JP2012033534A - パターン形成方法及びポリマーアロイ下地材料 - Google Patents

パターン形成方法及びポリマーアロイ下地材料 Download PDF

Info

Publication number
JP2012033534A
JP2012033534A JP2010169279A JP2010169279A JP2012033534A JP 2012033534 A JP2012033534 A JP 2012033534A JP 2010169279 A JP2010169279 A JP 2010169279A JP 2010169279 A JP2010169279 A JP 2010169279A JP 2012033534 A JP2012033534 A JP 2012033534A
Authority
JP
Japan
Prior art keywords
polymer
pattern
phase
self
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010169279A
Other languages
English (en)
Other versions
JP5300799B2 (ja
Inventor
Shigeki Hattori
繁樹 服部
Kouji Asakawa
鋼児 浅川
Hiroko Nakamura
裕子 中村
Ryota Kitagawa
良太 北川
Yuriko Kiyono
由里子 清野
Masahiro Sugano
正洋 菅野
Momoka Higa
百夏 比嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010169279A priority Critical patent/JP5300799B2/ja
Priority to PCT/JP2011/066222 priority patent/WO2012014700A1/ja
Priority to KR1020137001360A priority patent/KR101372152B1/ko
Priority to CN201180035598.2A priority patent/CN103003918B/zh
Priority to TW100126670A priority patent/TWI482201B/zh
Publication of JP2012033534A publication Critical patent/JP2012033534A/ja
Priority to US13/750,007 priority patent/US8986488B2/en
Application granted granted Critical
Publication of JP5300799B2 publication Critical patent/JP5300799B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • G03F7/405Treatment with inorganic or organometallic reagents after imagewise removal
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/427Stripping or agents therefor using plasma means only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】ポリマーアロイに配向性の高い相分離構造のパターンを短時間で形成することのできるパターン形成方法及びポリマーアロイ下地材料を提供する。
【解決手段】基板上に自己組織化単分子膜とポリマー膜を積層する工程と、エネルギー線を照射することにより前記ポリマー膜と前記自己組織化単分子膜を化学結合させ、ポリマー表面層を前記自己組織化単分子膜上に形成する工程と、相分離構造のパターンを有するポリマーアロイを前記ポリマー表面層上に形成する工程と、を含むパターン形成方法を提供する。
【選択図】図1B

Description

本発明の実施の形態は、パターン形成方法及びポリマーアロイ下地材料に関する。
従来、LSIをはじめとする半導体デバイスの製造プロセスでは、リソグラフィーによる微細加工技術が採用されている。今後、さらに微細な加工が要求されることは確実であり、リソグラフィーにおける光源の短波長化およびレジストの高性能化が進められている。しかし、これらの対策による解像度の向上は困難になってきている。
これに対して、ブロックコポリマーの相分離構造を利用する微細加工技術が着目されている。この微細加工技術では、ブロックコポリマーの相分離構造を規則的に並べることが要求される。ブロックコポリマーの相分離構造を規則的に並べるために、以下のような方法が提案されている。
たとえば、基板上に自己組織化単分子膜(self−assembled monolayer、SAM)を形成し、その上にフォトレジストを塗布してリソグラフィーによりラインアンドスペースのレジストパターンを形成し、レジストパターンをマスクとして酸素雰囲気でX線を選択的に照射してSAMの一部を化学修飾し、レジストパターンを除去し、SAM上にブロックコポリマーを塗布してアニールすることにより、ブロックコポリマーのミクロ相分離パターンを形成する方法が知られている。
また、基板上にSAMを形成し、干渉露光によりSAMの一部を選択的に露光して化学修飾されたドットパターンを形成し、SAM上にブロックコポリマーを塗布してアニールすることにより、ブロックコポリマーのミクロ相分離パターンを形成する方法が知られている。
しかし、これらのSAMを用いる方法は、SAMの被覆率がばらつきやすく、SAMを形成する分子の化学ポテンシャルが限定されることから、SAMの表面自由エネルギーの制御性が悪く、ブロックコポリマーのミクロ相分離パターンの配向をそろえるのが不安定である問題を含んでいる。
また一方で、基板上にポリマーブラシと呼ばれる高分子化合物から成る単分子膜を長時間、加熱処理することにより形成し、その上にフォトレジストを塗布してリソグラフィーによりラインアンドスペースのレジストパターンを形成し、レジストパターンをマスクとして酸素雰囲気でX線を選択的に照射してポリマーブラシの一部を除去し、レジストパターンを除去し、ポリマーブラシ上にブロックコポリマーを塗布してアニールすることにより、ブロックコポリマーのミクロ相分離パターンを形成する方法が知られている。
さらに、基板上にポリマーブラシを形成し、その上に電子線レジストを塗布してリソグラフィーによりドットパターンを形成し、電子線レジストのドットパターンをマスクとして酸素プラズマを照射してポリマーブラシの一部を除去し、レジストパターンを除去し、SAM上にブロックコポリマーを塗布してアニールすることにより、ブロックコポリマーのミクロ相分離パターンを形成する方法が知られている。この方法では、ブロックコポリマーのドットパターンのドットピッチが、電子線レジストに形成したドットパターンのドットピッチよりも狭くなりうることが開示されている。
これらのポリマーブラシを用いる方法は、ポリマーが表面に広がって単分子膜を形成するため、シランカップリング剤から成るSAMより表面自由エネルギーの制御が安定的に行うことができるが、ポリマーブラシ形成時にポリマー末端のヒドロキシ基がSi基板表面と化学反応を十分に起こす必要があり、ポリマーが熱分解しない程度の温度でSi近傍にヒドロキシ基が十分に拡散し、化学反応に要する活性化エネルギーを十分に越える熱エネルギーを与える必要があるため、長時間の加熱処理を要し、半導体デバイスなどの微細加工技術として実用的でない。
また、基板にベンゾフェノン骨格を有するシランカップリング剤のSAMを形成し、その上にポリマーを積層して、光照射すると、SAMに接触している界面部のポリマー層がベンゾフェノンと架橋反応を起こし、ポリマーが溶解しやすい有機溶剤でリンスしてもその界面部が残る現象が報告されているが、ブロックコポリマーのミクロ相分離パターンの配向を揃える材料として考えられておらず、その有効性は見出されていない。
米国特許第6,746,825号明細書 米国特許第7,521,090号明細書
S. O. Kim et al., Nature, Vol.424, pp.411-414 (2003) E. W. Edwards et al., Adv. Mater, vol.16, pp.1315-1319(2004) R. Ruiz et al., Science, Vol. 321, pp. 936-939 (2008) O. Prucker et al., J. Am. Chem. Soc., Vol. 121, pp. 8766-8770 (1999) A. M. Welander et al., Macromolecules, 41, 2759-2761, (2008) K. Asakawa et al., APS March Meeting, (2000)
本発明の課題は、ポリマーアロイに配向性の高い相分離構造のパターンを短時間で形成することのできるパターン形成方法及びポリマーアロイ下地材料を提供することにある。
一実施の形態によれば、パターン形成方法は、基板上に自己組織化単分子膜とポリマー膜を積層する工程と、エネルギー線を照射することにより前記ポリマー膜と前記自己組織化単分子膜を化学結合させ、ポリマー表面層を前記自己組織化単分子膜上に形成する工程と、相分離構造のパターンを有するポリマーアロイを前記ポリマー表面層上に形成する工程と、を含む。
(a)〜(c)は、第1の実施の形態に係るポリマーアロイのパターン形成方法を示す斜視図。 (d)、(e)は、第1の実施の形態に係るポリマーアロイのパターン形成方法を示す斜視図。 (a)〜(c)は、第2の実施の形態に係るポリマーアロイのパターン形成方法を示す斜視図。 (d)、(e)は、第2の実施の形態に係るポリマーアロイのパターン形成方法を示す斜視図。 (a)、(b)は、第2の実施の形態に係るポリマーアロイのパターン形成方法を示す斜視図。 (a)、(b)は、第3の実施の形態に係るポリマーアロイのパターン形成方法を示す斜視図。
〔第1の実施の形態〕
図1A(a)〜(c)、図1B(d)、(e)は、第1の実施の形態に係るポリマーアロイのパターン形成方法を示す斜視図である。
まず、図1A(a)に示すように、基板1上に自己組織化単分子膜2を形成する。
基板1として、シリコンウエハー、ドーピングされたシリコンウエハー、表面に絶縁層または電極もしくは配線となる金属層が形成されたシリコンウエハー、マスクブランク、GaAs、AlGaAsなどのIII−V族化合物半導体ウエハーを用いることができる。また、クロムまたは酸化クロム蒸着基板、アルミニウム蒸着基板、IBSPGコート基板、スピンオングラス(SOG)コート基板、SiNコート基板を用いることもできる。特に、基板1は、自己組織化単分子膜2の形成しやすさの観点から、表面に多くのヒドロキシ基を有することが好ましい。
自己組織化単分子膜2は、シリコン基板上に形成された金属や金属酸化物の表面のヒドロキシ基と反応しやすい材料、例えばシランカップリング剤を含む材料、からなることが好ましい。
また、自己組織化単分子膜2は、紫外線や電子線などのエネルギー線を効率よく吸収し、接触しているポリマーと架橋反応を起こす光重合開始剤、例えば、ベンゾフェノン骨格を有する材料、からなることが好ましい。
ベンゾフェノン骨格を有する材料は、例えば、下記の一般式Iaで表される。一般式Ia中のRは、末端にSi−F、Si−Cl、Si−Br、もしくはSi−OH、Si−OCH、Si−OC、Si−OCを備える直鎖アルキル基であり、アルキル鎖の中にエーテル結合などを有してもよい。
Figure 2012033534
一般式Iaで表される材料は、ベンゾフェノン骨格を含んでいるのでエネルギー線を効率よく吸収し、ベンゾフェノンのカルボニル基のn軌道の電子がπ軌道に励起され、接触するポリマーのアルキル鎖と反応する。接触するポリマーのアルキル鎖は、第3級炭素が最も反応しやすい。このため、エネルギー線の照射により、一般式Iaで表される材料からなる自己組織化単分子膜2とポリマーを架橋させることができる。
さらに、自己組織化単分子膜2の材料は、一般式Iaで表される材料のうち、合成が簡便で、コストが安いものが好ましい。このような材料として、例えば、下記の一般式Ibで表されるベンゾフェノン骨格を含むシランカップリング剤を用いることができる。
Figure 2012033534
自己組織化単分子膜2を形成する方法としては、スピンコーティング、ディップコーティング、気相成長、ドクターブレード法、カーテンコーティングなどを用いることができる。なお、自己組織化単分子膜2を形成する前に、基板1の表面に付着した有機不純物を除去するために、基板1への紫外線照射などの前処理を行うことが好ましい。
自己組織化単分子膜2の形成にスピンコーティングを用いる場合、自己組織化単分子膜2の材料を溶剤で希釈するかまたは原液のまま基板1上にスピンコートし、必要に応じてホットプレートなどの上でベークして自己組織化単分子膜2を形成する。なお、単分子膜を超えて基板1に吸着されている余分な自己組織化単分子膜2の材料は洗い流される。
スピンコーティングにおいて、自己組織化単分子膜2の材料を溶剤で希釈する濃度は1〜30wt%が好ましいが、特に限定されない。基板1に対する塗れ広がりの程度に応じてその濃度を調整することが好ましい。
用いる溶剤は、自己組織化単分子膜2の材料によっても異なるが、自己組織化単分子膜2の材料と反応を起こさないものが好ましい。このような溶剤として、トルエン、キシレン、メシチレンなどの芳香族炭化水素類、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナンなどのシクロアルカン類、ヘキサン、ヘプタン、オクタン、ノナン、デカンなどのアルカン類、メタノール、エタノール、1−プロパノール、2−プロパノールなどのアルキルアルコール類などを用いることができる。
上述した溶剤以外にも、反応性、基板1との濡れ性、揮発性の観点から、一般的なフォトレジストの溶剤に用いられるケトン類、セロソルブ類、およびエステル類といった有機溶媒を用いることもできる。ケトン類としては、シクロヘキサノン、アセトン、エチルメチルケトン、メチルイソブチルケトンなどが挙げられる。セロソルブル類としては、メチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテートなどが挙げられる。エステル類としては、酢酸エチル、酢酸ブチル、酢酸イソアミル、γ−ブチロラクトン、3−メトキシプロピオン酸メチルが挙げられる。
溶剤は、必要に応じて2種以上を組み合わせて用いることができる。基板1の表面の官能基との反応性の観点から脱水溶剤を用いることが好ましい。
ホットプレートなどの上でベークするときの温度は、自己組織化単分子膜2の材料が基板1の表面の官能基と化学結合するための活性化エネルギーを超えるエネルギーを発生させるため、100〜200℃が好ましい。
単分子膜を超えて基板1に吸着されている余分な自己組織化単分子膜2の材料を洗い流す(リンスする)ときに使用する溶剤は、自己組織化単分子膜2の材料を希釈するときに用いた溶剤と同様のものを用いることが好ましい。
自己組織化単分子膜2の形成にディップコーティングを用いる場合、自己組織化単分子膜2の材料を溶剤で希釈し、その希釈溶液中に基板1を一定時間浸漬させて、自己組織化単分子膜2を形成する。
ディップコーティングにおいて、自己組織化単分子膜2の材料を溶剤で希釈する濃度は1〜30wt%が好ましい。
用いる溶剤は、スピンコーティングで用いる溶剤と同様に、自己組織化単分子膜2の材料と反応を起こさないものが好ましい。このような溶剤として、トルエン、キシレン、メシチレンなどの芳香族炭化水素類、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナンなどのシクロアルカン類、ヘキサン、ヘプタン、オクタン、ノナン、デカンなどのアルカン類、メタノール、エタノール、1−プロパノール、2−プロパノールなどのアルキルアルコール類などを用いることができる。基板1の表面の官能基との反応性の観点から脱水溶剤を用いることが好ましい。
浸漬時間は、濃度、反応性などにも依存するが、1〜60分間が好ましい。反応速度の観点から溶液を加熱して基板1を浸漬させてもよい。浸漬温度は、溶剤の沸点以下で、自己組織化単分子膜2の材料が基板1の表面の官能基に反応する前に分解しない温度に設定され、一般的に40〜100℃に調節される。
単分子膜を超えて自己組織化単分子膜2に吸着されている余分な自己組織化単分子膜2の材料を洗い流す(リンスする)ときに使用する溶剤は、浸漬に使用した溶剤と同様のものを用いることが好ましい。リンス後に窒素やアルゴンなどの不活性ガスを吹き付けて溶剤を吹き飛ばし、場合によってはホットプレート上で加熱して溶剤を除去することが好ましい。
自己組織化単分子膜2の形成に気相成長を用いる場合、気圧を下げるか温度を上げるかまたはその両方によって自己組織化単分子膜2の材料を気体状態とし、その中へ基板1を導入し、一定時間曝露して基板1の表面に自己組織化単分子膜2を形成する。
気相成長では、自己組織化単分子膜2の材料を気体状態にするために、その材料の蒸気圧特性に応じて、気圧を下げるか温度を上げるかまたはその両方を行う。用いる単分子膜形成材料の沸点に依存するが、材料の安定性の観点から、減圧して気体状態に変わるまで温度を上げることが好ましい。気体状態の単自己組織化単分子膜2の材料が存在する空間に基板1を入れるかまたは予め入れておき、1〜5時間基板1の表面を曝露することが好ましい。
基板1を曝露した後、必要に応じて、単分子膜を超えて基板1に吸着されている余分な自己組織化単分子膜2の材料を溶剤で洗い流してもよい。この溶剤として、上述したスピンコーティングにおいて用いられる溶剤と同じものを用いることが好ましい。
次に、図1A(b)に示すように、自己組織化単分子膜2上にポリマー膜3を形成する。
ポリマー膜3の材料としては、高エネルギー線の照射により自己組織化単分子膜2と化学結合し、かつその表面上に形成されるポリマーアロイのミクロ相分離構造の配向を整えるために適した表面エネルギーを有するものを用いる。
次に、図1A(c)に示すように、基板1上に高エネルギー線を照射し、ポリマー膜3を自己組織化単分子膜2に化学結合(架橋)させ、ポリマー表面層4を自己組織化単分子膜2上に形成する。なお、ポリマー表面層4を形成した後、ポリマー表面層4上のポリマー膜3の自己組織化単分子膜2に化学結合しなかった部分を除去してもよい。
自己組織化単分子膜2に照射されるエネルギー線は、自己組織化単分子膜2の材料が感度をもつ波長を有するものであれば特に限定されない。具体的には、紫外線、水銀ランプのi線、h線またはg線、キセノンランプ光、新紫外光(たとえばKrFまたはArFなどのエキシマーレーザー光)、X線、シンクロトロンオービタルラジエーション(SR)、電子線、γ線およびイオンビームなどを用いることができる。
次に、図1B(d)に示すように、相分離構造を有するポリマーアロイ5をポリマー表面層4上に形成する。ポリマーアロイ5をポリマー表面層4上に形成することにより、ポリマーアロイ5を自己組織化単分子膜2上に直接形成する場合よりも、ポリマーアロイ5の相分離構造の垂直配向性を高めることができる。
ポリマーアロイ5は、例えば、ブロックコポリマー、異種のホモポリマーをブレンドしたポリマー、ホモポリマーとブロックコポリマーをブレンドしたポリマー、またはグラフトコポリマーである。
ポリマーアロイ5は、第1の相5aおよび第2の相5bからなる相分離構造を有する。ポリマーアロイ5は、例えば、第1の相5aがポリスチレンのブロック鎖からなり、第2の相5bがポリブタジエンのブロック鎖からなるブロックコポリマー、または第1の相5aがポリスチレンのブロック鎖からなり、第2の相5bがポリメチルメタクリレートのブロック鎖からなるブロックコポリマーである。
また、第1の相5aおよび第2の相5bはラメラ構造を構成することが好ましい。なお、ポリマーアロイ5の相分離構造は、3つ以上の相から構成されてもよい。
ポリマーアロイ5の形成方法は特に限定されない。たとえば、スピンコーティング、ディップコーティング、ドクターブレード法、カーテンコーティング、その他の方法を用いることができる。ポリマーアロイ5の溶液をポリマー表面層4上に塗布した後、必要に応じて、ホットプレート上で加熱して溶剤を除去してもよい。このときの加熱温度は70〜120℃が好ましい。
ポリマーアロイ5を相分離させるには、一般的に、ポリマーアロイ5のガラス転移点温度以上の温度でアニールする。例えば、ブロックコポリマーの相分離速度はアニール温度に対して相関性があることが知られている(例えば、A. M. Welander et al., Macromolecules, 41, 2759-2761, 2008参照)。アニール温度が秩序・無秩序転移温度(ODT)を超えて高くなると、無秩序構造になり、相分離構造が得られない。このため、適度な相分離速度が得られる適度な温度でアニールすることが好ましい。ポリマーアロイ5の分子量や種類にもよるが、アニール温度は130〜280℃であることが好ましい。アニールはオーブンやホットプレートを用いて行う。オーブンを用いる場合には低温で長時間アニールする。ホットプレートを用いる場合には高温で短時間アニールする。
なお、酸素などの反応性ガスが微量に存在する雰囲気でアニールする場合、アニール温度が高温になるとポリマーアロイ5が分解することがある。そこで、ポリマーアロイ5の分解を防ぐ観点から、アルゴン、窒素などの不活性ガス雰囲気でアニールすることが好ましい。必要に応じて、約3%の水素を含むフォーミングガス雰囲気でアニールしてもよい。
その後、図1B(e)に示すように、ポリマーアロイ5の第1の相5aと第2の相5bのうちのいずれか一方を選択的に除去してもよい。ラメラ構造を構成する第1の相5aと第2の相5bのうちのいずれか一方を選択的に除去することにより、ポリマーアロイ5にラインアンドスペースパターンを形成することができる。なお、ポリマーアロイ5が3つ以上の相から構成される場合は、それらの相のうちの一部の相を除去する。
この工程を行う場合、第1の相5aと第2の相5bは、何らかの方法によりいずれか一方を選択的に除去することのできるブロック鎖からなることが求められる。例えば、ポリスチレンのブロック鎖からなる相とポリブタジエンのブロック鎖からなる相を有するブロックコポリマーにオゾン処理を施すことにより、ポリブタジエンのブロック鎖からなる相を選択的に除去できることが知られている。また、ポリスチレンのブロック鎖からなる相とポリメチルメタクリレートのブロック鎖からなる相を有するブロックコポリマーにO、CFなどの反応性ガスを用いた反応性イオンエッチング(RIE)を施すことにより、ポリメチルメタクリレートのブロック鎖からなる相を選択的に除去できることが知られている(例えば、K. Asakawa et al., APS March Meeting, 2000を参照)。
そのため、例えば、ポリマーアロイ5が、第1の相5aがポリスチレンのブロック鎖からなり、第2の相5bがポリブタジエンのブロック鎖からなるブロックコポリマーである場合は、オゾン処理により第2の相5bを選択的に除去し、第1の相5aのみを残すことができる。また、ポリマーアロイ5が、第1の相5aがポリスチレンのブロック鎖からなり、第2の相5bがポリメチルメタクリレートのブロック鎖からなるブロックコポリマーである場合は、O、CFなどの反応性ガスを用いたRIEにより第2の相5bを選択的に除去し、第1の相5aのみを残すことができる。
オゾン処理やRIEを施す方法以外に、熱処理またはウェットエッチングを施す方法を用いることができる。主鎖がエネルギー線の照射により切断されるポリマー鎖とエネルギー線に対して難分解性のポリマー鎖とを有するブロックコポリマーをパターン形成材料として用いた場合において、膜に光、もしくは電子線を照射してミクロ相分離構造を構成する1つのポリマー相の主鎖を切断した後、加熱により揮発させるか、ウェットエッチングすることによりそのポリマー相を選択的に除去する。
また、ウェットエッチングを用いる方法では、処理を行う前にエネルギー線を照射しなくても、第1の相5aと第2の相5bの一方を選択的に除去できる現像液を用いると、第1の相5aと第2の相5bの一方を選択的に除去することができる。
現像液は、有機現像液であっても水性現像液(アルカリ現像液)であってもよい。有機現像液としては、メタノール、エタノール、およびイソプロパノールなどのアルコール類、シクロヘキサノン、アセトン、エチルメチルケトン、およびメチルイソブチルケトンなどのケトン類、メチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、およびブチルセロソルブアセテートなどセロソルブ類、および酢酸エチル、酢酸ブチル、酢酸イソアミル、γ−ブチロラクトン、および3−メトキシプロピオン酸メチルなどのエステル類といった有機溶媒が挙げられる。上述したような溶剤は、必要に応じて2種以上を組み合わせて用いることができる。
水性現像液としては、有機アルカリ水溶液および無機アルカリ水溶液のいずれを用いてもよい。有機アルカリ水溶液としては、例えばテトラメチルアンモニウムヒドロキシド水溶液、テトラエチルアンモニウムヒドロキシド水溶液、およびコリン水溶液などが挙げられ、無機アルカリ水溶液としては、例えば水酸化カリウム水溶液、および水酸化ナトリウム水溶液などが挙げられる。アルカリ現像液の濃度は限定されない。
また、これらの現像液には、必要に応じて任意の添加剤を添加することもできる。例えば、界面活性剤を添加して現像液の表面張力を下げたり、中性塩を加えて現像を活性にすることもできる。また、現像液の温度も任意であり、冷水を用いることも温水を用いることもできる。
残った第1の相5aは、下地層、すなわち基板1を構成するウエハーや、ウエハー上の金属層または絶縁層、のエッチング用のマスクとして用いることができる。
以下に、本実施の形態の具体例を示す。この具体例においては、基板1としてのシリコンウエハー上に自己組織化単分子膜2としてのCSBPの単分子膜を形成し、その上に、ポリマー膜3としてのポリマー膜を形成し、CSBPの単分子膜およびポリマー膜をArFエキシマーレーザーで露光してポリマー表面層4としてのポリマー表面層を形成し、さらにポリマーアロイ5としてのブロックコポリマーのラメラ状のミクロ相分離構造を形成した。
まず、市販の4−ヒドロキシベンゾフェノン(39.6g)と炭酸カリウム(28g)を三口フラスコに入れ、アルゴン置換した。次に、脱水アセトン(120ml)を入れ、よく撹拌してアリルブロミド(18.6ml)を加えた。そして60℃で8時間撹拌した。その後、室温に冷まし、純水(80ml)を加えて攪拌し、ジエチルエーテル(100ml)で2回抽出した。10%NaOH水溶液(100ml)で2回抽出洗浄し、硫酸ナトリウムで乾燥した。エバポレーターにかけ、溶媒を除去して黄白色の残留物を得た。残留物をメタノールから再結晶して吸引ろ過して、真空中で乾燥後、純粋な生成物である4−アリルオキシベンゾフェノン(以下ABPという)を得た(収量43.7g、収率91.9%)。
ABPは、下記の化学式で表される。
Figure 2012033534
次に、得られたABP(2g)と10%Pt−C(10mg)を三口フラスコに入れ、アルゴン置換した。その中へジメチルクロロシラン(20ml)を入れ、撹拌した。40℃で5時間撹拌した。その後、室温まで冷却し、過剰なジメチルクロロシランを真空除去して、残ったオイル状の生成物である4−(3’クロロジメチルシリル)プロピルオキシベンゾフェノン(以下CSBPという)を得た。得られたオイル状の生成物であるCSBPは、使用する際、脱水トルエンに溶かし、触媒をろ過してそのろ液をそのままシリコンウエハーの表面処理溶液として使用した。
CSBPは、下記の化学式で表される。
Figure 2012033534
次に、基板1に相当するシリコンウエハー上にCSBPのトルエン溶液(2.26mM、4ml)を垂らし、トリエチルアミンのトルエン溶液(0.247M、2ml)を続けて垂らして、1分間放置し、回転して溶液を振り切った。その後、シクロヘキサノンで全面リンスし、その上にポリマー膜3に相当するポリマー膜用のポリマー溶液を回転塗布した。ポリマー膜用のポリマー溶液は、トルエンに溶かし、回転数2000rpmで塗布した。塗布後に110℃で90秒間ベークして、シリコンウエハー上に自己組織化単分子膜2に相当するCSBPの自己組織化単分子膜を形成し、さらにポリマー膜3に相当するポリマー膜を積層したものを得た。
ポリマー膜用のポリマー溶液は、濃度1wt%に調整した。ポリマー膜用のポリマーとして、Polymer Source社から購入したポリスチレン(PS)とポリメチルメタクリレート(PMMA)のランダム共重合体(PS−r−PMMA)であるP9225−SMMAranを用いた。P9225−SMMAranは、数平均分子量(Mn)が7000、分散度(Mw/Mn)が1.20、PS部分の全体分子量に対する割合(f(PS))が0.59である。
次に、作製したポリマー膜を、ArFエキシマーレーザーにより露光量10〜490mJ/cmで露光した。露光後に、シクロヘキサノンでシリコンウエハー全面をリンスしてポリマー表面層4に相当するポリマー表面層を得た。
別途、ブロックコポリマーの溶液を調製した。ブロックコポリマーとして、Polymer Source社から購入したポリスチレン(PS)とポリメチルメタクリレート(PMMA)のブロック共重合体(PS−b−PMMA)であるP189−SMMAを用いた。P189−SMMAは、PSブロックとPMMAブロックの数平均分子量(Mn)が86500であり、分散度(Mw/Mn)が1.08である。PS部分の全体分子量に対する割合(f(PS))が0.54である。
ブロックコポリマーのポリエチレングリコールモノメチルエーテルアセテート(PGMEA)溶液を2.0wt%の濃度で調整し、ポリマー表面層上に回転数2000rpmで回転塗布し、ホットプレート上において110℃で90秒間ベークしてポリマーアロイ5に相当するブロックコポリマーを形成した。
次いで、窒素雰囲気下のホットプレートベーカー上において220℃で1分間アニール処理することにより、ブロックコポリマーをポリスチレンのブロック鎖からなるPS相とポリメチルメタクリレートのブロック鎖からなるPMMA相に相分離させた。それぞれのサンプル表面の500nm×500nm(500nm□)の領域を、原子間力顕微鏡(Nanoscope II)により、カンチレバーにシリコンチップ[NCH−50]を使用し、タッピングモードで測定して、得られた位相像からラメラ状のミクロ相分離構造の垂直配向性を評価した。
その結果、露光領域全体でバラツキのないラメラ状の垂直配向性を確認でき、観察した領域内において垂直配向性の欠陥がなかった。
さらに、得られた相分離構造を有するブロックコポリマーにOガスを用いたRIEを施すことにより、PS相よりもエッチング速度が速いPMMA相を選択的に除去することができた。
また、得られた相分離構造を有するブロックコポリマーをイソプロピルアルコール(IPA)とメチルイソブチルケトン(MIBK)の1:1混合溶液に浸すことにより、PS相よりも溶解速度が速いPMMA相を選択的に除去することができた。
(比較例1)
上記の具体例と同じPSとPMMAのブロックコポリマー(P189−SMMA)の濃度2wt%のPGMEA溶液を作製し、ポリマー表面層を形成せずにシリコンウエハー上に直接回転塗布して、220℃、1分間アニール処理を行なった。しかし、シリコンウエハー上に直接形成したブロックコポリマーには、全くラメラ状の垂直配向性を確認することができなかった。
上記の結果から、本実施の形態のパターン形成方法、形成材料は、ブロックコポリマーに対する高い相分離構造の制御性を有していると考えられる。
〔第2の実施の形態〕
第2の実施の形態は、ポリマー表面層4にパターンを形成した後にポリマーアロイ5を形成する点において第1の実施の形態と異なる。なお、各部材の材料や製造方法等、第1の実施の形態と同様の点については、説明を省略または簡略化する。
図2A(a)〜(c)、図2B(d)、(e)は、第2の実施の形態に係るポリマーアロイのパターン形成方法を示す斜視図である。
まず、図1A(a)〜(c)に示されるポリマー表面層4を形成するまでの工程を第1の実施の形態と同様に行う。
次に、図2A(a)に示すように、ポリマー膜3上にラインアンドスペース等のパターンを有するフォトレジスト6を形成する。
次に、図2A(b)に示すように、フォトレジスト6をマスクとして用いてポリマー表面層4をエッチングし、ポリマー表面層4にフォトレジスト6のパターンを転写する。
次に、図2A(c)に示すように、フォトレジスト6を除去する。
次に、図2B(d)に示すように、相分離構造を有するポリマーアロイ5をポリマー表面層4および露出した自己組織化単分子膜2上に形成する。このとき、ポリマーアロイ5の第1の相5aがポリマー表面層4上に形成され、第2の相5bが露出した自己組織化単分子膜2上に形成される。
例えば、第1の相5aのポリマー表面層4に対する接触角が自己組織化単分子膜2に対する接触角よりも小さく、かつ第2の相5bの自己組織化単分子膜2に対する接触角がポリマー表面層4に対する接触角以下である場合、または、第2の相5bの自己組織化単分子膜2に対する接触角がポリマー表面層4に対する接触角よりも小さく、かつ第1の相5aのポリマー表面層4に対する接触角が自己組織化単分子膜2に対する接触角以下である場合、第1の相5aがポリマー表面層4上に形成され、第2の相5bが露出した自己組織化単分子膜2上に形成される。
その後、図2B(e)に示すように、ポリマーアロイ5の第1の相5aと第2の相5bのうちのいずれか一方を選択的に除去してもよい。なお、ポリマーアロイ5が3つ以上の相から構成される場合は、それらの相のうちの一部の相を除去する。
また、ポリマーアロイ5の第1の相5aと第2の相5bの本来のパターン周期がパターニングされたポリマー表面層4のパターン周期よりも小さい場合は、図3(a)に示すように、ポリマー表面層4の1つのラインおよび自己組織化単分子膜2の1つのスペース上に複数のポリマーアロイ5の相が形成される。この場合、ポリマーアロイ5の相分離構造のパターンの周期を、露光装置の解像度限界によるフォトレジスト6のパターンの最小周期よりも小さくすることができる。
その後、図3(b)に示すように、ポリマーアロイ5の第1の相5aと第2の相5bのうちのいずれか一方を選択的に除去すれば、フォトリソグラフィの露光装置の解像度限界を超える微細なラインアンドスペースパターンを有するマスクを得ることができる。
以下に、本実施の形態の具体例を示す。この具体例においては、基板1としてのシリコンウエハー上に自己組織化単分子膜2としてのCSBPの単分子膜を形成し、その上に、ポリマー膜3としてのポリマー膜を形成し、CSBPの単分子膜およびポリマー膜をArFエキシマーレーザーで露光してポリマー表面層4としてのポリマー表面層を形成し、さらにフォトレジスト6としてのフォトレジストを積層してArFエキシマーレーザーでパターン露光、現像して、そのレジストパターンを通してOガスを用いた反応性イオンエッチング(RIE)でポリマー表面層をパターニングして、レジストパターンを剥離後、形成したポリマー表面層のパターン上でポリマーアロイ5としてのブロックコポリマーのラメラ状のミクロ相分離のパターンを形成した。
まず、基板1に相当するシリコンウエハー上にCSBPのトルエン溶液(2.26mM、4ml)を垂らし、トリエチルアミンのトルエン溶液(0.247M、2mL)を続けて垂らして、1分間放置し、回転して溶液を振り切った。その後、シクロヘキサノンで全面リンスし、その上にポリマー膜3に相当するポリマー膜用のポリマー溶液を回転塗布した。ポリマー膜用のポリマー溶液は、トルエンに溶かし、回転数2000rpmで塗布した。塗布後に110℃で90秒間ベークして、シリコンウエハー上に自己組織化単分子膜2に相当するCSBPの自己組織化単分子膜を形成し、さらにポリマー膜3に相当するポリマー膜を積層したものを得た。
ポリマー膜用のポリマーとして、Polymer Source社から購入したポリスチレン(PS)のP1071−St、P8007−S、P8096−Sをそれぞれ用いた。P1071−St、P8007−S、P8096−Sは、数平均分子量(Mn)がそれぞれ、115900、30000、8000、分散度(Mw/Mn)が1.04、1.07、1.06PS部分の全体分子量に対する割合(f(PS))が0.59である。P1071−St、P8007−S、P8096−Sを用いたポリマー溶液の濃度は、いずれも1.0wt%とした。
次に、作製したポリマー膜を、ArFエキシマーレーザーにより露光量490mJ/cmで露光した。露光後に、シクロヘキサノンでシリコンウエハー全面をリンスしてポリマー表面層4に相当するポリマー表面層を得た。
次いで、作製したポリマー表面層上にフォトレジスト6に相当するフォトレジストを回転塗布した。フォトレジストは、JSR株式会社から購入したAR1687を用いた。そのフォトレジストをArFエキシマーレーザーでパターン露光した。ここで、ハーフピッチ100、95、90、85、80、75、70、65nmのラインアンドスペース(1:1)パターンをそれぞれ転写した。露光量は25.5mJ/cmで露光した。露光後、多摩化学株式会社から購入した2.38%の水酸化テトラメチルアンモニウム水溶液(AD−10)で現像してハーフピッチ100、95、90、85、80、75、70、65nmのラインアンドスペース(1:1)パターンをそれぞれフォトレジストに形成した。
フォトレジストをパターニングした後、誘導結合型反応性エッチング装置(ICP−RIE)でOプラズマエッチングを行なった。Coil PowerとPlaten Powerはそれぞれ10、10Wで2分間行い、フォトレジストをマスクとしてポリマー表面層をパターン除去した。その後、シクロヘキサノンで1分間リンスして、フォトレジストを除去して、ハーフピッチ100、95、90、85、80、75、70、65nmのラインアンドスペース(1:1)パターンをそれぞれポリマー表面層に形成した。
別途、ブロックコポリマーの溶液を調製した。ブロックコポリマーとして、Polymer Source社から購入したポリスチレン(PS)とポリメチルメタクリレート(PMMA)のブロック共重合体(PS−b−PMMA)であるP189−SMMAを用いた。P189−SMMAは、PSブロックとPMMAブロックの数平均分子量(Mn)が86500であり、分散度(Mw/Mn)が1.08である。PS部分の全体分子量に対する割合(f(PS))が0.54である。
ブロックコポリマーのポリエチレングリコールモノメチルエーテルアセテート(PGMEA)溶液を2.0wt%の濃度で調整し、ポリマー表面層上に回転数2000rpmで回転塗布し、ホットプレート上において110℃で90秒間ベークしてポリマーアロイ5に相当するブロックコポリマーを形成した。
次いで、窒素雰囲気下でアニール処理することにより、ブロックコポリマーをポリスチレンのブロック鎖からなるPS相とポリメチルメタクリレートのブロック鎖からなるPMMA相に相分離させた。それぞれのサンプル表面の500nm×500nm(500nm□)の領域を、原子間力顕微鏡(Nanoscope III)により、カンチレバーにシリコンチップ[NCH−50]を使用し、タッピングモードで測定して、得られた位相像からラメラ状のミクロドメイン構造のパターン配向性を評価した。
その結果、P1071−St、P8007−S、P8096−Sのいずれのポリマーを用いた場合も、ブロックコポリマーにハーフピッチ25nmのパターン配向したラメラ状のミクロ相分離構造が形成されることが確認された。
また、ハーフピッチ100、95、90、85、80、75、70、65nmのラインアンドスペース(1:1)パターンを有するポリマー表面層上のブロックコポリマーのうち、ハーフピッチ75nmのラインアンドスペースパターンを有するポリマー表面層上に形成されたハーフピッチ25nmのラインアンドスペースパターンを有するブロックコポリマーの垂直配向性が最も高いことが確認された。
さらに、得られた相分離構造を有するブロックコポリマーにOガスを用いたRIEを施すことにより、PS相よりもエッチング速度が速いPMMA相を選択的に除去することができた。
また、得られた相分離構造を有するブロックコポリマーをイソプロピルアルコール(IPA)とメチルイソブチルケトン(MIBK)の1:1混合溶液に浸すことにより、PS相よりも溶解速度が速いPMMA相を選択的に除去することができる。
〔第3の実施の形態〕
第3の実施の形態は、ポリマー表面層4のパターン形成方法において第2の実施の形態と異なる。なお、各部材の材料や製造方法等、第1、2の実施の形態と同様の点については、説明を省略または簡略化する。
図4(a)、(b)は、第3の実施の形態に係るポリマーアロイのパターン形成方法を示す斜視図である。
まず、図1A(a)、(b)に示されるポリマー膜3を形成するまでの工程を第1の実施の形態と同様に行う。
次に、図4(a)に示すように、高エネルギー線を用いてポリマー膜3およびその下の自己組織化単分子膜2をパターン露光し、高エネルギー線の照射された領域のポリマー膜3と自己組織化単分子膜2を化学結合(架橋)させ、自己組織化単分子膜2上にポリマー表面層4を形成する。すなわち、高エネルギー線を基板1上の一部の領域(パターン領域)に照射し、その一部の領域のポリマー膜3と自己組織化単分子膜2を選択的に化学結合させてポリマー表面層4を形成する。なお、ポリマー表面層4を形成した後、ポリマー表面層4上のポリマー膜3の自己組織化単分子膜2に化学結合しなかった部分を除去してもよい。
次に、図4(b)に示すように、ポリマー表面層4を残して、ポリマー膜3を選択的に除去する。
その後、ポリマーアロイ5を形成する工程以降の工程を第2の実施の形態と同様に行う。
ポリマーアロイ5の第1の相5aと第2の相5bの本来のパターン周期がパターニングされたポリマー表面層4のパターン周期よりも小さい場合は、図3(a)に示すように、ポリマー表面層4の1つのラインおよび自己組織化単分子膜2の1つのスペース上に複数のポリマーアロイ5の相が形成される。この場合、ポリマーアロイ5の相分離構造のパターンの周期を、ポリマー膜3と自己組織化単分子膜2のパターン露光に用いた高エネルギー線の分解能の限界によるポリマー表面層4のパターンの最小周期よりも小さくすることができる。
その後、図3(b)に示すように、ポリマーアロイ5の第1の相5aと第2の相5bのうちのいずれか一方を選択的に除去すれば、高エネルギー線の分解能の限界を超える微細なラインアンドスペースパターンを有するマスクを得ることができる。
(実施の形態の効果)
第1〜3の実施の形態によれば、ポリマーアロイを自己組織化単分子膜上にポリマー表面層を介して形成することにより、配向性の高い相分離構造のパターンを短時間でポリマーアロイに形成することができる。また、相分離構造の一部の相を選択的に除去することにより、ポリマーアロイを微細なパターンを有するエッチングマスクとして用いることができる。
本発明は、第1〜3の実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。また、第1〜3の実施の形態に示されるパターン形成方法の工程順序は、上述したものに限定されない。
1 基板、 2 自己組織化単分子膜、 3 ポリマー膜、 4 ポリマー表面層、 5 ポリマーアロイ、 5a 第1の相、 5b 第2の相、 6 フォトレジスト

Claims (18)

  1. 基板上に自己組織化単分子膜とポリマー膜を積層する工程と、
    エネルギー線を照射することにより前記ポリマー膜と前記自己組織化単分子膜を化学結合させ、ポリマー表面層を前記自己組織化単分子膜上に形成する工程と、
    相分離構造のパターンを有するポリマーアロイを前記ポリマー表面層上に形成する工程と、
    を含むパターン形成方法。
  2. 前記ポリマー表面層を形成した後、前記ポリマー表面層上の前記ポリマー膜の化学結合しなかった部分を除去する工程をさらに含む、
    請求項1に記載されたパターン形成方法。
  3. 前記エネルギー線を前記基板上の一部の領域に選択的に照射し、前記一部の領域のポリマー膜と前記自己組織化単分子膜を選択的に化学結合させて前記ポリマー表面層を形成し、
    前記エネルギー線が照射されなかった領域の前記ポリマー膜を除去した後に前記ポリマーアロイを形成する、
    請求項1または2に記載されたパターン形成方法。
  4. 前記ポリマーアロイの前記相分離構造は第1および第2の相により構成され、
    前記ポリマー表面層上に前記第1の相が形成され、
    前記エネルギー線が照射されなかった領域の前記ポリマー膜が除去されることにより露出した前記自己組織化単分子膜の表面上に前記第2の相が形成される、
    請求項3に記載されたパターン形成方法。
  5. 前記ポリマー表面層上にフォトレジストを塗布し、紫外線または電子線を用いたパターン露光および現像により前記フォトレジストにパターンを形成する工程と、
    前記パターンを形成された前記フォトレジストに覆われていない領域の前記ポリマー表面層をエッチングにより除去し、前記パターンを前記ポリマー表面層に転写する工程と、
    前記パターンを前記ポリマー表面層に転写した後、前記フォトレジストを溶剤により除去する工程と、
    をさらに含み、
    前記前記フォトレジストを除去した後に前記ポリマーアロイを形成する、請求項1または2に記載されたパターン形成方法。
  6. 前記ポリマーアロイの前記相分離構造は第1および第2の相により構成され、
    前記ポリマー表面層上に前記第1の相が形成され、
    前記フォトレジストに覆われていない前記領域の前記ポリマー表面層が除去されることにより露出した前記自己組織化単分子膜の表面上に前記第2の相が形成される、
    請求項5に記載されたパターン形成方法。
  7. 前記相分離構造の一部の相を選択的に除去する工程をさらに含む、
    請求項1〜6のいずれか1つに記載されたパターン形成方法。
  8. 前記一部の相は前記相分離構造の他の相よりもエッチング耐性の低いブロック鎖からなる相であり、反応性化学エッチングにより除去される、
    請求項7に記載されたパターン形成方法。
  9. 前記一部の相は前記相分離構造の他の相よりも現像液に溶解しやすいブロック鎖からなる相であり、現像液を用いて除去される、
    請求項7に記載されたパターン形成方法。
  10. 前記ポリマーアロイは、ブロックコポリマー、グラフトコポリマー、ブレンドポリマーの中の少なくとも1種から構成される、
    請求項1〜6のいずれか1つに記載されたパターン形成方法。
  11. 前記ポリマーアロイは、
    芳香族骨格、アクリル骨格、および脂環式骨格を有するブロックコポリマー、
    芳香族骨格を有するホモポリマー、アクリル骨格を有するホモポリマー、および脂環式骨格を有するホモポリマーの中の少なくとも2つを含むブレンドポリマー、
    もしくは芳香族骨格を有するホモポリマー、アクリル骨格を有するホモポリマー、または脂環式骨格を有するホモポリマーと前記ブロックコポリマーとを含むポリマーである、
    請求項1〜6のいずれか1つに記載されたパターン形成方法。
  12. 前記自己組織化単分子膜は、光重合開始剤の誘導体からなる、
    請求項1〜11のいずれか1つに記載されたパターン形成方法。
  13. 前記自己組織化単分子膜は、下記の一般式1(一般式1中のRは、アルキルシリル基、シリル基、アルキルハロゲン化シリル基、ハロゲン化シリル基、アルキルチオール基、チオール基、アルキルヒドロキシ基、ヒドロキシ基、アルキルカルボキシル基、またはカルボキシル基であり、アルキル鎖の中に酸素やハロゲンなどを有してもよい)で表される、ベンゾフェノンを構成要素に含む化合物からなる、
    請求項12に記載されたパターン形成方法。
    Figure 2012033534
  14. 前記自己組織化単分子膜は、光重合開始剤とシランカップリング剤の化合物からなる、
    請求項12に記載されたパターン形成方法。
  15. 前記自己組織化単分子膜は、下記の一般式2(一般式2中のR2は末端にSi−F、Si−Cl、Si−BrもしくはSi−OH、Si−OCH、Si−OC、Si−OCを備える直鎖アルキル基であり、アルキル鎖の中にエーテル結合などを有してもよい)で表される、ベンゾフェノンを構成要素に含む化合物からなる、
    請求項14に記載されたパターン形成方法。
    Figure 2012033534
  16. エネルギー線の照射により自己組織化単分子膜と化学結合する性質を有し、相分離構造を有するポリマーアロイ形成の下地として用いられるポリマーアロイ下地材料。
  17. エネルギー線の照射によりベンゾフェノンと架橋反応する性質を有し、相分離構造を有するポリマーアロイ形成の下地として用いられるポリマーアロイ下地材料。
  18. 前記ポリマーアロイは、ブロックコポリマー、グラフトコポリマー、ブレンドポリマーの中の少なくとも1種から構成される、
    請求項16または17に記載されたポリマーアロイ下地材料。
JP2010169279A 2010-07-28 2010-07-28 パターン形成方法及びポリマーアロイ下地材料 Expired - Fee Related JP5300799B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010169279A JP5300799B2 (ja) 2010-07-28 2010-07-28 パターン形成方法及びポリマーアロイ下地材料
PCT/JP2011/066222 WO2012014700A1 (ja) 2010-07-28 2011-07-15 パターン形成方法及びポリマーアロイ下地材料
KR1020137001360A KR101372152B1 (ko) 2010-07-28 2011-07-15 패턴 형성 방법 및 중합체 알로이 기재
CN201180035598.2A CN103003918B (zh) 2010-07-28 2011-07-15 图案形成方法和聚合物合金基材
TW100126670A TWI482201B (zh) 2010-07-28 2011-07-27 Pattern forming method and high molecular alloy base material
US13/750,007 US8986488B2 (en) 2010-07-28 2013-01-25 Pattern formation method and polymer alloy base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010169279A JP5300799B2 (ja) 2010-07-28 2010-07-28 パターン形成方法及びポリマーアロイ下地材料

Publications (2)

Publication Number Publication Date
JP2012033534A true JP2012033534A (ja) 2012-02-16
JP5300799B2 JP5300799B2 (ja) 2013-09-25

Family

ID=45529916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010169279A Expired - Fee Related JP5300799B2 (ja) 2010-07-28 2010-07-28 パターン形成方法及びポリマーアロイ下地材料

Country Status (6)

Country Link
US (1) US8986488B2 (ja)
JP (1) JP5300799B2 (ja)
KR (1) KR101372152B1 (ja)
CN (1) CN103003918B (ja)
TW (1) TWI482201B (ja)
WO (1) WO2012014700A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073974A (ja) * 2011-09-26 2013-04-22 Toshiba Corp パターン形成方法
JP2013201356A (ja) * 2012-03-26 2013-10-03 Toshiba Corp 露光方法及びパターン形成方法
JP2013232621A (ja) * 2012-04-06 2013-11-14 Tokyo Electron Ltd パターン形成方法、パターン形成装置、及びコンピュータ可読記憶媒体
JP2013247159A (ja) * 2012-05-23 2013-12-09 Tokyo Electron Ltd パターン形成方法、パターン形成装置、及びコンピュータ可読記憶媒体
JP2014011245A (ja) * 2012-06-28 2014-01-20 Institute Of Physical & Chemical Research 微細パターン形成方法、現像液
US8673771B2 (en) 2012-03-01 2014-03-18 Kabushiki Kaisha Toshiba Pattern forming method
JP2014053558A (ja) * 2012-09-10 2014-03-20 Toshiba Corp パターン形成方法
JP2014053362A (ja) * 2012-09-05 2014-03-20 Toshiba Corp パターン形成方法
JP2014053476A (ja) * 2012-09-07 2014-03-20 Toshiba Corp パターン形成方法
JP2014063884A (ja) * 2012-09-21 2014-04-10 Toshiba Corp パターン形成方法
WO2014125965A1 (ja) * 2013-02-15 2014-08-21 東京エレクトロン株式会社 基板処理方法、コンピュータ記憶媒体及び基板処理システム
KR20140104349A (ko) * 2013-02-20 2014-08-28 도오꾜오까고오교 가부시끼가이샤 상 분리 구조를 포함하는 구조체의 제조 방법 및 상 분리 구조를 포함하는 구조체
JP2014167992A (ja) * 2013-02-28 2014-09-11 Toshiba Corp パターン形成方法
JP2014192336A (ja) * 2013-03-27 2014-10-06 Toshiba Corp パターン形成方法
US8920664B2 (en) 2012-07-18 2014-12-30 Kabushiki Kaisha Toshiba Pattern forming method
US9153456B2 (en) 2013-06-19 2015-10-06 Kabushiki Kaisha Toshiba Pattern forming method using block copolymers
WO2015170724A1 (ja) * 2014-05-08 2015-11-12 国立研究開発法人科学技術振興機構 ポリマーブラシ
JP2016111115A (ja) * 2014-12-04 2016-06-20 東京エレクトロン株式会社 基板処理方法、プログラム、コンピュータ記憶媒体及び基板処理システム
JP2016165726A (ja) * 2012-04-06 2016-09-15 東京エレクトロン株式会社 パターン形成方法、パターン形成装置、及びコンピュータ可読記憶媒体
JP2018506183A (ja) * 2015-01-21 2018-03-01 アルケマ フランス ブロックコポリマーの秩序膜(ordered film)の限界寸法均一性を向上させるための方法
WO2018043305A1 (ja) * 2016-09-01 2018-03-08 Jsr株式会社 基材表面の選択的修飾方法及び組成物
US11107698B2 (en) 2017-02-14 2021-08-31 SCREEN Holdings Co., Ltd. Substrate treating method
JP7365898B2 (ja) 2019-12-27 2023-10-20 東京エレクトロン株式会社 成膜方法及び成膜装置
WO2024090273A1 (ja) * 2022-10-28 2024-05-02 東京エレクトロン株式会社 成膜方法および成膜装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380481B2 (ja) 2011-03-07 2014-01-08 株式会社東芝 記憶装置およびその製造方法
JP6239813B2 (ja) * 2012-07-18 2017-11-29 株式会社Screenセミコンダクターソリューションズ 基板処理装置および基板処理方法
JP2014063908A (ja) * 2012-09-21 2014-04-10 Tokyo Electron Ltd 基板処理システム
EP2717296B1 (en) * 2012-10-02 2016-08-31 Imec Etching of block-copolymers
JP5847738B2 (ja) * 2013-01-30 2016-01-27 東京エレクトロン株式会社 基板処理方法、プログラム及びコンピュータ記憶媒体
US9382444B2 (en) * 2013-06-24 2016-07-05 Dow Global Technologies Llc Neutral layer polymers, methods of manufacture thereof and articles comprising the same
JP2015028967A (ja) * 2013-07-30 2015-02-12 株式会社東芝 半導体発光素子及び発光装置
KR102107227B1 (ko) 2013-12-02 2020-05-07 에스케이하이닉스 주식회사 블록 코폴리머를 이용한 패턴 형성을 위한 구조, 패턴 형성 방법, 및 이를 이용한 반도체소자 제조방법
KR101674972B1 (ko) * 2013-12-26 2016-11-10 한국과학기술원 나노 스케일 패터닝 방법 및 이로부터 제조된 전자기기용 집적소자
KR102160791B1 (ko) * 2014-02-03 2020-09-29 삼성디스플레이 주식회사 블록 공중합체 및 이를 사용한 패턴 형성 방법
KR20150101875A (ko) 2014-02-27 2015-09-04 삼성전자주식회사 블록 공중합체를 이용한 미세 패턴 형성 방법
JP2016054214A (ja) * 2014-09-03 2016-04-14 株式会社東芝 パターン形成方法
US9396958B2 (en) * 2014-10-14 2016-07-19 Tokyo Electron Limited Self-aligned patterning using directed self-assembly of block copolymers
US20170345643A1 (en) * 2014-12-24 2017-11-30 Intel Corporation Photodefinable alignment layer for chemical assisted patterning
KR101932799B1 (ko) 2015-02-17 2018-12-26 주식회사 엘지화학 블록 공중합체 자기 조립 패턴의 습식 식각 방법
KR102498632B1 (ko) * 2018-08-16 2023-02-10 주식회사 엘지화학 기판의 제조 방법
KR102488382B1 (ko) * 2021-04-19 2023-01-17 한국화학연구원 클릭반응을 이용한 고밀도 및 고안정성 cnt 필름 코팅 기판 및 이의 제조방법
KR102477148B1 (ko) * 2021-09-06 2022-12-13 한국화학연구원 클릭반응을 이용한 cnt 트랜지스터 및 이의 제조방법
JP2023045109A (ja) * 2021-09-21 2023-04-03 キオクシア株式会社 組成物、パターン形成方法及び半導体装置
KR102488388B1 (ko) * 2022-03-30 2023-01-13 한국화학연구원 클릭반응을 이용한 패턴화된 cnt 필름 코팅 기판 및 이의 제조방법
US11691175B1 (en) 2022-07-18 2023-07-04 Tokyo Electron Limited Methods for area-selective deposition of polymer films using sequentially pulsed initiated chemical vapor deposition (spiCVD)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093644A (ja) * 2004-08-25 2006-04-06 Seiko Epson Corp 微細構造体の製造方法、露光装置、電子機器
JP2008297169A (ja) * 2007-05-31 2008-12-11 National Institute Of Advanced Industrial & Technology In2O3薄膜パターン、In(OH)3薄膜パターン及びそれらの作製方法
JP2010115832A (ja) * 2008-11-12 2010-05-27 Panasonic Corp ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法
JP2010527137A (ja) * 2006-03-23 2010-08-05 マイクロン テクノロジー, インク. トポグラフィー指向パターニング

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432104A (ja) 1990-05-25 1992-02-04 Fuji Photo Film Co Ltd 新規導電性高分子及びそれを用いた導電性材料
JP3940546B2 (ja) 1999-06-07 2007-07-04 株式会社東芝 パターン形成方法およびパターン形成材料
JP3576056B2 (ja) 1999-12-28 2004-10-13 株式会社東芝 記録媒体の製造方法および記録媒体
JP3793040B2 (ja) 2001-05-09 2006-07-05 株式会社東芝 記録媒体およびその製造方法
KR100473799B1 (ko) 2001-09-12 2005-03-07 학교법인 포항공과대학교 나노미터 수준의 고정밀 패턴 형성방법
US6746825B2 (en) * 2001-10-05 2004-06-08 Wisconsin Alumni Research Foundation Guided self-assembly of block copolymer films on interferometrically nanopatterned substrates
JP3967114B2 (ja) 2001-11-22 2007-08-29 株式会社東芝 加工方法
US7252862B2 (en) * 2004-08-30 2007-08-07 Hewlett-Packard Development Company, L.P. Increasing adhesion in an imprinting procedure
JP5414011B2 (ja) * 2006-05-23 2014-02-12 国立大学法人京都大学 微細構造体、パターン媒体、及びそれらの製造方法
JP5132117B2 (ja) 2006-10-10 2013-01-30 キヤノン株式会社 パターン形成方法
US7553760B2 (en) * 2006-10-19 2009-06-30 International Business Machines Corporation Sub-lithographic nano interconnect structures, and method for forming same
US7604916B2 (en) 2006-11-06 2009-10-20 3M Innovative Properties Company Donor films with pattern-directing layers
US8394483B2 (en) * 2007-01-24 2013-03-12 Micron Technology, Inc. Two-dimensional arrays of holes with sub-lithographic diameters formed by block copolymer self-assembly
JP5301872B2 (ja) 2007-08-29 2013-09-25 国立大学法人東北大学 チオール基含有感紫外線化合物および、その用途
KR101355167B1 (ko) * 2007-12-14 2014-01-28 삼성전자주식회사 적어도 세 개의 고분자 블록을 구비하는 블록 공중합체를이용한 미세 패턴 형성 방법
US7763319B2 (en) * 2008-01-11 2010-07-27 International Business Machines Corporation Method of controlling orientation of domains in block copolymer films
US7989026B2 (en) 2008-01-12 2011-08-02 International Business Machines Corporation Method of use of epoxy-containing cycloaliphatic acrylic polymers as orientation control layers for block copolymer thin films
KR20090083091A (ko) * 2008-01-29 2009-08-03 삼성전자주식회사 블록 공중합체를 이용한 미세 패턴 형성 방법
KR20090087353A (ko) * 2008-02-12 2009-08-17 포항공과대학교 산학협력단 자기조립 블록 공중합체를 이용한 나노 구조물 제조방법
US8101261B2 (en) * 2008-02-13 2012-01-24 Micron Technology, Inc. One-dimensional arrays of block copolymer cylinders and applications thereof
JP2010058314A (ja) 2008-09-02 2010-03-18 Fujifilm Corp 可撓性基板上ミクロ相分離構造体、およびその製造方法
KR101148208B1 (ko) * 2008-12-12 2012-05-25 삼성전자주식회사 패턴화된 구조를 가지는 블록공중합체의 나노구조체 및 그 제조방법
US8486613B2 (en) * 2008-12-12 2013-07-16 Samsung Electronics Co., Ltd. Method of manufacturing nano-structure and method of manufacturing a pattern using the method
WO2011036816A1 (ja) 2009-09-28 2011-03-31 株式会社 東芝 パターン形成方法
JP2011129874A (ja) 2009-11-19 2011-06-30 Toshiba Corp パターン形成方法及びパターン形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093644A (ja) * 2004-08-25 2006-04-06 Seiko Epson Corp 微細構造体の製造方法、露光装置、電子機器
JP2010527137A (ja) * 2006-03-23 2010-08-05 マイクロン テクノロジー, インク. トポグラフィー指向パターニング
JP2008297169A (ja) * 2007-05-31 2008-12-11 National Institute Of Advanced Industrial & Technology In2O3薄膜パターン、In(OH)3薄膜パターン及びそれらの作製方法
JP2010115832A (ja) * 2008-11-12 2010-05-27 Panasonic Corp ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073974A (ja) * 2011-09-26 2013-04-22 Toshiba Corp パターン形成方法
US8673771B2 (en) 2012-03-01 2014-03-18 Kabushiki Kaisha Toshiba Pattern forming method
JP2013201356A (ja) * 2012-03-26 2013-10-03 Toshiba Corp 露光方法及びパターン形成方法
JP2013232621A (ja) * 2012-04-06 2013-11-14 Tokyo Electron Ltd パターン形成方法、パターン形成装置、及びコンピュータ可読記憶媒体
US9618849B2 (en) 2012-04-06 2017-04-11 Tokyo Electron Limited Pattern forming method, pattern forming apparatus, and computer readable storage medium
JP2016165726A (ja) * 2012-04-06 2016-09-15 東京エレクトロン株式会社 パターン形成方法、パターン形成装置、及びコンピュータ可読記憶媒体
JP2013247159A (ja) * 2012-05-23 2013-12-09 Tokyo Electron Ltd パターン形成方法、パターン形成装置、及びコンピュータ可読記憶媒体
JP2014011245A (ja) * 2012-06-28 2014-01-20 Institute Of Physical & Chemical Research 微細パターン形成方法、現像液
US8920664B2 (en) 2012-07-18 2014-12-30 Kabushiki Kaisha Toshiba Pattern forming method
JP2014053362A (ja) * 2012-09-05 2014-03-20 Toshiba Corp パターン形成方法
JP2014053476A (ja) * 2012-09-07 2014-03-20 Toshiba Corp パターン形成方法
JP2014053558A (ja) * 2012-09-10 2014-03-20 Toshiba Corp パターン形成方法
JP2014063884A (ja) * 2012-09-21 2014-04-10 Toshiba Corp パターン形成方法
US9040429B2 (en) 2012-09-21 2015-05-26 Kabushiki Kaisha Toshiba Pattern formation method
WO2014125965A1 (ja) * 2013-02-15 2014-08-21 東京エレクトロン株式会社 基板処理方法、コンピュータ記憶媒体及び基板処理システム
JP2014160770A (ja) * 2013-02-20 2014-09-04 Tokyo Ohka Kogyo Co Ltd 相分離構造を含む構造体の製造方法及び相分離構造を含む構造体
KR102206693B1 (ko) * 2013-02-20 2021-01-22 도오꾜오까고오교 가부시끼가이샤 상 분리 구조를 포함하는 구조체의 제조 방법 및 상 분리 구조를 포함하는 구조체
KR20140104349A (ko) * 2013-02-20 2014-08-28 도오꾜오까고오교 가부시끼가이샤 상 분리 구조를 포함하는 구조체의 제조 방법 및 상 분리 구조를 포함하는 구조체
JP2014167992A (ja) * 2013-02-28 2014-09-11 Toshiba Corp パターン形成方法
JP2014192336A (ja) * 2013-03-27 2014-10-06 Toshiba Corp パターン形成方法
US9153456B2 (en) 2013-06-19 2015-10-06 Kabushiki Kaisha Toshiba Pattern forming method using block copolymers
JPWO2015170724A1 (ja) * 2014-05-08 2017-04-20 国立研究開発法人科学技術振興機構 ポリマーブラシ
US10414847B2 (en) 2014-05-08 2019-09-17 Japan Science And Technology Agency Polymer brush
WO2015170724A1 (ja) * 2014-05-08 2015-11-12 国立研究開発法人科学技術振興機構 ポリマーブラシ
JP2016111115A (ja) * 2014-12-04 2016-06-20 東京エレクトロン株式会社 基板処理方法、プログラム、コンピュータ記憶媒体及び基板処理システム
JP2018506183A (ja) * 2015-01-21 2018-03-01 アルケマ フランス ブロックコポリマーの秩序膜(ordered film)の限界寸法均一性を向上させるための方法
WO2018043305A1 (ja) * 2016-09-01 2018-03-08 Jsr株式会社 基材表面の選択的修飾方法及び組成物
JPWO2018043305A1 (ja) * 2016-09-01 2019-06-24 Jsr株式会社 基材表面の選択的修飾方法及び組成物
US11107698B2 (en) 2017-02-14 2021-08-31 SCREEN Holdings Co., Ltd. Substrate treating method
JP7365898B2 (ja) 2019-12-27 2023-10-20 東京エレクトロン株式会社 成膜方法及び成膜装置
WO2024090273A1 (ja) * 2022-10-28 2024-05-02 東京エレクトロン株式会社 成膜方法および成膜装置

Also Published As

Publication number Publication date
US8986488B2 (en) 2015-03-24
CN103003918A (zh) 2013-03-27
JP5300799B2 (ja) 2013-09-25
KR101372152B1 (ko) 2014-03-07
US20130133825A1 (en) 2013-05-30
TW201214514A (en) 2012-04-01
TWI482201B (zh) 2015-04-21
WO2012014700A1 (ja) 2012-02-02
CN103003918B (zh) 2015-08-12
KR20130054982A (ko) 2013-05-27

Similar Documents

Publication Publication Date Title
JP5300799B2 (ja) パターン形成方法及びポリマーアロイ下地材料
JP5318217B2 (ja) パターン形成方法
JP5254381B2 (ja) パターン形成方法
US8623458B2 (en) Methods of directed self-assembly, and layered structures formed therefrom
JP5694109B2 (ja) パターン形成方法
US8828493B2 (en) Methods of directed self-assembly and layered structures formed therefrom
TWI430035B (zh) 圖型之形成方法
TWI387998B (zh) 微影方法
JP6316788B2 (ja) レリーフ画像形成方法
JP2010115832A (ja) ブロックコポリマーの自己組織化促進方法及びそれを用いたブロックコポリマーの自己組織化パターン形成方法
TW201118925A (en) Self-aligned spacer multiple patterning methods
US20080063976A1 (en) Photoresist Composition and Method Of Forming A Resist Pattern
EP3500637B1 (en) Polymer compositions for self-assembly applications
CN110416068A (zh) 半导体装置的形成方法
Schmid et al. Fabrication of 28nm pitch Si fins with DSA lithography
TWI596148B (zh) 化學增幅光阻材料、共聚物及微影方法
JP2000010289A (ja) パターン形成方法および感光性組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

LAPS Cancellation because of no payment of annual fees