JP2023535758A - 基板支持体の非接触温度モニタリングのための装置、システム、及び方法 - Google Patents

基板支持体の非接触温度モニタリングのための装置、システム、及び方法 Download PDF

Info

Publication number
JP2023535758A
JP2023535758A JP2023505364A JP2023505364A JP2023535758A JP 2023535758 A JP2023535758 A JP 2023535758A JP 2023505364 A JP2023505364 A JP 2023505364A JP 2023505364 A JP2023505364 A JP 2023505364A JP 2023535758 A JP2023535758 A JP 2023535758A
Authority
JP
Japan
Prior art keywords
substrate
substrate support
sensor
hub
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023505364A
Other languages
English (en)
Inventor
バスカー プラサド,
キランクマール ニーラサンドラ サヴァンダイヤ,
トーマス ブレソツキー,
スリニバサ ラオ イエドラ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2023535758A publication Critical patent/JP2023535758A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67346Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders characterized by being specially adapted for supporting a single substrate or by comprising a stack of such individual supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

本開示の実施形態は、基板処理のための装置、システム、及び方法に関する。取り外し可能な基板支持体は、処理チャンバの処理空間内に配置され、基板支持体は、基板インターフェース面及び裏面を含む。ペデスタルハブは、基板支持体に取り外し可能に結合された支持面を有する。ペデスタルハブのハブ空間は、基板支持体の裏面から放出される電磁エネルギーを受け取るように位置付けられた、その中に配置された温度測定アセンブリを含む。温度測定アセンブリは、アセンブリに入る電磁エネルギーの強度を測定し、強度信号を発生させる。基板の見かけ温度は、強度信号に基づき決定される。【選択図】図1

Description

[0001]本開示の実施形態は、概して、半導体基板を処理するための装置、システム、及び方法に関する。より具体的には、本開示の実施形態は、基板支持体のための非接触温度モニタリングシステムに関する。
関連技術の記載
[0002]化学気相堆積(CVD)、物理的気相堆積(PVD)、及び原子層堆積(ALD)などの半導体基板を処理するために通常使用される熱プロセスでは、基板は制御された処理条件下で処理される。処理中、基板の温度は、モニタリングされ、温度範囲内でプロセスを制御するように管理されることが多い。基板温度を測定する1つの方法は、処理空間内に基板を保持する基板支持体の温度を測定することである。基板支持体の裏面の温度は、通常、熱電対などの直接接触デバイスを使用して測定される。かかるデバイスは、通常、測定のために取られたエネルギーの損失により、温度の均一性及びエネルギー送達効率に影響を及ぼし得る熱ドレインを生み出す。非接触センサは、コスト、及び種々の熱プロセスで使用され得る広い温度範囲を測定する課題のため、従来、実行可能な選択肢ではなかった。特に、特定の高温計が想定されているが、高温計は、通常、低温範囲を検出することができない。したがって、基板及び基板支持体の広範囲の温度を測定するための非接触温度モニタリングシステムが必要とされている。
[0003]したがって、上述の問題を解決する非接触温度モニタリングシステムが必要である。
[0004]一実施形態では、処理空間を画定する熱処理チャンバを含む基板処理装置が提供される。処理空間内の基板支持体は、基板インターフェース面及び裏面を有する。ペデスタルハブが、接触ピンアセンブリによって、基板支持体に取り外し可能に結合される。ビューポートが、ペデスタルハブに結合される。基板支持体は、センサの上に位置付けられ得る搬送可能な基板支持体である。センサはペデスタルハブ内に配置され、ペデスタルハブのビューポートを通って基板支持体の裏面から放出される電磁エネルギーを受け取るように位置付けられた入力端を有する。基板支持体は、センサ及びペデスタルハブに対して第1の方向から結合解除され、第1の方向に位置付け可能である。センサは、センサに入る電磁エネルギーの強度を測定し、強度信号を発生させるように構成される。センサは、強度信号に基づき、見かけ温度を決定するように構成されたプロセッサに通信可能に結合される。
[0005]別の実施形態では、処理空間を画定する処理チャンバを含む基板処理装置が提供される。基板支持体は、処理空間内に配置され、基板支持体は、基板インターフェース面及び裏面を含む。処理チャンバは、ハブ空間の少なくとも一部分を画定するペデスタルハブを含む。ペデスタルハブは、基板支持体に取り外し可能に結合された支持面を有する。ペデスタルハブ空間は、そこに配置されたプローブを含み、該プローブは、基板支持体の裏面から放出される電磁エネルギーを受け取るように位置付けられた入力端を有する。基板支持体は、プローブ及びペデスタルハブに対して第1の方向に位置付け可能であり、そこに位置合わせされると、ペデスタルハブに結合される。センサは、プローブの出力端に光学的に結合され、プローブに入る電磁エネルギーの強度を測定して強度信号を発生させるように構成される。センサは、ハブ空間の外側に配置され、ケーブルを用いてなど、プロセッサに通信可能に結合される。プロセッサは、強度信号に基づき見かけ温度を決定する。
[0006]別の実施形態では、処理温度を制御する方法が提供され、プローブ及び処理チャンバのペデスタルハブに対して第1の方向に基板支持体を位置合わせすることを含む。基板支持体の裏面は、ペデスタルハブ上に配置された接触ピンのセット上に結合された接触端子のセットを含む。基板支持体は、接触ピン及び接触端子を使用して、ペデスタルハブに取り外し可能に結合される。本方法は、基板支持体の支持面上に基板を位置付けることと、コリメータを用いて、基板支持体の裏面から放出される電磁エネルギーを受け取ることとを含む。コリメータは、ペデスタルハブのハブ空間の少なくとも一部分に配置される。電磁エネルギーは、コリメータからセンサへと送信される。センサは、電磁エネルギーの強度信号を発生させ、強度信号から基板の見かけ温度を決定する。
[0007]本開示の上述の特徴を詳しく理解し得るように、上記で簡単に要約した本開示のより詳細な記載が、実施形態を参照することによって得られ、一部の実施形態は、添付の図面に示されている。しかし、本開示は他の等しく有効な実施形態も許容し得ることから、添付の図面は本開示の典型的な実施形態のみを示すものであり、したがって、本開示の範囲を限定するものと見なすべきではないことに留意されたい。
[0008]本開示の少なくとも幾つかの実施形態に係る、例示的な温度測定アセンブリを含む処理チャンバの概略図である。 [0009]本開示の少なくとも幾つかの実施形態に係る、搬送可能な基板支持体の斜視図である。 [0010]本開示の幾つかの実施形態に係る、接触ピンを有するペデスタルハブの斜視図である。 [0011]本開示の少なくとも幾つかの実施形態に係る、例示的な搬送可能な基板の接触ピンの位置合わせの側面図である。 [0012]本開示の少なくとも幾つかの実施形態に係る、基板支持体の温度をモニタリングするための例示的なシステムのブロック図である。 [0013]本開示の少なくとも幾つかの実施形態に係る、基板支持体、ペデスタルハブ、及びコレクターレンズを有する温度センサを含む温度測定アセンブリの断面概略図である。 [0014]本開示の少なくとも幾つかの実施形態に係る、基板支持体、ペデスタルハブ、並びにコレクターレンズ及びコンフォーカルレンズを有する温度センサを含む温度測定アセンブリの断面概略図である。 [0015]本開示の少なくとも幾つかの実施形態に係る、基板支持体、ペデスタルハブ、及びコレクタを有する温度センサを含む温度センサアセンブリの断面概略図である。
[0016]理解を容易にするために、可能な場合には、複数の図に共通する同一の要素を指し示すのに同一の参照番号を使用した。一実施形態の要素及び特徴は、更なる記述がなくとも、他の実施形態に有益に組み込まれ得ると想定される。
[0017]処理チャンバ内に配置された一又は複数の基板の温度を測定及び制御するための装置及びシステムの実施形態が、本明細書に開示される。特に、基板を処理するために複数のチャンバを使用する基板処理プラットフォーム/装置(例えば、複数の堆積プロセスシーケンス、ガス抜きプロセス等を含むPVDプロセス)。静電チャック(ESC)は、基板を様々な処理領域で適所に保持する静電力を開発するために、基板支持体として使用され、しばしば、基板への適切で制御され、かつ、均一な熱伝導を保証するために温度モニタリングされる。本明細書に記載の非接触温度モニタリングシステムは、従来のモニタリングツールと比較した場合、比較的安価であり、設置面積が比較的小さく、広い温度範囲にわたって温度測定の反復率が向上し、エネルギー効率が向上した(例えば、熱損失が低減した)。
[0018]図1は、本開示の少なくとも幾つかの実施形態による、例示的な温度測定アセンブリを含む処理チャンバ120の概略図である。処理チャンバ120は、処理チャンバ120の側壁122a、底部122b、及び上部122cによって画定される処理空間122を含む。幾つかの構成では、図1に示されるように、上部122cはターゲット123とスパッタターゲット123に結合された電源125とを含み得る。本明細書で提供される開示の一又は複数の態様とともに使用され得る適切な処理チャンバの例は、物理的気相堆積(PVD)処理チャンバ(図1)、化学気相堆積(CVD)処理チャンバ、エッチングチャンバ、冷却チャンバ、アニーリングチャンバ、及び原子層堆積(ALD)処理チャンバを含む。基板支持体112及びペデスタルハブ140が、処理チャンバ120の処理空間122内に配置される。基板支持体112は、接触ピンアセンブリ150を使用して、ペデスタルハブ140から取り外し可能である。稼働中、処理空間122は、約25℃から約650℃(例えば、約25℃から約500℃(例えばPVDプロセス)、又は約100℃から約650℃(例えばCVDプロセス)、例えば、約100℃から約500℃(例えばアニーリングプロセス)、又は約300℃から約550℃)で動作する。
本明細書に開示の他の実施形態と組み合わせることができる幾つかの実施形態では、処理空間122は、約1mTorrから約350Torr(例えば、約1mTorrから約200mTorr(例えばPVDプロセス)、例えば、約10-8Torrから約10-3Torr、例えば、約10-7Torrから約10-3Torr(例えばアニーリングプロセス)、又は約10Torrから約350Torr(例えばCVDプロセス)の低減圧を含む。ペデスタルハブ140は、ペデスタルハブ140の側壁142a、上面142b、及び底面142cによって画定されるペデスタルハブ空間142を含む。稼働中、ペデスタルハブ空間142は、処理空間122から流体的に隔離され、したがって、処理空間122の圧力よりも大きいガス圧力を含む。特に、ペデスタルハブ空間142は、大気圧又は大気圧に近い圧力(例えば、約700Torrから約800Torr、例えば、約740Torrから約780Torr、例えば、約750Torrから約770Torr、例えば、760Torr)を含む。
[0019]図2Aは、一又は複数の実施形態による、基板支持体112の斜視図を示す。基板支持体112は、搬送可能な基板支持体112であり、搬送可能な基板支持体112の裏面108上に配置された、一又は複数の第1の分離可能な接触端子202及び一又は複数の第2の分離可能な接触端子206を含む。一又は複数の第1の分離可能な接触端子202のそれぞれ及び一又は複数の第2の分離可能な接触端子206のそれぞれは、取り外し可能な接続領域及び電気接続領域を含む。電気接続領域は、搬送可能な基板支持体112内に配置された電気要素に結合される。電気接続領域は、例えば最大30Aの大電流、及び例えば最大1500VDCの高電圧で動作可能である。
[0020]本明細書に開示の他の実施形態と組み合わせることができる一実施形態では、一又は複数の第1の分離可能な接触端子202のうちの一又は複数は、くぼんでいる。本明細書に開示の他の実施形態と組み合わせることができる一実施形態では、一又は複数の第1の分離可能な接触端子202のうちの一又は複数は、搬送可能な基板支持体112の支持面110に平行に配置された平坦な表面を含む。本明細書に開示の他の実施形態と組み合わせることができる一実施形態では、第2の分離可能な接触端子206のうちの一又は複数は、搬送可能な基板支持体112の支持面110に平行に配置された平坦な表面を含む。一又は複数の第1の分離可能な接触端子202及び一又は複数の第2の分離可能な接触端子206は、全体の集中抵抗を低減するために、モリブデン、タングステン、又はそれらの組み合わせから製造される。
[0021]図2Bは、一又は複数の実施形態による、ペデスタルハブ140の斜視図を示す。ペデスタルハブ140の上面142Bは、一又は複数のビューポート104を含む。ペデスタルハブ140は、その上に配置された一又は複数のピン204を含む。一又は複数のピン204の各ピンは、ペデスタルハブの上面142Bから離隔しており、一又は複数の第1の分離可能な接触端子202又は一又は複数の第2の分離可能な接触端子206の対応する端子と取り外し可能に接続及び切断するように構成される。
[0022]一又は複数のピン204は、全体の集中抵抗を低減するために、任意の適切な材料(例えば、モリブデン、タングステン、又はそれらの組み合わせ)から製造され得る。一又は複数の実施形態では、一又は複数のピン204及び一又は複数の第1の分離可能な接触端子202は、種々の材料である。例えば、一実施形態では、一又は複数の第1の分離可能な接触端子202は、タングステンから製造され、一又は複数のピン204は、モリブデンから製造される。一又は複数の実施形態では、一又は複数のピン204及び一又は複数の第1の分離可能な接触端子202は、同じ材料から製造される。
[0023]一又は複数のピンと一又は複数の端子との間の接続は、搬送可能な基板支持体112がペデスタルハブ140と自己整合することを可能にする。一又は複数の第1の分離可能な接触端子202及び第2の分離可能な接触端子206のそれぞれの取り外し可能な接続領域は、搬送可能な基板支持体112に対して支持ペデスタルハブ140を第1の方向に再配置することによって、一又は複数のピン204の対応するピンと取り外し可能に接続及び切断するように構成される。
[0024]図2Cは、一又は複数の第1の分離可能な接触端子202と一又は複数のピン204の位置合わせを含む、接触アセンブリ150の側面図を示す。上述のように、搬送可能な基板支持体112上に配置された一又は複数の第1の分離可能な接触端子202及び第2の分離可能な接触端子206のそれぞれの取り外し可能な接続領域は、ペデスタルハブ140上に配置された一又は複数のピン204の対応するピンと取り外し可能に接続及び切断するように構成される。
[0025]図3は、本開示の少なくとも幾つかの実施形態による、基板支持体112の温度をモニタリングするための例示的な方法のブロック図300である。図3の工程は、図1、2A、2B、2C、4A、4B、及び4Cを参照して本明細書に記載される。基板支持体112の温度をモニタリングするための方法は、概して、以下に更に述べるように、以下の工程を含む。工程302において、基板131は、基板支持体112の支持面110上に位置付けられる。工程304において、基板131とともに基板支持体112は、処理チャンバ120の処理空間122内に配置されたペデスタルハブ140上に位置付けられ、基板支持体は、ペデスタルハブ140に取り外し可能に結合される。幾つかの実施形態では、基板131とともに基板支持体112は、処理チャンバ120のセンサ102及びペデスタルハブ140に対して第1の方向に位置付けられ得る。基板支持体112は、センサ102又はプローブ430(図4Cに示されるように)の上で基板支持体112の裏面108の標的面106を位置合わせするように位置付けられる。基板支持体112の裏面108の標的面106は、温度の読み取りに使用される表面である。
[0026]工程306において、基板131は、処理空間122内で処理され、基板を処理するプロセスは、基板支持体上に位置付けられた基板にエネルギーを送達するか、又は基板からエネルギーを除去するように構成される。工程308において、基板支持体の裏面から放出される電磁エネルギーは、温度測定アセンブリによって受け取られる。工程310において、電磁エネルギーの強度信号が温度測定アセンブリによって受け取られ、工程312において、基板の見かけ温度が強度信号から決定される。
[0027]幾つかの実施形態では、基板支持体112は、接触ピンアセンブリ150(例えば、接触端子202、206、接触ピン204)を使用することによって、ペデスタルハブ140から取り外し可能であり、これによって、電力及び/又は流体が、ペデスタルハブ140上に位置付けられるときに、基板支持体112の部分に提供されることが可能になる。基板支持体112の取り外し可能な構成は、基板131が基板支持体112によって継続的に支持されることを可能にし、また、基板131及び基板支持体112が、他の処理チャンバ(図示せず)並びに/又は処理チャンバ120及び他の処理チャンバに結合されるクラスタツールメインフレーム(図示せず)の間で、及び/又はこれらを介して、1つのユニットとして共に搬送される構成において、温度の変動を減少させることを制限するために有用である。接触ピンアセンブリ150は、ペデスタルハブ140の上面142bに配置された接触ピン204から取り外し可能な、基板支持体112の裏面108上の接触端子202、206を含む。本明細書に開示の他の実施形態と組み合わせることができる幾つかの実施形態では、基板支持体112は、センサ102又はプローブ430(図4Cに示されるように)の上で基板支持体112の裏面108の標的面106が配置されるように位置合わせされる。位置合わせされると、基板支持体112の接触端子202、206のセットは、ペデスタルハブ140の表面上に配置される接触ピン204のセットに取り外し可能に結合される(例えば、工程304)。
[0028]本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態では、基板は、回転カルーセル上に配置された基板支持体の支持面上に位置付けられる。基板支持体は、基板と共に、回転カルーセル上に配置された接触端子のセット上に配置される。回転カルーセルは、基板と共に基板支持体を処理チャンバへ回転させ、基板と共に基板支持体を処理空間内へ搬送する。基板支持体の接触ピンのセットは、センサ102が標的面106と位置合わせされるように、ペデスタルハブ140の接触端子のセットの上に位置合わせされ、配設される。
[0029]幾つかの実施形態では、図1に示されるように、コントローラ160は、チャッキング電源168と、接触端子202、206及び接触ピン204の一又は複数の対との使用によって、基板支持体112内に配置されたチャッキング電極(図示せず)へのチャッキング電圧の送達を制御するように適合される。更に、コントローラ160はまた、ヒータ電源169と、接触端子202、206及び接触ピン204の一又は複数の対との使用によって、基板支持体112内に配置された一又は複数の加熱要素(図示せず)への電力の送達を制御するように適合される。したがって、接触端子及び接触ピンは、交流電流(AC)及び直流電流(DC)に対して定格の電気接点である。
[0030]基板131の処理中、電源152が処理空間122にエネルギーを提供して、基板131上に所望のプロセスを実行させる。幾つかの構成では、図1に示されるように、電源152から提供されるエネルギーは、電源125からのDC又はRF電力の送達によって、処理チャンバ120内に形成されるプラズマ129によって生み出される。この場合、形成されたプラズマ129は、基板及び基板支持体112に追加の熱を提供する。基板支持体112の裏面108は、赤外線エネルギーなどの電磁エネルギーを放出し、温度測定アセンブリ(例えば工程308)によって受け取られる。特に、電磁エネルギーは、標的面106からビューポート104を通ってペデスタルハブ空間142の少なくとも一部分へ放出される。ビューポート104は、センサの入力端又はヘッドが電磁エネルギーを受け取ることを可能にするようにサイズ決定される。本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態では、ビューポート104窓は、約15mmから約45mmの直径を含む。第1の搬送可能な基板支持体112は第1の基板131と共に、センサ102の入力端の上に位置合わせされて、センサ102が第1の基板131と共に、第1の搬送可能な基板支持体112の第1の標的面106から電磁エネルギーを受け取ることを可能にする。第1の搬送可能な基板は、第1の基板と共に、ペデスタルハブから除去され、第2の搬送可能な基板は、第2の基板と共に、センサの上に位置合わせされ、位置付けられて、センサ102が、第2の基板131と共に第2の搬送可能な基板支持体112の第2の標的面106から電磁エネルギーを受け取ることを可能にする。センサが第2の標的面106から電磁エネルギーを受け取った後、第2の支持体は、ペデスタルハブから除去される。本明細書に開示の他の実施形態と組み合わせることができる幾つかの実施形態では、第1の搬送可能な基板は、更なる処理及び温度モニタリングのために、別のセンサの上に、又は同じセンサの上に位置付けられる。自己整合接触ピンアセンブリ150を有する基板131と共に基板支持体112を移動させることにより、標的面106のセンサ102の上での繰り返し可能な位置合わせが提供され、順次処理される幾つかの種々の基板の効率的な温度評価が可能になる。更に、基板131は基板支持体112上に残るので、基板支持体112上の基板131の移動及びシフトは、ある処理チャンバから別の処理チャンバへの移動中に大幅に最小化される。基板支持体112に対する基板131の位置の移動及びシフトを最小化することによって、基板131の温度の均一性がもたらされる。本明細書に記載のプロセスとは対照的に、幾つかのプロセスは、典型的には最初にペデスタルハブに結合される基板支持体を含み、基板は、処理のためにチャンバ空間内で基板支持体上に位置付けられる。この構成では、基板支持体の下方に配置されたセンサが、基板支持体上に位置付けられた基板の交換に関係なく、基板支持体の同じ標的面からの電磁エネルギーを測定する。本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態では、本明細書に開示の温度測定アセンブリは、基板131が処理チャンバ内で使用される基板支持体112上に位置付けられるプロセスのために使用される。かかる実装形態では、基板131の温度均一性、基板支持体112の温度、基板支持体112に対する基板131の位置、及び/又はそれらの組み合わせなどの要因が、基板131の見かけ温度の較正、測定、及び計算中に考慮される。
[0031]ビューポート104は、標準的なガラス材料、石英、ゲルマニウム、サファイア、コダイアル(kodial)、ホウケイ酸塩、又は他の適切な材料から作製され得る。しかし、ビューポート材料は、ビューポートによって許容される所望のパーセンテージの光学透過率に基づいて選択され、光学透過率を調整するために、及び/又は望ましくない反射率を回避するために、コーティングされるか、又はコーティングされない。本明細書で使用する場合、用語「光学透過率」は、ビューポートを透過する、放出される全放射のパーセンテージを指す。適切なビューポートは、所定のスペクトル範囲において、約80%以上、例えば約80%から約94%、又は約80%から約90%の透過率パーセンテージを含む。所定のスペクトル範囲は、温度測定システムのために選択されたセンサ102のタイプと、基板が通常処理時に処理される温度範囲とに基づいて決定される。特に、約8ミクロンから約14ミクロンのスペクトル範囲で動作し、約ー50℃から約975℃の温度範囲を測定することができるセンサ102が、反射防止コーティングを有するゲルマニウムビューポートを透過する赤外線エネルギーを測定するために使用される。本明細書に開示の他の実施形態と組み合わせることができる幾つかの実施形態では、コーティングは、ダイヤモンド様炭素(DLC)コーティングである。あるいは、約2ミクロンから約3ミクロンのスペクトル範囲で動作し、約50℃から約400℃の温度範囲を測定することができるセンサ102が、標準ガラスビューポートと共に使用される。本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態では、標準ガラスビューポートは、ホウケイ酸塩、ポリカーボネート、石英、又はそれらの組み合わせから構成される。高温計は、標準ガラスと共に使用されるが、高温計は、200℃を超える温度を測定することができ、したがって、200℃未満のより低い温度で動作するプロセスには有用ではない。温度との波長放出関係は、ウィーンの変位則によって支配される。特に、単位波長あたりの黒体放射のスぺクトル放射輝度は、絶対温度に比例する波長でピークに達する。したがって、ピーク波長又はスペクトル範囲に対して定格のあるIRセンサが選択される。
[0032]温度測定アセンブリ400は、図4A、4B、及び4Cに示される幾つかの種々の構成を含む。本明細書に開示の他の実施形態と組み合わせることができる幾つかの実施形態では、センサ102は、図4A及び4Bに示されるように、ペデスタルハブ空間142の内側に配置される。更に、ビューポートは、センサ102の入力端と標的面106との間に配置される。本明細書に開示の他の実施形態と組み合わせることができる幾つかの実施形態では、一又は複数の追加のレンズが、センサ102の入力端の間に配置される(例えば、図4Aに示されるようなコレクターレンズ422、又は、図4Bに示されるような追加のコンフォーカルレンズ424を有するコレクターレンズ422)。単一のコレクターレンズ422を有する図4Aに示される温度測定アセンブリは、基板の低温で、十分な感度を提供し、高温プロセスなどの幾つかの目的及び/又はプロセスのための温度測定に適している。
[0033]あるいは、図4Bに示されるように、コンフォーカルレンズ424などの追加のレンズが使用される。追加のレンズは、センサが受け取る光子の量を増加させ、幾つかの目的及び/又はプロセス(例えば低温プロセス)のための温度測定に適している、より低い温度での感度を更に高める。したがって、追加のレンズの使用と感度の強化との間にトレードオフが見られる。特に、追加のレンズは、ハードウェアの複雑性及びコストを増大させるが、処理チャンバ温度が低い場合の温度測定値の正確さを高める。レンズの一又は複数がコーティングされ、及び/又はレンズの一又は複数がコーティングされない。レンズは、湾曲しており、センサ102内の感知要素に赤外線を集中させるように構成される。特に、一又は複数のレンズは、センサと標的面との間の測定長さを延ばす。
[0034]あるいは、センサ102は、図4Cに示されるように、ペデスタルハブ空間142の外側に配置される。プローブ430は、ペデスタルハブ空間142内に配置され、図4Cに示されるように、光ファイバ432によってセンサ102に結合される。本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態では、センサ102は、約60℃から約70℃など、約50℃から約100℃の設計温度を有する。500℃を超える、又は600℃を超えるプロセスなどの高温プロセスの場合、センサ102は、高温ゾーンから離れるように移動されて、センサ102が過熱すること、信号対ノイズ比に関連する信号検知の問題、及び/又は低減されたセンサ寿命を防止する。センサ102は、ペデスタルハブ空間142の外側に移動し、ペデスタルハブ空間142内に配置されたプローブ430に光ファイバ432で結合される。
[0035]特に、プローブ430はコリメータである。コリメータ(例えばコレクタ)は、電磁エネルギーを収集し、センサに対して特定の及び/又はより位置合わせされた及び/又はより狭い方向にエネルギーを方向付ける。ペデスタルハブ140の内側に配置されたコリメータを使用することにより、センサ102の検出器102a部分を加熱ゾーンの外側に移動させることが可能になる。コリメータは、光ファイバ432を使用して検出器102aに結合される。光ファイバ及びカプラは、温度センサアセンブリの初期設定、較正、及び動作中に考慮すべきことである効率損失を誘発する。更に、ビューポートは、プローブ430の入力端と標的面106との間に配置される。図に示された各実施例では、センサ102は、(図1に示されるように)コントローラ160に結合される。
[0036]本開示の他の実施形態と組み合わせることができる幾つかの実施形態では、センサは、約ー50℃から約975℃(例えば、約25℃から約600℃、例えば、50℃から約400℃)の温度を検出し、約1ミクロンから約14ミクロン(例えば、約2ミクロンから約3ミクロン、又は約8ミクロンから約14ミクロン)の電磁エネルギー波長を検出するのに有用である。センサの入力端から基板支持体112の標的面106までの距離は、約20mmから約150mm(例えば、約40mmから約100mm、例えば、約50mmから約80mm)である。本明細書に開示の他の実施形態と組み合わせることができる幾つかの実施形態では、センサは、ペデスタルハブ内に配置される小型IRセンサである。センサは、約20mmから約30mmの長さ(例えば約25mmから約32mm、例えば約28mm)である。センサは、約10mmから約20mm幅(例えば、約12mmから約16mm幅)である。センサは、約22:1などの、約20:1から約24:1の光学的分解能を有する。本明細書で使用される場合、「光学的分解能」という用語は、センサと標的面との間の距離と、測定される標的面の直径との比を指す。高い光学的分解能(例えば大きな比)を有するセンサは、制限されたバックグラウンド干渉でより正確に長い距離で小さな標的面を測定することができる。高い光学的分解能センサの特徴である狭いビーム経路により、周囲環境からのノイズの低減が可能になる。狭い温度測定標的スポットの表面仕上げの制御は、測定ノイズの低減をもたらし、これにより、良好に制御された表面仕上げが表面の放射率に及ぼす影響により、より優れた温度測定精度及び/又は反復率を可能にする。
[0037]本明細書に開示の実施形態のためのセンサの選択は、ビューポートサイズ、センサと標的面との間の距離、センサのためのハブ空間内の空間許容量、コスト、及びそれらの組み合わせなどの制限を考慮して、信頼性のある温度測定値のための適切な光学的分解能を提供する。
[0038]センサは、180℃未満(例えば、120℃未満、例えば、100℃未満、例えば、80℃未満)の温度で動作する定格である。他の実施形態と組み合わせることができる幾つかの実施形態では、センサ102は、設計温度内に保たれるように、ハブ空間142の内側のビューポートから離れた距離に配置される。ハブの温度は、供給源(図示せず)から冷却流体(例えば水)を受け取る冷却チャネルを使用して管理される。冷却チャネル及び供給源は、通常、約50℃から100℃などの100℃未満の温度でハブを維持することができる。あるいは、センサ102の温度は、冷却ハウジング103を用いて管理されて、基板支持体112の標的面106から受け取られた信号の信号対ノイズ比を改善する。ビューポート104の温度は、ガス源105からの加圧空気107を用いて管理される。あるいは、センサの温度は、ハブ空間を清浄な乾燥空気で一掃することによって管理される。本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態では、ビューポート104の温度が90℃超(例えば100℃超)であるとき、ハブ空間は清浄な乾燥空気で一掃される。80%超、又は85%、又は85%超などの高い透過率を有するビューポート104は、80%未満の透過率を有するビューポート104に対して、より少ないIR波及びより少ない熱を吸収する。
[0039]基板支持体112の裏面108は、金属、金属窒化物、金属酸化物、又はそれらの混合物から構成される。基板支持体112は、窒化アルミニウム、酸化アルミニウム、炭化ホウ素、炭化ケイ素、ステンレス鋼、又はそれらの混合物から構成される。センサは、周囲圧力環境に配置され、ビューポート104の使用によって減圧環境内に配置された基板支持体112の温度を測定する。初期設定段階では、センサ102は、温度測定範囲全体にわたる一又は複数の地点での標的面の放射率、ガラスを通る透過率、隣接する加熱表面からのノイズ、及び他の熱放射要因を考慮するために、熱電対を使用して較正され得る。温度測定アセンブリは、電磁エネルギーを受け取り、受け取った電磁エネルギーから強度信号を発生させるように構成される(例えば工程310)。
[0040]センサ102は、電源152(例えばスパッタ電源125)及び基板131の温度を制御するために使用されるヒータ電源169を制御する温度コントローラ160に通信可能に結合される。コントローラ160は、センサ102からの強度信号をモニタリングし、センサ読み取りの強度信号に基づき標的面106の温度を計算し、ヒータ電源169を操作して(例えば、処理空間へのヒータ電力供給170を起動する)、所定の処理温度に対する基板131の温度を管理する。温度コントローラ160は、センサ102からの強度信号をモニタリングする比例、積分、微分(PID)の閉ループコントローラを含む。本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態では、基板を処理する間の所定の処理温度は、約25℃から約650℃(例えば約25℃から約500℃、又は約100℃から約650℃、例えば約100℃から約500℃、又は約300℃から約550℃)である。本明細書に開示の他の実施形態と組み合わせることができる幾つかの実施形態では、処理空間122は、約1mTorrから約350Torr(例えば、約1mTorrから約200mTorr、例えば、約10-8Torrから約10-3Torr、例えば、約10-7Torrから約10-3Torr、又は約10Torrから約350Torr)の低減圧を含む。コントローラ160は、プロセッサ162を含む。本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態では、コントローラは、電源からの電力強度を制御するために使用されるメモリ164及びサポート回路166を含む。
[0041]あるいは、コントローラ160は、処理装置用の制御モジュールに通信可能に結合され、制御モジュールは、電源からの電力強度を制御するために使用されるメモリ164及びサポート回路166を含む。制御モジュールは、中央処理装置(CPU)を含む。CPUは、産業用設定で使用されるものなどの汎用コンピュータプロセッサの形態をとる。ソフトウェアルーチンは、メモリ(リモートストレージシステム、ランダムアクセスメモリ、読出専用メモリ、フロッピ、若しくはハードドライブディスク又は他の形態のデジタルストレージ)に記憶される。サポート回路は、キャッシュ、クロック回路、入出力システム、電源などを含む、当技術分野で知られている任意の構成を使用して、プロセッサに結合される。処理チャンバ120の制御モジュールと様々な構成要素(例えば、コントローラ、センサ、電源、及びバルブ)との間の双方向通信は、多数の信号ケーブルを介して、無線信号によって、または組み合わせ(例えば、図1の破線によって示される)によって取り扱われる。
[0042]プロセッサ162は、センサ102の出力端からの強度信号に基づいて基板の見かけ温度を計算する。更に、プロセッサ162は、一部において、センサの出力端からの強度信号に基づき、標的面106の放射率を計算する。本明細書で使用される場合、物体の「放射率」は、同じ温度における黒体の放射スペクトル強度に対するその放射スペクトル強度の比である。プロセッサは、式(1)によって決定される熱放射エネルギーと温度との関係を用いて基板の温度を計算する:
Q=εσAT (1)
ここで、
Qは熱放射エネルギー;
εは放射率;
σはボルツマン定数;
Aは標的面の面積;及び
Tは、標的面の温度である。
[0043]センサ102は、所定のプロセス温度範囲内の較正温度で較正される。センサ102は、試験及び/又は較正の目的で提供される熱電対を用いてなど、較正温度での直接温度測定値を使用して較正される。特に、接触熱電対はセンサと同時に物体の温度を測定する。あるいは、センサは、熱電対と同じ条件下(例えば較正温度で)の同じ物体の温度を測定する。センサに通信可能に結合されたプロセッサによって計算される見かけ温度は、熱電対によって表示される温度と一致するように調節される。較正は、センサ検出及び測定値を妨げる環境ノイズの影響を低減する。更に、物体の計算された放射率は温度とともに変化し、計算された温度がセンサに対して較正温度から逸脱すると、放射率誤差を生じる。放射率誤差は、基板温度を決定するために使用される計算に組み込まれる。放射率データは、窒化アルミニウムなどの様々な材料について実験的に発生する。本明細書に記載の他の実施形態と組み合わせることができる幾つかの実施形態では、温度などの動作パラメータの放射率を含む放射率ライブラリは、メモリ内の様々な基板支持体材料のために記憶され、かつ/又はプロセッサにアクセス可能である。センサ102を較正するプロセスは、基板支持体112の寿命を通して複数回実行されて、標的面放射率の変化又は環境の変化による検出温度のドリフトを回避し得る。
[0044]従来の温度測定値は、処理チャンバ120の寿命を通して、基板支持体112の同じ表面においてシステム100のシャフト114を介して直接的に取得される。対照的に、図1から分かるように、本開示の標的面106は、基板支持体112の裏面の中心にはなく、クラスタツール内で移動される多くの種々の基板支持体112上で使用され得る。標的面106の位置の相違、及びそれらの寿命及び処理履歴の種々の段階での種々の基板支持体112の使用は、全て温度制御及び反復率の問題に対する考慮事項である。
[0045]本開示の幾つかの態様において、実行されると、例示的な方法300を実行させる命令を記憶した非一時的コンピュータ可読媒体。上記の説明は、本開示の実施形態を対象としているが、本開示の他の及び更なる実施形態は、本開示の基本的な範囲から逸脱することなく考案されてもよく、本開示の範囲は、以下の特許請求の範囲によって決定される。

Claims (20)

  1. 基板処理装置であって、
    処理空間を画定する熱処理チャンバと、
    前記処理空間内の基板支持体であって、基板インターフェース面及び裏面を備える基板支持体と、
    前記基板支持体に取り外し可能に結合されており、ハブ空間の少なくとも一部分を画定するペデスタルハブと、
    前記ペデスタルハブに結合されたビューポートと、
    前記ペデスタルハブ内に配置されたセンサであって、前記ペデスタルハブのビューポートを通って、前記基板支持体の前記裏面から放出される電磁エネルギーを受け取るように位置付けられた入力端を有し、前記基板支持体が、前記センサ及び前記ペデスタルハブに対して、第1の方向から結合解除され、前記第1の方向に位置付け可能であり、前記センサが、前記センサに入る前記電磁エネルギーの強度を測定し、強度信号を発生させるように構成されるセンサと、
    前記強度信号に基づき、見かけ温度を決定するように構成され、前記センサに通信可能に結合されたプロセッサと
    を備える、基板処理装置。
  2. 前記センサが、赤外線センサを含み、前記赤外線センサが、約2ミクロンから約14ミクロンのスペクトル範囲を有する、請求項1に記載の基板処理装置。
  3. 前記センサの前記入力端と前記ビューポートとの間に配置されたコレクターレンズ及び/又はコンフォーカルレンズを更に備える、請求項1に記載の基板処理装置。
  4. 前記ペデスタルハブが、接触ピンのセットを備え、前記基板支持体の前記裏面が、接触端子のセットを備え、前記接触ピンのセット及び前記接触端子のセットが、互いから取り外し可能であるように構成されている、請求項1に記載の基板処理装置。
  5. 前記プロセッサが、前記強度信号に基づき、前記基板支持体の前記裏面の放射率を決定するように構成されている、請求項1に記載の基板処理装置。
  6. 基板処理装置であって、
    処理空間を画定する処理チャンバと、
    前記処理空間内の基板支持体であって、基板インターフェース面及び裏面を備える基板支持体と、
    ハブ空間の少なくとも一部分を画定するペデスタルハブであって、前記基板支持体に取り外し可能に結合されるように構成された支持面を有するペデスタルハブと、
    前記ハブ空間内に配置されたプローブであって、前記基板支持体の前記裏面から放出される電磁エネルギーを受け取るように位置付けられた入力端を有し、前記基板支持体が、前記プローブ及び前記ペデスタルハブに対して第1の方向に位置付け可能である、プローブと、
    前記プローブの出力端に光学的に結合されたセンサであって、前記プローブに入る前記電磁エネルギーの強度を測定して強度信号を発生させるように構成され、前記センサが前記ハブ空間の外側に配置された、センサと、
    前記センサに通信可能に結合され、前記強度信号に基づき、見かけ温度を決定するように構成されたプロセッサと
    を備える、基板処理装置。
  7. 前記基板支持体が静電チャックであり、前記センサが前記ハブ空間の外側に配置され、前記センサが光ファイバによって前記プローブの前記出力端に光学的に結合されている、請求項6に記載の基板処理装置。
  8. ビューポートが、前記プローブの前記入力端と前記基板支持体の前記裏面との間に配置され、前記プローブの前記入力端から前記基板支持体の前記裏面までの距離が、約40mmから100mmである、請求項6に記載の基板処理装置。
  9. 前記プローブがコリメータである、請求項6に記載の基板処理装置。
  10. 光学的分解能が、約20:1から約24:1である、請求項6に記載の基板処理装置。
  11. 処理温度を制御する方法であって、
    基板支持体の支持面上に基板を位置付けることと、
    処理チャンバの処理空間内に配置されたペデスタルハブ上に配置された接触ピンのセット上に前記基板支持体を位置付けることであって、前記基板支持体が前記ペデスタルハブに取り外し可能に結合され、前記基板支持体の標的面が前記ペデスタルハブ内に配置されたセンサの上に配置されるように、前記基板支持体が位置付けられる、前記基板支持体を位置付けることと、
    前記処理空間内の前記基板上でプロセスを実行する間、前記基板支持体の前記標的面から放出される電磁エネルギーを、前記センサによって受け取ることと、
    前記センサを用いて、前記電磁エネルギーの強度信号を発生させることと、
    前記強度信号から前記基板の見かけ温度を決定することと、
    前記基板を処理した後、前記接触ピンのセットから、前記基板及び前記基板支持体を除去することと
    を含む、方法。
  12. 前記基板の前記見かけ温度を決定することが、前記強度信号から放射率を決定することと、前記放射率に基づき、前記見かけ温度を調節することとを更に含む、請求項11に記載の方法。
  13. 熱電対を用いて、ある温度で前記センサを較正することを更に含む、請求項12に記載の方法。
  14. 前記処理空間の処理温度が、約100℃から約600℃であり、前記処理空間の処理圧力が、約10-8Torrから約350Torrであり、前記ペデスタルハブのハブ空間のハブ圧力が、約700Torrから約800Torrである、請求項11に記載の方法。
  15. 前記基板支持体の前記支持面上に前記基板を位置付けることが、回転カルーセル上に配置された前記基板支持体の前記支持面上に前記基板を位置付けることを含む、請求項11に記載の方法。
  16. 前記接触ピンのセット上に前記基板支持体を位置付けることが、前記処理チャンバに対して前記回転カルーセルを回転させることと、前記基板とともに前記基板支持体を前記処理空間内に搬送することと、前記センサが前記標的面と位置合わせされるように、前記接触ピンのセットを接触端子のセットの上に位置合わせすることとを含む、請求項15に記載の方法。
  17. 実行されると、請求項11に記載の方法を実行させる命令を記憶した、非一時的コンピュータ可読媒体。
  18. 比例、積分、微分(PID)の閉ループコントローラから前記基板の前記見かけ温度を受け取ることと、
    前記処理空間へのヒータ電力供給を起動することと
    を更に含む、請求項11に記載の方法。
  19. 前記基板を処理中の前記基板支持体の標的面の温度が、約25℃から約650℃である、請求項11に記載の方法。
  20. 前記処理空間の処理圧力が、約10-8Torrから約200mTorrである、請求項11に記載の方法。
JP2023505364A 2020-07-27 2021-04-14 基板支持体の非接触温度モニタリングのための装置、システム、及び方法 Pending JP2023535758A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/939,629 US11749542B2 (en) 2020-07-27 2020-07-27 Apparatus, system, and method for non-contact temperature monitoring of substrate supports
US16/939,629 2020-07-27
PCT/US2021/027311 WO2022026001A1 (en) 2020-07-27 2021-04-14 Apparatus, system, and method for non-contact temperature monitoring of substrate supports

Publications (1)

Publication Number Publication Date
JP2023535758A true JP2023535758A (ja) 2023-08-21

Family

ID=79689448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023505364A Pending JP2023535758A (ja) 2020-07-27 2021-04-14 基板支持体の非接触温度モニタリングのための装置、システム、及び方法

Country Status (6)

Country Link
US (2) US11749542B2 (ja)
JP (1) JP2023535758A (ja)
KR (1) KR20230042108A (ja)
CN (1) CN115699284A (ja)
TW (1) TW202220082A (ja)
WO (1) WO2022026001A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240201581A1 (en) * 2022-12-15 2024-06-20 Kla Corporation Extreme ultraviolet source temperature monitoring using confocal sensor

Family Cites Families (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960013995B1 (ko) 1988-07-15 1996-10-11 도오교오 에레구토론 가부시끼가이샤 반도체 웨이퍼 기판의 표면온도 측정 방법 및 열처리 장치
US5769540A (en) 1990-04-10 1998-06-23 Luxtron Corporation Non-contact optical techniques for measuring surface conditions
US6140612A (en) * 1995-06-07 2000-10-31 Lam Research Corporation Controlling the temperature of a wafer by varying the pressure of gas between the underside of the wafer and the chuck
US5863170A (en) 1996-04-16 1999-01-26 Gasonics International Modular process system
US6152070A (en) 1996-11-18 2000-11-28 Applied Materials, Inc. Tandem process chamber
US5879459A (en) 1997-08-29 1999-03-09 Genus, Inc. Vertically-stacked process reactor and cluster tool system for atomic layer deposition
US6162299A (en) 1998-07-10 2000-12-19 Asm America, Inc. Multi-position load lock chamber
FI118342B (fi) 1999-05-10 2007-10-15 Asm Int Laite ohutkalvojen valmistamiseksi
US6440261B1 (en) 1999-05-25 2002-08-27 Applied Materials, Inc. Dual buffer chamber cluster tool for semiconductor wafer processing
TW504941B (en) 1999-07-23 2002-10-01 Semiconductor Energy Lab Method of fabricating an EL display device, and apparatus for forming a thin film
US7066703B2 (en) 1999-09-29 2006-06-27 Tokyo Electron Limited Chuck transport method and system
US20030155079A1 (en) 1999-11-15 2003-08-21 Andrew D. Bailey Plasma processing system with dynamic gas distribution control
FI118343B (fi) 1999-12-28 2007-10-15 Asm Int Laite ohutkalvojen valmistamiseksi
US6576062B2 (en) 2000-01-06 2003-06-10 Tokyo Electron Limited Film forming apparatus and film forming method
JP4644926B2 (ja) 2000-10-13 2011-03-09 ソニー株式会社 半導体製造装置および半導体装置の製造方法
US6962471B2 (en) 2000-10-26 2005-11-08 Leica Microsystems Jena Gmbh Substrate conveying module and system made up of substrate conveying module and workstation
US6800173B2 (en) 2000-12-15 2004-10-05 Novellus Systems, Inc. Variable gas conductance control for a process chamber
US6630201B2 (en) 2001-04-05 2003-10-07 Angstron Systems, Inc. Adsorption process for atomic layer deposition
US20020144786A1 (en) 2001-04-05 2002-10-10 Angstron Systems, Inc. Substrate temperature control in an ALD reactor
US7080940B2 (en) * 2001-04-20 2006-07-25 Luxtron Corporation In situ optical surface temperature measuring techniques and devices
US6852194B2 (en) 2001-05-21 2005-02-08 Tokyo Electron Limited Processing apparatus, transferring apparatus and transferring method
JP4666912B2 (ja) 2001-08-06 2011-04-06 エー・エス・エムジニテックコリア株式会社 プラズマで補強した原子層蒸着装置及びこれを利用した薄膜形成方法
JP4821074B2 (ja) 2001-08-31 2011-11-24 東京エレクトロン株式会社 処理システム
US6604853B2 (en) 2001-10-11 2003-08-12 Taiwan Semiconductor Manufacturing Co., Ltd Accelerated thermal stress cycle test
US6902624B2 (en) 2001-10-29 2005-06-07 Genus, Inc. Massively parallel atomic layer deposition/chemical vapor deposition system
EP1336985A1 (de) 2002-02-19 2003-08-20 Singulus Technologies AG Zerstäubungskathode und Vorrichtung und Verfahren zum Beschichten eines Substrates mit mehreren Schichten
US7018517B2 (en) 2002-06-21 2006-03-28 Applied Materials, Inc. Transfer chamber for vacuum processing system
US6822244B2 (en) 2003-01-02 2004-11-23 Loma Linda University Medical Center Configuration management and retrieval system for proton beam therapy system
US7537662B2 (en) 2003-04-29 2009-05-26 Asm International N.V. Method and apparatus for depositing thin films on a surface
DE10350517A1 (de) 2003-10-29 2005-06-09 Sieghard Schiller Gmbh & Co. Kg Wafer-Stocker
SG132670A1 (en) 2003-11-10 2007-06-28 Blueshift Technologies Inc Methods and systems for handling workpieces in a vacuum-based semiconductor handling system
US8696298B2 (en) 2003-11-10 2014-04-15 Brooks Automation, Inc. Semiconductor manufacturing process modules
US8313277B2 (en) 2003-11-10 2012-11-20 Brooks Automation, Inc. Semiconductor manufacturing process modules
US10086511B2 (en) 2003-11-10 2018-10-02 Brooks Automation, Inc. Semiconductor manufacturing systems
KR100578134B1 (ko) 2003-11-10 2006-05-10 삼성전자주식회사 멀티 챔버 시스템
US8029226B2 (en) 2003-11-10 2011-10-04 Brooks Automation, Inc. Semiconductor manufacturing systems
US20070269297A1 (en) 2003-11-10 2007-11-22 Meulen Peter V D Semiconductor wafer handling and transport
US8403613B2 (en) 2003-11-10 2013-03-26 Brooks Automation, Inc. Bypass thermal adjuster for vacuum semiconductor processing
US7458763B2 (en) 2003-11-10 2008-12-02 Blueshift Technologies, Inc. Mid-entry load lock for semiconductor handling system
US7169234B2 (en) 2004-01-30 2007-01-30 Asm America, Inc. Apparatus and methods for preventing rotational slippage between a vertical shaft and a support structure for a semiconductor wafer holder
USD527751S1 (en) 2004-05-28 2006-09-05 Tokyo Electron Limited Transfer-chamber
CN101866828B (zh) 2004-06-02 2013-03-20 应用材料公司 电子装置制造室及其形成方法
US20060201074A1 (en) 2004-06-02 2006-09-14 Shinichi Kurita Electronic device manufacturing chamber and methods of forming the same
US7784164B2 (en) 2004-06-02 2010-08-31 Applied Materials, Inc. Electronic device manufacturing chamber method
US8292563B2 (en) 2004-06-28 2012-10-23 Brooks Automation, Inc. Nonproductive wafer buffer module for substrate processing apparatus
US20060137609A1 (en) 2004-09-13 2006-06-29 Puchacz Jerzy P Multi-single wafer processing apparatus
US20060056488A1 (en) * 2004-09-15 2006-03-16 Boris Surname Method and apparatus for measuring temperature with the use of an inductive sensor
CH697552B1 (de) 2004-11-12 2008-11-28 Oerlikon Trading Ag Vakuumbehandlungsanlage.
KR20060076714A (ko) 2004-12-28 2006-07-04 에이에스엠지니텍코리아 주식회사 원자층 증착기
US20070020890A1 (en) 2005-07-19 2007-01-25 Applied Materials, Inc. Method and apparatus for semiconductor processing
KR100803726B1 (ko) 2005-08-12 2008-02-15 주식회사 아이피에스 반송챔버의 구조
US7534080B2 (en) 2005-08-26 2009-05-19 Ascentool, Inc. Vacuum processing and transfer system
US8993055B2 (en) 2005-10-27 2015-03-31 Asm International N.V. Enhanced thin film deposition
US20070215036A1 (en) 2006-03-15 2007-09-20 Hyung-Sang Park Method and apparatus of time and space co-divided atomic layer deposition
WO2007118252A2 (en) 2006-04-11 2007-10-18 Applied Materials, Inc. System architecture and method for solar panel formation
WO2008011579A2 (en) 2006-07-21 2008-01-24 Aixtron, Inc. Small volume symmetric flow single wafer ald apparatus
WO2008071734A2 (en) 2006-12-12 2008-06-19 Oc Oerlikon Balzers Ag Arc suppression and pulsing in high power impulse magnetron sputtering (hipims)
KR100847888B1 (ko) 2006-12-12 2008-07-23 세메스 주식회사 반도체 소자 제조 장치
CN101627146A (zh) 2007-01-02 2010-01-13 Oc欧瑞康巴尔斯公司 用阴极溅射制作方向层的方法及其实施装置
US20080219806A1 (en) 2007-03-05 2008-09-11 Van Der Meulen Peter Semiconductor manufacturing process modules
US20080268753A1 (en) * 2007-04-24 2008-10-30 Tetsuya Ishikawa Non-contact wet wafer holder
US20080276867A1 (en) 2007-05-09 2008-11-13 Jason Schaller Transfer chamber with vacuum extension for shutter disks
WO2008149446A1 (ja) 2007-06-07 2008-12-11 Canon Anelva Corporation 半導体製造装置および方法
US8834969B2 (en) 2007-10-24 2014-09-16 Oerlikon Advanced Technologies Ag Method for manufacturing workpieces and apparatus
TWI463028B (zh) 2007-12-07 2014-12-01 Oc Oerlikon Balzers Ag 使用hipims的反應性噴濺
EP2223328B1 (en) 2007-12-07 2017-06-21 Evatec AG Method of magnetron sputtering
JP2011518428A (ja) 2008-03-25 2011-06-23 オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト 処理チャンバ
KR101647515B1 (ko) 2008-04-03 2016-08-10 에바텍 어드벤스드 테크놀로지스 아크티엔게젤샤프트 반도체 칩용 금속 배선 구조의 제조 방법, 그리고 반도체 칩용 금속 배선 구조 제조를 위한 금속 배선 구조 제조 장치의 제어 방법
US8441640B2 (en) * 2008-05-02 2013-05-14 Applied Materials, Inc. Non-contact substrate support position sensing system and corresponding adjustments
US20100012036A1 (en) 2008-07-11 2010-01-21 Hugo Silva Isolation for multi-single-wafer processing apparatus
JP5544697B2 (ja) 2008-09-30 2014-07-09 東京エレクトロン株式会社 成膜装置
JP5088284B2 (ja) 2008-09-30 2012-12-05 東京エレクトロン株式会社 真空処理装置
JP5315898B2 (ja) 2008-09-30 2013-10-16 東京エレクトロン株式会社 成膜装置
JP5056735B2 (ja) 2008-12-02 2012-10-24 東京エレクトロン株式会社 成膜装置
US8216380B2 (en) 2009-01-08 2012-07-10 Asm America, Inc. Gap maintenance for opening to process chamber
EP2409317B8 (en) 2009-03-18 2014-02-19 Oerlikon Advanced Technologies AG Vacuum treatment apparatus
KR101632646B1 (ko) 2009-03-18 2016-07-01 에바텍 아크티엔게젤샤프트 태양 전지 패널의 인라인 제조 방법
JP2012525492A (ja) 2009-04-27 2012-10-22 オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト 複数スパッタ源を有する反応性スパッタリング
US20100304027A1 (en) 2009-05-27 2010-12-02 Applied Materials, Inc. Substrate processing system and methods thereof
EP2360291A1 (de) 2010-02-24 2011-08-24 Singulus Technologies AG Verfahren und Vorrichtung zum schnellen Heizen und Kühlen eines Substrates und sofort anschließender Beschichtung desselben unter Vakuum
CN102439710B (zh) 2010-03-25 2017-03-29 应用材料公司 用于多个基材处理的分段基材负载
CN105256276B (zh) 2010-06-10 2018-10-26 应用材料公司 具有增强的离子化和rf 功率耦合的低电阻率钨pvd
JP2012028659A (ja) 2010-07-27 2012-02-09 Hitachi High-Technologies Corp 真空処理装置
DE102010046780A1 (de) 2010-09-28 2012-03-29 Singulus Technologies Ag Beschichten von Substraten mit einer Legierung mittels Kathodenzerstäubung
EP2649218B1 (en) 2010-12-08 2017-08-23 Evatec AG Apparatus and method for depositing a layer onto a substrate
CN103392226A (zh) 2010-12-29 2013-11-13 Oc欧瑞康巴尔斯公司 真空处理设备
KR101744372B1 (ko) 2011-01-20 2017-06-07 도쿄엘렉트론가부시키가이샤 진공 처리 장치
JP5870568B2 (ja) 2011-05-12 2016-03-01 東京エレクトロン株式会社 成膜装置、プラズマ処理装置、成膜方法及び記憶媒体
US9245786B2 (en) * 2011-06-02 2016-01-26 Applied Materials, Inc. Apparatus and methods for positioning a substrate using capacitive sensors
US8728239B2 (en) 2011-07-29 2014-05-20 Asm America, Inc. Methods and apparatus for a gas panel with constant gas flow
JP5780062B2 (ja) 2011-08-30 2015-09-16 東京エレクトロン株式会社 基板処理装置及び成膜装置
US9005539B2 (en) 2011-11-23 2015-04-14 Asm Ip Holding B.V. Chamber sealing member
DE102012103295A1 (de) 2012-01-09 2013-07-11 Aixtron Se Räumlich optimierte Anordnung zum Bearbeiten von Halbleitersubstraten
JP5618425B2 (ja) * 2012-02-23 2014-11-05 東京エレクトロン株式会社 周辺露光方法及び周辺露光装置
KR101887072B1 (ko) 2012-06-07 2018-08-09 주성엔지니어링(주) 기판 처리 장치 및 기판 처리 방법
CN104508795A (zh) 2012-06-15 2015-04-08 欧瑞康高级技术股份公司 用于沉积第iii族氮化物半导体膜的方法
US20140001576A1 (en) 2012-06-27 2014-01-02 Applied Materials, Inc. Lowering tungsten resistivity by replacing titanium nitride with titanium silicon nitride
US9673077B2 (en) * 2012-07-03 2017-06-06 Watlow Electric Manufacturing Company Pedestal construction with low coefficient of thermal expansion top
JP5947138B2 (ja) 2012-07-25 2016-07-06 東京エレクトロン株式会社 成膜装置
KR20140033911A (ko) 2012-09-11 2014-03-19 에이에스엠 아이피 홀딩 비.브이. 증착 장치 및 증착 방법
EP3211119B1 (en) 2013-02-08 2018-09-05 Evatec AG Methof of sputtering and sputter system
EP2772934A1 (en) 2013-02-28 2014-09-03 Singulus Technologies AG Method and system for naturally oxidizing a substrate
WO2014143204A1 (en) * 2013-03-12 2014-09-18 Massachusetts Institute Of Technology Methods and apparatus for mid-infrared sensing
WO2014163791A1 (en) 2013-03-12 2014-10-09 Applied Materials, Inc Semiconductor device manufacturing platform with single and twinned processing chambers
US9378994B2 (en) 2013-03-15 2016-06-28 Applied Materials, Inc. Multi-position batch load lock apparatus and systems and methods including same
KR20210014778A (ko) 2013-03-15 2021-02-09 어플라이드 머티어리얼스, 인코포레이티드 기판 증착 시스템, 로봇 이송 장치, 및 전자 디바이스 제조 방법
US9281222B2 (en) 2013-03-15 2016-03-08 Applied Materials, Inc. Wafer handling systems and methods
WO2014187939A1 (en) 2013-05-23 2014-11-27 Oerlikon Advanced Technologies Ag Method for filling vias and substrate-via filling vacuum processing system
US9490149B2 (en) 2013-07-03 2016-11-08 Lam Research Corporation Chemical deposition apparatus having conductance control
CN110085546B (zh) * 2013-08-05 2023-05-16 应用材料公司 用于薄基板搬运的静电载体
JP6225564B2 (ja) * 2013-08-30 2017-11-08 オムロン株式会社 赤外線センサモジュール
DE102013111790A1 (de) 2013-10-25 2015-04-30 Aixtron Se Energie- und materialverbrauchsoptimierter CVD-Reaktor
DE102013113052A1 (de) 2013-11-26 2015-05-28 Aixtron Se Heizeinrichtung für einen CVD-Reaktor
EP3077566A1 (en) 2013-12-04 2016-10-12 Oerlikon Advanced Technologies AG Sputtering source arrangement, sputtering system and method of manufacturing metal-coated plate-shaped substrates
SG11201606361QA (en) * 2014-02-14 2016-09-29 Applied Materials Inc Gas cooled substrate support for stabilized high temperature deposition
US9916995B2 (en) 2014-02-24 2018-03-13 Lam Research Corporation Compact substrate processing tool with multi-station processing and pre-processing and/or post-processing stations
US9336997B2 (en) 2014-03-17 2016-05-10 Applied Materials, Inc. RF multi-feed structure to improve plasma uniformity
JP6243290B2 (ja) 2014-05-01 2017-12-06 東京エレクトロン株式会社 成膜方法及び成膜装置
JP6225842B2 (ja) 2014-06-16 2017-11-08 東京エレクトロン株式会社 成膜装置、成膜方法、記憶媒体
CN106663604B (zh) 2014-07-03 2021-01-26 应用材料公司 旋转批量外延系统
US10861682B2 (en) * 2014-07-31 2020-12-08 iSenseCloud, Inc. Test wafer with optical fiber with Bragg Grating sensors
JP6280487B2 (ja) 2014-10-16 2018-02-14 東京エレクトロン株式会社 基板処理方法及び基板処理装置
JP6330623B2 (ja) 2014-10-31 2018-05-30 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
JP6330630B2 (ja) 2014-11-13 2018-05-30 東京エレクトロン株式会社 成膜装置
US9872341B2 (en) * 2014-11-26 2018-01-16 Applied Materials, Inc. Consolidated filter arrangement for devices in an RF environment
EP3210240A1 (en) 2014-12-11 2017-08-30 Evatec AG Apparatus and method especially for degassing of substrates
JP6464765B2 (ja) 2015-01-19 2019-02-06 東京エレクトロン株式会社 熱処理装置、熱処理方法及び記憶媒体
TWI676709B (zh) 2015-01-22 2019-11-11 美商應用材料股份有限公司 使用空間上分開的佈植器腔室進行的對薄膜的原子層沈積
US9917242B2 (en) * 2015-03-27 2018-03-13 Maxim Integrated Products, Inc. Thermopile temperature sensor field of view narrowing using integrated light blocking layer and lens
KR20180011119A (ko) * 2015-05-22 2018-01-31 어플라이드 머티어리얼스, 인코포레이티드 방위방향으로 튜닝가능한 다중-구역 정전 척
KR102010633B1 (ko) 2015-06-30 2019-08-13 도쿄엘렉트론가부시키가이샤 기판 처리 방법 및 기판 처리 장치
JP6478847B2 (ja) 2015-07-08 2019-03-06 東京エレクトロン株式会社 基板処理装置
EP3347503A1 (en) 2015-09-08 2018-07-18 Evatec AG Vacuum processing apparatus and method for vacuum processing substrates
JP6507953B2 (ja) 2015-09-08 2019-05-08 東京エレクトロン株式会社 基板処理装置及び基板処理方法
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
CN107022754B (zh) 2016-02-02 2020-06-02 东京毅力科创株式会社 基板处理装置
US9953843B2 (en) 2016-02-05 2018-04-24 Lam Research Corporation Chamber for patterning non-volatile metals
US10345802B2 (en) * 2016-02-17 2019-07-09 Lam Research Corporation Common terminal heater for ceramic pedestals used in semiconductor fabrication
WO2017152958A1 (en) 2016-03-08 2017-09-14 Evatec Ag Chamber for degassing substrates
TWI729101B (zh) 2016-04-02 2021-06-01 美商應用材料股份有限公司 用於旋轉料架基座中的晶圓旋轉的設備及方法
US11145495B2 (en) 2016-06-15 2021-10-12 Evatec Ag Vacuum treatment chamber and method of manufacturing a vacuum treated plate-shaped substrate
JP6688172B2 (ja) * 2016-06-24 2020-04-28 東京エレクトロン株式会社 基板処理システムおよび方法
CN109804455B (zh) 2016-10-14 2022-03-15 瑞士艾发科技 溅射源
JP6733516B2 (ja) 2016-11-21 2020-08-05 東京エレクトロン株式会社 半導体装置の製造方法
JP6777055B2 (ja) 2017-01-11 2020-10-28 東京エレクトロン株式会社 基板処理装置
CH713453A1 (de) 2017-02-13 2018-08-15 Evatec Ag Verfahren zur Herstellung eines Substrates mit einer bordotierten Oberfläche.
JP6750534B2 (ja) 2017-02-24 2020-09-02 東京エレクトロン株式会社 成膜装置
JP6918554B2 (ja) 2017-04-06 2021-08-11 東京エレクトロン株式会社 可動体構造及び成膜装置
US20200203071A1 (en) 2017-04-27 2020-06-25 Evatec Ag Soft magnetic multilayer desposition apparatus, methods of manufacturing and magnetic multilayer
JP6922408B2 (ja) 2017-05-18 2021-08-18 東京エレクトロン株式会社 基板処理装置
US10043693B1 (en) 2017-06-06 2018-08-07 Applied Materials, Inc. Method and apparatus for handling substrates in a processing system having a buffer chamber
JP6789187B2 (ja) 2017-07-07 2020-11-25 東京エレクトロン株式会社 基板反り検出装置及び基板反り検出方法、並びにこれらを用いた基板処理装置及び基板処理方法
US10704142B2 (en) * 2017-07-27 2020-07-07 Applied Materials, Inc. Quick disconnect resistance temperature detector assembly for rotating pedestal
CN110892090A (zh) 2017-07-27 2020-03-17 瑞士艾发科技 渗透屏障
JP2019035589A (ja) * 2017-08-10 2019-03-07 セイコーエプソン株式会社 物理量センサー、慣性計測ユニット、電子機器、および移動体
JP2019036630A (ja) 2017-08-15 2019-03-07 東京エレクトロン株式会社 成膜装置
TW201922604A (zh) 2017-11-15 2019-06-16 瑞士商艾維太克股份有限公司 真空處理設備及真空處理基板的方法
JP7330182B2 (ja) 2017-11-17 2023-08-21 エヴァテック・アーゲー 真空プラズマ処理へのrfパワーの伝送
US11018048B2 (en) * 2017-11-21 2021-05-25 Watlow Electric Manufacturing Company Ceramic pedestal having atomic protective layer
CN111373520B (zh) * 2017-11-28 2023-08-29 瑞士艾发科技 衬底加工设备和加工衬底并制造被加工工件的方法
TW201934783A (zh) 2017-11-30 2019-09-01 瑞士商艾維太克股份有限公司 蒸鍍室及系統
US11177144B2 (en) * 2018-06-04 2021-11-16 Applied Materials, Inc. Wafer spot heating with beam width modulation
JP7274512B2 (ja) * 2018-06-26 2023-05-16 アプライド マテリアルズ インコーポレイテッド 温度を測定するための方法及び装置
US11367645B2 (en) * 2019-03-13 2022-06-21 Applied Materials, Inc. Temperature tunable multi-zone electrostatic chuck
US11533783B2 (en) * 2019-07-18 2022-12-20 Applied Materials, Inc. Multi-zone heater model-based control in semiconductor manufacturing
US10950475B1 (en) * 2019-08-20 2021-03-16 Applied Materials, Inc. Method and apparatus for processing a substrate using non-contact temperature measurement
JP7278175B2 (ja) * 2019-08-23 2023-05-19 東京エレクトロン株式会社 基板処理装置、基板処理装置の製造方法及びメンテナンス方法
KR20210060042A (ko) * 2019-11-18 2021-05-26 캐논 톡키 가부시키가이샤 성막장치, 이를 사용한 성막방법 및 전자디바이스 제조방법
TWI776371B (zh) * 2020-01-30 2022-09-01 漢辰科技股份有限公司 用於在具有離子佈植機和處理站的離子佈植系統中控制晶圓溫度的方法、儲存一或多個程式的非暫態電腦可讀取儲存媒體以及離子佈植系統
CN115315794A (zh) * 2020-03-10 2022-11-08 东京毅力科创株式会社 用于集成到跟踪系统的长波红外热传感器

Also Published As

Publication number Publication date
CN115699284A (zh) 2023-02-03
KR20230042108A (ko) 2023-03-27
US20220028712A1 (en) 2022-01-27
WO2022026001A1 (en) 2022-02-03
US20230282500A1 (en) 2023-09-07
US11749542B2 (en) 2023-09-05
TW202220082A (zh) 2022-05-16

Similar Documents

Publication Publication Date Title
KR101047088B1 (ko) 장치 온도 제어 및 패턴 보상 장치 및 방법
JP5686952B2 (ja) 温度および放射率/パターン補償を含む膜形成装置および方法
KR100342796B1 (ko) 기판온도 측정방법 및 장치
KR100396423B1 (ko) 기판 온도 측정장치 및 방법
KR100330139B1 (ko) 기판온도 측정을 위한 방법 및 장치
US6839507B2 (en) Black reflector plate
US10375763B2 (en) Temperature control apparatus, temperature control method and recording medium
US7041931B2 (en) Stepped reflector plate
US20090316749A1 (en) Substrate temperature measurement by infrared transmission in an etch process
US20230282500A1 (en) Apparatus, system, and method for non-contact temperature monitoring of substrate supports
JP2013057660A (ja) 独立光源を用いたウェハ温度測定のための方法及び装置
US20190228997A1 (en) Methods and apparatus for wafer temperature measurement
JP2982026B2 (ja) 温度測定装置とこれを用いた被加熱体の温度測定装置
US20240145274A1 (en) Low temperature measurement of semiconductor substrates
TW202422022A (zh) 雙感測器晶圓溫度測量系統
US20180226282A1 (en) Non-contact substrate temperature measurement technique based on spectral inteferometry
TW202326083A (zh) 用於電漿環境的標準具溫度計
WO2023192405A1 (en) Dual sensor wafer temperature measurement system
JP2001308024A (ja) 熱処理装置及び方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240618