〜17cがあるように図中に示される。
埋め込み導体層16a〜16c,17a〜17cは、遮光性の導電性材料から構成されている。そのため、例えば、画素間の隙間に入射した光は、埋め込み導体層16a〜16c,17a〜17cで吸収または反射される。これによって、第5および第6の実施形態に係る固体撮像装置と同様に、隣接画素への光漏洩を効果的に防止することができる。
(第8の実施形態)
図11に、本発明の第8の実施形態に係る固体撮像装置を示す。なお、第4の実施形態と同一部分には同一符号を付す。図11は、第4の実施形態に係る固体撮像装置の画素構造の第2の半導体層P層2a、ゲート導体層4ab、第3の半導体層N層5ab、第4の半導体層P層6ab、第5の半導体層P層7aを含む領域を拡大したものである。第4の実施形態との違いは、ゲート導体層4abを覆うように設けられた絶縁膜18ab上に、第5の半導体層P層7aに繋がった第1の導体層13abが、ゲート導体層4abと重なる部分を有するように形成されている点である。
このような構成によって、ゲート導体層4abと第1の導体層13abとの間に隙間がないため、この隙間からの光の漏洩が起こらない。そのため、隣接画素への光漏洩をより効果的に防止することができる。これにより、本実施形態に係る固体撮像装置では、解像度の低下および混色を効果的に抑制することができる。
(第9の実施形態)
図12に、本発明の第9の実施形態に係る固体撮像装置を示す。なお、第5の実施形態と同一部分には同一符号を付す。図12は、第5の実施形態に係る固体撮像装置の画素構造の第2の半導体層P層2a,2b、ゲート導体層4ab,4ba、第3の半導体層N層5ab,5ba、第4の半導体層P層6ab,6ba、第5の半導体層P層7a,7bを含む領域を拡大したものである。第5の実施形態との違いは、ゲート導体層4ab,4baを覆うように設けられた絶縁膜18ab,18ba上に、第1の導体層13ab,13baが、ゲート導体層4ab,4baとそれぞれ重なる部分を有するように形成されている点である。
このような構成によって、第8の実施形態に係る固体撮像装置と同様に、隣接画素への光漏洩をより効果的に防止することができる。これにより、本実施形態に係る固体撮像装置では、解像度の低下および混色をより効果的に抑制することができる。
次に、第9の実施形態に係る固体撮像装置の製造方法について、図13〜図21を参照しながら、説明する。
まず、図13に示すように、シリコン(SiO)基板上に、P形シリコン層301、シリコン窒化膜302およびシリコン酸化膜303を堆積する。その後、エッチング等により、図14に示すように、島状半導体層304a,304bを形成する。次に、例えば、酸素雰囲気中で基板を加熱して、シリコン表面を酸化することによりシリコン酸化膜305を形成する。次にポリシリコンを堆積し、エッチバックすることにより、図15に示すようにサイドウォール状のポリシリコン膜306を形成する。
次に、イオン注入法などによりP形シリコン層301にリン等を注入することで第1の半導体層N層1a,1bを形成する。その後、ポリシリコン膜306およびシリコン酸化膜305を剥離する。次に、シリコン酸化膜層307を形成し、ゲート酸化によりゲート酸化膜308を形成し、図16に示すように、モノシラン(SiH)の熱分解によるCVD法でポリシリコン膜309を堆積する。次に、ポリシリコン膜309上の第1のゲート導体層4aa,4ab,4ba,4bbを定義する領域上にシリコン酸化膜(SiO膜)310を形成する。次に、SiO膜310若しくはレジスト膜をマスクにしてゲート導体層4aa,4ab,4ba,4bb以外のポリシリコン膜309をエッチングして除去し、図17に示すように、ゲート導体層4aa,4ab,4ba,4bbを形成する。その後、SiO膜310を除去し、ゲート導体層4aa,4ab,4ba,4bbのポリシリコンを酸化して、絶縁膜18aa,18ab,18ba,18bbを形成する。
次に、リン等をイオン注入法などによりP形シリコン層301に注入し、第3の半導体層N層5aa,5ab,5ba,5bbを形成する。さらにボロン等をイオン注入法などにより第3の半導体層N層5aa,5ab,5ba,5bbに注入し、図18に示すように、第4の半導体層P層6aa,6ab,6ba,6bbを形成する。その後、シリコン窒化膜302を剥離する。次に、酸化シリコン又は窒化シリコンを堆積し、平坦化およびエッチバックすることにより、シリコン酸化膜311aを形成する。露出している半導体層を酸化して、シリコン酸化膜312を形成し、ボロン等を注入することにより、図19に示すように、第5の半導体層P層7a,7bを形成する。その後、シリコン酸化膜312を剥離し、図20に示すように、第1の導体層13ab,13baとMOSトランジスタのゲート導体層4ab,4baとが重なる部分の深さまでシリコン酸化膜311aをエッチングして除去し、シリコン酸化膜311bを形成する。次に、ゲート導体層4ab,4baのポリシリコンを酸化する。その後、基板全面に金属膜を真空蒸着、スパッタリング等により形成し、これをパターニングすることにより、図21に示すように、第5の半導体層P層に繋がった第1の導体層13aa,13ab,13ba,13bbと、第1の導体層13aa,13ab,13ba,13bb同士を接続する第1の配線導体層14a,14b,14cと、を形成することができる。
このような工程により、第9の実施形態に係る固体撮像装置の画素構造が得られる。また、第1の導体層13aa,13ab,13ba,13bbと、第1の配線導体層14a,14b,14cと、を形成する工程において、金属膜を図11に示すようにパターニングすることにより、第8の実施形態に係る固体撮像装置の画素構造を得ることができる。
(第10の実施形態)
通常の固体撮像装置では、画素と、画素を駆動するための回路と、画素から信号を取り出すための回路とは、同一基板上に形成されている。立体構造の画素を備える第1〜9の実施形態に係る固体撮像装置では、これらの回路も立体構造化されていることが好ましい。例えば、これらの回路は、非引用文献2記載のSGT(Surrounding Gate Transistor)から構成されてもよい。このような固体撮像装置の一例を、第10の実施形態として、図22を参照しながら説明する。図22は、第10の実施形態に係る固体撮像装置の断面図である。
本実施形態に係る固体撮像装置は、基板400と、基板400上に形成されている1個または複数の画素11gと、基板400上に形成され、画素11gを駆動し、該画素11gから信号を取り出すための画素の駆動及び/又は出力回路401とから構成される。画素11gは、第1の実施形態の画素11と同様の画素構造を備える。画素の駆動及び/又は出力回路401は、NチャネルMOSトランジスタ部402aとPチャネルMOSトランジスタ部402bとからなるCMOS回路を備える。なお、画素の駆動及び/又は出力回路401は、上述の、垂直走査回路、水平走査回路、リセット回路、及び、相関二重サンプリング出力回路などを集合的に呼び表したものである。
NチャネルMOSトランジスタ部402aは、基板400上に形成された半導体基板層403aと、該半導体基板層403a上に形成されたPウエル層406aと、該Pウエル層406a上に形成された1個または複数のNチャネルMOSトランジスタ404a,404bとから構成される。これらNチャネルMOSトランジスタ404a,404bは、半導体柱408a,408bと、ゲート絶縁層409a,409bと、ゲート導体層410a,410bと、ソース/ドレインN層407a,407bと、から構成される。ゲート絶縁層409a,409bは、半導体柱408a,408bを囲んで形成されている。ゲート導体層410a,410bは、半導体柱408a,408bを囲むように、ゲート絶縁層409a,409b上に形成されている。ソース/ドレインN層407a,407bは、半導体柱408a,408bの上と下とに形成されている。NチャネルMOSトランジスタ部402aの、基板400から最上部のソース/ドレインN層407a,407bまでの高さが、画素11gの、基板400から第5の半導体層P層7までの高さと同じになるように、NチャネルMOSトランジスタ部402aは形成されている。Pウエル層406aは、電源に接続されており、Pウエル電圧を印加される。ソース/ドレインN層407a,407bに挟まれた半導体柱408a,408bは、NチャネルMOSトランジスタ404a,404bのチャネルとして機能する。
PチャネルMOSトランジスタ部402bは、基板400上に形成された半導体基板層403bと、該半導体基板層403b上に形成されたNウエル層406bと、該Nウエル層406b上に形成された1個または複数のPチャネルMOSトランジスタ405a,405bとから構成される。これらPチャネルMOSトランジスタ405a,405bは、半導体柱412a,412bと、ゲート絶縁層413a,413bと、ゲート導体層414a,414bと、ソース/ドレインP層411a,411bと、から構成される。ゲート絶縁層413a,413bは、半導体柱412a,412bを囲んで形成されている。ゲート導体層414a,414bは、半導体柱412a,412bを囲むように、ゲート絶縁層413a,413b上に形成されている。ソース/ドレインP層411a,411bは、半導体柱412a,412bの上と下とに形成されている。PチャネルMOSトランジスタ部402bの、基板400から最上部のソース/ドレインP層411a,411bまでの高さが、画素11gの、基板400から第5の半導体層P層7までの高さと同じになるように、PチャネルMOSトランジスタ部402bは形成されている。Nウエル層406bは、電源に接続されており、Nウエル電圧を印加される。ソース/ドレインP層411a,411bに挟まれた半導体柱412a,412bは、PチャネルMOSトランジスタ405a,405bのチャネルとして機能する。
NチャネルMOSトランジスタ部402a及びPチャネルMOSトランジスタ部402bを構成する各MOSトランジスタ404a,404b,405a,405bは、それぞれ、配線などを介して、互いに又は電源に又は接地に電気的に接続されて、CMOS回路を形成する。さらに、画素の駆動及び/又は出力回路401は、画素11gに、配線などを介して電気的に接続されている。
上記構成によれば、画素11gおよび画素の駆動及び/又は出力回路401を構成する各MOSトランジスタが、同一の基板400上に立体構造化されているため、プレーナMOSトランジスタを用いて形成する場合に比べて、画素11gと画素の駆動及び/又は出力回路401との基板400上での実装面積を減らすことができる。これにより、画素の高密度化にあわせて、固体撮像装置をコンパクト化することが可能となる。さらに、上記構成によれば、NチャネルMOSトランジスタ部402aと、PチャネルMOSトランジスタ部402bと、画素11gとは、同じ高さであるため、それぞれの母体となる半導体柱を、エッチングまたは研磨などの条件を個別に調節することなしに、同一の工程で形成することが可能である。このため、上記構成を備える第10の実施形態に係る固体撮像装置は、従来の固体撮像装置に比べ、簡略化された製造方法で製造することが可能である。
(第11の実施形態)
第10の実施形態に係る固体撮像装置では、NチャネルMOSトランジスタ及びPチャネルMOSトランジスタは、それぞれがまとまって、Pウエル層及びNウエル層上に形成されているが、代わりに、基板上に個別に形成されてもよい。このような固体撮像装置の一例を、第11の実施形態として、図23を参照しながら説明する。図23は、第11の実施形態に係る固体撮像装置の断面図である。
本実施形態に係る固体撮像装置は、基板400と、基板400上に形成されている1個または複数の画素11hと、基板400上に形成され、画素11hを駆動し、該画素11hから信号を取り出すための画素の駆動及び/又は出力回路401とから構成されている。画素11hは、第3の実施形態の画素11fと同様の画素構造を備える。即ち、画素11hでは、リセット動作のためのMOSトランジスタのゲート導体層4ba,4bbがフォトダイオード表面P層(第4の半導体層P層)6ba,6bbも被覆するように、延在して形成されている。画素の駆動及び/又は出力回路401は、NチャネルMOSトランジスタ部402aとPチャネルMOSトランジスタ部402bとからなるCMOS回路を備える。
NチャネルMOSトランジスタ部402aは、基板400上に形成された1個または複数のNチャネルMOSトランジスタ415a,415bから構成される。これらNチャネルMOSトランジスタ415a,415bは、半導体柱417a,417bと、ゲート絶縁層418a,418bと、ゲート導体層419a,419bと、ソース/ドレインN層416a,416bとから構成される。ゲート絶縁層418a,418bは、半導体柱417a,417bを囲んで形成されている。ゲート導体層419a,419bは、半導体柱417a,417bを囲むように、かつ、画素11hのゲート導体層4ba,4bbと同じ高さに、ゲート絶縁層418a,418b上に形成されている。ソース/ドレインN層416a,416bは、半導体柱417a,417bの上と下とに形成されている。NチャネルMOSトランジスタ415a,415bの、基板400から最上部のソース/ドレインN層416a,416bまでの高さが、画素11hの、基板400から第5の半導体層P層7bまでの高さと同じになるように、NチャネルMOSトランジスタ415a,415bは形成されている。ソース/ドレインN層416a,416bに挟まれた半導体柱417a,417bはNチャネルMOSトランジスタ415a,415bのチャネルとして機能する。
PチャネルMOSトランジスタ部402bは、基板400上に形成された1個または複数のPチャネルMOSトランジスタ420a,420bから構成される。これらPチャネルMOSトランジスタ420a,420bは、半導体柱422a,422bと、ゲート絶縁層423a,423bと、ゲート導体層424a,424bと、ソース/ドレインP層421a,421bとから構成される。ゲート絶縁層423a,423bは、半導体柱422a,422bを囲んで形成されている。ゲート導体層424a,424bは、半導体柱422a,422bを囲むように、かつ、画素11hのゲート導体層4ba、3bbと同じ高さに、ゲート絶縁層423a,423b上に形成されている。ソース/ドレインP層421a,421bは、半導体柱422a,422bの上と下とに形成されている。PチャネルMOSトランジスタ420a,420bの、基板400から最上部のソース/ドレインP層421a,421bまでの高さが、画素11hの、基板400から第5の半導体層P層7bまでの高さと同じになるように、PチャネルMOSトランジスタ420a,420bは形成されている。ソース/ドレインP層421a,421bに挟まれた半導体柱422a,422bはPチャネルMOSトランジスタ420a,420bのチャネルとして機能する。
NチャネルMOSトランジスタ部402a及びPチャネルMOSトランジスタ部402bを構成する各MOSトランジスタ415a,415b,420a,420bは、それぞれ、配線などを介して、互いに又は電源に又は接地に電気的に接続されて、CMOS回路を形成する。さらに、画素の駆動及び/又は出力回路401は、画素11hに、配線などを介して電気的に接続されている。
上記構成によれば、画素11hおよび画素の駆動及び/又は出力回路401を構成する各MOSトランジスタが、同一の基板400上に立体構造化されているため、画素の駆動及び/又は出力回路をプレーナMOSトランジスタを用いて形成する場合に比べて、画素11hと画素の駆動及び/又は出力回路401との基板400上での実装面積を減らすことができる。これにより、画素の高密度化にあわせて、固体撮像装置をコンパクト化することが可能となる。さらに、上記構成によれば、NチャネルMOSトランジスタ415a,415bと、PチャネルMOSトランジスタ420a,420bと、画素11hとは、同じ高さであるため、それぞれの母体となる半導体柱を、エッチングまたは研磨などの条件を個別に調節することなしに、同一の工程で形成することが可能である。同様に、ゲート導体層419a,419b,424a,424bと、画素11hのゲート導体層4ba,4bbとも、同じ高さであるため、エッチングまたは研磨などの条件をそれぞれのゲート導体層毎に個別に調節することなしに、同一の工程で形成することが可能である。このため、上記構成を備える第11の実施形態に係る固体撮像装置は、第10の実施形態に係る固体撮像装置に比べ、簡略化された製造方法で製造することが可能である。また、MOSトランジスタ415a,415b,420a,420bの閾値電圧を所定の値にするため、画素11hのゲート導体層4ba,4bbと同じく、前記NチャネルMOSトランジスタ415a,415bのゲート導体層419a,419bおよびPチャネルMOSトランジスタ420a,420bのゲート導体層424a,424bの一方を形成しても、前記第10の実施形態と比べ、簡略化された製造方法で固体撮像装置を製造することが可能である。
(変形例)
なお、上記第1〜第9の実施形態では、第1の半導体層がN層である場合について説明を行ったが、第1の半導体層をP層にして、同様に第2の半導体層をN層、第3の半導体層をP層、フォトダイオード表面の第4半導体層をN層、第5半導体層をN層と、半導体層の極性を逆にした固体撮像装置においても同様の作用効果を得ることができる。
また、上記第1〜第6、第8および第9の実施形態では、第1の半導体層N層1に繋がった配線と第5の半導体層P層7に繋がった配線の配置方向が直交している場合について説明を行ったが、第1の半導体層N層1がリセット動作における信号電荷除去用ドレイン専用として用いる場合は、直交している必要はない。
上記第2の実施形態においては、信号読み出し期間において、フォトダイオード領域に蓄積信号電荷のないとき、フォトダイオード112の空乏層8cが第2の半導体層P層2のうちフォトダイオード112が形成される上部領域を占有すると説明したが、フォトダイオード領域に微少な蓄積信号電荷がある場合もフォトダイオード112の空乏層8cが第2の半導体層P層2の上部領域を占有していると、微少信号電荷が信号として出力されない。そのため、動作マージンとして許される範囲の中で、フォトダイオード領域に増幅用接合トランジスタのチャネルが形成されるよう設定してもよい。
上記第1〜第9の実施形態においては、1個の画素、または2個の画素を用いて説明を行ったが、画素が一次元、または2次元状に配置された固体撮像装置に本発明が適用できることは言うまでもない。
また第1〜第9の実施形態における画素配置は、1次元画素配置では直線状、ジグザグなど、2次元画素配置では直線格子状、ハニカム状などの画素構造であってよいが、これに限定されるものではない。
上記第1〜第9の実施形態において、少なくともフォトダイオード112が形成される領域(第2の半導体層P層2のうち第3の半導体層N層5a,5bが配置されている上部領域および第3の半導体層N層5a,5b)と、第4の半導体層P層と、第5の半導体層P層とが島状形状内に形成されたものであり、この島状半導体は、円柱、6角形、または他の形状であってもよい。
上記第5〜第7および第9の実施形態においては、第1の導体層13aa,13ab,13bb,第1の配線導体層14a〜14c,第2の配線導体層15a〜15c,および第2の導体層(埋め込み導体層)16a〜16c,17a〜17cを材料として区別していたが、同じ材料であっても同様の効果を得ることは言うまでもない。
また、上記第1〜第9の実施形態においては、光照射により画素内で信号電荷を発生する固体撮像装置を例に説明したが、可視光、紫外線、赤外線、X線、他の電磁線、放射線、電子線などの電磁エネルギー波の照射により画素に信号電荷が発生するものにも本発明が適用されることは言うまでもない。
また、上記第7の実施形態において、画素間の隙間に第2の導体層16〜16c,17a〜17cを埋め込むことによって、画素間の光漏洩を効率的に防止することについて説明したが、第1の実施形態に係る固体撮像装置の各画素のMOSトランジスタ111のゲート導体層4a,4b間に導体層を埋め込むことによっても同様な効果を得ることができる。
また、上記第1〜第9の実施形態においては、MOSトランジスタ111において、第2の半導体層P層2をチャネルとしているが、例えば、イオン注入などにより、第2の半導体層P層2領域に不純物を注入することによって、チャネルを形成してもよい。
また、第1の半導体層1は、基板上において、画素間で連続して形成されてもよいし、画素毎に形成されてもよい。画素毎に第1の半導体層1が形成される場合、第1の半導体層1は互いに、他の金属配線によって接続され得る。また、第1の半導体層1と第2の半導体層2とは、全面で接触(接合)する必要はなく、一部で接触していてもよい。さらに、第1の半導体層1の一部を他の半導体層に置換する等してもよい。
また、上記第1〜第9の実施形態においては、MOSトランジスタ111のゲート導体層4a,4b等の導体層が単一材料から構成される場合について説明したが、例えば、金属層、多結晶シリコン層などの複数の層から構成されてもよい。
なお、上記第10および第11の実施形態では、画素の駆動及び/又は出力回路401は、垂直走査回路、水平走査回路、リセット回路、及び、相関二重サンプリング出力回路を備えるが、画素を制御するための他の回路を含んでもよい。例えば、画素の駆動及び/又は出力回路401は、画素毎に隣接して設けられる前置信号処理(プリプロセス)回路または画素信号を取り出すタイミングを制御するMOSトランジスタを備えてもよい。
また、上記第10および第11の実施形態において、画素の第5の半導体P層7,7bと、NチャネルMOSトランジスタ部402aおよびPチャネルMOSトランジスタ部402部の半導体柱408a,408b,412a,412b,417a,417b,422a,422bの上に形成されているソース/ドレイン層407a,407b,411a,411b,416a,416b、421a,412bとの一部が別々に、イオン注入とエピタキシャル成長とにより形成されてもよい。この場合、画素の第5の半導体P層7,7bと、NチャネルMOSトランジスタ部402aおよびPチャネルMOSトランジスタ部402部の半導体柱408a,408b,412a,412b,417a,417b,422a,422bの上に形成されているソース/ドレイン層407a,407b,411a,411b,416a,416b,421a、412bとの高さ方向の位置に僅かな違いが生ずるものの、本発明の提供する効果および利点は損なわれない。例えば、この変形例に係る固体撮像装置においても、上記第10および第11の実施形態に係る固体撮像装置と同様に、NチャネルMOSトランジスタ部402aと、PチャネルMOSトランジスタ部402bと、画素11g,11hとを、それぞれの母体となる半導体柱を、エッチングまたは研磨などの条件を個別に調節することなしに、同一の工程で形成することが可能である。
以上、実施の形態を複数挙げて本発明について詳細に説明したが、本発明の範囲は上記の実施の形態に限定されるものではないことは言うまでもない。当業者により為される改良、置換、組み合わせ等は、本発明の要旨を超えない限り、本発明の範囲に含まれるものである。
本出願は、2010年3月8日に出願された、日本国特許出願特願2010−050675号、及び、2010年11月12日に出願された、日本国特許出願特願2010−253589号に基づく。本明細書中に、その明細書、特許請求の範囲、図面全体を参照して取り込むものとする。
1,1a,1b 第1の半導体層N
2,2a,2b,2c 第2の半導体層P層
2i 第2の半導体層i層
3a,3b,3aa,3ab,3ba,3bb 絶縁膜
4a,4b,4aa,4ab,4ba,4bb ゲート導体層
5a,5b,5aa,5ab,5ba,5bb 第3の半導体層N層
6a,6b,6aa,6ab,6ba,6bb 第4の半導体層P層(フォトダイオード表面P層)
7,7a,7b 第5の半導体層P
8,8a,8b,8c 空乏層
10a,39a 入射光
10c 反射光
11,11a〜11h 画素(島状半導体)
13aa,13bb,13ba,13bb 第1の導体層
14a〜14c 第1の配線導体層
15a〜15c 第2の配線導体層
16a〜16c,17a〜17c 埋め込み導体層(第2の導体層)
18 チャネルストッパP
19 フォトダイオード表面P
20 転送ゲート電極下のチャネル
21 増幅MOSトランジスタ
22 第1の画素選択MOSトランジスタ
23 リセットMOSトランジスタ
24 第2の画素選択MOSトランジスタ
25 信号線
26a,26b,26d 信号電荷
26c 電荷
27 フォトダイオードN層
28 フォトダイオードP層
29 ホール
30 画素(島状半導体)
31 信号線N
32 P形半導体層
33a,33b 絶縁膜
34a,34b ゲート導体層
35a,35b N形半導体層
36 P
37a,37b 画素選択線
38a,38b 絶縁層
39b 隣接画素への漏洩光
100 固体撮像装置
111 MOSトランジスタ
112 フォトダイオード
201 垂直走査回路
202 水平走査回路
203 リセット回路
204 相関二重サンプリング出力回路
301 P形シリコン層
302 シリコン窒化膜
303,305,310,311a,311b,312 シリコン酸化膜
304a,304b 島状半導体層
306,309 ポリシリコン膜
307 シリコン酸化膜層
308 ゲート酸化膜
400 基板
401 画素駆動出力回路
402a NチャネルMOSトランジスタ部
402b PチャネルMOSトランジスタ部
404a,404b,415a,415b NチャネルMOSトランジスタ
405a,405b,420a,420b PチャネルMOSトランジスタ
408a,408b,412a,412b,417a,417b,422a,422b 半導体柱
409a,409b,413a,413b,418a,418b,423a,423b ゲート絶縁膜
410a,410b,414a,414b,419a,419b,424a,424b ゲート導体層
407a,407b、411a、411b、416a,416b,421a,421b ソース/ドレイン層
406a Pウエル層
406b Nウエル層

Claims (12)

  1. 1個または複数の画素を有する固体撮像装置であって、
    前記画素が、
    基板上に形成された第1の半導体層と、
    該第1の半導体層上に形成された第2の半導体層と、
    前記第2の半導体層の下部の側面に形成された第1の絶縁膜と、
    前記第1の絶縁膜を介して前記第2の半導体層の下部の側面に形成されたゲート導体層と、
    前記第2の半導体層の上部の側面に形成された第3の半導体層と、
    前記第2の半導体層の側面と対向していない前記第3の半導体層の側面に形成された第4の半導体層と、
    前記第2の半導体層と前記第3の半導体層の上に形成され、且つ、前記第4の半導体層と電気的に接続された、第5の半導体層と、
    からなり、
    少なくとも、前記第3の半導体層と、前記第2の半導体層のうち該第3の半導体層が形成された上部領域と、前記第4の半導体層と、前記第5の半導体層とが、島状形状内に形成され、
    前記第2の半導体層と前記第3の半導体層とはダイオードを形成し、
    前記ダイオードはゲートとして機能し、且つ、前記第1の半導体層と前記第5の半導体層との間の前記第2の半導体層がチャネルとして機能することで接合トランジスタが形成され、
    前記第1の半導体層と前記第3の半導体層の間にある第2の半導体層はチャネルとして機能し、且つ、前記ゲート導体層はゲートとして機能することでMOSトランジスタが形成され、
    前記ダイオードに電磁エネルギー波の照射により発生した信号電荷を蓄積し、
    前記ダイオードに蓄積された信号電荷量に応じて変化する、前記接合トランジスタに流れる電流が信号として検知され、
    前記ダイオードに蓄積された信号電荷が、前記MOSトランジスタのチャネルを通じて、前記第1の半導体層に除去され、
    前記第4の半導体層と前記第5の半導体層との電圧が同一の電圧であることを特徴とする、固体撮像装置。
  2. 前記第2の半導体層は、前記第1の半導体層と反対導電型又は実質的に真正型であり、
    前記第3の半導体層は、前記第1の半導体層と同じ導電型であり、
    前記第4の半導体層は、前記第1の半導体層と反対導電型であり、
    前記第5の半導体層は、前記第1の半導体層と反対導電型であり、
    前記第4の半導体層と前記第5の半導体層とが接続されている、
    ことを特徴とする請求項1に記載の固体撮像装置。
  3. 遮光性の導電性材料から構成され、前記島状形状内に形成された前記第3の半導体層と前記第2の半導体層の前記上部領域と前記第4の半導体層とを囲むように、前記第4の半導体層の側面領域に第1の絶縁膜を介して形成された第1の導体層をさらに備え、
    該第1の導体層は、前記第5の半導体層に接続されている、ことを特徴とする請求項1または2に記載の固体撮像装置。
  4. 前記第1の導体層と前記ゲート導体層との間に隙間を有し、
    隣接する前記画素の前記第1の導体層同士を、該画素間の隙間であって前記第1の導体層と前記ゲート導体層との隙間の近傍で接続し、かつ遮光性の導電性材料から構成される第1の配線導体層をさらに備える、ことを特徴とする請求項3に記載の固体撮像装置。
  5. 前記ゲート導体層を覆って形成された第2の絶縁膜をさらに備え、
    前記第1の導体層が、該第2の絶縁膜を介して、少なくとも前記ゲート導体層の一部とオーバーラップするように形成されている、ことを特徴とする請求項3または4に記載の固体撮像装置。
  6. 前記第1の導体層と前記ゲート導体層との間に隙間を有し、
    隣接する前記画素の前記ゲート導体層同士を、該画素間の隙間であって前記第1の導体層と前記ゲート導体層との隙間の近傍で接続し、かつ遮光性の導電性材料から構成される第2の配線導体層をさらに備える、ことを特徴とする請求項3に記載の固体撮像装置。
  7. 隣接する前記画素の前記第1の導体層間、隣接する前記画素の前記ゲート導体層間、または隣接する前記画素の前記第1の導体層間および該隣接する画素の前記ゲート導体層間に埋め込まれ、かつ遮光性の導電性材料から構成される第2の導体層をさらに備える、ことを特徴とする請求項3に記載の固体撮像装置。
  8. 前記ゲート導体層が、遮光性の導電性材料から構成され、前記島状形状内に形成された前記第3の半導体層と前記第2の半導体層の上部領域と前記第4の半導体層とを囲むように、前記第1の絶縁膜を介して前記第4の半導体層の側面領域に延在している、ことを特徴とする請求項1または2に記載の固体撮像装置。
  9. 電磁エネルギー波の照射量に応じて前記第3の半導体層と該第3の半導体層近傍の前記第2の半導体層とに信号電荷を蓄積させる手段と、
    前記第5の半導体層と前記第1の半導体層近傍の前記第2の半導体層との間に流れる電流を測定することにより、前記蓄積された信号電荷の量を測定し信号を読み出す信号読み出し手段と、
    前記ゲート導体層にオン電圧を印加して前記第1の半導体層と前記第3の半導体層との間の前記第2の半導体層を含む領域にチャネルを形成することにより、前記第3の半導体層に蓄積された信号電荷を前記第1の半導体層に流して除去するリセット手段と、
    を備え、
    前記信号読み出し手段は、前記第1の半導体層の電位、前記第5の半導体層の電位、前記第3の半導体層と該第3の半導体層近傍の前記第2の半導体層とに信号電荷が蓄積されていないときの該第3の半導体層内の最も深い電位、の順番に深くなるように電位関係を設定し、
    前記リセット手段は、前記第5の半導体層の電位、前記第3の半導体層と該第3の半導体層近傍の前記第2の半導体層とに信号電荷が蓄積されていないときの該第3の半導体層内の最も深い電位、前記ゲート導体層にオン電圧が印加されたときの前記第1の半導体層と前記第3の半導体層との間の前記第2の半導体層を含む領域のチャネル電位、前記第1の半導体層の電位、の順番に深くなるように電位関係を設定する、ことを特徴とする請求項1乃至8のいずれか1項に記載の固体撮像装置。
  10. 前記信号読み出し手段が設定した前記電位関係において、前記第3の半導体層と該第3の半導体層近傍の前記第2の半導体層とに信号電荷が蓄積されていないときは、前記第2の半導体層のうち前記第3の半導体層が形成された前記上部領域に形成された空乏層が、該第2の半導体層の該上部領域を占有せしめ、
    前記信号読み出し手段が設定した前記電位関係において、前記第3の半導体層と該第3の半導体層近傍の前記第2の半導体層とに信号電荷が蓄積されているときは、該蓄積された信号電荷の量に応じて、前記空乏層の厚さが変化する、ことを特徴とする請求項9に記載の固体撮像装置。
  11. 前記画素を駆動し前記画素から信号を取り出す画素駆動出力手段を備え、
    前記画素駆動出力手段は、複数のSurrounding Gate Transistorから構成されることを特徴にする請求項1に記載の固体撮像素子。
  12. 前記画素を駆動し前記画素から信号を取り出す画素駆動出力手段を備え、
    前記画素駆動出力手段は、複数のSurrounding Gate Transistorから構成され、
    前記Surrounding Gate Transistorは、それぞれ、ゲート導体層を備え、
    前記複数のSurrounding Gate Transistorのゲート導体層と1個または複数の前記画素の前記第1の導体層とは、同じ高さに形成されていることを特徴とする請求項3に記載の固体撮像装置。
JP2011535822A 2010-03-08 2011-03-07 固体撮像装置 Active JP4912513B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011535822A JP4912513B2 (ja) 2010-03-08 2011-03-07 固体撮像装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010050675 2010-03-08
JP2010050675 2010-03-08
JP2010253589 2010-11-12
JP2010253589 2010-11-12
PCT/JP2011/055264 WO2011111662A1 (ja) 2010-03-08 2011-03-07 固体撮像装置
JP2011535822A JP4912513B2 (ja) 2010-03-08 2011-03-07 固体撮像装置

Publications (2)

Publication Number Publication Date
JP4912513B2 true JP4912513B2 (ja) 2012-04-11
JPWO2011111662A1 JPWO2011111662A1 (ja) 2013-06-27

Family

ID=44530556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011535822A Active JP4912513B2 (ja) 2010-03-08 2011-03-07 固体撮像装置

Country Status (6)

Country Link
US (1) US8575662B2 (ja)
JP (1) JP4912513B2 (ja)
KR (1) KR101211442B1 (ja)
CN (1) CN102334189B (ja)
TW (1) TW201143070A (ja)
WO (1) WO2011111662A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8183628B2 (en) 2007-10-29 2012-05-22 Unisantis Electronics Singapore Pte Ltd. Semiconductor structure and method of fabricating the semiconductor structure
JP5317343B2 (ja) 2009-04-28 2013-10-16 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置及びその製造方法
US8598650B2 (en) 2008-01-29 2013-12-03 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
JP5356970B2 (ja) 2009-10-01 2013-12-04 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置
CN102334189B (zh) 2010-03-08 2013-11-06 新加坡优尼山帝斯电子私人有限公司 固体摄像器件
US8487357B2 (en) 2010-03-12 2013-07-16 Unisantis Electronics Singapore Pte Ltd. Solid state imaging device having high sensitivity and high pixel density
JP5553652B2 (ja) * 2010-03-18 2014-07-16 ルネサスエレクトロニクス株式会社 半導体基板および半導体装置
JP5066590B2 (ja) 2010-06-09 2012-11-07 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置とその製造方法
JP5087655B2 (ja) 2010-06-15 2012-12-05 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置及びその製造方法
US8378400B2 (en) * 2010-10-29 2013-02-19 Unisantis Electronics Singapore Pte Ltd. Solid state imaging device
WO2013035189A1 (ja) * 2011-09-08 2013-03-14 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 固体撮像装置
US8564034B2 (en) 2011-09-08 2013-10-22 Unisantis Electronics Singapore Pte. Ltd. Solid-state imaging device
US8669601B2 (en) 2011-09-15 2014-03-11 Unisantis Electronics Singapore Pte. Ltd. Method for producing semiconductor device and semiconductor device having pillar-shaped semiconductor
US8916478B2 (en) 2011-12-19 2014-12-23 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US8772175B2 (en) 2011-12-19 2014-07-08 Unisantis Electronics Singapore Pte. Ltd. Method for manufacturing semiconductor device and semiconductor device
US8748938B2 (en) 2012-02-20 2014-06-10 Unisantis Electronics Singapore Pte. Ltd. Solid-state imaging device
WO2013124956A1 (ja) * 2012-02-20 2013-08-29 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 固体撮像装置
US8921905B2 (en) 2012-10-16 2014-12-30 Unisantis Electronics Singapore Pte. Ltd. Solid-state imaging device
US9041095B2 (en) * 2013-01-24 2015-05-26 Unisantis Electronics Singapore Pte. Ltd. Vertical transistor with surrounding gate and work-function metal around upper sidewall, and method for manufacturing the same
KR20140142887A (ko) * 2013-06-05 2014-12-15 에스케이하이닉스 주식회사 3차원 반도체 장치 및 그 제조방법
WO2015033381A1 (ja) * 2013-09-03 2015-03-12 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置
JP5719944B1 (ja) * 2014-01-20 2015-05-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. 半導体装置
JP6417197B2 (ja) * 2014-11-27 2018-10-31 キヤノン株式会社 固体撮像装置
US9859421B1 (en) * 2016-09-21 2018-01-02 International Business Machines Corporation Vertical field effect transistor with subway etch replacement metal gate
US10479282B2 (en) 2017-06-21 2019-11-19 Thomas E. Schellens Accessory mount for a vehicle
CN108288626B (zh) 2018-01-30 2019-07-02 德淮半导体有限公司 图像传感器及形成图像传感器的方法
JP2021044519A (ja) * 2019-09-13 2021-03-18 キオクシア株式会社 半導体装置
JP7318518B2 (ja) * 2019-11-26 2023-08-01 信越半導体株式会社 固体撮像素子用のシリコン単結晶基板及びシリコンエピタキシャルウェーハ、並びに固体撮像素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034731A1 (ja) * 2007-09-12 2009-03-19 Unisantis Electronics (Japan) Ltd. 固体撮像素子
WO2009133957A1 (ja) * 2008-05-02 2009-11-05 日本ユニサンティスエレクトロニクス株式会社 固体撮像素子

Family Cites Families (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017977A (en) * 1985-03-26 1991-05-21 Texas Instruments Incorporated Dual EPROM cells on trench walls with virtual ground buried bit lines
US5258635A (en) * 1988-09-06 1993-11-02 Kabushiki Kaisha Toshiba MOS-type semiconductor integrated circuit device
JPH03187272A (ja) * 1989-12-15 1991-08-15 Mitsubishi Electric Corp Mos型電界効果トランジスタ及びその製造方法
EP0510604A3 (en) * 1991-04-23 2001-05-09 Canon Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US5308782A (en) * 1992-03-02 1994-05-03 Motorola Semiconductor memory device and method of formation
JP2748072B2 (ja) * 1992-07-03 1998-05-06 三菱電機株式会社 半導体装置およびその製造方法
WO1994014198A1 (en) 1992-12-11 1994-06-23 Intel Corporation A mos transistor having a composite gate electrode and method of fabrication
JPH06268173A (ja) * 1993-03-15 1994-09-22 Toshiba Corp 半導体記憶装置
JP3403231B2 (ja) * 1993-05-12 2003-05-06 三菱電機株式会社 半導体装置およびその製造方法
JP3745392B2 (ja) 1994-05-26 2006-02-15 株式会社ルネサステクノロジ 半導体装置
JPH0878533A (ja) * 1994-08-31 1996-03-22 Nec Corp 半導体装置及びその製造方法
JP2797984B2 (ja) * 1994-10-27 1998-09-17 日本電気株式会社 固体撮像素子およびその製造方法
JP3318814B2 (ja) * 1995-03-15 2002-08-26 ソニー株式会社 固体撮像装置及びその駆動方法
KR0165398B1 (ko) * 1995-05-26 1998-12-15 윤종용 버티칼 트랜지스터의 제조방법
JPH098290A (ja) * 1995-06-20 1997-01-10 Mitsubishi Electric Corp 半導体装置及びその製造方法
US5767549A (en) * 1996-07-03 1998-06-16 International Business Machines Corporation SOI CMOS structure
US7052941B2 (en) 2003-06-24 2006-05-30 Sang-Yun Lee Method for making a three-dimensional integrated circuit structure
JP4014708B2 (ja) * 1997-08-21 2007-11-28 株式会社ルネサステクノロジ 半導体集積回路装置の設計方法
US6242775B1 (en) * 1998-02-24 2001-06-05 Micron Technology, Inc. Circuits and methods using vertical complementary transistors
JP3467416B2 (ja) 1998-04-20 2003-11-17 Necエレクトロニクス株式会社 半導体記憶装置及びその製造方法
JP2000039628A (ja) * 1998-05-16 2000-02-08 Semiconductor Energy Lab Co Ltd 半導体表示装置
JP3718058B2 (ja) * 1998-06-17 2005-11-16 株式会社ルネサステクノロジ 半導体集積回路装置の製造方法
JP4078721B2 (ja) 1998-08-24 2008-04-23 ソニー株式会社 半導体装置とその製造方法
US6204187B1 (en) 1999-01-06 2001-03-20 Infineon Technologies North America, Corp. Contact and deep trench patterning
JP2000243085A (ja) * 1999-02-22 2000-09-08 Hitachi Ltd 半導体装置
JP3621844B2 (ja) 1999-02-24 2005-02-16 シャープ株式会社 増幅型固体撮像装置
JP2000357736A (ja) 1999-06-15 2000-12-26 Toshiba Corp 半導体装置及びその製造方法
DE60001601T2 (de) 1999-06-18 2003-12-18 Lucent Technologies Inc., Murray Hill Fertigungsverfahren zur Herstellung eines CMOS integrieten Schaltkreises mit vertikalen Transistoren
US6392271B1 (en) * 1999-06-28 2002-05-21 Intel Corporation Structure and process flow for fabrication of dual gate floating body integrated MOS transistors
US6777254B1 (en) 1999-07-06 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
CA2279147C (en) * 1999-07-29 2003-02-18 Graminia Developments Ltd. Liquid for producing marker vapour, a method of producing marker vapour and a method of inspection with marker vapour
US6483171B1 (en) * 1999-08-13 2002-11-19 Micron Technology, Inc. Vertical sub-micron CMOS transistors on (110), (111), (311), (511), and higher order surfaces of bulk, SOI and thin film structures and method of forming same
DE19945136A1 (de) 1999-09-21 2001-04-12 Infineon Technologies Ag Vertikale Pixelzellen
JP2001237421A (ja) 2000-02-24 2001-08-31 Toshiba Corp 半導体装置、sramおよびその製造方法
US6882012B2 (en) 2000-02-28 2005-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a method of manufacturing the same
JP2002231951A (ja) 2001-01-29 2002-08-16 Sony Corp 半導体装置およびその製造方法
US6624459B1 (en) * 2000-04-12 2003-09-23 International Business Machines Corp. Silicon on insulator field effect transistors having shared body contact
JP3713418B2 (ja) 2000-05-30 2005-11-09 光正 小柳 3次元画像処理装置の製造方法
JP2001352047A (ja) 2000-06-05 2001-12-21 Oki Micro Design Co Ltd 半導体集積回路
JP4021602B2 (ja) 2000-06-16 2007-12-12 株式会社東芝 半導体記憶装置
JP2002033399A (ja) 2000-07-13 2002-01-31 Toshiba Corp 半導体集積回路及びその製造方法
JP4064607B2 (ja) * 2000-09-08 2008-03-19 株式会社東芝 半導体メモリ装置
US6406962B1 (en) * 2001-01-17 2002-06-18 International Business Machines Corporation Vertical trench-formed dual-gate FET device structure and method for creation
US6448601B1 (en) * 2001-02-09 2002-09-10 Micron Technology, Inc. Memory address and decode circuits with ultra thin body transistors
US6531727B2 (en) * 2001-02-09 2003-03-11 Micron Technology, Inc. Open bit line DRAM with ultra thin body transistors
JP3908911B2 (ja) 2001-02-16 2007-04-25 シャープ株式会社 イメージセンサの製造方法
JP3899236B2 (ja) 2001-02-16 2007-03-28 シャープ株式会社 イメージセンサの製造方法
FR2823009B1 (fr) * 2001-04-02 2004-07-09 St Microelectronics Sa Procede de fabrication d'un transistor vertical a grille isolee a faible recouvrement de la grille sur la source et sur le drain, et circuit integre comportant un tel transistor
US6927433B2 (en) * 2001-06-28 2005-08-09 Isetec, Inc Active pixel image sensor with two transistor pixel, in-pixel non-uniformity correction, and bootstrapped reset lines
JP2003068883A (ja) 2001-08-24 2003-03-07 Hitachi Ltd 半導体記憶装置
US6461900B1 (en) * 2001-10-18 2002-10-08 Chartered Semiconductor Manufacturing Ltd. Method to form a self-aligned CMOS inverter using vertical device integration
JP2003142684A (ja) 2001-11-02 2003-05-16 Toshiba Corp 半導体素子及び半導体装置
US6657259B2 (en) 2001-12-04 2003-12-02 International Business Machines Corporation Multiple-plane FinFET CMOS
US6670642B2 (en) 2002-01-22 2003-12-30 Renesas Technology Corporation. Semiconductor memory device using vertical-channel transistors
US6658259B2 (en) * 2002-03-07 2003-12-02 Interwave Communications International, Ltd. Wireless network having a virtual HLR and method of operating the same
JP2004096065A (ja) 2002-07-08 2004-03-25 Renesas Technology Corp 半導体記憶装置およびその製造方法
JP2004079694A (ja) 2002-08-14 2004-03-11 Fujitsu Ltd スタンダードセル
JP4639040B2 (ja) 2002-10-10 2011-02-23 パナソニック株式会社 半導体装置の製造方法
JP2004165462A (ja) * 2002-11-14 2004-06-10 Sony Corp 固体撮像素子及びその製造方法
US7138685B2 (en) 2002-12-11 2006-11-21 International Business Machines Corporation Vertical MOSFET SRAM cell
KR100467027B1 (ko) 2003-01-07 2005-01-24 삼성전자주식회사 수직 트랜지스터로 구성된 에스램 소자 및 그 제조방법
JP2004259733A (ja) 2003-02-24 2004-09-16 Seiko Epson Corp 固体撮像装置
CN1764982B (zh) 2003-03-18 2011-03-23 株式会社东芝 相变存储器装置及其制造方法
US6902962B2 (en) 2003-04-04 2005-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Silicon-on-insulator chip with multiple crystal orientations
JP2004319808A (ja) 2003-04-17 2004-11-11 Takehide Shirato Mis電界効果トランジスタ及びその製造方法
JP4108537B2 (ja) 2003-05-28 2008-06-25 富士雄 舛岡 半導体装置
US6943407B2 (en) 2003-06-17 2005-09-13 International Business Machines Corporation Low leakage heterojunction vertical transistors and high performance devices thereof
JP4651920B2 (ja) 2003-07-15 2011-03-16 ルネサスエレクトロニクス株式会社 半導体装置
JP4758061B2 (ja) 2003-10-16 2011-08-24 パナソニック株式会社 固体撮像装置およびその製造方法
JP4416474B2 (ja) 2003-10-28 2010-02-17 株式会社ルネサステクノロジ 半導体記憶装置
US7372091B2 (en) * 2004-01-27 2008-05-13 Micron Technology, Inc. Selective epitaxy vertical integrated circuit components
US6878991B1 (en) * 2004-01-30 2005-04-12 Micron Technology, Inc. Vertical device 4F2 EEPROM memory
KR100532564B1 (ko) 2004-05-25 2005-12-01 한국전자통신연구원 다중 게이트 모스 트랜지스터 및 그 제조 방법
JP4218894B2 (ja) * 2004-07-08 2009-02-04 シャープ株式会社 固体撮像装置およびその製造方法
US7518182B2 (en) * 2004-07-20 2009-04-14 Micron Technology, Inc. DRAM layout with vertical FETs and method of formation
US7247570B2 (en) * 2004-08-19 2007-07-24 Micron Technology, Inc. Silicon pillars for vertical transistors
US7442970B2 (en) * 2004-08-30 2008-10-28 Micron Technology, Inc. Active photosensitive structure with buried depletion layer
US7241655B2 (en) * 2004-08-30 2007-07-10 Micron Technology, Inc. Method of fabricating a vertical wrap-around-gate field-effect-transistor for high density, low voltage logic and memory array
US7271052B1 (en) * 2004-09-02 2007-09-18 Micron Technology, Inc. Long retention time single transistor vertical memory gain cell
US8110869B2 (en) 2005-02-11 2012-02-07 Alpha & Omega Semiconductor, Ltd Planar SRFET using no additional masks and layout method
JP5017795B2 (ja) 2005-04-13 2012-09-05 日本電気株式会社 電界効果トランジスタの製造方法
US7371627B1 (en) 2005-05-13 2008-05-13 Micron Technology, Inc. Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
US20060261406A1 (en) 2005-05-18 2006-11-23 Yijian Chen Vertical integrated-gate CMOS device and its fabrication process
KR100673012B1 (ko) 2005-09-02 2007-01-24 삼성전자주식회사 이중 게이트형 수직 채널 트랜지스터들을 구비하는다이내믹 랜덤 억세스 메모리 장치 및 그 제조 방법
FR2891664B1 (fr) 2005-09-30 2007-12-21 Commissariat Energie Atomique Transistor mos vertical et procede de fabrication
KR100800469B1 (ko) * 2005-10-05 2008-02-01 삼성전자주식회사 매몰 비트 라인에 접속된 수직형 트랜지스터를 포함하는회로 소자 및 제조 방법
US7977736B2 (en) * 2006-02-23 2011-07-12 Samsung Electronics Co., Ltd. Vertical channel transistors and memory devices including vertical channel transistors
JP2008028240A (ja) 2006-07-24 2008-02-07 Toshiba Corp 固体撮像装置
JP2008053388A (ja) * 2006-08-23 2008-03-06 Toshiba Corp 半導体装置及びその製造方法
US8058683B2 (en) * 2007-01-18 2011-11-15 Samsung Electronics Co., Ltd. Access device having vertical channel and related semiconductor device and a method of fabricating the access device
JP5114968B2 (ja) 2007-02-20 2013-01-09 富士通セミコンダクター株式会社 半導体装置及びその製造方法
JP2008227026A (ja) 2007-03-12 2008-09-25 Toshiba Corp 半導体装置の製造方法
JP5130596B2 (ja) * 2007-05-30 2013-01-30 国立大学法人東北大学 半導体装置
JP2009037115A (ja) * 2007-08-03 2009-02-19 Sony Corp 半導体装置およびその製造方法、並びに表示装置
US8330089B2 (en) * 2007-09-12 2012-12-11 Unisantis Electronics Singapore Pte Ltd. Solid-state imaging device
US8101500B2 (en) 2007-09-27 2012-01-24 Fairchild Semiconductor Corporation Semiconductor device with (110)-oriented silicon
JP2009088134A (ja) * 2007-09-28 2009-04-23 Elpida Memory Inc 半導体装置、半導体装置の製造方法並びにデータ処理システム
JP4900195B2 (ja) 2007-10-26 2012-03-21 大日本印刷株式会社 オーサリング装置、方法およびコンピュータプログラム
US8183628B2 (en) * 2007-10-29 2012-05-22 Unisantis Electronics Singapore Pte Ltd. Semiconductor structure and method of fabricating the semiconductor structure
WO2009057194A1 (ja) 2007-10-29 2009-05-07 Unisantis Electronics (Japan) Ltd. 半導体構造及び当該半導体構造の製造方法
JP2009117518A (ja) 2007-11-05 2009-05-28 Toshiba Corp 半導体記憶装置およびその製造方法
US7935598B2 (en) * 2007-12-24 2011-05-03 Hynix Semiconductor Inc. Vertical channel transistor and method of fabricating the same
US7956434B2 (en) * 2007-12-27 2011-06-07 Dongbu Hitek Co., Ltd. Image sensor and method for manufacturing the same
US8212298B2 (en) * 2008-01-29 2012-07-03 Unisantis Electronics Singapore Pte Ltd. Semiconductor storage device and methods of producing it
WO2009096001A1 (ja) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. 半導体記憶装置およびメモリ混載半導体装置、並びにそれらの製造方法
US8598650B2 (en) * 2008-01-29 2013-12-03 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
WO2009095997A1 (ja) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. 半導体装置およびその製造方法
WO2009096002A1 (ja) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. 半導体装置の製造方法
WO2009095999A1 (ja) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. 半導体記憶装置
US8378425B2 (en) * 2008-01-29 2013-02-19 Unisantis Electronics Singapore Pte Ltd. Semiconductor storage device
US8188537B2 (en) * 2008-01-29 2012-05-29 Unisantis Electronics Singapore Pte Ltd. Semiconductor device and production method therefor
JP5317343B2 (ja) * 2009-04-28 2013-10-16 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置及びその製造方法
JP4316657B2 (ja) 2008-01-29 2009-08-19 日本ユニサンティスエレクトロニクス株式会社 半導体装置
US8154086B2 (en) 2008-01-29 2012-04-10 Unisantis Electronics Singapore Pte Ltd. Semiconductor surround gate SRAM storage device
JP4316658B2 (ja) 2008-01-29 2009-08-19 日本ユニサンティスエレクトロニクス株式会社 半導体装置の製造方法
WO2009095998A1 (ja) 2008-01-29 2009-08-06 Unisantis Electronics (Japan) Ltd. 半導体記憶装置
WO2009101704A1 (ja) 2008-02-15 2009-08-20 Unisantis Electronics (Japan) Ltd. 半導体装置の製造方法
US8097907B2 (en) * 2008-05-02 2012-01-17 Unisantis Electronics Singapore Pte Ltd. Solid-state imaging device
KR100971412B1 (ko) * 2008-05-21 2010-07-21 주식회사 하이닉스반도체 반도체 장치의 수직 채널 트랜지스터 형성 방법
JP2010034191A (ja) * 2008-07-28 2010-02-12 Toshiba Corp 半導体記憶装置とその製造方法
TWI368315B (en) 2008-08-27 2012-07-11 Nanya Technology Corp Transistor structure, dynamic random access memory containing the transistor structure, and method of making the same
JP2010171055A (ja) 2009-01-20 2010-08-05 Elpida Memory Inc 半導体装置およびその製造方法
US8338292B2 (en) 2009-02-18 2012-12-25 International Business Machines Corporation Body contacts for FET in SOI SRAM array
TWI388059B (zh) * 2009-05-01 2013-03-01 Niko Semiconductor Co Ltd The structure of gold-oxygen semiconductor and its manufacturing method
US7968876B2 (en) * 2009-05-22 2011-06-28 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
JP4987926B2 (ja) 2009-09-16 2012-08-01 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置
JP2011071235A (ja) 2009-09-24 2011-04-07 Toshiba Corp 半導体装置及びその製造方法
KR101116354B1 (ko) * 2009-09-30 2012-03-09 주식회사 하이닉스반도체 단일측벽콘택에 연결된 매립비트라인을 갖는 반도체장치 및 그제조 방법
JP5356970B2 (ja) 2009-10-01 2013-12-04 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置
US8067800B2 (en) * 2009-12-28 2011-11-29 Force Mos Technology Co., Ltd. Super-junction trench MOSFET with resurf step oxide and the method to make the same
CN102334189B (zh) 2010-03-08 2013-11-06 新加坡优尼山帝斯电子私人有限公司 固体摄像器件
JP5054182B2 (ja) 2010-03-12 2012-10-24 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 固体撮像装置
JP5066590B2 (ja) * 2010-06-09 2012-11-07 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置とその製造方法
JP5087655B2 (ja) * 2010-06-15 2012-12-05 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置及びその製造方法
US8378400B2 (en) * 2010-10-29 2013-02-19 Unisantis Electronics Singapore Pte Ltd. Solid state imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034731A1 (ja) * 2007-09-12 2009-03-19 Unisantis Electronics (Japan) Ltd. 固体撮像素子
WO2009034623A1 (ja) * 2007-09-12 2009-03-19 Unisantis Electronics (Japan) Ltd. 固体撮像素子
WO2009133957A1 (ja) * 2008-05-02 2009-11-05 日本ユニサンティスエレクトロニクス株式会社 固体撮像素子

Also Published As

Publication number Publication date
TW201143070A (en) 2011-12-01
KR20110124267A (ko) 2011-11-16
WO2011111662A1 (ja) 2011-09-15
US20110215381A1 (en) 2011-09-08
JPWO2011111662A1 (ja) 2013-06-27
CN102334189A (zh) 2012-01-25
US8575662B2 (en) 2013-11-05
KR101211442B1 (ko) 2012-12-12
CN102334189B (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
JP4912513B2 (ja) 固体撮像装置
JP5552768B2 (ja) 固体撮像装置とその製造方法、及び電子機器
KR101163624B1 (ko) 고체 촬상 장치 및 고체 촬상 장치의 구동 방법
KR101529094B1 (ko) 고체 촬상 소자 및 카메라
JP5537523B2 (ja) 固体撮像装置
JP6179865B2 (ja) 固体撮像装置及びその製造方法
KR101220642B1 (ko) 고체 촬상 장치
JP5335271B2 (ja) 光電変換装置及びそれを用いた撮像システム
US7151287B1 (en) Minimizing the effect of directly converted x-rays in x-ray imagers
JP4486985B2 (ja) 固体撮像装置および電子情報機器
KR20110107407A (ko) 광전변환장치 및 카메라
KR20100002184A (ko) 고체 촬상 장치 및 전자 기기
JP2010056345A (ja) 増幅型固体撮像装置
WO2021117523A1 (ja) 固体撮像素子及び電子機器
JP4613821B2 (ja) 固体撮像素子及びその製造方法
JP5581698B2 (ja) 固体撮像素子
JP2013131516A (ja) 固体撮像装置、固体撮像装置の製造方法、及び、電子機器
WO2021187422A1 (ja) 固体撮像素子及び電子機器
US20060202235A1 (en) Solid-state imaging apparatus in which a plurality of pixels each including a photoelectric converter and a signal scanning circuit are arranged two-dimensionally
KR100769563B1 (ko) 누설 전류를 감소시킨 이미지 센서
JP2015111728A (ja) 光電変換装置及びそれを用いた撮像システム
JP2005123280A (ja) 固体撮像素子
JP4863517B2 (ja) 光電変換装置及びカメラ
JP2013251559A (ja) 光電変換装置及びそれを用いた撮像システム
JP2010287799A (ja) 固体撮像装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4912513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250