JP2019537269A - 相互接続領域の上の集積回路ナノ粒子熱配路構造 - Google Patents

相互接続領域の上の集積回路ナノ粒子熱配路構造 Download PDF

Info

Publication number
JP2019537269A
JP2019537269A JP2019528516A JP2019528516A JP2019537269A JP 2019537269 A JP2019537269 A JP 2019537269A JP 2019528516 A JP2019528516 A JP 2019528516A JP 2019528516 A JP2019528516 A JP 2019528516A JP 2019537269 A JP2019537269 A JP 2019537269A
Authority
JP
Japan
Prior art keywords
integrated circuit
interconnect
forming
nanoparticle
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019528516A
Other languages
English (en)
Other versions
JP7021826B2 (ja
JP2019537269A5 (ja
Inventor
ヴェヌゴパル アルチャナ
ヴェヌゴパル アルチャナ
スタッセン クック ベンジャミン
スタッセン クック ベンジャミン
ルイジ コロンボ
コロンボ ルイジ
レイド ドーリング ロバート
レイド ドーリング ロバート
Original Assignee
日本テキサス・インスツルメンツ合同会社
テキサス インスツルメンツ インコーポレイテッド
テキサス インスツルメンツ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テキサス・インスツルメンツ合同会社, テキサス インスツルメンツ インコーポレイテッド, テキサス インスツルメンツ インコーポレイテッド filed Critical 日本テキサス・インスツルメンツ合同会社
Publication of JP2019537269A publication Critical patent/JP2019537269A/ja
Publication of JP2019537269A5 publication Critical patent/JP2019537269A5/ja
Application granted granted Critical
Publication of JP7021826B2 publication Critical patent/JP7021826B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond

Abstract

説明される例では、集積回路(100)が、頂部相互接続レベル(124)の上に熱配路構造(132)を有する。頂部相互接続レベル(124)は、より低い相互接続レベルに接続された相互接続(118)を含み、ボンドパッド、プローブパッド、入力/出力パッド、又はバンプボンドパッドへの再配線層を含まない。熱配路構造(132)は、頂部相互接続レベル(124)を含む、集積回路(100)の面の全部ではないが一部の上に延在する。熱配路構造(132)は、隣接するナノ粒子が互いに凝着するナノ粒子の層を含む。ナノ粒子の層は、有機バインダ材料を含まない。熱配路構造(132)は、頂部相互接続レベル(124)の金属より高い熱伝導度を有する。ナノ粒子の層は、アディティブプロセスによって形成される。

Description

本発明は集積回路に関し、より詳細には、集積回路における熱管理に関する。
集積回路はしばしば、いくつかの能動構成要素において望ましくない熱を発生する。時には、ヒートシンク又は他の受動構造を介して熱を除去することが望ましい。集積回路内の熱に敏感な構成要素から熱を逸らすことが望ましい場合がある。集積回路内の過剰な熱を管理することは、ますます問題となってきている。
記載された例では、集積回路が基板、及び基板の上方に配置される相互接続領域を有する。相互接続領域は、相互接続を含む頂部相互接続レベルを含む、複数の相互接続レベルを有する。集積回路は、頂部相互接続レベルの上方に熱配路構造を有する。熱配路構造は、頂部相互接続レベルの上の集積回路の全部ではなく一部の上を延在する。熱配路構造は、隣接するナノ粒子が互いに凝集している、凝集ナノ粒子フィルムを含む。熱配路構造は、熱配路構造に接する誘電材料より高い熱伝導度を有する。凝集ナノ粒子フィルムは、アディティブプロセスを含む方法によって形成される。
一実施形態に従った、例示的な集積回路の断面図である。 一実施形態に従った、例示的な集積回路の断面図である。
一実施形態に従った、図1A及び図1Bを参照して説明されるタイプの熱配路構造を有する集積回路を形成する例示的な方法を示す。 一実施形態に従った、図1A及び図1Bを参照して説明されるタイプの熱配路構造を有する集積回路を形成する例示的な方法を示す。 一実施形態に従った、図1A及び図1Bを参照して説明されるタイプの熱配路構造を有する集積回路を形成する例示的な方法を示す。 一実施形態に従った、図1A及び図1Bを参照して説明されるタイプの熱配路構造を有する集積回路を形成する例示的な方法を示す。 一実施形態に従った、図1A及び図1Bを参照して説明されるタイプの熱配路構造を有する集積回路を形成する例示的な方法を示す。 一実施形態に従った、図1A及び図1Bを参照して説明されるタイプの熱配路構造を有する集積回路を形成する例示的な方法を示す。
一実施形態に従った、図1A及び図1Bを参照して説明されるタイプの熱配路構造を有する集積回路を形成する別の例示的な方法を示す。 一実施形態に従った、図1A及び図1Bを参照して説明されるタイプの熱配路構造を有する集積回路を形成する別の例示的な方法を示す。 一実施形態に従った、図1A及び図1Bを参照して説明されるタイプの熱配路構造を有する集積回路を形成する別の例示的な方法を示す。
一実施形態に従った、別の例示的な集積回路の断面図である。 一実施形態に従った、別の例示的な集積回路の断面図である。
一実施形態に従った、図4A及び図4Bを参照して説明されるタイプの熱配路構造を有する集積回路を形成する例示的な方法を示す。 一実施形態に従った、図4A及び図4Bを参照して説明されるタイプの熱配路構造を有する集積回路を形成する例示的な方法を示す。 一実施形態に従った、図4A及び図4Bを参照して説明されるタイプの熱配路構造を有する集積回路を形成する例示的な方法を示す。 一実施形態に従った、図4A及び図4Bを参照して説明されるタイプの熱配路構造を有する集積回路を形成する例示的な方法を示す。
一実施形態に従った、組合せ熱配路構造を含む例示的な集積回路の断面図である。
図面は一定の縮尺で描かれていない。例示の実施形態は、行為又は事象の図示する順によって限定されるものではなく、行為の中には異なる順で、及び/又は、他の行為又は事象と同時に成され得るものもある。また、図示される行為又は事象の中には任意選択の行為又は事象もある。
下記の同時係属中の特許出願を参照により本明細書に組み込む。米国特許出願番号US米国特許出願番号US15/361,394、米国特許出願番号US15/361,397、米国特許出願番号US15/361,399、米国特許出願番号US15/361,401、及び米国特許出願番号US15/361,403。
米国特許出願番号US15/361,394 米国特許出願番号US15/361,397 米国特許出願番号US15/361,399 米国特許出願番号US15/361,401 米国特許出願番号US15/361,403
この説明では、「頂部」、「底部」、「前」、「後ろ」、「の上」、「の上方」、「の下」、「の下方」などの用語を用い得る。これらの用語は、構造又は要素の位置又は向きを限定すると解釈されるべきではなく、構造又は要素間の空間的な関係を提供する。
本記載では、集積回路の「瞬時頂部表面」という用語が説明される特定のステップにおいて存在する集積回路の頂部表面を指す。瞬時頂部表面は、集積回路の形成において段階的に変化し得る。
本記載では「横方向」という用語は、集積回路の瞬時頂部表面の面に平行な方向を指し、「垂直」という用語は、集積回路の瞬時頂部表面の面に垂直な方向を指す。
図1A及び図1Bは、一実施形態に従った、例示的な集積回路の断面図である。図1Aを参照すると、集積回路100は、半導体材料104を含む基板102を含む。半導体材料104は、シリコン、シリコンゲルマニウム、又はシリコンカーバイドなどのIV型半導体とし得る。あるいは、半導体材料104は、窒化ガリウム又はヒ化ガリウムなどのIII−V族半導体であってもよい。他の半導体材料もこの例の範囲にある。集積回路100は、基板102の上に配置される相互接続領域106を更に含む。図1Aに金属酸化物半導体(MOS)トランジスタとして示されている集積回路100の熱生成構成要素108が、基板102に配置され、場合によっては、基板102と相互接続領域106との間の境界110に近接して相互接続領域106内に延在し得る。バイポーラ接合トランジスタ、接合電界効果トランジスタ(JFET)、抵抗器、及びシリコン制御整流器(SCR)など、熱生成構成要素108の他の形態もこの例の範囲にある。この例では、集積回路100は更に、MOSトランジスタとして図1Aに示される、熱の影響を受け易い構成要素112を含み得る。熱感受性構成要素112の他の形態もこの例の範囲にある。こういった構成要素は、基板102と相互接続領域106との間の境界110において、フィールド酸化物114によって横方向に隔離され得る。例えば、フィールド酸化物114は、図1Aに示すような浅いトレンチ隔離(STI)構造を有し得、又はシリコンの局所酸化(LOCOS)構造を有し得る。
相互接続領域106は、誘電体層スタック122に配置される、コンタクト116、相互接続118、及びビア120を含み得る。コンタクト116は、熱生成構成要素108及び熱の影響を受けやすい構成要素112への電気的接続を行う。相互接続118は、複数の相互接続レベルにおいて配置されている。第1の相互接続レベルにおける相互接続118は、コンタクト116への電気的接続を行う。ビア120は、連続する相互接続レベルの間に配置され、相互接続118への電気的接続を行う。相互接続118のいくつかが、相互接続領域106の頂部表面126に近接して位置する頂部相互接続レベル124に配置される。相互接続領域106の頂部表面126は、基板102と相互接続領域106との間の境界110とは反対側の相互接続領域106の表面に位置する。頂部相互接続レベル124における相互接続118は、アルミニウム相互接続、ダマシン銅相互接続、及び/又はメッキされた銅相互接続を含み得る。アルミニウム相互接続は、場合によってはチタンを含む接着層上に、及び場合によってはアルミニウム層上に窒化チタンの反射防止層を有する、数パーセントのシリコン、チタン、及び/又は銅を含むアルミニウム層を含み得る。ダマシン銅相互接続が、誘電体層スタック122内のトレンチに配置されるタンタル及び/又は窒化タンタルの障壁層上に銅を含み得る。メッキされた銅相互接続が、相互接続の底部に接着層を含み得、相互接続の側部上に配置される障壁層を有し得る。ボンドパッド構造128が、相互接続領域106の頂部表面126の上に配置され得、頂部相互接続レベル124の相互接続118に電気的に結合され得る。保護オーバーコート130が、相互接続領域106の頂部表面126の上に配置され得る。保護オーバーコート130は、ボンドパッド構造128に当接し得る。保護オーバーコート130は、二酸化ケイ素、窒化ケイ素、酸化窒化ケイ素、ポリイミド、及び/又はベンゾシクロブテン(BCB)などの誘電材料の1つ又は複数の層を含み得る。
熱配路構造132が、相互接続領域106の頂部表面126の上に配置され、頂部表面126の全部ではないが一部の上に延在する。熱配路構造132は、熱配路構造132に接する誘電材料より高い熱伝導度を有する。熱配路構造132に接する誘電体材料は、誘電体層スタック122の誘電体材料及び/又は保護オーバーコート130の誘電体材料を含み得る。熱伝導度は材料の特性であり、ワット/メートル℃の単位で表すことができる。熱配路構造132は、図1Bにより詳細に示される、主にナノ粒子135を含む凝集ナノ粒子フィルム134を含む。凝集ナノ粒子フィルム134内の隣接するナノ粒子135は互いに凝集する。ナノ粒子135の表面上には、シリコン及び酸素を含むシラン系分子などの無機能分子が存在し得る。凝集ナノ粒子フィルム134は、接着剤又はポリマーなどの有機バインダ材料を実質的に含まない。熱配路構造132は図1Aに示すように、熱生成構成要素108の上の領域から集積回路100の熱除去領域136まで延在し得る。熱配路構造132は、図1Aに示すように、熱感受性構成要素112の上の領域の外に配置され得、したがって、集積回路100の動作の間、熱生成構成要素108からの熱を熱感受性構成要素112から有利に逸らすように構成され得る。
図1A及び図1Bに示されるようなこの例のバージョンでは、熱配路構造132は非導電性であってもよく、ナノ粒子135の例は、酸化アルミニウム、ダイヤモンド、六方晶窒化ホウ素、立方晶窒化ホウ素、及び/又は窒化アルミニウムのナノ粒子を含み得る。熱配路構造132は、隣接するボンドパッド構造128間の望ましくない電気的分路の危険を冒すことなくボンドパッド構造128に接し得、有利にも、熱生成構成要素108からより多くの熱を有利に収集し、熱をより効率的に熱除去領域136に搬送するために、熱生成構成要素108の上及び熱除去領域136内の領域のより完全な被覆を可能にする。
この例の別のバージョンでは、熱配路構造132は、導電性であり得る。そのようなバージョンでは、ナノ粒子135の例は、金属、グラフェン、金属に埋め込まれたグラフェン、グラファイト、グラファイトカーボン、及び/又はカーボンナノチューブのナノ粒子を含み得る。熱配路構造132の導電性バージョンは、ボンドパッド構造128から横方向に隔離され得、頂部相互接続レベル124において相互接続118から垂直に隔離され得る。
この例のさらなるバージョンでは、ナノ粒子135は、グラファイト材料の触媒作用に適した金属を含み得、熱配路構造132は、ナノ粒子134の凝集体上にグラファイト材料の層を含み得る。そのようなバージョンでは、ナノ粒子135の例は、銅、ニッケル、パラジウム、白金、イリジウム、ロジウム、セリウム、オスミウム、モリブデン、及び/又は金のナノ粒子を含み得る。グラファイト材料は、グラファイト、グラファイトカーボン、グラフェン、及び/又はカーボンナノチューブなどを含み得る。そのようなバージョンでは、熱配路構造132は、導電性であり、したがって、ボンドパッド構造128から横方向に隔離され得、頂部相互接続レベル124において相互接続118から垂直に隔離され得る。
図2A〜図2Fは、一実施形態に従った、熱配線構造を有する集積回路を形成する例示的な方法を示す。図2Aを参照すると、集積回路200は、半導体材料204を含む基板202上に形成される。例えば、基板202は、半導体ウェハであり得る。熱生成構成要素208及び熱感受性構成要素212などの構成要素が半導体材料204において形成される。こういった構成要素は、MOSトランジスタ、バイポーラ接合トランジスタ、JFET、抵抗器、SCR、ダイオードなどを含み得る。構成要素を横方向に隔離するために、基板202においてフィールド酸化物214が形成され得る。フィールド酸化物214は、STIプロセスによって、あるいはLOCOSプロセスによって形成され得る。
相互接続領域206が基板202の上に形成される。相互接続領域206は、誘電体層スタック222を形成するための一連の誘電体層として形成され得、誘電体層の各々に相互接続要素が形成される。誘電体層スタック222のプレメタル誘電体(PMD)層が、基板202の上に直接形成され得、その後、コンタクト216がPMD層を介して形成され、熱生成構成要素208及び熱感受性構成要素212を含む構成要素への電気接続を行うことができる。第1の金属内誘電体(IMD)層が、誘電体層スタック222の一部として形成される。第1のIMD層内の第1の相互接続レベルにおける相互接続218が、PMD層及びコンタクト216の上に形成される。第1の相互接続レベルにおける相互接続218は、コンタクト216への電気的接続を行う。第1のレベル間誘電体(ILD)層が、誘電体層スタック222の一部として、第1のIMD層及び第1の相互接続レベルの上に形成される。ビア220が、第1のILDにおいて形成され、第1の相互接続レベルにおける相互接続218への電気的接続を行う。順次の相互接続レベルの相互接続を有する付加的IMD層と、ビア220を有する付加的ILD層とが、相互接続領域206に形成され、頂部相互接続レベル224における相互接続218に達する。頂部相互接続レベル224は、相互接続領域206の頂部表面226まで延在する。
この例の熱配路構造の形成は、相互接続領域206の頂部表面226の上に第1のアディティブプロセス242によって第1のナノ粒子インク240の第1のナノ粒子インクフィルム238を形成することで始まる。この説明では、アディティブプロセスが第1のナノ粒子インク240を所望の領域に配置し、第1のナノ粒子インク240を所望の領域の外に配置しないので、第1のナノ粒子インクフィルム238の一部を除去する必要なく、第1のナノ粒子インクフィルム238の最終的な所望の形状が生成される。アディティブプロセスはフォトリソグラフィプロセス及びその後のエッチングプロセスなしに、所望の領域にフィルムを形成することを可能にし得、したがって、有利にも、製造コスト及び複雑さを低減する。この例の1つのバージョンでは、第1のナノ粒子インクフィルム238は、図2Aに示すように、相互接続領域206の頂部表面226上に直接形成され得る。代替バージョンでは、第1のナノ粒子インクフィルム238を形成する前に、保護オーバーコートの1つ又は複数の層が頂部表面226上に形成され得る。第1ナノ粒子インク240は、ナノ粒子及びキャリア流体を含み得る。例えば、第1ナノ粒子インク240は、インク、スラリー、懸濁(suspension)、又はゾルゲルであり得る。ナノ粒子は、図1A及び図1Bを参照してナノ粒子135について説明した材料を含み得る。その後の凝集を促進するために、ナノ粒子の表面上に無機能分子が存在し得る。第1のナノ粒子インク240の組成は、集積回路200に所望の接着性を提供するように選択し得る。第1のナノ粒子インク240は、後に形成される熱配路構造のための領域において集積回路200上にディスペンスされ、相互接続領域206の瞬時頂部表面の全体にわたってディスペンスされない。第1のアディティブプロセス242は、図2Aに示されるような離散液滴ディスペンス装置243を用いる、インクジェットプロセスと呼ばれることもある離散液滴プロセスを含み得る。離散液滴ディスペンス装置243は、集積回路200及び離散液滴ディスペンス装置243は、第1のナノ粒子インクフィルム238のための所望のディスペンスパターンを提供するために、互いに対して横方向に移動され得るように構成され得る。離散液滴ディスペンス装置243は第1のアディティブプロセス242のための所望のスループットを提供するために、並列に独立して作動され得る複数のディスペンスポートを有し得る。この例の代替バージョンでは、第1のアディティブプロセス242は、連続押出プロセス、直接レーザートランスファプロセス、静電堆積プロセス、又は電気化学的堆積プロセスを含み得る。
図2Bを参照すると、図2Aの第1のナノ粒子インクフィルム238は第1のベークプロセス244によって加熱されて、第1のナノ粒子インクフィルム238から揮発性材料の少なくとも一部を除去し、主としてナノ粒子を含む第1のナノ粒子フィルム246を形成する。第1のベークプロセス244は、図2Bに概略的に示されるような白熱光源245、又は赤外線発光ダイオード(IR LED)を用いるなどの、放射熱プロセスであり得る。あるいは、第1のベークプロセス244は、基板202を介して第1のナノ粒子インクフィルム238を加熱するホットプレートプロセスであり得る。第1のベークプロセス244は、揮発性材料の除去を向上させるために、部分真空中で、又は低圧でのガスの連続的な流れを伴う雰囲気中で実行され得る。
図2Cを参照すると、図2Bの第1のナノ粒子フィルム246は、隣接するナノ粒子が互いに凝集して第1の凝集ナノ粒子フィルム248を形成するように、第1の凝集誘起プロセス250によって加熱される。隣接するナノ粒子間の凝集を誘起するために必要な温度は、ナノ粒子のサイズの関数である。より小さいナノ粒子は、所望の凝集を達成するために、より大きいナノ粒子より低い温度で加熱され得る。ナノ粒子は、集積回路構成要素及び構造に適合する温度での凝集を可能にするように選択され得る。凝集は、隣接するナノ粒子間の原子の拡散を含む物理的メカニズムを含むプロセスによって起こり得る。凝集はまた、隣接するナノ粒子間の原子の反応に関与する化学的メカニズムを含むプロセスによっても起こり得る。第1の凝集誘起プロセス250は、図2Cに概略的に示すように、走査レーザ装置251による加熱を含み得る。走査レーザ装置251は、実質的に第1のナノ粒子フィルム246のみに熱を提供し、第1のナノ粒子フィルム246に横方向に隣接する集積回路200の部分に熱を提供しないように構成され得、有利にも、構成要素208及び212に対する総熱負荷を低減する。
この例の一変形例では、第1の凝集誘起プロセス250は、1マイクロ秒〜10マイクロ秒の放射エネルギーを印加するフラッシュ加熱プロセスを含み得る。別の変形例では、第1の凝集誘起プロセス250は、放射エネルギーを100ミリ秒〜5秒間印加するスパイク加熱プロセスを含み得る。この例の代替バージョンでは、図2Bを参照して説明される第1のベークプロセス244を、第1の凝集誘起プロセス250と組み合わせることができ、図2Bの第1のナノ粒子フィルム246に印加される熱出力をランプさせて、まず揮発性材料を除去し、続いてナノ粒子の凝集を誘起する。ナノ粒子間の凝集を誘起する他の方法も本例の範囲にある。
図2Dを参照すると、この例の熱配路構造の形成は、第1の凝集ナノ粒子フィルム248上に第2のナノ粒子インク254をディスペンスすることによって第2のナノ粒子インクフィルム252を形成することで継続する。例えば、第2ナノ粒子インク254は、インク、スラリー、又はゾルゲルであり得る。第2のナノ粒子インク252は、図2Aの第1のナノ粒子インクフィルム238と実質的に同じ組成を有し得る。あるいは、第2のナノ粒子インクフィルム252は、例えば、所望の熱伝導度を提供するように選択された組成など、第1のナノ粒子インクフィルム238とは異なる組成を有し得る。第2のナノ粒子インク254は、第2のアディティブプロセス256によって第1の凝集ナノ粒子フィルム248上にディスペンスされる。第2のアディティブプロセス256は、図2Aを参照して説明される第1のアディティブプロセス242によって用いられるのと同じタイプの装置、例えば、図2Dに示すような離散液滴ディスペンス装置257、を用い得る。あるいは、第2のアディティブプロセス256は、特に第2のナノ粒子インクフィルム252の組成が第1のナノ粒子インクフィルム238の組成とは異なる場合、異なる装置を用いてもよく、又は異なるプロセスを用い得る。
図2Eを参照すると、図2Dの第2のナノ粒子インクフィルム252は、第2のベークプロセス258によって加熱されて、第2のナノ粒子インクフィルム252から揮発性材料の少なくとも一部を除去して、第2のナノ粒子フィルム260を形成する。第2のナノ粒子フィルム260は、主にナノ粒子を含む。第2のベークプロセス258は、図2Eに概略的に示すように、IR LED259を用い得る。IR LED259を用いることにより、放射熱を、実質的に、第2のナノ粒子インクフィルム252を含む領域のみに加える一方で、放射熱を第2のナノ粒子インクフィルム252の外の集積回路200の領域に加えないことが可能になり、構成要素208及び212に対する熱負荷を有利に低減し得る。あるいは、第2のベークプロセス258は、白熱源を用いる放射熱プロセスを含み得、又はホットプレートプロセスを含み得る。第2のベークプロセス258は、任意選択で、第1のベークプロセス244よりも高い温度又は長い時間で成され得る。
図2Fを参照すると、図2Eの第2のナノ粒子フィルム260は第2の凝集誘起プロセス264によって加熱され、そのため、第2のナノ粒子フィルム260内の隣接するナノ粒子が互いに凝集し、第1の凝集ナノ粒子フィルム248の上に第2の凝集ナノ粒子フィルム262が形成される。第2の凝集誘起プロセス264は、走査レーザ装置265を用いる第2の走査レーザ加熱プロセスなど、第1の凝集誘起プロセス250と同様であり得る。第1の凝集ナノ粒子フィルム248内のナノ粒子のさらなる凝集が、第2の凝集誘起プロセス264によって誘起され得る。
第1の凝集ナノ粒子フィルム248及び第2の凝集ナノ粒子フィルム262は、熱配路構造232を提供し得る。あるいは、ナノ粒子凝集を誘起し、第1の凝集ナノ粒子フィルム248及び第2の凝集ナノ粒子フィルム262と組み合わさり、熱配路構造232を提供するため、付加的ナノ粒子インクフィルムが形成、焼成、加熱され得る。
図3A〜図3Cは、一実施形態に従った、熱配線構造を有する集積回路を形成する別の例示的な方法を示す。図3Aを参照すると、集積回路300は、半導体材料304を含む基板302上に形成される。構成要素は、基板302の頂部表面310に近接して、半導体材料304において形成される。この例の構成要素は構成要素の第1のセット308及び構成要素の第2のセット366を含み得、構成要素の第1のセット308は構成要素の第2のセット366から空間的に分離され、構成要素の第1のセット308及び構成要素の第2のセット366は同じ熱環境を共有することから利点を得る。構成要素の第1のセット308及び構成要素の第2のセット366は、アナログ回路のマッチング構成要素であり得る。マッチング構成要素は、駆動電流及びしきい値などの実質的に等しい性能パラメータを有するように設計される。これらの性能パラメータは温度によって影響されるので、マッチング構成要素間の温度差を低減することは、性能パラメータの差を有利に低減し得る。構成要素308及び366は、MOSトランジスタ、バイポーラ接合トランジスタ、JFET、抵抗器、SCR、ダイオードなどを含み得る。構成要素を横方向に分離するために、基板302においてフィールド酸化物314が形成され得る。フィールド酸化物314は、STIプロセスによって、又は代替的にLOCOSプロセスによって形成され得る。
相互接続領域306が基板302の上に形成される。基板302の頂部表面310は、基板302と相互接続領域306との間の境界でもある。相互接続領域306は、誘電体層において、コンタクト316、相互接続318、及びビア320などの相互接続要素が形成された状態で、誘電体層スタック322を形成するために、PMD層、ならびに交互のIMD層及びILD層などの、一連の誘電体層として形成され得る。相互接続318の一部が、頂部相互接続レベル324に配置される。頂部相互接続レベル324は、相互接続領域306の頂部表面326に近接して延在する。相互接続領域306の頂部表面326は、基板302と相互接続領域306との間の境界310とは反対側の相互接続領域306の表面に位置する。
この例の熱配路構造の形成は、相互接続領域306の頂部表面326の上に、アディティブプロセス342によってナノ粒子インク340のナノ粒子インクフィルム338を形成することで始まる。この例の1つのバージョンでは、ナノ粒子インクフィルム338は、図3Aに示すように、頂部表面326上に直接形成され得る。本実施例のナノ粒子インク340は、ナノ粒子とキャリア流体とを含む。ナノ粒子インク340は、後に形成される熱配路構造のための領域において集積回路300上にディスペンスされ、相互接続領域306の頂部表面326全体にわたってディスペンスされない。アディティブプロセス342は、図3Aに示すようなマイクロ押出ディスペンス装置343を用いる、連続押出プロセスを含み得る。マイクロ押出ディスペンス装置343は、集積回路300及びマイクロ押出ディスペンス装置343は、ナノ粒子インクフィルム338のための所望のディスペンスパターンを提供するために、互いに対して横方向に移動され得るように構成され得る。この例では、マイクロ押出ディスペンス装置343が付加的ナノ粒子インクフィルムを必要とせずに、熱配路構造を形成するのに十分な厚さのナノ粒子インクフィルム338を形成され得る。
図3Bを参照すると、図3Aのナノ粒子インクフィルム338はベークプロセス344によって加熱されて、ナノ粒子インクフィルム338から揮発性材料の少なくとも一部を除去し、主としてナノ粒子を含むナノ粒子フィルム346を形成する。ベークプロセス344は、基板302の下に配置されるホットプレート345を用いるホットプレートプロセスであり得る。あるいは、ベークプロセス344は、図2B又は図2Eを参照して説明されるように、放射熱プロセスであり得る。ベークプロセス344は、揮発性材料の除去を向上させるために、部分真空中で、又は低圧でのガスの連続的な流れを有する雰囲気中で成され得る。
図3Cを参照すると、図3Bのナノ粒子フィルム346は、凝集誘起プロセス350によって加熱されて、隣接するナノ粒子が互いに凝集して、凝集ナノ粒子フィルム348を形成する。凝集誘起プロセス350は、図3Cに概略的に示すように、フラッシュランプ368を用いるフラッシュ加熱プロセス350を含み得る。ナノ粒子間の凝集を誘起する他の方法も本例の範囲にある。凝集ナノ粒子フィルム348は、熱配路構造332の実質的にすべてを提供し得る。あるいは、熱配路構造332を提供するために、凝集ナノ粒子フィルム348と組み合わさるように、さらなる凝集ナノ粒子フィルムが形成され得る。
図4A及び図4Bは、一実施形態に従った、別の例示的な集積回路の断面図である。図4Aを参照すると、集積回路400は、半導体材料404を含む基板402を含む。集積回路400は、基板402の上に配置される相互接続領域406を更に含む。この例では、第1のセットの構成要素408及び第2のセットの構成要素466が、基板402と相互接続領域406との間の境界410に近接して、基板402に配置される。この例では、第1のセットの構成要素408及び第2のセットの構成要素466は、性能が同様の熱環境を有することから利点を得るマッチング構成要素とし得る。集積回路400は、動作温度が低下することにつれて性能が向上する熱感受性構成要素412を更に含み得る。構成要素408、466、及び412はMOSトランジスタとして図4Aに示されているが、他の形態(バイポーラ接合トランジスタ、JFET、抵抗器、及びSCRなど)もこの例の範囲にある。構成要素408、466、及び412は、基板402と相互接続領域406との間の境界410において、フィールド酸化物414によって横方向に分離され得る。
相互接続領域406は、誘電体層スタック422に配置される、コンタクト416、相互接続418、及びビア420を含み得る。相互接続418のいくつかが、相互接続領域406の頂部表面426に位置する頂部相互接続レベル424に配置される。相互接続領域406の頂部表面426は、基板402と相互接続領域406との間の境界410とは反対側の相互接続領域406の表面に位置する。ボンドパッド構造428が、相互接続領域406の頂部表面426上に配置され得る。ボンドパッド構造428は、頂部相互接続レベル424における相互接続418に電気的に結合される。保護オーバーコート430は、相互接続領域406の頂部表面426の上に配置され得る。ボンドパッド構造428は、保護オーバーコート430を介して延在し得る。
熱配路構造432が、相互接続領域406の頂部表面426の上に配置され、頂部表面426の全部ではないが一部の上に延在する。この例では、熱配路構造432は、金属を含むナノ粒子435を含む凝集ナノ粒子フィルム434と、図4Bに詳細に示すように、凝集ナノ粒子フィルム434上に配置されるグラファイト材料470の層とを含む。例えば、ナノ粒子435内の金属は、銅、ニッケル、パラジウム、白金、イリジウム、ロジウム、セリウム、オスミウム、モリブデン、及び/又は金を含み得る。グラファイト材料470の層は、グラファイト、グラファイトカーボン、グラフェン、カーボンナノチューブなどを含み得る。
誘電体隔離層472が、任意選択で、凝集ナノ粒子フィルム434の下に配置され得る。誘電体隔離層472は、凝集ナノ粒子フィルム434を、頂部相互接続レベル424における下にある相互接続418から電気的に隔離され得る。
この例では、熱配路構造432は、図4Aに示すように、第1のセットの構成要素408及び第2のセットの構成要素466の上に延在し得、熱の影響を受け易い構成要素412から離れて延在し得る。したがって、熱配路構造432は、第1のセットの構成要素408及び第2のセットの構成要素466に対して、より密接に整合した熱環境を提供し得、それによって、第1のセットの構成要素408及び第2のセットの構成要素466からの熱を熱感受性構成要素412から離れるように有利に逸らしながら、それらの性能を改善し得る。
図5A〜図5Dは、一実施形態に従った、熱配線構造を有する集積回路を形成する別の例示的な方法を示す。図5Aを参照すると、集積回路500は、半導体材料504を含む基板502上に形成される。構成要素(熱生成構成要素508、熱感受性構成要素512、及びマッチング構成要素566など)が、基板502の頂部表面510に近接して半導体材料504において形成される。フィールド酸化物514は、構成要素508、512、及び566を横方向に分離するために、基板502の頂部表面510に近接して形成され得る。相互接続領域506が基板502上に形成される。基板502の頂部表面510は、基板502と相互接続領域506との間の境界でもある。相互接続領域506は、誘電体層スタック522を有するように形成され得、図2Aを参照して説明されるように、コンタクト516、相互接続518、及びビア520などの相互接続要素が誘電体層スタック522において形成される。相互接続518の一部が、相互接続領域506の頂部表面526に近接して延在する頂部相互接続レベル524に配置される。相互接続領域506の頂部表面526は、基板502と相互接続領域506との間の境界510とは反対側の相互接続領域506の表面に位置する。
この例の熱配路構造の形成は、任意選択で、相互接続領域506の頂部表面526上に誘電体隔離層572を形成することで開始し得る。誘電体隔離層572の目的は、導電性である熱配路構造を、頂部相互接続レベル524における相互接続518から電気的に隔離することである。誘電体隔離層572は、図5Aに示すように、相互接続領域506の頂部表面526全体の上を延在するブランケット層として形成され得る。あるいは、誘電体隔離層572は、熱配路構造のための領域を覆う、パターニングされた層として形成され得る。例えば、誘電体隔離層572は、二酸化ケイ素、窒化ケイ素、又は他の無機誘電体材料を含み得る。誘電体隔離層572は、テトラエチルオルトシリケート(TEOS)を用いるプラズマ化学気相成長(PECVD)プロセスを含むさまざまな方法によって形成され得る。この例の1つのバージョンでは、図2A〜図2F、又は図3A〜図3Cを参照して説明される方法に従ったアディティブプロセスを用いて、下にある誘電体材料より高い熱伝導度を有する非導電性ナノ粒子から、誘電体隔離層572のパターニングされる形態が形成され得る。熱伝導度ナノ粒子を含むパターニングされた誘電体隔離層572が、熱配路構造の全体的な熱伝導度を有利に増加させる。
熱配路構造の形成は、誘電体隔離層572の上にアディティブプロセス574によって、金属を含むナノ粒子を含むナノ粒子インクフィルム538を形成することで継続する。ナノ粒子は、図4A及び図4Bを参照して説明される金属、又はグラファイト材料の後続の成長のための触媒として適切な他の金属を含み得る。ナノ粒子インクフィルム538は、後に形成される熱配線構造のための領域に形成され、相互接続領域506の頂部表面526全体には形成されない。アディティブプロセス574は、パルスレーザ575を用いてナノ粒子インク576の小片をナノ粒子インク層578から集積回路500に転移する直接レーザートランスファプロセスを含み得る。ナノ粒子インク層578は、支持(backing)層580に取り付けられる。ナノ粒子インク層578と支持層580とを組み合わせたものは、リボンと呼ばれることもある。パルスレーザ575、ナノ粒子インク層578及び支持層580、及び集積回路500は、所望の領域にナノ粒子インクフィルム538を形成するために、互いに対して移動され得る。この例の代替バージョンでは、ナノ粒子インクフィルム538は、図2A〜図2F、又は図3A〜図3Cを参照して説明されるように、ナノ粒子インクをディスペンスすることによって形成され得る。
図5Bを参照すると、図5Aのナノ粒子インクフィルム538はベークプロセス544によって加熱されて、ナノ粒子インクフィルム538から揮発性材料の少なくとも一部を除去し、主としてナノ粒子を含むナノ粒子フィルム546を形成する。ベークプロセス544は、図5Bに概略的に示すように、白熱灯545を用いる放射熱プロセスであり得る。ベークプロセス544の他の形態もこの例の範囲にある。
図5Cを参照すると、図5Bのナノ粒子フィルム546は凝集誘起プロセス550によって加熱され、そのため、隣接するナノ粒子が互いに凝集して、凝集ナノ粒子フィルム534が形成される。凝集誘起プロセス550は、図5Cに概略的に示すように、白熱灯582を用いるスパイク加熱プロセスを含み得る。スパイク加熱プロセスは、ナノ粒子フィルム546を1ミリ秒から10ミリ秒などの時間期間にわたって加熱し、構成要素508、512、及び566の加熱を有利に制限する。ナノ粒子間の凝集を誘起する他の方法も本例の範囲にある。
図5Dを参照すると、グラファイト材料570の層が、グラファイト材料PECVDプロセスによって、凝集ナノ粒子フィルム534上に選択的に形成される。グラファイト材料PECVDプロセスでは、基板502は、ウェハチャック584上に配置され、ウェハチャック584によって、例えば200℃〜400℃の温度まで加熱される。図5Dにおいて「炭素試薬ガス」と示される炭素含有試薬ガスが、集積回路500の上に流され、図5Dにおいて「RF出力」と示される無線周波数(RF)出力が炭素含有試薬ガスに印加されて、集積回路500の上方に炭素ラジカルが生成される。炭素含有試薬ガスは、メタン、エタン、プロパン及び/又はブタンなどの直鎖アルカン、エタノールなどのアルコール、及び/又はシクロブタン又はベンゼンなどの環状炭化水素を含み得る。水素、アルゴン及び/又は酸素のような付加的ガスを集積回路500に対して上に流すこともできる。凝集ナノ粒子フィルム534内のナノ粒子内の金属は、炭素ラジカルに触媒作用を及ぼしてグラファイト材料を形成するように反応し、そのため、グラファイト材料570の層の第1の層が、凝集ナノ粒子フィルム534上に選択的に形成されるようにする。グラファイト材料の後続の層が、前に形成されたグラファイト材料の層上に選択的に形成され、そのため、グラファイト材料570の層が、凝集ナノ粒子フィルム534上に選択的に形成され、グラファイト材料570は凝集ナノ粒子フィルム534の外の集積回路500上には形成されないようになる。凝集ナノ粒子フィルム534とグラファイト材料570の層との組み合わせは、熱配路構造532を提供する。
図6は、一実施形態に従った、組合せ熱配路構造を含む例示的な集積回路の断面図である。集積回路600は、半導体材料604を含む基板602を含む。集積回路600は、基板602の上に配置される相互接続領域606を更に含む。構成要素608が、基板602と相互接続領域606との間の境界610において、基板602及び相互接続領域606に配置される。例えば、構成要素608は、MOSトランジスタ、バイポーラ接合トランジスタ、JFET、抵抗器、及び/又はSCRであり得る。構成要素608は、基板602と相互接続領域606との間の境界610において、フィールド酸化物614によって横方向に分離され得る。相互接続領域606は、誘電体層スタック622に配置される、コンタクト616、相互接続618、及びビア620を含み得る。相互接続618のいくつかが、相互接続領域606の頂部表面626に位置する頂部相互接続レベル624に配置される。相互接続領域606の頂部表面626は、基板602と相互接続領域606との間の境界610とは反対側に位置する。ボンドパッド構造628が、相互接続領域606の頂部表面626の上に配置され、頂部相互接続レベル624における相互接続618に電気的に結合される。保護オーバーコート630が、相互接続領域606の頂部表面626の上に配置される。
この例では、集積回路600は、ボンドパッド構造628のいくつかの上にワイヤボンド686を用いてアセンブルされる。集積回路600は、封入材料688内に封止によってパッケージングされる。エポキシ樹脂のような封止材料688は、保護オーバーコート630及びボンドパッド構造628の上に配置される。
この例の集積回路600は、基板602の内側から相互接続領域606を通り、有機ポリマー封入材料688を通して延在する、組合せ熱配路構造690を含む。組合せ熱配路構造690は、本明細書の実施例のいずれかに従って、頂部相互接続レベル624の上に配置される熱配路構造632を含む。組合せ熱配路構造690は、構成要素608によって生成された熱を、集積回路600を含むパッケージの外に配置されるヒートシンクなどの熱除去装置に導通させ得、これは、構成要素608の動作温度を有利に低下させ得る。
組合せ熱配路構造690は、基板602に配置され、基板602と相互接続領域606との間の境界610まで延在する、ディープトレンチ熱配路構造692を含み得る。ディープトレンチ熱配路構造692は、構成要素608の一部を囲み得、図6の平面の外の場所で互いに接続され得る。ディープトレンチ熱配路構造692は、米国特許出願番号US15/361,397に記載されているような構造を有し得、形成され得る。
組合せ熱配路構造690は、相互接続領域606に配置される高熱伝導度ビア694を含み得る。高熱伝導度ビア694は、構成要素608の一部を囲み得、図6の平面の外の位置において互いに接続され得る。高熱伝導度ビア694は、米国特許出願番号US15/361,399に記載されているような構造を有し得、記載されるように形成され得る。
組合せ熱配路構造690は、相互接続領域606に配置される高熱伝導度横方向構造696を含み得る。高熱伝導度横方向構造696は、構成要素608の一部を囲み得、図6の平面の外の位置において互いに接続され得る。高熱伝導度横方向構造696は、米国特許出願番号US15/361,394に記載されているような構造を有し得、記載されるように形成され得る。
組合せ熱配路構造690は、集積回路600までの、封止材料688を介して配置される高熱伝導度スルーパッケージ導管698を含み得る。高熱伝導度スルーパッケージ導管698は、米国特許出願番号US15/361,403に記載されているような構造を有し得、記載されるように形成され得る。
集積回路600は、構成要素608に電気的に結合されるグラファイトビア699を更に含み得る。グラファイトビア699は、構成要素608によって生成された熱を、基板から離れて、場合によっては組合せ熱配路構造690に導通させ得、これは構成要素608の動作温度を有利に低下させ得る。グラファイトビア699は、米国特許出願番号US15/361,401に記載されているような構造を有し得、記載されるように形成され得る。
特許請求の範囲内で、説明した実施形態において改変が可能であり、他の実施形態も可能である。

Claims (20)

  1. 集積回路であって、
    半導体材料を含む基板、
    前記基板の上に配置される相互接続領域であって、
    誘電体層スタックと、
    前記誘電体層スタックに配置されるコンタクトと、
    前記誘電体層スタックに配置される相互接続であって、前記相互接続の複数が、前記基板と前記相互接続領域との間の境界とは反対側の、前記相互接続領域の頂部表面に近接して、前記相互接続領域に位置する頂部相互接続レベルにおいて配置される、前記相互接続と、
    前記誘電体層スタックに配置されるビアと、
    を含む、前記相互接続領域、
    前記基板と前記相互接続領域との間の境界に近接して、前記基板及び前記相互接続領域において配置される熱生成構成要素、及び
    前記頂部相互接続レベルの上に配置され、前記熱生成構成要素の上に延在する熱配路構造、
    を含み、
    前記熱配路構造が、ナノ粒子を含む凝集ナノ粒子フィルムを含み、前記凝集ナノ粒子フィルムにおいて、隣接するナノ粒子が互いに凝集しており、前記凝集ナノ粒子フィルムが実質的に有機バインダ材料を含まず、前記熱配路構造の熱伝導度が、前記熱配路構造に接する誘電材料の熱伝導度より高く、
    集積回路。
  2. 請求項1に記載の集積回路であって、前記凝集ナノ粒子フィルムが、酸化アルミニウム、ダイヤモンド、六方晶窒化ホウ素、立方晶窒化ホウ素、及び窒化アルミニウムからなる群から選択される材料の非導電性ナノ粒子を含む、集積回路。
  3. 請求項2に記載の集積回路であって、前記集積回路のボンドパッド構造が、前記熱配路構造に接する、集積回路。
  4. 請求項1に記載の集積回路であって、前記凝集ナノ粒子フィルムが、金属、グラフェン、金属に埋め込まれたグラフェン、グラファイト、グラファイトカーボン、及び/又はカーボンナノチューブからなる群から選択される材料の導電性ナノ粒子を含む、集積回路。
  5. 請求項1に記載の集積回路であって、前記凝集ナノ粒子フィルムが、銅、ニッケル、パラジウム、白金、イリジウム、ロジウム、セリウム、オスミウム、モリブデン、及び金からなる群から選択される金属を含み、前記熱配路構造が、前記凝集ナノ粒子フィルム上に配置されるグラファイト材料の層を含む、集積回路。
  6. 請求項1に記載の集積回路であって、前記熱配路構造が、前記集積回路の熱除去領域まで延在する、集積回路。
  7. 請求項1に記載の集積回路であって、前記熱配路構造が、前記集積回路の熱感受性の構成要素から離れて延在する、集積回路。
  8. 請求項1に記載の集積回路であって、前記熱配路構造が、前記集積回路のマッチング構成要素の上に延在する、集積回路。
  9. 請求項1に記載の集積回路であって、前記頂部相互接続レベルの上であり、前記熱配線構造の下に配置される誘電体隔離層を更に含む、集積回路。
  10. 請求項1に記載の集積回路であって、
    ディープトレンチ熱配路構造、高熱伝導度バイア、高熱伝導度横方向構造、高熱伝導度スルーパッケージ導管、及びグラファイトバイアからなる群から選択される熱配路構成要素を更に含み、
    前記ディープトレンチ熱配路構造が凝集ナノ粒子フィルムを含み、前記ディープトレンチ熱配路構造が基板において、前記基板と前記相互接続領域との間の境界まで延在して配置され、
    前記高熱伝導度ビアが、相互接続領域に配置され、凝集ナノ粒子フィルムを含み、前記高熱伝導度横方向構造が凝集ナノ粒子フィルムを含み、前記高熱伝導度横方向構造が相互接続領域に配置され、
    前記高熱伝導度スルーパッケージ導管が凝集ナノ粒子フィルムを含み、前記高熱伝導度スルーパッケージ導管が、前記集積回路の上の封止材料を介して配置され、前記集積回路まで延在し、
    前記グラファイトビアが凝集ナノ粒子フィルムを含み、前記グラファイトビアが前記熱生成構成要素の1つに電気的に結合される、
    集積回路。
  11. 集積回路を形成する方法であって、
    半導体材料を含む基板を提供すること、
    前記基板に熱生成構成要素を形成すること、
    前記基板の上に相互接続領域を形成することであって、前記相互接続領域を形成することが、
    前記基板の上に誘電体層スタックを形成することと、
    前記誘電体層スタックにおいて、前記熱生成構成要素に対する電気的接続を行うコンタクトを形成することと、
    前記誘電体層スタックにおいて相互接続を形成することであって、前記相互接続が複数の相互接続レベルにおいて形成され、前記相互接続の複数が第1の相互接続レベルに位置して前記コンタクトへの電気接続を行い、前記相互接続の一部が、前記基板とは反対側の前記相互接続領域の頂部表面に位置する頂部相互接続レベルに位置する、前記相互接続を形成することと、
    前記誘電体層スタックにおいて、前記相互接続への電気接続を行うビアを形成することと、
    を含む、前記相互接続領域を形成すること、及び
    熱配線構造を形成すること、
    を含み、
    前記熱配線構造を形成することが、
    ナノ粒子を含むナノ粒子インクフィルムを形成するために、前記頂部相互接続レベル上の前記集積回路上にアディティブプロセスによってナノ粒子インクをディスペンスすることであって、前記ナノ粒子インクが、ナノ粒子とキャリア流体とを含み、有機バインダ材料を含まない、前記ナノ粒子インクをディスペンスすることと、
    ナノ粒子の凝集を誘起し、それによって凝集ナノ粒子フィルムを形成することと、
    を含む、
    方法。
  12. 請求項11に記載の方法であって、前記熱経路構造を形成することが、前記ナノ粒子の凝集を誘起する前に、前記ナノ粒子インクフィルムを加熱して揮発性材料を除去し、それによってナノ粒子フィルムを形成することを更に含む、方法。
  13. 請求項12に記載の方法であって、前記ナノ粒子インクフィルムを加熱することが、赤外線発光ダイオード(IRLED)を用いる、方法。
  14. 請求項11に記載の方法であって、前記ナノ粒子が、酸化アルミニウム、ダイヤモンド、六方晶窒化ホウ素、立方晶窒化ホウ素、及び窒化アルミニウムからなる群から選択される材料の非導電性ナノ粒子を含む、方法。
  15. 請求項11に記載の方法であって、前記ナノ粒子が、金属、グラフェン、金属に埋め込まれたグラフェン、グラファイト、グラファイトカーボン、及びカーボンナノチューブからなる群から選択される材料の導電性ナノ粒子を含む、方法。
  16. 請求項11に記載の方法であって、前記ナノ粒子が、銅、ニッケル、パラジウム、白金、イリジウム、ロジウム、セリウム、オスミウム、モリブデン、及び金からなる群から選択される金属を含み、前記熱配路構造を形成することが、プラズマエンハンスト化学気相成長(PECVD)プロセスによって、前記凝集ナノ粒子フィルム上にグラファイト材料の層を形成することを更に含む、方法。
  17. 請求項11に記載の方法であって、前記ナノ粒子インクフィルムを形成する前に、前記頂部相互接続レベルの上に誘電体隔離層を形成することを更に含む、方法。
  18. 請求項11に記載の方法であって、前記アディティブプロセスが、離散液滴ディスペンスプロセス、連続押出プロセス、直接レーザートランスファプロセス、静電堆積プロセス、及び電気化学的堆積プロセスからなる群から選択される方法を含む、方法。
  19. 請求項11に記載の方法であって、前記ナノ粒子インクフィルムが第1のナノ粒子インクフィルムであり、熱配路構造を形成することが、前記第1のナノ粒子インクフィルムを形成した後に第2のナノ粒子インクフィルムを形成することを含む、方法。
  20. 請求項11に記載の方法であって、前記ナノ粒子の凝集を誘起することが、走査レーザ加熱プロセス、フラッシュ加熱プロセス、及びスパイク加熱プロセスからなる群から選択されるプロセスを含む、方法。
JP2019528516A 2016-11-26 2017-11-22 相互接続領域の上の集積回路ナノ粒子熱配路構造 Active JP7021826B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/361,390 US10529641B2 (en) 2016-11-26 2016-11-26 Integrated circuit nanoparticle thermal routing structure over interconnect region
US15/361,390 2016-11-26
PCT/US2017/063131 WO2018098360A1 (en) 2016-11-26 2017-11-22 Integrated circuit nanoparticle thermal routing structure over interconnect region

Publications (3)

Publication Number Publication Date
JP2019537269A true JP2019537269A (ja) 2019-12-19
JP2019537269A5 JP2019537269A5 (ja) 2021-01-14
JP7021826B2 JP7021826B2 (ja) 2022-02-17

Family

ID=62190458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019528516A Active JP7021826B2 (ja) 2016-11-26 2017-11-22 相互接続領域の上の集積回路ナノ粒子熱配路構造

Country Status (5)

Country Link
US (1) US10529641B2 (ja)
EP (1) EP3545547B1 (ja)
JP (1) JP7021826B2 (ja)
CN (1) CN109906505B (ja)
WO (1) WO2018098360A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10727116B2 (en) * 2018-07-30 2020-07-28 Texas Instruments Incorporated Programming reactive components
US11049980B2 (en) 2018-10-30 2021-06-29 Texas Instruments Incorporated Integrated MIM diode
US11658092B2 (en) * 2020-11-13 2023-05-23 Taiwan Semiconductor Manufacturing Company, Ltd. Thermal interconnect structure for thermal management of electrical interconnect structure
US20220415807A1 (en) * 2021-06-25 2022-12-29 Intel Corporation Thermal management structures in semiconductor devices and methods of fabrication

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340434A (ja) * 1998-05-22 1999-12-10 Toshiba Corp 半導体装置及びその製造方法
JP2010015550A (ja) * 2008-06-06 2010-01-21 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2010102698A (ja) * 2008-09-25 2010-05-06 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2011520286A (ja) * 2008-05-05 2011-07-14 クゥアルコム・インコーポレイテッド 3−d集積回路側方熱放散
JP2011162591A (ja) * 2010-02-05 2011-08-25 Mitsubishi Chemicals Corp 三次元集積回路用の層間充填材組成物、塗布液、三次元集積回路の製造方法
JP2012023380A (ja) * 2010-07-14 2012-02-02 Korea Advanced Inst Of Sci Technol パターンの製造方法
WO2012133818A1 (ja) * 2011-03-31 2012-10-04 三菱化学株式会社 三次元集積回路積層体、及び三次元集積回路積層体用の層間充填材
JP2013141037A (ja) * 2013-04-22 2013-07-18 Nikon Corp 積層型半導体装置
JP2013181050A (ja) * 2012-02-29 2013-09-12 Mitsubishi Chemicals Corp 三次元集積回路用の層間充填材組成物、塗布液及び三次元集積回路の製造方法
JP2014099470A (ja) * 2012-11-13 2014-05-29 Fujitsu Ltd 半導体装置および半導体集積回路装置、電子装置
JP2016072447A (ja) * 2014-09-30 2016-05-09 株式会社東芝 トランジスタ

Family Cites Families (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5224030A (en) 1990-03-30 1993-06-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Semiconductor cooling apparatus
US5481136A (en) 1992-10-28 1996-01-02 Sumitomo Electric Industries, Ltd. Semiconductor element-mounting composite heat-sink base
US5683939A (en) 1993-04-02 1997-11-04 Harris Corporation Diamond insulator devices and method of fabrication
US7067406B2 (en) 1997-03-31 2006-06-27 Intel Corporation Thermal conducting trench in a semiconductor structure and method for forming the same
US6222254B1 (en) 1997-03-31 2001-04-24 Intel Corporation Thermal conducting trench in a semiconductor structure and method for forming the same
US7368013B2 (en) 1997-04-04 2008-05-06 Chien-Min Sung Superabrasive particle synthesis with controlled placement of crystalline seeds
US6046503A (en) 1997-09-26 2000-04-04 Siemens Aktiengesellschaft Metalization system having an enhanced thermal conductivity
US5955781A (en) 1998-01-13 1999-09-21 International Business Machines Corporation Embedded thermal conductors for semiconductor chips
JPH11238734A (ja) 1998-02-20 1999-08-31 Nec Corp 半導体集積回路
US6265771B1 (en) 1999-01-27 2001-07-24 International Business Machines Corporation Dual chip with heat sink
US6288426B1 (en) 2000-02-28 2001-09-11 International Business Machines Corp. Thermal conductivity enhanced semiconductor structures and fabrication processes
US6512292B1 (en) 2000-09-12 2003-01-28 International Business Machines Corporation Semiconductor chip structures with embedded thermal conductors and a thermal sink disposed over opposing substrate surfaces
GB0022329D0 (en) 2000-09-12 2000-10-25 Mitel Semiconductor Ltd Semiconductor device
JP4833398B2 (ja) 2000-09-18 2011-12-07 ポリマテック株式会社 熱伝導性成形体の製造方法
JP2002097371A (ja) 2000-09-20 2002-04-02 Polymatech Co Ltd 熱伝導性高分子組成物及び熱伝導性成形体
US7161239B2 (en) 2000-12-22 2007-01-09 Broadcom Corporation Ball grid array package enhanced with a thermal and electrical connector
JP4663153B2 (ja) 2001-05-22 2011-03-30 ポリマテック株式会社 熱伝導性複合材料組成物
JP4714371B2 (ja) 2001-06-06 2011-06-29 ポリマテック株式会社 熱伝導性成形体及びその製造方法
JP3791601B2 (ja) 2002-02-08 2006-06-28 日本電気株式会社 ナノグラファイト構造体の作製方法
US6525419B1 (en) 2002-02-14 2003-02-25 Intel Corporation Thermally coupling electrically decoupling cooling device for integrated circuits
US7071603B2 (en) 2002-02-20 2006-07-04 Cdream Corporation Patterned seed layer suitable for electron-emitting device, and associated fabrication method
JP4416376B2 (ja) 2002-05-13 2010-02-17 富士通株式会社 半導体装置及びその製造方法
US6771502B2 (en) 2002-06-28 2004-08-03 Advanced Energy Technology Inc. Heat sink made from longer and shorter graphite sheets
JP2004051852A (ja) 2002-07-22 2004-02-19 Polymatech Co Ltd 熱伝導性高分子成形体及びその製造方法
US7332211B1 (en) 2002-11-07 2008-02-19 Massachusetts Institute Of Technology Layered materials including nanoparticles
JP2004175926A (ja) 2002-11-27 2004-06-24 Polymatech Co Ltd 熱伝導性エポキシ樹脂成形体及びその製造方法
DE10336747A1 (de) 2003-08-11 2005-03-17 Infineon Technologies Ag Halbleiterbauelementanordnung mit einer Nanopartikel aufweisenden Isolationsschicht
US20070126116A1 (en) 2004-08-24 2007-06-07 Carlos Dangelo Integrated Circuit Micro-Cooler Having Tubes of a CNT Array in Essentially the Same Height over a Surface
US7550097B2 (en) * 2003-09-03 2009-06-23 Momentive Performance Materials, Inc. Thermal conductive material utilizing electrically conductive nanoparticles
US7345364B2 (en) 2004-02-04 2008-03-18 Agere Systems Inc. Structure and method for improved heat conduction for semiconductor devices
DE102004008135A1 (de) 2004-02-18 2005-09-22 Infineon Technologies Ag Halbleiterbauteil mit einem Stapel aus Halbleiterchips und Verfahren zur Herstellung desselben
US7135773B2 (en) * 2004-02-26 2006-11-14 International Business Machines Corporation Integrated circuit chip utilizing carbon nanotube composite interconnection vias
US7288839B2 (en) 2004-02-27 2007-10-30 International Business Machines Corporation Apparatus and methods for cooling semiconductor integrated circuit package structures
US7286359B2 (en) 2004-05-11 2007-10-23 The U.S. Government As Represented By The National Security Agency Use of thermally conductive vias to extract heat from microelectronic chips and method of manufacturing
JP5374801B2 (ja) 2004-08-31 2013-12-25 富士通株式会社 炭素元素からなる線状構造物質の形成体及び形成方法
DE102004058305B3 (de) 2004-12-02 2006-05-18 Infineon Technologies Ag Halbleiterbauteil mit einem eine Passivierungsschicht aufweisenden Halbleiterchip sowie Verfahren zur Herstellung desselben
US7260939B2 (en) 2004-12-17 2007-08-28 General Electric Company Thermal transfer device and system and method incorporating same
TWI288173B (en) * 2005-03-03 2007-10-11 Compal Electronics Inc Thermal interface material and filler used therein
US7989349B2 (en) 2005-04-15 2011-08-02 Micron Technology, Inc. Methods of manufacturing nanotubes having controlled characteristics
US7651963B2 (en) 2005-04-15 2010-01-26 Siemens Energy, Inc. Patterning on surface with high thermal conductivity materials
KR20080014004A (ko) 2005-06-06 2008-02-13 로무 가부시키가이샤 인터포저 및 반도체 장치
US8664759B2 (en) * 2005-06-22 2014-03-04 Agere Systems Llc Integrated circuit with heat conducting structures for localized thermal control
JP4686274B2 (ja) 2005-06-30 2011-05-25 ポリマテック株式会社 放熱部品及びその製造方法
US7355289B2 (en) 2005-07-29 2008-04-08 Freescale Semiconductor, Inc. Packaged integrated circuit with enhanced thermal dissipation
US7586191B2 (en) 2005-08-11 2009-09-08 Hall David R Integrated circuit apparatus with heat spreader
US7633152B2 (en) * 2005-09-02 2009-12-15 Agere Systems Inc. Heat dissipation in integrated circuits
US7312531B2 (en) 2005-10-28 2007-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and fabrication method thereof
TW200735308A (en) 2005-12-23 2007-09-16 Koninkl Philips Electronics Nv On-chip interconnect-stack cooling using sacrificial interconnect segments
DE102006001792B8 (de) 2006-01-12 2013-09-26 Infineon Technologies Ag Halbleitermodul mit Halbleiterchipstapel und Verfahren zur Herstellung desselben
US7335575B2 (en) 2006-02-03 2008-02-26 International Business Machines Corporation Semiconductor constructions and semiconductor device fabrication methods
US8217518B2 (en) 2006-03-08 2012-07-10 Stmicroelectronics Asia Pacific Pte., Ltd. Enhancing metal/low-K interconnect reliability using a protection layer
US9013035B2 (en) 2006-06-20 2015-04-21 Broadcom Corporation Thermal improvement for hotspots on dies in integrated circuit packages
JP2008060172A (ja) 2006-08-29 2008-03-13 Toshiba Corp 半導体装置
WO2008033388A2 (en) 2006-09-12 2008-03-20 Qd Vision, Inc. A composite including nanoparticles, methods, and products including a composite
US7656010B2 (en) 2006-09-20 2010-02-02 Panasonic Corporation Semiconductor device
JP2008091714A (ja) 2006-10-03 2008-04-17 Rohm Co Ltd 半導体装置
US20120141678A1 (en) 2006-11-27 2012-06-07 Fujifilm Dimatix, Inc. Carbon Nanotube Ink
US7763973B1 (en) * 2007-04-05 2010-07-27 Hewlett-Packard Development Company, L.P. Integrated heat sink for a microchip
US7582962B1 (en) 2007-11-07 2009-09-01 Rockwell Collins, Inc. Heat dissipation device
US8421128B2 (en) 2007-12-19 2013-04-16 International Business Machines Corporation Semiconductor device heat dissipation structure
US8110416B2 (en) 2007-12-24 2012-02-07 Texas Instruments Incorporated AC impedance spectroscopy testing of electrical parametric structures
CN101499480B (zh) 2008-01-30 2013-03-20 松下电器产业株式会社 半导体芯片及半导体装置
US20090218682A1 (en) 2008-03-03 2009-09-03 Nils Lundberg Semiconductor chip
US8203167B2 (en) 2008-03-25 2012-06-19 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader and adhesive between base and terminal
US8470701B2 (en) 2008-04-03 2013-06-25 Advanced Diamond Technologies, Inc. Printable, flexible and stretchable diamond for thermal management
US20100140790A1 (en) 2008-12-05 2010-06-10 Seagate Technology Llc Chip having thermal vias and spreaders of cvd diamond
US20100148357A1 (en) 2008-12-16 2010-06-17 Freescale Semiconductor, Inc. Method of packaging integrated circuit dies with thermal dissipation capability
JP2010205955A (ja) 2009-03-04 2010-09-16 Micro Coatec Kk 熱伝導性電子回路基板およびそれを用いた電子機器ならびにその製造方法
EP2444371B1 (en) 2009-06-16 2019-02-20 Fujitsu Limited Graphite structure
US8237252B2 (en) 2009-07-22 2012-08-07 Stats Chippac, Ltd. Semiconductor device and method of embedding thermally conductive layer in interconnect structure for heat dissipation
JP5356972B2 (ja) 2009-10-20 2013-12-04 新光電気工業株式会社 放熱用部品及びその製造方法、半導体パッケージ
US20110140232A1 (en) 2009-12-15 2011-06-16 Intersil Americas Inc. Methods of forming a thermal conduction region in a semiconductor structure and structures resulting therefrom
KR20110085481A (ko) 2010-01-20 2011-07-27 삼성전자주식회사 적층 반도체 패키지
US8410474B2 (en) 2010-01-21 2013-04-02 Hitachi, Ltd. Graphene grown substrate and electronic/photonic integrated circuits using same
JP3159040U (ja) 2010-02-09 2010-05-06 有限会社ディアックス カーボンナノチューブ放熱板
US8618654B2 (en) 2010-07-20 2013-12-31 Marvell World Trade Ltd. Structures embedded within core material and methods of manufacturing thereof
US8304851B2 (en) * 2010-03-30 2012-11-06 Texas Instruments Incorporated Semiconductor thermocouple and sensor
US8248803B2 (en) 2010-03-31 2012-08-21 Hong Kong Applied Science and Technology Research Institute Company Limited Semiconductor package and method of manufacturing the same
US20130127037A1 (en) 2010-03-31 2013-05-23 Nec Corporation Semiconductor device built-in substrate
US9508626B2 (en) 2010-04-23 2016-11-29 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming openings in thermally-conductive frame of FO-WLCSP to dissipate heat and reduce package height
US9431316B2 (en) 2010-05-04 2016-08-30 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming channels in back surface of FO-WLCSP for heat dissipation
US8241964B2 (en) 2010-05-13 2012-08-14 Stats Chippac, Ltd. Semiconductor device and method of embedding bumps formed on semiconductor die into penetrable adhesive layer to reduce die shifting during encapsulation
JP2011249361A (ja) 2010-05-21 2011-12-08 Toyota Motor Corp 半導体装置とその製造方法
US8314472B2 (en) 2010-07-29 2012-11-20 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Semiconductor structure comprising pillar
US8901613B2 (en) 2011-03-06 2014-12-02 Monolithic 3D Inc. Semiconductor device and structure for heat removal
US8552554B2 (en) 2010-08-12 2013-10-08 Industrial Technology Research Institute Heat dissipation structure for electronic device and fabrication method thereof
KR101698932B1 (ko) 2010-08-17 2017-01-23 삼성전자 주식회사 반도체 패키지 및 그 제조방법
US8617926B2 (en) 2010-09-09 2013-12-31 Advanced Micro Devices, Inc. Semiconductor chip device with polymeric filler trench
US8404588B2 (en) 2010-10-06 2013-03-26 Electronics And Telecommunications Research Institute Method of manufacturing via electrode
US8810996B2 (en) 2010-11-22 2014-08-19 The Trustees Of The Stevens Institute Of Technology Inkjet-printed flexible electronic components from graphene oxide
US8466054B2 (en) 2010-12-13 2013-06-18 Io Semiconductor, Inc. Thermal conduction paths for semiconductor structures
US8440999B2 (en) 2011-02-15 2013-05-14 International Business Machines Corporation Semiconductor chip with graphene based devices in an interconnect structure of the chip
JP2012182336A (ja) 2011-03-02 2012-09-20 Toshiba Corp 半導体装置
CN102856465B (zh) * 2011-06-29 2015-03-11 赛恩倍吉科技顾问(深圳)有限公司 发光二极管封装结构
DE102011051705A1 (de) * 2011-07-08 2013-01-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schichtsystem mit einer Schicht aus parallel zueinander angeordneten Kohlenstoffröhren und einer elektrisch leitenden Deckschicht, Verfahren zur Herstellung des Schichtsystems und dessen Verwendung in der Mikrosystemtechnik
JP5779042B2 (ja) 2011-08-18 2015-09-16 新光電気工業株式会社 半導体装置
US9803292B2 (en) 2011-08-25 2017-10-31 Wisconsin Alumni Research Foundation Barrier guided growth of microstructured and nanostructured graphene and graphite
EP2751836A4 (en) 2011-08-31 2015-08-19 Hewlett Packard Development Co THERMAL DIVERSION
KR20130088223A (ko) 2012-01-31 2013-08-08 (주)보명 칩 온 보드 led pcb 기판용 열전도성 폴리머 레진
US8937376B2 (en) 2012-04-16 2015-01-20 Advanced Semiconductor Engineering, Inc. Semiconductor packages with heat dissipation structures and related methods
CN103374751B (zh) 2012-04-25 2016-06-15 清华大学 具有微构造的外延结构体的制备方法
US9099375B2 (en) 2012-05-21 2015-08-04 The United States Of America, As Represented By The Secretary Of The Navy Diamond and diamond composite material
ES2441428B1 (es) 2012-07-04 2016-02-05 Abengoa Solar New Technologies, S.A. Formulación de tintas con base de nanopartículas cerámicas
US20140008756A1 (en) 2012-07-09 2014-01-09 International Business Machines Corporation Deep trench heat sink
US9656246B2 (en) 2012-07-11 2017-05-23 Carbice Corporation Vertically aligned arrays of carbon nanotubes formed on multilayer substrates
KR20140009730A (ko) 2012-07-12 2014-01-23 삼성전자주식회사 방열 부재를 구비한 반도체 칩 및 디스플레이 모듈
US8846452B2 (en) 2012-08-21 2014-09-30 Infineon Technologies Ag Semiconductor device package and methods of packaging thereof
KR101404126B1 (ko) 2012-08-30 2014-06-13 한국과학기술연구원 나노 입자 제조 방법, 나노 입자 및 이를 포함하는 유기 발광 소자, 태양 전지, 인쇄용 잉크, 바이오 이미지 장치 및 센서
US8836110B2 (en) 2012-08-31 2014-09-16 Freescale Semiconductor, Inc. Heat spreader for use within a packaged semiconductor device
US8963317B2 (en) 2012-09-21 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Thermal dissipation through seal rings in 3DIC structure
JP5972735B2 (ja) 2012-09-21 2016-08-17 株式会社東芝 半導体装置
CN103013033B (zh) * 2012-12-26 2014-12-17 赵玉妹 一种纳米高导热复合塑胶
JP5624600B2 (ja) 2012-12-27 2014-11-12 株式会社東芝 配線及び半導体装置の製造方法
US20150315442A1 (en) 2012-12-28 2015-11-05 Albemarle Europe Sprl Production Method of a Novel Polishing Alumina
US9245813B2 (en) 2013-01-30 2016-01-26 International Business Machines Corporation Horizontally aligned graphite nanofibers in etched silicon wafer troughs for enhanced thermal performance
US9252242B2 (en) 2013-03-25 2016-02-02 International Business Machines Corporation Semiconductor structure with deep trench thermal conduction
US9478507B2 (en) 2013-03-27 2016-10-25 Qualcomm Incorporated Integrated circuit assembly with faraday cage
US9396883B2 (en) 2013-04-26 2016-07-19 Intel Corporation Faradaic energy storage device structures and associated techniques and configurations
KR20140132961A (ko) 2013-05-09 2014-11-19 한국화학연구원 하이브리드 필러 시스템을 이용한 열전도성 고분자 조성물, 이의 제조방법 및 이를 이용한 성형품
KR20140142382A (ko) 2013-05-30 2014-12-12 삼성전자주식회사 레이저를 이용한 그래핀 패터닝 방법
KR20160021752A (ko) 2013-06-18 2016-02-26 인텔 코포레이션 집적된 열전 냉각
JP2015015388A (ja) 2013-07-05 2015-01-22 ソニー株式会社 半導体装置
FR3008223B1 (fr) 2013-07-08 2017-01-27 Univ Paul Sabatier - Toulouse Iii Materiau composite electriquement isolant, procede de fabrication d'un tel materiau et son utilisation en tant qu'isolant electrique
US9613886B2 (en) 2013-08-29 2017-04-04 Industrial Technology Research Institute Optical coupling module
GB201319117D0 (en) 2013-10-30 2013-12-11 Element Six Technologies Us Corp Semiconductor device structures comprising polycrystalline CVD Diamond with improved near-substrate thermal conductivity
JP6156015B2 (ja) 2013-09-24 2017-07-05 三菱電機株式会社 半導体装置及びその製造方法
EP3035396A4 (en) 2013-09-25 2017-04-19 Lintec Corporation Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same
US20150136357A1 (en) * 2013-11-21 2015-05-21 Honeywell Federal Manufacturing & Technologies, Llc Heat dissipation assembly
KR101566593B1 (ko) 2013-12-11 2015-11-05 주식회사 동부하이텍 반도체 패키지
TWM483543U (zh) * 2013-12-11 2014-08-01 Tcy Tec Corp 熱傳遞催化散熱結構
US20150166921A1 (en) 2013-12-17 2015-06-18 Uchicago Argonne, Llc Carbon nanofiber materials and lubricants
KR20150076715A (ko) 2013-12-27 2015-07-07 삼성전기주식회사 전력 반도체 소자
US9469918B2 (en) 2014-01-24 2016-10-18 Ii-Vi Incorporated Substrate including a diamond layer and a composite layer of diamond and silicon carbide, and, optionally, silicon
US20150237762A1 (en) 2014-02-20 2015-08-20 Raytheon Company Integrated thermal management system
US9464214B2 (en) * 2014-02-25 2016-10-11 The Boeing Company Thermally conductive flexible adhesive for aerospace applications
JP6543438B2 (ja) 2014-03-04 2019-07-10 ローム株式会社 半導体装置
US20150270356A1 (en) 2014-03-20 2015-09-24 Massachusetts Institute Of Technology Vertical nitride semiconductor device
US9362198B2 (en) 2014-04-10 2016-06-07 Freescale Semiconductor, Inc. Semiconductor devices with a thermally conductive layer and methods of their fabrication
US20150325531A1 (en) 2014-05-09 2015-11-12 International Business Machines Corporation Through crack stop via
US9355985B2 (en) 2014-05-30 2016-05-31 Freescale Semiconductor, Inc. Microelectronic packages having sidewall-deposited heat spreader structures and methods for the fabrication thereof
US9308731B2 (en) 2014-09-08 2016-04-12 Vadient Optics, Llc Nanocomposite inkjet printer with integrated nanocomposite-ink factory
JP6397229B2 (ja) 2014-06-12 2018-09-26 国立研究開発法人産業技術総合研究所 厚み方向に高い熱伝導率を有する熱伝導性部材及び積層体
US9397023B2 (en) 2014-09-28 2016-07-19 Texas Instruments Incorporated Integration of heat spreader for beol thermal management
US9818692B2 (en) * 2014-12-12 2017-11-14 Gan Systems Inc. GaN semiconductor device structure and method of fabrication by substrate replacement
US9401315B1 (en) 2015-03-26 2016-07-26 Globalfoundries Inc. Thermal hot spot cooling for semiconductor devices
US9551839B2 (en) * 2015-03-31 2017-01-24 Raytheon Company Optical component including nanoparticle heat sink
US9704827B2 (en) 2015-06-25 2017-07-11 Taiwan Semiconductor Manufacturing Co., Ltd. Hybrid bond pad structure
CN105419345A (zh) 2015-12-24 2016-03-23 平湖阿莱德实业有限公司 高导热组合物及制备方法及其导热垫片
CN105679725B (zh) * 2016-01-25 2018-05-11 电子科技大学 一种用于激光显示的散热装置的制备方法
US10204893B2 (en) 2016-05-19 2019-02-12 Invensas Bonding Technologies, Inc. Stacked dies and methods for forming bonded structures

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340434A (ja) * 1998-05-22 1999-12-10 Toshiba Corp 半導体装置及びその製造方法
JP2011520286A (ja) * 2008-05-05 2011-07-14 クゥアルコム・インコーポレイテッド 3−d集積回路側方熱放散
JP2010015550A (ja) * 2008-06-06 2010-01-21 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2010102698A (ja) * 2008-09-25 2010-05-06 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
JP2011162591A (ja) * 2010-02-05 2011-08-25 Mitsubishi Chemicals Corp 三次元集積回路用の層間充填材組成物、塗布液、三次元集積回路の製造方法
JP2012023380A (ja) * 2010-07-14 2012-02-02 Korea Advanced Inst Of Sci Technol パターンの製造方法
WO2012133818A1 (ja) * 2011-03-31 2012-10-04 三菱化学株式会社 三次元集積回路積層体、及び三次元集積回路積層体用の層間充填材
JP2013181050A (ja) * 2012-02-29 2013-09-12 Mitsubishi Chemicals Corp 三次元集積回路用の層間充填材組成物、塗布液及び三次元集積回路の製造方法
JP2014099470A (ja) * 2012-11-13 2014-05-29 Fujitsu Ltd 半導体装置および半導体集積回路装置、電子装置
JP2013141037A (ja) * 2013-04-22 2013-07-18 Nikon Corp 積層型半導体装置
JP2016072447A (ja) * 2014-09-30 2016-05-09 株式会社東芝 トランジスタ

Also Published As

Publication number Publication date
US20180151463A1 (en) 2018-05-31
EP3545547A1 (en) 2019-10-02
EP3545547B1 (en) 2021-10-20
CN109906505B (zh) 2023-06-27
JP7021826B2 (ja) 2022-02-17
EP3545547A4 (en) 2019-12-25
CN109906505A (zh) 2019-06-18
US10529641B2 (en) 2020-01-07
WO2018098360A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
KR102473615B1 (ko) 상호접속 영역에서의 집적 회로 나노입자 열 라우팅 구조체
JP7021826B2 (ja) 相互接続領域の上の集積回路ナノ粒子熱配路構造
US10790228B2 (en) Interconnect via with grown graphitic material
US20230307312A1 (en) High thermal conductivity vias by additive processing
US20210118762A1 (en) Thermal routing trench by additive processing
US20210272804A1 (en) Semicondctor device package thermal conduit
TW202329351A (zh) 用於堆疊晶粒的熱旁路
TW202333319A (zh) 用於晶粒封裝的熱電冷卻
US20160093552A1 (en) Integration of backside heat spreader for thermal management
US10468324B2 (en) Integration of heat spreader for beol thermal management
US7414316B2 (en) Methods and apparatus for thermal isolation in vertically-integrated semiconductor devices
JP2019537269A5 (ja)
US9644128B2 (en) Carbon nanotube sheet, electronic device, method of manufacturing carbon nanotube sheet, and method of manufacturing electronic device
CN109863590A (zh) 半导体装置
JP5786986B2 (ja) 炭素構造体の成長方法及びシート状構造体の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7021826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150