JP3859199B2 - カーボンナノチューブの水平成長方法及びこれを利用した電界効果トランジスタ - Google Patents
カーボンナノチューブの水平成長方法及びこれを利用した電界効果トランジスタ Download PDFInfo
- Publication number
- JP3859199B2 JP3859199B2 JP2001218578A JP2001218578A JP3859199B2 JP 3859199 B2 JP3859199 B2 JP 3859199B2 JP 2001218578 A JP2001218578 A JP 2001218578A JP 2001218578 A JP2001218578 A JP 2001218578A JP 3859199 B2 JP3859199 B2 JP 3859199B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon nanotubes
- carbon nanotube
- catalyst
- pattern
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002041 carbon nanotube Substances 0.000 title claims description 230
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims description 230
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 206
- 238000000034 method Methods 0.000 title claims description 125
- 230000005669 field effect Effects 0.000 title claims description 12
- 239000003054 catalyst Substances 0.000 claims description 120
- 239000000758 substrate Substances 0.000 claims description 62
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 25
- 206010053759 Growth retardation Diseases 0.000 claims description 20
- 239000002070 nanowire Substances 0.000 claims description 13
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 12
- 239000010955 niobium Substances 0.000 claims description 10
- 238000001459 lithography Methods 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 9
- 238000001039 wet etching Methods 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- 239000012212 insulator Substances 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 6
- 238000001338 self-assembly Methods 0.000 claims description 6
- 230000002194 synthesizing effect Effects 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical group [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 239000011733 molybdenum Substances 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 claims description 4
- 230000003197 catalytic effect Effects 0.000 claims description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 238000000059 patterning Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 40
- 239000010408 film Substances 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 230000005291 magnetic effect Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000002096 quantum dot Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000005641 tunneling Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004574 scanning tunneling microscopy Methods 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000001628 carbon nanotube synthesis method Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/02—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change
- G11C13/025—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using elements whose operation depends upon chemical change using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/466—Lateral bottom-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/491—Vertical transistors, e.g. vertical carbon nanotube field effect transistors [CNT-FETs]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K19/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/221—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/08—Aligned nanotubes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/10—Resistive cells; Technology aspects
- G11C2213/17—Memory cell being a nanowire transistor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/843—Gas phase catalytic growth, i.e. chemical vapor deposition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/844—Growth by vaporization or dissociation of carbon source using a high-energy heat source, e.g. electric arc, laser, plasma, e-beam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/89—Deposition of materials, e.g. coating, cvd, or ald
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/895—Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
- Y10S977/896—Chemical synthesis, e.g. chemical bonding or breaking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/90—Manufacture, treatment, or detection of nanostructure having step or means utilizing mechanical or thermal property, e.g. pressure, heat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/936—Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
- Y10S977/936—Specified use of nanostructure for electronic or optoelectronic application in a transistor or 3-terminal device
- Y10S977/938—Field effect transistors, FETS, with nanowire- or nanotube-channel region
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Carbon And Carbon Compounds (AREA)
- Thin Film Transistor (AREA)
- Junction Field-Effect Transistors (AREA)
- Chemical Vapour Deposition (AREA)
Description
【発明の属する技術分野】
本発明はカーボンナノチューブの成長方法に関するものであり、さらに詳細にはカーボンナノチューブの水平成長方法に関するものであり、特に触媒が形成された基板の所望する特定位置でカーボンナノチューブを選択的に水平に成長させることによって、ナノデバイス製造に有効に利用できるカーボンナノチューブの水平成長方法に関するものである。
【0002】
また、本発明は所望する特定位置に触媒をナノ点またはナノ線として形成させることによって、特定位置でカーボンナノチューブを選択的に成長させてナノデバイス製造に有効に利用できるカーボンナノチューブの水平成長方法に関するものである。
【0003】
また、本発明はカーボンナノチューブブリッジを水平成長させて電界効果トランジスタ(FET)を実現させて、カーボンナノチューブが形成されたソースとドレーン電極の接触触媒を所望する方向に磁化させることによって、スピンバルブ(spin valve)と単電子トランジスタ(SET:Single Electron Transistor)を同時に実現できるカーボンナノチューブを利用した電界効果トランジスタに関するものである。
【0004】
【従来の技術】
カーボンナノチューブは一次元量子線(one-dimensional Quantum Wire)構造を有し、機械的、化学的特性が優秀で、一次元での量子輸送(quantum transport)現像を見せるなど非常に興味深い電気的特性を持っていることが知られている。また、これらの特性の外にも新しく発見されている特殊な性質があって新しい素材として多くの注目を受けている。
【0005】
一方、素材の優秀な特性を利用するためには再現性を有するカーボンナノチューブの製造工程が先行されなければならない。しかし、現在ではカーボンナノチューブを製造した後、一つずついちいち操作して所望の位置に移して置く方式を取っている。このように、成長したカーボンナノ素子を‘個別操作方式’で所望する位置に移して置く方式では電子素子や高集積素子に適用するのが難しい。そのため、カーボンナノチューブを電子素子や高集積素子に適用するために、さらに多くの研究開発が進行している状況である。
【0006】
また、現在知られているカーボンナノチューブ合成技術である‘垂直成長方法’は、図1に示したように、触媒のパターン4が形成されている基板2の上に垂直の方向によく整列された形状のカーボンナノチューブ6を成長させている。このような垂直成長方法に対しては既にかなり多く報告されている。
【0007】
しかし、今後カーボンナノチューブが新しい機能を有するナノデバイスとして利用されるためには、従来の垂直成長技術よりも特定の位置で選択的に水平方向に成長させることができる技術がはるかに有用である。
【0008】
一方、パターン化された金属間にカーボンナノチューブを水平成長させて連結することができるという報告が、Hong Jie Dieによって最初に行われた(Nature Vol.395、p878)。それを図2に示す。図2はHong Jie Dieにより報告されたカーボンナノチューブの水平成長方法を概略的に示した図である。この報告によれば、図2に示したように、無数に多くのカーボンナノチューブが水平方向のみならず、垂直方向にも成長している。その理由はカーボンナノチューブは触媒になる金属の表面から成長するため、露出された触媒のあらゆる表面から無作為に成長するためである。
【0009】
一方、1988年磁性金属と非磁性金属からなる多層膜で巨大磁気抵抗(GMR:Giant Mageneto Resistance)効果が発見されて以来、磁性金属薄膜の研究は世界的に非常に活発に進んでいる。ところで、磁性金属では電子が偏向したスピン(spin-polarized)状態で存在するのでこれを活用すれば分極スピン電流(polarized spin current)を発生させることができる。したがって、今までは十分に利用できなかった磁性を発現する電子が持つ重要な固有特性であるスピン自由度を利用したスピン電子工学(spin electronics)または磁気電子工学(magneto electronics)の理解と発展に多くの努力が傾注されている。
【0010】
最近、ナノ構造の磁性多層薄膜系で発見された巨大磁気抵抗、トンネリング磁気抵抗(TMR:Tunneling Magneto Resistance)現像等は既にMR磁気ヘッド素子で応用製作されてコンピュータのHDDに装着されて商用化されている最中である。
【0011】
ここでTMRとは、強磁性/絶縁体(半導体)/強磁性構造の接合で強磁性体の相対的な磁化方向によってトンネリング電流が変わる現像をいう。他の磁気抵抗より磁気抵抗比が大きくてフィールド感応度(field sensitivity)が大きくて次世代磁気抵抗ヘッドや磁気メモリ(MRAM:Magnetic Random Access Memory)用材料で活発に研究されている。この時、再現性ある絶縁層の形成と接合抵抗の減少が重要な問題になる。
【0012】
また、最近では低い磁場で磁気抵抗現像を見せるスピンバルブ、磁気トンネリング接合(MTJ:Magnetic Tunneling Junction)などを利用したMRAM製作に磁性応用分野の多くの学者が活発な研究を進めている。
【0013】
【発明が解決しようとする課題】
本発明は前記のような状況を勘案して創出されたものであり、触媒が形成された基板の所望する特定位置でカーボンナノチューブを選択的に水平成長させることによって、ナノデバイス製造に有効に利用できるカーボンナノチューブの水平成長方法を提供することが目的である。
【0014】
また、本発明は前記のような状況を勘案して創出されたものであり、所望する特定位置に触媒をナノ点またはナノ線として形成させることによって、特定位置でカーボンナノチューブを選択的に成長させてナノデバイス製造に有効に利用できるカーボンナノチューブの水平成長方法を提供しようとするものである。
【0015】
また、本発明は前記のような状況を勘案して創出されたものであり、カーボンナノチューブブリッジを水平成長させて電界効果トランジスタを実現して、カーボンナノチューブが形成されたソースとドレーン電極の接触触媒を所望する方向に磁化させることによって、スピンバルブと単電子トランジスタを同時に実現できるカーボンナノチューブを利用した電界効果トランジスタを提供することにまた他の目的がある。
【0016】
【課題を解決するための手段】
前記の目的を達成するために本発明によるカーボンナノチューブの水平成長方法は、(a)基板上に所定の触媒パターンを形成させる段階と、(b)その基板上にカーボンナノチューブの垂直成長を抑制する層を形成する段階と、(c)基板と垂直成長を抑制する層に開口部を形成して、触媒パターンを露出させる段階、及び、(d)露出された触媒パターンの位置でカーボンナノチューブを合成して水平方向に成長させる段階を含むことを特徴とする。
【0017】
段階(c)で形成した開口部は基板と垂直成長抑制層を完全に貫通させた穴形でもよいが、基板の一部を残してエッチングさせたカップ形でもよい。
【0018】
また、本発明によるカーボンナノチューブの水平成長方法の他の実施態様は、(i)基板上の所定位置にマスクを形成させる段階と、(j)マスクが形成された基板上に触媒パターンを形成させる段階と、(k)基板上にカーボンナノチューブの垂直成長を抑制する層を形成する段階と、(l)前記マスクを除去して前記基板及び垂直成長を抑制する層に開口部を形成して、前記触媒パターンを露出させる段階、及び、(m)前記露出された触媒パターン位置でカーボンナノチューブを合成して水平成長させる点にその特徴がある。
【0019】
また、前記の目的を達成するために本発明によるカーボンナノチューブの水平成長方法の他の実施態様は、基板上に上下左右の一定な配列で触媒パターンを形成する段階と、一定な配列で溝が形成されたカーボンナノチューブの垂直成長を抑制する別の基板を製作する段階と、所定の間隔を置いて前記垂直成長を抑制する基板を前記触媒パターンが形成された基板上に配置する段階、及び、前記触媒パターン位置でカーボンナノチューブを合成して水平成長させる点にその特徴がある。
【0020】
また、前記の他の目的を達成するために本発明によるカーボンナノチューブの水平成長方法は、基板上にナノ点またはナノ線の形状で触媒を形成させて、前記ナノ点またはナノ線の垂直方向成長が抑制されるように前記ナノ点またはナノ線上に成長抑制層をパターニングして、前記ナノ点またはナノ線に選択的にカーボンナノチューブを水平成長させる点にその特徴がある。
【0021】
前記ナノ点またはナノ線状の触媒はインプリント方法またはセルフアセンブリ方法でパターニングするのが望ましい。
【0022】
また、前記成長抑制層はシリコン酸化膜(SiO2)またはシリコン窒化膜(SiN)の絶縁体で形成されることができ、モリブデン(Mo)、ニオブ(Nb)、パラジウム(Pd)などの金属で形成させてもよい。
【0023】
本発明によるカーボンナノチューブの水平成長方法の他の実施態様は、基板上にナノ線の形状で触媒を形成させる段階と、前記ナノ線状の触媒上に、リソグラフィーなどの半導体工程を通して、所定間隔をあけて成長抑制層を形成する段階と、湿式エッチングによって前記成長抑制層が形成されない領域の前記ナノ線状の触媒を除去する段階、及び、化学的気相蒸着法を利用して、所定間隔を設けた前記成長抑制層の下に形成されている前記触媒間にカーボンナノチューブを水平成長させる段階を含むことを特徴とする。
【0024】
本発明によるカーボンナノチューブを利用した電界効果トランジスタは、ソースとドレーン間にカーボンナノチューブを水平成長させてカーボンナノチューブブリッジを形成させることによって、電子単位の電流流れを制御できる単電子トランジスタを構成したことが特徴である。
【0025】
ここで、前記ソースとドレーン間に形成された前記カーボンナノチューブブリッジは半導体的特性を有するカーボンナノチューブである。
【0026】
また、前記ソースとドレーン間に形成された前記カーボンナノチューブブリッジ上に、エネルギー障壁を作って量子点を形成して電流の流れを制御できるように、前記カーボンナノチューブブリッジに対する垂直方向にゲート用カーボンナノチューブブリッジを複数で形成した。
【0027】
また、前記複数のゲート用カーボンナノチューブブリッジでゲートを形成する際に、共通端子を用いて量子点の大きさを調整するようにすることが望ましい。
【0028】
また、前記ソース及びドレーン上に、前記ソース及びドレーンの接触触媒を所望する方向に磁化させることができるように、電流を通過させることができる導線を形成し、そのソース上に形成される導線と、ドレーン上に形成される導線が相互平行する。
【0029】
【発明の実施の形態】
以下、添付した図面を参照しながら本発明をより詳細に説明する。
図3は本発明によるカーボンナノチューブの水平成長方法の一例を概略的に示した図であり、図4は図3に示したカーボンナノチューブの水平成長方法を施した構造物の透視図である。
【0030】
図3及び図4を参照して本発明の実施形態によるカーボンナノチューブの水平成長方法を説明すると、(a)基板10上に所定の触媒パターン12を適宜の形状、図の実施形態では互いに平行に配置されるように形成させる段階と、(b)その触媒パターンを形成させた基板10上にカーボンナノチューブの垂直成長を抑制する層14を形成する段階と、(c)基板10と垂直成長を抑制する層14に開口部16を連続的な触媒パターンを部分的に遮断するように形成してその触媒パターン12の遮断部を露出させる段階、及び(d)開口部16から露出している触媒パターン位置18でカーボンナノチューブを合成して水平成長させる段階を含む。
【0031】
基板10とカーボンナノチューブの垂直成長を抑制する層14としては目的によってシリコン、ガラス、シリコンオキサイド、ITO(Indium Tin Oxide)コーティングされたガラスなどが多様に用いられることができる。同じものを使用することもできる。もちろん、別々のものを使用しても良い。
【0032】
触媒としては金属やこれを含有した合金、超伝導金属、特異金属等カーボンナノチューブを成長させることができる物質ならどのようなものでも良い。これらはリソグラフィー、スパッタリング、蒸着などの工程を通して所定のパターン12に形成させることができる。パターンは任意である。図示のように連続させたものを多数設けることが望ましい。
【0033】
この連続させた触媒パターンの特定の位置にその連続したパターンを遮断するように開口部16を設けるが、その開口16ははレーザードリル加工、湿式エッチング、乾式エッチングなどの方法によって形成することができる。連続した触媒パターンを貫通するように開口部16を設けるので、その開口部16には触媒パターンの切り口18が露出される。この開口部16は、図5Aに示したように、基板10とカーボンナノチューブの垂直成長を抑制する層14を貫通させた穴としてもよく、また、図5Bに示したように、完全に貫通させずに基板10の一部を残すようにエッチングして形成させたカップ形としてもよい。要するに触媒パターン12を途中で遮断さえすればその開口の形にこだわる必要はない。
【0034】
このように形成させた構造物をカーボンナノチューブ合成装置に入れて合成させると、ソースガスに露出されることになる触媒パターンの切り口である触媒面18からのみカーボンナノチューブが成長する。したがって、基板10に水平な方向にカーボンナノチューブが成長する。
【0035】
この時、カーボンナノチューブの合成は熱分解法、触媒熱分解法、プラズマ気相蒸着法、ホット−フィラメント気相蒸着法などが利用できる。そしてメタン、アセチレン、一酸化炭素、ベンゼン、エチレンなどの炭化水素化合物を原料として用いることができる。
【0036】
図6ないし図11は本実施形態によるカーボンナノチューブの水平成長方法によって水平成長されたカーボンナノチューブの多様な形状を示した図である。
【0037】
図6A、図6Bは直線状に形成させた触媒パターン12で水平成長されたカーボンナノチューブ20を示したものである。開口部は直線状のパターンを遮断するように形成する。この時、合成時間を適切に調節することで、カーボンナノチューブ20を遮断されて向かい合っている触媒パターンの露出面18を相互に連結したブリッジ構造とすることができ、または連結されないフリー・ハング構造とすることができる。
【0038】
成長されたカーボンナノチューブ20の直径は露出触媒面の粒子の大きさや面積を制御することによって調整することができる。また、パターン形成条件を変更したり後続処理(例えば、プラズマ処理、酸処理等)を通して露出した触媒面を多様な表面状態とすることもできるので、その処理によって直径を変えることもできる。したがってこのような操作を通して、一つの露出面から2以上のカーボンナノチューブ20を成長させることができて、図6Bのように向かい合う触媒パターンの露出面18それぞれから異なる構造(直径、キラリティー(chirality)などの変化)を有するカーボンナノチューブ20を成長されることもできる。
【0039】
図7Aないし図7Dは直線状の触媒パターンを直交させ、その交差させた箇所に開口部を形成させた例であり、それぞれの開口部の露出された露出面からカーボンナノチューブを様々に水平成長させた例を示している。
【0040】
図6の例と同様に同様に、図7Aのようなブリッジ構造または図7Cのようなフリー・ハング構造のカーボンナノチューブ20を得ることができる。また、向かい合う触媒パターンの露出面で相互に直径が異なるカーボンナノチューブ20を成長させることができ、図7Bのように一つの露出面で2以上のカーボンナノチューブ20を成長させることもできる。そして、一つの触媒露出面で複数のカーボンナノチューブを成長させることによって、図7Dのようなメッシュ形状を有するカーボンナノチューブを成長させることもできる。
【0041】
また、図7Aに示した例では、垂直方向と水平方向の触媒パターンの高さを変えることもできる。その場合、相互に接触せずに交差して成長されるカーボンナノチューブ20を作ることができる。これを利用すればゲート素子として利用することもできる。また、交差して成長したカーボンナノチューブ20を機械的に接触させて電気的な接合が形成されるようにすることもできる。これを利用すれば接合解析にすぐ利用することができ、この接合特性を素子に利用することもできる。
【0042】
この時、接合形成を円滑にするための一つの方法として材料の熱膨脹/収縮を利用することもできる。普通カーボンナノチューブの合成条件は500〜950℃の温度で行われるので、合成後の冷却段階であらわれる熱収縮現像を利用して交差成長されたカーボンナノチューブ20の接触を円滑にすることができる。
【0043】
一方図8、図9、図10及び図11は各々放射形触媒パターン、円形触媒パターン、四角形触媒パターン、2以上の直線配列触媒パターン上に2以上の溝を形成した構造で水平成長されたカーボンナノチューブを示したことであり、開口部は各々パターンの交差地点、円形内部、四角形内部に形成される。
【0044】
図6ないし図11は各々本発明によって水平成長されたカーボンナノチューブの多様な形態を示したものである。本発明がこれらに限定されず、触媒パターンはナノデバイス応用により効率的な方向に任意に形成させることができる。
【0045】
一方、図12は本実施形態によるカーボンナノチューブの水平成長方法によって水平成長したカーボンナノチューブ20に金属30をそのチューブと直交する方向にパターニングさせて、両者を後者箇所で接合させた状態を示したものである。これにより、カーボンナノチューブ20と金属30間の接合を容易に得ることができ、特定位置でこのような接合を選択的に形成させることができるという長所がある。
【0046】
また、このような方法を利用すればカーボンナノチューブ/カーボンナノチューブ接合、カーボンナノチューブ/金属接合及びカーボンナノチューブ/半導体接合を必要な位置に選択的に形成することができる。
【0047】
図13は本発明によるカーボンナノチューブの水平成長方法の他の例を概略的に示した図である。
【0048】
図13を参照して本発明によるカーボンナノチューブの水平成長方法の他の実施形態を以下説明する。(i)基板10の所定位置にマスク40を短い柱状が基板から突出するように形成させる段階と、(j)マスク40が形成された基板10上に触媒パターン12をマスク40を通るように形成させる段階と、(k)基板10上にカーボンナノチューブの垂直成長を抑制する層14を形成する段階と、(l)マスク40をそれに接触している触媒とともに除去して基板10と垂直成長を抑制する層14に開口部42を形成して、その開口部に触媒パターン12を露出させる段階、及び(m)露出された触媒パターンの位置でカーボンナノチューブを合成して水平成長させる段階を含む。
【0049】
基板10と触媒パターン12の材料、触媒パターン形成方法、カーボンナノチューブ合成方法は先の実施形態で説明された方法と同一である。そして、マスク40はエッチングや加熱等により容易に除去可能とするために、蒸着などの方法をによって基板上に形成させる。また、触媒パターン形態は一直線形、直交形、放射形、円形、四角形等として形成させることができ、図6ないし図11のような水平方向に成長されたカーボンナノチューブを得ることができる。
【0050】
また、図14は本発明によるカーボンナノチューブの水平成長方法のさらに他の実施形態を概略的に示した図である。
【0051】
図14を参照して本実施形態によるカーボンナノチューブの水平成長方法を説明する。基板10に上下左右の一定の配列、すなわちマトリックス状に触媒パターン12を形成する段階、一定な配列、好ましくは触媒パターンと同じパターンで溝52が形成されたカーボンナノチューブの垂直成長を抑制するための基板50を製作する段階、所定の間隔54を保って垂直成長を抑制する基板50を触媒パターン12が形成された基板10の上に配置する段階、及び触媒パターン位置でカーボンナノチューブを合成して水平成長させる段階を含む。
【0052】
ここで、基板10及び触媒パターン12の種類、触媒パターン12形成方法、カーボンナノチューブ合成方法は最初の実施形態で説明したものと同一である。そして、カーボンナノチューブの垂直成長を抑制する基板50の溝52はレーザードリル加工、湿式エッチング、乾式エッチングなどの方法を利用して形成することができる。
【0053】
垂直成長を抑制するための基板50で下部基板10を覆う段階で、両基板10、50間の所定間隔54はカーボンナノチューブが成長できる間隔であれば十分で、両基板10、50の端部分に支持台56を作って間隔を維持させる。
【0054】
一方、図15は本発明によるカーボンナノチューブの水平成長方法によって、ナノ点またはナノ線状の触媒を利用して所望する位置でカーボンナノチューブを水平成長させる過程を概略的に示した図である。
【0055】
図15Aに示すように、酸化膜を形成させたシリコン基板上にナノ点またはナノ線の形状でパターン化された触媒金属を蒸着する。この時、触媒金属としてはニッケル(Ni)、コバルト(Co)、鉄(Fe)などを用いる。
【0056】
図15Bに示したように、ナノ点またはナノ線上にシリコン酸化膜(SiO2)やシリコン窒化膜(SiN)の絶縁体またはモリブデン(Mo)、ニオブ(Nb)、パラジウム(Pd)等で成長抑制層を蒸着させる。これはカーボンナノチューブが垂直方向に成長するのを抑制させるためである。その成長抑制層を金属で形成させることもできるが、このように金属を使用した場合にはそれを電極としても使用することができる。この時、成長抑制層は一般的な半導体工程(PR工程、リソグラフィー工程)によって所望する形状にパターニングできる。
【0057】
これにより、図15Cに示したように、成長抑制層がパターン化されて形成された基板上に化学的気相蒸着法によってカーボンナノチューブを触媒から水平方向に成長させることができる。
【0058】
図16及び図17は触媒金属がナノ線で形成された場合において、水平方向に選択的なカーボンナノチューブを成長させる方法を示した図で、湿式エッチングを通して触媒形成位置を調節することができる様子を示したものである。
【0059】
まず、図16A及び図17Aに示したように、酸化膜を形成したシリコン基板上にナノ線状にパターン化された触媒金属を蒸着させる。この時、触媒金属としてはニッケル(Ni)、コバルト(Co)、鉄(Fe)などを用いる。
【0060】
そして、図16B及び図17Bに示したように、それぞれのナノ線状の触媒の両側に所定間隔をあけて酸化膜(SiO2)やシリコン窒化膜(SiN)の絶縁体またはモリブデン(Mo)、ニオブ(Nb)、パラジウム(Pd)等で成長抑制層を蒸着させる。これは触媒でカーボンナノチューブが垂直方向に成長することを抑制する役割をし、成長抑制層を金属とした場合には電極としての役割を同時に果たさせるためである。
【0061】
これは一般的な半導体工程(PR工程、リソグラフィー工程)を通して所望する形状にパターニングできる。ここで、図17Bはパターンを形成する過程で誤差が生じた場合を示したことであり、成長抑制層をパターニングする過程で所望しない領域に触媒が露出されている場合である。
【0062】
そして、図16C及び図17Cに示したように、湿式エッチングを通して、成長抑制層が形成されない領域のナノ線状の触媒を除去する。この時、湿式エッチングを用いる場合には、等方性エッチングが行われるために触媒金属は成長抑制層内側にさらに入り込む(図16C参照)ため、カーボンナノチューブを垂直に成長できないようにする成長防止膜の役割がさらに増大される。
【0063】
また、ナノ線状に触媒が形成された場合には、ナノ点とは異なり過多エッチングが生じても、カーボンナノチューブが成長できる触媒金属が基板に残っているので、さらに効果的な成長抑制層を形成することが必要である。そして、図17B及び図17Cに示したように、リソグラフィー工程で成長抑制層のパターンが誤って形成された場合にも、湿式エッチングを利用すればリソグラフィー工程で生じた誤差を解消できる。
【0064】
これにより、化学的気相蒸着法を利用して、所定間隔が用意された成長抑制層下に形成されている触媒間にカーボンナノチューブを水平成長させることができるようになる。
【0065】
図15ないし図17において、基板上に触媒をナノ点またはナノ線状のパターンを形成させたが、その方法としては次のような方法を利用できる。
【0066】
一つは図18に示したようなナノインプリント(nano imprint)方法を利用することである。図18は本発明によるカーボンナノチューブの水平成長方法において、ナノ点またはナノ線を形成するためのインプリント工程を概略的に示した図である。
【0067】
ナノインプリント方法は、図18に示したように、ナノパターンが彫られてあるスタンプを高分子薄膜上に押してナノミリメータ大きさの高分子パターンを作るものであって、大面積ウェーハに適用することができる刻印工程法である。これは、既存の光微細加工技術による大面積ナノパターン形成工程に比べて大幅に簡素化された工程で数十nm程度のパターンを簡単に製作することができる。
【0068】
また、図19に示したような、セルフアセンブリ方法を利用してナノ点またはナノ線の触媒パターンを形成させることもできる。図19は本発明によるカーボンナノチューブの水平成長方法におけるナノ点またはナノ線を形成するためのセルフアセンブリ方法を概略的に示した図である。
【0069】
このようなセルフアセンブリ方法は基板(SiまたはAuのような金属)の表面に化学吸着される特定の物質(表面活性ヘッドグループ(surface-active head group);大部分が有機分子で単分子層に吸着)をコーティングし、その上に上塗りをしようとする物質と連結させるアルキル系の物質をコーティングする。そして、膜の特性を有する物質(surface group)を上塗りをする方法で単層から多層まで超微細な薄膜を製造できる。
【0070】
すなわち、化学吸着できる特定の物質を基板に敷いて、蒸着しようとする薄膜の物質との間の橋の役割をする物質を敷いて、その次に所望する薄膜物質を蒸着するという順序で構成される。表面に化学吸着をする特定物質を蒸着した後、これをSTM(Scanning Tunneling Microscopy/AFM(Atomic Force Microscope)でパターニングすると所望のパターンで超微細薄膜を製造できる。すなわち、ナノ点、ナノ線を得ることができる。
【0071】
次に、図20は本発明によるカーボンナノチューブを利用したスピンバルブ単電子トランジスタの構造を概略的に示した図であり、図21は図20に示した本発明によるスピンバルブ単電子トランジスタの斜視図である。上に詳述したカーボンナノチューブの水平成長方法によって基板の水平方向に成長されたカーボンナノチューブを利用すれば次のようなスピンバルブ単電子トランジスタを実現できる。
【0072】
図20及び図21を参照すると、本発明によるスピンバルブ単電子トランジスタはソース210とドレーン220間にカーボンナノチューブを水平方向に成長させてカーボンナノチューブブリッジ260を形成させることによって、電子単位で電流を制御できる。この時、ソース210とドレーン220間に形成されたカーボンナノチューブブリッジ260は半導体的特性を有するカーボンナノチューブで構成される。
【0073】
また、ソース210とドレーン22の間に形成されたカーボンナノチューブブリッジ260は、エネルギー障壁を作って量子点を形成して、電流の流れを制御できるように形成された複数のゲート用カーボンナノチューブ270、280上に形成される。
【0074】
またソース210及びドレーン220上に、ソース210及びドレーン220の接触触媒を所望する方向に磁化させることができるように、電流を通過させることができる導線250(251、252)が形成される。このソース210上に形成される導線251と、ドレーン220上に形成される導線252は相互に平行するように構成される。
【0075】
図22は本発明によるカーボンナノチューブを利用したスピンバルブ単電子トランジスタの他の実施形態を概略的に示した図である。
【0076】
図22を参照すると、複数のゲート用カーボンナノチューブブリッジ470、480がゲート430、440を形成させる際に、共通端子490を用いて量子点の大きさを調整する。その他の構成要素は図20及び図21で説明されたものと同一である。
【0077】
以下、このような構成を有する本発明によるカーボンナノチューブを利用したスピンバルブ単電子トランジスタの作動を説明する。
【0078】
図20及び図21を参照する。ソース210とドレーン220間に形成された半導体性炭素ナノチューブブリッジ260の上を通っている、第1ゲート230と第2ゲート240に定義されたカーボンナノチューブブリッジ270、280に陽の電圧を印加する。これによりC1、C2点で電荷が不足するようになる。これはC1、C2点でエネルギー障壁を作る効果となる。この時、ソース210とドレーン220間にあるカーボンナノチューブブリッジ260の場合、C1とC2間は周辺と孤立されるために量子点を形成するようになる。
【0079】
また、ソース210とドレーン220電極は転移金属触媒を通してカーボンナノチューブブリッジ260に接しているために適当な保磁力を考慮してIm1、Im2の電流を流して、ソース210とドレーン220接触触媒を所望する方向に磁化させる。
【0080】
このような方法でソース210に注入される電子のスピンを調節することができる。この時、ソース210とC1間、C2とドレーン220電極間のカーボンナノチューブブリッジ260が弾動導体(Ballistic Conductor)になるならば注入される電子のスピンが保存される。
【0081】
したがってC1、C2間に形成された量子点に電子がトンネリングして出入する時、ソース210とドレーン220の磁化方向によって、スピン方向が同じ場合にはトンネリングがよく起き、スピン方向が反対の場合にはトンネリングが起きない。
【0082】
このように、チャネル用カーボンナノチューブブリッジ260を通して流れる電流を調節してスピンが関係する単電子トランジスタを実現できる。
【0083】
一方、図23ないし図26は本発明によるカーボンナノチューブの水平成長方法によって形成された電界効果トランジスタの例を概略的に示した図である。図23ないし図26を参照して電界効果トランジスタの多様な構成に対して説明する。
【0084】
図23はゲートをカーボンナノチューブに直交する方向にチューブの両側に形成させた例を示したものである。ニオブ(Nb)やモリブデン(Mo)などの金属を電極及び成長防止膜用電極層として用いることができる。そして、ソースとドレーンの電極層の下には触媒として用いられる触媒層がある。この時、触媒としては普通ニッケル(Ni)などが用いられ、その他に鉄(Fe)やコバルト(Co)またはこれらの合金などを用いることができる。
【0085】
上記のようにゲート電極はソースとドレーン間の両側に設けられている。そして、ゲート電極の間を通るようにカーボンナノチューブが熱化学気相法(熱CVD)等で合成される。すなわち、ゲート電極の間にカーボンナノチューブを合成できるようにそれらの間隔などの幾何学的形状を予め設計しなければならない。この時、ゲートによる電界を十分に生成させながらカーボンナノチューブの成長を調節することができるようにゲートの間隔を狭くし、長い構造に設計することが望ましい。
【0086】
図24はゲート構造を底の部分に配置した例を示したものである。この時触媒層の垂直高さがゲートより上にしなければならないので高さ調節するとともにウェーハの絶縁層との接合を増進させるバッファ層を触媒層下に配置させる。
【0087】
カーボンナノチューブは弾性に富むので電界により曲がることもある。この曲がる程度はカーボンナノチューブの種類及び長さによって異なる。最大数十ナノミリメータ程度まで曲がることがあるが、一般的に数ナノミリメータ程度曲がると予想される。したがって、図23の構造でカーボンナノチューブが成長する触媒の幅よりゲート間の距離が数十ナノミリメータ以上大きく設計する。図24のグラウンドゲートの場合、必要によって薄い絶縁体層をゲート電極上に蒸着させることもできる。また、図25はゲートにもカーボンナノチューブを利用したものであって図23のゲートの間にナノチューブを成長させた構造である。
【0088】
一方、カーボンナノチューブを合成する際に、電極面に垂直に成長ることもあって、半導体性を保ちながら所望する位置で反対側の触媒層まで成長させるようにすることは非常に難しい。このためにカーボンナノチューブの成長を導くことができるガイドとしての役割をする道(カーボンナノチューブが成長される通路)を触媒層と触媒層間に作ってカーボンナノチューブを合成することもできる(図26参照)。
【0089】
このカーボンナノチューブの成長ガイドはRIE(Reactive Ion Etching)などの乾式エッチングを利用すればシリコン酸化膜上に非常に精密に作ることができる。この時、ガイドの両端に触媒を蒸着させてその上に電極を蒸着させる。そして、ゲートはガイドの横に長く配置する。また、ゲートは図面に示したように絶縁体表面に配置することができ、ゲート電極も触媒層のようにエッチングされた位置に置かれていて触媒層やカーボンナノチューブと水平位置で電界を加えることもできる。
【0090】
図23と図24に示した構造は2回のリソグラフィー工程で製作することができる。しかし、図25と図26の構造は3回のリソグラフィー工程が必要である。この時、合成時に図25の構造はFETだけでなく、トンネリングトランジスタの製作にも利用可能である。また、ゲートとしてカーボンナノチューブを2個以上設ける場合ゲートバイアスにしたがってSETやKondo共振を利用したKondo素子を製作することができる。図26の構造は合成時にカーボンナノチューブが所望しない方向に成長することを防止させることによって欠陥を減らすことができる構造である。
【0091】
【発明の効果】
本発明によるカーボンナノチューブの水平成長方法を利用すれば、触媒が形成された基板の所望する特定位置でカーボンナノチューブを選択的に水平に成長させることができ、その方法を用いてナノ大きさの電界効果トランジスタを容易に製造できる長所がある。
【0092】
また、カーボンナノチューブが選択的に水平成長されたソースとドレーン電極の接触触媒を所望する方向に磁化させることによって、スピンバルブ単電子トランジスタを実現できるという長所もある。
【図面の簡単な説明】
【図1】従来のカーボンナノチューブの垂直成長図を概略的に示した図面。
【図2】Hong Jie Dieにより報告されたカーボンナノチューブの水平成長方法を概略的に示した図面。
【図3】本発明によるカーボンナノチューブの水平成長方法の一例を概略的に示した図面。
【図4】図3に示したカーボンナノチューブの水平成長方法によって製造された構造物の透視図。
【図5A】図3に示したカーボンナノチューブの水平成長方法によって製造された構造物を貫通した穴形開口部を示した断面図であり、
【図5B】製造された構造物を貫通していないカップ形開口部を示した断面図。
【図6】本発明によるカーボンナノチューブの水平成長方法によって水平成長されたカーボンナノチューブの多様な形態を示した図面。
【図7】本発明によるカーボンナノチューブの水平成長方法によって水平成長されたカーボンナノチューブの多様な形態を示した図面。
【図8】本発明によるカーボンナノチューブの水平成長方法によって水平成長されたカーボンナノチューブの多様な形態を示した図面。
【図9】本発明によるカーボンナノチューブの水平成長方法によって水平成長されたカーボンナノチューブの多様な形態を示した図面。
【図10】本発明によるカーボンナノチューブの水平成長方法によって水平成長されたカーボンナノチューブの多様な形態を示した図面。
【図11】本発明によるカーボンナノチューブの水平成長方法によって水平成長されたカーボンナノチューブの多様な形態を示した図面。
【図12】本発明によるカーボンナノチューブの水平成長方法によって水平成長されたカーボンナノチューブに金属がパターニングされて接合が形成されたことを示した図面。
【図13】本発明によるカーボンナノチューブの水平成長方法の他の例を概略的に示した図面。
【図14】本発明によるカーボンナノチューブの水平成長方法のさらに他の実施形態を概略的に示した図面。
【図15】本発明によるカーボンナノチューブの水平成長方法によって、所望する位置でカーボンナノチューブを水平成長させる過程を概略的に示した図面。
【図16】本発明によるカーボンナノチューブ水平成長の他の方法によって、所望する位置でカーボンナノチューブを水平成長させる過程を概略的に示した図面。
【図17】本発明によるカーボンナノチューブ水平成長の他の方法によって、所望する位置でカーボンナノチューブを水平成長させる過程を概略的に示した図面。
【図18】本発明によるカーボンナノチューブの水平成長方法において、ナノ点またはナノ線を形成するためのインプリント工程を概略的に示した図面。
【図19】本発明によるカーボンナノチューブの水平成長方法において、ナノ点またはナノ線を形成するためのセルフアセンブリ方法を概略的に示した図面。
【図20】本発明によるカーボンナノチューブを利用したスピンバルブ単電子トランジスタの構造を概略的に示した図面。
【図21】図20に示した本発明によるスピンバルブ単電子トランジスタの斜視図。
【図22】本発明によるカーボンナノチューブを利用したスピンバルブ単電子トランジスタの他の実施形態を概略的に示した図面。
【図23】本発明によるカーボンナノチューブの水平成長方法によって形成されたトランジスタの例を概略的に示した図面。
【図24】本発明によるカーボンナノチューブの水平成長方法によって形成されたトランジスタの例を概略的に示した図面。
【図25】本発明によるカーボンナノチューブの水平成長方法によって形成されたトランジスタの例を概略的に示した図面。
【図26】本発明によるカーボンナノチューブの水平成長方法によって形成されたトランジスタの例を概略的に示した図面。
【符号の説明】
10:基板
12:触媒パターン
14:成長抑制層
16:開口部
18:触媒パターンの露出面
20:カーボンナノチューブ
30:金属
40:マスク
42:開口部
210:ソース
220:ドレーン
230:第1ゲート
240:第2ゲート
251、252:導線
260:カーボンナノチューブブリッジ
270、280:ゲート用カーボンナノチューブ
Claims (19)
- ( i )基板上の任意の位置にマスクを形成させる段階と、
( j )前記マスクを含む前記基板上に触媒パターンを形成させる段階と、
( k )前記マスクおよび前記触媒パターンを含む前記基板上にカーボンナノチューブの垂直成長を抑制する層を形成する段階と、
( l )前記マスクを除去して前記基板及び垂直成長を抑制する層に開口部を形成して、前記触媒パターンを露出させる段階、及び
( m ) 前記露出された触媒パターンの位置でカーボンナノチューブを合成して水平成長させることを特徴とするカーボンナノチューブの水平成長方法。 - 前記触媒パターンは直線形、直交形、放射形、円形、四角形のいずれか一形状であり、
前記開口部は、前記直線形に重なるように、直交形または放射形パターンの交差地点を含むように、円形パターンの内部に存在するように、四角形パターンの内部に存在するように形成されることを特徴とする請求項1に記載のカーボンナノチューブの水平成長方法。 - 開口部内で前記触媒パターンから形成されるカーボンナノチューブが両側から相互に接合されるように成長されることを特徴とする請求項2に記載のカーボンナノチューブの水平成長方法。
- 開口部内で前記触媒パターンから形成されるカーボンナノチューブが相互に交差して成長されることを特徴とする請求項2に記載のカーボンナノチューブの水平成長方法。
- 開口部内で前記触媒パターンから形成されるカーボンナノチューブは、向かい合う触媒パターンの露出面間で相互連結されるブリッジ構造を形成することを特徴とする請求項2に記載のカーボンナノチューブの水平成長方法。
- 開口部内で前記触媒パターンから形成されるカーボンナノチューブは、向かい合う触媒パターンの露出面間で相互連結されないフリー・ハング構造を形成することを特徴とする請求項2に記載のカーボンナノチューブの水平成長方法。
- 前記水平成長されたカーボンナノチューブは、一つの触媒パターンの露出面で複数のカーボンナノチューブが成長されることを特徴とする請求項2に記載のカーボンナノチューブの水平成長方法。
- 成長された前記カーボンナノチューブに金属をパターニングして、任意の位置に前記カーボンナノチューブと金属間の接合を選択的に形成させる段階をさらに備えることを特徴とする請求項1に記載のカーボンナノチューブの水平成長方法。
- 前記基板面内の任意の第1の方向を上下、この第1の方向に直交した第2の方向を左右としたとき、前記基板上に上下左右の一定な配列で触媒パターンを形成する段階と、
前記一定な配列で溝が形成されたカーボンナノチューブの垂直成長を抑制する別途の基板を製作する段階と、
任意の間隔を置いて前記垂直成長を抑制する基板を前記触媒パターンが形成された基板の上に配置する段階、及び
前記触媒パターン位置でカーボンナノチューブを合成して水平成長させることを特徴とするカーボンナノチューブの水平成長方法。 - 基板上に直径数十nmの点からなるナノ点または長さ数十nmの線からなるナノ線の形状で触媒を形成させて、前記ナノ点またはナノ線からカーボンナノチューブの垂直方向の成長が抑制されるように前記ナノ点またはナノ線上に成長抑制層をパターニングして、前記ナノ点またはナノ線からカーボンナノチューブを水平成長させることを特徴とするカーボンナノチューブの水平成長方法。
- 基板上に長さ数十nmの線からなるナノ線の形状で触媒を形成させる段階と、
前記ナノ線状の触媒上に、PR工程およびリソグラフィー工程のうちいずれかの半導体 工程を通して、任意の間隔でカーボンナノチューブの垂直方向の成長を抑制する成長抑制層を形成する段階と、
湿式エッチングによって、前記成長抑制層が形成されない領域の前記ナノ線状の触媒を除去する段階、及び
化学的気相蒸着法を利用して、前記任意の間隔をあけて前記成長抑制層下に形成されている前記触媒間にカーボンナノチューブを水平成長させることを特徴とするカーボンナノチューブの水平成長方法。 - 前記ナノ点またはナノ線状の触媒はインプリント方法でパターニングされることを特徴とする請求項10または11のいずれか一に記載のカーボンナノチューブの水平成長方法。
- 前記ナノ点またはナノ線状の触媒はセルフアセンブリ方法でパターニングされることを特徴とする請求項10または11のいずれか一に記載のカーボンナノチューブの水平成長方法。
- 前記成長抑制層はシリコン酸化膜 ( SiO 2 ) またはシリコン窒化膜 ( SiN)の絶縁体で形成されることを特徴とする請求項10または11のいずれか一に記載のカーボンナノチューブの水平成長方法。
- 前記成長抑制層はモリブデン ( Mo ) 、ニオブ ( Nb ) 、パラジウム ( Pd ) の金属で形成されることを特徴とする請求項10または11のいずれか一に記載のカーボンナノチューブの水平成長方法。
- ソースとドレーン間に半導体的特性を有するカーボンナノチューブを水平成長させることにより形成したカーボンナノチューブブリッジと、
このカーボンナノチューブブリッジに対して垂直方向に複数形成されたゲート用カーボンナノチューブブリッジと
を備え、
これらのゲート用カーボンナノチューブブリッジに印加する電圧を制御することで前記カーボンナノチューブブリッジにエネルギー障壁を形成し、前記カーボンナノチューブブリッジに量子点として機能する領域を形成して電流の流れを制御する
ことを特徴とするカーボンナノチューブを利用した電界効果トランジスタ。 - 前記複数のゲート用カーボンナノチューブブリッジがゲートを形成するにあたって、前記ゲート用カーボンナノチューブブリッジの一端は、共通する端子に接続されることを特徴とする請求項16に記載のカーボンナノチューブを利用した電界効果トランジスタ。
- 前記ソース及びドレーン上に、前記ソース及びドレーンに接触する触媒を任意の方向に磁化させることができるように、電流を通過させることができる導線が形成されたことを特徴とする請求項16に記載のカーボンナノチューブを利用した電界効果トランジスタ。
- 前記ソース直上に形成される導線と、前記ドレーン直上に形成される導線が相互平行するように構成されることを特徴とする請求項16に記載のカーボンナノチューブを利用した電界効果トランジスタ。
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0041012A KR100379470B1 (ko) | 2000-07-18 | 2000-07-18 | 카본 나노 튜브의 수평 성장 방법 |
KR1020000068966A KR100350794B1 (ko) | 2000-11-20 | 2000-11-20 | 탄소나노튜브를 이용한 스핀 밸브 단전자 트랜지스터 |
KR10-2001-0034013A KR100405974B1 (ko) | 2001-06-15 | 2001-06-15 | 카본나노튜브의 수평 성장 방법 |
KR2000-41012 | 2001-06-28 | ||
KR2001-37496 | 2001-06-28 | ||
KR2001-34013 | 2001-06-28 | ||
KR10-2001-0037496A KR100434272B1 (ko) | 2001-06-28 | 2001-06-28 | 탄소나노튜브의 수평성장 방법 |
KR2000-68966 | 2001-06-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002118248A JP2002118248A (ja) | 2002-04-19 |
JP3859199B2 true JP3859199B2 (ja) | 2006-12-20 |
Family
ID=36718402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001218578A Expired - Fee Related JP3859199B2 (ja) | 2000-07-18 | 2001-07-18 | カーボンナノチューブの水平成長方法及びこれを利用した電界効果トランジスタ |
Country Status (5)
Country | Link |
---|---|
US (2) | US6515339B2 (ja) |
JP (1) | JP3859199B2 (ja) |
CN (1) | CN1251962C (ja) |
DE (1) | DE10134866B4 (ja) |
GB (1) | GB2364933B (ja) |
Families Citing this family (336)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6593166B1 (en) * | 1998-03-24 | 2003-07-15 | Silverbrook Research Pty Ltd | Method for construction of nanotube matrix material |
US6365059B1 (en) * | 2000-04-28 | 2002-04-02 | Alexander Pechenik | Method for making a nano-stamp and for forming, with the stamp, nano-size elements on a substrate |
US7084507B2 (en) * | 2001-05-02 | 2006-08-01 | Fujitsu Limited | Integrated circuit device and method of producing the same |
DE10123876A1 (de) * | 2001-05-16 | 2002-11-28 | Infineon Technologies Ag | Nanoröhren-Anordnung und Verfahren zum Herstellen einer Nanoröhren-Anordnung |
US6593666B1 (en) * | 2001-06-20 | 2003-07-15 | Ambient Systems, Inc. | Energy conversion systems using nanometer scale assemblies and methods for using same |
JP2003017508A (ja) * | 2001-07-05 | 2003-01-17 | Nec Corp | 電界効果トランジスタ |
DE10135504A1 (de) * | 2001-07-20 | 2003-02-06 | Infineon Technologies Ag | Filterstruktur mit Nanoporen |
US6706402B2 (en) * | 2001-07-25 | 2004-03-16 | Nantero, Inc. | Nanotube films and articles |
US7566478B2 (en) * | 2001-07-25 | 2009-07-28 | Nantero, Inc. | Methods of making carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US7259410B2 (en) | 2001-07-25 | 2007-08-21 | Nantero, Inc. | Devices having horizontally-disposed nanofabric articles and methods of making the same |
US7563711B1 (en) * | 2001-07-25 | 2009-07-21 | Nantero, Inc. | Method of forming a carbon nanotube-based contact to semiconductor |
US6574130B2 (en) | 2001-07-25 | 2003-06-03 | Nantero, Inc. | Hybrid circuit having nanotube electromechanical memory |
US6835591B2 (en) | 2001-07-25 | 2004-12-28 | Nantero, Inc. | Methods of nanotube films and articles |
US6919592B2 (en) * | 2001-07-25 | 2005-07-19 | Nantero, Inc. | Electromechanical memory array using nanotube ribbons and method for making same |
US6924538B2 (en) * | 2001-07-25 | 2005-08-02 | Nantero, Inc. | Devices having vertically-disposed nanofabric articles and methods of making the same |
US6643165B2 (en) | 2001-07-25 | 2003-11-04 | Nantero, Inc. | Electromechanical memory having cell selection circuitry constructed with nanotube technology |
US7176505B2 (en) * | 2001-12-28 | 2007-02-13 | Nantero, Inc. | Electromechanical three-trace junction devices |
US6784028B2 (en) | 2001-12-28 | 2004-08-31 | Nantero, Inc. | Methods of making electromechanical three-trace junction devices |
US8154093B2 (en) | 2002-01-16 | 2012-04-10 | Nanomix, Inc. | Nano-electronic sensors for chemical and biological analytes, including capacitance and bio-membrane devices |
US20040253741A1 (en) * | 2003-02-06 | 2004-12-16 | Alexander Star | Analyte detection in liquids with carbon nanotube field effect transistor devices |
US20060228723A1 (en) * | 2002-01-16 | 2006-10-12 | Keith Bradley | System and method for electronic sensing of biomolecules |
US20070178477A1 (en) * | 2002-01-16 | 2007-08-02 | Nanomix, Inc. | Nanotube sensor devices for DNA detection |
EP1341184B1 (en) * | 2002-02-09 | 2005-09-14 | Samsung Electronics Co., Ltd. | Memory device utilizing carbon nanotubes and method of fabricating the memory device |
US20070035226A1 (en) * | 2002-02-11 | 2007-02-15 | Rensselaer Polytechnic Institute | Carbon nanotube hybrid structures |
CA2475790A1 (en) * | 2002-02-11 | 2003-08-21 | Rensselaer Polytechnic Institute | Directed assembly of highly-organized carbon nanotube architectures |
US20080021339A1 (en) * | 2005-10-27 | 2008-01-24 | Gabriel Jean-Christophe P | Anesthesia monitor, capacitance nanosensors and dynamic sensor sampling method |
AU2003224723A1 (en) * | 2002-03-20 | 2003-10-08 | The Board Of Trustees Of The Leland Stanford Junior University | Molybdenum-based electrode with carbon nanotube growth |
US6891227B2 (en) * | 2002-03-20 | 2005-05-10 | International Business Machines Corporation | Self-aligned nanotube field effect transistor and method of fabricating same |
US6699779B2 (en) * | 2002-03-22 | 2004-03-02 | Hewlett-Packard Development Company, L.P. | Method for making nanoscale wires and gaps for switches and transistors |
US6872645B2 (en) * | 2002-04-02 | 2005-03-29 | Nanosys, Inc. | Methods of positioning and/or orienting nanostructures |
WO2003087709A1 (en) * | 2002-04-05 | 2003-10-23 | Integrated Nanosystems, Inc. | Nanowire microscope probe tips |
CN1164486C (zh) * | 2002-04-12 | 2004-09-01 | 上海交通大学 | 操纵碳纳米管选择性取向排布于基底表面的方法 |
US7335395B2 (en) * | 2002-04-23 | 2008-02-26 | Nantero, Inc. | Methods of using pre-formed nanotubes to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
JP4974263B2 (ja) | 2002-05-20 | 2012-07-11 | 富士通株式会社 | 半導体装置の製造方法 |
WO2004040671A2 (en) * | 2002-06-21 | 2004-05-13 | Nanomix. Inc. | Dispersed growth of nanotubes on a substrate |
US7948041B2 (en) | 2005-05-19 | 2011-05-24 | Nanomix, Inc. | Sensor having a thin-film inhibition layer |
US6825607B2 (en) * | 2002-07-12 | 2004-11-30 | Hon Hai Precision Ind. Co., Ltd. | Field emission display device |
JP4338948B2 (ja) * | 2002-08-01 | 2009-10-07 | 株式会社半導体エネルギー研究所 | カーボンナノチューブ半導体素子の作製方法 |
JP3804594B2 (ja) * | 2002-08-02 | 2006-08-02 | 日本電気株式会社 | 触媒担持基板およびそれを用いたカーボンナノチューブの成長方法ならびにカーボンナノチューブを用いたトランジスタ |
US7358121B2 (en) * | 2002-08-23 | 2008-04-15 | Intel Corporation | Tri-gate devices and methods of fabrication |
JP4547852B2 (ja) * | 2002-09-04 | 2010-09-22 | 富士ゼロックス株式会社 | 電気部品の製造方法 |
US20040043148A1 (en) * | 2002-09-04 | 2004-03-04 | Industrial Technology Research Institute | Method for fabricating carbon nanotube device |
US7115916B2 (en) * | 2002-09-26 | 2006-10-03 | International Business Machines Corporation | System and method for molecular optical emission |
CA2499944A1 (en) * | 2002-09-30 | 2004-04-15 | Nanosys, Inc. | Integrated displays using nanowire transistors |
KR101191632B1 (ko) | 2002-09-30 | 2012-10-17 | 나노시스, 인크. | 대형 나노 인에이블 매크로전자 기판 및 그 사용 |
US7135728B2 (en) * | 2002-09-30 | 2006-11-14 | Nanosys, Inc. | Large-area nanoenabled macroelectronic substrates and uses therefor |
DE10247679A1 (de) * | 2002-10-12 | 2004-04-22 | Fujitsu Ltd., Kawasaki | Halbleitergrundstruktur für Molekularelektronik und Molekularelektronik-basierte Biosensorik |
US6916511B2 (en) * | 2002-10-24 | 2005-07-12 | Hewlett-Packard Development Company, L.P. | Method of hardening a nano-imprinting stamp |
US7378347B2 (en) * | 2002-10-28 | 2008-05-27 | Hewlett-Packard Development Company, L.P. | Method of forming catalyst nanoparticles for nanowire growth and other applications |
US7253434B2 (en) * | 2002-10-29 | 2007-08-07 | President And Fellows Of Harvard College | Suspended carbon nanotube field effect transistor |
US7466069B2 (en) * | 2002-10-29 | 2008-12-16 | President And Fellows Of Harvard College | Carbon nanotube device fabrication |
GB0229191D0 (en) * | 2002-12-14 | 2003-01-22 | Plastic Logic Ltd | Embossing of polymer devices |
US6870361B2 (en) * | 2002-12-21 | 2005-03-22 | Agilent Technologies, Inc. | System with nano-scale conductor and nano-opening |
US6933222B2 (en) * | 2003-01-02 | 2005-08-23 | Intel Corporation | Microcircuit fabrication and interconnection |
JP4161191B2 (ja) * | 2003-01-09 | 2008-10-08 | ソニー株式会社 | 電界電子放出素子の製造方法 |
EP1582501A4 (en) * | 2003-01-09 | 2009-01-28 | Sony Corp | PROCESS FOR TUBE-LIKE CARBON MOLECULAR AND TUBE SHAPED CARBON MOLECULE, METHOD FOR RECORDING DEVICE AND RECORDING DEVICE, METHOD FOR FIELD ELECTRON EMISSION ELEMENT AND FIELD ELECTRON EMISSION ELEMENT AND METHOD FOR DISPLAY UNIT AND DISPLAY UNIT |
US7244499B2 (en) | 2003-01-10 | 2007-07-17 | Sanyo Electric Co., Ltd. | Bonded structure including a carbon nanotube |
US9574290B2 (en) | 2003-01-13 | 2017-02-21 | Nantero Inc. | Methods for arranging nanotube elements within nanotube fabrics and films |
EP1583853A4 (en) * | 2003-01-13 | 2006-12-20 | Nantero Inc | CARBON NANOTUBES CONTAINING FILMS, LAYERS, TEXTILE SURFACES, BANDS, ELEMENTS AND ARTICLES |
CA2512387A1 (en) * | 2003-01-13 | 2004-08-05 | Nantero, Inc. | Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US9422651B2 (en) | 2003-01-13 | 2016-08-23 | Nantero Inc. | Methods for arranging nanoscopic elements within networks, fabrics, and films |
US7858185B2 (en) * | 2003-09-08 | 2010-12-28 | Nantero, Inc. | High purity nanotube fabrics and films |
US7666382B2 (en) | 2004-12-16 | 2010-02-23 | Nantero, Inc. | Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof |
US8937575B2 (en) | 2009-07-31 | 2015-01-20 | Nantero Inc. | Microstrip antenna elements and arrays comprising a shaped nanotube fabric layer and integrated two terminal nanotube select devices |
US7560136B2 (en) * | 2003-01-13 | 2009-07-14 | Nantero, Inc. | Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US6764874B1 (en) * | 2003-01-30 | 2004-07-20 | Motorola, Inc. | Method for chemical vapor deposition of single walled carbon nanotubes |
JP4774665B2 (ja) * | 2003-02-05 | 2011-09-14 | ソニー株式会社 | 半導体装置の製造方法 |
CN1235072C (zh) * | 2003-03-11 | 2006-01-04 | 清华大学 | 一种光学偏振光源装置及其制造方法 |
US7094679B1 (en) | 2003-03-11 | 2006-08-22 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Carbon nanotube interconnect |
US7273095B2 (en) | 2003-03-11 | 2007-09-25 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Nanoengineered thermal materials based on carbon nanotube array composites |
WO2004088719A2 (en) * | 2003-03-28 | 2004-10-14 | Nantero, Inc. | Nanotube-on-gate fet structures and applications |
US7294877B2 (en) * | 2003-03-28 | 2007-11-13 | Nantero, Inc. | Nanotube-on-gate FET structures and applications |
GB0310492D0 (en) * | 2003-05-08 | 2003-06-11 | Univ Surrey | Carbon nanotube based electron sources |
EP1631812A4 (en) | 2003-05-14 | 2010-12-01 | Nantero Inc | SENSOR PLATFORM HAVING A HORIZONTAL NANOPHONE ELEMENT |
WO2004105140A1 (ja) * | 2003-05-22 | 2004-12-02 | Fujitsu Limited | 電界効果トランジスタ及びその製造方法 |
EP2685250A1 (en) * | 2003-05-23 | 2014-01-15 | Japan Science and Technology Agency | Method for sensing a substance to be detected in a sample |
JP4774476B2 (ja) * | 2004-02-16 | 2011-09-14 | 独立行政法人科学技術振興機構 | センサー |
US7199498B2 (en) * | 2003-06-02 | 2007-04-03 | Ambient Systems, Inc. | Electrical assemblies using molecular-scale electrically conductive and mechanically flexible beams and methods for application of same |
US20040238907A1 (en) * | 2003-06-02 | 2004-12-02 | Pinkerton Joseph F. | Nanoelectromechanical transistors and switch systems |
US7095645B2 (en) * | 2003-06-02 | 2006-08-22 | Ambient Systems, Inc. | Nanoelectromechanical memory cells and data storage devices |
US7148579B2 (en) * | 2003-06-02 | 2006-12-12 | Ambient Systems, Inc. | Energy conversion systems utilizing parallel array of automatic switches and generators |
EP1634296A4 (en) * | 2003-06-09 | 2007-02-14 | Nantero Inc | NON-VOLATILE ELECTROMECHANICAL FIELD EFFECT BLOCKS AND CIRCUITS THEREFOR AND METHOD FOR THEIR PRODUCTION |
US7274064B2 (en) * | 2003-06-09 | 2007-09-25 | Nanatero, Inc. | Non-volatile electromechanical field effect devices and circuits using same and methods of forming same |
EP1636829B1 (en) * | 2003-06-12 | 2016-11-23 | Georgia Tech Research Corporation | Patterned thin film graphite devices |
US7989067B2 (en) * | 2003-06-12 | 2011-08-02 | Georgia Tech Research Corporation | Incorporation of functionalizing molecules in nanopatterned epitaxial graphene electronics |
US6921670B2 (en) * | 2003-06-24 | 2005-07-26 | Hewlett-Packard Development Company, Lp. | Nanostructure fabrication using microbial mandrel |
US6909151B2 (en) * | 2003-06-27 | 2005-06-21 | Intel Corporation | Nonplanar device with stress incorporation layer and method of fabrication |
US6987302B1 (en) * | 2003-07-01 | 2006-01-17 | Yingjian Chen | Nanotube with at least a magnetic nanoparticle attached to the nanotube's exterior sidewall and electronic devices made thereof |
US7583526B2 (en) | 2003-08-13 | 2009-09-01 | Nantero, Inc. | Random access memory including nanotube switching elements |
US7289357B2 (en) | 2003-08-13 | 2007-10-30 | Nantero, Inc. | Isolation structure for deflectable nanotube elements |
WO2005084164A2 (en) | 2003-08-13 | 2005-09-15 | Nantero, Inc. | Nanotube-based switching elements and logic circuits |
CA2535634A1 (en) * | 2003-08-13 | 2005-05-26 | Nantero, Inc | Nanotube-based switching elements with multiple controls and circuits made from same |
WO2005017967A2 (en) | 2003-08-13 | 2005-02-24 | Nantero, Inc. | Nanotube device structure and methods of fabrication |
US7115960B2 (en) | 2003-08-13 | 2006-10-03 | Nantero, Inc. | Nanotube-based switching elements |
TWI239071B (en) * | 2003-08-20 | 2005-09-01 | Ind Tech Res Inst | Manufacturing method of carbon nano-tube transistor |
JP4669213B2 (ja) * | 2003-08-29 | 2011-04-13 | 独立行政法人科学技術振興機構 | 電界効果トランジスタ及び単一電子トランジスタ並びにそれを用いたセンサ |
US6989325B2 (en) * | 2003-09-03 | 2006-01-24 | Industrial Technology Research Institute | Self-assembled nanometer conductive bumps and method for fabricating |
US7416993B2 (en) | 2003-09-08 | 2008-08-26 | Nantero, Inc. | Patterned nanowire articles on a substrate and methods of making the same |
US7375369B2 (en) * | 2003-09-08 | 2008-05-20 | Nantero, Inc. | Spin-coatable liquid for formation of high purity nanotube films |
US7235159B2 (en) * | 2003-09-17 | 2007-06-26 | Molecular Nanosystems, Inc. | Methods for producing and using catalytic substrates for carbon nanotube growth |
US20050214197A1 (en) * | 2003-09-17 | 2005-09-29 | Molecular Nanosystems, Inc. | Methods for producing and using catalytic substrates for carbon nanotube growth |
KR20060133974A (ko) * | 2003-10-16 | 2006-12-27 | 더 유니버시티 오브 아크론 | 탄소 나노섬유 기판 상의 탄소 나노튜브 |
US7628974B2 (en) * | 2003-10-22 | 2009-12-08 | International Business Machines Corporation | Control of carbon nanotube diameter using CVD or PECVD growth |
US7374793B2 (en) * | 2003-12-11 | 2008-05-20 | International Business Machines Corporation | Methods and structures for promoting stable synthesis of carbon nanotubes |
US7208094B2 (en) | 2003-12-17 | 2007-04-24 | Hewlett-Packard Development Company, L.P. | Methods of bridging lateral nanowires and device using same |
US7181836B2 (en) * | 2003-12-19 | 2007-02-27 | General Electric Company | Method for making an electrode structure |
US20050151126A1 (en) * | 2003-12-31 | 2005-07-14 | Intel Corporation | Methods of producing carbon nanotubes using peptide or nucleic acid micropatterning |
US8025960B2 (en) * | 2004-02-02 | 2011-09-27 | Nanosys, Inc. | Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production |
US7553371B2 (en) * | 2004-02-02 | 2009-06-30 | Nanosys, Inc. | Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production |
US20110039690A1 (en) * | 2004-02-02 | 2011-02-17 | Nanosys, Inc. | Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production |
FR2865946B1 (fr) * | 2004-02-09 | 2007-12-21 | Commissariat Energie Atomique | Procede de realisation d'une couche de materiau sur un support |
US7528437B2 (en) * | 2004-02-11 | 2009-05-05 | Nantero, Inc. | EEPROMS using carbon nanotubes for cell storage |
KR100695124B1 (ko) * | 2004-02-25 | 2007-03-14 | 삼성전자주식회사 | 카본나노튜브의 수평성장방법 |
JP4448356B2 (ja) | 2004-03-26 | 2010-04-07 | 富士通株式会社 | 半導体装置およびその製造方法 |
US7327037B2 (en) * | 2004-04-01 | 2008-02-05 | Lucent Technologies Inc. | High density nanostructured interconnection |
US7312155B2 (en) * | 2004-04-07 | 2007-12-25 | Intel Corporation | Forming self-aligned nano-electrodes |
US20050279274A1 (en) * | 2004-04-30 | 2005-12-22 | Chunming Niu | Systems and methods for nanowire growth and manufacturing |
US7785922B2 (en) | 2004-04-30 | 2010-08-31 | Nanosys, Inc. | Methods for oriented growth of nanowires on patterned substrates |
CN101010780B (zh) * | 2004-04-30 | 2012-07-25 | 纳米系统公司 | 纳米线生长和获取的体系和方法 |
EP1774575A2 (en) * | 2004-05-17 | 2007-04-18 | Cambrios Technology Corp. | Biofabrication of transistors including field effect transistors |
US7180107B2 (en) * | 2004-05-25 | 2007-02-20 | International Business Machines Corporation | Method of fabricating a tunneling nanotube field effect transistor |
US8075863B2 (en) | 2004-05-26 | 2011-12-13 | Massachusetts Institute Of Technology | Methods and devices for growth and/or assembly of nanostructures |
US7709880B2 (en) | 2004-06-09 | 2010-05-04 | Nantero, Inc. | Field effect devices having a gate controlled via a nanotube switching element |
US7330709B2 (en) | 2004-06-18 | 2008-02-12 | Nantero, Inc. | Receiver circuit using nanotube-based switches and logic |
US7288970B2 (en) * | 2004-06-18 | 2007-10-30 | Nantero, Inc. | Integrated nanotube and field effect switching device |
US7161403B2 (en) | 2004-06-18 | 2007-01-09 | Nantero, Inc. | Storage elements using nanotube switching elements |
US7167026B2 (en) | 2004-06-18 | 2007-01-23 | Nantero, Inc. | Tri-state circuit using nanotube switching elements |
US7329931B2 (en) | 2004-06-18 | 2008-02-12 | Nantero, Inc. | Receiver circuit using nanotube-based switches and transistors |
US7164744B2 (en) | 2004-06-18 | 2007-01-16 | Nantero, Inc. | Nanotube-based logic driver circuits |
US7652342B2 (en) | 2004-06-18 | 2010-01-26 | Nantero, Inc. | Nanotube-based transfer devices and related circuits |
US7042009B2 (en) | 2004-06-30 | 2006-05-09 | Intel Corporation | High mobility tri-gate devices and methods of fabrication |
JP4571452B2 (ja) * | 2004-07-06 | 2010-10-27 | 日本電信電話株式会社 | 超伝導三端子素子の製造方法 |
WO2006078281A2 (en) * | 2004-07-07 | 2006-07-27 | Nanosys, Inc. | Systems and methods for harvesting and integrating nanowires |
US7194912B2 (en) * | 2004-07-13 | 2007-03-27 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Carbon nanotube-based sensor and method for continually sensing changes in a structure |
GB0415891D0 (en) * | 2004-07-16 | 2004-08-18 | Koninkl Philips Electronics Nv | Nanoscale fet |
US7518283B2 (en) | 2004-07-19 | 2009-04-14 | Cjp Ip Holdings Ltd. | Nanometer-scale electrostatic and electromagnetic motors and generators |
DE102004035368B4 (de) * | 2004-07-21 | 2007-10-18 | Infineon Technologies Ag | Substrat mit Leiterbahnen und Herstellung der Leiterbahnen auf Substraten für Halbleiterbauteile |
WO2006076044A2 (en) * | 2004-07-30 | 2006-07-20 | Agilent Technologies, Inc. | Nanostructure-based transistor |
US7348284B2 (en) | 2004-08-10 | 2008-03-25 | Intel Corporation | Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow |
US7345296B2 (en) * | 2004-09-16 | 2008-03-18 | Atomate Corporation | Nanotube transistor and rectifying devices |
US8471238B2 (en) * | 2004-09-16 | 2013-06-25 | Nantero Inc. | Light emitters using nanotubes and methods of making same |
US7365632B2 (en) * | 2004-09-21 | 2008-04-29 | Nantero, Inc. | Resistive elements using carbon nanotubes |
US20060060863A1 (en) * | 2004-09-22 | 2006-03-23 | Jennifer Lu | System and method for controlling nanostructure growth |
US7422946B2 (en) * | 2004-09-29 | 2008-09-09 | Intel Corporation | Independently accessed double-gate and tri-gate transistors in same process flow |
US7361958B2 (en) * | 2004-09-30 | 2008-04-22 | Intel Corporation | Nonplanar transistors with metal gate electrodes |
JP5045103B2 (ja) * | 2004-10-22 | 2012-10-10 | 富士通セミコンダクター株式会社 | 半導体装置及びその製造方法 |
US20060086977A1 (en) | 2004-10-25 | 2006-04-27 | Uday Shah | Nonplanar device with thinned lower body portion and method of fabrication |
CN100420033C (zh) * | 2004-10-28 | 2008-09-17 | 鸿富锦精密工业(深圳)有限公司 | 场效应晶体管及其制造方法 |
CA2586120A1 (en) * | 2004-11-02 | 2006-12-28 | Nantero, Inc. | Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches |
US20100147657A1 (en) * | 2004-11-02 | 2010-06-17 | Nantero, Inc. | Nanotube esd protective devices and corresponding nonvolatile and volatile nanotube switches |
CN100437120C (zh) * | 2004-11-17 | 2008-11-26 | 中国科学院物理研究所 | 单根一维纳米材料的测试电极的制作方法 |
US7560366B1 (en) * | 2004-12-02 | 2009-07-14 | Nanosys, Inc. | Nanowire horizontal growth and substrate removal |
US8362525B2 (en) * | 2005-01-14 | 2013-01-29 | Nantero Inc. | Field effect device having a channel of nanofabric and methods of making same |
JP4496094B2 (ja) * | 2005-01-14 | 2010-07-07 | シャープ株式会社 | 半導体装置及び半導体集積回路 |
US7598544B2 (en) * | 2005-01-14 | 2009-10-06 | Nanotero, Inc. | Hybrid carbon nanotude FET(CNFET)-FET static RAM (SRAM) and method of making same |
JP4555695B2 (ja) * | 2005-01-20 | 2010-10-06 | 富士通株式会社 | カーボンナノチューブ配線を備えた電子デバイス及びその製造方法 |
JP5028744B2 (ja) * | 2005-02-15 | 2012-09-19 | 富士通株式会社 | カーボンナノチューブの形成方法および電子デバイスの製造方法 |
US7518196B2 (en) | 2005-02-23 | 2009-04-14 | Intel Corporation | Field effect transistor with narrow bandgap source and drain regions and method of fabrication |
US7419832B2 (en) * | 2005-03-10 | 2008-09-02 | Streck, Inc. | Blood collection tube with surfactant |
US7824946B1 (en) | 2005-03-11 | 2010-11-02 | Nantero, Inc. | Isolated metal plug process for use in fabricating carbon nanotube memory cells |
KR100682942B1 (ko) * | 2005-03-22 | 2007-02-15 | 삼성전자주식회사 | 금속 전구체 화합물을 포함하는 촉매 레지스트 및 이를이용한 촉매 입자들의 패터닝 방법 |
US20060220163A1 (en) * | 2005-03-31 | 2006-10-05 | Shih-Yuan Wang | Light sources that use diamond nanowires |
US8941094B2 (en) | 2010-09-02 | 2015-01-27 | Nantero Inc. | Methods for adjusting the conductivity range of a nanotube fabric layer |
US9287356B2 (en) | 2005-05-09 | 2016-03-15 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
CA2603352C (en) * | 2005-04-06 | 2013-10-01 | Jene Golovchenko | Molecular characterization with carbon nanotube control |
US20060231946A1 (en) * | 2005-04-14 | 2006-10-19 | Molecular Nanosystems, Inc. | Nanotube surface coatings for improved wettability |
US20060251897A1 (en) * | 2005-05-06 | 2006-11-09 | Molecular Nanosystems, Inc. | Growth of carbon nanotubes to join surfaces |
US7782650B2 (en) * | 2005-05-09 | 2010-08-24 | Nantero, Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
TWI324773B (en) | 2005-05-09 | 2010-05-11 | Nantero Inc | Non-volatile shadow latch using a nanotube switch |
US7835170B2 (en) | 2005-05-09 | 2010-11-16 | Nantero, Inc. | Memory elements and cross point switches and arrays of same using nonvolatile nanotube blocks |
US8008745B2 (en) | 2005-05-09 | 2011-08-30 | Nantero, Inc. | Latch circuits and operation circuits having scalable nonvolatile nanotube switches as electronic fuse replacement elements |
US8183665B2 (en) * | 2005-11-15 | 2012-05-22 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US8013363B2 (en) | 2005-05-09 | 2011-09-06 | Nantero, Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US9196615B2 (en) | 2005-05-09 | 2015-11-24 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US9911743B2 (en) | 2005-05-09 | 2018-03-06 | Nantero, Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US7781862B2 (en) | 2005-05-09 | 2010-08-24 | Nantero, Inc. | Two-terminal nanotube devices and systems and methods of making same |
US7479654B2 (en) | 2005-05-09 | 2009-01-20 | Nantero, Inc. | Memory arrays using nanotube articles with reprogrammable resistance |
US8102018B2 (en) | 2005-05-09 | 2012-01-24 | Nantero Inc. | Nonvolatile resistive memories having scalable two-terminal nanotube switches |
US8217490B2 (en) | 2005-05-09 | 2012-07-10 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
US8513768B2 (en) | 2005-05-09 | 2013-08-20 | Nantero Inc. | Nonvolatile nanotube diodes and nonvolatile nanotube blocks and systems using same and methods of making same |
GB0509499D0 (en) * | 2005-05-11 | 2005-06-15 | Univ Surrey | Use of thermal barrier for low temperature growth of nanostructures using top-down heating approach |
US7598127B2 (en) | 2005-05-12 | 2009-10-06 | Nantero, Inc. | Nanotube fuse structure |
TWI264271B (en) * | 2005-05-13 | 2006-10-11 | Delta Electronics Inc | Heat sink |
US7928521B1 (en) | 2005-05-31 | 2011-04-19 | Nantero, Inc. | Non-tensioned carbon nanotube switch design and process for making same |
JP4703270B2 (ja) * | 2005-06-06 | 2011-06-15 | 三菱電機株式会社 | ナノ構造体群を用いた電子素子 |
US7915122B2 (en) * | 2005-06-08 | 2011-03-29 | Nantero, Inc. | Self-aligned cell integration scheme |
US7541216B2 (en) | 2005-06-09 | 2009-06-02 | Nantero, Inc. | Method of aligning deposited nanotubes onto an etched feature using a spacer |
CN100417117C (zh) * | 2005-06-15 | 2008-09-03 | 华为技术有限公司 | 自动交换光网络中节点可达性的识别方法 |
US20060292716A1 (en) * | 2005-06-27 | 2006-12-28 | Lsi Logic Corporation | Use selective growth metallization to improve electrical connection between carbon nanotubes and electrodes |
US7538040B2 (en) * | 2005-06-30 | 2009-05-26 | Nantero, Inc. | Techniques for precision pattern transfer of carbon nanotubes from photo mask to wafers |
EP1910217A2 (en) * | 2005-07-19 | 2008-04-16 | PINKERTON, Joseph P. | Heat activated nanometer-scale pump |
US7402875B2 (en) * | 2005-08-17 | 2008-07-22 | Intel Corporation | Lateral undercut of metal gate in SOI device |
JP5049473B2 (ja) * | 2005-08-19 | 2012-10-17 | 株式会社アルバック | 配線形成方法及び配線 |
EP1929276B1 (en) * | 2005-09-06 | 2011-07-27 | Nantero, Inc. | Nanotube sensor system and method of use |
AU2006347609A1 (en) * | 2005-09-06 | 2008-05-08 | Nantero, Inc. | Carbon nanotubes for the selective transfer of heat from electronics |
CN101287698A (zh) | 2005-09-06 | 2008-10-15 | 诺华丝国际股份有限公司 | 含有甲硫氨酸的羟基类似物以及衍生物的罐装和干法涂布的抗微生物组合物 |
KR100667652B1 (ko) * | 2005-09-06 | 2007-01-12 | 삼성전자주식회사 | 탄소나노튜브를 이용한 배선 형성 방법 |
US8525143B2 (en) * | 2005-09-06 | 2013-09-03 | Nantero Inc. | Method and system of using nanotube fabrics as joule heating elements for memories and other applications |
US7371677B2 (en) * | 2005-09-30 | 2008-05-13 | Freescale Semiconductor, Inc. | Laterally grown nanotubes and method of formation |
WO2008054379A2 (en) * | 2005-10-25 | 2008-05-08 | Massachusetts Institute Of Technology | Shape controlled growth of nanostructured films and objects |
US7312531B2 (en) * | 2005-10-28 | 2007-12-25 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and fabrication method thereof |
JP4984498B2 (ja) * | 2005-11-18 | 2012-07-25 | ソニー株式会社 | 機能素子及びその製造方法 |
US20080108214A1 (en) * | 2005-12-09 | 2008-05-08 | Intel Corporation | Threshold voltage targeting in carbon nanotube devices and structures formed thereby |
JP4997750B2 (ja) * | 2005-12-12 | 2012-08-08 | 富士通株式会社 | カーボンナノチューブを用いた電子素子及びその製造方法 |
KR20080078879A (ko) * | 2005-12-19 | 2008-08-28 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | 탄소 나노튜브의 생성 |
JP5034231B2 (ja) * | 2005-12-21 | 2012-09-26 | 富士通株式会社 | カーボンナノチューブトランジスタアレイ及びその製造方法 |
US20070155065A1 (en) * | 2005-12-29 | 2007-07-05 | Borkar Shekhar Y | Statistical circuit design with carbon nanotubes |
JP2009522197A (ja) * | 2005-12-29 | 2009-06-11 | ナノシス・インコーポレイテッド | パターン形成された基板上のナノワイヤの配向した成長のための方法 |
US7741197B1 (en) | 2005-12-29 | 2010-06-22 | Nanosys, Inc. | Systems and methods for harvesting and reducing contamination in nanowires |
US7749784B2 (en) * | 2005-12-30 | 2010-07-06 | Ming-Nung Lin | Fabricating method of single electron transistor (SET) by employing nano-lithographical technology in the semiconductor process |
US8318520B2 (en) * | 2005-12-30 | 2012-11-27 | Lin Ming-Nung | Method of microminiaturizing a nano-structure |
US7514116B2 (en) * | 2005-12-30 | 2009-04-07 | Intel Corporation | Horizontal Carbon Nanotubes by Vertical Growth and Rolling |
JP2009528254A (ja) * | 2006-03-03 | 2009-08-06 | ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ | 空間的に配列したナノチューブ及びナノチューブアレイの作製方法 |
TWI498276B (zh) * | 2006-03-03 | 2015-09-01 | Univ Illinois | 製作空間上對準的奈米管及奈米管陣列之方法 |
KR101530379B1 (ko) * | 2006-03-29 | 2015-06-22 | 삼성전자주식회사 | 다공성 글래스 템플릿을 이용한 실리콘 나노 와이어의제조방법 및 이에 의해 형성된 실리콘 나노 와이어를포함하는 소자 |
US7517732B2 (en) * | 2006-04-12 | 2009-04-14 | Intel Corporation | Thin semiconductor device package |
US7781267B2 (en) * | 2006-05-19 | 2010-08-24 | International Business Machines Corporation | Enclosed nanotube structure and method for forming |
US7625766B2 (en) * | 2006-06-02 | 2009-12-01 | Micron Technology, Inc. | Methods of forming carbon nanotubes and methods of fabricating integrated circuitry |
CN101104513B (zh) * | 2006-07-12 | 2010-09-29 | 清华大学 | 单壁碳纳米管的生长方法 |
US20080135892A1 (en) * | 2006-07-25 | 2008-06-12 | Paul Finnie | Carbon nanotube field effect transistor and method of making thereof |
US8545962B2 (en) * | 2006-08-07 | 2013-10-01 | Paradigm Energy Research Corporation | Nano-fiber arrayed surfaces |
WO2008079465A2 (en) * | 2006-09-11 | 2008-07-03 | William Marsh Rice University | Production of single-walled carbon nanotube grids |
US8143682B2 (en) * | 2006-10-31 | 2012-03-27 | Hewlett-Packard Development Company, L.P. | Methods and systems for implementing logic gates with spintronic devices located at nanowire crossbar junctions of crossbar arrays |
CN101573778B (zh) | 2006-11-07 | 2013-01-02 | 奈米系统股份有限公司 | 用于纳米线生长的系统与方法 |
KR100829579B1 (ko) * | 2006-11-27 | 2008-05-14 | 삼성전자주식회사 | 나노튜브를 이용한 전계효과 트랜지스터 및 그 제조방법 |
US8168495B1 (en) * | 2006-12-29 | 2012-05-01 | Etamota Corporation | Carbon nanotube high frequency transistor technology |
US9806273B2 (en) * | 2007-01-03 | 2017-10-31 | The United States Of America As Represented By The Secretary Of The Army | Field effect transistor array using single wall carbon nano-tubes |
US7678672B2 (en) * | 2007-01-16 | 2010-03-16 | Northrop Grumman Space & Mission Systems Corp. | Carbon nanotube fabrication from crystallography oriented catalyst |
US7956345B2 (en) * | 2007-01-24 | 2011-06-07 | Stmicroelectronics Asia Pacific Pte. Ltd. | CNT devices, low-temperature fabrication of CNT and CNT photo-resists |
US8039870B2 (en) * | 2008-01-28 | 2011-10-18 | Rf Nano Corporation | Multifinger carbon nanotube field-effect transistor |
CN101669196B (zh) * | 2007-01-30 | 2013-01-02 | 射频纳米公司 | 多指栅碳纳米管场效应晶体管 |
US20080238882A1 (en) * | 2007-02-21 | 2008-10-02 | Ramesh Sivarajan | Symmetric touch screen system with carbon nanotube-based transparent conductive electrode pairs |
WO2008112764A1 (en) | 2007-03-12 | 2008-09-18 | Nantero, Inc. | Electromagnetic and thermal sensors using carbon nanotubes and methods of making same |
JP5194513B2 (ja) | 2007-03-29 | 2013-05-08 | 富士通セミコンダクター株式会社 | 配線構造及びその形成方法 |
WO2008124084A2 (en) | 2007-04-03 | 2008-10-16 | Pinkerton Joseph F | Nanoelectromechanical systems and methods for making the same |
US20080272361A1 (en) * | 2007-05-02 | 2008-11-06 | Atomate Corporation | High Density Nanotube Devices |
WO2009005908A2 (en) * | 2007-05-22 | 2009-01-08 | Nantero, Inc. | Triodes using nanofabric articles and methods of making the same |
WO2009011975A2 (en) * | 2007-05-23 | 2009-01-22 | California Institute Of Technology | Method for fabricating monolithic two-dimensional nanostructures |
KR101300570B1 (ko) * | 2007-05-30 | 2013-08-27 | 삼성전자주식회사 | 전극, 전자 소자, 전계 효과 트랜지스터, 그 제조 방법 및탄소나노튜브 성장 방법 |
WO2009002748A1 (en) | 2007-06-22 | 2008-12-31 | Nantero, Inc. | Two-terminal nanotube devices including a nanotube bridge and methods of making same |
US7663202B2 (en) * | 2007-06-26 | 2010-02-16 | Hewlett-Packard Development Company, L.P. | Nanowire photodiodes and methods of making nanowire photodiodes |
EP2011572B1 (en) | 2007-07-06 | 2012-12-05 | Imec | Method for forming catalyst nanoparticles for growing elongated nanostructures |
US7701013B2 (en) * | 2007-07-10 | 2010-04-20 | International Business Machines Corporation | Nanoelectromechanical transistors and methods of forming same |
US7550354B2 (en) * | 2007-07-11 | 2009-06-23 | International Business Machines Corporation | Nanoelectromechanical transistors and methods of forming same |
US7858454B2 (en) * | 2007-07-31 | 2010-12-28 | Rf Nano Corporation | Self-aligned T-gate carbon nanotube field effect transistor devices and method for forming the same |
KR101345456B1 (ko) | 2007-08-29 | 2013-12-27 | 재단법인서울대학교산학협력재단 | 위치 선택적 수평형 나노와이어의 성장방법, 그에 의해형성된 나노와이어 및 이를 포함하는 나노소자 |
CN101126735B (zh) * | 2007-09-30 | 2010-06-23 | 董益阳 | 一种场效应晶体管生物传感器的制备方法 |
JP5539210B2 (ja) * | 2007-10-02 | 2014-07-02 | プレジデント アンド フェローズ オブ ハーバード カレッジ | ナノポアデバイスのためのカーボンナノチューブ合成 |
EP2062515B1 (en) * | 2007-11-20 | 2012-08-29 | So, Kwok Kuen | Bowl and basket assembly and salad spinner incorporating such an assembly |
KR101027517B1 (ko) | 2007-11-23 | 2011-04-06 | 재단법인서울대학교산학협력재단 | 나노 구조체의 배치 방법 및 이를 이용한 나노 소자의 제조방법 |
WO2009066968A2 (en) * | 2007-11-23 | 2009-05-28 | Seoul National University Industry Foundation | Method for arranging nanostructures and manufacturing nano devices using the same |
FR2924108B1 (fr) * | 2007-11-28 | 2010-02-12 | Commissariat Energie Atomique | Procede d'elaboration, sur un materiau dielectrique, de nanofils en materiaux semi-conducteur connectant deux electrodes |
FR2925764B1 (fr) * | 2007-12-20 | 2010-05-28 | Commissariat Energie Atomique | Procede de croissance horizontale de nanotubes/nanofibres. |
JP2011522394A (ja) * | 2007-12-31 | 2011-07-28 | エータモタ・コーポレイション | 端部接触型縦型カーボンナノチューブトランジスタ |
US8308930B2 (en) * | 2008-03-04 | 2012-11-13 | Snu R&Db Foundation | Manufacturing carbon nanotube ropes |
US8460764B2 (en) * | 2008-03-06 | 2013-06-11 | Georgia Tech Research Corporation | Method and apparatus for producing ultra-thin graphitic layers |
US20090236608A1 (en) * | 2008-03-18 | 2009-09-24 | Georgia Tech Research Corporation | Method for Producing Graphitic Patterns on Silicon Carbide |
JP5081683B2 (ja) * | 2008-03-26 | 2012-11-28 | 株式会社アルバック | カーボンナノチューブ成長用基板及びその製造方法、並びにカーボンナノチューブの製造方法 |
JP5081684B2 (ja) * | 2008-03-26 | 2012-11-28 | 株式会社アルバック | カーボンナノチューブ成長用基板及びその製造方法、並びにカーボンナノチューブの製造方法 |
US8668833B2 (en) * | 2008-05-21 | 2014-03-11 | Globalfoundries Singapore Pte. Ltd. | Method of forming a nanostructure |
WO2010005707A1 (en) * | 2008-06-16 | 2010-01-14 | The Board Of Trustees Of The University Of Illinois | Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates |
US8587989B2 (en) * | 2008-06-20 | 2013-11-19 | Nantero Inc. | NRAM arrays with nanotube blocks, nanotube traces, and nanotube planes and methods of making same |
US8362566B2 (en) | 2008-06-23 | 2013-01-29 | Intel Corporation | Stress in trigate devices using complimentary gate fill materials |
KR101045128B1 (ko) * | 2008-08-04 | 2011-06-30 | 서울대학교산학협력단 | 나노구조물들의 교차 구조들의 제조 |
WO2010019441A1 (en) | 2008-08-14 | 2010-02-18 | Nantero, Inc. | Nonvolatile nanotube programmable logic devices and field programmable gate array |
US8673258B2 (en) * | 2008-08-14 | 2014-03-18 | Snu R&Db Foundation | Enhanced carbon nanotube |
US8357346B2 (en) * | 2008-08-20 | 2013-01-22 | Snu R&Db Foundation | Enhanced carbon nanotube wire |
US7959842B2 (en) * | 2008-08-26 | 2011-06-14 | Snu & R&Db Foundation | Carbon nanotube structure |
US8021640B2 (en) | 2008-08-26 | 2011-09-20 | Snu R&Db Foundation | Manufacturing carbon nanotube paper |
FR2935538B1 (fr) * | 2008-09-01 | 2010-12-24 | Commissariat Energie Atomique | Substrat pour composant electronique ou electromecanique et nanoelements. |
JP5246938B2 (ja) * | 2008-11-13 | 2013-07-24 | 株式会社アルバック | カーボンナノチューブ成長用基板、トランジスタ及びカーボンナノチューブ成長用基板の製造方法 |
US7915637B2 (en) | 2008-11-19 | 2011-03-29 | Nantero, Inc. | Switching materials comprising mixed nanoscopic particles and carbon nanotubes and method of making and using the same |
US8013324B2 (en) * | 2009-04-03 | 2011-09-06 | International Business Machines Corporation | Structurally stabilized semiconductor nanowire |
US7943530B2 (en) * | 2009-04-03 | 2011-05-17 | International Business Machines Corporation | Semiconductor nanowires having mobility-optimized orientations |
US8237150B2 (en) * | 2009-04-03 | 2012-08-07 | International Business Machines Corporation | Nanowire devices for enhancing mobility through stress engineering |
US7902541B2 (en) * | 2009-04-03 | 2011-03-08 | International Business Machines Corporation | Semiconductor nanowire with built-in stress |
US8108802B2 (en) | 2009-04-29 | 2012-01-31 | International Business Machines Corporation | Method for forming arbitrary lithographic wavefronts using standard mask technology |
KR102067922B1 (ko) | 2009-05-19 | 2020-01-17 | 원드 매터리얼 엘엘씨 | 배터리 응용을 위한 나노구조화된 재료 |
US8623288B1 (en) | 2009-06-29 | 2014-01-07 | Nanosys, Inc. | Apparatus and methods for high density nanowire growth |
US8368125B2 (en) * | 2009-07-20 | 2013-02-05 | International Business Machines Corporation | Multiple orientation nanowires with gate stack stressors |
US8128993B2 (en) | 2009-07-31 | 2012-03-06 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US8574673B2 (en) | 2009-07-31 | 2013-11-05 | Nantero Inc. | Anisotropic nanotube fabric layers and films and methods of forming same |
US8993346B2 (en) | 2009-08-07 | 2015-03-31 | Nanomix, Inc. | Magnetic carbon nanotube based biodetection |
US20110034008A1 (en) * | 2009-08-07 | 2011-02-10 | Nantero, Inc. | Method for forming a textured surface on a semiconductor substrate using a nanofabric layer |
US8497499B2 (en) * | 2009-10-12 | 2013-07-30 | Georgia Tech Research Corporation | Method to modify the conductivity of graphene |
WO2011050331A2 (en) * | 2009-10-23 | 2011-04-28 | Nantero, Inc. | Method for passivating a carbonic nanolayer |
US8351239B2 (en) | 2009-10-23 | 2013-01-08 | Nantero Inc. | Dynamic sense current supply circuit and associated method for reading and characterizing a resistive memory array |
US8895950B2 (en) | 2009-10-23 | 2014-11-25 | Nantero Inc. | Methods for passivating a carbonic nanolayer |
US8796668B2 (en) * | 2009-11-09 | 2014-08-05 | International Business Machines Corporation | Metal-free integrated circuits comprising graphene and carbon nanotubes |
US20110127492A1 (en) | 2009-11-30 | 2011-06-02 | International Business Machines Corporation | Field Effect Transistor Having Nanostructure Channel |
US8841652B2 (en) * | 2009-11-30 | 2014-09-23 | International Business Machines Corporation | Self aligned carbide source/drain FET |
US8202749B1 (en) * | 2009-12-18 | 2012-06-19 | Ut-Battelle, Llc | Array of aligned and dispersed carbon nanotubes and method of producing the array |
US8222704B2 (en) | 2009-12-31 | 2012-07-17 | Nantero, Inc. | Compact electrical switching devices with nanotube elements, and methods of making same |
KR101709823B1 (ko) | 2010-02-12 | 2017-02-23 | 난테로 인크. | 나노튜브 직물 층 및 필름 내의 밀도, 다공도 및/또는 간극 크기를 제어하는 방법 |
US9362390B2 (en) | 2010-02-22 | 2016-06-07 | Nantero, Inc. | Logic elements comprising carbon nanotube field effect transistor (CNTFET) devices and methods of making same |
US20110203632A1 (en) * | 2010-02-22 | 2011-08-25 | Rahul Sen | Photovoltaic devices using semiconducting nanotube layers |
KR101200150B1 (ko) | 2010-03-08 | 2012-11-12 | 경기대학교 산학협력단 | 나노 와이어 제조 방법 및 나노 와이어를 갖는 전자 소자 |
JP5578548B2 (ja) * | 2010-03-16 | 2014-08-27 | 国立大学法人名古屋大学 | カーボンナノウォールの選択成長方法および形成方法 |
US10661304B2 (en) | 2010-03-30 | 2020-05-26 | Nantero, Inc. | Microfluidic control surfaces using ordered nanotube fabrics |
US9419198B2 (en) | 2010-10-22 | 2016-08-16 | California Institute Of Technology | Nanomesh phononic structures for low thermal conductivity and thermoelectric energy conversion materials |
JP5294339B2 (ja) * | 2010-10-25 | 2013-09-18 | 独立行政法人科学技術振興機構 | 試料中の被検出物質の検出方法 |
JP5401636B2 (ja) * | 2010-10-25 | 2014-01-29 | 独立行政法人科学技術振興機構 | 試料中の被検出物質の検出方法 |
WO2012127244A2 (en) * | 2011-03-22 | 2012-09-27 | The University Of Manchester | Transistor device and materials for making |
GB201104824D0 (en) | 2011-03-22 | 2011-05-04 | Univ Manchester | Structures and methods relating to graphene |
US8471249B2 (en) * | 2011-05-10 | 2013-06-25 | International Business Machines Corporation | Carbon field effect transistors having charged monolayers to reduce parasitic resistance |
JP5772299B2 (ja) * | 2011-06-29 | 2015-09-02 | 富士通株式会社 | 半導体デバイス及びその製造方法 |
US20130019918A1 (en) | 2011-07-18 | 2013-01-24 | The Regents Of The University Of Michigan | Thermoelectric devices, systems and methods |
US8716072B2 (en) | 2011-07-25 | 2014-05-06 | International Business Machines Corporation | Hybrid CMOS technology with nanowire devices and double gated planar devices |
US9171907B2 (en) | 2011-09-27 | 2015-10-27 | Georgia Tech Research Corporation | Graphene transistor |
US10205080B2 (en) | 2012-01-17 | 2019-02-12 | Matrix Industries, Inc. | Systems and methods for forming thermoelectric devices |
WO2013149205A1 (en) | 2012-03-29 | 2013-10-03 | California Institute Of Technology | Phononic structures and related devices and methods |
US8834597B1 (en) | 2012-05-31 | 2014-09-16 | The United Stated of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA) | Copper nanowire production for interconnect applications |
JP6353447B2 (ja) | 2012-08-17 | 2018-07-04 | マトリックス インダストリーズ,インコーポレイテッド | 熱電デバイスを形成するためのシステム及び方法 |
WO2014070795A1 (en) | 2012-10-31 | 2014-05-08 | Silicium Energy, Inc. | Methods for forming thermoelectric elements |
US9842921B2 (en) * | 2013-03-14 | 2017-12-12 | Wisconsin Alumni Research Foundation | Direct tunnel barrier control gates in a two-dimensional electronic system |
US9007732B2 (en) | 2013-03-15 | 2015-04-14 | Nantero Inc. | Electrostatic discharge protection circuits using carbon nanotube field effect transistor (CNTFET) devices and methods of making same |
US9650732B2 (en) | 2013-05-01 | 2017-05-16 | Nantero Inc. | Low defect nanotube application solutions and fabrics and methods for making same |
US10654718B2 (en) | 2013-09-20 | 2020-05-19 | Nantero, Inc. | Scalable nanotube fabrics and methods for making same |
CN106537621B (zh) | 2014-03-25 | 2018-12-07 | 美特瑞克斯实业公司 | 热电设备和系统 |
JP6475428B2 (ja) * | 2014-06-18 | 2019-02-27 | 矢崎エナジーシステム株式会社 | 車載装置及び安全運転システム |
JP5888685B2 (ja) * | 2014-07-01 | 2016-03-22 | 国立大学法人名古屋大学 | カーボンナノウォールを用いた電子デバイス |
CN104401935B (zh) * | 2014-12-19 | 2016-04-27 | 武汉大学 | 一种在基片水平方向可控生长碳纳米管束的方法 |
CN104401936B (zh) * | 2014-12-19 | 2016-04-13 | 武汉大学 | 一种在基片水平方向可控生长碳纳米管束的方法 |
US9299430B1 (en) | 2015-01-22 | 2016-03-29 | Nantero Inc. | Methods for reading and programming 1-R resistive change element arrays |
CN107564946A (zh) * | 2016-07-01 | 2018-01-09 | 清华大学 | 纳米晶体管 |
EP3214038A1 (en) * | 2016-03-04 | 2017-09-06 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO | Quantum dot circuit and a method of operating such a circuit |
US10343920B2 (en) * | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
CN109219780A (zh) | 2016-05-03 | 2019-01-15 | 美特瑞克斯实业公司 | 热电设备和系统 |
US9934848B2 (en) | 2016-06-07 | 2018-04-03 | Nantero, Inc. | Methods for determining the resistive states of resistive change elements |
US9941001B2 (en) | 2016-06-07 | 2018-04-10 | Nantero, Inc. | Circuits for determining the resistive states of resistive change elements |
CN107564947A (zh) * | 2016-07-01 | 2018-01-09 | 清华大学 | 纳米异质结构 |
CN107564917B (zh) * | 2016-07-01 | 2020-06-09 | 清华大学 | 纳米异质结构 |
CN107564910B (zh) * | 2016-07-01 | 2020-08-11 | 清华大学 | 半导体器件 |
USD819627S1 (en) | 2016-11-11 | 2018-06-05 | Matrix Industries, Inc. | Thermoelectric smartwatch |
WO2019118706A1 (en) * | 2017-12-13 | 2019-06-20 | Analog Devices, Inc. | Structural electronics wireless sensor nodes |
CN109920867A (zh) * | 2019-03-11 | 2019-06-21 | 天合光能股份有限公司 | 一种光伏电池 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0758028B1 (en) * | 1995-07-10 | 2002-09-11 | Research Development Corporation Of Japan | Process of producing graphite fiber |
JP3363759B2 (ja) * | 1997-11-07 | 2003-01-08 | キヤノン株式会社 | カーボンナノチューブデバイスおよびその製造方法 |
US6346189B1 (en) * | 1998-08-14 | 2002-02-12 | The Board Of Trustees Of The Leland Stanford Junior University | Carbon nanotube structures made using catalyst islands |
US6256767B1 (en) * | 1999-03-29 | 2001-07-03 | Hewlett-Packard Company | Demultiplexer for a molecular wire crossbar network (MWCN DEMUX) |
DE10032414C1 (de) * | 2000-07-04 | 2001-11-22 | Infineon Technologies Ag | Feldeffekttransistor |
US6423583B1 (en) * | 2001-01-03 | 2002-07-23 | International Business Machines Corporation | Methodology for electrically induced selective breakdown of nanotubes |
-
2001
- 2001-07-18 JP JP2001218578A patent/JP3859199B2/ja not_active Expired - Fee Related
- 2001-07-18 GB GB0117520A patent/GB2364933B/en not_active Expired - Fee Related
- 2001-07-18 CN CNB011206322A patent/CN1251962C/zh not_active Expired - Fee Related
- 2001-07-18 DE DE10134866A patent/DE10134866B4/de not_active Expired - Fee Related
- 2001-07-18 US US09/907,506 patent/US6515339B2/en not_active Expired - Fee Related
-
2002
- 2002-10-18 US US10/273,188 patent/US6803260B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1251962C (zh) | 2006-04-19 |
GB2364933A (en) | 2002-02-13 |
GB2364933B (en) | 2002-12-31 |
CN1334234A (zh) | 2002-02-06 |
US6803260B2 (en) | 2004-10-12 |
GB0117520D0 (en) | 2001-09-12 |
DE10134866A1 (de) | 2002-04-04 |
US20020014667A1 (en) | 2002-02-07 |
JP2002118248A (ja) | 2002-04-19 |
US6515339B2 (en) | 2003-02-04 |
DE10134866B4 (de) | 2005-08-11 |
US20040164327A1 (en) | 2004-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3859199B2 (ja) | カーボンナノチューブの水平成長方法及びこれを利用した電界効果トランジスタ | |
US7820064B2 (en) | Spinodally patterned nanostructures | |
KR100376768B1 (ko) | 전자, 스핀 및 광소자 응용을 위한 탄소나노튜브의 선택적 수평성장 방법 | |
WO2020227338A2 (en) | Majorana pair based qubits for fault tolerant quantum computing architecture using superconducting gold surface states | |
JPH1166654A (ja) | 微細構造の作製法、微細構造、磁気センサ、磁気記録媒体および光磁気記録媒体 | |
KR100327496B1 (ko) | 탄소나노튜브를 이용한 나노 크기 수직 트랜지스터 및 그제조방법 | |
GB2382718A (en) | Field effect transistor using horizontally grown carbon nanotubes | |
JP5092596B2 (ja) | ナノマグネット、量子デバイス、及びこれらの製造方法 | |
CN100521240C (zh) | 水平生长碳纳米管的方法和使用碳纳米管的场效应晶体管 | |
KR100405974B1 (ko) | 카본나노튜브의 수평 성장 방법 | |
KR100434272B1 (ko) | 탄소나노튜브의 수평성장 방법 | |
KR100621304B1 (ko) | 단일전자 스핀제어 나노소자 | |
Shirakashi et al. | Ferromagnetic ultra-small tunnel junction devices fabricated by scanning probe microscope (SPM) local oxidation | |
KR100393189B1 (ko) | 탄소나노튜브를 이용한 mram 및 그 제조 방법 | |
Weidinger | Ion tracks-a new route to nanotechnology | |
KR101319612B1 (ko) | 탄소나노튜브 수평성장방법 및 이를 이용한 전계 효과 트랜지스터 | |
CN100544050C (zh) | 磁致电阻效应元件及其制造方法 | |
KR100350794B1 (ko) | 탄소나노튜브를 이용한 스핀 밸브 단전자 트랜지스터 | |
KR101319613B1 (ko) | 탄소나노튜브 수평성장방법 및 이를 이용하여 형성된 수평배선 | |
JP6788189B2 (ja) | グラフェンナノリボン及びデバイス | |
KR100972913B1 (ko) | 반도체 소자의 제조 방법 | |
CN100418874C (zh) | 磁场诱导沉积方法制备磁性纳米间隙电极 | |
JP2001077346A (ja) | 単電子トランジスタおよびその製造方法 | |
TSTT et al. | to nanotechnology | |
JP2009200282A (ja) | カーボンナノチューブ素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050809 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20051109 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20051114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060207 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060915 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |