JP2009216744A - 光走査装置および画像形成装置 - Google Patents

光走査装置および画像形成装置 Download PDF

Info

Publication number
JP2009216744A
JP2009216744A JP2008057226A JP2008057226A JP2009216744A JP 2009216744 A JP2009216744 A JP 2009216744A JP 2008057226 A JP2008057226 A JP 2008057226A JP 2008057226 A JP2008057226 A JP 2008057226A JP 2009216744 A JP2009216744 A JP 2009216744A
Authority
JP
Japan
Prior art keywords
light source
light
light beam
unit
scanning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008057226A
Other languages
English (en)
Other versions
JP5338091B2 (ja
Inventor
Shinko Soeda
真弘 添田
Tomohiro Nakajima
智宏 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008057226A priority Critical patent/JP5338091B2/ja
Priority to US12/396,744 priority patent/US8363297B2/en
Publication of JP2009216744A publication Critical patent/JP2009216744A/ja
Application granted granted Critical
Publication of JP5338091B2 publication Critical patent/JP5338091B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • B41J2/473Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror using multiple light beams, wavelengths or colours

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Facsimile Heads (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

【課題】振動ミラーを用いた光走査装置において、振動ミラーの動作時における光源手段である半導体レーザーへの戻り光の影響によるパワー変動を防止する。
【解決手段】光源手段107,108、光源手段を変調駆動する光源駆動手段、光源手段から射出される光ビームを偏向して主走査領域を往復走査する偏向手段106、偏向手段からの光ビームを被走査面上に導く走査結像光学系125、偏向手段からの光ビームを一以上の検出面で検出する光ビーム検出手段PD1、PD2を有し、偏向手段の反射面の最大振れ角が、光源手段から射出される光ビームの偏向手段の反射面への入射角よりも大きい。光源手段の発光光量を制御する光源駆動手段を備え、光源駆動手段には、非画像形成期間のうち、偏向手段の最大振れ角から主走査領域を走査する走査角に至る期間に光源手段107,108を強制消灯する発光量制御期間が設定されている。
【選択図】図1

Description

本発明は、発光部から射出された光ビームを被走査面に走査させる光走査装置および画像形成装置に関するもので、特に、光源の発光部への戻り光を抑制するための光量制御に特徴を有するものである。
従来の光走査装置においては光ビームを走査する偏向器としてポリゴンミラーやガルバノミラーが用いられるが、より高解像度な画像と高速プリントを達成するにはこの回転をさらに高速にしなければならず、軸受の耐久性や風損による発熱、騒音が課題となり、高速走査に限界がある。
そこで、近年、シリコンマイクロマシニングを利用した偏向装置の研究が進められている。Si基板で振動ミラーとそれを軸支するねじり梁を一体形成した方式が提案されている。MEMS(メムス:Micro Electro Mechanical Systems)振動ミラーといわれるものがそれである。MEMSとは、機械要素部品をシリコンなどの基板上に集積化したデバイスのことである。
上記振動ミラーを用いた偏向方式によれば、ミラー面サイズが小さく小型化できるうえ、共振を利用して往復振動させるので高速動作が可能であるにもかかわらず、低騒音で消費電力が低いという利点がある。また、低振動で、発熱がほとんどないために、光走査装置を収容するハウジングを薄肉化でき、ガラス繊維の配合率が少ない低コストの樹脂成形材を用いても画像品質への影響が発生し難いといった利点もある。
特許文献1や特許文献2には、ポリゴンミラーの代わりに振動ミラーを配備した例が開示されている。特許文献1や特許文献2に記載されている振動ミラーによれば、ミラーを支持しているねじり梁のバネ定数が温度によって変化することによって共振振動数が変動し、あるいは大気圧による空気の粘性抵抗が変化することなどの要因により、振れ角が変化してしまうという問題がある。
そこで、特許文献3に開示されているように、走査された光ビームを検出することで振れ角を検出し、振動ミラーに与える印加電流を加減することで、振れ角を安定的に保つように制御する技術が提案されている。
そのほか、振動ミラーを用いた光走査装置、あるいはこの光走査装置を用いた画像形成装置について、特許文献4、特許文献5などに開示されている。
特許文献3〜5に記載されている発明によれば、振動ミラーをポリゴンミラーの代わりとして用いることで、低騒音化や低消費電力化が可能となり、上記振動ミラーを画像形成装置の光偏向器として用いることにより、オフィス環境に適合した画像形成装置を提供することができる。また、低振動化に伴ってハウジングを薄肉化することができ、軽量化や低コスト化が可能である。
そのほか、光偏向器として振動ミラーを用いたものに限定されるものではないが、本願発明に関連のある発明として特許文献6〜特許文献9記載の発明がある。特許文献6、特許文献7には、光ビームに要求される各特性のうち深度を評価可能な光ビーム特性評価方法及び評価装置が開示されている。
特許文献8には、画像形成期間以外で、戻り光発生区間を避けて、複数の光源のAPC光量制御すなわち光量が一定になるような制御を行い、濃度ムラを低減する技術が記載されている。
特許文献9には、光偏向器であるポリゴンミラーの反射面に対して、光ビームの入射角が略90度になるタイミングでは発光源の光量調整を行わないことで、光源としての半導体レーザ(以下「LD」ともいう)を含む光源部に内蔵されている光検出器(以下「PD」という)の初期化動作を安定して行うことができる発明が記載されている。
特許第2924200号公報 特許第3011144号公報 特許第3445691号公報 特許第3543473号公報 特開2004−279947号公報 特開2000−9589号公報 特許第3594813号公報 特開2006−198881号公報 特開2007−148356号公報
光走査装置において、光源手段からの光ビームの入射角よりも、偏向手段の反射面の最大振れ角が大きい場合、振動しているミラーのあるタイミングで、光源から射出された光ビームの上記ミラーによる反射光が再び光源手段の発光点に戻ってくる、所謂戻り光が発生する。この戻り光はノイズ増大の原因となり、安定した半導体レーザーの発振発光を行うことができなくなる。
偏向手段がMEMS振動ミラーで構成されている場合、光源からの光ビームが偏向手段の反射面で反射されて発光部に入射する可能性があるのは、反射面に対する光源からの入射光路が略90度になる場合よりも広い範囲になる場合である。
また、発光部から射出された光ビームが、他の発光部に戻り光となって悪影響を与え、半導体レーザーを画像形成期間以外に、同期検知のため点灯させると、ほぼ連続して点灯させることになって半導体レーザーが温度上昇し、発光効率が低下して、半導体レーザーの消費電力が増大する。また、MEMS振動ミラーは、ポリゴンミラーと異なり往復運動するため、像面上を主走査方向に交互に互いに逆方向に光ビームが走査されることとなる。MEMS振動ミラーが正弦波振動である場合には、最大振幅近傍では著しく光ビームの走査が遅くなるので望ましくない。
画像形成領域はり光ビームの走査速度ができるかぎり線形に近い区間で行う必要があり、そのためにはMEMS振動ミラーの最大振幅の中間程度で使用することになる。半導体レーザーから射出される光ビームのうち、最大振幅付近を中心とする非画像形成領域にあたる部分でのMEMS振動ミラーによる反射ビームは、ゴースト光となって、発光点に再びもどる所謂戻り光となり、パワー変動が生じることになる。また、上記ゴースト光が感光体などの像担持体のまで至る場合には、画像形成面上でもゴーストの原因になる。
振動ミラーの最大振れ角が、画像形成領域の入射角よりも大きいことにより、画像形成領域を超える振れ角となる場合、画像形成領域を超えた振れ角でありかつ同期検知の区間以外において、光源であるLDを強制消灯することにより、発光部への戻り光を抑制することができる。すなわち、振動ミラーの振幅による光ビームの走査範囲の途中に設置されている同期検知PDを光ビームが通過した後、最大振幅に到達して、再び同期検知PDを光ビームが通過するまでの間において、LDを消灯する。LDを画像形成期間以外で消灯することにより無駄なLDの発光を削減することができ、LDおよびその周辺の素子の温度上昇を抑制できるので、高い発光効率で安定したLD点灯を実現することができる。光源が半導体レーザーアレー(LDA)の場合、その消費電力の低減と高いパワーでの発光が可能である。
上記LDAのように複数の発光点がある場合、各発光点からの戻り光が干渉するタイミングでの光量制御(「APC」ともいう)を避けることによって、複数本の光ビームを各々所望の光量となるように駆動電流、電圧ないしはパルス幅等を調整して発光光量を制御することができる。また、APC制御をおこなうために強制消灯する発光量制御期間を設けることが難しい場合には、戻り光の対象区間のみAPC制御を行わない構成とし、あるいは半導体レーザーの発光光量をPD検出のしきい値以下とするように構成するなど、駆動電流を所定以下に抑制する発光量制御期間を設けることで対応することも可能である。発光点が複数個ある光源の場合には、光源相互のAPC制御のタイミングや強制消灯する発光量制御期間の割り付けを適宜行う必要がある。画像形成領域外でLDを強制消灯する発光量制御期間を設けることによって、LDの連続点灯による温度上昇を防ぎ、安定した発光状態を維持でき、消費電力を削減することができる。
同期検知素子上を走査される光ビームの量をPDの感度に合わせて適切に設定することにより、強制消灯できない場合においても、光源であるLDの駆動電流を所定以下に抑制する発光量制御期間を設けることによって、APC制御を適切に行うことができる。このようにして、発光量を極力低減することにより、発光点に再び光ビームが戻ってくる所謂戻り光の発生を抑制でき、安定したLDによる発振発光を維持することができる。
同期検知用のCW点灯時間と、PD検出時間の比率および位相から、適切に強制消灯するための発光量制御期間の開始と終了カウント値を設定することができ、PDを光ビームが通過するときに、画周波数のカウンタをリセットし、光ビームの振幅状態を逐次モニターし制御することにより、適切に強制消灯するための発光量制御期間と光ビーム検出手段のための1ドット分の点灯期間を適切に設定することができる。また、外乱による振動ミラーの動作状態に合わせて、2点同期による適切な書込み開始位置を指定することができ、画素の位置と間隔を制御することにより、より位置ずれの少ない画質の高い画像を形成することができる。
本発明は、以上のような技術的背景の下になされたもので、振動ミラーを用いた光走査装置において、振動ミラーの動作時における光源手段である半導体レーザーへの戻り光の影響によるパワー変動を防止することを目的とする。
本発明は、光ビームを射出する発光部を備えた光源手段と、前記光源手段を変調駆動する光源駆動手段と、前記光源手段から射出される光ビームを偏向して主走査領域を往復走査する偏向手段と、前記偏向手段からの光ビームを被走査面上に導く走査結像光学系と、前記偏向手段からの光ビームを一以上の検出面で検出する光ビーム検出手段を有し、前記偏向手段の反射面の最大振れ角が、前記光源手段から射出される光ビームの前記偏向手段の反射面への入射角よりも大きい光走査装置であって、前記光源手段の発光光量を制御する光源駆動手段を備え、この光源駆動手段には、非画像形成期間のうち、前記偏向手段の最大振れ角から主走査領域を走査する走査角に至る期間に前記光源手段を強制消灯する発光量制御期間が設定されていることを最も主要な特徴とする。
光源駆動手段は、非画像形成期間のうち、前記偏向手段の最大振れ角から主走査領域を走査する走査角に至る期間に前記光源手段の駆動電流を所定以下に抑制する発光量制御期間を設定するようにしてもよい。
光源手段から振動ミラー面への光ビームの入射角よりも振動ミラーの振れ角が大きいことにより、振動ミラー面で反射された光ビームが、光源手段の発光部へ戻り光となって入射することがないように、画像形成期間以外では、強制消灯する発光量制御期間とする。例えば、半導体レーザー(LD)光源に印加する駆動パルスを制御することにより発光量を低減することが可能となる。
また、走査状態に対応した結像光学系において、振幅θ0に対する走査領域を走査する画角θdの比で表わされる有効走査率(θd/θ0)を所定値に抑え、ミラー面への光ビーム入射位置が回転軸上となるように調整することで、ミラー面で反射された光束の波面収差の劣化を低減し、ビームスポットを小径に絞り、高品位の画像を形成することができる光走査装置およびこの光走査装置を備えた画像形成装置を得ることができる。また、発光状態を検知し、検知された発光状態に基づいて、強制消灯する発光量制御期間を制御することができる。
同期検知手段の取り付け位置と走査された光ビームを検出する検出面の設置位置との関係から、上記検出面が同期検知から何ドット目であるかを算出しておき、光源駆動手段により、同期検知手段を光ビームが通過したところで、ドットカウンタをリセットし、振動ミラーの動作状況に合わせて書込み開始位置と終了位置を適宜設定することができる。
走査された光ビームの同期検知から上記検出面まで所要時間の変動から、振動ミラーの温度変動による振れ角の変動を検知し、振動ミラーの駆動電流、駆動周波数を制御することによって、走査される光ビームの振れ角を補正することが可能となる。同時に、各パラメータ変更に合うように、強制消灯する発光量制御期間または駆動電流を所定以下に抑制する発光量制御期間の開始位置と終了位置、およびドット間隔やカウンタ値を適切な値に制御する。こうすることによって、被走査面上に安定したビームスポットを形成することができる。
主走査領域を往復走査する偏向手段を有し、光ビームの入射角度が偏向手段の最大振幅よりも大きい光走査装置において、光源手段から射出された光ビームが偏向手段の反射面で反射して再び光源手段に戻る可能性のある期間に強制消灯する発光量制御期間を設けることによって、半導体レーザー発光部への戻り光の発生を防ぎ、半導体レーザー発振発光の安定化を図ることができる。
主走査領域を往復走査する偏向手段を有し、光ビームの入射角度が偏向手段の最大振幅よりも大きい光走査装置において、光源手段から射出された光ビームが偏向手段の反射面で反射して再び光源手段に戻る可能性のある期間に、光源手段の駆動電流をしきい値以下に抑制するように光源手段の駆動電流を所定以下に抑制する発光量制御期間を設けることによって、光源手段の制御の応答性を保ちつつ、戻り光が発生した場合にも、戻り光による誤ったAPC制御が行われず、安定した光源手段の発振発光を維持することができる。
光ビーム検出手段で検出された同期検知信号から、温度や湿度等の外乱による振動ミラーの走査状態の変動に対応して、強制消灯する発光量制御期間を調整し、または、駆動電流を所定以下に抑制する発光量制御期間のタイミング、時間幅を調整することによって、偏向手段である振動ミラーの外乱や経時変化による振動状態の変動に追従して、発光光量制御期間を所望の値に調整することができる。
ねじり梁により支持された振動ミラーを光偏向器として用い、この振動ミラーによって往復走査することにより、ポリゴンミラー等を光偏向器として用いた場合に比較して低発熱、低騒音、低消費電力を実現できる。
複数の発光源でそれぞれ順次駆動走査し、APC駆動を行うことにより、他の発光部からの戻り光の影響を受けることなく、光源の安定した発振発光ができる。
発光部が複数の発光源を有する場合に、発光部から射出された光ビームが他の発光部に対して戻り光となる場合において、それぞれに強制消灯する発光量制御期間または駆動電流を所定以下に抑制する発光量制御期間を設置することによって、他の発光部からの戻り光の影響を受けることなく、適切なAPC制御が可能となり、安定した半導体レーザーの発振発光を行うことができる。
偏向制御手段により、走査された光ビームの検出信号に基づいて最大振幅が一定となるように制御することによって、振動ミラーの外乱や連続駆動による最大振れ角の変動が発生した場合にも、所望の最大振幅となるように調整することができる。これにより安定した光ビームを走査することができるので、被走査面に高画質の画像を形成することができる。
振動ミラーが外乱や連続駆動による走査周波数の変動により強制消灯する発光量制御期間または駆動電流が変化しても、走査された光ビームの検出信号に基づいて演算された走査周波数に応じてタイミングや時間設定を変えることによって、上記変化を所定以下に抑制するように発光量制御期間を適切に設定しなおすことができる。これにより、戻り光による影響を抑制し、高画質の画像を被走査面に形成することができる。
振動ミラーが外乱や連続駆動による走査周波数の変動により強制消灯する発光量制御期間または駆動電流が変化しても、画像領域外の両側に設けられた光ビーム検出手段による検出信号に基づいて偏向手段の振幅中心のシフト量を演算し、この演算結果に応じて、発光量制御期間を適切に設定しなおすことができ、戻り光による影響を抑制し、高画質の画像を被走査面に形成することができる。振動ミラーの振幅中心が移動した場合に、像高の±いずれの側に移動したかを、画像領域外の両側で検出した信号の時間差を比較することにより判断することができ、強制消灯する発光量制御期間または駆動電流を所定以下に抑制する発光量制御期間を適切に制御できる。
本発明にかかる画像形成装置によれば、光走査装置として本発明にかかる光走査装置を採用することにより、戻り光の影響を受けない安定した光源による高画質の画像を形成することができる。また、カラー対応の画像形成装置の場合、色ずれ色むらを低減することができ、高画質のカラー画像を形成することができる。
以下、本発明にかかる光走査装置および画像形成装置の実施形態を、図に基づいて説明する。この実施形態は、光源手段から振動ミラー面への入射角よりも最大振れ角が大きく、振動ミラーの振れ角が入射角に達したときに、光源部から射出された光ビームが、振動ミラーの反射面で反射され再び発光部へ入射する所謂戻り光が発生することから、この戻り光による悪影響を避けるために、強制消灯する発光量制御期間を設けた光走査装置およびこれを用いた画像形成装置の例である。
図1、図16は、色別の潜像形成ステーションを4個備えた4ステーション方式のフルカラー対応の画像形成装置の例を示している。図16に符号900を付して示す光走査装置は、図1に示すように光偏向器として単一の振動ミラー106を備えている。振動ミラー106は片面に反射面を有し、上記各ステーションに対応した複数の光ビームを振動ミラー106の反射面により走査するようにした片側走査方式である。図1、図16において、各感光体ドラム(像担持体)101、102、103、104の表面を被走査面として走査する上記光走査装置900は画像形成装置に一体的に組み付けられている。上記4つの感光体ドラム101、102、103、104は、転写体としての中間転写ベルト105の移動方向に沿って等間隔で配列されている。光走査装置900は、上記4つの感光体ドラムにそれぞれ対応した光源ユニット(光源手段)107、108からの光ビームを、振動ミラー106で偏向し、結像走査光学系と適宜のミラーを介して各感光体ドラムに導くことで、各感光体ドラムの表面にそれぞれの色に対応した画像(潜像)を同時に形成する。
各光源ユニット107、108からの光ビームは振動ミラー106に対して副走査方向に異なる入射角で斜めに入射させることで、各光源ユニット107、108からの光ビームを一括して偏向し、走査するようになっている。光源ユニット107、108は、2ステーション分の光源が副走査方向に配列され、各光源からの光線のなす角度が所定の角度、例えば2.5°となるように調整され、後述する振動ミラーの反射面441(図6参照)で副走査方向に交差するように、一体的に支持されている。本実施形態では、光源ユニット107は、光源ユニットの射出軸に対し下側の光源からの光線を平行に、上側の光源からの光線を2.5°傾くようにし、射出軸が主走査平面に対して下向きに1.25°傾くように配置されている。一方、光源ユニット108は、射出軸に対し、上側の光源からの光線を平行に、下側の光源からの光線を2.5°傾くようにし、射出軸が主走査平面に対して上向きに1.25°傾くように配置されている。そして、各光源ユニット107、108の射出軸が振動ミラーの反射面441で副走査方向に交差するように、各光源ユニット107、108は副走査方向に設置高さを変えて配置されている。
光源ユニット108は、光源ユニット107よりも副走査方向に低い位置となるように配備されている。光源ユニット108から射出される光ビームの光路は、入射ミラー111によって曲げられ、各光源からの光ビーム204、203、202、201が上下一列に揃えられている。上記各光ビームは副走査方向に高さを異ならせてシリンダレンズ113に入射され、振動ミラー106の法線に対し主走査方向での入射角が各々22.5°(=α/2+θd)となるように、また、振動ミラー106上で、副走査方向に交差するように入射される。各光ビームはシリンダレンズ113によって振動ミラー106の反射面近傍で副走査方向に収束され、偏向後はビーム同士が分離するように間隔を拡げつつfθレンズ(以下、「走査レンズ」ともいう)120に入射される。fθレンズ120は全てのステーションで共用され、副走査方向には収束力を持たない。
fθレンズ120を通った各光源ユニットからの各光ビームは以下のようにして対応する感光体ドラムに導かれて画像を形成する。
光源ユニット108からの下段のビーム204は、折返しミラー126で反射され、トロイダルレンズ122を介して感光体ドラム101上にスポット状に結像するとともに感光体ドラム101上をその回転軸と平行に走査し、第1の画像形成ステーションとしてイエロー色の画像情報に基づいた潜像を感光体ドラム101上に形成する。
光源ユニット108からの上段のビーム203は、折返しミラー127で反射され、トロイダルレンズ123、折返しミラー128を介して感光体ドラム102上にスポット状に結像するとともに感光体ドラム102上を走査し、第2の画像形成ステーションとしてマゼンタ色の画像情報に基づいた潜像を感光体ドラム102上に形成する。
光源ユニット107からの下段のビーム202は、折返しミラー129で反射され、トロイダルレンズ124、折返しミラー130を介して感光体ドラム103上にスポット状に結像するとともに感光体ドラム103上を走査し、第3の画像形成ステーションとしてシアン色の画像情報に基づいた潜像を感光体ドラム103上に形成する。
光源ユニット107からの上段のビーム201は、折返しミラー131で反射され、トロイダルレンズ125、折返しミラー132を介して感光体ドラム104上にスポット状に結像するとともに感光体ドラム104上を走査し、第4の画像形成ステーションとしてブラック色の画像情報に基づいた潜像を感光体ドラム104上に形成する。
これらの構成部品は後述する単一のハウジングに一体的に保持される。
光走査による各感光体ドラムへの書込みタイミングを決めるための同期検知センサ(以下、「同期検知PD」ともいう)138を備えている。同期検知センサ138へは、振動ミラー106で偏向された光ビームが走査レンズ120の脇をすり抜け、結像レンズ139により集束されて入射されるようになっており、同期検知センサ138の検出信号をもとに、ステーション毎の同期検知信号を生成している。
中間転写ベルト105の出口ローラ部(図1の左端部)には、各ステーションで形成されて重ね合わされた各色画像の重ね合わせ精度を検出するための重ね合わせ精度検出手段が配備されている。重ね合わせ精度検出手段は中間転写ベルト105上に形成したトナー像の検出パターンを読み取ることで、主走査レジスト、副走査レジストを基準となるステーションからのずれとして検出し、定期的に補正制御が行われる。本実施形態では、重ね合わせ精度検出手段は、照明用のLED素子154と、反射光を受光するフォトセンサ155および集光レンズ156とからなる。重ね合わせ精度検出手段は中間転写ベルト105における画像形成領域の左右両端部と中央の3ヵ所に配備され、中間転写ベルト105の移動に応じて、上記検出パターンと基準色であるブラックとの検出時間差を読み取っていく。
光源手段から振動ミラー面への入射角よりも振動ミラーの振れ角が大きく、振動ミラーによる反射光が光源手段の発光部に戻り光となって入射することによるパワー変動を抑制するために、強制消灯する発光量制御期間を設定している。発光量制御期間を設けて光源手段の発光光量を制御する光源駆動手段を備えた光走査装置の構成例を図2に示す。図2において、光走査装置は、振動ミラー106の振動により偏向され、被走査面上を走査する光ビームを検出する同期検知手段としての同期検知センサPD1(図1における同期検知センサ138に相当する)と、被走査面上の同期検知センサPD1とは反対側に配置されているもう一つの同期検知センサPD2と、光源ユニット107、108のLD光源部をパルス状に点灯させる光源駆動手段3と、上記同期検知センサPD1、PD2の検出面を光ビームが通過するタイミングを検出する光ビーム検出手段4と、この光ビーム検出手段4の検出信号によって同期検知センサPD1、PD2間を通過した画素クロックをカウントする画素クロックカウント計測手段5を有している。
次に、光走査用光源である半導体レーザーの発光量を制御し、所定のタイミングで強制消灯することができる上記光源駆動手段3を有する光走査装置の動作手順を説明する。説明を簡略化するため、一つのLD光源107のみをパルス点灯させた場合について説明する。光源駆動手段3によりパルス駆動されたLD光源107から射出された光ビームが、振動ミラー106によって偏向走査され、光ビームが同期検知手段である同期検知センサPD1上を通過したときに、光源駆動手段3内の画素カウンタの値を0にリセットする。被走査面の主走査方向両側に設置された同期検知手段による検知信号を起点として書き込み開始位置と書き込み終了位置およびドット間隔等を適切に指定してLD光源をパルス駆動することができ、画像形成領域内に所望の位置と幅でドットを形成することができる。
同期検知による光ビームの検出信号に基づいて、振動ミラー106の振幅、位相、周期、オフセット等を算出し、偏向制御手段によって振動ミラー106の振動を制御する。振動ミラー106の動作状況に応じて、光源駆動手段3から、画像形成領域の書き込みデータに従い光源部を駆動制御して、パルス点灯駆動していく。また、同期検知に対応した部分での強制発光区間の調整を行い、振動ミラー106が入射角度近傍の振れ角となる時は強制消灯し、光ビームが振動ミラー106の反射面で反射され、再び戻り光となって発光部に入射して半導体レーザーのパワー変動が発生することを防ぐ。同期検知区間を除く非画像形成領域において、強制消灯する発光量制御期間または駆動電流を所定以下に抑制する発光量制御期間を設ける。こうすることによって、振動ミラー106の反射面による発光部への戻り光や、その他のゴースト光の発生を抑制することができる。また、半導体レーザーの戻り光によるパワー変動を防ぎ、発光効率を高く保つことができ、安定したパルス点灯を維持することができる。
図2には、戻り光を防ぐために発光量制御期間を設定して強制消灯するようにした光走査装置の制御系統の例をブロック図で示している。同期検知センサPD1、PD2へは振動ミラー106で偏向された光ビームが走査レンズ120の脇をすり抜け、結像レンズ139により集束され、入射されるように構成され、その検出信号をもとにステーション毎の同期検知信号を生成している。
従来、光源ユニットから振動ミラー面への入射角αと振動ミラーの振れ角(振幅)θ0との関係は、
α>2θ0
であり、最大偏向角を
2θmax=α+2θ0
としていたが、実施例では、有効走査率(θd/θ0)を所定値以下、例えば0.6以下に抑えるため、感光体上を走査する有効振れ角をθd、同期検知時の振れ角をθsとしたとき、
θ0≧α/2>θd
θ0≧θs>θd
の関係となるよう、光源からの光ビームの光源手段から振動ミラー面への入射角αを設定している。具体的には、θ0=25°、θd=15°、α=45°、θs=18°である。
なお、同期検知センサを、θs>α/2になるように配置してもよい。
図では、振幅中心が走査レンズの光軸と一致しない例、つまり、振幅中心を光源側にずらして振動させる例を示しているが、実施例では振幅中心を走査レンズの光軸と一致する配置としており、走査レンズ乃至はトロイダルレンズの面形状が主走査方向に沿って対称形をなす曲面形状としている。
前述のとおり、振動ミラー面は往復振動に伴って波状に変形する。この変形量δは振幅θ0のとき最大となり、振れ角0からθ0への変化により比例的に変化量が大きくなるといった傾向がある。つまり、走査領域を走査する振れ角θdは、走査レンズの画角により定まってしまうため、走査領域を走査する振れ角θdの振幅θ0に対する比、すなわち有効走査率(θd/θ0)が小さい方がミラー変形の影響を受け難いということになる。
しかしながら、振幅θ0を大きくするにはミラー基板の質量を小さくする必要があり、逆に、ミラー基板を薄くすれば変形量が大きくなってしまうという、相反する関係がある。実施例では、振動ミラー106の角速度が比較的一定になる振れ角の範囲内として有効走査率(θd/θ0)を設定し、被走査領域を走査する振れ角θdを振幅θ0の60%以下とすることで変形を抑制している。
一方、入射角αを大きくすると動的な面変形の影響を受けやすい。具体的には、図2に示すように、最大振幅2・θ0=50°、入射角α=45°、走査角2・θd=30°、同期検知角2・θs=36°である。入射角αに対して、振動ミラー106の振れ角が大きいため、振動ミラー106の反射面で光ビームが反射され再び光源に戻ってしまう戻り光が発生する。そのため光源から射出された光ビームが反射面から再び光源に戻ってくるタイミングでは、所謂戻り光による半導体レーザーの発光が不安定になるので、戻り光が発生する一定の区間で半導体レーザーを消灯し、あるいはAPC等の光量調整を行わないなどの対策を施す必要がある。この戻り光の発生するタイミングは振動ミラー106の振動動作状態により変化するため、強制消灯する発光量制御期間の開始位置や期間の長さは適宜調整する必要がある。
そこで、図2のように光ビーム検出手段である同期検知センサPD1、PD2を像面上両端部に設置し、光ビームが同期検知センサPD1、PD2上を通過するタイミングをモニターすることによって、振動ミラーの振動状況、すなわち、位相、周期、振れ中心のシフト量、倍率誤差などを把握することができる。同期検知センサPD1、PD2間を通過する光ビームから画素クロックカウント計測手段によって画素クロックをカウントし、書き込み開始位置の同期検知と同様に、強制消灯する発光量制御期間の開始位置、終了位置、区間幅を適切に制御するように、光源駆動手段3を介して光源の駆動制御を行う。振動ミラー106の振動状況が偏向制御手段6に送られ、駆動電圧、振動周波数などの制御パラメータにより振動ミラー106が所望の振動を行うように制御される。
図3に、同期検知センサPD1、PD2を画像形成領域の両外側に設置した場合の振動ミラー106の振動動作を示すグラフと、LD点灯タイミングについてのタイムチャートを示す。上記グラフの縦軸は振れ角、横軸は時間である。図3の最も上に示す正弦波は振動ミラー106の振動を表わしている。正弦波の太線部分(±2θd)が画像形成領域に当たり、この画像形成領域において「往走査」と「復走査」が行われる。画像形成領域外(±2θs)に同期検知センサPD1、PD2が設置され、光ビームの走査状態を検知している。光源手段はPD1側に設けられているので、戻り光はPD1側に光ビームが走査されるときに発生することとなる。光源手段から振動ミラー面への入射角α付近は、振動ミラーの振れ角がθs〜θ0(走査角2θs〜2θ0)であるので、この間に、かつ、同期検知センサPD1、PD2が光ビームを検出するタイミングを避けて、強制消灯する発光量制御期間を設ける。こうすることによって、光源手段を構成する半導体レーザーの発光発振が、戻り光によって不安定になることを防ぐことができる。
図4に振動ミラーの振動状態が変化した場合の振動波形の変化を示す。図4(a)は振動ミラーの振幅が実線に比べ点線のほうが大きくなった場合である。一方向の振動をAで、逆方向への振動をBで示している。走査された光ビームが画像領域の外側の両側に設置された同期検知センサ位置を通過して最大像高まで到達し、再び同期検知センサを通過するまでの時間は、A,B側ともに同じ傾向で変化し、振動ミラーの振幅の大きさに比例する関係になっている。振動ミラーの振幅の変化と同期検知センサの設置位置との関係式等をあらかじめデータベース化しておき、現実の振動ミラーの振幅状況をデータベースと照合することにより、現実の振動ミラーの振幅状況に応じて、強制消灯する発光量制御期間を適切に設定することができる。
具体的には、A側の方向に光源手段が配置されている場合には、図4(a)において点線で示されている振幅の状況では、同期検知センサ位置を光ビームが通過するのに要する時間が増加し、入射角αに光ビームが到達する時間が早くなるので、強制消灯時間を早める必要がある。逆に光ビームが最大振幅から戻ってきて再び入射角αに到達する時間は遅くなるので、強制消灯する発光量制御期間の終端は遅らせる必要がある。
図4(b)は、振動ミラーの像面位置における振幅中心が+像高側にシフトしている場合を示す。+像高側Aの同期検知センサ位置では、走査ビームが通過し、最大像高に到達して再び戻ってくるまでの時間が増加するが、反対側Bの同期検知センサ位置では逆に、走査ビームが通過し、最大像高に到達して再び戻ってくるまでの時間が減少する。このように、振動ミラーの振幅中心が片側に片寄る場合についても、振動ミラーの振幅中心と同期検知センサの設置位置関係において、同期検知センサ位置を光ビームが通過する時間の関係式をデータベース化しておく。現実の振動ミラーの振幅状況をデータベースと照合することにより、現実の振動ミラーの振幅状況に応じて、強制消灯する発光量制御期間を適切に設定することが可能になる。
図5に、偏向走査された光ビームが同期検知センサ位置を通過した時点から最大振幅に至り、再び戻ってくるまでに要する時間t1と、光ビームが同期検知センサ位置を一方向に通過し、再び同方向に通過するまでに要する時間t2との関係を示す。図5(a)に示す例では、振動ミラーの振れ角が実線で示すものより点線で示すものの方が大きくなっているために、実線で示す振幅が小さい場合の上記時間t1に対して、振幅が大きい場合の上記所要時間t1’が大きくなっている。しかし、振動ミラーの周期は変わっていないため、振幅が小さい場合の上記所要時間t2と振幅が大きい場合の上記所要時間t2’は変わらない。このことからt1とt2を計測することにより、振動ミラーの振れ角の変動を計測することができ、それに対応して強制消灯する発光量制御期間の設定を変更するように、光源駆動手段3(図2参照)により光源を駆動変調することができる。
図5(b)は、振動ミラーの振幅中心が像高+側にシフトした場合を示す。図5(a)と同様に振動ミラーの周期は変わらないためt2とt2’に変動はないが、点線で像高+側にシフトした分だけt1に対してt1’が大きくなっている。いま、同期検知センサが走査方向の片側だけに配置されているものとすると、同期検知センサが配置されていない方では、実線で示す曲線の方が点線で示す曲線の方よりも大きくなっていることを計測することができず、振動ミラーの振幅中心がシフトしたのか、振幅が増加したのか区別がつかない。振動ミラーの振幅変動と振動中心のシフトなどの状態を観測するためには、同期検知センサを画像領域の両外側に設置する必要がある。画像領域の両外側に同期検知センサを設置することにより、同期検知センサで得られた振動ミラーの走査状態から、発光量制御期間を算出して強制消灯するタイミングを適切に設定することができる。
図5(c)は、振動ミラーの振幅周期が変動した場合を示している。この場合には、前述の同期検知センサ位置を通過した時点から最大振幅に至り再び戻ってくるまでに要する時間t1と、光ビームが同期検知センサ位置を一方向に通過し、再び同方向に通過するまでに要する時間t2に対し、点線で示す曲線のt1’とt2’は、周期が増加した分大きくなる。この計測結果基づき、前記光源駆動手段3により、強制消灯する発光量制御期間の周期と期間の長さを増加させるように光源を駆動し、パルス変調駆動を行う。
以上説明した本実施形態にかかる光走査装置に用いることができる振動ミラーの具体的な構成を、図6を参照しながら説明する。図6は振動ミラーおよびこの振動ミラーを駆動するためのモジュールを示している。この振動ミラーモジュールの例では、振動ミラーの回転トルクの発生方法として電磁駆動方式を採用している。図6に示すように、前面がミラー面となっている振動ミラー面441は、図6(a)(b)において上下の中央部がそれぞれねじり梁442で軸支されている。振動ミラー面441は、後述するように、単一のSi基板からエッチング処理により外形を貫通して作製され、実装基板448に装着されている。実装基板440は、振動ミラー面441を一体に備えたユニットとしての振動ミラー基板448を構成している。
図6に示す例では、一対の振動ミラー基板448を背合わせにして一体に支持した振動ミラーモジュールとして構成することができる。この背合わせ構成は「対向走査方式」に対応することができる。しかし、本実施形態は上述のように「片側走査方式」になっているため、実際には一方の振動ミラー基板は不要である。もちろん、単一の振動ミラー基板448のみを支持する「片側走査方式」専用の構成としてもよい。
図6(d)に示すように、実装基板440は枠形の支持部材445に嵌め込まれて固定されている。支持部材445は、樹脂で成形され、回路基板449の所定位置に位置決めされている。支持部材445は、振動ミラー基板448を、ねじり梁442が主走査平面に直交しミラー面が主走査方向に対し所定の角度、ここでは22.5°傾くように位置決めする位置決め部451を有している。支持部材445はまた、実装基板440を支持部材445に装着したとき、実装基板440の一辺に形成されている配線端子455が接触するエッジコネクタ部452を有している。エッジコネクタ部45は、金属製端子群を支持部材445に一体に配列することによって構成されている。
振動ミラー基板448は、一辺を上記エッジコネクタ部452に挿入し、押え爪453の内側に嵌め付けられ、基板裏側の両側面を位置決め部451に沿わせて支えられるとともに、電気的な配線が同時になされ、各々の振動ミラー基板448を個別に交換できるように構成されている。
回路基板449には、振動ミラーの駆動回路を構成する制御ICや水晶発振子等が実装され、コネクタ454を介して電源および制御信号が入出力される。振動ミラーは、表面にミラー面441を形成し振動子をなす可動部と、それを支え回転軸をなすねじり梁442と、支持部をなすフレームとからなり、Si基板をエッチングにより切り抜いて形成することができる。
本実施形態では、SOI基板と呼ばれる60μmと140μmとの2枚の基板が酸化膜を挟んで予め接合されたウエハを用いて振動ミラーを作製している。まず、140μm基板(第2の基板)461の表面側からプラズマエッチングによるドライプロセスによって、ねじり梁442、平面コイルが形成される振動板443、可動部の骨格をなす補強梁444と、フレーム446とを残し、それ以外の部分を酸化膜まで貫通させる。次に、60μm基板(第1の基板)462の表面側からKOHなどの異方性エッチングによって、振動ミラー面441と、フレーム447とを残し、それ以外の部分を酸化膜まで貫通させる。最後に、可動部周囲の酸化膜を除去して分離し、振動ミラーの構造体を形成する。
ねじり梁442、補強梁444の幅は40〜60μmとした。前述のとおり、振動子の慣性モーメントIは振れ角を大きくとるには小さい方が望ましく、反面、慣性力によってミラー面441が変形してしまうため、本実施形態では可動部を肉抜きした構造としている。さらに、60μm基板462の表面側にアルミニウム薄膜を蒸着して反射面となし、140μm基板461の表面側には銅薄膜でコイルパターン463と、ねじり梁442を介して配線された端子464、および、トリミング用のパッチ465を形成する。振動板443側に薄膜状の永久磁石を備え、フレーム447側に平面コイルを形成する構成とすることもできる。
振動ミラー基板448上には、振動ミラー460を装着する図示しない枠状の台座と、振動ミラー460を囲うように形成されたヨーク470が配備されている。ヨーク470には可動ミラー端に対向して各々S極とN極とを向かい合わせ、回転軸と直交する方向に磁界を発生する一対の永久磁石450が接合されている。
振動ミラー460は、ミラー面441を表に向けて上記台座に装着され、各端子464間に電流を流すことによりコイルパターン463の回転軸に平行な各辺にローレンツ力が生じ、ねじり梁442をねじって振動ミラーを回転させる回転トルクTを発生し、電流を切るとねじり梁の戻り力により水平に戻る。従って、コイルパターン463に流れる電流の方向を交互に切り換えることによって、振動ミラー面441を往復振動させることができる。
上記電流の切り換周期を、振動ミラーを構成する構造体の、ねじり梁442を回転軸とした1次振動モードの固有振動数、いわゆる共振振動数f0に近づけると振幅が励起され大きな振れ角を得ることができる。
従って、通常は、走査周波数fdをこの共振振動数f0に合わせて設定し、あるいは追従するように制御しているが、共振振動数f0は上記したように、振動ミラーを構成する振動子の慣性モーメントIによって決定されるため、仕上がりの寸法精度にばらつきがあると個体間で差が生じてしまい、振動ミラー個々の走査周波数fdを揃えることが困難となる。
この共振振動数f0のばらつきは、振動ミラーの製造プロセスの能力にもよるが、±200Hz程度あり、例えば、走査周波数fd=2kHzとすると、1/10ラインに相当する走査ラインピッチのずれが生じることになる。A4サイズの用紙に画像を出力すると、紙端では数十mmもの倍率ずれになってしまう。
そのため、共振振動数f0の近い振動ミラーを選別によってランク分けし、各ランクに応じて走査周波数fdを選択し、設定している。しかし、共振振動数f0のばらつきが大きいとランク分けの数が増え、その分、振動ミラーの駆動回路も走査周波数fdの選択肢も増やさなければならないので、生産効率が悪い。加えて、メンテナンスなどにおいて振動ミラーを交換する際には、同じランクの振動ミラーと入れ換える必要があるためコストもかかる。
本実施形態によれば、実装基板に装着する前に、可動部の裏側に形成したパッチ465に炭酸ガスレーザなどにより切り込みを入れて可動部の質量を徐々に減らしていくことで慣性モーメントIを調整することができる。振動ミラーの個体間に寸法差があっても、共振振動数f0が概略一致するように、例えば、±50Hzに入るように調整するとよい。
そして、ランク分けした周波数帯域内で、共振振動数f0によらず、固定の走査周波数fdを設定するとよい。
図7は、振動ミラーを所定の振幅で振動させる駆動回路の例を示すブロック図である。図7において、符号601は、駆動パルス生成部とPLL回路を有してなる走査周波数信号fdの生成部を示している。符号602はゲイン調整部、603は可動ミラー駆動部、604は同期検知センサ、606は光源駆動部、607は書き込み制御部、608は画素クロック生成部、609は振幅演算部をそれぞれ示している。
上記したように、振動ミラーの裏側に形成した平面コイルには、交互に電流の流れる方向が切り換わるように、可動ミラー駆動部603から交流電圧、またはパルス波状電圧が印加される。振動ミラーの振れ角θが一定となるように、同期検知センサ604によって得られる同期検知信号に基づき、振幅演算部609が振動ミラーを駆動する信号の適切な振幅を演算し、ゲイン調整部602で平面コイルに流す電流のゲインを調節して、振動ミラーを往復振動させる。
図8は、上記平面コイルに流れる電流の方向を切り換える周波数fと、振動ミラーの振れ角θとの関係を示す。一般に、共振周波数f0をピークとした周波数特性となり、走査周波数fdを共振周波数f0に一致させれば、最も振れ角が大きくとれるが、共振周波数付近においては急峻に振れ角が変化する。
従って、初期的には可動ミラーの駆動制御部において固定電極に印加する駆動周波数を共振振動数に合うよう設定することができるが、温度変化に伴うバネ定数の変化などで共振周波数が変動した際には振れ角が激減してしまい、経時的な安定性に乏しいという欠点がある。
そこで、本実施形態では、走査周波数fdを共振周波数f0から外した単一周波数に固定し、ゲイン調整に応じて振れ角θを増減することができるようにしている。具体的には、共振周波数f0=2kHzに対し、走査周波数fdは2.5kHzとし、ゲイン調整により振れ角θが±25°になるように合わせている。経時的には、振れ角θを、振動ミラーにより走査された光ビームを、走査領域の始端に配備した同期検知センサ138(図1参上)において復走査時に検出した検出信号と往走査時に検出した検出信号との時間差により検出し、振れ角θが一定となるように制御している。これにより、測定中に温度変動が生じた場合にも振れ角θを一定に保つことができ、像面上での光ビームの線速を略一定に保つことができる。
図9に示すように、振動ミラーは共振振動されるため、時間tとともにsin波状に走査角θが変化する。従って、振動ミラーの最大振れ角、つまり振幅がθ0とすると、
θ=θ0・sin2πfd・t
同期検知センサ138において走査角を2θsに対応したビームを検出すると、検出信号は往走査と復走査とで発生され、その時間差Tを用いると、
θs=θ0・cos2πfd・T/2
で表される。θsは固定であるので、Tを計測すれば最大振れ角θ0を検出できることがわかる。
なお、復走査でのビーム検出から往走査でのビーム検出に至る期間、振動ミラーの振れ角でいうと、
θ0>θ>θs
なる期間では発光源の発光を禁止するようにしている。被走査面である感光体ドラム面では、時間に対して各画素の間隔が均一となるように主走査ドットを形成する必要がある。
振動ミラーは、図10に示すように、時間とともに振れ角θの変化率が加速度的に小さくなるため、主走査領域の両端にいくに従って被走査面では画素間隔が間延びしてしまう。一般に、このずれは走査レンズにf・arcsinレンズを用いることによって補正するが、仮に、ポリゴンミラーでの走査と同様、画素クロックを単一の周波数で変調した際、時間に対して走査角2θが比例、つまり等速度で変化するようにするためには、主走査領域端で主走査位置の補正量が最も大きくなるように主走査方向に沿ったパワー(屈折力)を設定する必要がある。
像高0、つまり画像中心から任意の像高Hまでの時間をtとすると、像高Hと振れ角θ(走査角2θ)との関係は、
H=ω・t=(ω/2πfd)・sin−1(θ/θ0)
となる。ここで、ωは定数である。
ところが、この画素間隔の疎密、いわゆるリニアリティの補正量が大きくなると、走査レンズの主走査方向に沿ったパワーの偏差が大きくなり、被走査面における各画素に対応したビームスポット径の変化も大きくなってしまう。また、上に述べたように、振動ミラーの振幅中心と光軸とが一致していないことによって光軸に非対称な曲面を有する走査レンズが必要になる。そこで本実施形態では、画素クロックの位相Δtを主走査位置に応じて可変することで、主走査方向に沿った走査レンズのパワーの偏差がなるべく小さくなるように、また、非対称成分を補正するようにしている。
いま、画素クロックの位相Δtを変化させることに伴う走査角の変化を2Δθとすると、以下の関係式となる。
H=(ω/2πfd)・sin−1{(θ−Δθ)/θ0}
Δθ/θ0=sin2πfdt―sin2πfd(t−Δt)
ここで、走査レンズをfθレンズに近いパワー配分となるようにし、その残差を画素クロックの位相Δtにより補正する場合、
H=(ω/2πfd)・{(θ−Δθ)/θ0}
=(ω/2πfd)・sin−1(θ/θ0)
Δθ/θ0=θ/θ0−sin−1(θ/θ0)
なる関係式となる。主走査方向に沿った所定画素の位相Δt(sec)は、
(θ/θ0)−sin−1(θ/θ0)
=sin2πfdt−sin2πfd(t−Δt)
なる関係式に基づいて決定されるように、発光源をパルス変調すればよい。
図11は、発光源である半導体レーザーを変調する駆動回路の例を示すブロック図である。画像データはフレームメモリ11に一時保存され、画像処理部12に順に読み出され、前後の関係を参照しながら中間調に対応したマトリクスパターンに応じて各ラインの画素データが形成され、各発光源に対応したラインバッファ13に転送される。書込制御回路14は、ラインバッファ13から、同期検知信号をトリガとして各々読み出して独立に変調する。
次に、図11に示す各発光点を変調するクロックの生成部20について説明する。カウンタ22では、高周波クロック生成回路21で生成された高周波クロックVCLKをカウントする。比較回路23では、上記カウント値と、デューティ比に基づいて予め設定される設定値L、および画素クロックの遷移タイミングとして外部のメモリ16から与えられる位相シフト量を指示する位相データHとを比較する。比較回路23において、カウント値が上記設定値Lと一致した場合は画素クロックPCLKの立下りを指示する制御信号lを、位相データHと一致した場合は画素クロックPCLKの立ち上がりを指示する制御信号hを出力する。このとき、カウンタ22は制御信号hと同時にリセットされ再び0からカウントを行うことで、連続的なパルス列を形成することができる。上記制御信号l、制御信号hは画素クロック制御回路24に入力され、これらの制御信号に基づき画素クロック制御回路24は画素クロックPCLKを書込制御部14に向けて出力する。
こうして、画素クロック制御回路24は1クロック毎に位相データHを与え、順次パルス周期が可変された画素クロックPCLKを生成する。本実施形態では、画素クロックPCLKは、高周波クロックVCLKの8分周とし、1/8クロックの分解能で位相が可変できるようにしている。
図12は、任意の画素の位相をシフトする動作を示しており、1/8クロックだけ位相を遅らせた例である。デューティ50%とすると設定値L=3が与えられ、カウンタで4カウントされ画素クロックPCLKを立ち下げる。1/8クロック位相を遅らせるとすると位相データH=6が与えられ、7カウントで立上げる。同時にカウンタがリセットされるので、4カウントで再び立ち下げる。つまり、隣接するパルス周期が1/8クロック分縮められたことになる。
こうして生成された画素クロックPCLKは、図11に示す光源駆動部15に与えられ、この画素クロックPCLKに対してラインバッファ13から読み出された画素データを重畳させた変調データにより、半導体レーザーを駆動する。
図13は、単一の周波数で変調した際の主走査位置に応じた各画素における主走査位置の補正量を示す。主走査領域を複数、実施例では主走査領域を8つの領域に分割し、折れ線で近似することで各領域の境界で主走査位置ずれが0となるように、領域毎に位相シフト回数を設定し、階段状に補正する。
例えば、i領域の画素数をNi、各画素でのシフト量を画素ピッチpの1/16単位とし、各領域の両端における主走査位置のずれがΔLiであったとすると、
ni=Ni・p/16ΔLi
となり、ni画素毎に位相をシフトすればよい。
画素クロックをfcとすると、トータルでの位相差Δtは、位相シフト回数Ni/niを用い
Δt=1/16fc×∫(Ni/ni)di
となる。Nドット目の画素における位相差Δtについても同様に、それまでの位相シフトの累積回数により設定できる。
なお、分割された領域幅は均等であっても不均等であってもよく、分割数もいくつであっても構わない。しかし、各画素でのシフト量が大きくなると、その段差が画像上目立ちやすくなるため、画素ピッチpの1/4単位以下とするのが望ましく、逆に位相シフト量が小さくなると位相シフト回数が増えメモリ容量が増えてしまう。また、分割数が少ないほどメモリ容量が少なくてすむため、主走査位置ずれが大きい領域の領域幅を小さく設定し、小さい領域の領域幅を大きく設定することが効率的である。
図14は、振動ミラーの反射面が、回転軸を中心にδ分変形を起こした場合を示す。例えば、振動ミラーの反射面441が図14(c)に示すように凸変形した場合には、平行にコリメートされた光ビームが振動ミラーで偏向されて拡散していき、像面上でのビーム径太りなどの画像劣化の原因となる。また、振動ミラーで反射する戻り光も、入射角αより広い範囲で光源に再度戻ってくることになるので、強制消灯する発光量制御期間を広めに設定し、あるいは、消灯できない場合にはAPC制御を行わないようにすることにより、半導体レーザーの安定した発振発光を行うことができる。
そこで、予め振動ミラーの反射面での変形が予測される場合には、光源部にビーム太りを補正するパルス変調駆動を加えることにより、略一定なビーム径を得ることができる。また、リアルタイムでの補正を行うには、同期検知での光ビームの通過時間間隔の変動や、検出面で得られるビームプロファイルの情報から、適切なパルス駆動補正方法を算出する演算部を設ける必要がある。同時に強制消灯する発光量制御期間の開始、終了位置および期間についても同様に、適切なパルス駆動補正方法を算出する演算部を設ける必要がある。
図15に光走査装置のハウジング構成例を示す。図15において、符号253は振動ミラーモジュール253を示している。この振動ミラーモジュール253は、図6(d)に示す振動ミラー441、実装基板440、枠形の支持部材445などによって構成されているモジュールである。振動ミラーモジュール253は、これを包囲するように立設された側壁257が一体的に形成された光学ハウジング内に装着されている。側壁257の上端縁は上カバー258によって封止され、振動ミラーモジュール253を外気から遮断することで、外気との対流による振幅の変化を防止する構成になっている。側壁257には振動ミラーモジュール253の振動ミラーに光ビームを入出射する開口部が形成され、この開口部には平板状の透過窓259が嵌められている。図15において、符号250はハウジング本体を、252は光源ユニットを示している。振動ミラーによって変更される光ビームは、ハウジング本体250に固定されていて走査結像光学系を構成するfθレンズ254を透過し、ハウジング本体250の周壁に形成されているビーム通過枠255から外方に出射するようになっている。
図16は、図1に示した光走査装置を搭載した画像形成装置の例を示す。符号900が光走査装置を示している。図16において、ブラックの感光体ドラム104の周囲には、感光体ドラムを高圧に帯電する帯電チャージャ902、光走査装置900により光ビームが走査され記録された静電潜像に帯電したトナーを付着して顕像化する現像装置904、感光体ドラムに残ったトナーを掻き取って備蓄するクリーニング装置905が配置されている。他の感光体ドラムの周囲構成も同様である。各感光体ドラムへは、振動ミラーの往復走査により1周期で2ライン毎の画像記録が行われる。一つの感光体ドラムおよびその周囲に配置された所定の機能を果たすユニットによって一つの画像形成ステーションを構成し、四つの画像形成ステーションが中間転写ベルト105の移動方向に配列されている。各画像形成ステーションは、イエロー、マゼンタ、シアン、ブラックのトナー画像を形成し、形成されたトナー画像が中間転写ベルト105上にタイミングを合わせて順次転写され、重ね合わされてカラー画像が形成される。各画像形成ステーションはトナー色が異なるだけで、基本的には同一構成である。
画像形成装置の底部には、記録媒体としての記録紙を収容する給紙トレイ907の装填部が設けられている。記録紙は給紙トレイ907から給紙コロ908により1枚ずつ引き出され、レジストローラ対909により副走査方向の記録開始のタイミングに合わせて送り出され、中間転写ベルト105からトナー画像が転写される。トナー像が転写された転写紙は、定着装置910を通過することによってトナー像が定着され、排紙ローラ対912により排紙トレイ911に排出される。
本発明にかかる光走査装置の実施例および画像形成装置の実施例の一部を示す斜視図である。 上記光走査装置の平面図および光走査装置の制御系統の概略を示すブロック図である。 上記実施例における振動ミラーの振動動作を示すグラフと、同期検知および光源の点灯タイミングを示すタイムチャートである。 上記実施例において振動ミラーの振動状態が変化した場合の振動波形の変化を示す波形図である。 偏向走査された光ビームが同期検知センサ位置を通過した時点から最大振幅に至り再び戻ってくるまでに要する時間と、光ビームが同期検知センサ位置を一方向に通過し再び同方向に通過するまでに要する時間との関係を示す波形図である。 本発明にかかる光走査装置に用いることができる振動ミラーモジュールの構成例を示すもので、(a)はミラーユニットの正面図、(b)は振動ミラー部分の背面図、(c)は振動ミラー部分の断面図、(d)は振動ミラーモジュールの分解斜視図である。 本発明に適用する振動ミラー制御回路の例を示すブロック図である。 振動ミラーの平面コイルに流れる電流の方向を切り換える周波数fと、振動ミラーの振れ角θとの関係を示す波形図である。 時間に対する振動ミラーの走査角の変化の例を示す波形図である。 時間に対する振動ミラーの振れ角の変化率の例を示す波形図である。 本発明に用いられる発光源である半導体レーザーの駆動回路の例を示すブロック図である。 上記半導体レーザーの駆動回路の動作を示すタイムチャートである。 単一の周波数で変調した際の主走査位置に応じた各画素における主走査位置の補正例を示すグラフである。 振動ミラーの反射面が回転軸を中心に変形した場合の反射の様子を示す光路図である。 本発明にかかる光走査装置に適用可能なハウジングの例を示す分解斜視図である。 本発明にかかる画像形成装置の実施例を概略的に示す正面図である。
符号の説明
3 光源駆動手段
4 光ビーム検出手段
5 画素クロックカウント計測手段
6 偏向制御手段
101,102,103,104 像担持体
106 振動ミラー
107,108 光源ユニット(光源手段)
125 走査結像光学系
138
PD1 同期検知センサ(光検ビーム出手段)
PD2 同期検知センサ(光ビーム検出手段)
441 振動ミラー面

Claims (11)

  1. 光ビームを射出する発光部を備えた光源手段と、
    前記光源手段を変調駆動する光源駆動手段と、
    前記光源手段から射出される光ビームを偏向して主走査領域を往復走査する偏向手段と、
    前記偏向手段からの光ビームを被走査面上に導く走査結像光学系と、
    前記偏向手段からの光ビームを一以上の検出面で検出する光ビーム検出手段を有し、
    前記偏向手段の反射面の最大振れ角が、前記光源手段から射出される光ビームの前記偏向手段の反射面への入射角よりも大きい光走査装置であって、
    前記光源手段の発光光量を制御する光源駆動手段を備え、
    前記光源駆動手段には、非画像形成期間のうち、前記偏向手段の最大振れ角から主走査領域を走査する走査角に至る期間に前記光源手段を強制消灯する発光量制御期間が設定されていることを特徴とする光走査装置。
  2. 光ビームを射出する発光部を備えた光源手段と、
    前記光源手段を変調駆動する光源駆動手段と、
    前記光源推断から射出される光ビームを偏向して主走査領域を往復走査する偏向手段と、
    前記偏向手段からの光ビームを被走査面上に導く走査結像光学系と、
    前記偏向手段からの光ビームを一以上の検出面で検出する光ビーム検出手段を有し、
    前記偏向手段の反射面の最大振れ角が、前記光源手段から射出される光ビームの前記偏向手段の反射面への入射角よりも大きい光走査装置であって、
    前記光源手段の発光光量を制御する光源駆動手段を備え、
    前記光源駆動手段には、非画像形成期間のうち、前記偏向手段の最大振れ角から主走査領域を走査する走査角に至る期間に前記光源手段の駆動電流を所定以下に抑制する発光量制御期間が設定されていることを特徴とする光走査装置。
  3. 光源駆動手段は、光ビーム検出手段で検知された検出信号に基づいて、光源手段を強制消灯する発光量制御期間のタイミングおよび時間幅を制御することを特徴とする請求項1記載の光走査装置。
  4. 光源駆動手段は、光ビーム検出手段で検知された検出信号に基づいて、光源手段の駆動電流を所定以下に抑制する発光量制御期間のタイミングおよび時間幅を制御することを特徴とする請求項2記載の光走査装置。
  5. 偏向手段は、ねじり梁によって支持され、光源手段からの光ビームを偏向して主走査領域を往復走査する振動ミラーであることを特徴とする請求項1〜3のいずれかに記載の光走査装置。
  6. 強制消灯する発光量制御期間を除く非画像形成期間内で発光部を順次点灯し、前記発光部から射出される光ビームの光量を自動パワー制御により調整することを特徴とする請求項1、3または5記載の光走査装置。
  7. 前記発光部が複数の発光源を有し、各々について強制消灯する発光量制御期間または駆動電流を所定以下に抑制する発光量制御期間を設けることを特徴とする請求項1〜6のいずれかに記載の光走査装置。
  8. 請求項1〜7のいずれかに記載の光走査装置において、光ビーム検出手段で検出された検出信号にもとづいて最大振幅が一定になるように偏向手段を制御する偏向制御手段を有することを特徴とする光走査装置。
  9. 請求項1〜7のいずれかに記載の光走査装置において、光源駆動手段は、光ビーム検出手段で検出された検出信号に基づいて演算された偏向手段の走査周波数に応じてタイミングおよび時間設定を行うことを特徴とする光走査装置。
  10. 請求項1〜7のいずれかに記載の光走査装置において、光源駆動手段は、光ビーム検出手段で検出された検出信号に基づいて演算された偏向手段の振幅中心のシフト量に応じてタイミングおよび時間設定を行うことを特徴とする光走査装置。
  11. 少なくとも一つの像担持体と、電子写真プロセスを実行するために、光走査装置を含むプロセスユニットが前記像担持体に対応して配置されてなる画像形成装置であって、前記光走査装置は請求項1〜10のいずれかに記載の光走査装置であることを特徴とする画像形成装置。
JP2008057226A 2008-03-07 2008-03-07 光走査装置および画像形成装置 Expired - Fee Related JP5338091B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008057226A JP5338091B2 (ja) 2008-03-07 2008-03-07 光走査装置および画像形成装置
US12/396,744 US8363297B2 (en) 2008-03-07 2009-03-03 Optical scanning device and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057226A JP5338091B2 (ja) 2008-03-07 2008-03-07 光走査装置および画像形成装置

Publications (2)

Publication Number Publication Date
JP2009216744A true JP2009216744A (ja) 2009-09-24
JP5338091B2 JP5338091B2 (ja) 2013-11-13

Family

ID=41053317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057226A Expired - Fee Related JP5338091B2 (ja) 2008-03-07 2008-03-07 光走査装置および画像形成装置

Country Status (2)

Country Link
US (1) US8363297B2 (ja)
JP (1) JP5338091B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095589A (ja) * 2009-10-30 2011-05-12 Kyocera Mita Corp 光走査装置及びこれを備えた画像形成装置
US8829422B2 (en) 2009-10-30 2014-09-09 Kyocera Document Solutions Inc. Optical scanning apparatus using MEMS mirror and image forming apparatus provided with the same
US20160246210A1 (en) * 2015-02-19 2016-08-25 Canon Kabushiki Kaisha Image forming apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5450980B2 (ja) * 2008-05-08 2014-03-26 キヤノン株式会社 画像形成装置およびその制御方法ならびにそのプログラムおよび記憶媒体
JP5218081B2 (ja) * 2009-01-16 2013-06-26 株式会社リコー 光源装置、光ビーム走査装置及び画像形成装置
US8593701B2 (en) * 2009-09-04 2013-11-26 Ricoh Company, Ltd. Optical scanning device and image forming apparatus
JP5505617B2 (ja) * 2009-12-10 2014-05-28 株式会社リコー 光走査装置及び画像形成装置
JP5915898B2 (ja) 2012-03-26 2016-05-11 株式会社リコー 露光装置及び画像形成装置
US9810903B2 (en) * 2015-07-28 2017-11-07 Kabushiki Kaisha Toshiba Optical scanner
US10067339B2 (en) * 2015-07-28 2018-09-04 Kabushiki Kaisha Toshiba Optical scanner, optical scanning method and non-transient recording medium
US10677730B1 (en) * 2019-02-01 2020-06-09 Apllikate Technologies Llc Fast multiphoton microscope

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349621A (ja) * 2004-06-09 2005-12-22 Seiko Epson Corp 画像形成装置および光量調整方法
JP2007171854A (ja) * 2005-12-26 2007-07-05 Ricoh Co Ltd 光走査装置・画像形成装置

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4853710A (en) 1985-11-29 1989-08-01 Ricoh Co., Ltd. Imaging by laser beam scanning
JP2872689B2 (ja) 1989-06-09 1999-03-17 三信工業株式会社 2サイクルエンジンのピストン
JP2924200B2 (ja) 1990-01-18 1999-07-26 富士電機株式会社 ねじり振動子およびその応用素子
US5671077A (en) 1992-05-18 1997-09-23 Ricoh Company, Ltd. Multi-beam light source device and optical scanning apparatus using the multi-beam source device
US5793408A (en) 1994-11-09 1998-08-11 Ricoh Company, Ltd. Optical scanning apparatus with improved structure for adjusting focus position
JP3422581B2 (ja) 1994-12-19 2003-06-30 株式会社リコー 光走査装置の支持装置
US5753907A (en) 1995-05-24 1998-05-19 Ricoh Company, Ltd. Multiple beam scanning apparatus
JPH09193465A (ja) 1995-11-16 1997-07-29 Ricoh Co Ltd 画像記録装置
US5936756A (en) 1996-01-10 1999-08-10 Ricoh Company Ltd. Compact scanning optical system
US5786594A (en) 1996-01-18 1998-07-28 Ricoh Company, Ltd. Multi-beam pitch adjustment system and method
JP3543473B2 (ja) 1996-02-20 2004-07-14 ブラザー工業株式会社 光走査装置
JP3124741B2 (ja) 1996-07-22 2001-01-15 株式会社リコー 多色画像形成装置の光走査装置
JP2000009589A (ja) 1998-06-23 2000-01-14 Ricoh Co Ltd 光ビーム特性評価方法及び評価装置
US5999345A (en) 1997-07-03 1999-12-07 Ricoh Company, Ltd. Multi-beam light source unit
JP3011144B2 (ja) 1997-07-31 2000-02-21 日本電気株式会社 光スキャナとその駆動方法
JP3594813B2 (ja) 1998-09-24 2004-12-02 株式会社リコー 光ビーム特性評価装置
US6775041B1 (en) 1999-04-20 2004-08-10 Ricoh Company, Ltd. Multibeam scanning apparatus
US6932271B2 (en) 2000-01-27 2005-08-23 Ricoh Company, Ltd. Optical scan module, optical scanner, optical scan method, image generator and image reader
JP4774157B2 (ja) 2000-04-13 2011-09-14 株式会社リコー マルチビーム光源装置及び光走査装置
US7423787B2 (en) 2001-03-01 2008-09-09 Ricoh Company, Ltd. Optical scanning module, device, and method, and imaging apparatus
US6657765B2 (en) 2001-03-01 2003-12-02 Ricoh Company, Ltd. Optical deflecting unit, optical scanning unit, image forming apparatus, and method of producing optical unit
US7170660B2 (en) 2001-04-24 2007-01-30 Ricoh Company, Ltd. Optical scanner and image forming device
US7593029B2 (en) 2001-08-20 2009-09-22 Ricoh Company, Ltd. Optical scanning device and image forming apparatus using the same
US7068296B2 (en) 2001-09-14 2006-06-27 Ricoh Company, Ltd. Optical scanning device for reducing a dot position displacement at a joint of scanning lines
JP2003127455A (ja) 2001-10-24 2003-05-08 Ricoh Co Ltd 光走査装置
JP3824528B2 (ja) 2001-12-14 2006-09-20 株式会社リコー マルチビーム走査光学系および画像形成装置
US6972883B2 (en) 2002-02-15 2005-12-06 Ricoh Company, Ltd. Vibration mirror, optical scanning device, and image forming using the same, method for making the same, and method for scanning image
US7333254B2 (en) 2002-03-15 2008-02-19 Ricoh Company, Ltd. Optical scanning apparatus, illuminant apparatus and image forming apparatus
US7532227B2 (en) 2002-07-02 2009-05-12 Ricoh Company, Ltd. Optical scanner and image forming apparatus
JP4217490B2 (ja) * 2003-01-17 2009-02-04 株式会社リコー 半導体レーザ駆動装置、光書き込み装置、画像形成装置及び半導体レーザ駆動方法
JP4110006B2 (ja) * 2003-01-31 2008-07-02 キヤノン株式会社 マルチビーム走査装置
JP4349825B2 (ja) 2003-03-18 2009-10-21 株式会社リコー 光走査装置および画像形成装置
US7411712B2 (en) 2003-03-19 2008-08-12 Ricoh Company, Limited Optical scanner and image formation apparatus
JP2005024722A (ja) 2003-06-30 2005-01-27 Ricoh Co Ltd 振動ミラー、光走査装置および画像形成装置
JP4581345B2 (ja) * 2003-08-08 2010-11-17 富士ゼロックス株式会社 発光素子駆動装置及び画像形成装置
US8824022B2 (en) 2003-09-18 2014-09-02 Ricoh Company, Ltd. Optical scanning apparatus and image forming apparatus
US7468824B2 (en) 2004-01-19 2008-12-23 Ricoh Company, Ltd. Imaging apparatus including optical scanning device with deflecting mirror module, and method of deflecting with the mirror module
US20050190420A1 (en) 2004-02-18 2005-09-01 Shigeaki Imai Beam-spot position compensation method, optical scanning device, and multi-color image forming device
US7529011B2 (en) 2004-04-12 2009-05-05 Ricoh Company, Ltd. Deflector mirror with regions of different flexural rigidity
EP1605680A3 (en) * 2004-06-09 2007-12-26 Seiko Epson Corporation Apparatus for and method of forming image using oscillation mirror
JP4653473B2 (ja) 2004-08-06 2011-03-16 株式会社リコー 光走査装置・画像形成装置
US7684100B2 (en) 2004-11-26 2010-03-23 Ricoh Company, Ltd. Optical-element holding device, method of adjusting shape of optical element, optical-element shape adjusting device, method of correcting scanning line variation, optical scanning device, and image forming apparatus
JP4440760B2 (ja) 2004-12-22 2010-03-24 株式会社リコー 画像形成装置
JP2006198881A (ja) 2005-01-20 2006-08-03 Fuji Xerox Co Ltd 光走査装置及び光量制御方法
JP4855693B2 (ja) 2005-02-21 2012-01-18 株式会社リコー 光走査装置および画像形成装置
JP4673115B2 (ja) 2005-04-07 2011-04-20 株式会社リコー 光走査装置、およびそれを用いた画像形成装置
JP4768348B2 (ja) 2005-08-04 2011-09-07 株式会社リコー 光走査装置及び画像形成装置
JP2007069572A (ja) 2005-09-09 2007-03-22 Ricoh Co Ltd 光走査装置・画像形成装置
JP4843280B2 (ja) 2005-09-15 2011-12-21 株式会社リコー マルチビーム光源装置、光走査装置及び画像形成装置
JP4906081B2 (ja) 2005-10-27 2012-03-28 株式会社リコー 光ビーム走査装置
JP5493240B2 (ja) 2005-11-21 2014-05-14 株式会社リコー 光走査装置及び画像形成装置
JP4955267B2 (ja) 2005-12-22 2012-06-20 株式会社リコー マルチビーム走査装置及び画像形成装置
JP5073945B2 (ja) 2005-12-26 2012-11-14 株式会社リコー 光走査装置・画像形成装置
JP5043345B2 (ja) * 2006-02-14 2012-10-10 キヤノン株式会社 画像形成装置
JP2007226130A (ja) 2006-02-27 2007-09-06 Ricoh Co Ltd 光走査装置、画像形成装置、及び位相変調方法
JP4986479B2 (ja) 2006-03-03 2012-07-25 株式会社リコー 光走査装置および画像形成装置
US7446793B2 (en) * 2006-03-14 2008-11-04 Kabushiki Kaisha Toshiba Image forming apparatus
JP2007283512A (ja) * 2006-04-12 2007-11-01 Canon Inc 画像形成装置、光学走査装置および自動光量制御方法
US7760227B2 (en) 2006-07-27 2010-07-20 Ricoh Company, Ltd. Deflector, optical scanning unit, and image forming apparatus
JP5147331B2 (ja) * 2006-08-23 2013-02-20 キヤノン株式会社 レーザ光制御装置及び画像形成装置
US7729031B2 (en) 2006-09-07 2010-06-01 Ricoh Company, Ltd. Light-source device, optical scanning device, and image forming apparatus
JP5228331B2 (ja) 2007-02-13 2013-07-03 株式会社リコー 光走査装置、画像形成装置、および多色対応の画像形成装置
US8081203B2 (en) 2007-03-02 2011-12-20 Ricoh Company, Ltd. Light-amount detecting device, light source device, optical scanning unit and image forming apparatus
JP2008213243A (ja) 2007-03-02 2008-09-18 Ricoh Co Ltd 光走査装置、光走査方法、プログラム、記録媒体及び画像形成装置
JP4859132B2 (ja) 2007-03-28 2012-01-25 株式会社リコー 光源装置、光走査装置及び画像形成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349621A (ja) * 2004-06-09 2005-12-22 Seiko Epson Corp 画像形成装置および光量調整方法
JP2007171854A (ja) * 2005-12-26 2007-07-05 Ricoh Co Ltd 光走査装置・画像形成装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095589A (ja) * 2009-10-30 2011-05-12 Kyocera Mita Corp 光走査装置及びこれを備えた画像形成装置
US8829422B2 (en) 2009-10-30 2014-09-09 Kyocera Document Solutions Inc. Optical scanning apparatus using MEMS mirror and image forming apparatus provided with the same
US20160246210A1 (en) * 2015-02-19 2016-08-25 Canon Kabushiki Kaisha Image forming apparatus
US9606472B2 (en) * 2015-02-19 2017-03-28 Canon Kabushiki Kaisha Image forming apparatus having light emission luminance based on scanning speed

Also Published As

Publication number Publication date
US8363297B2 (en) 2013-01-29
US20090225383A1 (en) 2009-09-10
JP5338091B2 (ja) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5338091B2 (ja) 光走査装置および画像形成装置
US7924491B2 (en) Optical scanning device and image forming apparatus
US7869110B2 (en) Optical scan apparatus and image formation apparatus
JP5228331B2 (ja) 光走査装置、画像形成装置、および多色対応の画像形成装置
US7760227B2 (en) Deflector, optical scanning unit, and image forming apparatus
JP5073945B2 (ja) 光走査装置・画像形成装置
US7729031B2 (en) Light-source device, optical scanning device, and image forming apparatus
US8130435B2 (en) Optical scanner and color image forming apparatus
JP2009192563A (ja) 光走査装置及び画像形成装置
JP4689462B2 (ja) 光走査装置・画像形成装置
US8111276B2 (en) Optical scanning device and image forming apparatus with a center adjusting mechanism
US8451308B2 (en) Image forming apparatus
JP2009069504A (ja) 光走査装置、および画像形成装置
JP5041835B2 (ja) 光走査装置及び画像形成装置
JP4921738B2 (ja) 光走査装置及び画像形成装置
JP4970865B2 (ja) 偏向装置、光走査装置及び画像形成装置
JP5169776B2 (ja) 光走査装置及び画像形成装置
JP5353739B2 (ja) 光走査装置及び画像形成装置
JP2008191010A (ja) ビームプロファイル計測装置・光走査装置・画像形成装置
JP2010066598A (ja) 光走査装置および画像形成装置
JP2007086496A (ja) 光走査装置および画像形成装置
JP2009031364A (ja) 光走査装置及びこれを搭載する画像形成装置
JP5034094B2 (ja) 光走査装置、および画像形成装置
JP2008065045A (ja) 光源装置および光走査装置ならびに画像形成装置
JP2008076449A (ja) 光走査装置及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20120202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R151 Written notification of patent or utility model registration

Ref document number: 5338091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees