WO2015170724A1 - ポリマーブラシ - Google Patents
ポリマーブラシ Download PDFInfo
- Publication number
- WO2015170724A1 WO2015170724A1 PCT/JP2015/063241 JP2015063241W WO2015170724A1 WO 2015170724 A1 WO2015170724 A1 WO 2015170724A1 JP 2015063241 W JP2015063241 W JP 2015063241W WO 2015170724 A1 WO2015170724 A1 WO 2015170724A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- phase
- phase separation
- solvent
- brush
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F292/00—Macromolecular compounds obtained by polymerising monomers on to inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F112/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F112/02—Monomers containing only one unsaturated aliphatic radical
- C08F112/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F112/06—Hydrocarbons
- C08F112/08—Styrene
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/0002—Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2438/00—Living radical polymerisation
- C08F2438/01—Atom Transfer Radical Polymerization [ATRP] or reverse ATRP
Definitions
- the present invention relates to a polymer brush in which one end of a polymer is fixed to a base material.
- a polymer brush in which one end of a polymer is fixed to a base material is one of the surface treatment means of the base material, and it is known that hydrophilic properties, low friction properties, etc. can be imparted to the base material surface (Patent Document 1). , 2). Moreover, it is also suggested by simulation that a phase separation may occur between the polymer brush phase and the solvent phase when the polymer brush is disposed in a specific solvent (Non-patent Document 1). However, there has been no example of realizing the phase separation between the polymer brush phase and the solvent phase, and the specific method is not clear.
- phase separation between the polymer phase and the solvent phase is a phenomenon that occurs only in the presence of a solvent, and a phase separation structure in a gas phase in which no solvent is present is not known.
- the realization method is unknown. Considering technical application to devices and the like, if a phase separation structure in the gas phase can be achieved, the usefulness of the polymer brush is further improved. However, the formation of the phase separation structure of the polymer brush in the gas phase is not shown in the simulation, and there is no realization example.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a polymer brush capable of forming a phase separation structure even in a gas phase.
- the polymer brush is different from a normal polymer in that one chain of a polymer chain is fixed to a base material and is not completely dissolved in a solvent (a point that is always separated from a solvent). Furthermore, the free end side of the polymer layer in the polymer brush does not interact in the plane direction, so the mutual influence in the thickness direction is amplified, the mechanical state is different from the normal three-dimensional, and the polymer fixed state Are completely different from each other, the phase separation state in the polymer brush is considered to be distinguished from a normal polymer.
- the phase separation phenomenon between the polymer brush phase and the solvent phase is highly correlated with the phase separation phenomenon between the polymer phase and the solvent phase in the polymer solution.
- the polymer brush layer is extremely thin so that light scattering behavior such as turbidity does not occur even if phase separation occurs, and the resulting phase separation structure is also fine.
- the phase separation in a normal polymer solution is a macroscopic phase separation behavior that is confirmed based on the light scattering behavior of turbidity
- the phase separation state in the polymer brush phase and the phase separation state in the polymer solution are
- it is very surprising that a high correlation was found between the two in spite of the fact that they represent substantially different phase separation states and, as described above, the dissolution state and mechanical behavior were also different. Met.
- phase separation state similar to that in the case of the polymer solution appears, and the solvent is vaporized at a specific temperature or lower.
- the solvent phase portion can be made into a gas phase while maintaining the phase separation structure, and the phase separation structure of the polymer brush can be formed even in the gas phase, and the polymer brush that has formed the phase separation structure in the gas phase,
- the present invention was completed by finding that the phase separation structure can be adjusted by heating.
- the phase-separated polymer brush according to the present invention has a base material and a polymer layer formed of a plurality of polymer chains having one end fixed to the base material and the other end being a free end.
- the phase separation state between the polymer dense part and the polymer coarse part is reversibly changed.
- the thickness when the polymer layer is not phase-separated is preferably 1 nm or more and 50 nm or less, and the number average molecular weight of the polymer chain is 2,000 or more and 1,000,000 or less. preferable.
- the phase separation structure is reversibly controlled by a change in the external environment.
- the change in the external environment is preferably due to a change in temperature, pressure, or ion concentration.
- the present invention also includes a base material, and a polymer layer formed of a plurality of polymer chains, one end of which is fixed to the base material and the other end is a free end.
- a phase-separated polymer brush in which a polymer coarse portion is formed is also included. It is preferable that the dense portion and the rough portion of the polymer layer appear periodically and repeatedly in the plane direction.
- the phase separation structure formed by the dense part and the coarse part is preferably a sea-island structure, a cylinder structure, a co-connected structure, or a lamella structure.
- the present invention includes a surface state control method for changing the phase separation state of the polymer brush by bringing the polymer brush into contact with a solvent and changing the external environment.
- the change in the external environment is preferably due to a change in the temperature, pressure, or ion concentration of the solvent.
- the method for producing a polymer brush of the present invention comprises a substrate and a plurality of polymer chains having one end fixed to the substrate at a fixed end density ⁇ (location / nm 2 ) and the other end being a free end.
- the polymer concentration of the following formula (1) The solution is brought into contact at a temperature at which the solution enters a phase separation state, and then the solvent is replaced with a gas phase at a temperature within the temperature range at which the solution enters the phase separation state and at or below the glass transition temperature of the polymer.
- Polymer concentration (% by volume) ⁇ (location / nm 2 ) ⁇ number average molecular weight of polymer chain (g / mol) ⁇ 10 21 / (free root mean square distance of polymer chain (nm) ⁇ avocado number Na ( mol ⁇ 1 ) ⁇ polymer chain density (g / cm 3 )) (1)
- the fixed chain density ⁇ of the polymer chain is preferably 0.001 (location / nm 2 ) or more and 0.1 (location / nm 2 ) or less.
- the solvent (B) has a binodal start temperature in a range of 1 ° C. or higher and 100 ° C. or lower when mixed with a polymer chain in a free state not bonded to the substrate at a polymer concentration defined by the formula (1). It is preferable that it is a solvent.
- polymer aromatic hydrocarbon polymer
- solvent hydrocarbon solvent
- polymer (meth) acrylic polymer
- solvent aqueous solvent
- a method for preparing a phase separation structure in which the polymer brush is heated to a temperature higher than the glass transition temperature of the polymer is also included in the technical scope of the present invention. Furthermore, a surface modifying member having the polymer brush formed on the surface thereof is also included in the technical scope of the present invention.
- the polymer brush (A) and the solvent (B) are brought into contact with each other under specific conditions, and then the solvent (B) is replaced with the gas phase at a specific temperature or lower, so that the phase separation is performed even in the gas phase.
- a polymer brush having a structure can be obtained.
- phase separation type polymer brush No. 1 shows a phase separation type polymer brush No. 1.
- 3 shows an AFM image of a phase separation structure (normal pressure (1013 hPa), 10 ° C.) of 3 in cyclohexane.
- 2 shows a phase separation type polymer brush No. 2 represents an AFM image of a phase separation structure (normal pressure, 10 ° C.) in cyclohexane.
- 3 shows a phase separation type polymer brush No. 1 shows an AFM image of a phase separation structure (normal pressure, 10 ° C.) in cyclohexane of 1.
- FIG. 4 shows a phase separation type polymer brush No. 3 shows an AFM image of the phase separation structure (normal pressure, room temperature (25 ° C.)) of No. 3 in the gas phase.
- phase separation type polymer brush No. 2 shows an AFM image of a phase separation structure (normal pressure, room temperature) in a gas phase.
- a phase separation type polymer brush No. 1 represents an AFM image of a phase separation structure (normal pressure, room temperature) in a gas phase.
- 7 shows a polymer brush no. AFM image of phase separation structure when 1 is changed in the order of (a) 10 ° C, (b) 20 ° C, (c) 30 ° C, (d) 10 ° C, (e) 30 ° C under normal pressure in cyclohexane Represents.
- 8 shows a phase separation type polymer brush No. 4 shows an AFM image of the phase separation structure (normal pressure, 10 ° C.) of No. 4 in water.
- 8 shows a phase separation type polymer brush No. 5 represents an AFM image of a phase separation structure (normal pressure, 10 ° C.) in water No. 5;
- the polymer brush (A) refers to a structure in which a number of polymer chains are bonded to a substrate at one end.
- the present invention focuses on the aggregated state of the free ends of the polymer chains, and the subject is to produce a phase-separated polymer brush by separating the free ends in the gas phase.
- a phase-separated polymer brush for the gas phase first, the polymer brush (A) is treated in a solvent (B) under predetermined conditions to cause phase separation of the polymer chain from the liquid phase, and then the phase separation. It can be produced by replacing the liquid phase with the gas phase while maintaining the state.
- Polymer brush (A) In the present invention, as described above, the polymer brush (A) is used. More specifically, this polymer brush (A) has a base material and a plurality of polymer chains, and one end of each of these polymer chains is fixed to the surface of the base material, while the other end is anywhere. It is a free end without being fixed. Due to such a one-side constraining structure, the phase separation structure does not continue to become coarse, and a phase separation structure having a certain size according to the number average molecular weight of the polymer chain can be formed.
- the material of the substrate is not particularly limited as long as it can be bonded to one end of the polymer chain, and any of an inorganic material and an organic material can be used.
- the inorganic substance include metals such as gold, iron, aluminum, and silicon, alloys thereof, and metal oxides such as glass.
- the organic substance include resins such as (meth) acrylic resins and olefin resins. .
- the substrate may be coordinated with a silicon atom-containing compound such as glass or silicon; or a thiol group such as gold. It is preferable to include a metal; a metal capable of forming a salt with phosphoric acid such as iron or aluminum.
- the surface shape of the substrate is not particularly limited, and may be, for example, a flat surface or a curved surface.
- a planar substrate a plate-like, sheet-like, or film-like substrate can be used, and as the curved substrate, a particle-like, columnar, cylindrical, or linear substrate can be used.
- the amount of the polymer chain fixed to the substrate can be evaluated by a fixed end density ⁇ (location / nm 2 ) which is the average number of polymer chains fixed per 1 nm 2 of the substrate. density sigma, 0.0001 (points / nm 2) above, 0.2 preferably (points / nm 2) or less, more preferably 0.0005 (points / nm 2) or more, more preferably 0. It is 001 (location / nm 2 ) or more, more preferably 0.16 (location / nm 2 ) or less, and further preferably 0.07 (location / nm 2 ) or less. When the fixed end density is within this range, a phase separation structure is easily formed.
- the thickness L of the polymer brush layer when the phase is not separated is preferably 1 nm or more, more preferably 2 nm or more, still more preferably 3 nm or more, and preferably 50 nm or less. Is 40 nm or less, more preferably 35 nm or less, and particularly preferably 30 nm or less.
- the thickness L of the polymer brush layer when the phase is not separated can be measured using an ellipsometer.
- the density d of a polymer chain means the density of a corresponding polymer (a polymer chain whose end is not fixed to a base material), and can be measured by a method according to JIS K 7112 (1999).
- Examples of the polymer (P1) used in the polymer brush (A) include non-crosslinked polymers such as linear polymers, particularly radical polymerization polymers.
- the polymer may be a polymer having no polar group such as a hydrocarbon polymer, or may be a polymer having a moderately polar group (such as a carboxylic acid group, an ester group, a lactone ring, or an amide group).
- examples of the radical polymerization type polymer include vinyl polymers such as aromatic hydrocarbon polymers, (meth) acrylic polymers, vinyl pyridine polymers, vinyl ester polymers, vinyl pyrrolidone polymers, and olefin polymers. , And copolymers obtained by appropriately combining monomers used in these.
- polymers may be used alone or may contain other polymers.
- the polymer (P1) selected from the polymers and the polymer (P2) different from the polymer (P1) may be included, and the polymer chain (P1) and the polymer (P2) are included. It may contain a polymer chain.
- the polymer (P1) and the polymer (P2) may be different depending on the type of polymer, molecular weight, and the like.
- the ratio of the polymer (P1) chain to the total number of the polymer (P1) chain and the polymer (P2) chain is preferably 0.5 or more, more preferably 0.7 or more, More preferably, it is 0.8 or more, More preferably, it is 0.9 or more, Most preferably, it is 0.96 or more.
- Examples of the monomer constituting the aromatic hydrocarbon polymer include styrene, o-methyl styrene, m-methyl styrene, p-methyl styrene, ⁇ -methyl styrene, styrene sulfonic acid, 4-vinylbenzoic acid, 4- And monofunctional styrenic monomers such as tert-butyl vinylbenzoate and 4-dimethylaminostyrene. These monomers may be used alone or in appropriate combination.
- Monomers constituting the (meth) acrylate polymer include (meth) acrylic acid, methyl (meth) acrylate, isopropyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) ) Acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate and other monofunctional alkyl (meth) acrylate monomers; 2-hydroxyethyl (meth) acrylate, 2,3-dihydroxypropyl ( Monofunctional hydroxyalkyl (meth) acrylate monomers such as (meth) acrylate; methoxyethoxyethyl (meth) acrylate, polyethylene glycol (meth) acrylate, 3-ethyloxetanyl (meth) acrylate Monofunctional oxyalkyl (me
- monomers constituting the vinylpyridine polymer include monofunctional vinylpyridines such as 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 1- (3-sulfopropyl) -2-vinylpyridinium hydroxide, and the like. Monomer. These monomers may be used alone or in appropriate combination.
- Examples of the monomer constituting the vinyl ester polymer include vinyl acetate, and examples of the monomer constituting the vinyl pyrrolidone polymer include N-vinyl-2-pyrrolidone.
- the monomer that constitutes the olefin polymer is, for example, an olefin monomer such as ethylene or butadiene, and these may be used alone or in appropriate combination.
- the radical polymerization type polymer may be either a homopolymer or a copolymer, and in the case of a copolymer, it may be a block copolymer, a graft copolymer, or a random copolymer. However, it is noted that a phase separation structure can be introduced even with polymers other than block copolymers.
- a preferable radical polymerization type polymer is a homopolymer or a block copolymer, and more preferably a homopolymer. Homopolymers and block copolymers tend to keep the interaction between polymer chains constant, and the phase separation structure can be easily fixed.
- the ratio of any one of them is 80 mass% or more, It is more preferable that it is 90 mass% or more, It is 98 mass% or more Further preferred.
- the polymer chain may be cyclic, branched or linear, but is preferably linear.
- the periodicity (uniformity) of the obtained phase separation structure can be improved.
- the number average molecular weight of the polymer chain is preferably 2,000 or more, more preferably 10,000 or more, still more preferably 50,000 or more, and preferably 1,000,000 or less, More preferably, it is 500,000 or less, More preferably, it is 300,000 or less.
- the size of the phase separation structure obtained can be controlled by the number average molecular weight of the polymer chain. The larger the number average molecular weight, the larger the phase separation structure obtained, and the smaller the number average molecular weight, the obtained phase separation structure Get smaller.
- the molecular weight distribution (Mw / Mn) of a polymer chain is 1.3 or less, More preferably, it is 1.1 or less, More preferably, it is 1.08 or less.
- the number average molecular weight of the polymer chain means the number average molecular weight of a polymer in which both ends of the polymer chain are not fixed on the substrate surface, and synthesized separately by the same method, and both ends of the polymer chain are on the substrate surface.
- the same polymer can be measured by size exclusion chromatography (SEC) except that it is not immobilized.
- the thickness when the polymer layer is not phase-separated is preferably 1 nm or more and 50 nm or less, and the number average molecular weight of the polymer chain is preferably 2000 or more and 1,000,000 or less. .
- Phase separation can be induced by controlling both the thickness when the polymer layer is not phase-separated and the number average molecular weight of the polymer chain.
- the thickness L of the polymer brush phase is more preferably 2 nm or more, further preferably 3 nm or more, preferably 50 nm or less, more preferably 40 nm or less, still more preferably 35 nm or less, particularly preferably 30 nm. It is as follows.
- the number average molecular weight of the polymer chain is more preferably 10,000 or more, further preferably 50,000 or more, more preferably 500,000 or less, and further preferably 300,000 or less.
- the polymer brush (A) can be produced by fixing a functional group serving as a starting point for the polymerization reaction on the substrate surface and polymerizing the monomer so that the polymer chain extends from the starting point.
- a method for fixing the functional group that serves as the starting point of the polymerization reaction a method for fixing a compound containing the functional group (hereinafter sometimes referred to as “brush initiator”) to the substrate surface, or the substrate itself. And a method for forming the functional group.
- a compound having a binding group capable of binding to a base material and a polymerization initiating group serving as a polymerization initiation point can be preferably used.
- the binding group include reactive silyl groups such as trimethoxysilyl group and triethoxysilyl group; thiol groups; disulfide groups; phosphoric acid groups;
- the polymerization initiating group include 1-bromoethyl group, 1-methyl-1-bromoethyl group, chloroethyl group and other halogenated alkyl groups; 2,2,6,6-tetramethylpiperidinyl-1-oxy group, N A nitroxy group-containing functional group such as tert-butyl-1-phenyl-2-methylpropylnitroxy group, N-tert-butyl-1-diethylphosphono-2,2-dimethylpropylnitroxy group; SO 2 Cl group And the like.
- the binding group and the polymerization initiating group are each preferably located at the end of the brush initiator compound, and the binding group and the polymerization initiating group are a phenylene group, an ether bond, a carbonyl group, a phenylmethylene group. It is preferable that it couple
- brush initiators include compounds represented by the following formulas (A1-1) to (A1-10), (A2-1) to (A2-3), and (A3-1).
- the initiator for brushes in which the binding group is a reactive silyl group compounds represented by the following formulas (A1-1) to (A1-10), and the binding group is a thiol group or a disulfide group.
- R each independently represents an alkoxy group such as a methoxy group or an ethoxy group, or an alkyl group such as a methyl group or an ethyl group. It is preferable that two or more, preferably three, of Rs to be bonded are alkoxy groups.
- the type of brush initiator is preferably selected according to the material of the substrate.
- the binding group of the brush initiator is reactive. It is preferably a silyl group
- the binding group of the brush initiator is preferably a thiol group
- the substrate is iron, aluminum, or the like
- the binding group of the initiator for the brush is preferably a phosphoric acid group.
- a bond (preferably a chemical bond such as a covalent bond, an ionic bond, or a coordinate bond) is formed between the brush initiator and the substrate, and the substrate surface
- the initiator for the brush can be fixed to the surface.
- a regulator hereinafter referred to as “brush regulator” having a corresponding binding group and a group (stabilizing group) in which the corresponding polymerization initiation group is stabilized.
- the brush adjusting agent is also brought into contact with the substrate simultaneously with the brush initiator and fixed. Thereby, adjustment of a fixed end density becomes easy and the initiator for brushes can be more uniformly fixed to the substrate surface.
- the halogen atom may be replaced with a hydrogen atom, and the nitroxy group-containing functional group may be replaced with the entire functional group with a hydrogen atom,
- the chlorine atom may be replaced with a hydroxy group.
- the ratio of the brush initiator to the brush adjuster is preferably 0.001 or more, more preferably 0.005 or more, and still more preferably 0.01 or more in molar ratio. .
- the ratio (initiator / regulator) is preferably 0.5 or less, more preferably 0.3 or less, and still more preferably 0.2 or less. The smaller this ratio (initiator / regulator), the more likely phase separation will occur in the resulting polymer brush.
- the charged amount of the total of brush initiator and brush modifier may be any large excess, specifically, 1 ⁇ 10 -3 mol or more 1 cm 2 per substrate surface, more preferably 1 What is necessary is just 10-2 mol or more.
- the brush initiator and the brush adjusting agent are preferably mixed with a solvent and brought into contact with the substrate as a mixed solution, and the substrate surface is immersed in the mixed solution and brought into contact with the substrate.
- the solvent used in the mixed solution include water; alcohol solvents such as methanol, ethanol, 2-propanol, butanol, and 2-butanol; ketone solvents such as acetone, dimethyl ketone, and methyl ethyl ketone; ether solvents; Solvents; amide solvents; etc. can be used. These solvents may be used alone or in combination.
- a mixed solvent of water and a water-soluble organic solvent such as an alcohol solvent, a ketone solvent, an ether solvent, an ester solvent, and an amide solvent can be preferably used.
- a solvent is preferred.
- the proportion of water is preferably 1 to 30% by mass, more preferably 7 to 20% by mass.
- the total charge of the brush initiator and the brush adjuster is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and still more preferably 0.7% by mass in the mixed solution. % Or more.
- the charging amount is preferably 3% by mass or less in the mixed solution, more preferably 2% by mass or less, and further preferably 1.5% by mass or less.
- the temperature at which the initiator for brush and the substrate are brought into contact with each other is not particularly limited, and is preferably 10 to 40 ° C., and more preferably 15 to 30 ° C.
- the contact time is preferably 1 to 10 hours, and more preferably 2 to 8 hours.
- a catalyst When contacting the brush initiator and the substrate, a catalyst may be further present.
- the catalyst is preferably a basic catalyst such as ammonia.
- the catalyst is preferably 1 to 500 parts by weight, more preferably 50 to 300 parts by weight, and still more preferably 150 to 250 parts by weight based on 100 parts by weight of the total amount of the brush initiator and the brush adjuster. Part by mass.
- the concentration of the catalyst in the mixed solution is preferably 0.1 to 10% by mass, more preferably 0.5 to 3% by mass.
- the substrate may be pretreated.
- this pretreatment formation of a polydopamine film is preferable.
- a method for forming a polydopamine film on the substrate surface a method described in JP 2010-261001 A can be employed.
- the method for forming the functional group serving as the starting point of the polymerization reaction on the substrate itself include a method of halogenating the substrate.
- the base material is preferably a halogenable material, preferably a resin, more preferably an olefin resin.
- the method described in JP-A-2008-133434 can be preferably used.
- the monomer and the polymerization catalyst are brought into contact with each other to polymerize the monomer, whereby a polymer chain having one end fixed to the substrate can be formed.
- a radical polymerization method is preferable, and a living radical polymerization method is more preferable.
- a living radical polymerization method By using the living radical polymerization method, a polymer chain having a narrow molecular weight distribution can be formed.
- an atom transfer radical polymerization method (Atom Transfer Radical Polymerization: ATRP), a reversible addition-fragmentation chain transfer polymerization method (Reversible Addition / Fragmentation Chain Transfer Polymerization NitroTad polymerization method, RAF polymerization polymerization RA method).
- ATRP Atom Transfer Radical Polymerization
- NMP Non-mediated Polymerization
- the ATRP method and the NMP method are preferable, and the ATRP method is preferable from the viewpoint of reaction stability.
- the polymerization initiating group is preferably a halogenated alkyl group
- the polymerization initiating group is preferably a nitroxy group-containing functional group.
- the monomer may be added in excess with respect to the amount of the target polymer chain. By adding an excessive amount of monomer, the number average molecular weight of the polymer chain obtained by the length of the polymerization duration can be adjusted.
- a catalyst containing a metal is used as the polymerization catalyst.
- the metal in the metal catalyst acts on the polymerization initiating group to generate a carbon radical on the brush initiator, so that the polymerization reaction is easily started.
- a metal catalyst for example, a metal halide catalyst or a metal complex catalyst can be used.
- metal halide catalyst examples include copper halide catalysts such as copper chloride (I), copper chloride (II), copper bromide (I), copper bromide (II); titanium chloride (II), titanium chloride (III) ), Titanium (IV) chloride, titanium bromide catalysts such as titanium bromide (IV); halogenation of iron (II) chloride, iron (III) chloride, iron (II) bromide, iron (III) bromide, etc.
- copper halide catalysts such as copper chloride (I), copper chloride (II), copper bromide (I), copper bromide (II); titanium chloride (II), titanium chloride (III) ), Titanium (IV) chloride, titanium bromide catalysts such as titanium bromide (IV); halogenation of iron (II) chloride, iron (III) chloride, iron (II) bromide, iron (III) bromide, etc.
- Iron catalysts such as cobalt (II) chloride and cobalt (II); nickel halide catalysts such as nickel (II) and nickel (II) bromide; molybdenum (III) chloride and molybdenum chloride ( A halogenated molybdenum catalyst such as V); a ruthenium halide catalyst such as ruthenium (III) chloride; and the like.
- the metal complex catalyst examples include a ruthenium complex catalyst; an iron complex catalyst; a nickel complex catalyst; a palladium complex catalyst; a rhodium complex catalyst; a copper complex catalyst; a rhenium complex catalyst; Among these, from the viewpoint of easy removal, a metal halide catalyst is preferable, and a copper halide catalyst is preferable.
- the amount of the catalyst used is preferably 1 ⁇ 10 ⁇ 5 to 2 ⁇ 10 ⁇ 3 mol, more preferably 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 3 mol, relative to 1 mol of the monomer, More preferably, it is 3 ⁇ 10 ⁇ 4 to 8 ⁇ 10 ⁇ 4 mol.
- a ligand may be allowed to coexist.
- the activity of the polymerization catalyst can be controlled by the ligand.
- an electron donating ligand is preferable.
- Tridentate amines tris [2-pyridylmethyl] amine, N-butyl-2-pyridylmethanimine, N-dodecyl-N- (2-pyridylmethylene) amine, N-octadecyl-N- (2-pyridylmethylene) Amine, N-octyl-2-pyridylmethanimine, 4,4'-dinonyl-2,2'-dipyridyl, 4,4'-di-tert-butyl-2,2'-di Pyridine compounds such as lysyl, 4,4′-dimethyl-2,2′-dipyridyl, N, N, N ′, N′-tetrakis (2-pyridylmethyl) ethylenediamine, 2,2′-bipyridyl; phosphine compounds A cyclopentadiene compound; and the like.
- the ligand a polydentate amines
- the ligand is preferably 1 mol or more, more preferably 1.5 mol or more, and even more preferably 1.8 mol or more with respect to 1 mol of the catalyst.
- the amount of the ligand is large, the oxidation potential of the metal in the metal catalyst is likely to be lowered, so that the reactivity between the catalyst and the polymerization initiating group can be improved.
- it is preferable that a ligand is 20 mol or less with respect to 1 mol of catalysts, More preferably, it is 15 mol or less. When the amount of ligand is within this range, purification of the resulting polymer chain is easy.
- a solvent may be used when polymerizing the polymer chain.
- Solvents used include aromatic hydrocarbon solvents such as benzene, anisole and toluene; aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane and decane; cyclohexane, methylcyclohexane, decahydronaphthalene and the like Alicyclic hydrocarbon solvents; halogenated aliphatic hydrocarbon solvents such as chlorobenzene, dichlorobenzene, trichlorobenzene, methylene chloride, chloroform, carbon tetrachloride, tetrachloroethylene; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; An ester solvent such as ethyl acetate and dimethyl naphthalate; These solvents may be used alone or in combination.
- the concentration of the monomer is preferably 0.1 to 20 mol / L, more preferably 1 to 15 mol / L, even more preferably in the mixed solution of the monomer, the polymerization catalyst, the ligand and the solvent. Is 5 to 12 mol / L.
- the polymerization temperature is usually preferably ⁇ 50 to 150 ° C., more preferably 0 to 120 ° C., and further preferably 40 to 90 ° C. When the polymerization temperature is within this range, the efficiency of the polymerization reaction is good and the polymerization stability is good.
- a polymerization terminator is added to stop the polymerization reaction and adjust the polymerization duration.
- the polymerization terminator include alcohols such as methanol, ethanol, propanol, 2-propanol, butanol, 2-butanol and tert-butanol; ethers such as dimethyl ether, diethyl ether, di-n-amyl ether, tetrahydrofuran and dioxyanisole And the like.
- the obtained polymer brush is appropriately washed to remove the polymerization catalyst and the like.
- phase Separation in Solvent (B) In the present invention, the polymer free end of the polymer brush (A) is first phased in the solvent (B) (hereinafter sometimes referred to as “phase separation solvent (B)”). To separate.
- solvent (B) a liquid in which the same polymer as that constituting the polymer brush (A) is mixed with a solvent except that one end is not fixed to the base material (hereinafter referred to as “model mixed liquid”).
- model mixed liquid a liquid in which the same polymer as that constituting the polymer brush (A) is mixed with a solvent except that one end is not fixed to the base material.
- the model mixed solution is changed by changing the polymer concentration and the external environment (for example, temperature, pressure, ion concentration, electric field, magnetic field, etc., preferably temperature, pressure, ion concentration, etc.).
- a solvent (B) that exhibits both a phase state and a two-phase state can be used.
- the polymer concentration may be fixed and the external environment may be changed, or the external environment may be fixed and the polymer concentration may be changed.
- the pressure is atmospheric pressure (1013 hPa) unless otherwise specified, and the ion concentration is 0 mol / L.
- phase separation solvent (B) varies depending on the polymer and cannot be uniquely determined.
- hydrocarbon solvents halogenated hydrocarbon solvents, alcohol solvents, phenol solvents, ether solvents , Ketone solvents, ester solvents, nitrogen compound solvents, sulfur compound solvents and the like.
- a solvent (B) may be used independently and may be used in combination.
- hydrocarbon solvent examples include propane, butane, pentane, 2-methylbutane, hexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, 2-methylhexane, 3-methylhexane.
- Saturated aliphatic hydrocarbons such as 2,3-dimethylpentane, 2,4-dimethylpentane, octane, 2,2,3-trimethylpentane, isooctane, nonane, 2,2,5-trimethylhexane, decane, dodecane, etc.
- Solvent unsaturated aliphatic hydrocarbon solvents such as 1-pentene, 2-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene; benzene, toluene, xylene, o-xylene, m-xylene, p-xylene, ethylbenzene, cumene, mesitylene, naphthalene, tetralin, butylbenze , P-cymene, cyclohexylbenzene, diethylbenzene, pentylbenzene, dipentylbenzene, dodecylbenzene, biphenyl, styrene and other aromatic hydrocarbon solvents; cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, p-menthane, And saturated
- halogenated hydrocarbon solvent examples include methyl chloride, dichloromethane, chloroform, carbon tetrachloride, ethyl chloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, 1,1, 2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, pentachloroethane, hexachloroethane, 1,1-dichloroethylene, 1,2-dichloroethylene, trichloroethylene, tetrachloroethylene, propyl chloride Chlorinated aliphatic carbonization such as isopropyl chloride, 1,2-dichloropropane, 1,2,3-trichloropropane, allyl chloride, butyl chloride, sec-butyl chloride, isobutyl chloride, tert-butyl chloride, 1-chlor
- the alcohol solvent examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol 2-ethyl-1-butanol, 1-heptanol, 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, 1-nonanol, 3,5,5-trimethyl-1 -Hexanol, 1-decanol, 1- Monodecanol, 1-dodecanol, allyl alcohol, prop
- phenol solvent examples include phenol, cresol, dimethylphenol, and the like.
- ether solvents examples include aliphatic ether ether solvents such as diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether; anisole, phenetole, butyl phenyl ether, pentyl phenyl ether, Aromatic hydrocarbon ether solvents such as methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, veratrol, o-nitroanisole; propylene oxide, 1,2-epoxybutane, dioxane, trioxane, furan, 2-methylfuran, Cyclic ether solvents such as tetrahydrofuran, tetrahydropyran and cineol; 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibu Polyether solvents such as t
- ketone solvent examples include acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, methyl isobutyl ketone, 2-heptanone, 4-heptanone, diisobutyl ketone, acetonyl acetone, mesityl oxide, phorone, isophorone, And cyclohexanone, methylcyclohexanone, acetophenone, hexafluoroacetone hydrate, dichlorotetrafluoroacetone hydrate; and the like.
- ester solvents examples include formate solvents such as methyl formate, ethyl formate, propyl formate, butyl formate, isobutyl formate, pentyl formate; methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, acetic acid sec-butyl, pentyl acetate, isopentyl acetate, 3-methoxybutyl acetate, sec-hexyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, cyclohexyl acetate, benzyl acetate, 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoxyethyl acetate, 2-phenoxyethyl acetate, diethylene glycol monoethyl ether acetate, di
- nitrogen compound solvents examples include nitromethane, nitroethane, 1-nitropropane, 2-nitropropane, nitrobenzene, acetonitrile, propionitrile, succinonitrile, butyronitrile, isobutyronitrile, valeronitrile, benzonitrile, ⁇ -tolunitrile.
- Nitrile solvents such as: methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, isopropylamine, dipropylamine, diisopropylamine, butylamine, isobutylamine, sec-butylamine, tert-butylamine, dibutylamine, diisobutyl Amine, tributylamine, pentylamine, dipentylamine, tripentylamine, 2-ethylhexylamine, allylamine Amine solvents such as aniline, aniline solvents such as aniline, N-methylaniline, N, N-dimethylaniline, N, N-diethylaniline, toluidine and chloroaniline; cyclic amines such as cyclohexylamine, dicyclohexylamine, pyrrole and piperidine Pyridine solvents such as pyridine, picoline,
- sulfur compound solvent examples include carbon disulfide, dimethyl sulfide, diethyl sulfide, thiophene, tetrahydrothiophene, dimethyl sulfoxide, sulfolane, and 1,3-propane sultone.
- the boiling point of the phase separation solvent (B) is preferably 30 ° C. or higher and 150 ° C. or lower, more preferably 40 ° C. or higher, still more preferably 50 ° C. or higher, and more preferably 120 ° C. or lower. More preferably, it is 100 ° C. or lower.
- the boiling point of the phase separation solvent (B) is high, the polymer brush is easily dispersed, and when the boiling point of the phase separation solvent (B) is low, the phase separation solvent (B) can be easily removed.
- the surface tension of the phase separation solvent (B) at 25 ° C. is preferably 80 mN / m or less, more preferably 40 mN / m or less, and further preferably 30 mN / m or less.
- the capillary force becomes difficult to work when the phase separation solvent (B) is removed, and the phase separation solvent (B) can be dried while maintaining a fine phase separation structure.
- the minimum of the surface tension of a phase-separation solvent (B) is not specifically limited, For example, it is preferable that it is 0.1 mN / m.
- the model liquid mixture for example, under atmospheric pressure (1013 hPa), 1 ° C. or higher, 100 ° C. or less, preferably 3 ° C. or higher, binodal start temperature T ps in the range of 90 ° C. or less Those having the following are preferred.
- a phase separation solvent (B) it becomes easy to form a uniform one-phase state when the surface of the polymer brush (A) and the phase separation solvent (B) are brought into contact with each other. Can improve the uniformity.
- the critical temperature is the boundary between the one-phase region and the two-phase region in the binary phase phase diagram (horizontal axis: polymer volume fraction, vertical axis: temperature) of the model mixture under atmospheric pressure (1013 hPa). Represents the temperature at the top of a line (binodal line).
- the temperature phase diagram of the model mixed solution may be an upper critical temperature (UCST) where the binodal line is convex upward, and a lower critical solution temperature (LCST) where the binodal line is convex downward.
- UST upper critical temperature
- LCST lower critical solution temperature
- the lower critical type is preferable from the viewpoint of easy solvent removal
- the upper critical type is preferable from the viewpoint of stably maintaining the phase separation structure.
- phase separation can be confirmed experimentally by checking whether the mixture of polymer and phase separation solvent is cloudy or not. If cloudy, it is in the phase separation state (two-phase region). If not, it is determined that the solution is in a compatible state (one-phase region).
- a temperature phase diagram of the model solution can be created by changing the volume fraction and temperature of the polymer and confirming the presence or absence of phase separation. Further, as the polymer of the model mixed solution, it is preferable to use the same polymer as that fixed to the polymer brush (A), but it is difficult to make it completely the same including the molecular weight distribution.
- the polymer in the model solution has a molecular weight difference of ⁇ 10% to 10% and a molecular weight distribution difference of ⁇ 10% to 10% from the polymer chain of the polymer brush (A), and all ends are free ends. If so, the phase separation behavior of the polymer brush (A) can be appropriately predicted based on the phase separation behavior of the model solution.
- Examples of such a combination of the polymer and the phase separation solvent (B) include a combination in which the polymer is an aromatic hydrocarbon polymer and the phase separation solvent (B) is a hydrocarbon solvent; the polymer is a (meth) acrylate. Examples thereof include combinations based on a polymer (preferably a quaternary ammonium-containing (meth) acrylate polymer) and the phase separation solvent (B) is an aqueous solvent.
- phase separation temperature a solution having a polymer concentration defined by the following formula (1) is in a phase separation state.
- Polymer concentration (% by volume) ⁇ (location / nm 2 ) ⁇ number average molecular weight of polymer chain (g / mol) ⁇ 10 21 / (free root mean square distance of polymer chain (nm) ⁇ avocado number Na ( mol ⁇ 1 ) ⁇ polymer chain density (g / cm 3 )) (1)
- this concentration may be referred to as “model concentration”.
- the root-mean-square distance ⁇ Re 2 > is represented by the following formula (2).
- n the degree of polymerization
- l the segment length (length of the monomer unit).
- the contact temperature T 1 may be between the intersection temperature with the spinodal line (hereinafter referred to as spinodal start temperature) T z and the binodal start temperature T ps at the model concentration of the model solution.
- the phase separation temperature T 1 may be, for example, preferably 5 ° C. or higher, more preferably 10 ° C. or higher, more preferably 12 ° C. or higher, on the one-phase region side from the spinodal start temperature T z. .
- the difference between the contact temperature T 1 and the binodal start temperature T ps may be, for example, about 50 ° C.
- phase separation temperature T 1 is between the binodal start temperature T ps and the spinodal start temperature T z , the phase separation structure in which a small number of phases (polymer phase or liquid phase) are independent (sea island type, cylinder type, etc.) Can be achieved.
- the contact temperature T 1 can be appropriately set according to the combination of the polymer and the temperature.
- the contact temperature T 1 is preferably ⁇ 100 ° C. or higher, more preferably ⁇ 20 ° C. or higher, and still more preferably 0 ° C. or higher.
- the minority phase may be either a polymer phase or a liquid phase, and means a phase having a volume fraction of 0% or more and less than 50%.
- a majority phase is a polymer phase or a liquid phase that is not a minority phase. Which is a phase having a volume fraction of 50% or more and 100% or less.
- each of the composition of the polymer phase, liquid phase, a composition at the intersection between the straight line and the binodal line temperature T T 1.
- the contact start temperature (phase separation temperature T 1 ) is preferably 5 ° C. or more, preferably 10 ° C. or more, more preferably 12 ° C. or more, on the two-phase region side from the spinodal start temperature T z. .
- a phase separation structure co-connected type, lamellar type, etc. in which each of the minority phase and the majority phase is at least partially continuous is achieved. it can.
- the difference between the contact temperature T 1 and the binodal start temperature T ps may be about 80 ° C. or less, preferably about 70 ° C. or less, and more preferably about 60 ° C. or less.
- the difference between the contact temperature T 1 and the spinodal start temperature T z may be, for example, about 50 ° C. or less, preferably 40 ° C. or less, and more preferably about 30 ° C. or less.
- the means for bringing the polymer brush (A) and the phase separation solvent (B) into contact with each other is not particularly limited.
- the phase separation solvent (B) may be cast on the surface of the polymer brush (A).
- the polymer brush (A) may be immersed in (B).
- the contact time between the polymer brush (A) and the phase separation solvent (B) at the phase separation temperature is, for example, 1 minute or more, preferably 5 minutes or more, more preferably 10 minutes or more.
- the upper limit of contact time is not specifically limited, For example, it is 120 minutes.
- the phase separation structure generated by contact at this phase separation temperature is a phase in which minority phases (island part, cylinder part, etc.) such as sea-island structure and cylinder structure (hexagonal structure, tetragonal structure) are independent. Separation structure; phase separation structure in which each of the minority phase and the majority phase is at least partially continuous, such as a co-connected structure and a lamellar structure.
- the majority phase forms the sea part and the minority phase forms the island part and is randomly arranged.
- the majority phase forms the sea part
- the minority phase forms island phases arranged in hexagonal or tetragonal.
- both the majority phase and the minority phase form a continuous phase.
- the majority phase and the minority phase both form a layered (band-like) phase.
- these phase separation structures either the polymer brush phase or the liquid phase may be a minority phase.
- these phase-separated structures represent a two-dimensional structure when observed from the front (that is, the vertical direction) of the substrate.
- the polymer chain is fixed uniformly on the substrate surface, and the polymer brush phase and liquid phase are separated toward the free end of the polymer chain. It is thought that.
- This phase separation structure can be observed with an atomic force microscope (AFM) with the polymer brush phase as a convex portion and the liquid phase as a concave portion.
- AFM atomic force microscope
- the temperature T 0 at which the polymer brush (A) and the phase separation solvent (B) are not phase-separated that is, the binodal start temperature T, in advance. It is preferable to make contact at a temperature T 0 on the one-phase region side than ps, and it is preferable to completely disperse the polymer chain in the phase separation solvent (B). Examples of the operation for complete dispersion include an operation in which the polymer brush (A) is brought into contact with the phase separation solvent (B) and heated to, for example, 30 ° C. or higher, preferably 40 ° C. or higher.
- the temperature is changed from the temperature T 0 at which the phase separation is not performed to the phase separation temperature T 1 , whereby the degree of phase separation is controlled in the plane direction of the substrate. Can be done.
- the non-phase separation temperature T 0 is higher than the binodal start temperature T ps and the spinodal start temperature T z , and can be set to the phase separation temperature T 1 by cooling.
- the phase separation temperature T 1 is set in the cooling direction, it is easy to maintain the temperature below the glass transition temperature of the polymer because there is no fear of overshooting at a higher temperature in the next solvent evaporation step. .
- the non-phase separation temperature T 0 is higher than the binodal start temperature T ps and the spinodal start temperature T z , and can be set to the phase separation temperature T 1 by raising the temperature.
- the phase separation temperature T 1 is set in the direction of increasing the temperature, the heat for increasing the temperature can be used for the latent heat of evaporation of the solvent, increasing the evaporation efficiency.
- the obtained phase-separated structure can change the structure reversibly by changing temperature. Specifically, after changing from the non-phase separation temperature T 0 to the phase separation temperature T 1 and returning to the non-phase separation temperature T 0 , the phase separation structure disappears, and when the phase separation temperature T 1 is changed again, A phase separation structure appears.
- phase separation can be induced as in the above case.
- a pressure making a polymer brush (A) and the said phase-separation solvent (B) contact.
- UCST type phase separation it is possible to change from a one-phase region to a two-phase region (inducing phase separation) by increasing the pressure, and LCSP (Low Critical Solution Pressure: LSCP) type phase separation.
- LCSP Low Critical Solution Pressure
- LCST type phase separation it is possible to change from a one-phase region to a two-phase region by lowering the pressure, and to show UCSP (Upper Critical Solution Pressure: UCSP) type phase separation. become.
- phase separation pressure The pressure P 1 at which the polymer concentration solution defined by the above formula (1) is in a phase separation state (hereinafter sometimes referred to as “phase separation pressure”) is prepared.
- phase separation pressure the pressure at which the polymer concentration solution defined by the above formula (1) is in a phase separation state
- the phase separation pressure P 1 can be selected from the range on the two-phase region side from the intersection pressure of the binodal line (hereinafter referred to as binodal start pressure) P PS at the model concentration of the model solution according to the phase separation temperature T 1. For example, it is preferably 1 kPa or more and 1 GPa or less.
- the obtained phase-separated structure can change the structure reversibly also by changing a pressure. Specifically, after changing from the non-phase separation pressure P 0 to the phase separation pressure P 1 , when returning to the non-phase separation pressure P 0 , the phase separation structure disappears, and when changing to the phase separation pressure P 1 again, A phase separation structure appears.
- the non-phase separation pressure P 0 is selected from pressures in one phase region in the pressure phase diagram at the corresponding polymer volume fraction.
- the pressure can be controlled by various known means.
- a pressurizing device such as a compressor may be used, and it can also be achieved by physical shear flow such as shear flow of seawater during ship navigation. .
- a decompression device such as a vacuum pump can be used.
- the phase separation structure can be reversibly changed by changing the pressure while keeping the polymer brush (A) and the phase separation solvent (B) in contact with each other.
- phase separation can be induced in the same manner as described above by changing the polymer concentration and the ion concentration. In this case, what is necessary is just to change an ion concentration, making a polymer brush (A) and the said phase-separation solvent (B) contact. Further, from the viewpoint of predicting the phase separation behavior, it is preferable to keep the temperature and pressure constant. By changing the ion concentration, the charge is neutralized or the charge bias is emphasized and the compatibility is lowered. As a result, phase separation is induced between the polymer brush (A) and the phase separation solvent (B). sell.
- the polymer of the polymer brush (A) is preferably a polymer electrolyte, and the monomer constituting this is a quaternary ammonium-containing (meta) among the above monomers.
- examples include acrylate monomers.
- phase-separated ion concentration When changing the ion concentration, as in the case of changing the temperature or pressure, the temperature and pressure are kept constant, the volume fraction of the polymer and the ion concentration are changed, and the presence or absence of phase separation is confirmed.
- Ion concentration phase diagram horizontal axis: polymer volume fraction, vertical axis: ion concentration
- the ion concentration at which the polymer concentration solution defined by the above equation (1) is in a phase-separated state Contact with C 1 (hereinafter sometimes referred to as “phase-separated ion concentration” or the like).
- phase separation ion concentration C 1 is according to the phase separation temperature T 1, an intersection temperature of the binodal line in the model density model solution (hereinafter, binodal referred initiation temperature) be selected from the range of the two-phase region side than the C PS For example, it is preferably 1 mmol / L or more and 100 mol / L or less in the phase separation solvent (B).
- the obtained phase-separated structure can change the structure reversibly also by changing ion concentration.
- the non-phase-separated ion concentration C 0 is selected from ion concentrations in one phase region in the ion concentration phase diagram at the corresponding polymer volume fraction.
- the type of ion may be either a cation or an anion.
- the cation include alkali metal ions such as Li + , Na + , K + , Rb + , and Cs + ; transition metal ions such as Ag + ; ammonium ions;
- the anion include CH 3 COO ⁇ ; SCN ⁇ ; OH ⁇ ; NO 3 ⁇ ; halide ions such as F ⁇ , Cl ⁇ , Br ⁇ and I ⁇ ;
- the ion concentration can be controlled by allowing an electrolyte (salt) to coexist.
- Such an electrolyte (salt) may be any salt selected from a combination of the above cation or anion and a counter anion or counter cation, and soluble in the phase separation solvent (B).
- the concentration of the electrolyte (salt) to coexist is preferably 1 mmol / L or more and 100 mmol / L or less in the phase separation solvent (B).
- the concentration of the electrolyte (salt) can be controlled simply by adding the electrolyte (salt). In particular, when navigating a ship, the concentration of the electrolyte (salt) also changes due to various water quality changes such as changes from seawater to fresh water, so phase separation function control corresponding to environmental changes is also possible.
- phase separation in the gas phase After inducing the phase separation in the solvent, the phase separation state in the gas phase can be achieved by replacing the liquid phase with the gas phase while maintaining this phase separation structure.
- the liquid phase may be replaced at a temperature lower than the glass transition temperature of the polymer chain.
- the liquid phase replacement includes a method of removing the phase separation solvent while maintaining the glass transition temperature or lower, for example, a method of evaporating the phase separation solvent; a freeze drying method, a critical drying method, a supercritical drying method. And the like. From the viewpoint of maintaining the phase separation state (phase separation structure), it is preferable to remove the solvent while maintaining the temperature at which the phase separation is induced, and a method of evaporating the phase separation solvent is preferable.
- phase separation structure of the phase-separated polymer brushes for example, it is possible to reduce its height difference by heating to near the glass transition temperature T g of the polymer chains, the surface properties of the polymer brushes (contact angle, sliding angle Etc.) can be changed.
- the heating temperature Th is preferably equal to or higher than a temperature at which the difference from the glass transition temperature (T g ⁇ T h ) is, for example, 20 ° C. or less, more preferably 10 ° C. or less, and even more preferably 5 ° C. or less.
- phase separation polymer brushes when heated above the glass transition temperature T g of the polymer chain it is possible to eliminate the phase separation structure. By bringing the polymer brush (A) from which this phase separation state has been released into contact with the phase separation solvent (B) and placing it at the phase separation temperature, the same or different phase separation structures can be formed.
- phase-separated polymer brush of the present invention can be produced as described above, and has a base material and a polymer layer formed of polymer chains fixed on the base material.
- the polymer layer (particularly on the surface thereof) is characterized in that a polymer dense portion and a polymer coarse portion (gas phase portion) are formed.
- the difference in density is unlikely to occur because the polymer brush is fixed to the substrate, but the closer to the surface of the polymer layer, the more freely the polymer chains can move, and the polymer dense part and polymer coarse part The density difference is emphasized.
- a polymer dense part and a polymer coarse part are formed at least on the surface of the polymer layer, a polymer dense part and a polymer coarse part (gas phase part) are formed in the polymer layer. It can be said.
- the polymer dense portion and the polymer coarse portion appear periodically and repeatedly with a constant period in the plane direction, and preferably have high periodicity (more periodic).
- the period of the phase separation structure is one unit of a repeating structure in which a polymer dense part and a polymer coarse part appear alternately (one polymer coarse part adjacent to one polymer dense part). It can be evaluated by the uniformity of the length (cycle length) of the sum of the width or minor axis of the dense part and the polymer coarse part.
- the polymer dense portion can be identified as a portion (convex portion) in which the thickness of the polymer layer is thicker than the surrounding portion, and the polymer coarse portion is a polymer layer having a thickness greater than that of the surrounding portion. It can be identified as a thinned part (concave part) and corresponds to a gas phase part. More specifically, the polymer dense portion is a portion derived from the polymer brush phase having a phase separation structure formed by the polymer brush and the phase separation solvent, and its shape is fixed by removing the solvent, and the convex portion on the surface of the polymer layer. Will exist. Moreover, the polymer coarse part originates in the liquid phase, and as a result of replacing the solvent part of the liquid phase with the gas phase, it exists as a recess on the surface of the polymer layer.
- the polymer dense part and the polymer coarse part form a phase separation structure in which the phase separation structure formed by the polymer brush phase and the liquid phase is roughly transferred, and is observed from the front surface of the substrate (that is, in the vertical direction)
- the phase separation structure in which the minority phases are independent and the phase separation structure in which the minority phases and the majority phases are at least partially continuous are observed.
- either the polymer dense part or the polymer coarse part may be a minority phase (island part, cylinder part, etc.).
- the sliding angle tends to increase.
- the phase separation structure in which each of the minority phase and the majority phase is at least partially continuous, or the polymer dense portion In the phase separation structure in which the minority phases are independent as the majority phases the sliding angle tends to be large.
- the phase separation structure is observed from the base material surface direction, the base material surface is covered with polymer chains, and the polymer chains are separated toward the polymer phase surface to form irregularities. It is considered a thing. For this reason, it is considered possible to increase the sliding angle while enhancing (increasing) the degree of hydrophilicity / hydrophobicity.
- This phase separation structure can be observed by measuring the height difference of the surface with an atomic force microscope (AFM).
- AFM atomic force microscope
- the maximum height difference between the polymer dense part and the polymer rough part is preferably, for example, 1 nm or more, more preferably 3 nm or more, and further preferably 5 nm or more. As the maximum height difference is larger, the roughness of the surface of the phase-separated polymer brush increases, and the surface characteristics (contact angle, sliding angle, etc.) can be changed.
- the upper limit of the maximum height difference between the polymer dense portion and the polymer coarse portion is not particularly limited, but is preferably 50 nm or less, for example.
- the size of the phase separation structure formed by the dense polymer portion and the coarse polymer portion can be evaluated by, for example, the size of the minority phase. Specifically, when the minority phase is a continuous phase, the size of the phase separation structure can be evaluated. When the phase is an independent phase, the average minor axis can be evaluated. As the average value, the mode value after the AFM image is binarized (black and white) and thinned is adopted.
- the average width or average minor axis is, for example, preferably 0.1 nm or more, more preferably 1 nm or more, and further preferably 5 nm or more. The larger the average width or the average minor axis, the easier it is to maintain the phase separation structure even under shear stress or compressive stress.
- the average width or average minor axis is preferably 100 nm or less, more preferably 80 nm or less, and still more preferably 70 nm or less.
- the average width or the average minor axis can be obtained by measuring the width or the minor axis of a convex part or a concave part forming a minority phase in an AFM image, and averaging this.
- the contact angle of water is preferably more than 90 °, more preferably 90.5 ° or more.
- the contact angle is preferably 100 ° or less.
- the sliding angle of water is preferably 30 ° or more, and more preferably 35 ° or more.
- the upper limit of the sliding angle is 90 °.
- the sliding angle can be increased while enhancing (increasing) the degree of hydrophilicity / hydrophobicity.
- the phase-separated polymer brush of the present invention emphasizes (enlarges) the degree of hydrophilicity / hydrophobicity by forming a phase-separated structure, and at the same time has a large water sliding angle.
- agricultural films, wrap films, shrink films Films such as protective films; ion exchange membranes; separation membranes; microcapsules; sustained release carriers for drug delivery systems; floor materials, floor tiles, floor sheets, sound insulation sheets, heat insulation panels, heat dissipation panels, vibration-proof materials, decorative sheets, Building materials such as gaskets and sealing materials; automotive interior and exterior materials; electrical insulation materials; liquid crystal display materials; medical and sanitary materials; etc., especially on the surfaces of members used in these applications (surfaces in contact with the external environment) It is suitably used for a surface modifying member having a polymer brush formed at least in part.
- phase separation structures of the phase-separated polymer brushes obtained in Examples 1 to 5 and Comparative Example 1 were analyzed using an atomic force microscope (Oxford Instruments, Inc.) in the gas phase and in the liquid phase (cyclohexane, water). Manufactured by “Cypher”) and observed in a tapping mode in an environmental control cell controlled at normal pressure (1013 hPa) ⁇ 10, 20, 30 ° C.
- the probe used was “BL-AC40TS-C2” manufactured by Olympus.
- the sliding angle measurement was performed using the same apparatus as the contact angle measurement.
- the polymer brushes of Examples 1 to 3 and Comparative Example 1 were fixed horizontally, and 10 ⁇ L of distilled water was dropped to form water droplets. Next, the polymer brush on which the water droplets were formed was inclined at 1 degree / second, and the angle of the coated plate when the water droplets began to roll was measured.
- Example 1 (Preparation of polymer brush) 0.1 parts of (2-bromo-2-methyl) propionyloxyhexyltriethoxysilane (BHE) as a brush initiator and 0 of 2-methylpropionylhexyltriethoxysilane (HHE) as a brush conditioner 9 parts were mixed, and then 89 parts of ethanol and 10 parts of 20% aqueous ammonia were added and mixed. The silicon wafer was immersed in this mixed solution and allowed to stand at room temperature (25 ° C.) for 4 hours to fix the brush initiator (BHE) and the brush adjuster (HHE) on the silicon wafer surface.
- BHE (2-bromo-2-methyl) propionyloxyhexyltriethoxysilane
- HHE 2-methylpropionylhexyltriethoxysilane
- the silicon wafer was taken out of the mixed solution, subjected to ultrasonic cleaning in ethanol, and then vacuum-dried at 60 ° C. to fix the brush initiator (BHE) and the brush adjustment agent (HHE) to the silicon wafer. .
- a silicon wafer on which a brush initiator (BHE) and a brush conditioner (HHE) were fixed and 6.0 mL (52 mmol) of a styrene monomer were charged.
- BHE brush initiator
- HHE brush conditioner
- the obtained polymer brush was washed with toluene, dried, and used for the phase-separated polymer brush of the present invention. 1 was obtained.
- Non-fixed polystyrene was dried and used for molecular weight measurement after reprecipitation treatment with methanol. The molecular weight was 150,000 and the molecular weight distribution was 1.07.
- Obtained polymer brush No. 1 was immersed in cyclohexane at normal pressure (1013 hPa) and room temperature (25 ° C.), kept at normal pressure, maintained at 50 ° C. for 3 minutes, and then set to 10 ° C. In this state, the polymer brush No. The structure of 1 was observed with AFM. The result is shown in FIG. Further, while maintaining the normal pressure, the temperature was changed from 20 ° C. ⁇ 30 ° C. ⁇ 10 ° C. ⁇ 30 ° C., and AFM observation was performed at each temperature. The results are shown in FIG.
- phase separation type polymer brush No AFM observation of phase separation structure 1 (normal pressure, room temperature) was performed. The results are shown in FIG.
- Example 2 and 3 Comparative Example 1
- the polymer brush no. 2-3, comparative polymer brush no. 1 was obtained.
- the same operation as in Example 1 was performed to obtain a phase separation type polymer brush No. No. 2 and 3 and comparative polymer brush no. 1 was obtained.
- Polymer brush No. 2 and 3 and phase separation type polymer brush No. 2 2, 3 AFM images are shown in FIGS.
- Example 4 The initiator for brush (BHE) and the brush were applied to the silicon wafer in the same manner as in Example 1 except that the amounts of the initiator for brush (BHE) and the regulator for brush (HHE) were as shown in Table 1.
- the adjustment agent (HHE) was fixed.
- BHE brush initiator
- HHE brush conditioner
- Non-fixed poly (3- (N- [2- (meth) acryloyloxyethyl] -N, N'-dimethylammonio) propanesulfonate) (PMAPS) is reprecipitated with methanol and dried to obtain a molecular weight Used for measurement.
- the molecular weight was 152,000 and the molecular weight distribution was 1.14.
- Obtained polymer brush No. No. 4 was immersed in water at normal pressure (1013 hPa) and 50 ° C. and held for 3 minutes as it was, and then set to 10 ° C. In this state, the polymer brush No. When the structure of No. 4 was observed by AFM, a co-linked structure was confirmed. The AFM observation result at 10 ° C. is shown in FIG.
- Example 5 In the same manner as in Example 4 except that the amount of the brush initiator (BHE) used and the amount of the brush regulator (HHE) used were as shown in Table 1, the polymer brush No. 5 was obtained. In this state, the polymer brush No. The structure of 5 was observed with AFM. When AFM observation was performed at 10 ° C., a sea-island structure in which the minority phase was the liquid phase was confirmed. The AFM observation results at 10 ° C. are shown in FIG. Further, while maintaining the normal pressure, the temperature was changed from 10 ° C. ⁇ 50 ° C. ⁇ 20 ° C. ⁇ 30 ° C., and AFM observation was performed at each temperature. Polymer brush No. As in the case of 1 (FIG. 7), it became clear that the phase separation structure appeared reversibly.
- BHE brush initiator
- HHE brush regulator
- the polymer brush of the present invention had a smooth surface with a root mean square roughness of 0.5 nm or less in the atmosphere before the phase separation.
- the phase separation solvent cyclohexane, water
- the environment was 10 ° C. at normal pressure.
- the surface roughness increased and sea-island and co-connected phase separation structures appeared.
- the phase separation structure of the surface of this phase separation type polymer brush has a height difference of about several tens of nanometers, and also has surface characteristics that emphasize the degree of hydrophilicity / hydrophobicity (large) and have a high sliding angle. It became clear that.
- the present invention includes, for example, films such as agricultural films, wrap films, shrink films, protective films; ion exchange membranes; separation membranes; microcapsules; sustained release carriers for drug delivery systems; floor materials, floor tiles, floor sheets, sound insulation Sheets, heat insulation panels, heat dissipation panels, anti-vibration materials, decorative sheets, gaskets and sealing materials, etc .; automotive interior and exterior materials; electrical insulation materials; liquid crystal display materials; medical and sanitary materials; be able to.
Landscapes
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
前記密部と粗部が形成する相分離構造が、海島構造、シリンダ構造、共連結型構造またはラメラ構造であることが好ましい。
ポリマー濃度(体積%)=σ(箇所/nm2)×ポリマー鎖の数平均分子量(g/mol)×1021/(フリーのポリマー鎖の根二乗平均末端間距離(nm)×アボガドロ数Na(mol-1)×ポリマー鎖の密度(g/cm3)) (1)
前記ポリマー鎖の固定端密度σは、0.001(箇所/nm2)以上、0.1(箇所/nm2)以下であることが好ましい。また前記溶媒(B)は、基材に結合していないフリーの状態のポリマー鎖と前記式(1)で定められるポリマー濃度で混合した時のバイノーダル開始温度が1℃以上、100℃以下の範囲にある溶媒であることが好ましい。
(1)ポリマー:芳香族炭化水素系ポリマー、溶媒:炭化水素系溶媒、または
(2)ポリマー:(メタ)アクリル系ポリマー、溶媒:水系溶媒
であることが好ましい。
さらに、前記ポリマーブラシが表面に形成されている表面改質部材も本発明の技術的範囲に包含される。
ポリマーブラシ(A)とは、基材に多数のポリマー鎖がその片端で結合した構造体をいう。本発明は、このポリマー鎖の自由端側の集合状態に着目した発明であり、その主題は該自由端が気相中で相分離して相分離型ポリマーブラシを製造することにある。この様な気相に対する相分離型ポリマーブラシは、まずポリマーブラシ(A)を溶媒(B)中で所定の条件で処理することによって液相に対してポリマー鎖を相分離させ、次いでこの相分離状態を維持しつつ液相を気相に置き換えることによって製造できる。
本発明では、上述した様に、ポリマーブラシ(A)を用いる。このポリマーブラシ(A)は、より詳細には、基材と複数のポリマー鎖とを有しており、これらポリマー鎖はいずれも基材表面に片端が固定されている一方、他端はどこにも固定されずに自由端になっている。この様な片側拘束構造のため、相分離構造が粗大化し続けることがなく、ポリマー鎖の数平均分子量に応じた一定の大きさの相分離構造を形成することができる。
σ=dLNAMn
相分離しない状態にしたときのポリマーブラシ層の厚さLは、エリプソメーターを用いて測定することができる。また、ポリマー鎖の密度dは、対応するポリマー(ポリマー鎖で端部が基材に固定されていないもの)の密度を意味し、JIS K 7112(1999)に則した方法で測定できる。
(メタ)アクリレート系ポリマーを構成するモノマーとしては、(メタ)アクリル酸、メチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の単官能アルキル(メタ)アクリレート系モノマー;2-ヒドロキシエチル(メタ)アクリレート、2,3-ジヒドロキシプロピル(メタ)アクリレート等の単官能ヒドロキシアルキル(メタ)アクリレート系モノマー;メトキシエトキシエチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、3-エチルオキセタニル(メタ)アクリレート、メトキシエトキシエチル(メタ)アクリレート、2,2-ジメチル-1,3-ジオキソラン-4-メタノール(メタ)アクリレート、グルコシルオキシエチル(メタ)アクリレート等の単官能オキシアルキル(メタ)アクリレート系モノマー;N-アミノエチル(メタ)アクリレート、N,N’-ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート系モノマー;3-(N-[2-(メタ)アクリロイルオキシエチル]-N,N’-ジメチルアンモニオ)プロパンスルホネート、2-(2-(メタ)アクリロイルオキシエチル)ジメチルアミノ酢酸、2-(メタ)アクリロイルオキシエチルホスホリルコリン等の第四級アンモニウム含有(メタ)アクリレート系モノマー;2,2,2-トリフルオロエチル(メタ)アクリレート、2-ペルフルオロブチルエチル(メタ)アクリレート、2-ペルフルオロオクチルエチル(メタ)アクリレート等のフッ素原子含有単官能(メタ)アクリレート系モノマー;(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N’-ジメチル(メタ)アクリルアミド、N,N’-ジエチル(メタ)アクリルアミド、N-メチル-N-エチル(メタ)アクリルアミド、N,N’-ジ(ヒドロキシエチル)(メタ)アクリルアミド、(3-((メタ)アクリロイルアミノプロピル)ジメチル-3-スルホプロピル)アンモニウム塩等の単官能(メタ)アクリルアミド系モノマーなどが挙げられる。これらモノマーは、単独で用いてもよく、適宜組み合わせてもよい。
ビニルピリジン系ポリマーを構成するモノマーとしては、例えば、2-ビニルピリジン、3-ビニルピリジン、4-ビニルピリジン、1-(3-スルホプロピル)-2-ビニルピリジニウムヒドロキシド等の単官能ビニルピリジン系モノマーが挙げられる。これらモノマーは、単独で用いてもよく、適宜組み合わせてもよい。
ビニルエステル系ポリマーを構成するモノマーとしては酢酸ビニルが挙げられ、ビニルピロリドン系ポリマーを構成するモノマーとしては;N-ビニル-2-ピロリドンが挙げられる。
オレフィン系ポリマーを構成するモノマーは、例えば、エチレン、ブタジエン等のオレフィン系モノマーであり、これらは単独でも適宜組み合わせてもよい。
また、ポリマー鎖の分子量分布(Mw/Mn)は、1.3以下であることが好ましく、より好ましくは1.1以下、さらに好ましくは1.08以下である。
前記重合開始基としては、1-ブロモエチル基、1-メチル-1-ブロモエチル基、クロロエチル基等のハロゲン化アルキル基;2,2,6,6-テトラメチルピペリジニル-1-オキシ基、N-tert-ブチル-1-フェニル-2-メチルプロピルニトロキシ基、N-tert-ブチル-l-ジエチルホスホノ-2,2-ジメチルプロピルニトロキシ基等のニトロキシ基含有官能基;SO2Cl基;等が挙げられる。
なお、式(A1-1)~(A1-10)中、Rはそれぞれ独立に、メトキシ基、エトキシ基等のアルコキシ基、または、メチル基、エチル基等のアルキル基を表し、1つのSiに結合するRのうち2つ以上、好ましくは3つがアルコキシ基であることが好ましい。
前記混合液に用いる溶媒としては、例えば、水;メタノール、エタノール、2-プロパノール、ブタノール、2-ブタノール等のアルコール系溶媒;アセトン、ジメチルケトン、メチルエチルケトン等のケトン系溶媒;エーテル系溶媒;エステル系溶媒;アミド系溶媒;等を用いることができる。これらの溶媒は、単独で使用してもよく、組み合わせて使用してもよい。中でも、水と、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、アミド系溶媒等の水溶性有機溶媒の混合溶媒を好ましく用いることができ、前記水溶性有機溶媒としては、アルコール系溶媒が好ましい。この混合溶媒中、水の割合は、1~30質量%が好ましく、7~20質量%がより好ましい。
本発明では、まず初めに前記ポリマーブラシ(A)のポリマー自由端を溶媒(B)(以下、「相分離溶媒(B)」という場合がある)中で相分離する。この溶媒(B)の選択にあたっては、片端が基材に固定されていない点を除いて前記ポリマーブラシ(A)を構成するポリマーと同じポリマーを溶媒と混合した液(以下、「モデル混合液」という場合がある。)の相分離挙動が参考になる。ポリマーブラシ相-液相(溶媒相)間の相分離現象は、モデル混合液の相分離現象と高い相関を示すためである。そこで当該溶媒(B)としては、そのモデル混合液が、ポリマー濃度と、外部環境(例えば温度、圧力、イオン濃度、電場、磁場等、好ましくは温度、圧力又はイオン濃度等)を変えることによって一相状態と二相状態の両方を示す溶媒(B)が使用できる。ポリマー濃度と外部環境を変える場合、ポリマー濃度を固定して、外部環境を変化させてもよいし、外部環境を固定して、ポリマー濃度を変化させてもよい。以下、ポリマー濃度と温度を変えることによって相分離挙動を制御する場合について述べる。この場合、圧力は特に断りのない限り大気圧(1013hPa)とし、イオン濃度は0mol/Lとする。
ポリマー濃度(体積%)=σ(箇所/nm2)×ポリマー鎖の数平均分子量(g/mol)×1021/(フリーのポリマー鎖の根二乗平均末端間距離(nm)×アボガドロ数Na(mol-1)×ポリマー鎖の密度(g/cm3)) (1)
(式中σには、ポリマーブラシの固定端密度σ(箇所/nm2)と同じ数値が代入される。以下、この濃度を「モデル濃度」という場合がある。)
なお、根二乗平均末端間距離<Re2>は、下記式(2)で表される。
<Re2>=nl2 (2)
式中、nは重合度を表し、lはセグメント長(モノマー単位の長さ)を表す。
上記相分離温度T1で接触させることで、ポリマーブラシ(A)の自由端側と溶媒(B)とが、モデル溶液と類似の相分離状態となって、ポリマーブラシ(A)を相分離させることができる。この接触温度T1は、モデル溶液のモデル濃度におけるバイノーダル線との交点温度(以下、バイノーダル開始温度という)Tpsよりも、二相領域側に、例えば、好ましくは5℃以上、より好ましくは10℃以上、さらに好ましくは12℃以上離れていることが好ましい。接触温度T1がバイノーダル開始温度Tpsから離れるほど、確実に相分離させることができる。また前記接触温度T1は、モデル溶液のモデル濃度におけるスピノーダル線との交点温度(以下、スピノーダル開始温度という)Tzとバイノーダル開始温度Tpsの間であってもよい。具体的には、相分離温度T1が、スピノーダル開始温度Tzより一相領域側に、例えば、好ましくは5℃以上、より好ましくは10℃以上、さらに好ましくは12℃以上離れていてもよい。また、接触温度T1とバイノーダル開始温度Tpsとの差が、例えば、50℃以下、好ましくは40℃以下、さらに好ましくは30℃以下程度であってもよい。相分離温度T1温度がバイノーダル開始温度Tpsとスピノーダル開始温度Tzの間にあると、少数相(ポリマー相、あるいは液相)が独立している相分離構造(海島型、シリンダ型等)を達成できる。
また、接触温度T1は、ポリマー及び温度の組合せに応じて適宜設定でき、例えば、-100℃以上であることが好ましく、より好ましくは-20℃以上、さらに好ましくは0℃以上であり、200℃以下であることが好ましく、より好ましくは120℃以下、さらに好ましくは80℃以下、特に好ましくは50℃以下である。
なお、少数相は、ポリマー相、液相のいずれでもよく、体積分率が0%以上、50%未満となる相を意味し、多数相は、ポリマー相、液相のうち、少数相でない方の相であり、体積分率が50%以上、100%以下となる相を意味する。また、ポリマー相、液相のそれぞれの組成は、温度T=T1の直線とバイノーダル線との交点における組成となる。
前記相分離温度でのポリマーブラシ(A)と相分離溶媒(B)との接触時間は、例えば、1分以上、好ましくは5分以上、より好ましくは10分以上である。接触時間の上限は特に限定されないが、例えば120分である。
なお、これらの相分離構造は、基材の正面(すなわち垂直方向)から観察した場合の二次元構造を表す。他方、基材の側面から観察した場合には、基材表面でポリマー鎖が均一に固定され、ポリマー鎖の自由端に向かってポリマーブラシ相と液相とが分離していくような構造を形成しているものと考えられる。この相分離構造は、原子間力顕微鏡(AFM)により、ポリマーブラシ相を凸部、液相を凹部として観察することができる。
なおモデル溶液がUCST型相分離を示す場合、非相分離温度T0はバイノーダル開始温度Tps及びスピノーダル開始温度Tzよりも高く、冷却することで相分離温度T1にすることができる。冷却方向で相分離温度T1にする場合には、次工程の溶媒蒸発工程で温度が高い側にオーバーシュートする心配がないため、ポリマーのガラス転移温度以下に温度を維持するのが容易になる。一方、モデル溶液がLCST型相分離を示す場合、非相分離温度T0はバイノーダル開始温度Tps及びスピノーダル開始温度Tzよりも高く、昇温することで相分離温度T1にすることができる。昇温方向で相分離温度T1にする場合には、昇温の為の熱を溶媒の蒸発潜熱に利用でき、蒸発効率が高まる。
相分離圧力P1で接触させることで、ポリマーブラシ(A)の自由端側と溶媒(B)とが、モデル溶液と類似の相分離状態となって、ポリマーブラシ(A)を相分離させることができる。相分離圧力P1は、相分離温度T1に準じ、モデル溶液のモデル濃度におけるバイノーダル線の交点圧力(以下、バイノーダル開始圧力という)PPSよりも二相領域側の範囲から選択することができ、例えば、1kPa以上、1GPa以下であることが好ましい。
また、得られた相分離構造は、圧力を変化させることでも、可逆的にその構造を変化させることができる。具体的には、非相分離圧力P0から相分離圧力P1に変化させた後、非相分離圧力P0に戻すと相分離構造が消失し、再度相分離圧力P1に変化させると、相分離構造が現れる。非相分離圧力P0は、該当するポリマー体積分率において、圧力相図中の一相領域にある圧力から選択される。
圧力は、各種の公知手段で制御でき、加圧する場合は、コンプレッサー等の加圧装置を用いてもよく、船舶航行時の海水のせん断流動等の物理的なせん断流動によっても達成することができる。また、減圧する場合は、バキュームポンプ等の減圧装置を用いることができる。
相分離イオン濃度C1で接触させることで、ポリマーブラシ(A)の自由端側と溶媒(B)とが、モデル溶液と類似の相分離状態となって、ポリマーブラシ(A)を相分離させることができる。相分離イオン濃度C1は、相分離温度T1に準じ、モデル溶液のモデル濃度におけるバイノーダル線との交点温度(以下、バイノーダル開始温度という)CPSよりも二相領域側の範囲から選択することができ、例えば、相分離溶媒(B)中で1mmol/L以上、100mol/L以下であることが好ましい。
また、得られた相分離構造は、イオン濃度を変化させることでも、可逆的にその構造を変化させることができる。具体的には、非相分離イオン濃度C0から相分離イオン濃度C1に変化させた後、非相分離イオン濃度C0に戻すと相分離構造が消失し、再度相分離濃度C1に変化させると、相分離構造が現れる。非相分離イオン濃度C0は、該当するポリマー体積分率において、イオン濃度相図中の一相領域にあるイオン濃度から選択される。
また、イオン濃度は、電解質(塩)を共存させることにより制御することができる。このような電解質(塩)としては、上記のカチオン又はアニオンと、それぞれのカウンターアニオン又はカウンターカチオンとを組み合わせた塩から選ばれ、相分離溶媒(B)に溶解しうるものであればよい。
共存させる電解質(塩)の濃度は、相分離溶媒(B)中で1mmol/L以上、100mmol/L以下であることが好ましい。電解質(塩)の濃度は、単に電解質(塩)の添加等によっても制御できる。特に船舶航行時には、海水から淡水への変化等、種々の水質変化によって電解質(塩)の濃度も変化するため、環境変化に対応した相分離機能制御も可能である。
溶媒中で相分離を誘起した後、この相分離構造を維持しつつ液相を気相に置き換えることで、気相中での相分離状態を達成できる。相分離構造の維持と液相の置き換えを両立させるには、ポリマー鎖のガラス転移温度以下で液相の置き換えを行えばよい。また液相の置き換えには、該ガラス転移温度以下を保ちつつ、相分離溶媒を除去する方法が挙げられ、例えば、相分離溶媒を蒸発させる方法;凍結乾燥法、臨界乾燥法、超臨界乾燥法等の乾燥法;等が含まれる。相分離状態(相分離構造)を維持する観点からは、相分離を誘起した温度を維持したまま溶媒を除去することが好ましく、相分離溶媒を蒸発させる方法が好ましい。
本発明の相分離型ポリマーブラシは以上の様にして製造可能であって、基材と、基材上に固定されたポリマー鎖で形成されるポリマー層とを有しており、このポリマー層には(特にその表面には)、ポリマー密部とポリマー粗部(気相部)とが形成されている点に特徴がある。ポリマー層の基板側では、ポリマーブラシが基板に固定されているため密度差は生じにくいが、ポリマー層の表面に近いほど、ポリマー鎖が自由に動けるようになり、ポリマー密部とポリマー粗部の密度差が強調される。従って、少なくともポリマー層の表面においてポリマー密部とポリマー粗部(気相部)とが形成されていれば、ポリマー層中でポリマー密部とポリマー粗部(気相部)とが形成されているといえる。ポリマー密部とポリマー粗部とは、平面方向に一定の周期をもって、周期的に繰り返し現れており、周期性が高い(より周期的である)ことが好ましい。なお、相分離構造の周期は、ポリマー密部とポリマー粗部が交互に現れる繰り返し構造の一単位(1つのポリマー密部と隣り合った1つのポリマー粗部)であり、周期性は、該ポリマー密部とポリマー粗部の幅或いは短径を合計した長さ(周期長)の均一性で評価できる。
なお、相分離構造を基材表面方向から観察した場合には、基材表面をポリマー鎖が覆い、ポリマー相表面に向かってポリマー鎖が分離し、凹凸を形成するような構造を形成しているものと考えられる。このため、親疎水性の程度を強調(大きく)しつつ、滑落角をも大きくすることが可能になると考えられる。
この相分離構造は、原子間力顕微鏡(AFM)で表面の高低差を測定することにより観察できる。
本発明の実施例1~5、比較例1で得られたポリマーブラシのポリマー層の厚さを、エリプソメータ(ファイブラボ株式会社製、「MASS-103」)を用い、入射光の波長620nm、入射角70°として測定した。
これらのパラメータを用い、回転位相子法により相分離前のポリマーブラシの膜厚を算出した。
実施例1~5、比較例1で得られた相分離型ポリマーブラシの相分離構造を、気相中、液相(シクロヘキサン、水)中のそれぞれで、原子間力顕微鏡(オックスフォード インストゥルメンツ社製、「サイファー」)を用い、常圧(1013hPa)・10,20,30℃に制御した環境制御セル中、でタッピングモードにより観察した。プローブはオリンパス社製「BL-AC40TS-C2」を使用した。
分子量(数平均分子量、重量平均分子量)および分子量分布は別途合成した非固定の同一分子量のポリスチレンをテトラヒドロフランに溶解後、株式会社島津製作所製のHPLCシステムを用いてサイズ排除クロマトグラフィ測定することで決定した。
接触角計(KRUSS社製「DSA10 Mk2」)により接触角の測定を行った。測定した水滴またはメタノール/水混合液(メタノール:水=90:10(体積基準))の液量は2μLであった。
接触角測定と同一の装置を用いて滑落角測定を行った。実施例1~3、比較例1のポリマーブラシを水平に固定し、蒸留水を10μL滴下して水滴を形成した。次いで、水滴を形成したポリマーブラシを1度/秒で傾斜させていき、水滴が転がり始めたときの塗装板の角度を測定した。
(ポリマーブラシの調製)
ブラシ用開始剤としての(2-ブロモ-2-メチル)プロピオニルオキシヘキシルトリエトキシシラン(BHE)を0.1部と、ブラシ用調整剤としての2-メチルプロピオニルヘキシルトリエトキシシラン(HHE)を0.9部混合し、次いで、エタノール89部と20%アンモニア水10部とを加えて混合した。この混合溶液にシリコンウェハを浸漬し、室温(25℃)で4時間静置して、ブラシ用開始剤(BHE)とブラシ用調整剤(HHE)をシリコンウェハ表面に固定した。その後、このシリコンウェハを混合溶液から取り出し、エタノール中で超音波洗浄した後、60℃で真空乾燥して、シリコンウェハにブラシ用開始剤(BHE)とブラシ用調整剤(HHE)とを固定した。
シリコンウェハとスチレンモノマーとを投入した重合管(1)中に、重合管(2)中の重合触媒と配位子のアニソール溶液を投入し、75℃に昇温してリビングラジカル重合(ATRP法)を開始した。19時間撹拌し反応を継続した後、テトラヒドロフランを少量(2g)投入して、反応を停止した。
得られたポリマーブラシをトルエンで洗浄し、乾燥して本発明の相分離型ポリマーブラシに用いるポリマーブラシNo.1を得た。非固定のポリスチレンはメタノールを用いて再沈殿処理後、乾燥して分子量測定に用いた。分子量は150,000、分子量分布は1.07であった。
ブラシ用開始剤(BHE)と、ブラシ用調整剤(HHE)の使用量を表1に示す通りとしたこと以外は、実施例1と同様にして、ポリマーブラシNo.2~3、比較ポリマーブラシNo.1を得た。次いで、実施例1と同様の操作を行って、相分離型ポリマーブラシNo.2,3と比較ポリマーブラシNo.1とを得た。ポリマーブラシNo.2,3と相分離型ポリマーブラシNo.2,3のAFM画像を、それぞれ図2,1、図5,4に示す。
ブラシ用開始剤(BHE)と、ブラシ用調整剤(HHE)の使用量を表1に示す通りとしたこと以外は実施例1と同様にして、シリコンウェハにブラシ用開始剤(BHE)とブラシ用調整剤(HHE)とを固定した。
シリコンウェハと3-(N-[2-(メタ)アクリロイルオキシエチル]-N,N’-ジメチルアンモニオ)プロパンスルホネートモノマーとを投入した重合管(1)中に、重合管(2)中の重合触媒と配位子の2,2,2-トリフルオロエタノール溶液を投入し、60℃に昇温してリビングラジカル重合(ATRP法)を開始した。18時間撹拌し反応を継続した後、0℃で空気暴露することで反応を停止した。
得られたポリマーブラシを2,2,2-トリフルオロエタノールで洗浄し、乾燥して本発明の相分離型ポリマーブラシに用いるポリマーブラシNo.4を得た。非固定のポリ(3-(N-[2-(メタ)アクリロイルオキシエチル]-N,N’-ジメチルアンモニオ)プロパンスルホネート)(PMAPS)はメタノールを用いて再沈殿処理後、乾燥して分子量測定に用いた。分子量は152,000、分子量分布は1.14であった。
ブラシ用開始剤(BHE)の使用量と、ブラシ用調整剤(HHE)の使用量を表1に示す通りとしたこと以外は、実施例4と同様にして、ポリマーブラシNo.5を得た。この状態でポリマーブラシNo.5の構造をAFM観察した。10℃でAFM観察を行ったところ、少数相が液相である海島構造が確認された。10℃におけるAFM観察結果を図9に示す。
さらに、常圧に保ったまま、温度を10℃→50℃→20℃→30℃に変更し、各温度でそれぞれAFM観察を行った。ポリマーブラシNo.1(図7)の場合と同様に、相分離構造が可逆的に現れることが明らかになった。
Claims (15)
- 基材と、前記基材に片端が固定され、他端が自由端である複数のポリマー鎖で形成されるポリマー層を有し、
前記ポリマー層において、ポリマー密部とポリマー粗部との間の相分離状態が可逆的に変化するポリマーブラシ。 - 前記ポリマー層を、相分離しない状態にしたときの厚みが、1nm以上、50nm以下であり、前記ポリマー鎖の数平均分子量が2,000以上、1,000,000以下である請求項1に記載のポリマーブラシ。
- 前記相分離構造が、外部環境の変化によって可逆的に構造制御される請求項1または2に記載のポリマーブラシ。
- 前記外部環境の変化が、温度、圧力、またはイオン濃度の変化によるものである請求項3に記載のポリマーブラシ。
- 基材と、
前記基材に片端が固定され、他端が自由端である複数のポリマー鎖で形成されるポリマー層を有し、
前記ポリマー層で、ポリマー密部とポリマー粗部とが形成されている相分離型ポリマーブラシ。 - 前記ポリマー層の前記密部と粗部が、平面方向に周期的に繰り返し現れる請求項5に記載のポリマーブラシ。
- 前記密部と粗部が形成する相分離構造が、海島構造、シリンダ構造、共連結型構造またはラメラ構造である請求項5または6に記載のポリマーブラシ。
- 請求項1~7のいずれかに記載のポリマーブラシを溶媒と接触させ、
外部環境を変化させることで、ポリマーブラシの相分離状態を変化させる表面状態制御方法。 - 前記外部環境の変化が、溶媒の温度、圧力、又はイオン濃度の変化によるものである請求項8に記載の表面状態制御方法。
- 基材と、固定端密度σ(箇所/nm2)で片端が前記基材に固定され、他端が自由端となっている複数のポリマー鎖とを有するポリマーブラシ(A)と、溶媒(B)とを、
前記ポリマー鎖を基材と結合させることなくフリーの状態で前記溶媒と混合した時の相図において下記式(1)で定められるポリマー濃度の溶液が相分離状態となる温度で接触させ、
次いでこの相分離状態となる温度範囲内であり、かつ前記ポリマーのガラス転移温度以下となる温度で前記溶媒を気相に置き換える相分離型ポリマーブラシの製造方法。
ポリマー濃度(体積%)=σ(箇所/nm2)×ポリマー鎖の数平均分子量(g/mol)×1021/(フリーのポリマー鎖の根二乗平均末端間距離(nm)×アボガドロ数Na(mol-1)×ポリマー鎖の密度(g/cm3)) (1) - 前記ポリマー鎖の固定端密度σが、0.001(箇所/nm2)以上、0.1(箇所/nm2)以下である請求項10に記載のポリマーブラシの製造方法。
- 前記溶媒(B)は、基材に結合していないフリーの状態のポリマー鎖と前記式(1)で定められるポリマー濃度で混合した時のバイノーダル開始温度が1℃以上、100℃以下の範囲にある溶媒である請求項10または11のいずれかに記載のポリマーブラシの製造方法。
- 前記ポリマーと溶媒(B)との組合せが、
(1)ポリマー:芳香族炭化水素系ポリマー、溶媒:炭化水素系溶媒、または
(2)ポリマー:(メタ)アクリル系ポリマー、溶媒:水系溶媒
である請求項10~12のいずれかに記載のポリマーブラシの製造方法。 - 請求項1~7のいずれかに記載のポリマーブラシを、ポリマーのガラス転移温度以上に加熱する、相分離構造の調製方法。
- 請求項1~7のいずれかに記載のポリマーブラシが表面に形成されている表面改質部材。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/309,471 US10414847B2 (en) | 2014-05-08 | 2015-05-08 | Polymer brush |
EP15788757.1A EP3141564B1 (en) | 2014-05-08 | 2015-05-08 | Polymer brush |
CN201580023123.XA CN106459228A (zh) | 2014-05-08 | 2015-05-08 | 聚合物刷 |
JP2016517928A JP6598256B2 (ja) | 2014-05-08 | 2015-05-08 | ポリマーブラシ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-097007 | 2014-05-08 | ||
JP2014097007 | 2014-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015170724A1 true WO2015170724A1 (ja) | 2015-11-12 |
Family
ID=54392573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/063241 WO2015170724A1 (ja) | 2014-05-08 | 2015-05-08 | ポリマーブラシ |
Country Status (6)
Country | Link |
---|---|
US (1) | US10414847B2 (ja) |
EP (1) | EP3141564B1 (ja) |
JP (1) | JP6598256B2 (ja) |
CN (1) | CN106459228A (ja) |
TW (1) | TW201627147A (ja) |
WO (1) | WO2015170724A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018225693A1 (ja) * | 2017-06-06 | 2018-12-13 | 独立行政法人国立高等専門学校機構 | ポリマーブラシ層の形成方法 |
JP2019068144A (ja) * | 2017-09-28 | 2019-04-25 | パナソニック株式会社 | 電気音響変換器 |
WO2019131872A1 (ja) * | 2017-12-28 | 2019-07-04 | 国立研究開発法人産業技術総合研究所 | ポリマーブラシ形成用基体及び該基体の製造方法並びに該方法に用いる前駆液 |
JP2020507495A (ja) * | 2017-02-20 | 2020-03-12 | ザ ジレット カンパニー リミテッド ライアビリティ カンパニーThe Gillette Company Llc | ポリマー層を含む物品 |
JP2021513910A (ja) * | 2018-02-15 | 2021-06-03 | ドナルドソン カンパニー,インコーポレイティド | フィルター要素構造 |
US11806650B2 (en) | 2016-08-16 | 2023-11-07 | Donaldson Company, Inc. | Hydrocarbon fluid-water separation |
US12017161B2 (en) | 2018-02-15 | 2024-06-25 | Donaldson Company, Inc. | Filter media configurations |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110520657A (zh) * | 2017-04-25 | 2019-11-29 | Nok株式会社 | 密封部件 |
CN110526588B (zh) * | 2019-08-13 | 2020-07-14 | 上海交通大学 | 一种基于材料表面引发生长结晶性嵌段共聚物胶束刷的方法 |
US11307496B2 (en) | 2019-11-19 | 2022-04-19 | International Business Machines Corporation | Metal brush layer for EUV patterning |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001098014A (ja) * | 1999-07-30 | 2001-04-10 | Eastman Kodak Co | 熱可逆性材料の調製方法 |
JP2012033534A (ja) * | 2010-07-28 | 2012-02-16 | Toshiba Corp | パターン形成方法及びポリマーアロイ下地材料 |
WO2012152512A1 (en) * | 2011-05-09 | 2012-11-15 | The Swatch Group Research And Development Ltd | Lubrication with oil-compatible polymer brushes |
JP2013073974A (ja) * | 2011-09-26 | 2013-04-22 | Toshiba Corp | パターン形成方法 |
JP2013159667A (ja) * | 2012-02-02 | 2013-08-19 | Sumitomo Rubber Ind Ltd | 表面改質方法及び表面改質弾性体 |
JP2013231757A (ja) * | 2012-04-27 | 2013-11-14 | Lg Display Co Ltd | ゼロ面アンカリング液晶配向法及びそれを利用した非接触液晶配向法、並びに液晶表示装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6663965B2 (en) | 1999-07-30 | 2003-12-16 | Eastman Kodak Company | Thermo-reversible material and method for preparing it |
JP5111016B2 (ja) | 2006-11-01 | 2012-12-26 | 三井化学株式会社 | 表面親水性ポリオレフィン成形体およびその製造方法 |
JP5130446B2 (ja) | 2009-05-11 | 2013-01-30 | 独立行政法人科学技術振興機構 | 表面修飾基材およびポリマー被覆基材 |
US8652768B1 (en) * | 2011-01-31 | 2014-02-18 | Sandia Corporation | Nanopatterns by phase separation of patterned mixed polymer monolayers |
CN102875195B (zh) | 2012-09-20 | 2014-03-12 | 华东理工大学 | 一种多重刺激响应聚合物刷膜的制备方法 |
-
2015
- 2015-05-08 WO PCT/JP2015/063241 patent/WO2015170724A1/ja active Application Filing
- 2015-05-08 CN CN201580023123.XA patent/CN106459228A/zh active Pending
- 2015-05-08 TW TW104114672A patent/TW201627147A/zh unknown
- 2015-05-08 EP EP15788757.1A patent/EP3141564B1/en active Active
- 2015-05-08 US US15/309,471 patent/US10414847B2/en active Active
- 2015-05-08 JP JP2016517928A patent/JP6598256B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001098014A (ja) * | 1999-07-30 | 2001-04-10 | Eastman Kodak Co | 熱可逆性材料の調製方法 |
JP2012033534A (ja) * | 2010-07-28 | 2012-02-16 | Toshiba Corp | パターン形成方法及びポリマーアロイ下地材料 |
WO2012152512A1 (en) * | 2011-05-09 | 2012-11-15 | The Swatch Group Research And Development Ltd | Lubrication with oil-compatible polymer brushes |
JP2013073974A (ja) * | 2011-09-26 | 2013-04-22 | Toshiba Corp | パターン形成方法 |
JP2013159667A (ja) * | 2012-02-02 | 2013-08-19 | Sumitomo Rubber Ind Ltd | 表面改質方法及び表面改質弾性体 |
JP2013231757A (ja) * | 2012-04-27 | 2013-11-14 | Lg Display Co Ltd | ゼロ面アンカリング液晶配向法及びそれを利用した非接触液晶配向法、並びに液晶表示装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3141564A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11806650B2 (en) | 2016-08-16 | 2023-11-07 | Donaldson Company, Inc. | Hydrocarbon fluid-water separation |
JP2020507495A (ja) * | 2017-02-20 | 2020-03-12 | ザ ジレット カンパニー リミテッド ライアビリティ カンパニーThe Gillette Company Llc | ポリマー層を含む物品 |
JP7223375B2 (ja) | 2017-06-06 | 2023-02-16 | 独立行政法人国立高等専門学校機構 | ポリマーブラシ層の形成方法 |
JPWO2018225693A1 (ja) * | 2017-06-06 | 2020-07-16 | 独立行政法人国立高等専門学校機構 | ポリマーブラシ層の形成方法 |
WO2018225693A1 (ja) * | 2017-06-06 | 2018-12-13 | 独立行政法人国立高等専門学校機構 | ポリマーブラシ層の形成方法 |
JP7022550B2 (ja) | 2017-09-28 | 2022-02-18 | パナソニック株式会社 | 電気音響変換器 |
JP2019068144A (ja) * | 2017-09-28 | 2019-04-25 | パナソニック株式会社 | 電気音響変換器 |
WO2019131872A1 (ja) * | 2017-12-28 | 2019-07-04 | 国立研究開発法人産業技術総合研究所 | ポリマーブラシ形成用基体及び該基体の製造方法並びに該方法に用いる前駆液 |
JPWO2019131872A1 (ja) * | 2017-12-28 | 2021-03-11 | 国立研究開発法人産業技術総合研究所 | ポリマーブラシ形成用基体及び該基体の製造方法並びに該方法に用いる前駆液 |
JP7046385B2 (ja) | 2017-12-28 | 2022-04-04 | 国立研究開発法人産業技術総合研究所 | ポリマーブラシ形成用基体及び該基体の製造方法並びに該方法に用いる前駆液 |
JP2021513910A (ja) * | 2018-02-15 | 2021-06-03 | ドナルドソン カンパニー,インコーポレイティド | フィルター要素構造 |
JP7339266B2 (ja) | 2018-02-15 | 2023-09-05 | ドナルドソン カンパニー,インコーポレイティド | フィルター要素構造 |
US12017161B2 (en) | 2018-02-15 | 2024-06-25 | Donaldson Company, Inc. | Filter media configurations |
Also Published As
Publication number | Publication date |
---|---|
US20170152339A1 (en) | 2017-06-01 |
EP3141564B1 (en) | 2022-07-13 |
JPWO2015170724A1 (ja) | 2017-04-20 |
TW201627147A (zh) | 2016-08-01 |
EP3141564A4 (en) | 2017-12-20 |
US10414847B2 (en) | 2019-09-17 |
JP6598256B2 (ja) | 2019-10-30 |
CN106459228A (zh) | 2017-02-22 |
EP3141564A1 (en) | 2017-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6598256B2 (ja) | ポリマーブラシ | |
Huang et al. | Using surface active random copolymers to control the domain orientation in diblock copolymer thin films | |
Borkar et al. | New highly fluorinated styrene-based materials with low surface energy prepared by ATRP | |
JP6545831B2 (ja) | 中性層組成物 | |
TWI596125B (zh) | 嵌段共聚物 | |
Ren et al. | Synthesis, Characterization, and Interaction Strengths of Difluorocarbene-Modified Polystyrene− Polyisoprene Block Copolymers | |
TWI232468B (en) | Composition for film formation and material for insulating film formation | |
Böker et al. | Selectively thermally cleavable fluorinated side chain block copolymers: Surface chemistry and surface properties | |
Yoshida et al. | Facile and Efficient Modification of Polystyrene-block-poly (methyl methacrylate) for Achieving Sub-10 nm Feature Size | |
Hirao et al. | Synthesis of novel well-defined chain-end-and in-chain-functionalized polystyrenes with one, two, three, and four perfluorooctyl groups and their surface characterization | |
Ren et al. | A simple and mild route to highly fluorinated model polymers | |
Avgeropoulos et al. | Synthesis and morphological behavior of silicon-containing triblock copolymers for nanostructure applications | |
Jung et al. | Effect of the protogenic group on the phase behavior and ion transport properties of acid-bearing block copolymers | |
Hikita et al. | Aggregation states and surface wettability in films of poly (styrene-block-2-perfluorooctyl ethyl acrylate) diblock copolymers synthesized by atom transfer radical polymerization | |
TW200940982A (en) | Method for analysis of low-molecular-weight organic compound having 20 or less carbon atoms in water- and oil-repellent composition | |
Xu et al. | Simultaneous “click chemistry” and atom transfer radical emulsion polymerization and prepared well-defined cross-linked nanoparticles | |
JP2008297522A (ja) | ブロック共重合体の製造方法及び界面活性剤 | |
Guterman et al. | Fluorinated polymerizable phosphonium salts from PH3: Surface properties of photopolymerized films | |
JPWO2019039083A1 (ja) | 含フッ素化合物、組成物、コーティング液、および含フッ素化合物の製造方法 | |
Bucholz et al. | Phase behavior of near-monodisperse semifluorinated diblock copolymers by atom transfer radical polymerization | |
EP3578585A1 (en) | Isolation and purification method of perfluoropolyether compound | |
Kothari et al. | Rheological study of order-to-disorder transitions and phase behavior of block copolymer–surfactant complexes containing hydrogen-bonded small molecule additives | |
TW583289B (en) | Stacked film, insulating film and substrate for semiconductor | |
TW200807156A (en) | Material of the resist-protecting membrane for immersion lithography | |
JP2004300313A (ja) | 撥水撥油性ブロック共重合体およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15788757 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016517928 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15309471 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015788757 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015788757 Country of ref document: EP |