JP2004296106A - 非水系二次電池 - Google Patents
非水系二次電池 Download PDFInfo
- Publication number
- JP2004296106A JP2004296106A JP2003083127A JP2003083127A JP2004296106A JP 2004296106 A JP2004296106 A JP 2004296106A JP 2003083127 A JP2003083127 A JP 2003083127A JP 2003083127 A JP2003083127 A JP 2003083127A JP 2004296106 A JP2004296106 A JP 2004296106A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- secondary battery
- negative electrode
- active material
- lithium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【解決手段】正極、負極、セパレータ、およびリチウム塩を含む非水系電解質を電池容器内に収容した構造を有し、厚さが12mm未満の扁平形状であり、エネルギー容量が30Wh以上かつ体積エネルギーが180Wh/l以上である非水系二次電池であって、下記(1)〜(3)の条件を満足することを特徴とする非水系二次電池:
(1)正極における活物質が、組成式:LiaNibMncMdO2で表されるリチウムニッケルマンガン複合酸化物であること、
(2)負極における活物質が、天然黒鉛粒子からなるコア部表面を非晶質炭素で被覆した二重構造黒鉛粒子であること、
(3)非水系電解質が、溶媒としてエチルメチルカーボネート及びエチレンカーボネートを含み、更に、溶媒100重量部に対してビニレンカーボネートを0.1〜5重量部含むこと。
【選択図】図1
Description
【発明の属する技術分野】
本発明は、非水系二次電池に関する。
【0002】
【従来の技術】
近年、携帯機器の小型・軽量化を進める観点から、これら用途向けのリチウム二次電池などの開発が急速に進んでいる。特に、リチウムイオン電池は、350Wh/lを超える体積エネルギー密度を達成する可能性を有すること、金属リチウムを負極に用いるリチウム二次電池に比べて、安全性、サイクル特性などの信頼性に優れることなどから、その市場は飛躍的に拡大しつつある。
【0003】
一方、省資源を目指したエネルギーの有効利用、地球環境保全等の観点から、深夜電力貯蔵、太陽光発電の電力貯蔵等を目的とした家庭用分散型蓄電システム、電気自動車のための蓄電システムなどが注目を集めている。例えば、下記特許文献1には、エネルギー需要者に最適条件でエネルギーを供給できるシステムとして、発電所から供給される電気、ガスコージェネレーション、燃料電池、蓄電池などを組み合わせたトータルシステムが開示されている。このような蓄電システムでは、エネルギー容量が10Wh以下の携帯機器用小型二次電池は使用できず、容量の大きな大型二次電池が必要とされる。このため、上記の蓄電システムでは、複数の電池を直列に接続した電圧50〜400V程度の組電池が用いられており、ほとんどの場合、それぞれの電池としては鉛蓄電池が使用されている。
【0004】
この様な蓄電システム用の大型電池として、鉛電池に代わる高エネルギー密度電池の一つの有力な選択肢として、リチウムイオン電池の開発がリチウム電池電力貯蔵技術研究組合(LIEBES)などにより精力的に進められてきた。
【0005】
この様な大型リチウムイオン電池のエネルギー容量は、100〜400Wh程度であり、体積エネルギー密度は、200〜400Wh/lと携帯機器用小型二次電池と同等のレベルに達している。その寸法および形状は、直径50〜70mm×長さ250〜450mm程度の円筒形、厚さ35〜50mm程度の角形或いは長円角形などの扁平角柱形が代表的なものである。この様に、これらの大型リチウムイオン電池は、その電池設計が携帯機器用小型電池の延長線上にあることから、直径或いは厚さが携帯機器用小型電池の3倍以上である円筒型或いは角型等の電池形状とされている。このような形状の電池では、高エネルギー密度は得られるものの、充放電時の電池の内部抵抗によるジュール発熱、或いはリチウムイオンの出入りに伴って活物質のエントロピーが変化することによる電池の内部発熱等により、電池内部に熱が蓄積されやすくなる。このため、電池内部の温度と電池表面付近の温度差が大きくなり、これに伴って内部抵抗に相違が生じ、充電量、電圧などのバラツキを生じ易くなる。また、この種の電池は、複数個を組電池にして用いるため、システム内での電池の設置箇所によっても、蓄熱されやすさが異なって各電池間のバラツキを生じて、組電池全体の正確な制御が困難になる。更には、高率充放電等に際して放熱が不十分であるため、電池温度が上昇し、電池にとって好ましくない状態におかれることから、電解液の分解などによる寿命の低下、さらには電池の熱暴走などの点で、信頼性、特に安全性が十分に確保されているとは言い難い。
【0006】
上記の問題を解決するものとして、下記特許文献2〜6等には、正極、負極、セパレータ、およびリチウム塩を含む非水系電解質を電池容器内に収容した非水系二次電池であって、厚さが12mm未満の扁平形状であり、エネルギー容量が30Wh以上且つ体積エネルギー密度が180Wh/l以上の非水系二次電池が報告されている。これらの技術は、電池を独特の形状(扁平形状)とすることにより、蓄熱に起因する信頼性および安全性に関わる問題点を解決し、実用化への障害を解消しようとするものである。
【0007】
ところで、一般に、蓄電システム用電池などの大型電池には、高い安全性と1000サイクル以上の優れたサイクル寿命が求められている。
【0008】
この様な蓄電システム用リチウムイオン電池の正極活物質としては、小型リチウムイオン電池で実績のあるリチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物などの4Vを超える起電力を有する材料が検討されている。
【0009】
これらの中でも、電池特性に優れ、かつ合成も容易なリチウムコバルト複合酸化物が、小型リチウムイオン電池では現在最も多量に用いられている。しかしながら、リチウムコバルト複合酸化物を用いた電池は安全性に問題があり、更に、原材料であるコバルトは、可採埋蔵量が少なく、かつ高価である。
【0010】
また、リチウムニッケル複合酸化物は、リチウムコバルト複合酸化物と同様に層状岩塩構造を有し、200mAh/gを超える高容量材料であるが、充電時に生成するNi4+が化学的に不安定であることや、リチウムが構造中から多量に引き抜かれた高充電状態でのリチウムニッケル複合酸化物の構造が不安定であることなどに起因して、結晶格子からの酸素脱離開始温度が低いという問題点を有している。例えば、下記非特許文献1には、“充電状態のリチウムニッケル複合酸化物の酸素脱離開始温度は、従来のリチウムコバルト酸化物に比べてさらに低い”ことが報告されている。
【0011】
この様な理由により、リチウムニッケル複合酸化物を単独で正極活物質に用いた電池は、高容量が得られるものの、高充電状態での熱安定性に問題があり、電池としての安全性が十分に確保できていないので、大型リチウムイオン電池としては実用化されていない。
【0012】
一方、リチウムマンガン複合酸化物は、スピネル型の結晶構造を有するものであり、層状岩塩構造を有するリチウムコバルト複合酸化物、リチウムニッケル複合酸化物などとは構造的に異なる物質である。この様な構造の相違に起因して、リチウムマンガン複合酸化物は、高充電状態での酸素脱離開始温度がリチウムコバルト複合酸化物、リチウムニッケル複合酸化物等に比べて高く、安全性の高い正極活物質と考えられる。
【0013】
しかしながら、リチウムマンガン複合酸化物を正極に用いたリチウム二次電池は、安全性は高いものの、活物質1g当たりの容量が小さいことや、充放電を繰り返すことによって徐々に容量が低下していくいわゆる「容量劣化」を引き起こすことなどから、高エネルギー密度(高充放電容量)の実現と高サイクル寿命の両立が困難であった。
【0014】
これらの点についてより具体的に説明すると、リチウムマンガン複合酸化物を用いる電池において高容量が実現できない原因としては、複合酸化物合成時の反応の不均一、混入不純物の影響などが考えられる。また、充放電サイクルに伴う容量の劣化原因としては、Liの出入りに伴う電荷補償としてMnイオンの平均価数が3価と4価との間で変化し、そのためにJahn−Teller歪みが結晶中に生じること、リチウムマンガン複合酸化物からMnが溶出すること、溶出したMnが負極活物質上またはセパレータ上に析出することに起因してインピーダンスが上昇すること、さらには、不純物の影響、活物質粒子の遊離による不活性化、含水水分により電解液中に生成した酸の影響、リチウムマンガン複合酸化物からの酸素放出による電解液の劣化などが考えられる。
【0015】
この様なMn溶出、格子歪み、酸素欠損等の問題点を解消することが、リチウムイオン電池のサイクル特性を改善する上で重要である。この点について、下記特許文献7には、Liの組成を化学量論比に対し十分過剰とすることによって、サイクル特性を向上させることができることが開示されている。さらに、リチウムマンガン複合酸化物のMn元素の一部を、Co、Ni、Fe、Cr、Alなどの添加ないしドープにより置換することによって、サイクル特性が改善されることも報告されている(下記特許文献8〜13等参照)。これらのLi過剰組成、金属元素の添加などの手法は、サイクル特性の向上には効果を発揮するものの、逆に充放電容量の低減を伴うので、高サイクル寿命と高容量との両方を満足させるには至っていない。
【0016】
その他の正極活物質として、リチウムコバルト複合酸化物やリチウムニッケル複合酸化物と類似の結晶構造をもつリチウムニッケルマンガン複合酸化物LiNi1/2Mn1/2O2が報告されている(下記非特許文献2、3等参照)。この材料は、リチウムコバルト複合酸化物とほぼ同じ150mAh/g程度の容量を有し、電解液との反応が緩やかで発熱量も小さいものであることが報告されている。しかしながら、この材料は粉体での嵩密度が低いため、電極の密度が上がりにくく、また高率放電時の容量低下が大きいという問題点を有している。
【0017】
さらに、下記非特許文献4には、リチウムニッケルマンガン複合酸化物(LiNi1/2Mn1/2O2)にさらにコバルトを添加したリチウムニッケルマンガン系複合酸化物LiNi1/3Mn1/3Co1/3O2が、LiNi1/2Mn1/2O2と同様にリチウムコバルト複合酸化物とほぼ同じ容量を示すことが報告されている。また、この材料及びリチウムコバルト複合酸化物を用いて円筒型電池を作製し、断熱式熱量計(ARC:Accelerating Rate Calorimeter)にて熱的安定性を測定した評価では、この材料は熱的に安定であることが示されている。しかしながら、ここでの評価は600mAh程度の小型電池における評価であり、本発明電池のような大型電池での評価は不十分である。
【0018】
一方、リチウムイオン電池の負極活物質としては、下記特許文献14及び15に、可撓性に優れかつ充放電サイクル時にリチウムが樹枝状に析出する恐れのない材料として黒鉛が開示されている。天然黒鉛、人造黒鉛、黒鉛化メソカーボンマイクロビーズ、黒鉛化炭素繊維などの黒鉛系材料は、独特の層構造に基づいて層間化合物を形成するものであり、この性質を利用して、これらの黒鉛系材料は、小型リチウムイオン電池用電極材料として実用化されている。
【0019】
さらに、負極活物質として結晶性の低い材料も提案されている。例えば、下記特許文献16は、電解液の分解を抑制するものとして、炭化水素を気相で熱分解して得られる乱層構造と選択配向性とを有する種々の炭素材料を開示している。
【0020】
しかしながら、これらの材料は、高容量、長寿命が要求される大型リチウムイオン電池への適用には問題を有している。
【0021】
例えば、天然黒鉛、人造黒鉛等を負極材料とする場合には、理論的にはリチウムの吸蔵・放出に伴う電位の変化が小さくなり、電池として利用できる容量が大きくなると考えられる。しかしながら、結晶性が高い炭素材料では充放電サイクルや長期保存の際に、材料表面において電解液溶媒の分解による不働体被膜の生成が起こり、サイクル特性や保存特性の低下を招くという問題がある。
【0022】
また、黒鉛化メソカーボンマイクロビーズ、黒鉛化炭素繊維等を負極材料として使用する場合には、天然黒鉛、人造黒鉛と同様にリチウムの吸蔵・放出に伴う電位の変化が小さくなるが、結晶の大きさが天然黒鉛、人造黒鉛ほどには成長していないため、リチウムを挿入・脱離できる量、すなわち電池として利用できる容量が小さくなる。さらに、黒鉛化メソカーボンマイクロビーズ、黒鉛化炭素繊維等は、原料、製造コスト、製造時の歩留りが低いことなどから、コストが高いという欠点がある。
【0023】
これに対して、結晶性が低い炭素材料では電解液溶媒の分解による影響は低減されるものの、リチウムイオンの吸蔵/放出に伴う電位の変化が大きくなるので、電池として利用できる容量が小さくなり、高容量電池の作製が困難となる。
【0024】
下記特許文献17は、結晶性が高い炭素材料の表面に結晶性の低い炭素を被覆した二重構造とすることにより、充放電の繰り返しによる炭素材料の破壊を防止できることを開示している。この方法で調製した二重構造の炭素材料を活物質として用いる場合には、理論的には電解液の分解を防止して、電位の平滑性に優れた高容量の電極を得ることができる。また、この炭素材料は、安価であるという利点をも有している。
【0025】
しかしながら、この二重構造活物質粒子は、コアとなる高結晶性の炭素材料の種類、粉体物性の違いにより、これを負極材料として用いた電池に大きな影響を与える。例えば、タップ密度が0.8g/cm3未満の天然黒鉛をコアに用いた場合には、作製した二重構造黒鉛粒子のタップ密度が低くなり、集電体である銅箔との接着性を高めるため負極構成材料中に占めるバインダーが多量に(10重量%以上)必要となる。そのため、負極密度も上がりにくくなり、電池の容量が低下する。また、人造黒鉛をコアに用いた二重構造黒鉛粒子は、充電時に負極表面で電解液と反応し易く、サイクル経過による容量劣化が大きい。
【0026】
また、このような炭素材料を負極材料として用いたリチウムイオン電池では、電解液の溶媒の種類により電池特性が大きく影響を受けることが知られている。
【0027】
種々の溶媒の中で、エチルメチルカーボネートを電解液に使用すると初期特性を向上させることができるが、炭素材料(特に(002)面の面間隔(d002)が3.40Å未満の黒鉛系炭素材料)を負極材料に用いる場合には、エチルメチルカーボネートを電解液の溶媒とすると、高温放置、長期保存、充放電サイクルの繰り返し時等に、負極表面でのガス発生や不働体被膜の形成が起こり、サイクル特性や保存特性の低下を招いていた。
【0028】
下記特許文献18には、この対策として、エチルメチルカーボネート等の非対称鎖状カーボネートを含む電解液に、ビニレンカーボネート等の二重結合を有する環状カーボネートを添加する方法が開示されている。これは、炭素材料とビニレンカーボネート等の二重結合を有する環状カーボネートを優先的に反応させ、負極表面にLi2CO3の被膜を生成させることにより、不働体被膜の形成を抑制しサイクル特性や保存特性を向上させようとするものである。
【0029】
しかしながら、天然黒鉛、人造黒鉛、又はコアが人造黒鉛からなる二重構造黒鉛粒子を負極材料に用いた電池では、ビニレンカーボネート等の二重結合を有する環状カーボネートを電解液に添加しても、十分にガス発生などの副反応を抑制できない。よって、安全性に優れた扁平形状の大型リチウムイオン電池では、長期サイクル時電池が膨らむという問題が生じていた。
【0030】
【特許文献1】
特開平6−86463号公報
【0031】
【特許文献2】
国際公開WO99/6065
【0032】
【特許文献3】
特開2000−251940号公報
【0033】
【特許文献4】
特開2000−251941号公報
【0034】
【特許文献5】
特開2000−260478号公報
【0035】
【特許文献6】
特開2000−260477号公報
【0036】
【特許文献7】
特開平2−270268号公報
【0037】
【特許文献8】
特開平4−141954号公報
【0038】
【特許文献9】
特開平4−160758号公報
【0039】
【特許文献10】
特開平4−169076号公報
【0040】
【特許文献11】
特開平4−237970号公報
【0041】
【特許文献12】
特開平4−282560号公報
【0042】
【特許文献13】
特開平4−289662号公報
【0043】
【特許文献14】
特開昭57−208079号公報
【0044】
【特許文献15】
特開昭63−24555号公報
【0045】
【特許文献16】
特開昭63−24555号公報
【0046】
【特許文献17】
特開平4−368778号公報
【0047】
【特許文献18】
特開平11−185806号公報
【0048】
【非特許文献1】
Solid State Ionics,69,No.3/4,265(1994)
【0049】
【非特許文献2】
第41回電池討論会講演要旨集P460−463
【0050】
【非特許文献3】
第42回電池討論会講演要旨集P118−119
【0051】
【非特許文献4】
第43回電池討論会講演要旨集P128−129及びP142−143
【0052】
【発明が解決しようとする課題】
本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、蓄電システム用大型電池として適した非水系二次電池であって、エネルギー容量及び体積エネルギー密度が高く、且つサイクル寿命及び安全性に優れた新規な非水系二次電池を提供することである。
【0053】
【課題を解決するための手段】
本発明者は、上記した目的を達成すべく鋭意研究を重ねた結果、特定構造を有する扁平形状の二次電池において、正極活物質、負極活物質及び非水系電解質の溶媒について同時に特定の条件を満足する場合に、上記した目的を達成し得る非水系二次電池が得られることを見出し、ここに本発明を完成するに至った。
【0054】
即ち、本発明は、下記の非水系二次電池を提供するものである。
1. 正極、負極、セパレータ、およびリチウム塩を含む非水系電解質を電池容器内に収容した構造を有し、厚さが12mm未満の扁平形状であり、エネルギー容量が30Wh以上かつ体積エネルギーが180Wh/l以上である非水系二次電池であって、下記(1)〜(3)の条件を満足することを特徴とする非水系二次電池:
(1)正極における活物質が、組成式:LiaNibMncMdO2(式中、Mは、Co、AlおよびFeからなる群から選ばれる少なくとも1種の元素であり、1≦a≦1.1、0.3≦b<0.5、0.3≦c<0.5、0<d≦0.4、b≧c、b+c+d=1である)で表されるリチウムニッケルマンガン複合酸化物であること、
(2)負極における活物質が、天然黒鉛粒子からなるコア部表面を非晶質炭素で被覆した二重構造黒鉛粒子であって、該天然黒鉛がX線広角回折法による(002)面の面間隔(d002)が0.34nm以下、平均粒径が15〜40μmかつタップ密度が0.8g/cm3以上であり、該非晶質炭素の面間隔が0.34nmを超えること、
(3)非水系電解質が、溶媒としてエチルメチルカーボネート及びエチレンカーボネートを含み、更に、溶媒100重量部に対してビニレンカーボネートを0.1〜5重量部含むこと。
2. 二重構造黒鉛粒子が、天然黒鉛及びピッチを混合し焼成して得られるものであって、該ピッチの軟化点が100〜300℃であり、トルエン不溶分が10〜50%である上記項1に記載の非水系二次電池。
3. 電池の扁平形状の表裏面の形状が矩形である上記項1又は2に記載の非水系二次電池。
4. 電池容器の厚さが0.2〜1mmである上記項1〜3のいずれかに記載の非水系二次電池。
【0055】
【発明の実施の形態】
本発明の非水系二次電池は、正極、負極、セパレータ、およびリチウム塩を含む非水系電解質を電池容器内に収容した構造であって、厚さが12mm未満の扁平形状を有するものである。
【0056】
本発明の二次電池は、厚さが12mm未満の扁平形状であることによって、放熱性に優れたものとなり、電池内部における熱の蓄積が抑制されて、蓄熱に起因する信頼性および安全性に係わる問題点、例えば、充電量、電圧などのバラツキ、電解液の分解による寿命の低下、電池の熱暴走等を防止できる。
【0057】
本発明の二次電池の厚さは12mm程度未満であれば良く、好ましくは10mm程度未満である。厚さの下限については、電極の充填率、電池サイズ(薄くなれば同容量を得るためには面積が大きくなる)などを考慮して、2mm程度以上とすることが実用的である。電池の厚さが厚すぎると、電池内部の発熱を充分に外部に放熱することが難しくなることや、電池内部と電池表面付近とでの温度差が大きくなり内部抵抗が異なるので、電池内での充電量および電圧のバラツキが大きくなること等の大きな問題を生じる。なお、具体的な電池の厚さは、電池容量、エネルギー密度などに応じて、適宜決定されるが、特に期待する放熱特性が得られる最大厚さで設計することが好ましい。
【0058】
また、本発明の非水系二次電池は、例えば、扁平形状の表裏面が角形、円形、長円形などの種々の形状とすることができる。形状が角形である場合には、一般には矩形であるが、用途に応じて、三角形、六角形などの矩形以外の多角形とすることもできる。さらに、肉厚の薄い円筒などの筒形とすることもできる。形状が筒形の場合には、筒の肉厚がここでいう厚さとなる。また、製造の容易性の観点からは、図1に示す様に、電池の扁平形状の表裏面が矩形である「ノート型」形状が好ましい。
【0059】
具体的な二次電池の形状は、厚さが12mm未満の扁平形状である限り特に制限されず、例えば、WO99/60652号、特開2000−251940号公報、特開2000−251941公報、特開2000−260478号公報、特開2000−260477号公報などに記載されている形状を具体例として例示することができる。
【0060】
本発明の二次電池では、正極における活物質として、下記組成式:
LiaNibMncMdO2
(式中、Mは、Co、AlおよびFeからなる群から選ばれる少なくとも1種の元素であり、1≦a≦1.1、0.3≦b<0.5、0.3≦c<0.5、0<d≦0.4、b≧c、b+c+d=1である)で表されるリチウムニッケルマンガン複合酸化物を用いることが必要である。
【0061】
上記式:LiaNibMncMdO2において、Liの原子比を示すaは、通常1≦a≦1.1程度である。aがこの範囲を逸脱する場合には、サイクル特性の低下、あるいは活物質の容量が大きく低下する。
【0062】
Niの原子比を示すbは、通常0.3≦b<0.5程度である。bが大きすぎる場合には、活物質の容量は大きくなるが、熱安定性が低下し電池の安全性も低下する。また、小さすぎる場合には活物質の容量が低下する。
【0063】
Mnの原子比を示すcは、通常0.3≦c<0.5程度である。cが大きすぎる場合には、熱安定性が向上し電池の安全性も向上するが、活物質の容量は小さくなる。また、小さすぎる場合には、活物質の容量は大きくなるが、熱安定性が低下し電池の安全性も低下する。
【0064】
式中のNi又はMnと置換する元素Mは、Co、Al及びFeからなる群から選ばれる少なくとも一種の元素であり、これらの中では、サイクル特性、安全性の面からCo、Al等が好ましい。置換元素Mの原子比を示すdは、通常0<d≦0.4程度である。Mが0の場合は、活物質の粉体が嵩高くなり、また高率放電特性も低下する。Mが大きすぎる場合は、活物質の熱安定性が低下する。
【0065】
正極活物質の平均粒径は特に制限されず、公知の活物質と同等の粒径とすることができ、通常1〜60μm程度、好ましくは5〜40μm程度、より好ましくは10〜30μm程度である。なお、本明細書において、「平均粒径」とは、乾式レーザー回折測定法により得られた体積粒度分布における中心粒径を意味する。
【0066】
正極活物質の比表面積は特に制限されないが、通常1m2/g以下程度であり、好ましくは0.2〜0.7m2/g程度である。なお、本明細書において、「比表面積」とは、窒素ガスを使用するBET法による測定値を示す。
【0067】
本発明二次電池において、負極における活物質としては、天然黒鉛粒子からなるコア部表面を非晶質炭素で被覆した二重構造黒鉛粒子を用いる。この場合、非晶質炭素は天然黒鉛粒子の表面を完全に被覆した状態ではなくても良く、該非晶質炭素が天然黒鉛粒子の表面に付着した状態又は該表面を被覆した状態であればよい。
【0068】
二重構造黒鉛粒子のコア部である黒鉛材料としては、粒子状(球状、鱗片状、繊維状、破砕状など)の天然黒鉛を用いる。天然黒鉛は、(002)面の面間隔(d002)が0.34nm程度以下であり、1gあたりの充放電容量が大きく、安価で、粒子形状を任意に加工しやすい点で優れている。本発明で用いる天然黒鉛の平均粒径(D50)は15〜40μm程度とし、好ましくは15〜30μm程度とし、さらに好ましくは18〜28μm程度とする。形状としては嵩密度、タップ密度がより高くなり易い球状であることが好ましい。球状の程度を表す指標としては嵩密度、タップ密度があり、嵩密度は好ましくは0.5g/cm3程度以上、好ましくは0.55g/cm3程度以上、より好ましくは0.6g/cm3程度以上である。また、タップ密度は0.8g/cm3程度以上、好ましくは0.9g/cm3程度以上、より好ましくは0.95g/cm3程度以上である。
【0069】
コアとなる天然黒鉛の表面を被覆する非晶質炭素層の面間隔は、X線広角回折法による(002)面の面間隔(d002)が0.34nmを越える程度であることが必要であり、好ましくは0.34nmを越え0.38nm以下程度であり、より好ましくは0.34nmを越え0.36nm以下程度である。被覆層におけるこの値が小さすぎる場合には、結晶性が高すぎて、電解液の分解によるものと推測される充放電効率の低下が生じ、更に、充放電の繰り返しに伴う結晶の面間隔の膨張/収縮により、炭素材料が破壊される危険性が増大する。一方、(002)面の面間隔(d002)が大きすぎる場合には、リチウムイオンが移動し難くなり、電池として利用できる容量が小さくなるおそれがある。
【0070】
上記した二重構造黒鉛粒子は、天然黒鉛とピッチを混合し、焼成することによって得ることができる。焼成は、不活性ガス雰囲気下又は窒素雰囲気下で行うことができ、焼成温度は700〜1300℃程度が好ましく、800〜1200℃程度がより好ましく、900〜1100℃程度が更に好ましい。
【0071】
非晶質炭素層の原料とするピッチとしては石油系、石炭系等のピッチが使用でき、石油系のピッチが好ましい。ピッチの軟化点としては100〜300℃であることが好ましく、より好ましくは150〜300℃、さらに好ましくは200〜300℃である。また、ピッチのトルエン不溶分としては50%以下であることが好ましく、より好ましくは10〜50%、さらに好ましくは20〜40%である。ピッチの粒径としては黒鉛材料の粒径より小さいことが好ましく、黒鉛材料の粒径の1/2程度以下であることが好ましく、黒鉛材料の粒径の1/4程度以下であることがより好ましい。
【0072】
黒鉛材料とピッチの混合比率は重量比で黒鉛材料:ピッチ=80:20〜99:1程度であることが好ましく、85:15〜98:2程度であることがより好ましく、92:8〜97:3程度であることがさらに好ましい。
【0073】
上記した二重構造黒鉛粒子の平均粒径は、特に制限されず、例えば従来の活物質の粒径と同様とすることができる。通常、平均粒径は、1〜60μm程度、好ましくは5〜40μm程度、より好ましくは10〜30μm程度とすればよい。
【0074】
該二重構造黒鉛粒子の比表面積についても特に制限されないが、通常、0.2〜3.5m2/g程度であり、好ましくは0.2〜3m2/g程度である。
【0075】
本発明の二次電池における正極及び負極は、所望の非水系二次電池の形状、特性などを考慮しつつ、公知の方法(例えば成形など)により作製することができる。より具体的には、上記した正極活物質又は負極活物質、バインダー、及び必要に応じて導電材、有機溶媒等を含む混合物(例えばスラリー)を集電体に塗布後、乾燥し、成形する方法などを例示することができる。
バインダーとしては特に限定されないが、具体例として、ポリフッ化ビニリデン(PVDF)、ポリ四フッ化エチレンなどのフッ素系樹脂;フッ素ゴム、SBRなどのゴム系材料;ポリエチレン、ポリプロピレンなどのポリオレフィン;アクリル樹脂などを挙げることができる。特に、正極ではポリフッ化ビニリデン(PVDF)系材料が好ましく、負極では、ポリフッ化ビニリデン(PVDF)系材料が好ましく、PVDF構造中に−COOH基などを導入した変性PVDFがより好ましい。
【0076】
バインダーの配合量は、正極活物質または負極活物質の種類、粒径、形状、目的とする電極の厚さ、強度などに応じて適宜決定すれば良く、特に限定されるものではない。通常、正極におけるバインダーの配合量は、正極活物質を100重量部としたときに、1〜10重量部程度である。また、負極におけるバインダーの配合量は、負極活物質を100重量部としたときに、通常1〜10重量部程度である。
導電材についても特に限定されず、当該分野において公知の導電材を用いることができる。例えば、アセチレンブラック、天然黒鉛、比表面積が100m2/g以上の天然黒鉛、人造黒鉛、ケッチェンブラックなどを導電材として用いることができる。導電材の使用量についても特に制限されず、活物質の種類などに応じて適宜設定することができる。例えば、正極では、正極活物質を100重量部としたときに、通常10重量部以下、好ましくは7重量部以下とすればよい。負極においては、導電材は不要あるいは混合するとしても負極活物質100重量部に対して、通常10重量部以下、好ましくは7重量部以下と少なくする方が本発明の効果を得やすい。また負極での副反応を抑制する観点から、比表面積が小さい天然黒鉛、人造黒鉛の使用が好ましい。
【0077】
電極製造用のスラリー作製時に使用する有機溶媒としては、N−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)などを例示できる。
【0078】
集電体についても特に限定されず、正極用集電体としては、例えば、アルミ箔等を用いることができ、負極用集電体として、例えば、銅箔、ステンレス鋼箔などを用いることができる。さらに、金属箔上あるいは金属の隙間に電極が形成可能であるもの、例えば、エキスパンドメタル、メッシュなどを正極用および負極用集電体として用いることもできる。
【0079】
本発明の非水系二次電池では、電解質としては、リチウム塩を含む非水系電解質を用いる。非水系電解質に含まれるリチウム塩の種類については特に制限されず、正極材料、負極材料などの種類、充電電圧などの使用条件などを総合的に考慮して、常法に従って公知のリチウム塩の中から適宜決定することができる。例えば、LiPF6、LiClO4、LiBF4、LiAsF6、LiSbF6などを例示することができ、LiPF6、LiBF4等が好ましい。
【0080】
非水系電解質では、エチルメチルカーボネート(EC)及びエチレンカーボネート(EMC)を含む溶媒を用い、更に、該溶媒に添加剤としてビニレンカーボネート(VC)を加えることが必要である。
【0081】
ビニレンカーボネート(VC)の添加量は、溶媒100重量部に対して0.1〜5重量程度とする。この範囲のビニレンカーボネートを添加することによって、該ビニレンカーボネートが二重構造黒鉛粒子の表面で優先的に反応し、エチルメチルカーボネートのエステル交換反応に起因する不働体被膜の形成を抑制することができる。特にこの効果はコアを天然黒鉛とする二重構造黒鉛粒子を負極活物質に用いた場合に顕著であり、扁平形状の大型リチウムイオン電池においても、ガス発生による膨れや不働体被膜の形成による内部抵抗の増加を抑制することができる。
【0082】
ビニレンカーボネートが少な過ぎる場合、保存特性やサイクル特性の低下が起こり、また多すぎる場合は過剰のビニレンカーボネートとの反応により、初期容量の低下が起こるので好ましくない。
【0083】
非水系電解質におけるエチルメチルカーボネート(MEC)の量は、全溶媒中、通常、50〜90体積%程度であり、好ましくは55〜85体積%程度であり、より好ましくは60〜80体積%程度である。エチルメチルカーボネートの体積が少なすぎる場合には、比較的高い凝固点(39℃)を有するエチレンカーボネートの割合が多くなりすぎ、エチレンカーボネートが低温で分離凝固しやすくなる。その結果、分離凝固すると、−10℃以下の低温における電池の放電容量は、著しく低下し、また、電池の初期容量も低下する。一方、90%を越えた場合も初期容量が低下する。
【0084】
エチレンカーボネート(EC)の量は、全溶媒中、通常10体積%以上程度であり、好ましくは、15〜50体積%程度である。
【0085】
前記溶媒以外で非水系電解質に用いる溶媒は、正極材料、負極材料などの種類、充電電圧などの使用条件などを総合的に考慮して、常法に従って適宜決定することができる。例えば、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、γ−ブチロラクトンなどを例示することができる。EMC及びEC以外の溶媒の使用量は、全溶媒中50体積%程度以下とすることが好ましい。
【0086】
非水系電解質におけるリチウム塩の濃度は、特に限定されるものではないが、溶媒1リットル当たり通常0.5〜2mol程度である。
【0087】
非水系電解質は、当然のことながら、水分含有量ができるだけ低いもの、具体的には水分含有量100ppm以下程度のものが好ましい。なお、本明細書で使用する「非水系電解質」という用語は、非水系電解液および有機電解液を含むものであり、さらにはゲル状ないし固体状の電解質も含む。
【0088】
本発明において用いる非水系電解質は、必要に応じて、1.3−プロパンスルトン、ビフェニル、シクロヘキシルベンゼン等の公知の添加剤を含んでいてもよい。これらの添加剤の配合量は、本発明の効果が奏される限り特に制限されないが、非水系電解質全体に対して通常0.01〜5重量%程度である。
【0089】
本発明の非水系二次電池で用いるセパレータについては、特に限定されず公知のものを用いることができ、電池の耐熱性、所望の安全性などに応じて適宜決定することができる。セパレータの材質として、例えば、ポリオレフィン系材料(ポリエチレン、ポリプロピレンなど)などの微孔膜;ポリアミド、クラフト紙、ガラス、セルロース系材料(レーヨンなど)などの不織布などが挙げられる。
【0090】
セパレータの構成は、特に限定されるものではなく、例えば、単層又は複層のセパレータを用いることができる。複層とする場合には少なくとも1枚は不織布を用いることが好ましい。不織布を少なくとも1枚用いる場合には、サイクル特性が向上する。
【0091】
以下、本発明非水系二次電池の一実施形態を示す図面を参照しつつ、本発明についてさらに詳細に説明する。
【0092】
図1は、本発明の非水系二次電池の一実施形態である扁平な矩形(ノート型)の蓄電システム用非水系二次電池の平面図及び側面図を示す図面であり、図2は、図1に示す電池の内部に収納される電極積層体の構成を示す側面図である。図1において、非水系二次電池は、厚さが12mm未満の扁平形状であり、表裏面の形状が矩形である。
【0093】
図1および図2に示す様に、本実施形態による非水系二次電池は、例えば、上蓋1および底容器2からなる電池容器と、該電池容器の中に収納されている複数の正極101a、負極101b、101cおよびセパレータ104からなる電極積層体とを備えている。本実施形態の様な扁平型非水系二次電池においては、正極101a、負極101b(または積層体の両外側に配置された負極101c)は、例えば、図2に示す様に、セパレータ104を介して交互に配置されて積層されているが、本発明による非水系二次電池は、この様な特定の配置に限定されるものではない。例えば、積層数などは、必要とされる容量などに応じて、種々の変更が可能である。図1および図2に示す非水系二次電池の形状は、例えば縦約210mm×横約150mm×厚さ約6mmである。
【0094】
各正極101aの正極集電体105aは、正極端子3に電気的に接続されている。同様に、各負極101b、101cの負極集電体105bは、負極端子4に電気的に接続されている。正極端子3及び負極端子4は、電池容器、すなわち上蓋1と絶縁された状態で取り付けられている。
【0095】
上蓋1および底容器2は、図1中の拡大図に示したA点で全周にわたり上蓋を溶かし込み溶接されている。上蓋1には、電解質などの注液口5が開けられており、電解質などを注液した後、例えば、アルミニウム−変成ポリプロピレンラミネートフィルムからなる封口フィルム6を用いて封口される。最終封口工程は、少なくとも1回の充電操作実施後に行うことが好ましい。封口フィルム6による最終封口工程後の電池容器内の圧力は、大気圧未満であることが好ましく、8.66×104Pa(650Torr)以下程度であることがより好ましく、7.33×104Pa (550Torr)以下程度であることが特に好ましい。電池容器内の圧力は、使用するセパレータ、電解質などの種類、電池容器の材質および厚み、電池の形状などを総合的に考慮して決定することができる。内圧を気圧未満とした場合には、電池の厚みが、設計厚みより大きくなることを抑制できる。または、電池の厚みがばらつくことを抑制することができるので、電池の内部抵抗および容量がばらつきにくい。
【0096】
電池容器となる上蓋1及び底容器2に用いられる材質は、電池の用途、形状により適宜選択され、特に限定されるものではなく、鉄、ステンレス鋼、アルミニウムなどが一般的であり、かつ実用的である。また、電池容器自体の厚さも、電池の用途、形状或いは電池ケースの材質により適宜決定され、特に限定されるものではない。電池の製造に必要な強度を確保するためには、その電池全表面積80%以上程度の部分の厚さ(電池容器を構成する一番面積が広い部分の厚さ)を0.2mm以上程度とすることが好ましく、0.3mm以上程度とすることがより好ましい。また、同時に同部分の厚さは、1mm以下程度であることが好ましく、0.7mm以下程度とすることがより好ましい。厚さが厚すぎると、電極面を押さえ込む力は大きくなるものの、電池の内容積が減少して、充分な容量が得られないこと、また重量が増大する。
【0097】
本発明の非水系二次電池は、大容量且つ高エネルギー密度を有するので、家庭用蓄電システム(夜間電力貯蔵、コージェネレーション、太陽光発電など)、電気自動車などの蓄電システムなどに用いることができる。この様な蓄電システムなどにおいて用いる場合は、エネルギー容量は、30Wh以上程度、好ましくは50Wh以上程度であり、且つエネルギー密度は、180Wh/l以上程度、好ましくは200Wh/l以上程度である。エネルギー容量または体積エネルギー密度が、小さすぎる場合には、電池容量が小さいので、充分なシステム容量を得るために電池の直並列数を増やす必要があることやコンパクトな設計が困難となることなどの理由により、蓄電システム用としては好ましくない。
【0098】
【発明の効果】
本発明の非水系二次電池は、厚さが12mm未満の扁平形状を有し、且つ、正極活物質、負極活物質及び非水系電解質の溶媒について、特定の条件を満足するものを用いたものである。これらの条件を同時に満足することによって、エネルギー容量及び体積エネルギー密度が高く、且つサイクル寿命及び安全性に優れた非水系二次電池となり、充放電を繰り返しても、電池容量を高い値で維持することが可能となる。
【0099】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
【0100】
実施例1
(1)まず、LiNi1/3Mn1/3Co1/3O2で表されるリチウムニッケルマンガン系複合酸化物、導電材である高比表面積天然黒鉛(BET法比表面積=250g/m2)及びアセチレンブラックを乾式混合した。バインダーであるポリフッ化ビニリデン(PVDF)を溶解したN−メチル−2−ピロリドン(NMP)中に、得られた混合物を均一に分散させて、スラリー1を調製した。次いで、スラリー1を集電体となるアルミニウム箔の両面に塗布し、乾燥した後、プレスを行い、正極を得た。
【0101】
正極中の固形分重量比は、リチウムニッケルマンガン系複合酸化物:高比表面積天然黒鉛:アセチレンブラック:PVDF=92:3:2:3となるよう調製した。
【0102】
図3−(a)は、正極の説明図である。本実施例において、正極101aの塗布面積(W1×W2)は、177×130mm2である。また、電極の短辺側には、スラリー1が塗布されていない集電部106aが設けられ、その中央に直径3mmの穴が開けられている。
【0103】
(2)二重構造黒鉛粒子は、天然黒鉛(平均粒径25μm、タップ密度0.86g/cm3)と石油ピッチ(軟化点250℃、トルエン不溶分30%)を混合・焼成して得た。
【0104】
(3)(2)で作製した二重構造黒鉛粒子(黒鉛粒子コアの(002)面の面間隔(d002)=0.34nm未満、被覆層の(002)面の面間隔(d002)=0.34nmを越える)および導電材である人造黒鉛を乾式混合した後、バインダーであるPVDFを溶解したNMP中に均一に分散させ、スラリー2を調製した。次いで、スラリー2を集電体となる銅箔の両面に塗布し、乾燥した後、プレスを行ない、負極を得た。
【0105】
負極中の固形分比率(重量比)は、二重構造黒鉛粒子:人造黒鉛:PVDF=93:2:5となるよう調製した。
【0106】
図3−(b)は、負極の説明図である。負極101bの塗布面積(W1×W2)は、133×181.5mm2である。また、電極の短辺側には、スラリー2が塗布されていない集電部106bが設けられ、その中央に直径3mmの穴が開けられている。
【0107】
さらに、上記と同様の手法により片面だけにスラリー2を塗布し、片面電極を作製した。片面電極は、後述の(3)項の電極積層体において外側に配置される(図2中101c)。
【0108】
(4)図2に示すように、上記(1)項で得られた正極12枚と上記(2)項で得られた負極13枚(内片面2枚)とを、セパレータ材(レーヨン系不織布、目付12.6g/m2)104を介して交互に積層した。
【0109】
(5)図4に示す様に、厚さ0.5mmのSUS304製薄板を深さ5.8mmに絞り、底容器2を作製し、上蓋1も厚さ0.5mmのSUS304製薄板により作製した。次いで、上蓋1にアルミニウム製の正極端子3および銅製の負極端子4(頭部直径6mm、先端M3のねじ部)を取り付けた。正極および負極端子3、4は、ポリプロピレン製ガスケットにより上蓋1と絶縁した。
【0110】
(6)上記(3)項で作製した電極積層体の各正極集電部106aの穴を正極端子3に、また各負極集電部106bの穴を負極端子4に入れ、それぞれアルミニウム製および銅製のボルトで接続した後、接続された電極積層体を絶縁テープで固定し、図1の角部Aを全周に亘りレーザー溶接した。次いで、注液口5(直径6mm)から、電解液(エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を体積比30:70に混合した溶媒に、該溶媒100重量部に対して2重量部に相当する量のビニレンカーボネート(VC)を加えた後、1mol/lの濃度にLiPF6を溶解した溶液)を注液した。次いで、大気圧下で仮止め用のボルトを用いて注液口5を一旦封口した。
【0111】
(7)温度25℃において、この電池を3.4Aの電流で4.2Vまで充電した後、4.2Vの定電圧を印加する定電流定電圧充電を合計8時間行い、続いて2Aの定電流で2.5Vまで放電した。
【0112】
(8)次に、電池の仮止め用ボルトを取り外した後、容器内部が4×104Pa(300Torr)の減圧状態となるように、直径12mmに打ち抜いた厚さ0.08mmのアルミニウム箔−変性ポリプロピレンラミネートフィルムからなる封口フィルム6を、温度250〜350℃、圧力1〜3kg/cm2、加圧時間5〜10秒の条件で熱融着することにより、注液口5を最終封口して、幅148mm×高さ210mm×厚さ6.8mmの扁平形状のノート型電池を得た。
【0113】
(9)温度25℃において、この電池を用いて「3.4Aの電流で4.2Vまで充電した後、4.2Vの定電圧を印加する定電流定電圧充電を合計8時間行い、続いて2Aの定電流で2.5Vまで放電する充放電サイクル」を500サイクル行った。また、サイクル特性を評価するために、1サイクルおよび500サイクル時点の放電容量から容量維持率を算出した。結果を下記表2に示す。尚、各電池は、平均電圧3.6±0.1V、電池体積0.211リットルであり、後述する実施例1〜8の電池は、いずれもエネルギー容量が30Wh以上かつ体積エネルギーが180Wh/l以上であった。
【0114】
(10)また同様に作製した電池を25℃において上記(9)と同様の充放電サイクルを3回繰り返した後、4回目の充電を行なった。その後、−20℃において3.4Aの定電流で2.5Vまで放電した。下記表2に低温特性評価試験を行った結果を併せて示す。
【0115】
実施例2及び比較例1
正極活物質として、下記表1に示すものを用いた以外は、実施例1と同様にして電池を作製し、実施例1と同様の方法によりサイクル特性及び低温特性を測定した結果を下記表2に示す。
【0116】
【表1】
【0117】
【表2】
【0118】
比較例2〜5
負極活物質を作製するためのコア部用材料及び石油ピッチとして、下記表3に示すものを用いた以外は、実施例1と同様にして電池を作製し、実施例1と同様の方法によりサイクル特性及び低温特性を測定した結果を下記表4示す。尚表3中、MCMBは、黒鉛化メソカーボンマイクロビーズを示す。
【0119】
【表3】
【0120】
【表4】
【0121】
実施例3〜6及び比較例6〜7
電解液におけるビニレンカーボネート(VC)の使用量を下記表5に示す量とした以外は、実施例1と同様にして電池を作製し、実施例1と同様の方法によりサイクル特性及び低温特性を測定した結果を下記表6示す。
【0122】
尚、表5中、VCの量は、ECとEMCを体積比30:70に混合した溶媒100重量部に対する重量部で表す。
【0123】
【表5】
【0124】
【表6】
【0125】
実施例7〜8及び比較例8〜9
電解液の組成を下記表7に示す割合とした以外は、実施例1と同様にして電池を作製し、実施例1と同様の方法によりサイクル特性及び低温特性を測定した結果を下記表8示す。
【0126】
尚、表7において、DECはジエチルカーボネート、PCはプロピレンカーボネートを示す。また、ビニレンカーボネート以外の溶媒量は体積部で表し、ビニレンカーボネート量は溶媒の合計量100重量部に対する重量部で表す。
【0127】
【表7】
【0128】
【表8】
【図面の簡単な説明】
【図1】本発明の一実施形態による蓄電システム用非水系二次電池の平面図及び側面図を示す図面。
【図2】図1に示す電池の内部に収納される電極積層体の構成を示す側面図。
【図3】本発明実施例による非水系二次電池において用いた正極、負極およびセパレータの説明図。
【図4】本発明実施例による非水系二次電池における上蓋および底容器の説明図。
【符号の説明】
1 上蓋
2 底容器
3 正極端子
4 負極端子
5 注液口
6 封口フィルム
101a 正極(両面)
101b 負極(両面)
101c 負極(片面)
104 セパレータ
105a 正極集電体
105b 負極集電体
106a 正極集電部
106b 負極集電部
Claims (4)
- 正極、負極、セパレータ、およびリチウム塩を含む非水系電解質を電池容器内に収容した構造を有し、厚さが12mm未満の扁平形状であり、エネルギー容量が30Wh以上かつ体積エネルギーが180Wh/l以上である非水系二次電池であって、下記(1)〜(3)の条件を満足することを特徴とする非水系二次電池:
(1)正極における活物質が、組成式:LiaNibMncMdO2(式中、Mは、Co、AlおよびFeからなる群から選ばれる少なくとも1種の元素であり、1≦a≦1.1、0.3≦b<0.5、0.3≦c<0.5、0<d≦0.4、b≧c、b+c+d=1である)で表されるリチウムニッケルマンガン複合酸化物であること、
(2)負極における活物質が、天然黒鉛粒子からなるコア部表面を非晶質炭素で被覆した二重構造黒鉛粒子であって、該天然黒鉛がX線広角回折法による(002)面の面間隔(d002)が0.34nm以下、平均粒径が15〜40μmかつタップ密度が0.8g/cm3以上であり、該非晶質炭素の面間隔が0.34nmを超えること、
(3)非水系電解質が、溶媒としてエチルメチルカーボネート及びエチレンカーボネートを含み、更に、溶媒100重量部に対してビニレンカーボネートを0.1〜5重量部含むこと。 - 二重構造黒鉛粒子が、天然黒鉛及びピッチを混合し焼成して得られるものであって、該ピッチの軟化点が100〜300℃であり、トルエン不溶分が10〜50%である請求項1に記載の非水系二次電池。
- 電池の扁平形状の表裏面の形状が矩形である請求項1又は2に記載の非水系二次電池。
- 電池容器の厚さが0.2〜1mmである請求項1〜3のいずれかに記載の非水系二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003083127A JP4424919B2 (ja) | 2003-03-25 | 2003-03-25 | 非水系二次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003083127A JP4424919B2 (ja) | 2003-03-25 | 2003-03-25 | 非水系二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004296106A true JP2004296106A (ja) | 2004-10-21 |
JP4424919B2 JP4424919B2 (ja) | 2010-03-03 |
Family
ID=33398685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003083127A Expired - Fee Related JP4424919B2 (ja) | 2003-03-25 | 2003-03-25 | 非水系二次電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4424919B2 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101304100B (zh) * | 2007-05-10 | 2011-06-15 | 深圳市雅康精密机械有限公司 | 电芯隔膜挤压机构及具该机构的电池电芯后部贴胶带装置 |
WO2012090728A1 (ja) * | 2010-12-29 | 2012-07-05 | 三洋電機株式会社 | 非水電解質二次電池 |
KR101459729B1 (ko) | 2012-12-27 | 2014-11-10 | 주식회사 포스코 | 흑연 복합재 및 그 제조 방법 |
JPWO2013084393A1 (ja) * | 2011-12-07 | 2015-04-27 | 株式会社Gsユアサ | 非水電解質二次電池および非水電解質二次電池の製造方法 |
WO2016068033A1 (ja) * | 2014-10-29 | 2016-05-06 | 日立マクセル株式会社 | リチウムイオン二次電池 |
JP2017022128A (ja) * | 2011-05-23 | 2017-01-26 | エルジー ケム. エルティーディ. | 出力密度特性が向上した高出力のリチウム二次電池 |
CN114709398A (zh) * | 2022-04-17 | 2022-07-05 | 晖阳(贵州)新能源材料有限公司 | 一种含硫快离子导体包覆石墨复合材料及其制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103123964B (zh) * | 2011-11-18 | 2016-02-03 | 上海杉杉科技有限公司 | 锂离子电池石墨负极材料及其制备方法 |
CN106219522A (zh) * | 2016-07-11 | 2016-12-14 | 广东东岛新能源股份有限公司 | 石墨化炉及人造石墨负极材料石墨化生产方法 |
-
2003
- 2003-03-25 JP JP2003083127A patent/JP4424919B2/ja not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101304100B (zh) * | 2007-05-10 | 2011-06-15 | 深圳市雅康精密机械有限公司 | 电芯隔膜挤压机构及具该机构的电池电芯后部贴胶带装置 |
WO2012090728A1 (ja) * | 2010-12-29 | 2012-07-05 | 三洋電機株式会社 | 非水電解質二次電池 |
JP2017022128A (ja) * | 2011-05-23 | 2017-01-26 | エルジー ケム. エルティーディ. | 出力密度特性が向上した高出力のリチウム二次電池 |
US9917327B2 (en) | 2011-12-07 | 2018-03-13 | Gs Yuasa International Ltd. | Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery |
JPWO2013084393A1 (ja) * | 2011-12-07 | 2015-04-27 | 株式会社Gsユアサ | 非水電解質二次電池および非水電解質二次電池の製造方法 |
US10749213B2 (en) | 2011-12-07 | 2020-08-18 | Gs Yuasa International Ltd. | Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery |
KR101459729B1 (ko) | 2012-12-27 | 2014-11-10 | 주식회사 포스코 | 흑연 복합재 및 그 제조 방법 |
WO2016068033A1 (ja) * | 2014-10-29 | 2016-05-06 | 日立マクセル株式会社 | リチウムイオン二次電池 |
KR20170070095A (ko) * | 2014-10-29 | 2017-06-21 | 히다치 막셀 가부시키가이샤 | 리튬 이온 이차 전지 |
JPWO2016068033A1 (ja) * | 2014-10-29 | 2017-08-10 | 日立マクセル株式会社 | リチウムイオン二次電池 |
CN107112583A (zh) * | 2014-10-29 | 2017-08-29 | 日立麦克赛尔株式会社 | 锂离子二次电池 |
KR102232185B1 (ko) | 2014-10-29 | 2021-03-26 | 맥셀 홀딩스 가부시키가이샤 | 리튬 이온 이차 전지 |
CN114709398A (zh) * | 2022-04-17 | 2022-07-05 | 晖阳(贵州)新能源材料有限公司 | 一种含硫快离子导体包覆石墨复合材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP4424919B2 (ja) | 2010-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10714751B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery | |
KR102301470B1 (ko) | 비수 전해질 이차 전지 | |
WO2013046711A1 (ja) | 非水電解質二次電池用正極および非水電解質二次電池 | |
US20140322591A1 (en) | Non-aqueous electrolyte secondary battery | |
JP5031065B2 (ja) | リチウムイオン二次電池 | |
JP2012003997A (ja) | 非水電解液二次電池 | |
JP2005285633A (ja) | 非水系二次電池及びその充電方法 | |
JP2014007088A (ja) | 非水電解質二次電池およびその製造方法 | |
JP4215202B2 (ja) | 非水電解液二次電池 | |
JP2004134207A (ja) | 正極活物質及び非水電解質二次電池 | |
JP4994628B2 (ja) | 非水電解質二次電池 | |
JP3633223B2 (ja) | 正極活物質及びその製造方法並びに非水電解質二次電池 | |
JP2012169299A (ja) | リチウムイオン二次電池の製造方法 | |
JP4085243B2 (ja) | 非水系二次電池 | |
JP5566825B2 (ja) | リチウム二次電池 | |
JP2002289193A (ja) | 非水系二次電池 | |
JP4424919B2 (ja) | 非水系二次電池 | |
JP2002270245A (ja) | 非水系二次電池 | |
JP6063705B2 (ja) | 非水電解質二次電池 | |
JP2002270247A (ja) | 非水系二次電池 | |
JP4120771B2 (ja) | 非水系二次電池 | |
JP4085244B2 (ja) | 非水系二次電池 | |
KR101905061B1 (ko) | 리튬 이온 이차 전지 | |
JP4447831B2 (ja) | 正極活物質及び非水電解質二次電池 | |
JP4717276B2 (ja) | 非水系二次電池及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080606 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080702 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4424919 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121218 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121218 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121218 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131218 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |