JP2012186181A - リチウムイオン伝導性固体電解質の製造方法 - Google Patents

リチウムイオン伝導性固体電解質の製造方法 Download PDF

Info

Publication number
JP2012186181A
JP2012186181A JP2012142767A JP2012142767A JP2012186181A JP 2012186181 A JP2012186181 A JP 2012186181A JP 2012142767 A JP2012142767 A JP 2012142767A JP 2012142767 A JP2012142767 A JP 2012142767A JP 2012186181 A JP2012186181 A JP 2012186181A
Authority
JP
Japan
Prior art keywords
lithium ion
solid electrolyte
ion conductive
glass
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012142767A
Other languages
English (en)
Other versions
JP5537607B2 (ja
Inventor
Yasushi Inda
靖 印田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2012142767A priority Critical patent/JP5537607B2/ja
Publication of JP2012186181A publication Critical patent/JP2012186181A/ja
Application granted granted Critical
Publication of JP5537607B2 publication Critical patent/JP5537607B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes
    • H01M6/186Only oxysalts-containing solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/188Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

【課題】電池容量が高く、また充放電サイクル特性も良好で、長期的に安定して使用でき、かつ工業的な製造においても製造および取り扱いが簡便な固体電解質の製造方法を提供する。
【解決手段】リチウムイオン伝導性の無機粉体を主成分として、少なくとも有機バインダー及び溶剤を含有するスラリーを調製し、該スラリーをグリーンシートに成膜し、該グリーンシートを加圧後、焼成する事を特徴とする固体電解質の製造方法。
【選択図】なし

Description

この発明は、主として全固体型のリチウムイオン二次電池およびリチウム一次電池に好適な固体電解質の製造方法に関するものである。
従来から、リチウムイオン二次電池における電解質としては、一般に非水系の電解液をセパレータと称される微多孔膜に含浸させた電解質が使用されていたが、近年、このような液体が中心の電解質に替わり、高分子で構成されたポリマー電解質を用いたリチウムイオン二次電池(ポリマー電池)が注目されるようになってきた。
このポリマー電池は、ポリマー中に液体の電解液を含浸させたゲル状の電解質を使用しており、ポリマー中に電解液が保持されるため、漏液がしにくいため、電池の安全性が向上し、また電池の形状にも自由性があること等の利点があった。
ここで、このようなポリマー電解質は電解液のみに比べ、リチウムイオンの導電性が低いため、このポリマー電解質の厚みを薄くすることが行なわれるようになった。しかし、このようにポリマー電解質を薄くした場合その機械的強度が低くなって、電池の作製時にこのポリマー電解質が破壊され、正極と負極とが短絡し易いという問題があった。
そこで、従来においては、特許文献1に示されるように、電解質中にアルミナ等の無機酸化物を添加して固体電解質とし、機械的強度を向上させることが提案された。アルミナ以外にもシリカやアルミン酸リチウム等の無機酸化物が提案されている。
しかし、アルミナ等の無機酸化物を電解質中に添加させると、固体電解質におけるリチウムイオンの伝導性が大きく低下する問題がある。またこの固体電解質を備えたリチウム二次電池において充放電を繰り返して行なうと、電解質と上記の無機酸化物とが反応して、リチウム二次電池における充放電サイクル特性が大きく低下してしまうなど問題があった。
また、リチウムイオン二次電池の電解質に無機の固体電解質を用いた、全固体電池も提案されている。全固体電池は、電解液など可燃性の有機溶剤を用いないため、液漏れや発火の恐れがないため、安全性にすぐれている。しかし、全固体電池の場合、正極、電解質、負極の全てが固体であるため、それぞれの接触界面が取りにくく、界面抵抗が高くなってしまう。この場合、電極−電解質界面でのリチウムイオンの移動抵抗が大きいため、出力の高い電池を得るのは難しい。
また例えば特許文献2に開示されるような硫化物ガラス等の固体の無機物質をプレスによってペレット化して作成した全固体電解質を使用してリチウムイオン二次電池を組み立てる報告もされているが、この二次電池はリチウムイオン伝導性が充分に高くないため、いまだ実用には至っていない。
特開平6−140052号公報 特開2004−348972号公報
この発明は、固体電解質およびこの固体電解質を備えたリチウムイオン二次電池またはリチウム一次電池において、リチウムイオン伝導性が低いために実用化できない問題を解決しようとするものであり、電解液を用いなくとも、電池容量も高く、また充放電サイクル特性も良好で、長期的に安定して使用でき、かつ工業的な製造においても製造および取り扱いが簡便な固体電解質の製造方法を提供することを目的とするものである。
本発明者はリチウムイオン二次電池用途として様々な電解質について詳細な実験を行った結果、特定の組成のリチウムイオン伝導性のガラス、結晶(セラミックスまたはガラスセラミックス)の粉体を焼結させることにより、高いイオン伝導度を有する任意の形状の焼結体が得られることを見いだした。特に、これらのガラス、結晶(セラミックスやガラスセラミックス)の粉体を主成分として含有するスラリーからグリーンシートを作製し、これを焼成することにより、面積が広く、かつ薄い焼結体が得られ、この電解質の両面に正極・負極を配して得られた電池は、従来の固体電解質型電池と比べて、出力・容量が高く、充放電サイクル特性も著しく向上することを見いだし、本発明に到達した。
本明細書で、「グリーンシート」とは、薄板状に成形したガラス粉末、結晶(セラミックスまたはガラスセラミックス)粉末の未焼成体をさし、ガラス粉末、結晶(セラミックスまたはガラスセラミックス)粉末と、有機結合剤、可塑剤、溶剤などの混合スラリーをドクターブレードやカレンダ法等により薄板状に成形したものをいう。
上記本発明の課題を解決する第1の構成は、リチウムイオン伝導性の無機粉体を主成分として、少なくとも有機バインダー及び溶剤を含有するスラリーを調製し、該スラリーをグリーンシートに成膜し、該グリーンシートを加圧後、焼成する事を特徴とする固体電解質の製造方法である。
本発明の第2の構成は、前記リチウムイオン伝導性の無機粉体は、リチウムイオン伝導性のガラス粉体、リチウムイオン伝導性のセラミックス粉体、リチウムイオン伝導性のガラスセラミックス粉体、またはこれらの混合物の粉体からなることを特徴とする第1の構成の固体電解質の製造方法である。
本発明の第3の構成は、前記リチウムイオン伝導性の無機粉体はLi1+x+y(Al,Ga)(Ti,Ge)2−xSi3−y12ただし、0≦x≦1、0≦y≦1である結晶を含むことを特徴とする第1または第2の構成の固体電解質の製造方法である。
本発明の第4の構成は、前記リチウムイオン伝導性の無機粉体はガラスセラミックスであることを特徴とする第1〜第3の構成のいずれかの固体電解質の製造方法である。
本発明の第5の構成は、前記リチウムイオン伝導性の無機粉体はガラスであることを特徴とする構成1の固体電解質の製造方法である。
本発明の第6の構成は、前記成膜したグリーンシートを複数枚積層し、加圧後、焼成することを特徴とする第1〜第5の構成のいずれかの固体電解質の製造方法である。
本発明によれば、電解液を用いなくても電池容量も高く、また充放電サイクル特性も良好で、長期的に安定して使用することができるリチウムイオン二次電池およびリチウム一次電池用の固体電解質を容易に得ることができる。
また、本発明によれば、グリーンシートは、均一な厚みに成形することにより、焼成時、均一にグリーンシートが加熱されるため、焼結も材料中で均一に進み、その結果として緻密で気孔率が20vol%以下と非常に少ないシート状の固体電解質を得ることができる。さらに、原料を十分混合することにより、グリーンシートの組成を均一にし、焼成前にロールプレスや一軸、等方加圧などにより緻密化しておくことにより、焼成後も緻密で気孔率の少ない固体電解質を得ることができ、これによってイオン伝導度が高く、高出力の固体電解質を得ることができる。
また、本発明によれば、固体電解質は、リチウムイオン伝導性の無機粉体を含むグリーンシートを焼成してなるものであり、このグリーンシートの成形には簡単なドクターブレード、ロールコーターまたはダイコーダーを用いることができ、またスラリーの粘性を調整すれば、混練、押出しなどの汎用の装置を用いてグリーンシートを調製することができるので、シート状固体電解質をはじめとして様々な形状の固体電解質を簡単に、効率良く、安価に製造することができる。
特に、シート状の固体電解質を成形する場合は、シート状に成形したグリーンシートを焼成することにより、圧延等他の加工を必要とせず、そのままシート状固体電解質が得られるので、面積が広く、かつ厚みが薄い高容量で高出力のシート状固体電解質を容易に得ることができる。本発明の固体電解質のイオン伝導度は1×10−4Scm−1以上の値を得ることができ、総合的な観点の好ましい態様においては5×10−4Scm−1以上、より好ましい態様においては1×10−3Scm−1以上の値を得ることができる。
以下本発明の実施の形態について詳細に説明する。
本発明の固体電解質はリチウムイオン伝導性の無機粉体を含む成形体を作成し、それを焼成する事により得られ、気孔率を20vol%以下としたものである。
本発明の固体電解質は、内部に気孔が存在するとその部分はイオン伝導経路が存在しないため、固体電解質自体のイオン伝導度が低くなってしまう。電池として使用した場合、伝導度が高い方がリチウムイオンの移動速度が速くなるため高出力の電池が得られる。そこで、固体電解質中の気孔率は低い方が好ましく、20vol%以下であることが好ましい。また、より好ましくは15vol%以下であり、最も好ましくは10vol%以下である。気孔率を20vol%以下とするには、前記成形体はグリーンシートであることが好適である。
ここで気孔率とは、単位体積中に含まれる空孔の割合であり、次式で表される。
気孔率(%)=(真密度−嵩密度)/真密度×100
ここで、真密度とはアルキメデス法等の方法で測定できる物質そのものの密度である。これに対し、嵩密度は物体の重さを見掛けの体積で割った密度であり、空孔も含まれている密度である。
また、本発明によれば、グリーンシートは、均一な厚みに形成することにより、焼成時、均一にグリーンシートが加熱されるため、焼結も材料中で均一に進み、その結果として緻密で気孔率が20vol%以下と非常に少ないシート状の固体電解質を得ることができる。そこで、焼成前のグリーンシートの厚みの変化は、焼成前のグリーンシートの厚みの分布の平均値に対して+10%から−10%の範囲であると好ましい。さらに、原料を十分混合することにより、グリーンシートの組成を均一にし、焼成前にロールプレスや一軸、等方加圧などにより加圧し、緻密化しておくことにより、焼成後も緻密で気孔率の少ない固体電解質を得ることができ、これによってイオン伝導度が高く、高出力の固体電解質を得ることができる。そこで原料の混合は、例えばボールミルで少なくとも1時間以上行なうことが望ましい。
本発明の好ましい実施態様であるシート状の固体電解質は、電池として使用した場合、薄い方がリチウムイオンの移動距離が短いため高出力の電池が得られ、また単位体積当りの電極面積が広く確保できるため高容量の電池が得られる。そこで、固体電解質として用いる電解質層の厚みは200μm以下が好ましく、180μm以下がより好ましく、150μm以下が最も好ましい。
リチウムイオン二次電池の充放電時におけるリチウムイオンの移動性は、電解質のリチウムイオン伝導度およびリチウムイオン輸率に依存する。したがって、本発明の固体電解質にはリチウムイオン伝導性の高い物質を用いることが好ましい。
リチウムイオン伝導性の結晶のイオン伝導度は、1×10−4S・cm−1以上であることが好ましく、5×10−4S・cm−1以上であることがより好ましく、1×10−3S・cm−1以上であることが最も好ましい。
本発明において使用するリチウムイオン伝導性の無機粉体は、リチウムイオン伝導性のガラス粉体、リチウムイオン伝導性の結晶(セラミックまたはガラスセラミックス)粉体またはこれらの混合物の粉体を含有する無機物質の粉体である。高いリチウムイオン伝導性を得るためにリチウムイオン伝導性の無機粉体はリチウム、シリコン、リン、チタンを主成分として含有することが好ましい。
固体電解質中にこれらの結晶を多く含むことにより、より高い伝導度が得られるため、固体電解質中に50wt%以上のリチウムイオン伝導性の結晶を含むことが好ましい。より好ましくは55wt%以上、最も好ましくは60wt%以上である。
また、固体電解質を得るための成形体に含まれるリチウムイオン伝導性の無機粉体中においてもこれらの結晶を多く含むことにより、より高い伝導度が得られるため、リチウムイオン伝導性の無機粉体中に50wt%以上のリチウムイオン伝導性の結晶を含むことが好ましい。より好ましくは55wt%以上、最も好ましくは60wt%以上である。
ここで、使用できるリチウムイオン伝導性の結晶としては、イオン伝導を阻害する結晶粒界を含まない結晶であるとイオン伝導の点で有利であり、LiN、LISICON類、La0.55Li0.35TiOなどのリチウムイオン伝導性を有するペロブスカイト構造を有する結晶や、NASICON型構造を有するLiTi12や、これら結晶を析出させたガラスセラミックスを用いることができる。好ましいリチウムイオン伝導性の結晶としては、Li1+x+y(Al,Ga)(Ti,Ge)2−xSi3−y12ただし、0≦x≦1、0≦y≦1である。特にNASICON型構造を有する結晶を析出させたガラスセラミックスは、イオン伝導を妨げる空孔や結晶粒界をほとんど有しないため、イオン伝導性が高くかつ化学的な安定性に優れるため、より好ましい。
固体電解質中にはこのガラスセラミックスを多く含むことにより高い伝導率が得られるため、固体電解質中に80wt%以上のリチウムイオン伝導性のガラスセラミックスを含むことが好ましい。より好ましくは85wt%以上、最も好ましくは90wt%以上である。
ここで、イオン伝導を妨げる空孔や結晶粒界とは、リチウムイオン伝導性の結晶を含む無機物質全体の伝導度を該無機物質中のリチウムイオン伝導性結晶そのものの伝導度に対し、1/10以下へ減少させる空孔や結晶粒界等のイオン伝導性阻害物質をさす。
ここで、ガラスセラミックスとは、ガラスを熱処理することによりガラス相中に結晶相を析出させて得られる材料であり、非晶質固体と結晶からなる材料をいう。また、ガラスセラミックスとは、結晶の粒子間や結晶中に空孔がほとんどなければガラス相すべてを結晶相に相転移させた材料、すなわち、材料中の結晶量(結晶化度)が100質量%のものを含む。一般にいわれるセラミックスや焼結体はその製造工程上、結晶の粒子間や結晶中の空孔や結晶粒界の存在が避けられず、ガラスセラミックスとは区別することができる。特にイオン伝導に関しては、セラミックスの場合は空孔や結晶粒界の存在により、結晶粒子自体の伝導度よりもかなり低い値となってしまう。ガラスセラミックスは結晶化工程の制御により結晶間の伝導度の低下を抑えることができ、結晶粒子と同程度の伝導度を保つことができる。
また、ガラスセラミックス以外で、イオン伝導を妨げる空孔や結晶粒界をほとんど有しない材料として、上記結晶の単結晶が挙げられるが、製造が難しくコストが高いため、リチウムイオン伝導性のガラスセラミックスを用いるのが最も好ましい。
本発明の固体電解質層に含有させる高いイオン伝導度を有するリチウムイオン伝導性の無機粉体としては、リチウムイオン伝導性のガラスセラミックスを粉砕したものを使用することが好ましい。このリチウムイオン伝導性の無機粉体は、固体電解質中に均一に分散されていることが固体電解質のイオン伝導性、及び機械的強度の点で好ましい。分散性を良好にするため、また固体電解質の厚さを所望のものとするために、リチウムイオン伝導性の無機粉体の粒径は、平均で20μm以下が好ましく、15μm以下がより好ましく、10μm以下が最も好ましい。
前記リチウムイオン伝導性ガラスセラミックスは、母ガラスがLiO−Al−TiO−SiO−P系の組成であり、このガラスを熱処理して結晶化させ、その際の主結晶相がLi1+x+yAlTi2−xSi3−y12(0≦x≦1、0≦y≦1)であることを特徴としたガラスセラミックスである。より好ましくは、0≦x≦0.4、0<y≦0.6、最も好ましくは0.1≦x≦0.3、0.1<y≦0.4である。
前記リチウムイオン伝導性ガラスセラミックスを構成する各々の成分のmol%で表わされる組成比と効果について具体的に説明する。
LiO成分はLiイオンキャリアを提供し、リチウムイオン伝導性をもたらすのに欠かせない成分である。良好な伝導率を得るためには含有量の下限は12%であることが好ましく、13%であることがより好ましく、14%であることが最も好ましい。上限は18%であることが好ましく、17%であることがより好ましく、16%であることが最も好ましい。
Al成分は、母ガラスの熱的な安定を高めることができると同時に、Al3+イオンが前記結晶相に固溶し、リチウムイオン伝導率向上にも効果がある。この効果を得るためには、含有量の下限が5%であることが好ましく、5.5%であることがより好ましく、6%であることが最も好ましい。しかし含有量が10%を超えると、かえってガラスの熱的な安定性が悪くなりガラスセラミックスの伝導率も低下してしまうため、含有量の上限は10%とするのが好ましい。尚、より好ましい含有量の上限は9.5%であり、最も好ましい含有量の上限は9%である。
TiO成分はガラスの形成に寄与し,また前記結晶相の構成成分でもあり,ガラスにおいても前記結晶においても有用な成分である。前記の結晶相が主相としてガラスから析出し高い伝導率を得るためには、含有量の下限が35%であることが好ましく、36%であることがより好ましく、37%であることが最も好ましい。また含有量の上限は45%であることが好ましく、43%であることがより好ましく、42%であることが最も好ましい。
SiO成分は、母ガラスの溶融性および熱的な安定性を高めることができると同時に、Si4+イオンが前記結晶相に固溶し、リチウムイオン伝導率の向上にも寄与する。この効果を十分に得るためには含有量の下限は1%であることが好ましく、2%であることがより好ましく、3%であることが最も好ましい。しかしその含有量が10%を超えると、かえって伝導率が低下してしまうため、含有量の上限は10%とすることが好ましく、8%とすることがより好ましく、7%とすることが最も好ましい。
成分はガラスの形成に必須の成分であり,また前記結晶相の構成成分でもある。含有量が30%未満であるとガラス化しにくくなるので、含有量の下限は30%であることが好ましく、32%であることがより好ましく、33%であることが最も好ましい。また含有量が40%を越えると前記結晶相がガラスから析出しにくく、所望の特性が得られにくくなるため、含有量の上限は40%とすることが好ましく、39%とすることがより好ましく、38%とすることが最も好ましい。
上述の組成の場合、溶融ガラスをキャストして容易にガラスを得ることができ、このガラスを熱処理して得られた上記結晶相をもつガラスセラミックスは高いリチウムイオン伝導性を有する。
また、上記の組成以外にも、類似の結晶構造を有するガラスセラミックスであれば、AlをGa、TiOをGeOに一部または全部置換することも可能である。さらに、ガラスセラミックスの製造の際、その融点を下げるかまたはガラスの安定性を上げるために、イオン伝導性を下げない範囲で他の原料を微量添加することも可能である。
ガラスセラミックスの組成には、LiO以外のNaOやKOなどのアルカリ金属は、出来る限り含まないことが望ましい。これら成分がガラスセラミックス中に存在するとアルカリイオンの混合效果により、Liイオンの伝導を阻害して伝導度を下げることになる。
また、ガラスセラミックスの組成に硫黄を添加すると、リチウムイオン伝導性は少し向上するが、化学的耐久性や安定性が悪くなるため、出来る限り含有しない方が望ましい。
ガラスセラミックスの組成には、環境や人体に対して害を与える可能性のあるPb、As、Cd、Hgなどの成分もできる限り含有しないほうが望ましい。
リチウムイオン伝導性の無機粉体すなわち高いリチウムイオン伝導度と化学的安定性を有するガラス、結晶(セラミックスもしくはガラスセラミックス)の粉体またはこれらの粉体の混合物を、有機系のバインダーや必要に応じて分散剤等とともに溶剤を用いて混合し、ドクターブレード法などの簡易な作製方法により、グリーンシートを作製する。作製したグリーンシートを任意の形状に加工し、好ましくはロールプレスや一軸、等方加圧等により加圧した後焼成して有機バインダーの有機成分を除去することにより、薄いシート状あるいは任意の形状の全固体電解質が得られる。
グリーンシートの成形時に用いる有機バインダーは、ドクターブレード用の成形助剤として市販されているバインダーを用いることができる。また、ドクターブレード用以外にもラバープレス、押し出し成形などに一般に用いられている成形助剤を用いることができる。具体的には、アクリル樹脂、エチルセルロース、ポリビニルブチラール、メタクリル樹脂、ウレタン樹脂、ブチルメタアクリレート、ビニル系の共重合物等を用いることができる。これらのバインダーの他に、粒子の分散性を高めるための分散剤や、乾燥時の泡抜きを良好にするための界面活性剤などを適量添加すると、より好ましい。
また、リチウム伝導性を阻害せず、電子伝導性を上げたければ、他の無機粉体や有機物を加えても問題はない。無機粉体として誘電性の高い絶縁性の結晶またはガラスを少量加えることにより効果が得られることがある。例えばBaTiO、SrTiO、Nb、LaTiO等が挙げられる。
有機物は、焼成時に除去されるため、成型時のスラリーの粘度調整などに使用しても問題はない。
当グリーンシートの成形には、簡易なドクターブレード、ロールコーター、ダイコーターを用いることができる。また粘性を調製すれば、混練・押し出しなどの汎用の装置を用いることができるため、様々な形状の固体電解質を效率よく安価に製造することができる。
得られたシートの両側に、正極・負極を塗布し、乾燥または焼成することにより、リチウムイオン二次電池が得られる。
焼成して得られるシート状の固体電解質は、成形したグリーンシートの形状がそのまま得られるため、任意の形状への加工が容易であり、したがって薄い膜や任意の形状の固体電解質あるいはこの固体電解質を用いた全固体リチウムイオン二次電池の製造が可能になる。
また、焼成後の固体電解質は有機物を含まないため、耐熱性および化学的耐久性にすぐれ、また安全性や環境に対しても害を及ぼすことが少ない。
本発明のリチウムイオン二次電池およびリチウム一次電池の正極材料に使用する活物質としては、リチウムの吸蔵,放出が可能な遷移金属化合物を用いることができ、例えば、マンガン,コバルト,ニッケル,バナジウム,ニオブ、モリブデン、チタンから選ばれる少なくとも1種を含む遷移金属酸化物等を使用することができる。ほとんどの活物質材料は、電子伝導性およびイオン伝導性が乏しいため、電子伝導助剤として、導電性の炭素、黒鉛、炭素繊維、金属粉末、金属繊維、電子伝導性ポリマーなどを添加するのが好ましい。また、イオン伝導助剤として、イオン伝導性のガラスセラミックス、イオン伝導性ポリマーなどを添加するのが好ましい。これらの電子・イオン伝導助剤の添加量は、正極材料に対して、3〜35質量%の範囲であることが好ましく、4〜30質量%であることがより好ましく、5〜25質量%であることが最も好ましい。
また、このリチウム二次電池およびリチウム一次電池において、その負極材料に使用する活物質としては、金属リチウムやリチウム−アルミニウム合金、リチウム−インジウム合金などリチウムの吸蔵、放出が可能な合金、チタンやバナジウムなどの遷移金属酸化物及び黒鉛などのカーボン系の材料を使用することが好ましい。活物質に電子伝導性が乏しい場合は、電子伝導助剤として、導電性の炭素、黒鉛、炭素繊維、金属粉末、金属繊維、電子伝導性ポリマーなどを添加するのが好ましい。また、イオン導助剤として、イオン伝導性のガラスセラミックス、イオン伝導性ポリマーなどを添加するのが好ましい。これらの電子・イオン伝導助剤の添加量は、正極材料に対して、合計で3〜35質量%の範囲であることが好ましく、4〜30質量%であることがより好ましく、5〜25質量%であることが最も好ましい。
正極および負極に添加するイオン伝導性ガラスセラミックスは、固体電解質に含有されるガラスセラミックスと同じものであることが好ましい。これらが同じものであると電解質と電極材に含まれるイオン移動機構が統一されるため、電解質―電極間のイオン移動がスムーズに行え、より高出力・高容量の電池が提供できる。
以下、本発明に係る固体電解質ならびにこれを用いたリチウムイオン二次電池およびリチウム電池について、具体的な実施例を挙げて説明する。なお、本発明は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
[実施例1]
原料としてHPO、Al(PO、LiCO、SiO、TiOを使用し、これらを酸化物換算のmol%でPを35.0%、Alを7.5%、LiOを15.0%、TiOを38.0%、SiOを4.5%といった組成になるように秤量して均一に混合した後に、白金ポットに入れ、電気炉中1500℃でガラス融液を撹拌しながら3時間加熱熔解した。その後、ガラス融液を流水中に滴下させることにより、フレーク状のガラスを得、このガラスを950℃で12時間の熱処理により結晶化を行うことにより、目的のガラスセラミックスを得た。析出した結晶相は粉末X線回折法により、Li1+x+yAlTi2−xSi3−y12(0≦x≦0.4、0<y≦0.6)が主結晶相であることが確認された。得られたガラスセラミックスのフレークをジェットミルにより粉砕し、平均粒径5μm、最大粒径20μmのガラスセラミックスの粉末を得た。
このリチウムイオン伝導性ガラスセラミックス粉末と水に分散させたウレタン樹脂を分散剤を添加して分散・混合してスラリーを調製し、ドクターブレード法にて厚み200μmにて成形、90℃にて乾燥させてグリーンシートを得た。このグリーンシートを、50mm角に切り出し、1000℃にて焼成し、厚み120μmの薄板状の固体電解が得られ、イオン伝導度は1.5×10−4Scm−1であった。また、真密度、嵩密度より求めた気孔率は16vol%であった。
[比較例]
実施例1と同じガラスセラミックスを、Φ40mmの一軸加圧成型用の型に入れ、2tの加圧を加えて厚み5mmのペレット状に成形した。この成形体を1000℃にて5時間焼結させた。この時のイオン伝導度は3.1×10−5Scm−1であり、気孔率は21vol%であった。
[実施例2]
実施例1と同じガラスセラミックスをボールミルを用いて粉砕し、平均粒径1μm、最大粒径8μmとし、アクリル樹脂、分散剤とともに水を溶剤として、分散・混合してスラリーを調製し、ロールコーターにて成形、乾燥させて厚み100μmのグリーンシートを得た。このグリーンシートをロールプレスにより加圧し緻密化し、1050℃にて焼成することにより、厚み75μmの固体電解質が得られた。このイオン伝導度は3×10−4Scm−1であった。気孔率は7vol%であった。ロールプレスにより緻密化することにより、気孔率は少なくなり、実施例1と比較して半分以下となり、高い伝導度を有する固体電解質が得られた。
[実施例3]
実施例1で得られた結晶化を行なう前のガラスを、ボールミルにて粉砕し、平均粒径2μm、最大粒径10μmとし、ウレタン樹脂、分散剤とともに水を溶剤として、分散・混合してスラリーを調製し、ロールコーターにて成形、乾燥させて厚み100μmのグリーンシートを得た。このグリーンシートをCIPを用いて緻密化し、1050℃にて焼成することにより、厚み80μmの固体電解質が得られた。このイオン伝導度は、4×10−4Scm−1であった。気孔率は5vol%であった。
[実施例4]
実施例2で得られた平均粒径1μmのリチウムイオン伝導性ガラスセラミックス粉末と実施例1でえられた結晶化前のガラスを粉砕して、平均粒径0.5μmとしたガラスを9:1(=ガラスセラミックス:ガラス)割合で、アクリル樹脂、分散剤とともに水を溶剤として、分散・混合してスラリーを調製し、ロールコーターにて成形、乾燥させて厚み120μmのグリーンシートを得た。このグリーンシートをロールプレスにより加圧し緻密化し、1050℃にて焼成することにより、厚み90μmの固体電解質が得られた。このイオン伝導度は4×10−4Scm−1であった。気孔率は8.5vol%であった。
[実施例5]
実施例1で得られた固体電解質の片面にLiTi12を活物質、平均粒径0.3μmのリチウムイオン伝導性ガラスセラミックスをイオン伝導助剤として含むスラリーを塗布し、乾燥・焼結させて正極材を取り付けた。この正極層の厚みは、13μmであった。この正極層の上にAlをスパッタし、Al正極集電体を取り付けた。
もう片面にはLiTFSIをLi塩として添加したポリエチレンオキサイドとポリプロピレンオキサイドの共重合物をTHF溶液に溶解したスラリーを薄く塗布後、乾燥し、この上に厚み0.1mmのLi金属箔を貼り付けて負極とした。塗布したポリマー層の厚みは4μmであった。正極および負極にリード線を取り付けてリチウムイオン二次電池を組み立てた。
組み立てたリチウムイオン二次電池は、平均放電電圧1.5Vで駆動することができた。
[実施例6]
実施例2で得られた固体電解質を用いて実施例5と同じリチウムイオン二次電池を組み立てたところ、平均放電電圧1.5Vで駆動するリチウムイオン二次電池が得られた。
[実施例7]
実施例3で得られた固体電解質を用いて実施例5と同じリチウムイオン二次電池を組み立てたところ、平均放電電圧1.5Vで駆動するリチウムイオン二次電池が得られた。
[実施例8]
実施例4で得られた固体電解質を用いて実施例5と同じリチウムイオン二次電池を組み立てたところ、平均放電電圧1.5Vで駆動するリチウムイオン二次電池が得られた。
[実施例9]
実施例1にて得られたリチウムイオン伝導性のガラスセラミックス粉末を、エタノールを溶媒として、湿式粉砕を行い、平均粒径0.2μm、最大粒径0.3μmのリチウムイオン伝導性ガラスセラミックスの微粉末スラリーを得た。このスラリーにビニル系共重合物とウレタン樹脂とともに水を溶剤として、分散・混合し、ロールコーターにて成形、乾燥させて厚み90μmのグリーンシートを得た。このグリーンシートをΦ20mmのディスク状に打ち抜き、ハンドプレスにて加圧後、1000℃にて焼成して、厚み50μmの円形の固体電解質を得た。固体電解質の片面にLiCoOを活物質、固体電解質に使用したものと同じリチウムイオン伝導性ガラスセラミックスの微粉末スラリーをイオン伝導助剤として含むスラリーを塗布し、乾燥・焼結させて正極材を取り付けた。この正極層の上にAlをスパッタし、Al正極集電体を取り付けた。
もう片面には、LiTi12を活物質、固体電解質に使用したものと同じリチウムイオン伝導性ガラスセラミックスの微粉末スラリーをイオン伝導助剤として含むスラリーを塗布、乾燥、焼結させて負極材を取り付けた。この負極上に銅の微粒子を含むペーストを塗布し、乾燥・焼付けることにより負極集電体を取り付け、コインセルに封入することにより、リチウムイオン二次電池を組み立てた。この電池は、平均放電電圧3Vで駆動することが確認できた。
[実施例10]
以下の方法でリチウム一次電池を作成した。
実施例1において得られたガラスセラミックスをボールミルを用いて粉砕・分級し、平均粒径1μm、最大粒径5μmとし、アクリル樹脂、分散剤とともに水を溶剤として、分散・混合し、ロールコーターにて成形、乾燥させて厚み140μmのグリーンシートを得た。このグリーンシートをロールプレスにより加圧して緻密化し、1075℃にて焼成することにより、厚み100μmの固体電解質が得られた。このイオン伝導度は3×10−4Scm−1であった。
正極活物質には、市販のMnOを用い、これに導電助剤としてアセチレンブラック、結着剤としてPVdF(ポリフッ化ビニリデン)を混練し、ロールプレスにて0.3mmの厚みに成形し、Φ18mmの円形に打ち抜いて正極合剤を作製した。
Φ20mmに打ち抜いた固体電解質の片面に、Alをスパッタし、その上にΦ18mmのLi−Al合金負極を貼り合わせて負極とし、もう片面に作製した正極合剤を張り合わせて正極を取り付けた。作製したセルを、ステンレス製のコインセルに入れ、Li塩としてLiClOを1mol%添加したプロピレンカーボネートと1,2−ジメトキシエタンの混合溶媒をコインセル中に注入し、密封することでリチウム一次電池を作製することができた。このコイン電池は、内部で固体電解質が固定され、従来の樹脂製のセパレータのように放電による電極の体積変化によるたわみが生じないため、使用時に最後まで安定した放電電位を維持することができた。
リチウムイオン伝導性の無機粉体を含むグリーンシートを焼成してなる本発明の固体電解質は、リチウムイオン伝導性が高く、電気化学的に安定であるため、リチウム一次電池やリチウムイオン二次電池用の電解質だけではなく、ハイブリッドキャパシタと称される電気化学キャパシタ、色素増感型太陽電池、リチウムイオンを電荷移動担体とする他の電気化学素子への応用も可能である。
以下にその他の電気化学素子としての例をいくつか挙げる。
電解質上に、任意の感応電極を取り付けることにより、様々なガスセンサーや検知器に応用することができる。例えば、炭酸塩を電極にすると炭酸ガスセンサー、硝酸塩を含む電極にするとNOxセンサー、硫酸塩を含む電極にするとSOxセンサーに応用することができる。また、電解セルを組むことにより、排ガス中に含まれるNOx、SOx等の分解・捕集装置用の電解質にも応用できる。
電解質上にLiイオンの挿脱離により着色または変色する無機化合物または有機化合物を取り付け、その上にITOなどの透明電極を取り付けることによりエレクトロクロミック素子を構成することが可能であり、消費電力が少なく、メモリー性のあるエレクトロクロミックディスプレィを提供することができる。
本発明の固体電解質のイオン伝導経路は、リチウムイオンに最適なサイズとなっているため、他のアルカリイオンが存在している場合でもリチウムイオンを選択的に通すことができる。そのため、リチウムイオン選択捕集装置の隔膜またはLiイオン選択電極用隔膜として使用することができる。また、透過するリチウムイオンの速度は、イオンの質量が小さいほど速いため、リチウムイオンの同位体分離に適用することができる。これにより核融合炉燃料のトリチウム生成ブランケット材に必要な濃縮6Li(天然存在比で7.42%)の濃縮および分離が可能になる。

Claims (6)

  1. リチウムイオン伝導性の無機粉体を主成分として、少なくとも有機バインダー及び溶剤を含有するスラリーを調製し、該スラリーをグリーンシートに成膜し、該グリーンシートを加圧後、焼成する事を特徴とする固体電解質の製造方法。
  2. 前記リチウムイオン伝導性の無機粉体は、リチウムイオン伝導性のガラス粉体、リチウムイオン伝導性のセラミックス粉体、リチウムイオン伝導性のガラスセラミックス粉体、またはこれらの混合物の粉体からなることを特徴とする請求項1に記載の固体電解質の製造方法。
  3. 前記リチウムイオン伝導性の無機粉体はLi1+x+y(Al,Ga)(Ti,Ge)2−xSi3−y12ただし、0≦x≦1、0≦y≦1である結晶を含むことを特徴とする請求項1または2に記載の固体電解質の製造方法。
  4. 前記リチウムイオン伝導性の無機粉体はガラスセラミックスであることを特徴とする請求項1〜3のいずれかに記載の固体電解質の製造方法。
  5. 前記リチウムイオン伝導性の無機粉体はガラスであることを特徴とする請求項1に記載の固体電解質の製造方法。
  6. 前記成膜したグリーンシートを複数枚積層し、加圧後、焼成することを特徴とする請求項1〜6のいずれかに記載の固体電解質の製造方法。
JP2012142767A 2005-10-13 2012-06-26 リチウムイオン伝導性固体電解質の製造方法 Active JP5537607B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012142767A JP5537607B2 (ja) 2005-10-13 2012-06-26 リチウムイオン伝導性固体電解質の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005298728 2005-10-13
JP2005298728 2005-10-13
JP2012142767A JP5537607B2 (ja) 2005-10-13 2012-06-26 リチウムイオン伝導性固体電解質の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006166091A Division JP2007134305A (ja) 2005-10-13 2006-06-15 リチウムイオン伝導性固体電解質およびその製造方法

Publications (2)

Publication Number Publication Date
JP2012186181A true JP2012186181A (ja) 2012-09-27
JP5537607B2 JP5537607B2 (ja) 2014-07-02

Family

ID=37948507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012142767A Active JP5537607B2 (ja) 2005-10-13 2012-06-26 リチウムイオン伝導性固体電解質の製造方法

Country Status (3)

Country Link
US (1) US9580320B2 (ja)
JP (1) JP5537607B2 (ja)
CN (1) CN1949569B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160046882A (ko) 2013-09-25 2016-04-29 후지필름 가부시키가이샤 고체 전해질 조성물, 이를 이용한 전지용 전극 시트 및 전고체 이차전지
US10654963B2 (en) 2013-09-25 2020-05-19 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
JP2022521514A (ja) * 2019-02-20 2022-04-08 ユミコア 固体充電式リチウムイオン電池のための粉末状固体電解質化合物

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282302B2 (en) * 2002-10-15 2007-10-16 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
WO2004036669A2 (en) * 2002-10-15 2004-04-29 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
US20080057386A1 (en) 2002-10-15 2008-03-06 Polyplus Battery Company Ionically conductive membranes for protection of active metal anodes and battery cells
US7645543B2 (en) 2002-10-15 2010-01-12 Polyplus Battery Company Active metal/aqueous electrochemical cells and systems
US7491458B2 (en) * 2003-11-10 2009-02-17 Polyplus Battery Company Active metal fuel cells
US7608178B2 (en) * 2003-11-10 2009-10-27 Polyplus Battery Company Active metal electrolyzer
US9368775B2 (en) 2004-02-06 2016-06-14 Polyplus Battery Company Protected lithium electrodes having porous ceramic separators, including an integrated structure of porous and dense Li ion conducting garnet solid electrolyte layers
US7282295B2 (en) * 2004-02-06 2007-10-16 Polyplus Battery Company Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture
US20060078790A1 (en) * 2004-10-05 2006-04-13 Polyplus Battery Company Solid electrolytes based on lithium hafnium phosphate for active metal anode protection
US8652692B2 (en) * 2005-11-23 2014-02-18 Polyplus Battery Company Li/Air non-aqueous batteries
US8182943B2 (en) 2005-12-19 2012-05-22 Polyplus Battery Company Composite solid electrolyte for protection of active metal anodes
US8455131B2 (en) * 2008-06-16 2013-06-04 Polyplus Battery Company Cathodes and reservoirs for aqueous lithium/air battery cells
US8697294B1 (en) * 2007-09-06 2014-04-15 Quallion Llc Battery having ceramic electrolyte
JP4940080B2 (ja) * 2007-09-25 2012-05-30 株式会社オハラ リチウムイオン伝導性固体電解質およびその製造方法
US20090123846A1 (en) 2007-11-12 2009-05-14 Kyushu University All-solid-state cell
US20090123847A1 (en) 2007-11-12 2009-05-14 Kyushu University All-solid-state cell
JP5312966B2 (ja) * 2008-01-31 2013-10-09 株式会社オハラ リチウムイオン二次電池の製造方法
JP2009181873A (ja) * 2008-01-31 2009-08-13 Ohara Inc リチウムイオン二次電池の製造方法
JP5289072B2 (ja) * 2008-01-31 2013-09-11 株式会社オハラ リチウムイオン二次電池およびその製造方法
EP2086046A1 (en) * 2008-01-31 2009-08-05 Ohara Inc. Manufacture of lithium ion secondary battery
JP5680288B2 (ja) * 2008-07-07 2015-03-04 トヨタ自動車株式会社 硫化物系固体電解質の製造方法
WO2010107084A1 (ja) * 2009-03-18 2010-09-23 株式会社三徳 全固体リチウム電池
JP2010245031A (ja) 2009-03-20 2010-10-28 Semiconductor Energy Lab Co Ltd 蓄電デバイス及びその作製方法
KR101837103B1 (ko) * 2009-09-30 2018-03-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전기화학 커패시터
US20110171528A1 (en) * 2010-01-12 2011-07-14 Oladeji Isaiah O Solid state electrolytes having high lithium ion conduction
WO2011105574A1 (ja) * 2010-02-26 2011-09-01 日本ゼオン株式会社 全固体二次電池及び全固体二次電池の製造方法
US9577285B2 (en) 2010-10-15 2017-02-21 Samsung Sdi Co., Ltd. Solid electrolyte, method for preparing same, and rechargeable lithium battery comprising solid electrolyte and solid electrolyte particles
KR20120056674A (ko) * 2010-11-25 2012-06-04 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US9160035B2 (en) 2011-08-12 2015-10-13 National Institute Of Advanced Industrial Science And Technology Lithium ion conductive substance, lithium ion conductive solid electrolyte using the lithium ion conductive substance, protective layer for an electrode of a lithium ion battery, and method for manufacturing the lithium ion conductive substance
US9660311B2 (en) 2011-08-19 2017-05-23 Polyplus Battery Company Aqueous lithium air batteries
FR2982083B1 (fr) * 2011-11-02 2014-06-27 Fabien Gaben Procede de realisation de films minces d'electrolyte solide pour les batteries a ions de lithium
US9660265B2 (en) 2011-11-15 2017-05-23 Polyplus Battery Company Lithium sulfur batteries and electrolytes and sulfur cathodes thereof
US8828575B2 (en) 2011-11-15 2014-09-09 PolyPlus Batter Company Aqueous electrolyte lithium sulfur batteries
US8828574B2 (en) 2011-11-15 2014-09-09 Polyplus Battery Company Electrolyte compositions for aqueous electrolyte lithium sulfur batteries
US8828573B2 (en) 2011-11-15 2014-09-09 Polyplus Battery Company Electrode structures for aqueous electrolyte lithium sulfur batteries
US10411288B2 (en) 2011-11-29 2019-09-10 Corning Incorporated Reactive sintering of ceramic lithium-ion solid electrolytes
DE102012203139A1 (de) * 2012-02-29 2013-08-29 Robert Bosch Gmbh Feststoffzelle
WO2013131005A2 (en) 2012-03-01 2013-09-06 Excellatron Solid State, Llc High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same
US8932771B2 (en) 2012-05-03 2015-01-13 Polyplus Battery Company Cathode architectures for alkali metal / oxygen batteries
US10084168B2 (en) 2012-10-09 2018-09-25 Johnson Battery Technologies, Inc. Solid-state battery separators and methods of fabrication
KR20230137493A (ko) 2013-04-19 2023-10-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 이차 전지 및 그 제작 방법
JP6668231B2 (ja) 2013-05-15 2020-03-18 クアンタムスケイプ コーポレイション 電池用の固体カソライト又は電解質
US9905860B2 (en) 2013-06-28 2018-02-27 Polyplus Battery Company Water activated battery system having enhanced start-up behavior
JP6851131B2 (ja) 2013-12-04 2021-03-31 株式会社半導体エネルギー研究所 可撓性を有する二次電池
CN104810545B (zh) * 2014-01-24 2017-08-11 江西赣锋电池科技有限公司 磷酸盐锂快离子导体材料及其制备方法
US10601071B2 (en) 2014-12-02 2020-03-24 Polyplus Battery Company Methods of making and inspecting a web of vitreous lithium sulfide separator sheet and lithium electrode assemblies
US10164289B2 (en) 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US10147968B2 (en) 2014-12-02 2018-12-04 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US11984553B2 (en) 2014-12-02 2024-05-14 Polyplus Battery Company Lithium ion conducting sulfide glass fabrication
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
US10263224B2 (en) 2015-04-23 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electronic device
KR20180021797A (ko) 2015-06-24 2018-03-05 콴텀스케이프 코포레이션 복합 전해질
CN105161758B (zh) * 2015-09-29 2017-07-11 山东玉皇新能源科技有限公司 高纯度磷酸钛铝锂的电化学制备方法
US10116001B2 (en) 2015-12-04 2018-10-30 Quantumscape Corporation Lithium, phosphorus, sulfur, and iodine including electrolyte and catholyte compositions, electrolyte membranes for electrochemical devices, and annealing methods of making these electrolytes and catholytes
JP6763965B2 (ja) 2015-12-21 2020-09-30 ジョンソン・アイピー・ホールディング・エルエルシー 固体電池、セパレータ、電極および製造方法
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
WO2017197039A1 (en) 2016-05-10 2017-11-16 Polyplus Battery Company Solid-state laminate electrode assemblies and methods of making
US11342630B2 (en) 2016-08-29 2022-05-24 Quantumscape Battery, Inc. Catholytes for solid state rechargeable batteries, battery architectures suitable for use with these catholytes, and methods of making and using the same
EP3529847A1 (en) 2016-10-21 2019-08-28 QuantumScape Corporation Electrolyte separators including lithium borohydride and composite electrolyte separators of lithium-stuffed garnet and lithium borohydride
KR102496183B1 (ko) * 2016-12-28 2023-02-03 현대자동차주식회사 전고체 전지용 고체 전해질 시트 및 이의 제조방법, 및 이를 이용한 전고체 전지
JPWO2018193994A1 (ja) * 2017-04-18 2020-05-14 トヨタ自動車株式会社 全固体リチウムイオン二次電池
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US10629950B2 (en) 2017-07-07 2020-04-21 Polyplus Battery Company Encapsulated sulfide glass solid electrolytes and solid-state laminate electrode assemblies
US10862171B2 (en) 2017-07-19 2020-12-08 Polyplus Battery Company Solid-state laminate electrode assembly fabrication and making thin extruded lithium metal foils
US10749199B2 (en) * 2017-11-29 2020-08-18 International Business Machines Corporation Li1+xAlxTi2-x(PO4)3 solid-state thin film electrolyte for 3D microbattery and method of fabrication
US10991976B2 (en) 2018-05-16 2021-04-27 South Dakota Board Of Regents Solid-state electrolytes based on lithium halides for all-solid-state lithium-ion battery operating at elevated temperatures
US11276880B2 (en) 2018-05-16 2022-03-15 South Dakota Board Of Regents Solid-state electrolytes based on lithium halides for all-solid-state lithium-ion battery operating at elevated temperatures
CN109273668B (zh) 2018-09-27 2021-04-06 宁德新能源科技有限公司 负极极片及包含其的电化学装置
CN110993934A (zh) * 2019-11-08 2020-04-10 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种钛酸锂正极金属锂负极锂原电池及其制备方法
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026135A (ja) * 1999-05-28 2000-01-25 Ohara Inc リチウムイオン伝導性ガラスセラミックスおよびこれを用いた電池、ガスセンサ―
JP2001043892A (ja) * 1999-07-29 2001-02-16 Kyocera Corp リチウム電池
JP2001126740A (ja) * 1999-10-25 2001-05-11 Kyocera Corp リチウム電池
JP2001210360A (ja) * 2000-01-26 2001-08-03 Kyocera Corp 全固体二次電池の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901733A (en) * 1974-10-07 1975-08-26 Trw Inc Thin film solid electrolyte structures and process of making same
US4042482A (en) * 1976-01-22 1977-08-16 E. I. Du Pont De Nemours And Company Substituted lithium orthosilicates and solid electrolytes therefrom
JPS5981872A (ja) * 1982-11-02 1984-05-11 Sanyo Electric Co Ltd 固体電解質の製造法
US4957673A (en) * 1988-02-01 1990-09-18 California Institute Of Technology Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells and method for fabrication thereof
JPH04270165A (ja) * 1991-02-22 1992-09-25 Nissan Chem Ind Ltd シート成形用スラリー組成物及びその焼結体
JP3183906B2 (ja) * 1991-06-25 2001-07-09 株式会社日本触媒 ジルコニアシート
JPH05254918A (ja) 1992-03-16 1993-10-05 Hitachi Ltd セラミックスの製造方法
US6315881B1 (en) * 1995-11-15 2001-11-13 Kabushiki Kaisha Ohara Electric cells and gas sensors using alkali ion conductive glass ceramic
JP3655443B2 (ja) * 1997-09-03 2005-06-02 松下電器産業株式会社 リチウム電池
US5882455A (en) * 1997-09-25 1999-03-16 International Business Machines Corporation Apparatus and method for forming isotropic multilayer ceramic substrates
JP2000331684A (ja) 1999-05-24 2000-11-30 Kyocera Corp 積層型固体二次電池
JP2001093536A (ja) 1999-09-28 2001-04-06 Kyocera Corp リチウム電池
JP2001243984A (ja) 2000-02-28 2001-09-07 Kyocera Corp 固体電解質電池およびその製造方法
TW527745B (en) * 2000-11-21 2003-04-11 Dainichiseika Color Chem Solidifying material for cell electrolyte solution, and cell comprising the solidifying material
JP2003242958A (ja) 2002-02-20 2003-08-29 Kyocera Corp リチウム電池
JP4777593B2 (ja) * 2002-11-29 2011-09-21 株式会社オハラ リチウムイオン二次電池の製造方法
EP1431423A1 (de) * 2002-12-16 2004-06-23 Basf Aktiengesellschaft Verfahren zur Herstellung eines Lithiumionenleiters
JP5153065B2 (ja) 2005-08-31 2013-02-27 株式会社オハラ リチウムイオン二次電池および固体電解質

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026135A (ja) * 1999-05-28 2000-01-25 Ohara Inc リチウムイオン伝導性ガラスセラミックスおよびこれを用いた電池、ガスセンサ―
JP2001043892A (ja) * 1999-07-29 2001-02-16 Kyocera Corp リチウム電池
JP2001126740A (ja) * 1999-10-25 2001-05-11 Kyocera Corp リチウム電池
JP2001210360A (ja) * 2000-01-26 2001-08-03 Kyocera Corp 全固体二次電池の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160046882A (ko) 2013-09-25 2016-04-29 후지필름 가부시키가이샤 고체 전해질 조성물, 이를 이용한 전지용 전극 시트 및 전고체 이차전지
KR20180069137A (ko) 2013-09-25 2018-06-22 후지필름 가부시키가이샤 고체 전해질 조성물, 이를 이용한 전지용 전극 시트 및 전고체 이차전지
US10654963B2 (en) 2013-09-25 2020-05-19 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte composition
US11440986B2 (en) 2013-09-25 2022-09-13 Fujifilm Corporation Solid electrolyte composition, binder for all-solid-state secondary batteries, and electrode sheet for batteries and all-solid-state secondary battery each using said solid electrolyte
JP2022521514A (ja) * 2019-02-20 2022-04-08 ユミコア 固体充電式リチウムイオン電池のための粉末状固体電解質化合物
JP7209858B2 (ja) 2019-02-20 2023-01-20 ユミコア 固体充電式リチウムイオン電池のための粉末状固体電解質化合物

Also Published As

Publication number Publication date
CN1949569A (zh) 2007-04-18
JP5537607B2 (ja) 2014-07-02
CN1949569B (zh) 2010-08-25
US9580320B2 (en) 2017-02-28
US20070087269A1 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP5537607B2 (ja) リチウムイオン伝導性固体電解質の製造方法
JP5732352B2 (ja) リチウムイオン伝導性固体電解質の製造方法
JP2007134305A (ja) リチウムイオン伝導性固体電解質およびその製造方法
KR100920765B1 (ko) 리튬 이온 전도성 고체 전해질 및 그 제조 방법
JP5144845B2 (ja) 固体電池
JP2007294429A (ja) リチウムイオン伝導性固体電解質およびその製造方法
JP5288816B2 (ja) 固体電池
JP5122063B2 (ja) リチウムイオン二次電池および固体電解質
KR101130123B1 (ko) 완전 고체형 리튬 이온 2차 전지 및 고체 전해질
JP5153065B2 (ja) リチウムイオン二次電池および固体電解質
JP5102056B2 (ja) 固体電池およびその電極の製造方法
CN111213276A (zh) 全固体电池
JP5312969B2 (ja) リチウムイオン二次電池の製造方法
JP5197918B2 (ja) 全固体リチウムイオン二次電池および固体電解質
JP2011150817A (ja) 全固体電池
WO2016157751A1 (ja) リチウムイオン伝導体、固体電解質層、電極、電池および電子機器
JP6679843B2 (ja) 電極、電極の製造方法及び電池
CN111213272B (zh) 双极型全固体钠离子二次电池
JP2007220377A (ja) 固体電解質及び固体電解質の製造方法
JP5207448B2 (ja) リチウムイオン二次電池
KR102649111B1 (ko) 적층형 전고체전지의 제조방법
JP2011222131A (ja) リチウムイオン二次電池の製造方法、リチウムイオン二次電池およびリチウムイオン二次電池前駆体
TW202339331A (zh) 鎵碲摻雜的固態電解質、其製備方法以及包含其的全固態電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120626

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140425

R150 Certificate of patent or registration of utility model

Ref document number: 5537607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250