CN1164486C - 操纵碳纳米管选择性取向排布于基底表面的方法 - Google Patents
操纵碳纳米管选择性取向排布于基底表面的方法 Download PDFInfo
- Publication number
- CN1164486C CN1164486C CNB021113378A CN02111337A CN1164486C CN 1164486 C CN1164486 C CN 1164486C CN B021113378 A CNB021113378 A CN B021113378A CN 02111337 A CN02111337 A CN 02111337A CN 1164486 C CN1164486 C CN 1164486C
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- film
- carbon nano
- tube
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/08—Aligned nanotubes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
操纵碳纳米管选择性取向排布于基底表面的方法属于纳米技术领域。本发明方法为:①在溶剂中,通过在每一个碳纳米管上结合带有亲水和疏水端的链状分子,将初始碳纳米管净化和溶液化;②将固态衬底处理成亲水,或进一步处理成疏水;③用Langmuir水槽,控制水表面碳纳米管单分子薄膜表面压力-表面积等温线;④将形成的碳纳米管单层,转移到处理过的固态衬底的亲水表面和疏水表面形成Y-型LB膜,测试碳纳米管取向LB膜在基底表面的选择性沉积;⑤利用高能光线照射碳纳米管单层镀膜。本发明具有实质性特点和显著进步,碳纳米管排列方向可人为控制,有机物分子可成功除去,不会破坏碳纳米管膜本身。
Description
技术领域:本发明涉及的是一种碳的米管排布的方法,特别是一种操纵碳纳米管选择性取向排布于基底表面的方法,属于纳米技术领域。
背景技术:自从碳纳米管在1991年发现以来表现出很多潜在的应用前景。利用过程中碳纳米管操纵的一个局限性是它的不溶性。利用喷涂的碳纳米管薄膜测试它的光吸收谱,可以得到状态分布密度与碳纳米管直径间的关系,用此关系可以阐明用化学和电化学掺杂或运用高压来改变碳纳米管中的电子状态的机制。由于在这种喷涂膜中碳纳米管的不均匀聚集不可避免的导致表面粗糙,这样沉积碳纳米管的方向和膜厚度就不能实现控制。合理的碳纳米管加工技术的发展对于工艺上的用途和进一步理解它的基本性质都很重要,特别地,碳纳米管膜厚和方向控制在纳米结构均匀薄膜的实现对其新型光电技术的应用很重要。LB技术是一种沉积控制厚度和方向、无缺陷、分子有序超薄膜的方法。由于碳纳米管在任何溶剂中都不溶,这样直接由碳纳米管形成LB膜不能实现。经文献检索发现,Krstic等人在《金属合成》(Synthetic Metal)中100(2000)第245-249撰文,将它们分散在亚态多水溶液表面活化剂锂十二(烷)基硫酸盐中制备单层碳纳米管,单层分子能够被水平的沉积到固态衬底上。然而,由于碳纳米管在水溶液中的溶解度有限,沉积单层碳纳米管的密度非常低(<7%),不管用这种方法进行整个层的沉积还是管方向的控制都不可能。
发明内容:本发明针对现有技术的不足和缺陷,提供一种操纵碳纳米管选择性取向排布于基底表面的方法,实现了在各种衬底上镀膜碳纳米管单层和多层取向膜的操作。碳纳米管分子膜的质量控制和碳纳米管的排列方向用紫外-可见-红外吸收谱、石英晶体微量天平、AFM和Raman偏振谱来测试。
本发明的方法具体如下:
①在溶剂中,通过在每一个碳纳米管上结合带有亲水和疏水端的链状分子,含碳原子数5-30之间,将初始碳纳米管净化和溶液化,溶解度1-70%;
②将固态衬底处理成亲水,或进一步处理成疏水;
③用Langmuir水槽,控制水表面碳纳米管单分子薄膜表面压力-表面积等温线;
④将形成的碳纳米管单层,转移到处理过的固态衬底的亲水表面和疏水表面形成Y-型LB膜,测试碳纳米管取向LB膜在基底表面的选择性沉积,转移率0.1-0.98:
⑤利用高能光线照射碳纳米管单层镀膜,一些带有亲水和疏水端的分子离解并从衬底上蒸发,而碳纳米管由于其高的稳定性依然保留在衬底上。
因此,用Langmuir-Blodgeet技术制备出了厚度均匀可控的多层碳纳米管薄膜。在膜中,化学修饰的碳纳米管几乎是沿同一方向(选取方向)。碳纳米管可控厚度分子镀膜和管的排列方向控制为利用碳纳米管制造分子器件创造了条件。而且,这种技术可用来制备样品,应用于碳纳米管的光学和光电特性的表征和进一步理解其光电子学性质。比如,运用此发明可以测量纳米材料的电导率;可以制造纳米光栅。
本发明具有实质性特点和显著进步,碳纳米管排列的方向可以人为控制,碳纳米管薄膜中碳纳米管的排列方向可以在制备过程中由外加压力来控制,进而制备的碳纳米管薄膜可以成功的转移到处理过的固态衬底的亲水表面和疏水表面形成Y-型LB膜,制备过程中引入的链状有机物分子也可以成功的除去,除去有机物分子是运用高能光线照射薄膜,使得沉积过程中引入的链状分子离解蒸发,而且在照射的过程中由于碳纳米管的高稳定性,不会破坏碳纳米管膜本身。
附图说明:图1本发明π-A等温线图
图2碳纳米管LB膜在紫外-可见红外的吸收谱示意图
具体实施方式:如图1和图2所示,以下本发明结合附图进一步说明具体实施情况:经过本发明的第一、二步的步骤,用碳纳米管的浓度为0.1325mg/ml的400μl三氯甲烷溶液撒在水面上测试π-A等温线,图线表明表面压力上升陡峭且有很大的负压力(51mN/m),温度对等温线形状的影响不是很大。单层在水表面的大面积占据和高的负压力与一些没有扩散开的化学修饰过的金属纳米晶粒相似。将π-A等温线陡峭的部分向零压力外推就给出了在水表面液体单层的占据表面积,每平方厘米碳纳米管大约为2.0×10-4mg。
从170cm-1的Raman径向呼吸振动模式判断,溶液化碳纳米管的平均直径大约为1.32nm,从几何尺寸上考虑,相当于在沿着管轴方向每纳米尺寸管壁上有158个碳原子,碳纳米管单层的表面密度是2.39×10-4mg/cm2。实验中碳纳米管单层在水表面的形成是由于附着的带有亲水和疏水端的链状分子。碳纳米管表面密度实验值(大约2.0×10-4mg/cm2)比计算值小了大约16.3%,这表明碳纳米管在单层中是疏松分布的。
经过本发明的前三步步骤的操作形成碳纳米管的Y-型LB膜,传输系数是0.8。图2示碳纳米管LB膜在紫外-可见红外的吸收谱,从图中可以看出碳纳米管LB膜有三个主要吸收峰分别在1820nm、1000nm、700nm,前两个来自纳米管半导体性质的内部带间光跃迁,最后一个来自其金属性的光跃迁。自第一层镀膜逐层测试直到14层,碳纳米管在1820nm的峰吸收系数与层数是一个很好的直线关系,这表明实现了LB膜的逐层沉积并且可以精确控制均匀多层膜的厚度。在表面压力为30mN/m时,碳纳米管单层沉积在石英晶体微量天平的端面(端面积0.196cm2)形成LB膜。LB膜的质量随着层数增多而增加,给出了很好的线性关系。这个结果进一步表明碳纳米管形成了相当均匀的LB膜。完成14层沉积后,在石英晶体微量天平的端面碳纳米管LB膜的质量是8.23×10-7g,这与在有限表面积2.0×10-4mg/cm2上算出的值1.1×10-6g比较接近。
当用AFM观察制备的碳纳米管单层镀膜时,由于带有亲水和疏水端的链状分子的存在影响了AFM端面的分辨能力。因此,我们做了第五个步骤,光照时一些带有亲水和疏水端的链状分子被离解且从衬底上蒸发,而碳纳米管由于其高的稳定性依然保留在衬底上。
用Raman偏振分光镜进一步测试了LB膜中碳纳米管的方向,Raman峰在170cm-1和1590cm-1处,它们分别起因于径向呼吸模和切向拉伸G模,峰强随着极化方向和纳米管轴线间的测试角不同而不同。特别地,G模实验强度在接近60°处显示出最小的特性与其理论值非常一致(理论上,切向方式的强度应在θ=54.7°时最小)。
Claims (1)
1、一种操纵碳纳米管选择性取向排布于基底表面的方法,其特征在于方法具体如下:
①在溶剂中,通过在每一个碳纳米管上结合带有亲水和疏水端的链状分子,将初始碳纳米管净化和溶液化;
②将固态衬底处理成亲水,或进一步处理成疏水;
③用Langmuir水槽,控制水表面碳纳米管单分子薄膜表面压力-表面积等温线;
④将形成的碳纳米管单层,转移到处理过的固态衬底的亲水表面和疏水表面形成Y-型LB膜,测试碳纳米管取向LB膜在基底表面的选择性沉积,转移率;
⑤利用高能光线照射碳纳米管单层镀膜,一些带有亲水和疏水端的分子离解并从衬底上蒸发,而碳纳米管依然保留在衬底上。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021113378A CN1164486C (zh) | 2002-04-12 | 2002-04-12 | 操纵碳纳米管选择性取向排布于基底表面的方法 |
US10/509,881 US20050181143A1 (en) | 2002-04-12 | 2003-03-17 | Control method of arranging carbon nanotubes selectively orientationally on the surface of a substrate |
PCT/CN2003/000195 WO2003086968A1 (fr) | 2002-04-12 | 2003-03-17 | Procede d'arrangement de nanotubes de carbone orientes selectivement sur la surface d'un substrat |
AU2003221222A AU2003221222A1 (en) | 2002-04-12 | 2003-03-17 | The control method of arranging carbon nanotubes selectively orientationally on the surface of a substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB021113378A CN1164486C (zh) | 2002-04-12 | 2002-04-12 | 操纵碳纳米管选择性取向排布于基底表面的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1388058A CN1388058A (zh) | 2003-01-01 |
CN1164486C true CN1164486C (zh) | 2004-09-01 |
Family
ID=4741505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB021113378A Expired - Fee Related CN1164486C (zh) | 2002-04-12 | 2002-04-12 | 操纵碳纳米管选择性取向排布于基底表面的方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20050181143A1 (zh) |
CN (1) | CN1164486C (zh) |
AU (1) | AU2003221222A1 (zh) |
WO (1) | WO2003086968A1 (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100801820B1 (ko) * | 2002-11-19 | 2008-02-11 | 삼성전자주식회사 | 표면수식된 탄소나노튜브를 이용한 패턴 형성방법 |
CN100367480C (zh) * | 2005-03-17 | 2008-02-06 | 上海交通大学 | 由碳纳米管构成沟道的多沟道场效应晶体管的制造方法 |
US20080193678A1 (en) * | 2005-07-15 | 2008-08-14 | Korea Institute Of Machinery & Materials | Attaching Method of Nano Materials Using Langmuir-Blodgett |
KR100791260B1 (ko) * | 2006-06-29 | 2008-01-04 | 한국과학기술원 | 탄소나노튜브 필름을 이용한 투명전극의 제조방법 |
CN100534900C (zh) * | 2006-09-19 | 2009-09-02 | 北京大学 | 控制转移单壁碳纳米管阵列结构的方法 |
US7838865B2 (en) * | 2006-12-22 | 2010-11-23 | Palo Alto Research Center Incorporated | Method for aligning elongated nanostructures |
CN100591412C (zh) * | 2006-12-27 | 2010-02-24 | 清华大学 | 纳米薄膜的制备方法 |
US8053349B2 (en) * | 2007-11-01 | 2011-11-08 | Texas Instruments Incorporated | BGA package with traces for plating pads under the chip |
CN101497436B (zh) * | 2008-02-01 | 2015-06-03 | 清华大学 | 碳纳米管薄膜结构及其制备方法 |
US8237155B2 (en) * | 2008-07-02 | 2012-08-07 | The Board Of Trustees Of The Leland Stanford Junior University | Selective nanotube formation and related devices |
US8004018B2 (en) * | 2008-12-29 | 2011-08-23 | Nokia Corporation | Fabrication method of electronic devices based on aligned high aspect ratio nanoparticle networks |
US20100315568A1 (en) * | 2009-06-16 | 2010-12-16 | Kent State University | Liquid crystal devices and methods providing fast switching mode |
CN101794841A (zh) * | 2010-03-03 | 2010-08-04 | 上海交通大学 | 基于碳纳米管增效的太阳电池制备方法 |
TWI477599B (zh) * | 2011-01-28 | 2015-03-21 | Hon Hai Prec Ind Co Ltd | 培育基體 |
CN102747028B (zh) * | 2011-04-19 | 2015-07-29 | 清华大学 | 培养层及其制备方法和应用该培养层制备移植体的方法 |
US8821965B2 (en) * | 2011-04-29 | 2014-09-02 | International Business Machines Corporation | Accurate deposition of nano-objects on a surface |
US9689825B1 (en) | 2013-09-09 | 2017-06-27 | Apple Inc. | Testing a layer positioned over a capacitive sensing device |
US9622357B2 (en) * | 2014-05-06 | 2017-04-11 | Apple Inc. | Method for orienting discrete parts |
CN104386647B (zh) * | 2014-10-27 | 2016-04-13 | 暨南大学 | 一种埃洛石纳米管的定向排列方法及其涂层和应用 |
US9739696B2 (en) | 2015-08-31 | 2017-08-22 | Apple Inc. | Flexural testing apparatus for materials and method of testing materials |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2930722A (en) * | 1959-02-03 | 1960-03-29 | Bell Telephone Labor Inc | Method of treating silicon |
CA1018716A (en) * | 1972-12-22 | 1977-10-11 | Kureha Kagaku Kogyo Kabushiki Kaisha | Process for the surface treatment of carbon fibres |
DE3786628T2 (de) * | 1986-09-04 | 1994-03-24 | Kanegafuchi Chemical Ind | Hoch molekulare, amphiphile, photoempfindliche Photopolymere und Herstellungsverfahren. |
DE4225962A1 (de) * | 1992-08-06 | 1994-02-10 | Hoechst Ag | Schichtelement und Verfahren seiner Herstellung |
CN1043256C (zh) * | 1996-11-05 | 1999-05-05 | 中国科学院物理研究所 | 一种有序排列的碳纳米管及其制备方法和专用装置 |
JPH10203810A (ja) * | 1997-01-21 | 1998-08-04 | Canon Inc | カーボンナノチューブの製法 |
US6630772B1 (en) * | 1998-09-21 | 2003-10-07 | Agere Systems Inc. | Device comprising carbon nanotube field emitter structure and process for forming device |
JP3859199B2 (ja) * | 2000-07-18 | 2006-12-20 | エルジー エレクトロニクス インコーポレイティド | カーボンナノチューブの水平成長方法及びこれを利用した電界効果トランジスタ |
-
2002
- 2002-04-12 CN CNB021113378A patent/CN1164486C/zh not_active Expired - Fee Related
-
2003
- 2003-03-17 US US10/509,881 patent/US20050181143A1/en not_active Abandoned
- 2003-03-17 WO PCT/CN2003/000195 patent/WO2003086968A1/zh not_active Application Discontinuation
- 2003-03-17 AU AU2003221222A patent/AU2003221222A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
CN1388058A (zh) | 2003-01-01 |
AU2003221222A1 (en) | 2003-10-27 |
WO2003086968A1 (fr) | 2003-10-23 |
US20050181143A1 (en) | 2005-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1164486C (zh) | 操纵碳纳米管选择性取向排布于基底表面的方法 | |
Maury et al. | Directed assembly of nanoparticles onto polymer‐imprinted or chemically patterned templates fabricated by nanoimprint lithography | |
US9279759B2 (en) | Nanoparticle array with tunable nanoparticle size and separation | |
CN101024483B (zh) | 金属有序结构表面增强基底的构筑方法 | |
Chen et al. | Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications | |
JP6595507B2 (ja) | 整列しているカーボンナノチューブの浮揚蒸発性組織化 | |
US8216636B2 (en) | Method of aligning nanotubes | |
Sharma et al. | Fabrication of highly sensitive biomimetic SERS substrates for detection of herbicides in trace concentration | |
US8309185B2 (en) | Nanoparticle film and forming method and application thereof | |
Li et al. | A simple method for selective immobilization of silver nanoparticles | |
Kaltenpoth et al. | Conductive Core–Shell Particles: An Approach to Self‐Assembled Mesoscopic Wires | |
US20100098902A1 (en) | Layer-by-layer assemblies having preferential alignment of deposited axially anisotropic species and methods for preparation and use thereof | |
Zhang et al. | Enhanced photoresponse of conductive polymer nanowires embedded with Au nanoparticles | |
Druzhinina et al. | Strategies for post‐synthesis alignment and immobilization of carbon nanotubes | |
Gao et al. | Assembly of modified CdS particles/cationic polymer based on electrostatic interactions | |
US10074819B2 (en) | Floating evaporative assembly of aligned carbon nanotubes | |
Wang et al. | Flexible and superhydrophobic silver nanoparticles decorated aligned silver nanowires films as surface-enhanced raman scattering substrates | |
CN104237202B (zh) | 一种硅纳米阵列基底及其制备方法、应用 | |
Hussien et al. | Preparation of chemical vapor sensor by reduction graphene oxide doped with nanoparticles of gold on porous silicon using photoluminescence | |
Abdelsalam | Surface enhanced raman scattering of aromatic thiols adsorbed on nanostructured gold surfaces | |
Deng et al. | Application of patterned growth of aligned zinc oxide nanoarrays by mirocontact printing in quantum dots-sensitized solar cells | |
CN101428197A (zh) | 小颗粒的热泳分离 | |
TW201802458A (zh) | 一種檢測單分子的方法 | |
JP2003321214A (ja) | フラーレン類の二次元ポリマー薄膜とその製造方法 | |
TW201802457A (zh) | 一種用於單分子檢測的分子載體的製備方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20040901 Termination date: 20110412 |