JP2017022128A - 出力密度特性が向上した高出力のリチウム二次電池 - Google Patents

出力密度特性が向上した高出力のリチウム二次電池 Download PDF

Info

Publication number
JP2017022128A
JP2017022128A JP2016173167A JP2016173167A JP2017022128A JP 2017022128 A JP2017022128 A JP 2017022128A JP 2016173167 A JP2016173167 A JP 2016173167A JP 2016173167 A JP2016173167 A JP 2016173167A JP 2017022128 A JP2017022128 A JP 2017022128A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
electrode active
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016173167A
Other languages
English (en)
Other versions
JP6402149B2 (ja
Inventor
ギョンヒ ハン
Kyeong-Hee Han
ギョンヒ ハン
チャンジュ ハン
Chang Joo Han
チャンジュ ハン
スミン パク
su-min Park
スミン パク
ジウン イ
Jieun Lee
ジウン イ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2017022128A publication Critical patent/JP2017022128A/ja
Application granted granted Critical
Publication of JP6402149B2 publication Critical patent/JP6402149B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Complex oxides containing nickel and at least one other metal element
    • C01G53/42Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
    • C01G53/44Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

【課題】電気自動車及びハイブリッド電気自動車に要求される出力水準を満足すると共に、エネルギー密度が向上したリチウム二次電池の提供【解決手段】正極活物質として、式(1)Lix(NivMnwCoyMz)O2−tAtで表される層状構造の第1正極活物質と、式(2)LiaMn2−bM’bO4−cA’cで表されるスピネル構造の第2正極活物質とを含んでおり、第1正極活物質の含量が正極活物質の全体重量を基準に40〜100重量%である正極と、負極活物質として、結晶質黒鉛と非晶質カーボンを含んでおり、結晶質黒鉛の含量が負極活物質の全体重量を基準に40〜100重量%である負極と、分離膜と、を含む高エネルギー密度のリチウム二次電池。[式(1)、(2)に於いて、M及びM’は+2〜+4価酸化数の一つ以上の金属又は遷移金属カチオン;A及びA’は−1又は−2価のアニオン]【選択図】なし

Description

本発明は、エネルギー密度特性が向上した高エネルギー密度のリチウム二次電池に係り、より詳細には、正極活物質として、明細書上の化学式(1)で表される層状構造の第1正極活物質と、化学式(2)で表されるスピネル構造の第2正極活物質とを含んでおり、前記第1正極活物質の含量が正極活物質の全体重量を基準に40〜100重量%である正極と、負極活物質として、結晶質黒鉛と非晶質カーボンを含んでおり、結晶質黒鉛の含量が負極活物質の全体重量を基準に40〜100重量%である負極と、分離膜と、を含むことを特徴とする高エネルギー密度のリチウム二次電池に関する。
モバイル機器に対する技術開発及び需要が増加するに伴い、エネルギー源としての二次電池に対する需要が急増しており、最近は、電気自動車(EV)、ハイブリッド電気自動車(HEV)などの動力源として二次電池の使用が実現化されている。それによって、様々な要求に応じることができる二次電池に対して多くの研究が行われており、特に、高いエネルギー密度、高い放電電圧及び出力安定性のリチウム二次電池に対する需要が高い。
従来は、リチウム二次電池の正極活物質として、層状構造(layered structure)のリチウムコバルト複合酸化物を用いることが一般的であった。しかし、リチウムコバルト複合酸化物は、主構成元素であるコバルトが非常に高価であり、層状構造は、Liカチオンの反復的な脱離及び挿入によって体積の変化が発生し、Liカチオンが半分以上抜け出る場合、構造の崩壊が起こるため、安全性の面において電気自動車用または大容量の電力貯蔵装置用に不向きである。
また、スピネル構造のリチウムマンガン複合酸化物は、電池の電力量によって走行距離が決定されるため、より高いエネルギー密度が要求される電気自動車(EV)用のエネルギー源に適していないと評価されている。
一方、負極活物質としては、標準水素電極電位に対して約−3Vの非常に低い放電電位を有し、黒鉛板層(graphene layer)の一軸配向性によって非常に可逆的な充放電挙動を示し、それによって、優れた電極寿命特性(cycle life)を示す炭素系活物質が主に用いられている。
前記炭素系活物質には結晶質黒鉛と非晶質カーボンがある。前記結晶質黒鉛は、高いエネルギー密度を有するが、出力特性が相対的に悪いため、高出力を必要とするハイブリッド電気自動車(HEV)用のエネルギー源などに不向きであり、非晶質カーボンは、優れた出力特性を有するが、エネルギー密度が低いため(300mAh/g未満)、電気自動車(EV)用のエネルギー源などに不向きであるという問題がある。
本発明は、上記のような従来技術の問題点及び過去から要請されてきた技術的課題を解決することを目的とする。
したがって、本発明は、電気自動車及びハイブリッド電気自動車に要求される出力水準を満足すると共に、エネルギー密度が向上したリチウム二次電池を提供することを目的とする。
したがって、本発明に係る高エネルギー密度のリチウム二次電池は、正極活物質として、下記化学式(1)で表される層状構造の第1正極活物質と、化学式(2)で表されるスピネル構造の第2正極活物質とを含んでおり、前記第1正極活物質の含量が正極活物質の全体重量を基準に40〜100重量%である正極と、
負極活物質として、結晶質黒鉛と非晶質カーボンを含んでおり、結晶質黒鉛の含量が負極活物質の全体重量を基準に40〜100重量%である負極と、分離膜と、を含むことを特徴とする。
Li(NiMnCo)O2−t(1)
上記式において、
0.8<x≦1.3、0≦v≦0.9、0≦w≦0.9、0≦y≦0.9、0≦z≦0.9、x+v+w+y+z=2、0≦t<0.2、
Mは、+2価乃至+4価酸化数の一つ以上の金属または遷移金属カチオンであり、Aは、−1または−2価のアニオンである。
LiMn2−bM’4−cA’(2)
上記式において、0.8<a≦1.3、0≦b≦0.5、0≦c≦0.3、M’は、+2価乃至+4価酸化数の一つ以上の金属または遷移金属カチオンであり、A’は、−1または−2価のアニオンである。
前記結晶質黒鉛は、容量対比比表面積が0.007〜0.011である第1黒鉛と、容量対比比表面積が0.005〜0.013である第2黒鉛とからなる群より選ばれた1種またはこれらの混合物であってもよい。混合物の場合、第1黒鉛と第2黒鉛との混合比は、1:9〜9:1の範囲で決定されてもよい。
具体的に、前記第1黒鉛は、1.4〜1.6g/ccの粉体密度において粉体伝導度が100S/cm以上〜1000S/cm未満であり、表面が改質された黒鉛であって、XRDデータの2θ=43°(101)面の菱面体晶ピーク(rhombohedral peak)で3Rピークと2Hピークが区別されて示される。
また、前記第2黒鉛は、1.4〜1.6g/ccの粉体密度において粉体伝導度が10S/cm以上〜200S/cm未満であり、XRDデータの2θ=43°(101)面の菱面体晶ピーク(rhombohedral peak)で2Hピークが示される。このような第2黒鉛の粉体伝導度は、非晶質カーボンの粉体伝導度と同等の水準であり、これによって、出力特性が向上する効果がある。また、上記の第2黒鉛は、内部構造が非晶質カーボンと類似するので、長寿命特性に長所を発揮する。
一方、前記非晶質カーボンは、容量対比比表面積が0.01〜0.031である第1カーボンと、容量対比比表面積が0.0035〜0.0170である第2カーボンとからなる群より選ばれた1種またはこれらの混合物であってもよく、混合物の場合、第1カーボンと第2カーボンとの混合比は、重量比を基準に1:9〜9:1の範囲で決定されてもよい。
具体的に、前記第1カーボンは、1.0〜1.2g/ccの粉体密度において粉体伝導度が15S/cm以上〜100S/cm未満であり、前記第2カーボンは、1.4〜1.6g/ccの粉体密度において粉体伝導度が30S/cm以上〜100S/cm未満である。
上記化学式(1)で表される層状構造の正極活物質と前記化学式(2)で表されるスピネル構造の正極活物質は、前記正極活物質の全体重量を基準に第1正極活物質が50重量%〜90重量%、及び第2正極活物質が10重量%〜50重量%の範囲で混合されてもよい。
本発明の具体的な実施例において、前記第1正極活物質は、容量対比平均粒径が0.03〜0.1μm・g/mAhであり、2.65〜2.85g/ccの粉体密度において粉体伝導度が1×10−3S/cm以上〜10×10−3S/cm未満である層状結晶構造のリチウム遷移金属酸化物であってもよい。
一つの詳細な例において、上記化学式(1)で表される正極活物質は、Ni及びMnの混合遷移金属を含み、リチウムを除外した全体遷移金属の平均酸化数が+3価よりも大きく、モル比を基準にニッケルの含量がマンガンの含量と同一又はそれより大きい条件を満足する層状結晶構造のリチウム遷移金属酸化物であってもよい。
また、一つの具体的な例において、上記化学式(1)で表されるリチウム遷移金属酸化物は、Li(Ni0.5Mn0.3Co0.2)OまたはLi(Ni1/3Mn1/3Co1/3)Oであってもよい。
上記化学式(1)において、Ni、Mn、Coなどの遷移金属は、+2価〜+4価酸化数の金属及び/又はその他の遷移金属(M)元素で置換されてもよい。詳しくは、Al、Mg及びTiからなる群より選ばれる一つ以上で置換されてもよく、この場合、詳細な置換量は0.3≦z≦0.6であってもよい。
また、本発明の具体的な実施例において、前記第2正極活物質は、容量対比平均粒径が0.1〜0.2μm・g/mAhであり、2.65〜2.85g/ccの粉体密度において粉体伝導度が1×10−5S/cm以上〜10×10−5S/cm未満であるスピネル結晶構造のリチウム遷移金属酸化物であってもよい。
上記化学式(2)において、M’は、Co、Mn、Ni、Al、Mg及びTiからなる群より選ばれる一つ以上であってもよい。
また、上記化学式(1)及び(2)において、酸素イオンは、所定の範囲で酸化数−1価または−2価のアニオン(A、A’)で置換されてもよい。詳しくは、前記A及びA’は、互いに独立に、F、Cl、Br、Iのようなハロゲン、S及びNからなる群より選ばれる一つ以上であってもよい。
このようなアニオンの置換によって遷移金属との優れた結合力を有するようになり、化合物の構造転移が防止されるので、電池の寿命を向上させることができる。反面、アニオンA、A’の置換量が多すぎると(t>0.2)、不完全な結晶構造によってむしろ寿命特性が低下するという問題がある。
上記化学式(1)又は化学式(2)の正極活物質において、酸素(O)をハロゲンで置換したり、Ni、Mnなどのような遷移金属を他の遷移金属(M、M’)で置換したりする場合には、それによる化合物を高温反応の前に追加して製造され得る。
本出願の発明者らが実験的に確認したところは、上記した含量比及び物理量の範囲内で、本発明に係るリチウム二次電池は高エネルギー密度特性を発揮する。上記した物理量は、当業界において公知の測定方法により測定することができ、具体的に、比表面積はBET法で測定でき、粉体密度は真密度測定方法で測定でき、粉体伝導度は粉体をペレット化した後、面抵抗を測定することによって測定することができる。
上記したような特定の物理量を有する正極活物質、負極活物質を含んでいる本発明に係る高エネルギー密度のリチウム二次電池は、0.05〜0.09Ah/cmの体積対比容量、0.2〜0.4Wh/cmの体積対比エネルギーを有することを特徴とする。
前記分離膜は、正極と負極との間に介在され、高いイオン透過度及び機械的強度を有する絶縁性の薄い薄膜が用いられる。一般に、分離膜の気孔径は0.01〜10μmで、厚さは5〜300μmである。
このような分離膜としては、例えば、耐化学性及び疏水性のポリプロピレンなどのオレフィン系ポリマー;ガラス繊維またはポリエチレンなどで作られたシートや不織布;クラフト紙などが用いられる。現在市販中の代表的な例としては、セルガード系列(Celgard 2400、2300(Hoechest Celanese Corp.製品)、ポリプロピレン分離膜(Ube Industries Ltd.製品またはPall RAI社製品)、ポリエチレン系列(TonenまたはEntek)などがある。
本発明の具体的な実施例において、前記分離膜は、ポリオレフィン系分離膜及びシリコンのような無機物を含む有無機複合分離膜であってもよい。上記の有無機複合分離膜がリチウム二次電池の安全性などを向上させるということは、本出願人の先行出願で説明した。
本発明はまた、上記のような高エネルギー密度のリチウム二次電池を単位電池として含む中大型電池モジュール、及び前記電池モジュールを含む中大型電池パックを提供する。
また、本発明は、前記電池パックを電源として用いるデバイスを提供し、具体的に、前記電池パックは、電気自動車、ハイブリッド−電気自動車、プラグ−インハイブリッド自動車、または電力貯蔵装置の電源として用いることができる。
中大型電池モジュール及び電池パックの構成及びその作製方法は、当業界で公知であるので、それについての説明を明細書では省略する。
前記正極は、上記した正極活物質を含む正極合剤をNMPなどの溶媒に混合して作られたスラリーを、正極集電体上に塗布した後、乾燥及び圧延して製造することができる。
前記正極合剤は、前記正極活物質以外に、選択的に導電材、バインダー、充填剤などを含むことができる。
前記正極集電体は、一般に、3〜500μmの厚さで製造される。このような正極集電体は、当該電池に化学的変化を誘発せずに高い導電性を有するものであれば、特に制限されるものではなく、例えば、銅、ステンレススチール、アルミニウム、ニッケル、チタン、塑性炭素、銅やステンレススチールの表面にカーボン、ニッケル、チタン、銀などで表面処理したもの、アルミニウム−カドミウム合金などを用いることができる。正極集電体は、表面に微細な凹凸を形成して正極活物質の結合力を強化させることもでき、フィルム、シート、ホイル、ネット、多孔質体、発泡体、不織布体などの様々な形態で使用することができる。
前記導電材は、通常、正極活物質を含む混合物の全体重量を基準に1〜30重量%で添加される。このような導電材は、当該電池に化学的変化を誘発せずに導電性を有するものであれば、特に制限されるものではなく、例えば、天然黒鉛や人造黒鉛などの黒鉛;カーボンブラック、アセチレンブラック、ケッチェンブラック、チャネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック;炭素繊維や金属繊維などの導電性繊維;フッ化カーボン、アルミニウム、ニッケル粉末などの金属粉末;酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの導電性素材などを用いることができる。
前記バインダーは、活物質と導電材などの結合及び集電体に対する結合を助ける成分であって、通常、正極活物質を含む混合物の全体重量を基準に1〜30重量%で添加される。このようなバインダーの例としては、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルローズ(CMC)、澱粉、ヒドロキシプロピルセルローズ、再生セルローズ、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ素ゴム、多様な共重合体などが挙げられる。
前記充填剤は、正極の膨脹を抑制する成分として選択的に用いられ、当該電池に化学的変化を誘発せずに繊維状材料であれば、特に制限されるものではなく、例えば、ポリエチレン、ポリプロピレンなどのオレフィン系重合体;ガラス繊維、炭素繊維などの繊維状物質が用いられる。
前記分散液としては、代表的にイソプロピルアルコール、N−メチルピロリドン(NMP)、アセトンなどを用いることができる。
電極材料のペーストを金属材料に均一に塗布する方法は、材料の特性などを勘案して公知の方法から選択したり、新しい適切な方法で行ったりすることができる。例えば、ペーストを集電体上に分配させた後、ドクターブレード(doctor blade)などを使用して均一に分散させることができる。場合によっては、分配と分散過程を一つの工程として実行する方法を用いてもよい。その他にも、ダイキャスティング(die casting)、コンマコーティング(comma coating)、スクリーンプリント(screen printing)などの方法を選択してもよく、または別途の基材(substrate)上に成形した後、プレシングまたはラミネーション方法により集電体と接合させてもよい。
金属板上に塗布されたペーストの乾燥は、50〜200℃の真空オーブンで1日以内に乾燥させることが好ましい。
前記負極は、負極集電体上に上記した負極活物質を塗布、乾燥して作製され、必要に応じて、前述したような導電材、バインダー及び充填剤などの成分が選択的にさらに含まれてもよい。
前記負極集電体は、一般に、3〜500μmの厚さで製造される。このような負極集電体は、当該電池に化学的変化を誘発せずに導電性を有するものであれば、特に制限されるものではなく、例えば、銅、ステンレススチール、アルミニウム、ニッケル、チタン、塑性炭素、銅やステンレススチールの表面にカーボン、ニッケル、チタン、銀などで表面処理したもの、アルミニウム−カドミウム合金などを用いることができる。また、正極集電体と同様に、表面に微細な凹凸を形成して負極活物質の結合力を強化させてもよく、フィルム、シート、ホイル、ネット、多孔質体、発泡体、不織布体などの様々な形態で使用することができる。
リチウム塩含有非水系電解質は、非水電解質とリチウムからなっている。非水電解質としては、非水電解液、固体電解質、無機固体電解質などが用いられる。
前記非水電解液としては、例えば、N−メチル−2−ピロリジノン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ガンマ−ブチロラクトン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、4−メチルー1,3−ジオキセン、ジエチルエーテル、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、ホルム酸メチル、酢酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エーテル、プロピオン酸メチル、プロピオン酸エチルなどの非プロトン性有機溶媒を用いることができる。
前記有機固体電解質としては、例えば、ポリエチレン誘導体、ポリエチレンオキシド誘導体、ポリプロピレンオキシド誘導体、リン酸エステルポリマー、ポリエジテーションリシン(agitation lysine)、ポリエステルスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、イオン性解離基を含む重合体などを用いることができる。
前記無機固体電解質としては、例えば、LiN、LiI、LiNI、LiN−LiI−LiOH、LiSiO、LiSiO−LiI−LiOH、LiSiS、LiSiO、LiSiO−LiI−LiOH、LiPO−LiS−SiSなどのLiの窒化物、ハロゲン化物、硫酸塩などを用いることができる。
前記リチウム塩は、前記非水系電解質に溶解し易い物質であって、例えば、LiCl、LiBr、LiI、LiClO、LiBF、LiB10Cl10、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、CHSOLi、CFSOLi、LiSCN、LiC(CFSO、(CFSONLi、クロロボランリチウム、低級脂肪族カルボン酸リチウム、4フェニルホウ酸リチウム、イミドなどを用いることができる。
また、電解液には、充放電特性、難燃性などの改善を目的で、例えば、ピリジン、トリエチルホスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グリム(glyme)、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、硫黄、キノンイミン染料、N−置換オキサゾリジノン、N,N−置換イミダゾリジン、エチレングリコールジアルキルエーテル、アンモニウム塩、ピロール、2−メトキシエタノール、三塩化アルミニウムなどが添加されてもよい。場合によっては、不燃性を付与するために、四塩化炭素、三フッ化エチレンなどのハロゲン含有溶媒をさらに含めてもよく、高温保存特性を向上させるために二酸化炭酸ガスをさらに含めてもよく、FEC(fluoro−ethylene carbonate)、PRS(propene sultone)、FPC(fluoro−propylene carbonate)などをさらに含めてもよい。
本発明に係る表面改質された第1黒鉛のX線回折分析の結果を示す図で、(a)は、表面改質前のX線回折分析の結果であり、(b)は、表面改質後のX線回折分析の結果である。
以下、本発明の実施例を参照して、本発明をさらに詳述するが、本発明の範疇がそれによって限定されるものではない。
<実施例1>
容量対比平均粒径が0.05μm・g/mAhであるLiNi1/3Co1/3Mn1/3と、容量対比平均粒径が0.14μm・g/mAhであるLiMnとを70:30の混合比で混合した正極活物質:導電材:バインダーの量が、89:6.0:5.0となるように計量した後、NMPに入れてミキシング(mixing)して、正極合剤を製造し、20μmの厚さのアルミホイルに前記正極合剤をコーティングした後、圧延及び乾燥して、正極を製造した。
前記正極と同様の方法で、容量対比比表面積が0.020m/mAhであるカーボンと、容量対比比表面積が0.009m/mAhである黒鉛とを30:70の混合比で混合した負極活物質:導電材:バインダーの量が、96:1.5:2.5となるように計量した後、ミキサーに入れてミキシング(mixing)して、負極合剤を製造し、10μmの厚さの銅ホイルに前記負極合剤をコーティングした後、圧延及び乾燥して、負極を製造した。
このとき、LiNi1/3Co1/3Mn1/3は、2.75g/ccの粉体密度において1.0×10−3S/cmの粉体伝導度を発揮し、LiMnは、2.80g/ccの粉体密度において、5×10−5S/cmの粉体伝導度を発揮し、カーボンは、1.1g/ccの粉体密度において、30S/cmの粉体伝導度を発揮し、黒鉛は、1.5g/ccの粉体密度において、250S/cmの粉体伝導度を発揮する。
前記正極、負極、及び電解質としてLiPFが1モル溶けているカーボネート電解液を用いて電池を作製した。
<実施例2>
実施例1において、LiNi1/3Co1/3Mn1/3とLiMnとの混合比が80:20である正極活物質を用いたこと以外は、実施例1と同様の方法で電池を作製した。
<実施例3>
実施例1において、カーボンと黒鉛との混合比が20:80である負極活物質を用いたこと以外は、実施例1と同様の方法で電池を作製した。
<実施例4>
実施例1において、容量対比比表面積が0.020m/mAhであるカーボンの代わりに、容量対比比表面積が0.012m/mAhであるカーボンを用いたこと以外は、実施例1と同様の方法で電池を作製した。このとき、前記カーボンは、1.5g/ccの粉体密度において、65S/cmの粉体伝導度を発揮する。
<実施例5>
実施例4において、LiNi1/3Co1/3Mn1/3とLiMnとの混合比が80:20である正極活物質を用いたこと以外は、実施例3と同様の方法で電池を作製した。
<実施例6>
実施例4において、カーボンと黒鉛との混合比が20:80である負極活物質を用いたこと以外は、実施例4と同様の方法で電池を作製した。
<比較例1>
実施例1において、LiNi1/3Co1/3Mn1/3とLiMnとの混合比を30:70としたこと以外は、実施例1と同様の方法で電池を作製した。
<比較例2>
実施例1において、カーボンと黒鉛との混合比を65:35としたこと以外は、実施例1と同様の方法で電池を作製した。
<比較例3>
実施例1において、容量対比平均粒径が0.12μm・g/mAhであるLiNi1/3Co1/3Mn1/3と、容量対比平均粒径が0.23μm・g/mAhであるLiMnとの混合物を正極活物質として用いたこと以外は、実施例1と同様の方法で電池を作製した。
<比較例4>
実施例1において、2.75g/ccの粉体密度において9×10−4S/cmの粉体伝導度を発揮するLiNi1/3Co1/3Mn1/3と、2.80g/ccの粉体密度において5×10−6S/cmの粉体伝導度を発揮するLiMnとの混合物を正極活物質として用いたこと以外は、実施例1と同様の方法で電池を作製した。
<比較例5>
実施例1において、容量対比比表面積が0.007m/mAhであるカーボンと、容量対比比表面積が0.004m/mAhである黒鉛との混合物を負極活物質として用いたこと以外は、実施例1と同様の方法で電池を作製した。
<比較例6>
実施例1において、1.1g/ccの粉体密度において10S/cmの粉体伝導度を発揮するカーボンと、1.5g/ccの粉体密度において50S/cmの粉体伝導度を発揮する黒鉛との混合物を負極活物質として用いたこと以外は、実施例1と同様の方法で電池を作製した。
<実験例1>
実施例1乃至6、及び比較例1乃至6の電池を用いて単位体積当たりのエネルギーを比較した。充放電は3.0V〜4.2Vの間で進行し、充電はCC/CV、放電はCCで測定された。C−rate測定基準は、1Cを13Aとした時に、3Cのエネルギーを確認した。
Figure 2017022128
上記表1から、実施例1乃至6は、比較例1乃至6に比べてエネルギー密度が向上したことを確認することができる。
本発明の属する分野における通常の知識を有する者であれば、上記の内容に基づいて本発明の範疇内で様々な応用及び変形を行うことが可能である。
以上で説明したように、本発明に係るリチウム二次電池は、従来の非晶質カーボンよりも高いエネルギー密度(300mAh/g以上)を有し、特定の物理量を有する非晶質カーボンを、ローディング量を減少させて出力特性を向上させる結晶質黒鉛と所定の混合比で混合した混合物を負極活物質として使用し、前記負極活物質と調和することができる正極活物質として、所定の含量比を有する層状構造のリチウム遷移金属酸化物及びスピネル構造のリチウムマンガン酸化物の混合物を使用してリチウム二次電池を構成することによって、電気自動車などに要求される水準の出力特性を維持すると共に、向上したエネルギー密度特性を発揮するリチウム二次電池を提供することができる。

Claims (20)

  1. 正極活物質として、下記化学式(1)で表される層状構造の第1正極活物質と、化学式(2)で表されるスピネル構造の第2正極活物質とを含んでおり、前記第1正極活物質の含量が前記第1及び第2正極活物質の全体重量を基準に40乃至100重量%である正極と、負極活物質として、結晶質黒鉛と非晶質カーボンを含んでおり、結晶質黒鉛の含量が負極活物質の全体重量を基準に40乃至100重量%である負極と、分離膜と、を含むことを特徴とする、高エネルギー密度のリチウム二次電池。
    Li(NiMnCo)O2−t(1)
    上記式において、
    0.8<x≦1.3、0≦v≦0.9、0≦w≦0.9、0≦y≦0.9、0≦z≦0.9、x+v+w+y+z=2、0≦t<0.2、
    Mは、+2価乃至+4価酸化数の一つ以上の金属または遷移金属カチオンであり、
    Aは、−1または−2価のアニオンである。
    LiMn2−bM’4−cA’(2)
    上記式において、
    0.8<a≦1.3、0≦b≦0.5、0≦c≦0.3、
    M’は、+2価乃至+4価酸化数の一つ以上の金属または遷移金属カチオンであり、
    A’は、−1または−2価のアニオンである。
  2. 前記結晶質黒鉛は、容量対比比表面積が0.007乃至0.011m/mAh である第1黒鉛と、容量対比比表面積が0.005乃至0.013m/mAh である第2黒鉛とからなる群より選ばれた1種またはこれらの混合物であることを特徴とする、請求項1に記載の高エネルギー密度のリチウム二次電池。
  3. 前記第1黒鉛は、1.4乃至1.6g/ccの粉体密度において粉体伝導度が100S/cm上乃至1000S/cm未満であることを特徴とする、請求項2に記載の高エネルギー密度のリチウム二次電池。
  4. 前記第1黒鉛は、表面が改質された黒鉛であって、XRDデータの2θ=43°(101)面の菱面体晶ピーク(rhombohedral peak)で3Rピークと2Hピークとが区別されて示されることを特徴とする、請求項3に記載の高エネルギー密度のリチウム二次電池。
  5. 前記第2黒鉛は、1.4乃至1.6g/ccの粉体密度において粉体伝導度が10S/cm以上乃至200S/cm未満であることを特徴とする、請求項2に記載の高エネルギー密度のリチウム二次電池。
  6. 前記第2黒鉛は、XRDデータの2θ=43°(101)面の菱面体晶ピーク(rhombohedral peak)で2Hピークが示されることを特徴とする、請求項5に記載の高エネルギー密度のリチウム二次電池。
  7. 前記非晶質カーボンは、容量対比比表面積が0.01乃至0.031m/mAh である第1カーボンと、容量対比比表面積が0.0035乃至0.0170m/mAh である第2カーボンとからなる群より選ばれた1種またはこれらの混合物であることを特徴とする、請求項1に記載の高エネルギー密度のリチウム二次電池。
  8. 前記第1カーボンは、1.0乃至1.2g/ccの粉体密度において粉体伝導度が15S/cm以上乃至100S/cm未満であることを特徴とする、請求項7に記載の高エネルギー密度のリチウム二次電池。
  9. 前記第2カーボンは、1.4乃至1.6g/ccの粉体密度において粉体伝導度が30S/cm以上乃至100S/cmであることを特徴とする、請求項7に記載の高エネルギー密度のリチウム二次電池。
  10. 前記第1正極活物質は、容量対比平均粒径が0.03乃至0.1μm・g/mAhであることを特徴とする、請求項1に記載の高エネルギー密度のリチウム二次電池。
  11. 前記第1正極活物質は、2.65乃至2.85g/ccの粉体密度において粉体伝導度が1×10−3S/cm以上乃至10×10−3S/cm未満であることを特徴とする、請求項10に記載の高エネルギー密度のリチウム二次電池。
  12. 前記第2正極活物質は、容量対比平均粒径が0.1乃至0.2μm・g/mAhであることを特徴とする、請求項1に記載の高エネルギー密度のリチウム二次電池。
  13. 前記第2正極活物質は、2.65乃至2.85g/ccの粉体密度において粉体伝導度が1×10−5S/cm以上乃至10×10−5S/cm未満であることを特徴とする、請求項1に記載の高エネルギー密度のリチウム二次電池。
  14. 前記化学式(1)において、Mは、Al、Mg及びTiからなる群より選ばれる一つ以上であり、前記化学式(2)において、M’は、Co、Mn、Ni、Al、Mg及びTiからなる群より選ばれる一つ以上であることを特徴とする、請求項1に記載の高エネルギー密度のリチウム二次電池。
  15. 前記化学式(1)及び(2)において、A及びA’は、互いに独立に、ハロゲン、S及びNからなる群より選ばれる一つ以上であることを特徴とする、請求項1に記載の高エネルギー密度のリチウム二次電池。
  16. 前記リチウム二次電池は、体積対比容量が0.05乃至0.09Ah/cm、及び体積対比エネルギーが0.2乃至0.4Wh/cmであることを特徴とする、請求項1に記載の高エネルギー密度のリチウム二次電池。
  17. 前記分離膜は、有無機複合分離膜であることを特徴とする、請求項1に記載の高エネルギー密度のリチウム二次電池。
  18. 請求項1に係るリチウム二次電池を単位電池として含むことを特徴とする、電池モジュール。
  19. 請求項18に係る電池モジュールを電源として用いる、電気自動車またはハイブリッド電気自動車。
  20. 請求項18に係る電池モジュールを電源として使用する、電力貯蔵装置。

JP2016173167A 2011-05-23 2016-09-05 出力密度特性が向上した高出力のリチウム二次電池 Active JP6402149B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0048643 2011-05-23
KR20110048643 2011-05-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014510261A Division JP2014517459A (ja) 2011-05-23 2012-05-18 エネルギー密度特性が向上した高エネルギー密度のリチウム二次電池

Publications (2)

Publication Number Publication Date
JP2017022128A true JP2017022128A (ja) 2017-01-26
JP6402149B2 JP6402149B2 (ja) 2018-10-10

Family

ID=47217872

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014510261A Pending JP2014517459A (ja) 2011-05-23 2012-05-18 エネルギー密度特性が向上した高エネルギー密度のリチウム二次電池
JP2016173167A Active JP6402149B2 (ja) 2011-05-23 2016-09-05 出力密度特性が向上した高出力のリチウム二次電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014510261A Pending JP2014517459A (ja) 2011-05-23 2012-05-18 エネルギー密度特性が向上した高エネルギー密度のリチウム二次電池

Country Status (6)

Country Link
US (1) US9601756B2 (ja)
EP (1) EP2696409B1 (ja)
JP (2) JP2014517459A (ja)
KR (1) KR101336079B1 (ja)
CN (1) CN104011912B (ja)
WO (1) WO2012161476A2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517453A (ja) 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. 出力密度特性が向上した高出力のリチウム二次電池
EP2696409B1 (en) 2011-05-23 2017-08-09 LG Chem, Ltd. High energy density lithium secondary battery having enhanced energy density characteristic
WO2012161479A2 (ko) 2011-05-23 2012-11-29 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2012161477A2 (ko) 2011-05-23 2012-11-29 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
CN103548188B (zh) 2011-05-23 2016-03-30 株式会社Lg化学 具有增强的能量密度特性的高能量密度锂二次电池
KR101336083B1 (ko) * 2011-05-23 2013-12-03 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
CN103650212B (zh) 2011-07-13 2016-03-30 株式会社Lg化学 具有增强的能量密度特性的高能量锂二次电池
WO2014189329A1 (ko) 2013-05-23 2014-11-27 주식회사 엘지화학 다층의 활물질층을 포함하는 리튬 이차전지
JP6200959B2 (ja) * 2013-06-18 2017-09-20 エルジー・ケム・リミテッド リチウム二次電池用正極活物質及びその製造方法
AU2015402938B2 (en) * 2015-07-17 2018-10-11 Kabushiki Kaisha Toshiba Non-aqueous electrolyte battery and battery pack
US10276856B2 (en) * 2015-10-08 2019-04-30 Nanotek Instruments, Inc. Continuous process for producing electrodes and alkali metal batteries having ultra-high energy densities
US11127938B2 (en) * 2018-02-06 2021-09-21 Pacesetter, Inc. Electrodes for batteries and methods for making same
CN108808068B (zh) 2018-05-10 2019-09-27 宁德时代新能源科技股份有限公司 二次电池
CN110265622B (zh) * 2018-06-28 2020-12-08 宁德时代新能源科技股份有限公司 正极极片及锂离子二次电池
CN110875491B (zh) * 2018-08-31 2021-03-30 宁德时代新能源科技股份有限公司 锂离子二次电池
US20230246191A1 (en) * 2019-09-24 2023-08-03 Talga Technologies Limited Anode material and method for producing same
KR20210133085A (ko) * 2020-04-28 2021-11-05 삼성에스디아이 주식회사 전고체 이차 전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270247A (ja) * 2001-03-14 2002-09-20 Osaka Gas Co Ltd 非水系二次電池
JP2003031262A (ja) * 2001-07-10 2003-01-31 Kansai Research Institute 非水系二次電池
JP2004134245A (ja) * 2002-10-10 2004-04-30 Sanyo Electric Co Ltd 非水電解質二次電池
JP2004296106A (ja) * 2003-03-25 2004-10-21 Osaka Gas Co Ltd 非水系二次電池
JP2005129492A (ja) * 2003-09-29 2005-05-19 Sanyo Electric Co Ltd 非水電解質二次電池の充放電制御方法
JP2010050079A (ja) * 2008-03-17 2010-03-04 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011054371A (ja) * 2009-09-01 2011-03-17 Hitachi Vehicle Energy Ltd リチウムイオン二次電池

Family Cites Families (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660880A (ja) 1992-08-05 1994-03-04 Hitachi Maxell Ltd リチウム二次電池
JPH06333559A (ja) * 1993-03-26 1994-12-02 Nikkiso Co Ltd 非水リチウムイオン二次電池
JPH08227714A (ja) * 1995-02-21 1996-09-03 Mitsubishi Pencil Co Ltd リチウムイオン二次電池負極用炭素材料およびその製造方法
ID18173A (id) 1996-05-09 1998-03-12 Matsushita Electric Ind Co Ltd Baterai sekunder elektrolit tidak berair
JPH1012217A (ja) * 1996-06-26 1998-01-16 Mitsubishi Pencil Co Ltd リチウムイオン二次電池用負極
JP3493962B2 (ja) 1996-08-22 2004-02-03 松下電器産業株式会社 リチウムイオン二次電池
JPH1083818A (ja) 1996-09-06 1998-03-31 Hitachi Ltd リチウム二次電池
JPH1097870A (ja) 1996-09-20 1998-04-14 Fuji Elelctrochem Co Ltd リチウム二次電池
JPH10112318A (ja) 1996-10-08 1998-04-28 Fuji Elelctrochem Co Ltd 非水電解液二次電池
JP3722318B2 (ja) 1996-12-12 2005-11-30 株式会社デンソー 二次電池用電極およびその製造方法、並びに非水電解液二次電池
JPH10241690A (ja) 1997-02-27 1998-09-11 Toyota Central Res & Dev Lab Inc リチウム二次電池用負極
JP3084256B2 (ja) 1997-07-03 2000-09-04 日本カーボン株式会社 Liイオン二次電池の負極用材
JPH1125982A (ja) 1997-07-04 1999-01-29 Toyota Central Res & Dev Lab Inc 非水電解液電池用負極材料
JPH1131501A (ja) 1997-07-10 1999-02-02 Matsushita Electric Ind Co Ltd 2次電池用電極の製造方法及び2次電池用電極並びにそれを用いた2次電池
JP4379925B2 (ja) * 1998-04-21 2009-12-09 住友金属工業株式会社 リチウムイオン二次電池の負極材料に適したグラファイト粉末
US6482547B1 (en) 1998-05-21 2002-11-19 Samsung Display Devices Co., Ltd. Negative active material for lithium secondary battery and lithium secondary battery using the same
JP2000012030A (ja) 1998-06-24 2000-01-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP3152226B2 (ja) 1998-08-27 2001-04-03 日本電気株式会社 非水電解液二次電池、その製造法および炭素材料組成物
JP3120789B2 (ja) * 1998-08-27 2000-12-25 日本電気株式会社 非水電解液二次電池
JP3869605B2 (ja) 1999-03-01 2007-01-17 三洋電機株式会社 非水電解質二次電池
JP2000251892A (ja) 1999-03-02 2000-09-14 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極活物質およびこれを用いたリチウム二次電池
US6083150A (en) 1999-03-12 2000-07-04 C. R. Bard, Inc. Endoscopic multiple sample biopsy forceps
JP3088716B1 (ja) 1999-04-30 2000-09-18 同和鉱業株式会社 正極活物質と該正極活物質を用いたリチウム二次電池
JP4497622B2 (ja) 2000-02-17 2010-07-07 株式会社Kri リチウム系二次電池用負極材料
JP3705728B2 (ja) 2000-02-29 2005-10-12 株式会社東芝 非水電解液二次電池
FR2812119B1 (fr) * 2000-07-24 2002-12-13 Commissariat Energie Atomique Materiau composite conducteur et electrode pour pile a combustible utilisant ce materiau mis en forme par thermo- compression
JP2002117836A (ja) 2000-08-04 2002-04-19 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極およびそれを用いた電池
JP4524881B2 (ja) 2000-08-14 2010-08-18 ソニー株式会社 非水電解質二次電池
JP4151210B2 (ja) 2000-08-30 2008-09-17 ソニー株式会社 正極活物質及びその製造方法、並びに非水電解質電池及びその製造方法
CA2320661A1 (fr) 2000-09-26 2002-03-26 Hydro-Quebec Nouveau procede de synthese de materiaux limpo4 a structure olivine
JP2002246023A (ja) 2001-02-20 2002-08-30 Matsushita Electric Ind Co Ltd リチウム二次電池
JP2002279987A (ja) 2001-03-15 2002-09-27 Nikko Materials Co Ltd リチウム二次電池用正極材料及び該材料を用いたリチウム二次電池
JP2002289193A (ja) * 2001-03-27 2002-10-04 Osaka Gas Co Ltd 非水系二次電池
JP2003017060A (ja) 2001-04-25 2003-01-17 Sony Corp 正極活物質及び非水電解質電池
JP2002358966A (ja) 2001-06-04 2002-12-13 Hitachi Ltd リチウム二次電池正極板及びリチウム二次電池
JP2003092108A (ja) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池
JP3979044B2 (ja) 2001-07-24 2007-09-19 新神戸電機株式会社 リチウム二次電池
US6878487B2 (en) * 2001-09-05 2005-04-12 Samsung Sdi, Co., Ltd. Active material for battery and method of preparing same
JP2003176115A (ja) 2001-12-12 2003-06-24 Adchemco Corp 黒鉛粉末の製造方法、黒鉛粉末およびリチウムイオン二次電池
JP4085243B2 (ja) 2002-03-26 2008-05-14 大阪瓦斯株式会社 非水系二次電池
JP2003282139A (ja) 2002-03-26 2003-10-03 Osaka Gas Co Ltd 非水系二次電池
JP2003297338A (ja) * 2002-03-29 2003-10-17 Japan Storage Battery Co Ltd 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP2004006094A (ja) 2002-05-31 2004-01-08 Nec Corp 非水電解液二次電池
JP2004259511A (ja) 2003-02-25 2004-09-16 Shin Kobe Electric Mach Co Ltd リチウム二次電池
KR100576221B1 (ko) 2003-05-15 2006-05-03 주식회사 엘지화학 대용량 리튬 2차 전지용 음극 활물질 및 이를 포함하는대용량 리튬 2차 전지
WO2004102700A1 (ja) 2003-05-15 2004-11-25 Yuasa Corporation 非水電解質電池
US7556889B2 (en) 2003-05-26 2009-07-07 Nec Corporation Positive electrode active material for secondary battery, positive electrode for secondary battery, secondary battery and method for producing positive electrode active material for secondary battery
KR100776912B1 (ko) 2003-06-25 2007-11-15 주식회사 엘지화학 리튬 이차 전지용 고용량 부극재
KR100560538B1 (ko) 2003-06-27 2006-03-15 삼성에스디아이 주식회사 리튬 이온 이차 전지용 음극 활물질
KR100548988B1 (ko) * 2003-11-26 2006-02-02 학교법인 한양학원 리튬이차전지용 양극활물질 제조방법, 그 방법에 사용되는반응기 및 그 방법으로 제조되는 리튬이차전지용 양극활물질
JP5081375B2 (ja) 2004-02-12 2012-11-28 三菱化学株式会社 リチウム二次電池用負極材料及びその製造方法、並びにそれを用いたリチウム二次電池用負極及びリチウム二次電池
JP2005259617A (ja) 2004-03-15 2005-09-22 Shin Kobe Electric Mach Co Ltd リチウムイオン二次電池
JP2005285462A (ja) 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2005285633A (ja) 2004-03-30 2005-10-13 Osaka Gas Co Ltd 非水系二次電池及びその充電方法
JP4748949B2 (ja) 2004-03-31 2011-08-17 三洋電機株式会社 非水電解質二次電池
JP4841814B2 (ja) 2004-07-14 2011-12-21 株式会社Kri 非水系二次電池
WO2006045339A2 (de) 2004-10-21 2006-05-04 Degussa Ag Anorganische separator-elektroden-einheit für lithium-ionen-batterien, verfahren zu deren herstellung und verwendung in lithium-batterien
JP2006172778A (ja) * 2004-12-14 2006-06-29 Hitachi Ltd エネルギー貯蔵デバイス
JP2006236830A (ja) 2005-02-25 2006-09-07 Ngk Insulators Ltd リチウム二次電池
JP5105393B2 (ja) 2005-03-02 2012-12-26 日立マクセルエナジー株式会社 非水電解質二次電池
JP2006252895A (ja) * 2005-03-09 2006-09-21 Sony Corp 電池
KR100660759B1 (ko) * 2005-03-11 2006-12-22 제일모직주식회사 비수계 전해질 리튬 이차전지용 양극활물질, 그 제조방법및 그를 포함하는 리튬 이차전지
KR100674287B1 (ko) 2005-04-01 2007-01-24 에스케이 주식회사 핵·껍질 다층구조를 가지는 리튬이차전지용 양극 활물질,그 제조 방법 및 이를 사용한 리튬이차전지
JP4781004B2 (ja) * 2005-04-28 2011-09-28 パナソニック株式会社 非水電解液二次電池
KR101347671B1 (ko) 2005-06-07 2014-01-03 히다치 막셀 가부시키가이샤 비수전해액 이차 전지
KR100783293B1 (ko) 2005-08-16 2007-12-10 주식회사 엘지화학 양극 활물질 및 그것을 포함하고 있는 리튬 이차전지
CN103762351A (zh) 2005-08-16 2014-04-30 株式会社Lg化学 阴极活性材料及包含该阴极活性材料的锂二次电池
EP2560229B1 (en) 2005-10-20 2019-06-05 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP5016814B2 (ja) * 2005-12-14 2012-09-05 株式会社日立製作所 非水系二次電池
JP5076316B2 (ja) 2005-12-27 2012-11-21 ソニー株式会社 二次電池用負極および二次電池
JP5309421B2 (ja) 2006-02-02 2013-10-09 日産自動車株式会社 リチウムイオン二次電池
KR100801637B1 (ko) * 2006-05-29 2008-02-11 주식회사 엘지화학 양극 활물질 및 그것을 포함하고 있는 리튬 이차전지
JP4989114B2 (ja) 2006-06-02 2012-08-01 日本カーボン株式会社 リチウム二次電池用負極及び負極活物質
JP2007335360A (ja) * 2006-06-19 2007-12-27 Hitachi Ltd リチウム二次電池
JP2008010316A (ja) 2006-06-29 2008-01-17 Sharp Corp リチウムイオン二次電池
JP2008262768A (ja) 2007-04-11 2008-10-30 Nec Tokin Corp リチウムイオン二次電池
JP2009032682A (ja) 2007-06-28 2009-02-12 Hitachi Maxell Ltd リチウムイオン二次電池
JP5205090B2 (ja) 2008-03-19 2013-06-05 日立ビークルエナジー株式会社 リチウム二次電池用正極及びこれを用いたリチウム二次電池
US8119288B2 (en) 2007-11-05 2012-02-21 Nanotek Instruments, Inc. Hybrid anode compositions for lithium ion batteries
JP5229472B2 (ja) * 2007-11-12 2013-07-03 戸田工業株式会社 非水電解液二次電池用マンガン酸リチウム粒子粉末及びその製造方法、並びに非水電解液二次電池
KR100999563B1 (ko) * 2008-01-14 2010-12-08 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조방법, 및 이를포함하는 리튬 이차 전지
JP5171283B2 (ja) 2008-01-22 2013-03-27 日立ビークルエナジー株式会社 非水電解液二次電池
JP5292885B2 (ja) 2008-03-27 2013-09-18 住友化学株式会社 正極活物質粉末
WO2009149540A1 (en) 2008-06-10 2009-12-17 National Research Council Of Canada Controllable synthesis of porous carbon spheres, and electrochemical applications thereof
JP2010034024A (ja) * 2008-06-25 2010-02-12 Hitachi Maxell Ltd リチウムイオン二次電池
JP2010092845A (ja) 2008-09-10 2010-04-22 Sumitomo Chemical Co Ltd 非水電解質二次電池
JP5231171B2 (ja) 2008-10-30 2013-07-10 パナソニック株式会社 非水電解質二次電池用正極活物質およびその製造方法
CN102318109A (zh) 2009-02-06 2012-01-11 松下电器产业株式会社 锂离子二次电池及锂离子二次电池的制造方法
JP5195499B2 (ja) 2009-02-17 2013-05-08 ソニー株式会社 非水電解質二次電池
KR101073619B1 (ko) * 2009-06-01 2011-10-14 재단법인 구미전자정보기술원 전기화학 셀용 유무기 복합 분리막 및 이를 포함하는 전기화학 셀
CN102460778B (zh) 2009-06-05 2015-10-14 丰田自动车株式会社 锂二次电池
JP5574404B2 (ja) 2009-07-16 2014-08-20 Necエナジーデバイス株式会社 リチウムイオン二次電池
JP2011034675A (ja) 2009-07-29 2011-02-17 Sony Corp 二次電池用正極および二次電池
JP5554780B2 (ja) * 2009-09-01 2014-07-23 日立ビークルエナジー株式会社 非水電解質二次電池
JP5084802B2 (ja) 2009-09-04 2012-11-28 株式会社日立製作所 リチウムイオン二次電池
JP5495300B2 (ja) 2009-10-02 2014-05-21 Necエナジーデバイス株式会社 リチウムイオン二次電池
JP2011081960A (ja) 2009-10-05 2011-04-21 Kri Inc 非水系二次電池
CN102612495A (zh) 2009-11-20 2012-07-25 住友化学株式会社 过渡金属复合氢氧化物和锂复合金属氧化物
CN103548188B (zh) 2011-05-23 2016-03-30 株式会社Lg化学 具有增强的能量密度特性的高能量密度锂二次电池
JP2014517453A (ja) 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. 出力密度特性が向上した高出力のリチウム二次電池
KR101336083B1 (ko) 2011-05-23 2013-12-03 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2012161477A2 (ko) 2011-05-23 2012-11-29 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2012161479A2 (ko) 2011-05-23 2012-11-29 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
EP2696409B1 (en) 2011-05-23 2017-08-09 LG Chem, Ltd. High energy density lithium secondary battery having enhanced energy density characteristic
CN103650212B (zh) 2011-07-13 2016-03-30 株式会社Lg化学 具有增强的能量密度特性的高能量锂二次电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270247A (ja) * 2001-03-14 2002-09-20 Osaka Gas Co Ltd 非水系二次電池
JP2003031262A (ja) * 2001-07-10 2003-01-31 Kansai Research Institute 非水系二次電池
JP2004134245A (ja) * 2002-10-10 2004-04-30 Sanyo Electric Co Ltd 非水電解質二次電池
JP2004296106A (ja) * 2003-03-25 2004-10-21 Osaka Gas Co Ltd 非水系二次電池
JP2005129492A (ja) * 2003-09-29 2005-05-19 Sanyo Electric Co Ltd 非水電解質二次電池の充放電制御方法
JP2010050079A (ja) * 2008-03-17 2010-03-04 Sanyo Electric Co Ltd 非水電解質二次電池
JP2011054371A (ja) * 2009-09-01 2011-03-17 Hitachi Vehicle Energy Ltd リチウムイオン二次電池

Also Published As

Publication number Publication date
JP6402149B2 (ja) 2018-10-10
EP2696409A4 (en) 2014-10-22
CN104011912B (zh) 2016-05-04
EP2696409A2 (en) 2014-02-12
JP2014517459A (ja) 2014-07-17
US9601756B2 (en) 2017-03-21
WO2012161476A3 (ko) 2013-01-24
KR20120130716A (ko) 2012-12-03
WO2012161476A2 (ko) 2012-11-29
CN104011912A (zh) 2014-08-27
EP2696409B1 (en) 2017-08-09
KR101336079B1 (ko) 2013-12-03
US20140099551A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP6402149B2 (ja) 出力密度特性が向上した高出力のリチウム二次電池
KR101336070B1 (ko) 에너지 밀도 특성이 향상된 고 에너지 리튬 이차전지
KR101336082B1 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
JP6018588B2 (ja) 出力向上のためのリチウム二次電池用正極材及びこれを含むリチウム二次電池
KR101336083B1 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
KR101336076B1 (ko) 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
US9985278B2 (en) Lithium secondary battery of high energy density with improved energy property
JP6339008B2 (ja) 出力密度特性が向上した高出力のリチウム二次電池
JP6749692B2 (ja) リチウム二次電池、電池モジュール、電池パック、及び電池パックを含むデバイス
JP2016518687A (ja) エネルギー密度が向上した電極活物質及びそれを含むリチウム二次電池
JP5968527B2 (ja) 高電圧用正極活物質及びその製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180910

R150 Certificate of patent or registration of utility model

Ref document number: 6402149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250