以下に、本発明の実施の形態を図面に基づいて説明する。但し、本発明は多くの異なる態様で実施することが可能であり、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本実施の形態の記載内容に限定して解釈されるものではない。なお、実施の形態を説明するための全図において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、本発明の表示装置の一構成例に関して図面を参照して説明する。
本実施の形態で示す表示装置は、複数の画素を有しており、各画素には副画素が複数設けられた構成となっている。図1を用いて一つの画素の構成を説明する。
図1に示す画素は、3つの副画素が設けられた構成を示している。第1の副画素110は、第1の液晶層111、第1の容量素子112、第1のトランジスタ113を有している。同様に、第2の副画素120は、第2の液晶層121、第2の容量素子122、第2のトランジスタ123を有し、第3の副画素130は、第3の液晶層131、第3の容量素子132、第3のトランジスタ133を有している。なお、ここでは、トランジスタを設けた構成を示しているが、ダイオード等の他のスイッチ素子を設けてもよい。
第1の液晶層111、第2の液晶層121、第3の液晶層131は、それぞれ画素電極と、共通電極と、それらによって制御される液晶とを有している。共通電極は各副画素で共通して設けた構成とすることができる。ただし、これに限定されない。以下、第1の液晶層111が有する画素電極を第1の画素電極、第2の液晶層121が有する画素電極を第2の画素電極、第3の液晶層131が有する画素電極を第3の画素電極と記す。
第1の容量素子112、第2の容量素子122、第3の容量素子132は、各々が有する第1の電極と第2の電極間に絶縁膜が設けられた構成とすることができる。第1の電極、第2の電極としては、導電膜、半導体膜、不純物元素が導入された半導体膜、又は酸化物半導体膜等を用いることができる。
第1のトランジスタ113は、ゲート電極が、走査線として機能しうる配線(以下、「走査線101」と記す)に接続され、ソース又はドレインの一方が、信号線として機能しうる配線(以下、「信号線102」と記す)に接続され、ソース又はドレインの他方が、第1の液晶層111の第1の画素電極及び第1の容量素子112の第2の電極に接続されている。
また、第2のトランジスタ123は、ゲート電極が、走査線101に接続され、ソース又はドレインの一方が、信号線102に接続され、ソース又はドレインの他方が、第2の液晶層121の第2の画素電極及び第2の容量素子122の第2の電極に接続されている。
また、第3のトランジスタ133は、ゲート電極が、走査線101に接続され、ソース又はドレインの一方が、信号線102に接続され、ソース又はドレインの他方が、第3の液晶層131の第3の画素電極及び第3の容量素子132の第2の電極に接続されている。
第1の容量素子112は、第1の電極が、容量配線として機能しうる配線(以下、「第1の容量配線114」と記す)に接続され、第2の電極が第1の液晶層111の第1の画素電極に接続されている。
また、第2の容量素子122は、第1の電極が容量配線として機能しうる配線(以下、「第2の容量配線124」と記す)に接続され、第2の電極が第2の液晶層121の第2の画素電極に接続されている。
また、第3の容量素子132は、第1の電極が容量配線として機能しうる配線(以下、「第3の容量配線134」と記す)に接続され、第2の電極が第3の液晶層131の第3の画素電極に接続されている。
また、第1の容量配線114、第2の容量配線124、第3の容量配線134は、各画素に対応するように一つずつ設けた構成としてもよいが、隣接する画素が有する配線と共有して設けた構成としてもよい。
例えば、図2に示すように、複数の画素100a〜100fにおいて、画素100bは、画素100aと第1の容量配線114を共有し、画素100cと第2の容量配線124及び第3の容量配線134を共有している。このように、画素間で配線を共有して設けることにより配線数を低減し、開口率を向上させることが可能となる。
又は、図13で示すように、複数の画素100a〜100fにおいて、画素100bは、画素100aと第1の容量配線114を共有し、画素100cと第2の容量配線124を共有し、第3の容量配線134は、画素毎に配置するようにすることも可能である。
また、第1の容量配線114は、複数の画素において、一本で設けた構成としてもよいし、複数本設けた構成としてもよい。第2の容量配線124、第3の容量配線134も同様に、複数の画素において、一本で設けた構成としてもよいし、複数本設けた構成としてもよい。
次に、図1で示した画素を有する表示装置の駆動方法に関して図3を参照して説明する。図3は、走査線101の電位Vg、信号線102の電位Vs、第1の容量配線114の電位Vcs1、第2の容量配線124の電位Vcs2、第3の容量配線の電位Vcs3、第1の液晶層111の第1の画素電極の電位Vlc1、第2の液晶層121の第2の画素電極の電位Vlc2、第3の液晶層131の第3の画素電極の電位Vlc3、共通電極の電位Vcomを示している。
なお、以下の説明において、第1のトランジスタ113のソース又はドレインの他方、第1の画素電極及び第1の容量素子112の第2の電極の接続箇所を第1のノードα、第2のトランジスタ123のソース又はドレインの他方、第2の画素電極及び第2の容量素子122の第2の電極の接続箇所を第2のノードβ、第3のトランジスタ133のソース又はドレインの他方、第3の画素電極及び第3の容量素子122の第2の電極の接続箇所を第3のノードγとする。また、第1の容量配線114の電位Vcs1及び第2の容量配線124の電位Vcs2を変化させ、第3の容量配線134の電位Vcs3を概略一定とする場合に関して説明する。
図3において、T1になった場合、走査線101の電位Vgがロウ(Low)からハイ(high)に変化するため、第1のトランジスタ113、第2のトランジスタ123及び第3のトランジスタ133がオン(On)となり、第1の画素電極、第2の画素電極及び第3の画素電極に信号線102の電位Vsが印加される。また、第1の容量素子112の第2の電極、第2の容量素子122の第2の電極及び第3の容量素子132の第2の電極にもVsが印加され、容量素子の充電が行われる。
図3において、T2になった場合、走査線101の電位Vgがハイからロウに変化するため、第1のトランジスタ113、第2のトランジスタ123及び第3のトランジスタ133がオフ(Off)となり、第1の画素電極〜第3の画素電極、第1の容量素子112、第2の容量素子122及び第3の容量素子132が信号線102と電気的に絶縁される。その結果、第1のノードα、第2のノードβ及び第3のノードγが浮遊状態となる。
図3において、T3になった場合、第1の容量配線114の電位Vcs1がハイからロウに変化するため、浮遊状態にある第1のノードαの電位も変化する。ノードαの電位の変化量は、第1の液晶層111の容量の大きさと、第1の容量素子112の容量の大きさとの関係から、決定される。つまり、第1の容量配線114の電位Vcs1の電圧の振幅値が、容量分割されることによって、ノードαの電位の変化量が決定される。
仮に、第1の液晶層111の容量値と、第1の容量素子112の容量値とが、同じ大きさである場合は、ノードαの電位の変化量は、第1の容量配線114の電位Vcs1の変化量の半分と、概ね等しくなる。又は、第1の液晶層111の容量値よりも、第1の容量素子112の容量値の方が小さい場合は、ノードαの電位の変化量は、第1の容量配線114の電位Vcs1の変化量の半分よりも、小さくなる。又は、第1の液晶層111の容量値よりも、第1の容量素子112の容量値の方が十分に大きい場合は、ノードαの電位の変化量は、第1の容量配線114の電位Vcs1の変化量と、概ね等しくなる。
従って、その場合は、例えば、Vcs1がVcom+VxからVcom−Vxまで変化した場合には、第1の液晶層111の第1の画素電極の電位Vlc1が2Vx低下する。又は、例えば、第1の液晶層111の容量値が、第1の容量素子112の容量値と概ね等しい場合では、第1の液晶層111の第1の画素電極の電位Vlc1がVx低下する。同様に、第2の容量配線124の電位Vcs2がロウからハイに変化するため、浮遊状態にある第2のノードβの電位もそれに応じて変化する。例えば、第2の液晶層121の容量値よりも、第2の容量素子122の容量値の方が十分に大きい場合において、Vcs2がVcom−VxからVcom+Vxまで変化した場合には、第2の液晶層121の第2の画素電極の電位Vlc2が2Vx増加する。なお、ここでは、第3の容量配線134の電位Vcs3は概略一定であるため、第3のノードγの電位は変化せず、第3の液晶層131の第3の電極の電位Vlc3は概略一定値(信号線102から加えられた電位)を保持する。
なお、第3の容量配線134の電位Vcs3が概略一定であるとは、第3の容量配線134に電位が加えられている期間において、第3の容量配線134の電位が常に一定である場合はもちろん、一部の期間において第3の容量配線134の電位が一定でない場合も含むものとする。また、一部の期間とは、第3の容量配線134に電位が加えられている期間の好ましくは10%以下、より好ましくは1%以下とする。また、ノイズ等により、第3の容量配線134の電位がゆらいで変化した場合も概略一定に含まれるものとする。
図3において、T4になった場合、第1の容量配線114の電位Vcs1がロウからハイに変化するため、浮遊状態にある第1のノードαの電位もそれに応じて変化する。例えば、第1の液晶層111の容量値よりも、第1の容量素子112の容量値の方が十分に大きい場合において、Vcs1がVcom−VxからVcom+Vxまで変化した場合には、第1の液晶層111の第1の画素電極の電位Vlc1が2Vx増加する。又は、例えば、第1の液晶層111の容量値が、第1の容量素子112の容量値と概ね等しい場合では、第1の液晶層111の第1の画素電極の電位Vlc1がVx増加する。
同様に、第2の容量配線124の電位Vcs2がハイからロウに変化するため、浮遊状態にある第2のノードβの電位もそれに応じて変化する。例えば、第2の液晶層121の容量値よりも、第2の容量素子122の容量値の方が十分に大きい場合において、Vcs2がVcom+VxからVcom−Vxまで変化した場合には、第2の液晶層121の第2の画素電極の電位Vlc2が2Vx低下する。又は、例えば、第2の液晶層121の容量値が、第2の容量素子122の容量値と概ね等しい場合では、第2の液晶層121の第2の画素電極の電位Vlc2がVx低下する。なお、ここでは、第3の容量配線134の電位Vcs3は一定であるため、第3のノードγの電位は変化せず、第3の液晶層131の第3の電極の電位Vlc3は概略一定値(信号線102から加えられた電位)を保持する。
その後も、一定の期間毎に第1の容量配線114の電位Vcs1及び第2の容量配線124の電位Vcs2が交互に変化することによって、第1の液晶層111の第1の画素電極の電位Vlc1と、第2の液晶層121の第2の画素電極の電位Vlc2が増減する。また、第3の容量配線134の電位Vcs3を一定にした場合には、第3の液晶層131の第3の画素電極の電位Vlc3は概略一定値(信号線102から加えられた電位)を保持する。その結果、第1の液晶層111に加わる電圧V1、第2の液晶層121に加わる電圧V2、第3の液晶層131に加わる電圧V3は、それぞれ異なった値(ここでは、V1<V3<V2)となる。
なお、ここでは、V1はVcomを基準とした場合のVlc1の実効電圧、V2はVcomを基準とした場合のVlc2の実効電圧、V3はVcomを基準とした場合のVlc3の電圧となる。
通常、加えられた電圧の実効値に応じて、液晶の配向状態が制御される。
ここで、図3では、共通電極の電位Vcomよりも画素電極の電圧の方が大きい場合、つまり、ビデオ信号が正極の場合について示した。しかし、通常、液晶は交流駆動を行う。そこで、図14では、共通電極の電位Vcomよりも画素電極の電圧の方が小さい場合、つまり、ビデオ信号が負極の場合について示す。
図14において、T1になった場合、走査線101の電位Vgがロウ(Low)からハイ(high)に変化するため、第1のトランジスタ113、第2のトランジスタ123及び第3のトランジスタ133がオン(On)となり、第1の画素電極、第2の画素電極及び第3の画素電極に信号線102の電位Vsが印加される。また、第1の容量素子112の第2の電極、第2の容量素子122の第2の電極及び第3の容量素子132の第2の電極にもVsが印加され、容量素子の充電が行われる。
図14において、T2になった場合、走査線101の電位Vgがハイからロウに変化するため、第1のトランジスタ113、第2のトランジスタ123及び第3のトランジスタ133がオフ(Off)となり、第1の画素電極〜第3の画素電極、第1の容量素子112、第2の容量素子122及び第3の容量素子132が信号線102と電気的に絶縁される。その結果、第1のノードα、第2のノードβ及び第3のノードγが浮遊状態となる。
図14において、T3になった場合、第1の容量配線114の電位Vcs1がハイからロウに変化するため、浮遊状態にある第1のノードαの電位も変化する。ノードαの電位の変化量は、第1の液晶層111の容量の大きさと、第1の容量素子112の容量の大きさとの関係から、決定される。つまり、第1の容量配線114の電位Vcs1の電圧の振幅値が、容量分割されることによって、ノードαの電位の変化量が決定される。
仮に、第1の液晶層111の容量値と、第1の容量素子112の容量値とが、同じ大きさである場合は、ノードαの電位の変化量は、第1の容量配線114の電位Vcs1の変化量の半分と、概ね等しくなる。又は、第1の液晶層111の容量値よりも、第1の容量素子112の容量値の方が小さい場合は、ノードαの電位の変化量は、第1の容量配線114の電位Vcs1の変化量の半分よりも、小さくなる。又は、第1の液晶層111の容量値よりも、第1の容量素子112の容量値の方が十分に大きい場合は、ノードαの電位の変化量は、第1の容量配線114の電位Vcs1の変化量と、概ね等しくなる。
従って、その場合は、例えば、Vcs1がVcom+VxからVcom−Vxまで変化した場合には、第1の液晶層111の第1の画素電極の電位Vlc1が2Vx低下する。又は、例えば、第1の液晶層111の容量値が、第1の容量素子112の容量値と概ね等しい場合では、第1の液晶層111の第1の画素電極の電位Vlc1がVx低下する。同様に、第2の容量配線124の電位Vcs2がロウからハイに変化するため、浮遊状態にある第2のノードβの電位もそれに応じて変化する。例えば、第2の液晶層121の容量値よりも、第2の容量素子122の容量値の方が十分に大きい場合において、Vcs2がVcom−VxからVcom+Vxまで変化した場合には、第2の液晶層121の第2の画素電極の電位Vlc2が2Vx増加する。なお、ここでは、第3の容量配線134の電位Vcs3は一定であるため、第3のノードγの電位は変化せず、第3の液晶層131の第3の電極の電位Vlc3は概略一定値(信号線102から加えられた電位)を保持する。
図14において、T4になった場合、第1の容量配線114の電位Vcs1がロウからハイに変化するため、浮遊状態にある第1のノードαの電位もそれに応じて変化する。例えば、第1の液晶層111の容量値よりも、第1の容量素子112の容量値の方が十分に大きい場合において、Vcs1がVcom−VxからVcom+Vxまで変化した場合には、第1の液晶層111の第1の画素電極の電位Vlc1が2Vx増加する。又は、例えば、第1の液晶層111の容量値が、第1の容量素子112の容量値と概ね等しい場合では、第1の液晶層111の第1の画素電極の電位Vlc1がVx増加する。
同様に、第2の容量配線124の電位Vcs2がハイからロウに変化するため、浮遊状態にある第2のノードβの電位もそれに応じて変化する。例えば、第2の液晶層121の容量値よりも、第2の容量素子122の容量値の方が十分に大きい場合において、Vcs2がVcom+VxからVcom−Vxまで変化した場合には、第2の液晶層121の第2の画素電極の電位Vlc2が2Vx低下する。又は、例えば、第2の液晶層121の容量値が、第2の容量素子122の容量値と概ね等しい場合では、第2の液晶層121の第2の画素電極の電位Vlc2がVx低下する。なお、ここでは、第3の容量配線134の電位Vcs3は一定であるため、第3のノードγの電位は変化せず、第3の液晶層131の第3の電極の電位Vlc3は概略一定値(信号線102から加えられた電位)を保持する。
その後も、一定の期間毎に第1の容量配線114の電位Vcs1及び第2の容量配線124の電位Vcs2が交互に変化することによって、第1の液晶層111の第1の画素電極の電位Vlc1と、第2の液晶層121の第2の画素電極の電位Vlc2が増減する。また、第3の容量配線134の電位Vcs3を一定にした場合には、第3の液晶層131の第3の画素電極の電位Vlc3は概略一定値(信号線102から加えられた電位)を保持する。その結果、第1の液晶層111に加わる実効電圧V1、第2の液晶層121に加わる実効電圧V2、第3の液晶層131に加わる実効電圧V3は、それぞれ異なった値(ここでは、V2<V3<V1)となる。
このように、同じタイミングで信号を入力しても、画像信号が正極の場合の実効電圧の関係(V1<V3<V2)と、画像信号が負極の場合の実効電圧の関係(V2<V3<V1)とは、異なってくる。ただし、画像信号が正極の場合のV1と、画像信号が負極の場合のV2とは、概ね同じ大きさの実効電圧であり、画像信号が負極の場合のV2と、画像信号が正極の場合のV1とは、概ね同じ大きさの実効電圧である。つまり、副画素が入れ替わった形になるだけであるため、正常に表示させることが出来る。
一方、ここで、図15に示すように、第3の容量配線134の電位が、第1の容量配線114のように、変化した場合について考える。その場合、第3の液晶層131に加わる実効電圧V3は、ビデオ信号が正極の場合と負極の場合とでは、異なってくる。なぜなら、図15に示すように、第1の容量配線114のような波形であれば、第3の液晶層131の第3の画素電極の電位Vlc3は、信号線102の電位Vsよりも低くなる。その結果、ビデオ信号が正極の場合は、液晶に加わる実効電圧は小さくなり、ビデオ信号が負極の場合は、液晶に加わる実効電圧は大きくなるためである。したがって、第3の容量配線134の電位が変化する場合は、信号線102の電位Vsと共通電極の電位Vcomとの差の絶対値が同じであっても、ビデオ信号が正極の場合と負極の場合とでは、液晶に加わる実効電圧が異なってしまう。そのため、同じ大きさの実効電圧を液晶に供給したいときには、正極用のビデオ信号と、負極用のビデオ信号とで、別々の処理が必要となってしまう。
また、図16に示すように、第3の容量配線134の電位が、第2の容量配線124のように、変化した場合について考える。その場合、第3の液晶層131の第3の画素電極の電位Vlc3は、信号線102の電位Vsよりも高くなる。その結果、ビデオ信号が正極の場合は、液晶に加わる実効電圧は大きくなり、ビデオ信号が負極の場合は、液晶に加わる実効電圧は小さくなる。
したがって、図15と図16とを比較してみると、信号線102の電位Vsが同じであっても、第3の容量配線134の電位が、第1の容量配線114のように変化した場合と、第2の容量配線124のように変化した場合とでは、液晶に加わる実効電圧が異なってくる。したがって、同じ大きさの実効電圧を液晶に供給したいときには、第3の容量配線134の電位の波形に応じて、別々の処理が必要となってしまう。
このように、第3の容量配線134の電位が変化する場合は、様々な状況に応じて、液晶に加わる実効電圧が異なってきてしまう。しかし、図3に示すように、第3の容量配線134の電位が変化せず、一定値である場合には、このような問題は生じない。
このようにすることにより、3つの副画素において、液晶に加わる実効電圧は、各々異なるようにすることが出来る。したがって、斜めから見た場合の階調の変化量を小さくすることができ、視野角を広くすることが出来る。
このように、奇数個の副画素を配置する場合は、奇数個分の副画素においては、容量配線の電位を一定値にすることが望ましい。ただし、これに限定されない。
また、逆の見方をすれば、容量配線の電位を一定値にする副画素を配置することによって、副画素の数を奇数個にすることが出来ると言うことができる。仮に、全ての容量配線の電位を変化させる場合であれば、副画素の数を2個以上にしたい場合は、4個の副画素にする必要がある。そのため、副画素の数が2個では不十分である場合、4個まで増やさざるを得ない。その結果、開口率の低下や歩留まりの低下を招いてしまう可能性がある。しかし、容量配線の電位を一定値にする副画素を配置することによって、副画素の数を奇数個にすることが出来るため、副画素の数が2個では不十分である場合は、副画素の数を3個にして、開口率と視野角とのバランスを取りながら、正常に動作させることが出来る。
このように、一つの画素に複数の副画素を設け、当該副画素毎に液晶の配向状態を異ならせることにより、視野角特性を向上させることができる。特に、ここでは、第3の画素電極に第3の容量素子132を介して接続された第3の容量配線134の電位を一定とすることにより、第3の液晶層131には信号線102から供給された電位が加わることとなるため、ビデオ信号に特別な処理を加えずに副画素数を増やすことが出来るという利点を有している。
上記説明においては、第1の容量配線114の電位Vcs1、第2の容量配線124の電位Vcs2を、ある周波数を有し互いに1/2周期異なる電位とし、同じ振幅の電圧とし、第3の容量配線134の電位Vcs3を、Vcs1とVcs2のハイの電位VHとロウの電位VLの中間値(例えば、Vcom)とした例を示したが、これに限られない。例えば、Vcs3を電位VH又は電位VLの概略一定の値としてもよいし、電位VHより大きくしてもよいし、電位VLより小さくしてもよい。また、Vcs3をある周波数を有する電位としてもよい。あるいは、電位VHは、Vcomと同じ電位でもよいし、電位VLがVcomと同じ電位でもよい。または、第1の容量配線114のハイの電位と、第2の容量配線124のハイの電位とが異なっていても良い。または、第1の容量配線114のロウの電位と、第2の容量配線124のロウの電位とが異なっていても良い。
なお、第1の副画素110と、第2の副画素120とは、交互に状態が入れ替わるような形で、互いに対称な動作を行う場合が多い。したがって、各々の構成要素は、概ね同じ構成になっていることが望ましい。例えば、トランジスタのサイズ(チャネル長またはチャネル幅)は、第1の副画素110と第2の副画素120とでは、概ね等しいことが望ましい。または、保持容量の容量値(またはレイアウト形状)は、第1の副画素110と第2の副画素120とでは、概ね等しいことが望ましい。または、液晶の容量値(またはレイアウト形状)は、第1の副画素110と第2の副画素120とでは、概ね等しいことが望ましい。ここで、概ね等しいとは、製造上の誤差などが原因となって、多少のズレが生じている場合も含むものとする。
一方、第3の副画素130は、第1の副画素110または第2の副画素120と、対称的な動作をすることはない。したがって、各々の構成要素は、異なっていても良い。その結果、トランジスタや保持容量や液晶素子のレイアウトに自由度が生じ、柔軟な設計を行うことが出来る。例えば、トランジスタのサイズ(チャネル長またはチャネル幅)は、第3の副画素130と第1の副画素110(または第2の副画素120)とでは、異なっていても良い。または、保持容量の容量値(またはレイアウト形状)は、第3の副画素130と第1の副画素110(または第2の副画素120)とでは、異なっていても良い。または、液晶の容量値(またはレイアウト形状)は、第3の副画素130と第1の副画素110(または第2の副画素120)とでは、異なっていても良い。
なお、第3の副画素130の保持容量の容量値は、第1の副画素110または第2の副画素120の保持容量の容量値よりも小さくても良い。なぜなら、第3の副画素130の容量配線の電位は、一定であるからである。したがって、容量値が最小の場合として、図17に示すように、第3の副画素130では、保持容量を設けなくても良い。図17のように、第3の容量配線134、第3の容量素子132を設けないようにする。その結果、開口率を向上させたり、製造歩留まりを向上させたりすることが出来る。
なお、図3と図14とを見ると、ビデオ信号が正極の場合は、第1の液晶層111に加わる電圧の実効値(または、絶対値)は、第2の液晶層121に加わる電圧の実効値(または、絶対値)よりも小さく、ビデオ信号が負極の場合は、第1の液晶層111に加わる電圧の実効値(または、絶対値)は、第2の液晶層121に加わる電圧の実効値(または、絶対値)よりも大きい。したがって、液晶の中に存在する不純物が、局所的に集まってしまう可能性がある。液晶では、通常、交流駆動を行うことによって、不純物が偏らないようにしている。しかし、液晶層に加わる電圧に偏りが生じると、不純物も偏ってしまう。したがって、第1の容量配線114の波形と第2の容量配線124の波形とを、図18のように、図3とは逆にすることにより、つまり、ビデオ信号が正極の時と、負極の時とで、第1の容量配線114と第2の容量配線124とに加わる波形を逆にすることにより、液晶層に加わる実効値(または、絶対値)が概ね等しくなるようにする事が出来る。この結果、不純物が液晶層の中で偏ることを低減することが出来る。
なお、ビデオ信号が正極の時の第1の容量配線114と第2の容量配線124の波形が、図3で示した波形である場合、第1の液晶層111に加わる電圧の実効値(または、絶対値)の方が、第2の液晶層121に加わる電圧の実効値(または、絶対値)よりも、小さくなってしまう。しかしながら、これが切り替わることによって、平均化されて見えるため、望ましい。そこで、図3の波形と、図19の波形とを切り替えて動作させることが望ましい。図3と図19とでは、第1の容量配線114と第2の容量配線124とに加わる波形が逆になっている。それにより、第1の液晶層111に加わる電圧の実効値(または、絶対値)と、第2の液晶層121に加わる電圧の実効値(または、絶対値)とが、切り替わるため、平均化され、滑らかに表示させることが出来る。ビデオ信号が負極の時も同様に、図14の波形と、図18の波形のように、第1の容量配線114と第2の容量配線124とに加わる波形を逆にした波形を用いることにより、第1の液晶層111に加わる電圧の実効値(または、絶対値)と、第2の液晶層121に加わる電圧の実効値(または、絶対値)とが、切り替わるため、平均化され、滑らかに表示させることが出来る。
なお、図3、図14、図18、図19の波形を用いて、それらを適宜切り替えることによって、液晶層での不純物の偏りの低減と、画像の滑らかな表示とを行うことも可能である。
また、本実施の形態では、一つの画素に3つの副画素が設けられた例を示したがこれに限られず、副画素を3つ以上設けた構成としてもよい。例えば、図20に示した構成としてもよい。図20に示す構成は、図1に示した構成に第4の副画素140を追加した構成となっている。第4の副画素140は、第4の液晶層141、第4の容量素子142、第4のトランジスタ143を有している。第4の容量素子142は、第1の電極が容量配線として機能しうる配線(以下、「第4の容量配線144」と記す)に接続され、第2の電極が第4の液晶層141の第4の画素電極に接続されている。
図20に示す構成において、第3の容量配線134及び第4の容量配線144の電位を一定とすることができる。図20に示すように第4の副画素140を追加することによって、画素のレイアウトを対称な形とすることができ、容量の大きさを副画素間で概ね等しくすることができる。
他にも、図17に示す構成に第4の副画素140を追加した構成としてもよい(図21)。図21で示す構成において、第3の副画素130、第4の副画素140に保持容量を設けない場合を示している。このように、第3の容量配線134、第3の容量素子132、第4の容量配線144、第4の容量素子142を設けない構成とすることによって、開口率の向上や、製造歩留まりの向上を図ることができる。また、第4の副画素140を追加することによって、画素のレイアウトを対称な形とすることができ、容量の大きさを副画素間で概ね等しくすることができる。
なお、液晶層、容量素子または容量配線などを複数個に分割してもよい。例として、第3の副画素130において、第3の液晶層131、第3の容量素子132および第3の容量配線134を2つに分割した場合について、図22に示す。この場合、画素のレイアウトを対象な形に出来るため、望ましい。なお、第3のトランジスタ133は共通に設けた場合を示したが、第3のトランジスタ133を分割して設けた構成としてもよい。
また、上述した説明において、例えば、第1のトランジスタ113〜第3のトランジスタ133の走査線101は、1つの画素につき、1本にしている場合について示しているが、これに限定されず、複数本でもよい。例えば、図25に示すように、走査線を複数本にすることにより、画素のレイアウトの自由度が向上し、画素電極の形を対称性よく配置することができる。なお、ここでは、一例として、第3のトランジスタ133のゲート電極が、第2の走査線201に接続された構成を示している。
また、図26に示すように、第3の容量配線134、第3の容量素子132を設けない構成としてもよい。その結果、開口率を向上させたり、製造歩留まりを向上させたりすることが出来る。
また、本実施の形態では、表示装置として液晶を用いた例を示したが、これに限られずEL素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子)等を用いた発光装置に適用することも可能である。
なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
(実施の形態2)
本実施の形態では、上記実施の形態と異なる表示装置の構成に関して図面を参照して説明する。具体的には、上記実施の形態で示した構成において、走査線と第3の容量配線とを共通に設けた構成に関して説明する。
図4に、本実施の形態で示す表示装置の画素の構成を示す。なお、図4は、複数の画素100a〜100fにそれぞれ3つの副画素が設けられた構成を示している。具体的には、第1の副画素には第1の液晶層111、第1の容量素子112、第1のトランジスタ113が設けられており、第2の副画素には第2の液晶層121、第2の容量素子122、第2のトランジスタ123が設けられており、第3の副画素には第3の液晶層131、第3の容量素子132、第3のトランジスタ133が設けられている。
第1のトランジスタ113は、ゲート電極が、走査線101に接続され、ソース又はドレインの一方が、信号線102に接続され、ソース又はドレインの他方が、第1の液晶層111の第1の画素電極及び第1の容量素子112の第2の電極に接続されている。
また、第2のトランジスタ123は、ゲート電極が、走査線101に接続され、ソース又はドレインの一方が、信号線102に接続され、ソース又はドレインの他方が、第2の液晶層121の第2の画素電極及び第2の容量素子122の第2の電極に接続されている。
また、第3のトランジスタ133は、ゲート電極が、走査線101に接続され、ソース又はドレインの一方が、信号線102に接続され、ソース又はドレインの他方が、第3の液晶層131の第3の画素電極及び第3の容量素子132の第2の電極に接続されている。
また、第1の容量素子112の第1の電極は容量配線として機能しうる配線(第1の容量配線114)に接続され、第2の容量素子122の第1の電極は容量配線として機能しうる配線(第2の容量配線124)に接続され、第3の容量素子132の第1の電極は走査線101に接続されている。
図4に示す構成は、上記実施の形態で示した構成(図2)と比較して、第3の容量配線134を省略し、走査線101と第3の容量配線134を共通に設けている。つまり、本実施の形態において、走査線101は容量配線としても機能しうる。
このように、第3の副画素に設けられた第3の容量素子132の第1の電極を走査線101に接続する構成とすることによって、配線数の増加を伴わずに副画素の数を増加させることが可能となる。また、隣接する画素同士で第1の容量配線114、第2の容量配線124を共有して設け、第3の容量配線と走査線を共通して設けることにより、画素に3つ以上の副画素を設けた場合であっても、配線数を低減し、開口率の低下を抑制することができる。
なお、図4では、第3の副画素に設けられた第3の容量素子132の第1の電極を当該画素(m行)の一行前の画素(m−1)行に接続された走査線101に接続した構成を示しているが、これに限定されない。例えば、当該画素の一行後(m+1行)に接続された走査線101に接続させた構成としてもよい(図5)。又は、数行前の画素(m−n行、ここでnは自然数)に接続された走査線に接続してもよいし、数行後(m+n行、ここでnは自然数)に接続された走査線に接続してもよい。または、図24に示すように、第3の容量素子132を配置しないようにしてもよい。
次に、図4で示した画素を有する表示装置の駆動方法に関して図6を参照して説明する。図6は、図4におけるm行目の画素100bの副画素の駆動について示しており、m行目の走査線101の電位Vgm、信号線102の電位Vs、第1の容量配線114の電位Vcs1、第2の容量配線124の電位Vcs2、第1の液晶層111の第1の画素電極の電位Vlc1、第2の液晶層121の第2の画素電極の電位Vlc2、第3の液晶層131の第3の画素電極の電位Vlc3、共通電極の電位Vcomを示している。また、(m−1)行目の走査線の電位Vg(m−1)も示している。
なお、以下の説明において、第1のトランジスタ113のソース又はドレインの他方、第1の画素電極及び第1の容量素子112の第2の電極の接続箇所を第1のノードα、第2のトランジスタ123のソース又はドレインの他方、第2の画素電極及び第2の容量素子122の第2の電極の接続箇所を第2のノードβ、第3のトランジスタ133のソース又はドレインの他方、第3の画素電極及び第3の容量素子122の第2の電極の接続箇所を第3のノードγとする。また、第1の容量配線114の電位Vcs1及び第2の容量配線124の電位Vcs2を変化させる場合に関して説明する。
図6において、T1になった場合、m行目の走査線101の電位Vgmがロウ(Low)からハイ(high)に変化するため、第1のトランジスタ113、第2のトランジスタ123及び第3のトランジスタ133がオン(On)となり、第1の画素電極、第2の画素電極及び第3の画素電極に信号線102の電位Vsが印加される。また、第1の容量素子112の第2の電極、第2の容量素子122の第2の電極及び第3の容量素子132の第2の電極にもVsが印加され、容量素子の充電が行われる。
図6において、T2になった場合、m行目の走査線101の電位Vgmがハイからロウに変化するため、第1のトランジスタ113、第2のトランジスタ123及び第3のトランジスタ133がオフ(Off)となり、第1の画素電極〜第3の画素電極、第1の容量素子112、第2の容量素子122及び第3の容量素子132が信号線102と電気的に絶縁される。その結果、第1のノードα、第2のノードβ及び第3のノードγが浮遊状態となる。
図6において、T3になった場合、第1の容量配線114の電位Vcs1がハイからロウに変化するため、浮遊状態にある第1のノードαの電位もそれに応じて変化する。第1の液晶層111の容量値よりも、第1の容量素子112の容量値の方が十分に大きい場合において、例えば、Vcs1がVcom+VxからVcom−Vxまで変化した場合には、第1の液晶層111の第1の画素電極の電位Vlc1が2Vx低下する。又は、例えば、第1の液晶層111の容量値が、第1の容量素子112の容量値と概ね等しい場合では、第1の液晶層111の第1の画素電極の電位Vlc1がVx低下する。同様に、第2の容量配線124の電位Vcs2がロウからハイに変化するため、浮遊状態にある第2のノードβの電位もそれに応じて変化する。
例えば、第2の液晶層121の容量値よりも、第2の容量素子122の容量値の方が十分に大きい場合において、Vcs2がVcom−VxからVcom+Vxまで変化した場合には、第2の液晶層121の第2の画素電極の電位Vlc2が2Vx増加する。又は、例えば、第2の液晶層121の容量値が、第2の容量素子122の容量値と概ね等しい場合では、第2の液晶層121の第2の画素電極の電位Vlc2がVx増加する。なお、ここでは、(m−1)行目の走査線101の電位Vg(m−1)は既に一定になっているため、第3のノードγの電位は変化せず、第3の液晶層131の第3の電極の電位Vlc3は概略一定値(信号線102から加えられた電位)を保持する。
図6において、T4になった場合、第1の容量配線114の電位Vcs1がロウからハイに変化するため、浮遊状態にある第1のノードαの電位もそれに応じて変化する。例えば、第1の液晶層111の容量値よりも、第1の容量素子112の容量値の方が十分に大きい場合において、Vcs1がVcom−VxからVcom+Vxまで変化した場合には、第1の液晶層111の第1の画素電極の電位Vlc1が2Vx増加する。又は、例えば、第1の液晶層111の容量値が、第1の容量素子112の容量値と概ね等しい場合では、第1の液晶層111の第1の画素電極の電位Vlc1がVx増加する。同様に、第2の容量配線124の電位Vcs2がハイからロウに変化するため、浮遊状態にある第2のノードβの電位もそれに応じて変化する。例えば、第2の液晶層121の容量値よりも、第2の容量素子122の容量値の方が十分に大きい場合において、Vcs2がVcom+VxからVcom−Vxまで変化した場合には、第2の液晶層121の第2の画素電極の電位Vlc2が2Vx低下する。又は、例えば、第2の液晶層121の容量値が、第2の容量素子122の容量値と概ね等しい場合では、第2の液晶層121の第2の画素電極の電位Vlc2がVx低下する。なお、ここでは、(m−1)行目の走査線101の電位Vg(m−1)は一定であるため、第3のノードγの電位は変化せず、第3の液晶層131の第3の電極の電位Vlc3は概略一定値(信号線102から加えられた電位)を保持する。
その後も、一定の期間毎に第1の容量配線114の電位Vcs1及び第2の容量配線124の電位Vcs2が交互に変化することによって、第1の液晶層111の第1の画素電極の電位Vlc1と、第2の液晶層121の第2の画素電極の電位Vlc2が増減する。また、(m−1)行目の走査線101の電位Vg(m−1)は一定であるため、第3の液晶層131の第3の画素電極の電位Vlc3は概略一定値(信号線102から加えられた電位)を保持する。その結果、第1の液晶層111、第2の液晶層121、第3の液晶層131にはそれぞれ異なる電位(ここでは、Vlc1<Vlc3<Vlc2)が加えられることとなる。
このように、一つの画素に複数の副画素を設け、当該副画素毎に液晶の配向状態を異ならせることにより、視野角特性を向上させることができる。特に、ここでは、第3の画素電極を第3の容量素子132を介して(m−1)行目の走査線101に接続することにより、第3の液晶層131には信号線102から供給された電位を保持することとなるため、ビデオ信号に特別な処理を加えずに副画素数を増やすことが出来るという利点を有している。
なお、図6では、第3の副画素に設けられた第3の容量素子132の第1の電極を当該画素(m行)の一行前の画素(m−1行)に接続された走査線101に接続した構成(図4)の駆動方法を示しているが、当該画素の一行後(m+1行)に接続された走査線101に接続させた構成(図5)の駆動方法を図7に示す。この場合、T2になった場合、(m+1)行目の走査線101の電位Vg(m+1)がロウからハイに変化するため、浮遊状態にある第3のノードγの電位もそれに応じて変化する。しかしながら、(m+1)行目の走査線101の電位Vg(m+1)の電位が変化する期間は、(m+1)行目の画素が選択される期間であり、第3の容量配線134に電位が加えられている全期間と比較して短いため液晶に加えられる実効電圧としては、影響は小さい。
本実施の形態では、一つの画素に3つの副画素が設けられた例を示したがこれに限られず、副画素を3つ以上設けた構成としてもよい。また、本実施の形態では、表示装置として液晶を用いた例を示したが、これに限られずEL素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子)等を用いた発光装置に適用することも可能である。
なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
(実施の形態3)
本実施の形態では、上記実施の形態と異なる半導体装置について図面を参照して説明する。
図8に、本実施の形態で示す表示装置の画素の構成を示す。
図8に示す画素は、5つの副画素が設けられた構成を示している。第1の副画素110は、第1の液晶層111、第1の容量素子112、第1のトランジスタ113を有している。同様に、第2の副画素120は、第2の液晶層121、第2の容量素子122、第2のトランジスタ123を有し、第3の副画素130は、第3の液晶層131、第3の容量素子132、第3のトランジスタ133を有し、第4の副画素140は、第4の液晶層141、第4の容量素子142、第4のトランジスタ143を有し、第5の副画素150は、第5の液晶層151、第5の容量素子152、第5のトランジスタ153を有している。
つまり、本実施の形態で示す画素は、上記図1の構成に第4の副画素140と第5の副画素150を追加した構成となっている。
第4の液晶層141、第5の液晶層151は、第1の液晶層111、第2の液晶層121、第3の液晶層131と同様に、画素電極と共通電極とそれらによって制御される液晶を有しており、共通電極は各副画素で共通して設けた構成とすることができる。以下、第4の液晶層141が有する画素電極を第4の画素電極、第5の液晶層151が有する画素電極を第5の画素電極と記す。
第4の容量素子142、第5の容量素子152は、各々が有する第1の電極と第2の電極間に絶縁膜が設けられた構成とすることができ、第1の電極、第2の電極としては、導電膜、半導体膜、不純物元素が導入された半導体膜、又は酸化物半導体膜等を用いることができる。
第4のトランジスタ143は、ゲート電極が、走査線101に接続され、ソース又はドレインの一方が、信号線102に接続され、ソース又はドレインの他方が、第4の液晶層141の第4の画素電極及び第4の容量素子142の第2の電極に接続されている。
また、第5のトランジスタ153は、ゲート電極が、走査線101に接続され、ソース又はドレインの一方が、信号線102に接続され、ソース又はドレインの他方が、第5の液晶層151の第5の画素電極及び第5の容量素子152の第2の電極に接続されている。
第4の容量素子142は、第1の電極が、容量配線として機能しうる配線(以下、「第4の容量配線144」と記す)に接続され、第2の電極が第4の液晶層141の第4の画素電極に接続されている。
また、第5の容量素子152は、第1の電極が容量配線として機能しうる配線(以下、「第5の容量配線154」と記す)に接続され、第5の電極が第5の液晶層151の第5の画素電極に接続されている。
また、第1の容量配線114、第2の容量配線124、第3の容量配線134、第4の容量配線144、第5の容量配線154は、各画素に対応するように一つずつ設けた構成としてもよいが、隣接する画素と共有して設けた構成としてもよい(図9)。又は、図23に示すように、第3の容量素子132を配置しないようにしてもよい。
また、図9の構成において、走査線101と第3の容量配線134とを共通に設けた構成としてもよい(図10)。具体的には、図10に示す構成は、図9の構成において、第3の容量配線134を省略し、走査線101と第3の容量配線を共通に設けている。つまり、走査線101は容量配線としても機能しうる。
このように、第3の副画素に設けられた第3の容量素子132の第1の電極を走査線101に接続する構成とすることによって、複数の副画素を設けた場合であっても、配線数を低減し、開口率の低下を抑制することができる。なお、m行目の画素(ここでは、画素200a、200c)に設けられた第3の容量素子132の第1の電極は、(m−1)行目の走査線に接続してもよいし、(m+1)行目の走査線に接続してもよい。なお、m行目の走査線に接続してもよいし、又は、数行前の画素(m−n行、ここでnは自然数)に接続された走査線に接続してもよいし、数行後(m+n行、ここでnは自然数)に接続された走査線に接続してもよい。
次に、第1の容量配線114、第2の容量配線124、第3の容量配線134、第4の容量配線144、第5の容量配線154に加える電位について説明する。
例えば、図11に示すように、第1の容量配線114の電位Vcs1、第2の容量配線124の電位Vcs2、第4の容量配線Vcs4、第5の容量配線Vcs5をある周波数を有する電位とし、第3の容量配線134の電位Vcs3を概略一定電位とすることができる。なお、図11では、第1の容量配線114の電位Vcs1と第2の容量配線124の電位Vcs2が互いに1/2周期異なる電位とし、第4の容量配線144の電位Vcs4と第5の容量配線154の電位Vcs5が互いに1/2周期異なる電位とし、さらにVcs1とVcs2よりVcs4とVcs5の電位振幅を大きくした例を示している。
また、図12に示すように、第1の容量配線114の電位Vcs1と第2の容量配線124の電位Vcs2の周波数と、第4の容量配線Vcs4と第5の容量配線Vcs5の周波数を異なる周波数としてもよい。
なお、図11、図12において、第3の容量配線134の電位VcsはVcomで一定とした場合を示したが、これに限られない。例えば、Vcs1とVcs2のハイの電位又はロウの電位としてもよいし、Vcs4とVcs5のハイの電位又はロウの電位としてもよいし、走査線の電位Vgと同じ電位とすることも可能である。また、Vcs3をある周波数を有する電位としてもよい。
このように、容量配線の振幅が異なるようにすることにより、副画素の液晶層に加わる電圧の実効値が、各々異なるようにすることが出来る。その結果、液晶の配向状態が各々異なる副画素が複数個配置されることになるため、斜めから見たときに、平均化され、視野角を広くすることが出来る。
本実施の形態では、表示装置として液晶を用いた例を示したが、これに限られずEL素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子)等を用いた発光装置に適用することも可能である。
なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
(実施の形態4)
本実施の形態においては、上記実施の形態で説明した画素の構成に関して説明する。
まず、上記図13で示した画素のレイアウトについて図27を参照して説明する。なお、図27は、上記図13に示した複数の画素において、画素100bの模式図に相当する。
図27では、第1のトランジスタ113〜第3のトランジスタ133は、ゲート電極としても機能しうる走査線101上に設けられた半導体膜161をチャネル領域として利用する。半導体膜161は、例えば、アモルファスシリコン(a−Si)、マイクロクリスタルシリコン(μc−Si)等を用いることができる。また、容量線の電位を一定にする副画素(ここでは、第3の副画素)を構成する液晶層(ここでは、第3の液晶層131)、容量素子(ここでは、第3の容量素子132)を画素100bの真ん中に配置し、それと隣接するように(紙面の上下に)容量線の電位を変化させる副画素を構成する液晶層(ここでは、第1の液晶層111、第2の液晶層121)を配置する。これにより、容量線(ここでは、第1の容量線114、第2の容量線124)を上下の画素で共用しやすくすることができる。
第1の副画素を構成する第1の容量素子112は、第1の容量配線114を第1の電極とし、当該第1の容量配線114上に設けられた導電膜163を第2の電極として設けることができる。また、導電膜163と第1の液晶層111を構成する第1の画素電極が電気的に接続される。導電膜163は、信号線102を構成する導電膜と同時に設けることができる。
第2の副画素を構成する第2の容量素子122は、第2の容量配線124を第1の電極とし、当該第2の容量配線124上に設けられた導電膜163を第2の電極として設けることができる。また、導電膜163と第2の液晶層121を構成する第2の画素電極が電気的に接続される。導電膜163は、信号線102を構成する導電膜と同時に設けることができる。
第3の副画素を構成する第3の容量素子132は、第3の容量配線134を第1の電極とし、当該第3の容量配線134上に設けられた導電膜163を第2の電極として設けることができる。また、導電膜163と第3の液晶層131を構成する第3の画素電極が電気的に接続される。導電膜163は、信号線102を構成する導電膜と同時に設けることができる。
また、容量線の電位を一定にする副画素(ここでは、第3の副画素)を構成する液晶層(ここでは、液晶層131)、容量素子(ここでは、第3の容量素子132)を画素100bの真ん中に配置し、それと隣接するように(ここでは、紙面の上下に)容量線の電位を変化させる副画素(ここでは、第1の副画素、第2の副画素)を構成する液晶層(ここでは、第1の液晶層111、第2の液晶層121)を配置する。これにより、容量線(ここでは、第1の容量線114、第2の容量線124)を上下の画素で共用しやすくすることができる。
また、液晶層を構成する画素電極にスリットを設けてもよい。画素電極にスリットを設ける場合には、液晶の配向(スリットの方向)を考慮して設けることが好ましい。例えば、容量配線の電位を変化させる第1の副画素の第1の液晶層111を構成する第1の画素電極に形成されるスリットの方向と、容量配線の電位を変化させる第2の副画素の第2の液晶層121を構成する第2の画素電極に形成されるスリットの方向とを、第3の液晶層131を挟んで対称に設ける。また、容量配線の電位を変化させない第3の副画素においては、第3の液晶層131を構成する第3の画素電極の中で液晶の配向(スリットの方向)が異なる領域が形成されるように設ける。これにより、視野角を広くすることが可能となる。
また、図27の構成において、上記図17で示したように、第3の副画素130において、第3の容量配線134、第3の容量素子132を設けない構成としてもよい(図28)。その結果、開口率の向上や、製造歩留まりの向上を図ることができる。
次に、上記図25で示した画素のレイアウトについて図29を参照して説明する。
図29では、一つの画素につき走査線を複数(ここでは、走査線101、走査線201)を設けた構成となっている。第1のトランジスタ113、第3のトランジスタ133は、それぞれゲート電極として機能しうる走査線101の下方に設けられた半導体膜162をチャネル領域として利用する。また、第2のトランジスタ123は、ゲート電極として機能しうる第2の走査線201の下方に設けられた半導体膜162をチャネル領域として利用する。半導体膜162は、例えば、多結晶シリコン(p−Si)等を用いることができる。
第1の副画素を構成する第1の容量素子112は、第1の容量配線114を第1の電極とし、当該第1の容量配線114の下方に設けられた半導体膜162を第2の電極として設けることができる。なお、半導体膜162を第2の電極として用いる場合には、不純物元素を導入することが好ましい。また、第2の電極となる半導体膜162と第1の液晶層111を構成する第1の画素電極が電気的に接続される。第1の容量配線114の第2の電極となる半導体膜162を第1のトランジスタ113の半導体膜162と同時に設け、第1の容量配線114を走査線101と同時に設けることによって、第1のトランジスタ113のゲート絶縁膜を第1の容量素子112の絶縁膜として利用することができ、容量を大きくとることが可能となる。
第2の副画素を構成する第2の容量素子122は、第2の容量配線124を第1の電極とし、当該第2の容量配線124の下方に設けられた半導体膜162を第2の電極として設けることができる。なお、半導体膜162を第2の電極として用いる場合には、不純物元素を導入することが好ましい。また、第2の電極となる半導体膜162と第2の液晶層121を構成する第2の画素電極が電気的に接続される。第2の容量配線124の第2の電極となる半導体膜162を第2のトランジスタ123の半導体膜162と同時に設け、第2の容量配線124を走査線201と同時に設けることによって、第2のトランジスタ123のゲート絶縁膜を第2の容量素子122の絶縁膜として利用することができ、容量を大きくとることが可能となる。
第3の副画素を構成する第3の容量素子132は、第3の容量配線134を第1の電極とし、当該第3の容量配線134の下方に設けられた半導体膜162を第2の電極として設けることができる。なお、半導体膜162を第2の電極として用いる場合には、不純物元素を導入することが好ましい。また、第2の電極となる半導体膜162と第3の液晶層131を構成する第3の画素電極が電気的に接続される。第3の容量配線134の第2の電極となる半導体膜162を第3のトランジスタ133の半導体膜162と同時に設け、第3の容量配線134を走査線101と同時に設けることによって、第3のトランジスタ133のゲート絶縁膜を第3の容量素子132の絶縁膜として利用することができ、容量を大きくとることが可能となる。
また、容量線の電位を一定にする副画素(ここでは、第3の副画素)を構成する液晶層(ここでは、液晶層131)、容量素子(ここでは、第3の容量素子132)を画素100bの真ん中に配置し、それと隣接するように(紙面の上下に)容量線の電位を変化させる副画素(ここでは、第1の副画素、第2の副画素)を構成する液晶層(ここでは、第1の液晶層111、第2の液晶層121)を配置する。これにより、容量線(ここでは、第1の容量線114、第2の容量線124)を上下の画素で共用しやすくすることができる。
また、液晶層を構成する画素電極にスリットを設けてもよい。画素電極にスリットを設ける場合には、液晶の配向(スリットの方向)を考慮して設けることが好ましい。例えば、容量配線の電位を変化させる第1の副画素の第1の液晶層111を構成する第1の画素電極に形成されるスリットの方向と、容量配線の電位を変化させる第2の副画素の第2の液晶層121を構成する第2の画素電極に形成されるスリットの方向とを、第3の液晶層131を挟んで対称に設ける。また、容量配線の電位を変化させない第3の副画素においては、第3の液晶層131を構成する第3の画素電極の中で液晶の配向(スリットの方向)が異なる領域が形成されるように設ける。これにより、視野角を広くすることが可能となる。
また、図29の構成において、上記図26で示したように、第3の副画素130において、第3の容量配線134、第3の容量素子132を設けない構成としてもよい(図30)。その結果、開口率の向上や、製造歩留まりの向上を図ることができる。
(実施の形態5)
本実施の形態においては、表示装置の画素構造について説明する。特に、液晶表示装置の画素構造について説明する。
各液晶モードとトランジスタとを組み合わせた場合の画素構造について、画素の断面図を参照して説明する。
なお、トランジスタとしては、非晶質シリコン、多結晶シリコン、微結晶(マイクロクリスタル、セミアモルファスとも言う)シリコンなどに代表される非単結晶半導体層を有する薄膜トランジスタ(TFT)などを用いることが出来る。
なお、トランジスタの構造としては、トップゲート型又はボトムゲート型などを用いることができる。なお、ボトムゲート型のトランジスタとしては、チャネルエッチ型又はチャネル保護型などを用いることができる。
図60は、TN方式とトランジスタとを組み合わせた場合の画素の断面図の一例である。図60に示す画素構造を液晶表示装置に適用することによって、安価に液晶表示装置を製造することができる。
図60に示す画素構造の特徴について説明する。図60に示した液晶分子10118は、長軸と短軸を持った細長い分子である。液晶分子10118の向きを示すため、図60においては、その長さによって表現している。すなわち、長く表現された液晶分子10118は、その長軸の向きが紙面に平行であり、短く表現された液晶分子10118ほど、その長軸の向きが紙面の法線方向に近くなっているとする。つまり、図60に示した液晶分子10118は、第1の基板10101に近いものと、第2の基板10116に近いものとでは、その長軸の向きが90度異なっており、これらの中間に位置する液晶分子10118の長軸の向きは、これらを滑らかにつなぐような向きとなる。すなわち、図60に示した液晶分子10118は、第1の基板10101と第2の基板10116の間で、90度ねじれているような配向状態となっている。
なお、トランジスタとして、非晶質半導体を用いたボトムゲート型のトランジスタを用いた場合について説明する。非晶質半導体を用いたトランジスタを用いた場合、大面積の基板を用いて、安価に液晶表示装置を製造することができる。
液晶表示装置は、液晶パネルと呼ばれる、画像を表示する基幹部分を有する。液晶パネルは、加工を施した2枚の基板を、数マイクロメートルのギャップを持たせて貼り合わせ、2枚の基板間に液晶材料を注入することで作製される。図60において、2枚の基板は、第1の基板10101及び第2の基板10116である。第1の基板には、トランジスタ及び画素電極が形成される。第2の基板には、遮光膜10114、カラーフィルタ10115、第4の導電層10113、スペーサ10117、及び第2の配向膜10112が形成される。
なお、第2の基板10116に遮光膜10114が形成されていなくてもよい。遮光膜10114を形成しない場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりの向上を図ることができる。一方、遮光膜10114を形成する場合は、黒表示時に光漏れの少ない表示装置を得ることができる。
なお、第2の基板10116にカラーフィルタ10115が形成されていなくてもよい。カラーフィルタ10115を形成しない場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりの向上を図ることができる。ただし、カラーフィルタ10115を形成しない場合でも、フィールドシーケンシャル駆動によってカラー表示ができる表示装置を得ることができる。一方、カラーフィルタ10115を形成する場合は、カラー表示ができる表示装置を得ることができる。
なお、スペーサ10117の代わりに、球状のスペーサを散布してもよい。球状のスペーサを散布する場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりの向上を図ることができる。一方、スペーサ10117を形成する場合は、スペーサの位置がばらつかないため、2枚の基板間の距離を一様にすることができ、表示ムラの少ない表示装置を得ることができる。
第1の基板10101に施す加工について説明する。
まず、第1の基板10101上に、第1の絶縁膜10102がスパッタ法、印刷法又は塗布法などによって成膜される。ただし、第1の絶縁膜10102は成膜されていなくてもよい。第1の絶縁膜10102は、基板からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。
次に、第1の絶縁膜10102上に、第1の導電層10103がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。
次に、第2の絶縁膜10104がスパッタ法、印刷法又は塗布法などによって全面に成膜されている。第2の絶縁膜10104は、基板からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。
次に、第1の半導体層10105及び第2の半導体層10106が形成される。なお、第1の半導体層10105及び第2の半導体層10106は連続して成膜され、同時にその形状が加工される。
次に、第2の導電層10107がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。なお、第2の導電層10107の形状が加工されるときに行われるエッチング方法としては、ドライエッチングを用いることが好適である。なお、第2の導電層10107としては、透明性を有する材料を用いてもよいし、反射性を有する材料を用いてもよい。
次に、トランジスタのチャネル領域を形成する。その工程の一例を説明する。第2の半導体層10106は、第2の導電層10107をマスクとして用いてエッチングされる。また、マスクには第2の導電層10107の形状を加工するためのマスクを用いてエッチングしてもよい。そして、第2の半導体層10106が除去された部分の第1の半導体層10105がトランジスタとチャネル領域となる。こうすることで、マスク枚数を減らすことができるので、製造コストを低減することができる。
次に、第3の絶縁膜10108が形成され、第3の絶縁膜10108には選択的にコンタクトホールが形成されている。なお、第3の絶縁膜10108にコンタクトホールを形成すると同時に、第2の絶縁膜10104にもコンタクトホールを形成してもよい。なお、第3の絶縁膜10108の表面は、できるだけ平坦であることが好適である。なぜならば、液晶が接する面の凹凸により、液晶分子の配向が影響を受けてしまうからである。
次に、第3の導電層10109がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。
次に、第1の配向膜10110が形成される。なお、第1の配向膜10110を形成後、液晶分子の配向を制御するために、ラビングを行なってもよい。ラビングは、布で配向膜をこすることによって、配向膜にスジをつける工程である。ラビングを行なうことによって、配向膜に配向性を持たせることができる。
以上のように作製した第1の基板10101と、遮光膜10114、カラーフィルタ10115、第4の導電層10113、スペーサ10117及び第2の配向膜10112が形成された第2の基板10116とがシール材によって数マイクロメートルのギャップを持たせて貼り合わせられる。そして、2枚の基板間に液晶材料が注入される。なお、TN方式では、第4の導電層10113は、第2の基板10116の全面に形成される。
図61(A)は、MVA(Multi−domain Vertical Alignment)方式とトランジスタとを組み合わせた場合の画素の断面図の一例である。図61(A)に示す画素構造を液晶表示装置に適用することによって、視野角が大きく、応答速度が速く、コントラストの大きい液晶表示装置を得ることができる。
図61(A)に示す画素構造の特徴について説明する。MVA方式の液晶パネルの画素構造の特徴について説明する。図61(A)に示した液晶分子10218は、長軸と短軸を持った細長い分子である。液晶分子10218の向きを示すため、図61(A)においては、その長さによって表現している。すなわち、長く表現された液晶分子10218は、その長軸の向きが紙面に平行であり、短く表現された液晶分子10218ほど、その長軸の向きが紙面の法線方向に近くなっているとする。つまり、図61(A)に示した液晶分子10218は、その長軸の向きが配向膜の法線方向を向くように配向している。よって、配向制御用突起10219のある部分の液晶分子10218は、配向制御用突起10219を中心として放射状に配向する。この状態となることによって、視野角の大きい液晶表示装置を得ることができる。
なお、トランジスタとして、非晶質半導体を用いたボトムゲート型のトランジスタを用いた場合について説明する。非晶質半導体を用いたトランジスタを用いた場合、大面積の基板を用いて、安価に液晶表示装置を製造することができる。
液晶表示装置は、液晶パネルと呼ばれる、画像を表示する基幹部分を有する。液晶パネルは、加工を施した2枚の基板を、数マイクロメートルのギャップを持たせて貼り合わせ、2枚の基板間に液晶材料を注入することで作製される。図61(A)において、2枚の基板は、第1の基板10201及び第2の基板10216である。第1の基板には、トランジスタ及び画素電極が形成されている。第2の基板には、遮光膜10214、カラーフィルタ10215、第4の導電層10213、スペーサ10217、第2の配向膜10212、及び配向制御用突起10219が形成されている。
なお、第2の基板10216に遮光膜10214が形成されていなくてもよい。遮光膜10214を形成しない場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりの向上を図ることができる。一方、遮光膜10214を形成する場合は、黒表示時に光漏れの少ない表示装置を得ることができる。
なお、第2の基板10216にカラーフィルタ10215が形成されていなくてもよい。カラーフィルタ10215を形成しない場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりの向上を図ることができる。ただし、カラーフィルタ10215を作製しない場合でも、フィールドシーケンシャル駆動によってカラー表示ができる表示装置を得ることができる。一方、カラーフィルタ10215を形成する場合は、カラー表示ができる表示装置を得ることができる。
なお、第2の基板10216にスペーサ10217の代わりに、球状のスペーサを散布してもよい。球状のスペーサを散布する場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりを向上させることができる。一方、スペーサ10217を形成する場合は、スペーサの位置がばらつかないため、2枚の基板間の距離を一様にすることができ、表示ムラの少ない表示装置を得ることができる。
第1の基板10201に施す加工について説明する。
まず、第1の基板10201上に、第1の絶縁膜10202がスパッタ法、印刷法又は塗布法などによって成膜される。ただし、第1の絶縁膜10202は成膜されていなくてもよい。第1の絶縁膜10202は、基板からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。
次に、第1の絶縁膜10202上に、第1の導電層10203がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。
次に、第2の絶縁膜10204がスパッタ法、印刷法又は塗布法などによって全面に成膜されている。第2の絶縁膜10204は、基板からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。
次に、第1の半導体層10205及び第2の半導体層10206が形成される。なお、第1の半導体層10205及び第2の半導体層10206は連続して成膜され、同時にその形状が加工される。
次に、第2の導電層10207がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。なお、第2の導電層10207の形状が加工されるときに行われるエッチング方法としては、ドライエッチングを用いることが好適である。なお、第2の導電層10207としては、透明性を有する材料を用いてもよいし、反射性を有する材料を用いてもよい。
次に、トランジスタのチャネル領域を形成する。その工程の一例を説明する。第2の半導体層10206は、第2の導電層10207をマスクとして用いてエッチングされる。また、マスクには第2の導電層10207の形状を加工するためのマスクを用いてエッチングしてもよい。そして、第2の半導体層10206が除去された部分の第1の半導体層10205がトランジスタとチャネル領域となる。こうすることで、マスク枚数を減らすことができるので、製造コストを低減することができる。
次に、第3の絶縁膜10208が形成され、第3の絶縁膜10208には選択的にコンタクトホールが形成されている。なお、第3の絶縁膜10208にコンタクトホールを形成すると同時に、第2の絶縁膜10204にもコンタクトホールを形成してもよい。
次に、第3の導電層10209がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。
次に、第1の配向膜10210が形成される。なお、第1の配向膜10210を形成後、液晶分子の配向を制御するために、ラビングを行なってもよい。ラビングは、布で配向膜をこすることによって、配向膜にスジをつける工程である。ラビングを行なうことによって、配向膜に配向性を持たせることができる。
以上のように作製した第1の基板10201と、遮光膜10214、カラーフィルタ10215、第4の導電層10213、スペーサ10217、及び第2の配向膜10212を作製した第2の基板10216とがシール材によって数マイクロメートルのギャップを持たせて貼り合わせられる。そして、2枚の基板間に液晶材料が注入される。なお、MVA方式では、第4の導電層10213は、第2の基板10216の全面に形成されている。なお、第4の導電層10213に接して、配向制御用突起10219が形成されている。配向制御用突起10219の形状は、滑らかな曲面を持った形状であることが好ましい。こうすることで、近接する液晶分子10218の配向が極近いものとなるため、配向不良を低減することができる。配向膜の段切れによって起こる配向膜の不良を低減することができる。
図61(B)は、PVA(Paterned Vertical Alignment)方式とトランジスタとを組み合わせた場合の画素の断面図の一例である。図61(B)に示す画素構造を液晶表示装置に適用することによって、視野角が大きく、応答速度が速く、コントラストの大きい液晶表示装置を得ることができる。
図61(B)に示す画素構造の特徴について説明する。図61(B)に示した液晶分子10248は、長軸と短軸を持った細長い分子である。液晶分子10248の向きを示すため、図61(B)においては、その長さによって表現している。すなわち、長く表現された液晶分子10248は、その長軸の向きが紙面に平行であり、短く表現された液晶分子10248ほど、その長軸の向きが紙面の法線方向に近くなっているとする。つまり、図61(B)に示した液晶分子10248は、その長軸の向きが配向膜の法線方向を向くように配向している。よって、電極切り欠き部10249のある部分の液晶分子10248は、電極切り欠き部10249と第4の導電層10243の境界を中心として放射状に配向する。この状態となることによって、視野角の大きい液晶表示装置を得ることができる。
なお、トランジスタとして、非晶質半導体を用いたボトムゲート型のトランジスタを用いた場合について説明する。非晶質半導体を用いたトランジスタを用いた場合、大面積の基板を用いて、安価に液晶表示装置を製造することができる。
液晶表示装置は、液晶パネルと呼ばれる、画像を表示する基幹部分を有する。液晶パネルは、加工を施した2枚の基板を、数マイクロメートルのギャップを持たせて貼り合わせ、2枚の基板間に液晶材料を注入することで作製される。図61(B)において、2枚の基板は、第1の基板10231、及び第2の基板10246である。第1の基板には、トランジスタ及び画素電極が形成されている。第2の基板には、遮光膜10244、カラーフィルタ10245、第4の導電層10243、スペーサ10247、及び第2の配向膜10242が形成されている。
なお、第2の基板10246に遮光膜10244が形成されていなくてもよい。遮光膜10244を形成しない場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりの向上を図ることができる。一方、遮光膜10244を形成する場合は、黒表示時に光漏れの少ない表示装置を得ることができる。
なお、第2の基板10246にカラーフィルタ10245が形成されていなくてもよい。カラーフィルタ10245を形成しない場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりの向上を図ることができる。ただし、カラーフィルタ10245を作製しない場合でも、フィールドシーケンシャル駆動によってカラー表示ができる表示装置を得ることができる。一方、カラーフィルタ10245を形成する場合は、カラー表示ができる表示装置を得ることができる。
なお、第2の基板10246にスペーサ10247の代わりに、球状のスペーサを散布してもよい。球状のスペーサを散布する場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりを向上させることができる。一方、スペーサ10247を形成する場合は、スペーサの位置がばらつかないため、2枚の基板間の距離を一様にすることができ、表示ムラの少ない表示装置を得ることができる。
第1の基板10231に施す加工について説明する。
まず、第1の基板10231上に、第1の絶縁膜10232がスパッタ法、印刷法又は塗布法などによって成膜される。ただし、第1の絶縁膜10232は成膜されていなくてもよい。第1の絶縁膜10232は、基板からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。
次に、第1の絶縁膜10232上に、第1の導電層10233がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。
次に、第2の絶縁膜10234がスパッタ法、印刷法又は塗布法などによって全面に成膜されている。第2の絶縁膜10234は、基板からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。
次に、第1の半導体層10235及び第2の半導体層10236が形成される。なお、第1の半導体層10235及び第2の半導体層10236は連続して成膜され、同時にその形状が加工される。
次に、第2の導電層10237がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。なお、第2の導電層10237の形状が加工されるときに行われるエッチング方法としては、ドライエッチングで行なうのが好適である。なお、第2の導電層10237としては、透明性を有する材料を用いてもよいし、反射性を有する材料を用いてもよい。
次に、トランジスタのチャネル領域を形成する。その工程の一例を説明する。第2の半導体層10236は、第2の導電層10237をマスクとして用いてエッチングされる。あるいは、第2の導電層10237の形状を加工するためのマスクを用いてエッチングされる。そして、第2の半導体層10236が除去された部分の第1の導電層10233がトランジスタとチャネル領域となる。こうすることで、マスク枚数を減らすことができるので、製造コストを低減することができる。
次に、第3の絶縁膜10238が形成され、第3の絶縁膜10238には選択的にコンタクトホールが形成されている。なお、第3の絶縁膜10238にコンタクトホールを形成すると同時に、第2の絶縁膜10234にもコンタクトホールを形成してもよい。なお、第3の絶縁膜10238の表面は、できるだけ平坦であることが好適である。なぜならば、液晶が接する面の凹凸により、液晶分子の配向が影響を受けてしまうからである。
次に、第3の導電層10239がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。
次に、第1の配向膜10240が形成される。なお、第1の配向膜10240を形成後、液晶分子の配向を制御するために、ラビングを行なってもよい。ラビングは、布で配向膜をこすることによって、配向膜にスジをつける工程である。ラビングを行なうことによって、配向膜に配向性を持たせることができる。
以上のように作製した第1の基板10231と、遮光膜10244、カラーフィルタ10245、第4の導電層10243、スペーサ10247、及び第2の配向膜10242を作製した第2の基板10246とがシール材によって数マイクロメートルのギャップを持たせて貼り合わせられる。そして、2枚の基板間に液晶材料が注入される。なお、PVA方式では、第4の導電層10243にパターン加工が施され、電極切り欠き部10249が形成される。なお、電極切り欠き部10249の形状に限定はないが、異なる向きを持った複数の矩形を組み合わせた形状であるのが好適である。こうすることで、配向の異なる複数の領域が形成できるので、視野角の大きな液晶表示装置を得ることができる。なお、電極切り欠き部10249と第4の導電層10243の境界における第4の導電層10243の形状は、滑らかな曲線であることが好適である。こうすることで、近接する液晶分子10248の配向が極近いものとなるため、配向不良が低減する。第2の配向膜10242が、電極切り欠き部10249によって段切れを起こしてしまうことによる、配向膜の不良も低減することができる。
図62(A)は、IPS(In−Plane−Switching)方式とトランジスタとを組み合わせた場合の画素の断面図の一例である。図62(A)に示す画素構造を液晶表示装置に適用することによって、原理的に視野角が大きく、応答速度の階調依存性の小さい液晶表示装置を得ることができる。
図62(A)に示す画素構造の特徴について説明する。図62(A)に示した液晶分子10318は、長軸と短軸を持った細長い分子である。液晶分子10318の向きを示すため、図62(A)においては、その長さによって表現している。すなわち、長く表現された液晶分子10318は、その長軸の向きが紙面に平行であり、短く表現された液晶分子10318ほど、その長軸の向きが紙面の法線方向に近くなっているとする。つまり、図62(A)に示した液晶分子10318は、その長軸の向きが常に基板と水平の方向を向くように配向している。図62(A)においては、電界のない状態における配向を表しているが、液晶分子10318に電界がかかったときは、その長軸の向きが常に基板と水平の方向を保ったまま、水平面内で回転する。この状態となることによって、視野角の大きい液晶表示装置を得ることができる。
なお、トランジスタとして、非晶質半導体を用いたボトムゲート型のトランジスタを用いた場合について説明する。非晶質半導体を用いたトランジスタを用いた場合、大面積の基板を用いて、安価に液晶表示装置を製造することができる。
液晶表示装置は、液晶パネルと呼ばれる、画像を表示する基幹部分を有する。液晶パネルは、加工を施した2枚の基板を、数マイクロメートルのギャップを持たせて貼り合わせ、2枚の基板間に液晶材料を注入することで作製される。図62(A)において、2枚の基板は、第1の基板10301、及び第2の基板10316である。第1の基板には、トランジスタ及び画素電極が形成されている。第2の基板には、遮光膜10314、カラーフィルタ10315、スペーサ10317、及び第2の配向膜10312が形成されている。
なお、第2の基板10316に遮光膜10314が形成されていなくてもよい。遮光膜10314を形成しない場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりの向上を図ることができる。一方、遮光膜10314を形成する場合は、黒表示時に光漏れの少ない表示装置を得ることができる。
なお、第2の基板10316にカラーフィルタ10315が形成されていなくてもよい。カラーフィルタ10315を形成しない場合は、工程数が減少するため、製造コストを低減することができる。ただし、カラーフィルタ10315を形成しない場合でも、フィールドシーケンシャル駆動によってカラー表示ができる表示装置を得ることができる。構造が簡単であるので、歩留まりの向上を図ることができる。一方、カラーフィルタ10315を形成する場合は、カラー表示ができる表示装置を得ることができる。
なお、第2の基板10316にスペーサ10317の代わりに、球状のスペーサを散布してもよい。球状のスペーサを散布する場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりを向上させることができる。一方、スペーサ10317を形成する場合は、スペーサの位置がばらつかないため、2枚の基板間の距離を一様にすることができ、表示ムラの少ない表示装置を得ることができる。
第1の基板10301に施す加工について説明する。
まず、第1の基板10301上に、第1の絶縁膜10302がスパッタ法、印刷法又は塗布法などによって成膜される。ただし、第1の絶縁膜10302は成膜されていなくてもよい。第1の絶縁膜10302は、基板からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。
次に、第1の絶縁膜10302上に、第1の導電層10303がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。
次に、第2の絶縁膜10304がスパッタ法、印刷法又は塗布法などによって全面に成膜されている。第2の絶縁膜10304は、基板からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。
次に、第1の半導体層10305及び第2の半導体層10306が形成される。なお、第1の半導体層10305及び第2の半導体層10306は連続して成膜され、同時にその形状が加工される。
次に、第2の導電層10307がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。なお、第2の導電層10307の形状が加工されるときに行われるエッチング方法としては、ドライエッチングを用いることが好適である。なお、第2の導電層10307としては、透明性を有する材料を用いてもよいし、反射性を有する材料を用いてもよい。
次に、トランジスタのチャネル領域を形成する。その工程の一例を説明する。第2の半導体層10306は、第2の導電層10307をマスクとして用いてエッチングされる。また、マスクには第2の導電層10307の形状を加工するためのマスクを用いてエッチングしてもよい。そして、第2の半導体層10306が除去された部分の第1の半導体層10305がトランジスタとチャネル領域となる。こうすることで、マスク枚数を減らすことができるので、製造コストを低減することができる。
次に、第3の絶縁膜10308が形成され、第3の絶縁膜10308には選択的にコンタクトホールが形成されている。なお、第3の絶縁膜10308にコンタクトホールを形成すると同時に、第2の絶縁膜10304にもコンタクトホールを形成してもよい。
次に、第3の導電層10309がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。ここで、第3の導電層10309の形状は、互いにかみ合った2つの櫛歯状とする。一方の櫛歯状の電極がトランジスタのソース電極及びドレイン電極の一方と電気的に接続され、他方の櫛歯状の電極が共通電極と電気的に接続される。こうすることで、液晶分子10318に効果的に横方向の電界をかけることができる。
次に、第1の配向膜10310が形成される。なお、第1の配向膜10310を形成後、液晶分子の配向を制御するために、ラビングを行なってもよい。ラビングは、布で配向膜をこすることによって、配向膜にスジをつける工程である。ラビングを行なうことによって、配向膜に配向性を持たせることができる。
以上のように作製した第1の基板10301と、遮光膜10314、カラーフィルタ10315、スペーサ10317、及び第2の配向膜10312とがシール材によって数マイクロメートルのギャップを持たせて貼り合わせられる。そして、2枚の基板間に液晶材料が注入される。
図62(B)は、FFS(Fringe Field Switching)方式ととトランジスタとを組み合わせた場合の画素の断面図の一例である。図62(B)に示す画素構造を液晶表示装置に適用することによって、原理的に視野角が大きく、応答速度の階調依存性の小さい液晶表示装置を得ることができる。
図62(B)に示す画素構造の特徴について説明する。図62(B)に示した液晶分子10348は、長軸と短軸を持った細長い分子である。液晶分子10348の向きを示すため、図62(B)においては、その長さによって表現している。すなわち、長く表現された液晶分子10348は、その長軸の向きが紙面に平行であり、短く表現された液晶分子10348ほど、その長軸の向きが紙面の法線方向に近くなっているとする。つまり、図62(B)に示した液晶分子10348は、その長軸の向きが常に基板と水平の方向を向くように配向している。図62(B)においては、電界のない状態における配向を表しているが、液晶分子10348に電界がかかったときは、その長軸の向きが常に基板と水平の方向を保ったまま、水平面内で回転する。この状態となることによって、視野角の大きい液晶表示装置を得ることができる。
なお、トランジスタとして、非晶質半導体を用いたボトムゲート型のトランジスタを用いた場合について説明する。非晶質半導体を用いたトランジスタを用いた場合、大面積の基板を用いて、安価に液晶表示装置を製造することができる。
液晶表示装置は、液晶パネルと呼ばれる、画像を表示する基幹部分を有する。液晶パネルは、加工を施した2枚の基板を、数マイクロメートルのギャップを持たせて貼り合わせ、2枚の基板間に液晶材料を注入することで作製される。図62(B)において、2枚の基板は、第1の基板10331及び第2の基板10346である。第1の基板には、トランジスタ及び画素電極が形成され、第2の基板には、遮光膜10344、カラーフィルタ10345、スペーサ10347、及び第2の配向膜10342が形成されている。
なお、第2の基板10346に遮光膜10344が形成されていなくてもよい。遮光膜10344を形成しない場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりの向上を図ることができる。一方、遮光膜10344を形成する場合は、黒表示時に光漏れの少ない表示装置を得ることができる。
なお、第2の基板10346にカラーフィルタ10345を形成されていなくてもよい。カラーフィルタ10345を形成しない場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりの向上を図ることができる。ただし、カラーフィルタ10345を形成しない場合でも、フィールドシーケンシャル駆動によってカラー表示ができる表示装置を得ることができる。一方、カラーフィルタ10345を形成する場合は、カラー表示ができる表示装置を得ることができる。
なお、第2の基板10346にスペーサ10347の代わりに、球状のスペーサを散布してもよい。球状のスペーサを散布する場合は、工程数が減少するため、製造コストを低減することができる。構造が簡単であるので、歩留まりを向上させることができる。一方、スペーサ10347を形成する場合は、スペーサの位置がばらつかないため、2枚の基板間の距離を一様にすることができ、表示ムラの少ない表示装置を得ることができる。
第1の基板10331に施す加工について説明する。
まず、第1の基板10331上に、第1の絶縁膜10332がスパッタ法、印刷法又は塗布法などによって成膜される。ただし、第1の絶縁膜10332は成膜されていなくてもよい。第1の絶縁膜10332は、基板からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。
次に、第1の絶縁膜10332上に、第1の導電層10333がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。
次に、第2の絶縁膜10334がスパッタ法、印刷法又は塗布法などによって全面に成膜されている。第2の絶縁膜10334は、基板からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうのを防ぐ機能を有する。
次に、第1の半導体層10335及び第2の半導体層10336が形成される。なお、第1の半導体層10335及び第2の半導体層10336は連続して成膜され、同時にその形状が加工される。
次に、第2の導電層10337がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。なお、第2の導電層10337の形状が加工されるときに行われるエッチング方法としては、ドライエッチングを用いることが好適である。なお、第2の導電層10337としては、透明性を有する材料を用いてもよいし、反射性を有する材料を用いてもよい。
次に、トランジスタのチャネル領域を形成する。その工程の一例を説明する。第2の半導体層10336は、第2の導電層10337をマスクとして用いてエッチングされる。また、マスクには第2の導電層10337の形状を加工するためのマスクを用いてエッチングされる。そして、第2の半導体層10336が除去された部分の第1の半導体層10335がトランジスタとチャネル領域となる。こうすることで、マスク枚数を減らすことができるので、製造コストを低減することができる。
次に、第3の絶縁膜10338が形成され、第3の絶縁膜10338には選択的にコンタクトホールが形成されている。
次に、第3の導電層10339がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成されている。
次に、第4の絶縁膜10349が形成され、第4の絶縁膜10349には選択的にコンタクトホールが形成されている。なお、第4の絶縁膜10349の表面は、できるだけ平坦であることが好適である。なぜならば、液晶が接する面の凹凸により、液晶分子の配向が影響を受けてしまうからである。
次に、第4の導電層10343がフォトリソグラフィ法、レーザー直描法又はインクジェット法などによって形成される。ここで、第3の導電層10339の形状は、櫛歯状とする。
次に、第1の配向膜10340が形成される。なお、第1の配向膜10340を形成後、液晶分子の配向を制御するために、ラビングを行なってもよい。ラビングは、布で配向膜をこすることによって、配向膜にスジをつける工程である。ラビングを行なうことによって、配向膜に配向性を持たせることができる。
以上のように作製した第1の基板10331と、遮光膜10344、カラーフィルタ10345、スペーサ10347、及び第2の配向膜10342を、シール材によって数マイクロメートルのギャップを持たせて貼り合わせ、2枚の基板間に液晶材料を注入することで、液晶パネルが作製できる。
ここで、各導電層又は各絶縁膜に用いることができる材料について説明する。
図60の第1の絶縁膜10102、図61(A)の第1の絶縁膜10202、図61(B)の第1の絶縁膜10232、図62(A)の第1の絶縁膜10302、図62(B)の第1の絶縁膜10332としては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)等の絶縁膜を用いることができる。あるいは、第1の絶縁膜10102は、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)等のうちの2つ以上の膜を組み合わせた積層構造の絶縁膜を用いることができる。
図60の第1の導電層10103、図61(A)の第1の導電層10203、図61(B)の第1の導電層10233、図62(A)の第1の導電層10303、図62(A)の第1の導電層10303、図62(B)の第1の導電層10333としては、Mo、Ti、Al、Nd、Crなどを用いることができる。あるいは、Mo、Ti、Al、Nd、Crなどのうちの2つ以上を組み合わせた積層構造を用いることもできる。
図60の第2の絶縁膜10104、図61(A)の第2の絶縁膜10204、図61(B)の第2の絶縁膜10234、図62(A)の第2の絶縁膜10304、図62(B)の第2の絶縁膜10334としては、熱酸化膜、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜などを用いることができる。あるいは、熱酸化膜、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜などのうち2以上を組み合わせた積層構造などを用いることができる。なお、半導体層と接する部分では、酸化シリコン膜であることが好ましい。なぜなら、酸化シリコン膜にすると半導体層との界面におけるトラップ準位が少なくなるからである。なお、Moと接する部分では、窒化シリコン膜であることが好ましい。なぜなら、窒化シリコン膜はMoを酸化させないからである。
図60の第1の半導体層10105、図61(A)の第1の半導体層10205、図61(B)の第1の半導体層10235、図62(A)の第1の半導体層10305、図62(B)の第1の半導体層10335としては、シリコン又はシリコンゲルマニウム(SiGe)などを用いることができる。
図60の第2の半導体層10106、図61(A)の第2の半導体層10206、図61(B)の第2の半導体層10236、図62(A)の第2の半導体層10306、図62(B)の第2の半導体層10336としては、リン等を含んだシリコン等を用いることができる。
図60の第2の導電層10107及び第3の導電層10109、図61(A)の第2の導電層10207及び第3の導電層10209、図61(B)の第2の導電層10237及び第2の導電層10239、図62(A)の第2の導電層10307及び第2の導電層10309、もしくは図62(B)の第2の導電層10337、第3の導電層10339及び第4の導電層10343の透明性を有する材料としては、酸化インジウムに酸化スズを混ぜたインジウムスズ酸化物(ITO)膜、インジウムスズ酸化物(ITO)に酸化珪素を混ぜたインジウムスズ珪素酸化物(ITSO)膜、酸化インジウムに酸化亜鉛を混ぜたインジウム亜鉛酸化物(IZO)膜、酸化亜鉛膜又は酸化スズ膜などを用いることができる。なお、IZOとは、ITOに2〜20wt%の酸化亜鉛(ZnO)を混合させたターゲットを用いてスパッタリングにより形成される透明導電材料である。
図60の第2の導電層10107及び第3の導電層10109、図61(A)の第2の導電層10207及び第3の導電層10209、図61(B)の第2の導電層10237及び第2の導電層10239、図62(A)の第2の導電層10307及び第2の導電層10309、もしくは図62(B)の第2の導電層10337、第2の導電層10339及び第4の導電層10343の反射性を有する材料としては、Ti、Mo、Ta、Cr、W、Alなどを用いることができる。あるいは、Ti、Mo、Ta、Cr、WとAlを積層させた2層構造、AlをTi、Mo、Ta、Cr、Wなどの金属で挟んだ3層積層構造としてもよい。
図60の第3の絶縁膜10108、図61(A)の第3の絶縁膜10208、図61(B)の第3の絶縁膜10238、図61(B)の第3の導電層10239、図62(A)の第3の絶縁膜10308、図62(B)の第3の絶縁膜10338及び第4の絶縁膜10349としては、無機材料(酸化シリコン、窒化シリコン、酸化窒化シリコンなど)あるいは、低誘電率の有機化合物材料(感光性又は非感光性の有機樹脂材料)などを用いることができる。あるいは、シロキサンを含む材料を用いることもできる。なお、シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される材料である。置換基として、少なくとも水素を含む有機基(例えばアルキル基、アリール基)が用いられる。あるいは、置換基としてフルオロ基を用いてもよい。あるいは、置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。
図60の第1の配向膜10110、図61(A)の第1の配向膜10210、図61(B)の第1の配向膜10240、図61(B)の第1の配向膜10310、図62(B)の第1の配向膜10340としては、ポリイミドなどの高分子膜を用いることができる。
次に、各液晶モードとトランジスタとを組み合わせた場合の画素構造について、画素の上面図(レイアウト図)を参照して説明する。
なお、液晶モードとしては、TN(Twisted Nematic)モード、IPS(In−Plane−Switching)モード、FFS(Fringe Field Switching)モード、MVA(Multi−domain Vertical Alignment)モード、PVA(Patterned Vertical Alignment)、ASM(Axially Symmetric aligned Micro−cell)モード、OCB(Optical Compensated Birefringence)モード、FLC(Ferroelectric Liquid Crystal)モード、AFLC(AntiFerroelectric Liquid Crystal)などを用いることができる。
なお、トランジスタとしては、非晶質シリコン、多結晶シリコン、微結晶(マイクロクリスタル、セミアモルファスとも言う)シリコンなどに代表される非単結晶半導体層を有する薄膜トランジスタ(TFT)などを用いることが出来る。
なお、トランジスタの構造としては、トップゲート型又はボトムゲート型などを用いることができる。ボトムゲート型のトランジスタとしては、チャネルエッチ型又はチャネル保護型などを用いることができる。
図63は、TN方式とトランジスタとを組み合わせた場合の副画素の上面図の一例である。図63に示す画素構造を液晶表示装置に適用することによって、安価に液晶表示装置を製造することができる。なお、図63では、説明の便宜上、一つの副画素の構成を示している。つまり、図63に示した構成の副画素を複数設けることによって一つの画素を設けることができる。
図63に示す副画素は、走査線10401と、映像信号線10402と、容量線10403と、トランジスタ10404と、画素電極10405と、画素容量10406と、を有している。
走査線10401は、信号(走査信号)を画素に伝達する機能を有する。映像信号線10402は、信号(映像信号)を画素に伝達するための機能を有する。なお、走査線10401と映像信号線10402とは、マトリックス状に配置されるため、異なる層の導電層で形成されている。なお、走査線10401と。映像信号線10402との交差部に、半導体層が配置されていてもよい。こうすることで、走査線10401と。映像信号線10402と交差容量を低減することができる。
容量線10403は、画素電極10405と平行に配置されている。容量線10403と画素電極10405とが重なって配置されている部分が画素容量10406となる。なお、容量線10403の一部は、映像信号線10402に沿って、映像信号線10402を囲むように延設されている。こうすることで、クロストークを低減することができる。クロストークとは、映像信号線10402の電位変化に伴って、電位を保持するべき電極の電位が変化してしまう現象のことである。なお、容量線10403と映像信号線10402との間に半導体層を配置することによって、交差容量を低減することができる。なお、容量線10403は、走査線10401と同様な材料で構成されている。
トランジスタ10404は、映像信号線10402と画素電極10405を導通させるスイッチとしての機能を有する。なお、トランジスタ10404のソース領域及びドレイン領域の一方は、トランジスタ10404のソース領域及びドレイン領域の他方に囲まれるように配置されている。こうすることで、トランジスタ10404のチャネル幅が大きくなるため、スイッチング能力の向上を図ることができる。なお、トランジスタ10404のゲート電極は、半導体層を囲むように配置されている。
画素電極10405は、トランジスタ10404のソース電極及びドレイン電極の一方に電気的に接続される。画素電極10405は、映像信号線10402によって伝達された信号電圧を液晶素子に与えるための電極である。なお、画素電極10405は、矩形である。こうすることで、画素の開口率を大きくすることができる。なお、画素電極10405としては、透明性を有する材料又は反射性を有する材料を用いることができる。あるいは、透明性を有する材料と反射性を有する材料とを組み合わせて、画素電極10405に用いてもよい。
図64(A)は、MVA方式とトランジスタとを組み合わせた場合の副画素の上面図の一例である。図64(A)に示す画素構造を液晶表示装置に適用することによって、視野角が大きく、応答速度が速く、コントラストの大きい液晶表示装置を得ることができる。なお、図64では、説明の便宜上、一つの副画素の構成を示している。つまり、図63に示した構成の副画素を複数設けることによって一つの画素を設けることができる。
図64(A)に示す副画素は、走査線10501と、映像信号線10502と、容量線10503と、トランジスタ10504と、画素電極10505と、画素容量10506と、配向制御用突起10507と、を有する。
走査線10501は、信号(走査信号)を副画素に伝達する機能を有する。映像信号線10502は、信号(映像信号)を副画素に伝達するための機能を有する。なお、走査線10501と映像信号線10502とは、マトリックス状に配置されるため、異なる層の導電層で形成されている。なお、走査線10501と。映像信号線10502との交差部に、半導体層が配置されていてもよい。こうすることで、走査線10501と。映像信号線10502と交差容量を低減することができる。
容量線10503は、画素電極10505と平行に配置されている。容量線10503と画素電極10505とが重なって配置されている部分が画素容量10506となる。なお、容量線10503の一部は、映像信号線10502に沿って、映像信号線10502を囲むように延設されている。こうすることで、クロストークを低減することができる。クロストークとは、映像信号線10502の電位変化に伴って、電位を保持するべき電極の電位が変化してしまう現象のことである。なお、容量線10503と映像信号線10502との間に半導体層を配置することによって、交差容量を低減することができる。なお、容量線10503は、走査線10501と同様な材料で構成されている。
トランジスタ10504は、映像信号線10502と画素電極10505を導通させるスイッチとしての機能を有する。なお、トランジスタ10504のソース領域及びドレイン領域の一方は、トランジスタ10504のソース領域及びドレイン領域の他方に囲まれるように配置されている。こうすることで、トランジスタ10504のチャネル幅が大きくなるため、スイッチング能力の向上を図ることができる。なお、トランジスタ10504のゲート電極は、半導体層を囲むように配置されている。
画素電極10505は、トランジスタ10504のソース電極及びドレイン電極の一方に電気的に接続される。画素電極10505は、映像信号線10502によって伝達された信号電圧を液晶素子に与えるための電極である。なお、画素電極10505は、矩形である。こうすることで、画素の開口率を大きくすることができる。なお、画素電極10505としては、透明性を有する材料又は反射性を有する材料を用いることができる。あるいは、透明性を有する材料と反射性を有する材料とを組み合わせて、画素電極10505に用いてもよい。
配向制御用突起10507は、対向基板に形成されている。配向制御用突起10507は、液晶分子を放射状に配向させる機能を有する。なお、配向制御用突起10507の形状に限定はない。例えば、配向制御用突起10507の形状は、くの字型となっていてもよい。こうすることで、液晶分子の配向が異なる複数の領域を形成することができる。視野角の向上を図ることができる。
図64(B)は、PVA方式とトランジスタとを組み合わせた場合の副画素の上面図の一例である。図64(B)に示す画素構造を液晶表示装置に適用することによって、視野角が大きく、応答速度が速く、コントラストの大きい液晶表示装置を得ることができる。
図64(B)に示す副画素は、走査線10511と、映像信号線10512と、容量線10513と、トランジスタ10514と、画素電極10515と、画素容量10516と、電極切り欠き部10517、を有する。
走査線10511は、信号(走査信号)を副画素に伝達する機能を有する。映像信号線10512は、信号(映像信号)を副画素に伝達するための機能を有する。なお、走査線10511と映像信号線10512とは、マトリックス状に配置されるため、異なる層の導電層で形成されている。なお、走査線10511と。映像信号線10512との交差部に、半導体層が配置されていてもよい。こうすることで、走査線10511と。映像信号線10512と交差容量を低減することができる。
容量線10513は、画素電極10515と平行に配置されている。容量線10513と画素電極10515とが重なって配置されている部分が画素容量10516となる。なお、容量線10513の一部は、映像信号線10512に沿って、映像信号線10512を囲むように延設されている。こうすることで、クロストークを低減することができる。クロストークとは、映像信号線10512の電位変化に伴って、電位を保持するべき電極の電位が変化してしまう現象のことである。なお、容量線10513と映像信号線10512との間に半導体層を配置することによって、交差容量を低減することができる。なお、容量線10513は、走査線10511と同様な材料で構成されている。
トランジスタ10514は、映像信号線10512と画素電極10515を導通させるスイッチとしての機能を有する。なお、トランジスタ10514のソース領域及びドレイン領域の一方は、トランジスタ10514のソース領域及びドレイン領域の他方に囲まれるように配置されている。こうすることで、トランジスタ10514のチャネル幅が大きくなるため、スイッチング能力の向上を図ることができる。なお、トランジスタ10514のゲート電極は、半導体層を囲むように配置されている。
画素電極10515は、トランジスタ10514のソース電極及びドレイン電極の一方に電気的に接続される。画素電極10515は、映像信号線10512によって伝達された信号電圧を液晶素子に与えるための電極である。なお、画素電極10515は、電極切り欠き部10517の形状に合わせた形状である。具体的には、電極切り欠き部10517のない部分に、画素電極10515を切り欠いた部分を形成したような形状である。こうすることで、液晶分子の配向が異なる複数の領域を形成することができる。視野角の向上を図ることができる。なお、画素電極10515としては、透明性を有する材料又は反射性を有する材料を用いることができる。あるいは、透明性を有する材料と反射性を有する材料とを組み合わせて、画素電極10515に用いてもよい。
図65(A)は、IPS方式とトランジスタとを組み合わせた場合の副画素の上面図の一例である。図65(A)に示す画素構造を液晶表示装置に適用することによって、原理的に視野角が大きく、応答速度の階調依存性の小さい液晶表示装置を得ることができる。なお、図65では、説明の便宜上、一つの副画素の構成を示している。つまり、図63に示した構成の副画素を複数設けることによって一つの画素を設けることができる。
図65(A)に示す副画素は、走査線10601と、映像信号線10602と、共通電極10603と、トランジスタ10604と、画素電極10605と、を有する。
走査線10601は、信号(走査信号)を副画素に伝達する機能を有する。映像信号線10602は、信号(映像信号)を副画素に伝達するための機能を有する。なお、走査線10601と映像信号線10602とは、マトリックス状に配置されるため、異なる層の導電層で形成されている。なお、走査線10601と映像信号線10602との交差部に、半導体層が配置されていてもよい。こうすることで、走査線10601と。映像信号線10602と交差容量を低減することができる。なお、映像信号線10602は、画素電極10605の形状に合わせて形成されている。
共通電極10603は、画素電極10605と平行に配置されている。共通電極10603は、横方向の電界を発生させるための電極である。なお、共通電極10603の形状は、屈曲した櫛歯状である。なお、共通電極10603の一部は、映像信号線10602に沿って、映像信号線10602を囲むように延設されている。こうすることで、クロストークを低減することができる。クロストークとは、映像信号線10602の電位変化に伴って、電位を保持するべき電極の電位が変化してしまう現象のことである。なお、共通電極10603と映像信号線10602との間に半導体層を配置することによって、交差容量を低減することができる。なお、共通電極10603の走査線10601と平行に配置されている部分では、走査線10601と同様な材料で構成されている。共通電極10603の画素電極10605と平行に配置されている部分では、画素電極10605と同様な材料で構成されている。
トランジスタ10604は、映像信号線10602と画素電極10605を導通させるスイッチとしての機能を有する。なお、トランジスタ10604のソース領域及びドレイン領域の一方は、トランジスタ10604のソース領域及びドレイン領域の他方に囲まれるように配置されている。こうすることで、トランジスタ10604のチャネル幅が大きくなるため、スイッチング能力の向上を図ることができる。なお、トランジスタ10604のゲート電極は、半導体層を囲むように配置されている。
画素電極10605は、トランジスタ10604のソース電極及びドレイン電極の一方に電気的に接続される。画素電極10505は、映像信号線10602によって伝達された信号電圧を液晶素子に与えるための電極である。なお、画素電極10605の形状は、屈曲した櫛歯状の形状である。こうすることで、液晶分子に横電界をかけることができる。液晶分子の配向が異なる複数の領域を形成することができる。視野角の向上を図ることができる。なお、画素電極10605としては、透明性を有する材料又は反射性を有する材料を用いることができる。あるいは、透明性を有する材料と反射性を有する材料とを組み合わせて、画素電極10605に用いてもよい。
なお、共通電極10603のうち櫛歯状の部分と画素電極10605とは、別々の導電層で形成されていてもよい。例えば、共通電極10603のうち櫛歯状の部分は、走査線10601又は映像信号線10602と同じ導電層で形成されていてもよい。同様に、画素電極10605は、走査線10601又は映像信号線10602と同じ導電層で形成されていてもよい。
図65(B)は、FFS方式とトランジスタとを組み合わせた場合の副画素の上面図である。図65(B)に示す画素構造を液晶表示装置に適用することによって、原理的に視野角が大きく、応答速度の階調依存性の小さい液晶表示装置を得ることができる。
図65(B)に示す副画素は、走査線10611と、映像信号線10612と、共通電極10613と、トランジスタ10614と、画素電極10615と、を備えていてもよい。
走査線10611は、信号(走査信号)を副画素に伝達する機能を有する。映像信号線10612は、信号(映像信号)を副画素に伝達するための機能を有する。なお、走査線10611と映像信号線10612とは、マトリックス状に配置されるため、異なる層の導電層で形成されている。なお、走査線10611と。映像信号線10612との交差部に、半導体層が配置されていてもよい。こうすることで、走査線10611と。映像信号線10612と交差容量を低減することができる。なお、映像信号線10612は、画素電極10615の形状に合わせて形成されている。
共通電極10613は、画素電極10615の下部、及び画素電極10615と画素電極10615との間の下部に一様に形成されている。なお、共通電極10613としては、透明性を有する材料又は反射性を有する材料を用いることができる。あるいは、透明性を有する材料と反射性を有する材料とを組み合わせて、共通電極10613に用いてもよい。
トランジスタ10614は、映像信号線10612と画素電極10615を導通させるスイッチとしての機能を有する。なお、トランジスタ10604のソース領域及びドレイン領域の一方は、トランジスタ10614のソース領域及びドレイン領域の他方に囲まれるように配置されている。こうすることで、トランジスタ10614のチャネル幅が大きくなるため、スイッチング能力の向上を図ることができる。なお、トランジスタ10614のゲート電極は、半導体層を囲むように配置されている。
画素電極10615は、トランジスタ10614のソース電極及びドレイン電極の一方に電気的に接続される。画素電極10515は、映像信号線10612によって伝達された信号電圧を液晶素子に与えるための電極である。なお、画素電極10615の形状は、屈曲した櫛歯状の形状である。こうすることで、液晶分子に横電界をかけることができる。なお、櫛歯状の画素電極10615は、共通電極10613の一様な部分よりも液晶層に近いところに配置される。液晶分子の配向が異なる複数の領域を形成することができる。視野角の向上を図ることができる。なお、画素電極10615としては、透明性を有する材料又は反射性を有する材料を用いることができる。あるいは、透明性を有する材料と反射性を有する材料とを組み合わせて、画素電極10615に用いてもよい。
なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態および実施例の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態および実施例の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
なお、本実施の形態は、他の実施の形態および実施例で述べた内容(一部でもよい)を、具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示している。したがって、他の実施の形態および実施例で述べた内容は、本実施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
(実施の形態6)
本実施の形態においては、液晶パネルの周辺部について説明する。
図66は、エッジライト式と呼ばれるバックライトユニット20101と、液晶パネル20107とを有している液晶表示装置の一例を示す。エッジライト式とは、バックライトユニットの端部に光源を配置し、その光源の蛍光を発光面全体から放射する方式である。エッジライト式のバックライトユニットは、薄型で省電力化を図ることができる。
バックライトユニット20101は、拡散板20102、導光板20103、反射板20104、ランプリフレクタ20105及び光源20106によって構成される。
光源20106は必要に応じて発光する機能を有している。例えば、光源20106としては冷陰極管、熱陰極管、発光ダイオード、無機EL又は有機ELなどが用いられる。ランプリフレクタ20105は、光源20106からの蛍光を効率よく導光板20103に導く機能を有する。導光板20103は、蛍光を全反射させて、全面に光を導く機能を有する。拡散板20102は、明度のムラを低減する機能を有する。反射板20104は、導光板20103から下方向(液晶パネル20107と反対方向)に漏れた光を反射して再利用する機能を有する。
なお、バックライトユニット20101には、光源20106の輝度を調整するための制御回路が接続されている。この制御回路によって、光源20106の輝度を調整することができる。
図67(A)、(B)、(C)及び(D)は、エッジライト式のバックライトユニットの詳細な構成を示す図である。なお、拡散板、導光板及び反射板などはその説明を省略する。
図67(A)に示すバックライトユニット20201は、光源として冷陰極管20203を用いた構成である。そして、冷陰極管20203からの光を効率よく反射させるため、ランプリフレクタ20202が設けられている。このような構成は、冷陰極管からの輝度の強度のため、大型表示装置に用いることが多い。
図67(B)に示すバックライトユニット20211は、光源として発光ダイオード(LED)20213を用いた構成である。例えば、白色に発する発光ダイオード(W)20213は所定の間隔に配置される。そして、発光ダイオード20213からの光を効率よく反射させるため、ランプリフレクタ20212が設けられている。
発光ダイオードの輝度は高いので、発光ダイオードを用いた構成は大型表示装置に適する。発光ダイオードの色再現性は優れているので、配置面積を小さくすることができる。したがって、表示装置の狭額縁化を図ることができる。
なお、発光ダイオードが大型の表示装置に搭載される場合、発光ダイオードを該基板の背面に配置することができる。発光ダイオードは、所定の間隔を維持し、各色の発光ダイオードが順に配置される。発光ダイオードの配置によって、色再現性を高めることができる。
図67(C)に示すバックライトユニット20221は、光源として各色RGBの発光ダイオード(LED)20223、発光ダイオード20224(LED)、発光ダイオード(LED)20225を用いた構成である。各色RGBの発光ダイオード20223(LED)、発光ダイオード20224(LED)、発光ダイオード20225(LED)は、それぞれ所定の間隔に配置される。各色RGBの発光ダイオード20223(LED)、発光ダイオード20224(LED)、発光ダイオード20225(LED)を用いることによって、色再現性を高くすることができる。そして、発光ダイオードからの光を効率よく反射させるため、ランプリフレクタ20222が設けられている。
発光ダイオードの輝度は高いので、光源として各色RGBの発光ダイオードを用いた構成は大型表示装置に適する。色再現性が優れているので、配置面積を小さくすることができる。したがって、表示装置の狭額縁化を図ることができる。
なお、時間に応じてRGBの発光ダイオードを順次点灯させることによって、カラー表示を行うことができる。いわいるフィールドシーケンシャルモードである。
なお、白色を発する発光ダイオードと、各色RGBの発光ダイオード20223(LED)、発光ダイオード20224(LED)、発光ダイオード20225(LED)とを組み合わせることができる。
なお、発光ダイオードが大型の表示装置に搭載される場合、発光ダイオードを該基板の背面に配置することができる。発光ダイオードは、所定の間隔を維持し、各色の発光ダイオードが順に配置される。発光ダイオードの配置によって、色再現性を高めることができる。
図67(D)に示すバックライトユニット20231は、光源として各色RGBの発光ダイオード(LED)20233、発光ダイオード(LED)20234、発光ダイオード(LED)20235を用いた構成である。例えば、各色RGBの発光ダイオード(LED)20233、発光ダイオード20234(LED)、発光ダイオード20235(LED)のうち発光強度の低い色(例えば緑)は複数配置されている。各色RGBの発光ダイオード20233(LED)、発光ダイオード20234(LED)、発光ダイオード20235(LED)を用いることによって、色再現性を高くすることができる。そして、発光ダイオードからの光を効率よく反射させるため、ランプリフレクタ20232が設けられている。
発光ダイオードの輝度は高いので、光源として各色RGBの発光ダイオードを用いた構成は大型表示装置に適する。発光ダイオードの色再現性は優れているので、配置面積を小さくすることができる。したがって、表示装置の狭額縁化を図ることができる。
なお、時間に応じてRGBの発光ダイオードを順次点灯させることによって、カラー表示を行うことができる。いわいるフィールドシーケンシャルモードである。
なお、白色を発する発光ダイオードと、各色RGBの発光ダイオード20233(LED)、発光ダイオード20234(LED)、発光ダイオード20235(LED)とを組み合わせることができる。
なお、発光ダイオードが大型の表示装置に搭載される場合、発光ダイオードを該基板の背面に配置することができる。発光ダイオードは、所定の間隔を維持し、各色の発光ダイオードが順に配置される。発光ダイオードの配置によって、色再現性を高めることができる。
図70(A)は、直下型と呼ばれるバックライトユニットと、液晶パネルとを有する液晶表示装置の一例を示す。直下式とは、発光面の直下に光源を配置することで、その光源の蛍光を発光面全体から放射する方式である。直下式のバックライトユニットは、発光光量を効率よく利用することができる。
バックライトユニット20500は、拡散板20501、遮光板20502、ランプリフレクタ20503及び光源20504によって構成される。
光源20504は、必要に応じて発光する機能を有している。例えば、光源20505としては、冷陰極管、熱陰極管、発光ダイオード、無機EL又は有機ELなどが用いられる。ランプリフレクタ20503は、光源20504の蛍光を効率よく拡散板20501及び遮光板20502に導く機能を有する。遮光板20502は、光源20504の配置に合わせて光が強いところほど遮光を多くすることで、明度のムラを低減する機能を有する。拡散板20501は、さらに明度のムラを低減する機能を有する。
なお、バックライトユニット20500には、光源20504の輝度を調整するための制御回路が接続されている。この制御回路によって、光源20504の輝度を調整することができる。
図70(B)は、直下型と呼ばれるバックライトユニットと、液晶パネルとを有する液晶表示装置の一例を示す。直下式とは、発光面の直下に光源を配置することで、その光源の蛍光を発光面全体から放射する方式である。直下式のバックライトユニットは、発光光量を効率よく利用することができる。
バックライトユニット20510は、拡散板20511、遮光板20512、ランプリフレクタ20513、各色RGBの光源(R)20514a、光源(G)20514b及び光源(B)20514cによって構成される。
各色RGBの光源20514a(R)、光源20514b(G)及び光源20514c(B)は、必要に応じて発光する機能を有する。例えば、光源20514a(R)、光源20514b(G)及び光源20514c(B)としては、冷陰極管、熱陰極管、発光ダイオード、無機EL又は有機ELなどが用いられる。ランプリフレクタ20513は、光源20514の蛍光を効率よく拡散板20511及び遮光板20512に導く機能を有する。遮光板20512は、光源20514の配置に合わせて光が強いところほど遮光を多くすることで、明度のムラを低減する機能を有する。拡散板20511は、さらに明度のムラを低減する機能を有する。
なお、バックライトユニット20510には、各色RGBの光源20514a(R)、光源20514b(G)及び光源20514c(B)の輝度を調整するための制御回路が接続されている。この制御回路によって、各色RGBの光源20514a(R)、光源20514b(G)及び光源20514c(B)の輝度を調整することができる。
図68は、偏光板(偏光フィルムともいう)の構成の一例を示す図である。
偏光フィルム20300は、保護フィルム20301、基板フィルム20302、PVA偏光フィルム20303、基板フィルム20304、粘着剤層20305及び離型フィルム20306を有する。
PVA偏光フィルム20303は、ある振動方向だけの光(直線偏光)を作り出す機能を有する。具体的には、PVA偏光フィルム20303は、電子の密度が縦と横で大きく異なる分子(偏光子)を含んでいる。PVA偏光フィルム20303は、この電子の密度が縦と横で大きく異なる分子の方向を揃えることで、直線偏光を作り出すことができる。
一例として、PVA偏光フィルム20303は、ポリビニルアルコール(Poly Vinyl Alcohol)の高分子フィルムに、ヨウ素化合物をドープし、PVAフィルムをある方向に引っ張ることで、一定方向にヨウ素分子の並んだフィルムを得ることができる。そして、ヨウ素分子の長軸と平行な光は、ヨウ素分子に吸収される。なお、高耐久用途及び高耐熱用途として、ヨウ素の代わりに2色性の染料が用いてもよい。なお、染料は、車載用LCD又はプロジェクタ用LCDなどの耐久性、耐熱性が求められる液晶表示装置に用いられることが望ましい。
PVA偏光フィルム20303は、両側を基材となるフィルム(基板フィルム20302及び基板フィルム20304)で挟むことで、信頼性を増すことができる。なお、PVA偏光フィルム20303は、高透明性、高耐久性のトリアセチルロース(TAC)フィルムによって挟まれていてもよい。なお、基板フィルム及びTACフィルムは、PVA偏光フィルム20303が有する偏光子の保護層として機能する。
一方の基板フィルム(基板フィルム20304)には、液晶パネルのガラス基板に貼るための粘着剤層20305が貼られている。なお、粘着剤層20305は、粘着剤を片側の基板フィルム(基板フィルム20304)に塗布することで形成される。粘着剤層20305には、離型フィルム20306(セパレートフィルム)が備えられている。
他方の基板フィルム(基板フィルム20302)には、保護フィルム20301が備えられている。
なお、偏光フィルム20300表面に、ハードコート散乱層(アンチグレア層)が備えられていてもよい。ハードコート散乱層は、AG処理によって表面に微細な凹凸が形成されており、外光を散乱させる防眩機能を有するため、液晶パネルへの外光の映り込みを防ぐことができる。表面反射を防ぐことができる。
なお、偏光フィルム20300表面に、複数の屈折率の異なる光学薄膜層を多層化(アンチリフレクション処理、若しくはAR処理ともいう)してもよい。多層化された複数の屈折率のことなる光学薄膜層は、光の干渉効果によって表面の反射率を低減することができる。
図69は、液晶表示装置のシステムブロックの一例を示す図である。
図69(A)に示すように画素部20405には、信号線20412が信号線駆動回路20403から延伸して配置されている。画素部20405には、走査線20410が走査線駆動回路20404から延伸して配置されている。そして、信号線20412と走査線20410との交差領域に、複数の画素がマトリクス状に配置されている。なお、複数の画素それぞれはスイッチング素子を有している。したがって、複数の画素それぞれに液晶分子の傾きを制御するための電圧を独立して入力することができる。このように各交差領域にスイッチング素子が設けられた構造をアクティブ型と呼ぶ。ただし、このようなアクティブ型に限定されず、パッシブ型の構成でもよい。パッシブ型は、各画素にスイッチング素子がないため、工程が簡便である。
駆動回路部20408は、制御回路20402、信号線駆動回路20403及び走査線駆動回路20404を有する。制御回路20402には映像信号20401が入力されている。制御回路20402は、この映像信号20401に応じて、信号線駆動回路20403及び走査線駆動回路20404を制御する。そのため、映像信号20401は、信号線駆動回路20403及び走査線駆動回路20404に、それぞれ制御信号を入力する。そして、この制御信号に応じて、信号線駆動回路20403はビデオ信号を信号線20412に入力し、走査線駆動回路20404は走査信号を走査線20410に入力する。そして、画素が有するスイッチング素子が走査信号に応じて選択され、画素の画素電極にビデオ信号が入力される。
なお、制御回路20402は、映像信号20401に応じて電源20407も制御している。電源20407は、照明手段20406へ電力を供給する手段を有している。照明手段20406としては、エッジライト式のバックライトユニット、又は直下型のバックライトユニットを用いることができる。ただし、照明手段20406としては、フロントライトを用いてもよい。フロントライトとは、画素部の前面側に取りつけ、全体を照らす発光体及び導光体で構成された板状のライトユニットである。このような照明手段により、低消費電力で、均等に画素部を照らすことができる。
図69(B)に示すように走査線駆動回路20404は、シフトレジスタ20441、レベルシフタ20442、バッファ20443として機能する回路を有する。シフトレジスタ20441にはゲートスタートパルス(GSP)、ゲートクロック信号(GCK)等の信号が入力される。
図69(C)に示すように信号線駆動回路20403は、シフトレジスタ20431、第1のラッチ20432、第2のラッチ20433、レベルシフタ20434、バッファ20435として機能する回路を有する。バッファ20435として機能する回路とは、弱い信号を増幅させる機能を有する回路であり、オペアンプ等を有する。レベルシフタ20434には、スタートパルス(SSP)等の信号が、第1のラッチ20432にはビデオ信号等のデータ(DATA)が入力される。第2のラッチ20433にはラッチ(LAT)信号を一時保持することができ、一斉に画素部20405へ入力させる。これを線順次駆動と呼ぶ。そのため、線順次駆動ではなく、点順次駆動を行う画素であれば、第2のラッチは不要とすることができる。
なお、本実施の形態において、液晶パネルは、公知のものを用いることができる。例えば、液晶パネルとして、2つの基板の間に液晶層が封止された構成を用いることができる。一方の基板上には、トランジスタ、容量素子、画素電極又は配向膜などが形成されている。なお、一方の基板の上面と反対側には、偏光板、位相差板又はプリズムシートが配置されていてもよい。他方の基板上には、カラーフィルタ、ブラックマトリクス、共通電極又は配向膜などが形成されている。なお、他方の基板の上面と反対側には、偏光板又は位相差板が配置されていてもよい。なお、カラーフィルタ及びブラックマトリクスは、一方の基板の上面に形成されてもよい。なお、一一方の基板の上面側又はその反対側にスリット(格子)を配置することで、3次元表示を行うことができる。
なお、偏光板、位相差板及びプリズムシートをそれぞれ、2つの基板の間に配置することが可能である。あるいは、2つの基板のうちのいずれかと一体とすることが可能である。
なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態および実施例の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態および実施例の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
なお、本実施の形態は、他の実施の形態および実施例で述べた内容(一部でもよい)を、具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示している。したがって、他の実施の形態および実施例で述べた内容は、本実施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
(実施の形態7)
本実施形態においては、表示装置の駆動方法について説明する。特に、液晶表示装置の駆動方法について説明する。
本実施形態において説明する液晶表示装置に用いることのできる液晶パネルは、液晶材料を2枚の基板によって挟んだ構造であるとする。2枚の基板は、それぞれ、液晶材料に印加する電界を制御するための電極を備えている。液晶材料は、外部から印加される電界によって、光学的および電気的な性質が変化する材料である。したがって、液晶パネルは、基板が有する電極を用いて液晶材料に印加する電圧を制御することによって、所望の光学的および電気的な性質を得ることができるデバイスである。そして、多数の電極を平面的に並置することでそれぞれを画素とし、画素に印加する電圧を個別に制御することにより、精細な画像を表示できる液晶パネルとすることができる。
ここで、電界の変化に対する液晶材料の応答時間は、2枚の基板の間隔(セルギャップ)および液晶材料の種類等に依存するが、一般的に数ミリ秒から数十ミリ秒である。さらに、電界の変化量が小さい場合は、液晶材料の応答時間はさらに長くなる。この性質は、液晶パネルによって動きのある画像を表示する場合に、残像、尾引き、コントラストの低下といった画像表示上の障害を引き起こし、特に中間調から別の中間調へ変化する場合(電界の変化が小さい)場合に、前述の障害の程度が著しくなる。
一方、アクティブマトリクスを用いた液晶パネルに特有の問題として、定電荷駆動による書き込み電圧の変化がある。以下に、本実施形態における定電荷駆動について説明する。
アクティブマトリクスにおける画素回路は、書き込みを制御するスイッチと、電荷を保持する容量素子を含む。アクティブマトリクスにおける画素回路の駆動方法は、スイッチをオン状態として所定の電圧を画素回路に書き込んだ後、直ちにスイッチをオフ状態として画素回路内の電荷を保持する(ホールド状態)というものである。ホールド状態時、画素回路の内部と外部には電荷のやり取りが行なわれない(定電荷)。通常、スイッチがオン状態となっている期間に比べて、オフ状態となっている期間は数百(走査線本数)倍程度長い。そのため、画素回路のスイッチは、ほとんどオフ状態となっていると考えてよい。以上より、本実施形態における定電荷駆動とは、液晶パネルの駆動時、画素回路はほとんどの期間においてホールド状態である駆動方法であるとする。
次に、液晶材料の電気的特性について説明する。液晶材料は、外部から印加される電界が変化すると、光学的性質が変化するのと同時に、誘電率も変化する。すなわち、液晶パネルの各画素を2枚の電極に挟まれた容量素子(液晶素子)として考えたとき、当該容量素子は、印加される電圧によって静電容量が変化する容量素子である。この現象を、ダイナミックキャパシタンスと呼ぶこととする。
このように、印加される電圧によって静電容量が変化する容量素子を、上述した定電荷駆動によって駆動する場合、次のような問題が生じる。すなわち、電荷の移動が行なわれないホールド状態において、液晶素子の静電容量が変化すると、印加される電圧も変化してしまうという問題である。これは、(電荷量)=(静電容量)×(印加電圧)という関係式において、電荷量が一定であるということから理解できる。
以上の理由により、アクティブマトリクスを用いた液晶パネルでは、定電荷駆動であることによって、ホールド状態時における電圧が、書き込み時における電圧から変化してしまう。その結果、液晶素子の透過率は、ホールド状態を取らない駆動法における変化とは異なったものとなる。この様子を示したのが、図31である。図31(A)は、横軸に時間、縦軸に電圧の絶対値をとり、画素回路に書き込む電圧の制御例を表したものである。図31(B)は、横軸に時間、縦軸に電圧をとった場合の、画素回路に書き込む電圧の制御例を表したものである。図31(C)は、横軸に時間、縦軸に液晶素子の透過率をとり、図31(A)または図31(B)によって表した電圧を画素回路に書き込んだ場合の、液晶素子の透過率の時間変化を表したものである。図31(A)乃至(C)において、期間Fは電圧の書き換え周期を表し、電圧を書き換える時刻をt1、t2、t3、t4、〜として説明する。
ここで、液晶表示装置に入力される画像データに対応する書き込み電圧は、時刻0における書き換えでは|V1|、時刻t1、t2、t3、t4、〜における書き換えでは|V2|であるとする。(図31(A)参照)
なお、液晶表示装置に入力される画像データに対応する書き込み電圧は、その極性を周期的に入れ替えてもよい。(反転駆動:図31(B)参照)この方法によって、液晶に直流電圧をできるだけ印加しないようにすることができるので、液晶素子の劣化による焼きつき等を防ぐことができる。なお、極性を入れ替える周期(反転周期)は、電圧の書き換え周期と同じでもよい。この場合は、反転周期が短いので、反転駆動によるフリッカの発生を低減することができる。さらに、反転周期は、電圧の書き換え周期の整数倍の周期であってもよい。この場合は、反転周期が長く、極性を変えて電圧を書き込む頻度を減少させることができるため、消費電力を低減することができる。
そして、図31(A)または図31(B)に示したような電圧を液晶素子に印加したときの液晶素子の透過率の時間変化を、図31(C)に示す。ここで、液晶素子に電圧|V1|が印加され、十分時間が経過した後の液晶素子の透過率をTR1とする。同様に、液晶素子に電圧|V2|が印加され、十分時間が経過した後の液晶素子の透過率をTR2とする。時刻t1において、液晶素子に印加される電圧が|V1|から|V2|に変化すると、液晶素子の透過率は、破線30401に示したように、すぐにTR2とはならず、ゆっくりと変化する。たとえば、電圧の書き換え周期が、60Hzの画像信号のフレーム周期(16.7ミリ秒)と同じであるとき、透過率がTR2に変化するまでは、数フレーム程度の時間が必要となる。
ただし、破線30401に示したような、滑らかな透過率の時間変化は、液晶素子に正確に電圧|V2|が印加されたときのものである。実際の液晶パネル、たとえば、アクティブマトリクスを用いた液晶パネルでは、定電荷駆動であることによって、ホールド状態時における電圧が、書き込み時における電圧から変化してしまうため、液晶素子の透過率は破線30401に示したような時間変化とはならず、かわりに、実線30401に示したような、段階的な時間変化となる。これは、定電荷駆動であることによって電圧が変化してしまうため、1回の書き込みでは目的の電圧に到達することができないためである。その結果、液晶素子の透過率の応答時間は、本来の応答時間(破線30401)よりも、見かけ上、さらに長くなってしまい、残像、尾引き、コントラストの低下といった画像表示上の障害を顕著に引き起こしてしまうということになる。
オーバードライブ駆動を用いることによって、液晶素子の本来の応答時間の長さと、ダイナミックキャパシタンスおよび定電荷駆動による書き込み不足に起因する見かけ上の応答時間がさらに長くなる現象を、同時に解決することができる。この様子を示したのが、図32である。図32(A)は、横軸に時間、縦軸に電圧の絶対値をとり、画素回路に書き込む電圧の制御例を表したものである。図32(B)は、横軸に時間、縦軸に電圧をとった場合の、画素回路に書き込む電圧の制御例を表したものである。図32(C)は、横軸に時間、縦軸に液晶素子の透過率をとり、図32(A)または図32(B)によって表した電圧を画素回路に書き込んだ場合の、液晶素子の透過率の時間変化を表したものである。図32(A)乃至(C)において、期間Fは電圧の書き換え周期を表し、電圧を書き換える時刻をt1、t2、t3、t4、〜として説明する。
ここで、液晶表示装置に入力される画像データに対応する書き込み電圧は、時刻0における書き換えでは|V1|、時刻t1における書き換えでは|V3|、時刻t2、t3、t4、〜における書き換えでは|V2|であるとする。(図32(A)参照)
なお、液晶表示装置に入力される画像データに対応する書き込み電圧は、その極性を周期的に入れ替えてもよい。(反転駆動:図32(B)参照)この方法によって、液晶に直流電圧をできるだけ印加しないようにすることができるので、液晶素子の劣化による焼きつき等を防ぐことができる。なお、極性を入れ替える周期(反転周期)は、電圧の書き換え周期と同じでもよい。この場合は、反転周期が短いので、反転駆動によるフリッカの発生を低減することができる。さらに、反転周期は、電圧の書き換え周期の整数倍の周期であってもよい。この場合は、反転周期が長く、極性を変えて電圧を書き込む頻度を減少させることができるため、消費電力を低減することができる。
そして、図32(A)または図32(B)に示したような電圧を液晶素子に印加したときの液晶素子の透過率の時間変化を、図32(C)に示す。ここで、液晶素子に電圧|V1|が印加され、十分時間が経過した後の液晶素子の透過率をTR1とする。同様に、液晶素子に電圧|V2|が印加され、十分時間が経過した後の液晶素子の透過率をTR2とする。同様に、液晶素子に電圧|V3|が印加され、十分時間が経過した後の液晶素子の透過率をTR3とする。時刻t1において、液晶素子に印加される電圧が|V1|から|V3|に変化すると、液晶素子の透過率は、破線30501に示したように、数フレームをかけて透過率をTR3まで変化しようとする。しかし、電圧|V3|の印加は時刻t2で終わり、時刻t2より後は、電圧|V2|が印加される。そのため、液晶素子の透過率は破線30501に示したようにはならず、実線30502に示したようになる。ここで、時刻t2の時点において、透過率が概ねTR2となっているように、電圧|V3|の値を設定するのが好ましい。ここで、電圧|V3|を、オーバードライブ電圧とも呼ぶこととする。
つまり、オーバードライブ電圧である|V3|を変化させれば、液晶素子の応答時間をある程度制御することができる。なぜならば、液晶の応答時間は、電界の強さによって変化するからである。具体的には、電界が強いほど、液晶素子の応答時間は短くなり、電界が弱いほど、液晶素子の応答時間は長くなる。
なお、オーバードライブ電圧である|V3|は、電圧の変化量、すなわち、目的とする透過率TR1およびTR2を与える電圧|V1|および|V2|、にしたがって変化させるのが好ましい。なぜならば、液晶素子の応答時間が電圧の変化量によって変わってしまっても、オーバードライブ電圧である|V3|をそれに合わせて変化させれば、常に最適な応答時間を得ることができるからである。
なお、オーバードライブ電圧である|V3|は、TN、VA、IPS、OCB等の液晶のモードによって変化させるのが好ましい。なぜならば、液晶の応答速度が液晶のモードによって異なってしまっても、オーバードライブ電圧である|V3|をそれに合わせて変化させれば、常に最適な応答時間を得ることができるからである。
なお、電圧書き換え周期Fは、入力信号のフレーム周期と同じでもよい。この場合は、液晶表示装置の周辺駆動回路を簡単にできるため、製造コストの低い液晶表示装置を得ることができる。
なお、電圧書き換え周期Fは、入力信号のフレーム周期よりも短くてもよい。たとえば、電圧書き換え周期Fは入力信号のフレーム周期の1/2倍でもよいし、1/3倍でもよいし、それ以下でもよい。この方法は、黒挿入駆動、バックライト点滅、バックライトスキャン、動き補償による中間画像挿入駆動等、液晶表示装置のホールド駆動に起因する動画品質の低下の対策法と合わせて用いるのが効果的である。すなわち、液晶表示装置のホールド駆動に起因する動画品質の低下の対策法は、要求される液晶素子の応答時間が短いため、本実施形態で説明したオーバードライブ駆動法を用いることで、比較的容易に液晶素子の応答時間を短くすることができる。液晶素子の応答時間は、セルギャップ、液晶材料および液晶モード等によって本質的に短くすることは可能ではあるが、技術的に困難である。そのため、オーバードライブのような、駆動方法から液晶素子の応答時間を短くする方法を用いることは、非常に重要である。
なお、電圧書き換え周期Fは、入力信号のフレーム周期よりも長くてもよい。たとえば、電圧書き換え周期Fは入力信号のフレーム周期の2倍でもよいし、3倍でもよいし、それ以上でもよい。この方法は、長期間電圧の書き換えが行なわれないか否かを判断する手段(回路)と合わせて用いるのが効果的である。すなわち、長期間電圧の書き換えが行なわれない場合は、電圧の書き換え動作自体を行わないことによって、回路の動作をその期間中は停止させることができるので、消費電力の低い液晶表示装置を得ることができる。
次に、オーバードライブ電圧|V3|を、目的とする透過率TR1およびTR2を与える電圧|V1|および|V2|、にしたがって変化させるための具体的な方法について説明する。
オーバードライブ回路は、目的とする透過率TR1およびTR2を与える電圧|V1|および|V2|にしたがって、オーバードライブ電圧|V3|を適切に制御するための回路であるため、オーバードライブ回路に入力される信号は、透過率TR1を与える電圧|V1|に関係する信号と、透過率TR2を与える電圧|V2|に関係する信号であり、オーバードライブ回路から出力される信号は、オーバードライブ電圧|V3|に関係する信号となる。ここで、これらの信号としては、液晶素子に印加する電圧(|V1|、|V2|、|V3|)のようなアナログの電圧値であってもよいし、液晶素子に印加する電圧を与えるためのデジタル信号であってもよい。ここでは、オーバードライブ回路に関係する信号はデジタル信号であるとして説明する。
まず、図33の(A)を参照して、オーバードライブ回路の全体的な構成について説明する。ここでは、オーバードライブ電圧を制御するための信号として、入力画像信号30101aおよび30101bを用いる。これらの信号を処理した結果、オーバードライブ電圧を与える信号として、出力画像信号30104が出力されるとする。
ここで、目的とする透過率TR1およびTR2を与える電圧|V1|および|V2|は、互いに隣り合ったフレームにおける画像信号であるため、入力画像信号30101aおよび30101bも、同様に互いに隣り合ったフレームにおける画像信号であることが好ましい。このような信号を得るためには、入力画像信号30101aを、図33の(A)における遅延回路30102に入力し、その結果出力される信号を、入力画像信号30101bとすることができる。遅延回路30102としては、たとえば、メモリが挙げられる。すなわち、入力画像信号30101aを1フレーム分遅延させるために、メモリに当該入力画像信号30101aを記憶させておき、同時に、1つ前のフレームにおいて記憶させておいた信号を、入力画像信号30101bとしてメモリから取り出し、入力画像信号30101aと、入力画像信号30101bを、同時に補正回路30103に入力することで、互いに隣り合ったフレームにおける画像信号を扱えるようにすることができる。そして、互いに隣り合ったフレームにおける画像信号を、補正回路30103に入力することで、出力画像信号30104を得ることができる。なお、遅延回路30102としてメモリを用いたときは、1フレーム分遅延させるために、1フレーム分の画像信号を記憶できる容量を持ったメモリ(すなわち、フレームメモリ)とすることができる。こうすることで、メモリ容量の過不足なく、遅延回路としての機能を有することができる。
次に、メモリの容量を削減することを主な目的として構成された遅延回路30102について説明する。遅延回路30102としてこのような回路を用いることで、メモリの容量を削減することができるため、製造コストを低減することができる。
このような特徴を持つ遅延回路30102として、具体的には、図33の(B)に示すようなものを用いることができる。図33の(B)に示す遅延回路30102は、エンコーダ30105と、メモリ30106と、デコーダ30107を有する。
図33の(B)に示す遅延回路30102の動作としては、次のようなものとなる。まず、入力画像信号30101aをメモリ30106に記憶させる前に、エンコーダ30105によって、圧縮処理を行なう。これによって、メモリ30106に記憶させるべきデータのサイズを減らすことができる。その結果、メモリの容量を削減することができるため、製造コストを低減することができる。そして、圧縮処理を施された画像信号は、デコーダ30107に送られ、ここで伸張処理を行なう。これによって、エンコーダ30105によって圧縮処理された前の信号を復元することができる。ここで、エンコーダ30105およびデコーダ30107によって行なわれる圧縮伸張処理は、可逆的な処理であってもよい。こうすることで、圧縮伸張処理を行なった後でも画像信号の劣化がないため、最終的に装置に表示される画像の品質を落とすことなく、メモリの容量を削減することができる。さらに、エンコーダ30105およびデコーダ30107によって行なわれる圧縮伸張処理は、非可逆的な処理であってもよい。こうすることで、圧縮後の画像信号のデータのサイズを非常に小さくすることができるため、メモリの容量を大幅に削減することができる。
なお、メモリの容量を削減するための方法としては、上に挙げたもの以外にも、様々な方法を用いることができる。エンコーダによって画像圧縮するのではなく、画像信号が有する色情報を削減する(たとえば、26万色から6万5千色に減色する)、またはデータ数を削減する(解像度を小さくする)、などの方法を用いることができる。
次に、補正回路30103の具体例について、図33の(C)乃至(E)を参照して説明する。補正回路30103は、2つの入力画像信号から、ある値の出力画像信号を出力するための回路である。ここで、2つの入力画像信号と出力画像信号の関係が非線形であり、簡単な演算で求めることが難しい場合には、補正回路30103として、ルックアップテーブル(LUT)を用いてもよい。LUTには、2つの入力画像信号と出力画像信号の関係が、測定によってあらかじめ求められているため、2つの入力画像信号に対応する出力画像信号を、LUTを参照するだけで求めることができる。(図33の(C)参照)補正回路30103としてLUT30108を用いることで、複雑な回路設計等を行なうことなく、補正回路30103を実現することができる。
ここで、LUTはメモリの1つであるため、メモリ容量をできるだけ削減することが、製造コストを低減する上で、好ましい。それを実現するための補正回路30103の例として、図33の(D)に示す回路が考えられる。図33の(D)に示す補正回路30103は、LUT30109と、加算器30110を有する。LUT30109には、入力画像信号30101aと、出力するべき出力画像信号30104の差分データが格納されている。つまり、入力画像信号30101aおよび入力画像信号30101bから、対応する差分データをLUT30109から取り出し、取り出した差分データと入力画像信号30101aを、加算器30110によって加算することで、出力画像信号30104を得ることができる。なお、LUT30109に格納するデータを差分データとすることで、LUTのメモリ容量の削減が実現できる。なぜならば、そのままの出力画像信号30104よりも、差分データの方がデータサイズが小さいため、LUT30109に必要なメモリ容量を小さくできるからである。
さらに、出力画像信号が、2つの入力画像信号の四則演算等の簡単な演算によって求められるならば、加算器、減算器、乗算器等の簡単な回路の組み合わせによって実現できる。その結果、LUTを用いる必要が無くなり、製造コストを大幅に低減することができる。このような回路としては、図33の(E)に示す回路を挙げることができる。図33の(E)に示す補正回路30103は、減算器30111と、乗算器30112と、加算器30113、を有する。まず、入力画像信号30101aと、入力画像信号30101bの差分を、減算器30111によって求める。その後、乗算器30112によって、適切な係数を差分値に乗ずる。そして、入力画像信号30101aに、適切な係数を乗じた差分値を、加算器30113によって加算することで、出力画像信号30104を得ることができる。このような回路を用いることによって、LUTを用いる必要が無くなり、製造コストを大幅に低減することができる。
なお、ある条件の下で、図33の(E)に示す補正回路30103を用いることによって、不適切な出力画像信号30104を出力することを防止することができる。その条件とは、オーバードライブ電圧を与える出力画像信号30104と、入力画像信号30101aおよび入力画像信号30101bの差分値に、線形性があることである。そして、この線形性の傾きを、乗算器30112によって乗ずる係数とする。すなわち、このような性質を持つ液晶素子に、図33の(E)に示す補正回路30103を用いることが好ましい。このような性質を持つ液晶素子としては、応答速度の階調依存性の小さい、IPSモードの液晶素子が挙げられる。このように、たとえば、IPSモードの液晶素子に図33の(E)に示す補正回路30103を用いることによって、製造コストを大幅に低減でき、かつ、不適切な出力画像信号30104を出力することを防止することができるオーバードライブ回路を得ることができる。
なお、図33の(A)乃至(E)に示した回路と同等の働きを、ソフトウェア処理によって実現してもよい。遅延回路に用いるメモリについては、液晶表示装置が有する他のメモリ、液晶表示装置に表示する画像を送り出す側の装置(たとえば、パーソナルコンピュータやそれに準じた装置が有するビデオカード等)が有するメモリ等を流用することができる。こうすることで、製造コストを低減できるだけでなく、オーバードライブの強さや利用する状況などを、ユーザが好みに応じて選択できるようにすることができる。
次に、コモン線の電位を操作する駆動について、図34を参照して説明する。図34の(A)は、液晶素子のような容量的な性質を持つ表示素子を用いた表示装置において、走査線一本に対し、コモン線が一本配置されているときの、複数の画素回路を表した図である。図34の(A)に示す画素回路は、トランジスタ30201、補助容量30202、表示素子30203、映像信号線30204、走査線30205、コモン線30206、を備えている。
トランジスタ30201のゲート電極は、走査線30205に電気的に接続され、トランジスタ30201のソース電極及びドレイン電極の一方は、映像信号線30204に電気的に接続され、トランジスタ30201のソース電極及びドレイン電極の他方は、補助容量30202の一方の電極、及び表示素子30203の一方の電極に電気的に接続されている。
また、補助容量30202の他方の電極は、コモン線30206に電気的に接続されている。
まず、走査線30205によって選択された画素は、トランジスタ30201がオンとなるため、それぞれ、映像信号線30204を介して、表示素子30203及び補助容量30202に映像信号に対応した電圧がかかる。このとき、その映像信号が、コモン線30206に接続された全ての画素に対して最低階調を表示させるものだった場合、あるいは、コモン線30206に接続された全ての画素に対して最高階調を表示させるものだった場合は、画素にそれぞれ映像信号線30204を介して映像信号を書き込む必要はない。映像信号線30204を介して映像信号を書き込む代わりに、コモン線30206の電位を動かすことで、表示素子30203にかかる電圧を変えることができる。
次に、図34の(B)は、液晶素子のような容量的な性質を持つ表示素子を用いた表示装置において、走査線一本に対し、コモン線が2本配置されているときの、複数の画素回路を表した図である。図34の(B)に示す画素回路は、トランジスタ30211、補助容量30212、表示素子30213、映像信号線30214、走査線30215、第1のコモン線30216、第2のコモン線30217、を備えている。
トランジスタ30211のゲート電極は、走査線30215に電気的に接続され、トランジスタ30211のソース電極及びドレイン電極の一方は、映像信号線30214に電気的に接続され、トランジスタ30211のソース電極及びドレイン電極の他方は、補助容量30212の一方の電極、及び表示素子30213の一方の電極に電気的に接続されている。
また、補助容量30212の他方の電極は、第1のコモン線30216に電気的に接続されている。
また、当該画素と隣接する画素においては、補助容量30212の他方の電極は、第2のコモン線30217に電気的に接続されている。
図34の(B)に示す画素回路は、コモン線一本に対し電気的に接続されている画素が少ないため、映像信号線30214を介して映像信号を書き込む代わりに、第1のコモン線30216又は第2のコモン線30217の電位を動かすことで、表示素子30213にかかる電圧を変えることができる頻度が、顕著に大きくなる。また、ソース反転駆動又はドット反転駆動が可能になる。ソース反転駆動又はドット反転駆動により、素子の信頼性を向上させつつ、フリッカを抑えることができる。
次に、走査型バックライトについて、図35を参照して説明する。図35の(A)は、冷陰極管を並置した走査型バックライトを示す図である。図35の(A)に示す走査型バックライトは、拡散板30301と、N個の冷陰極管30302―1から30302―Nと、を備える。N個の冷陰極管30302―1から30302―Nを、拡散板30301の後ろに並置することで、N個の冷陰極管30302―1から30302―Nは、その輝度を変化させて走査することができる。
走査するときの各冷陰極管の輝度の変化を、図35の(C)を用いて説明する。まず、冷陰極管30302―1の輝度を、一定時間変化させる。そして、その後に、冷陰極管30302―1の隣に配置された冷陰極管30302―2の輝度を、同じ時間だけ変化させる。このように、冷陰極管30302―1から30302―Nまで、輝度を順に変化させる。なお、図35の(C)においては、一定時間変化させる輝度は、元の輝度より小さいものとしたが、元の輝度より大きくてもよい。また、冷陰極管30302―1から30302―Nまで走査するとしたが、逆方向に冷陰極管30302―Nから30302―1まで走査してもよい。
図35のように駆動することで、バックライトの平均輝度を小さくすることができる。したがって、液晶表示装置の消費電力の大部分を占める、バックライトの消費電力を低減することができる。
なお、走査型バックライトの光源として、LEDを用いてもよい。その場合の走査型バックライトは、図35の(B)のようになる。図35の(B)に示す走査型バックライトは、拡散板30311と、LEDを並置した光源30312―1から30312―Nと、を備える。走査型バックライトの光源として、LEDを用いた場合、バックライトを薄く、軽くできる利点がある。また、色再現範囲を広げることができるという利点がある。さらに、LEDを並置した光源30312―1から30312―Nのそれぞれに並置したLEDも、同様に走査することができるので、点走査型のバックライトとすることもできる。点走査型とすれば、動画像の画質をさらに向上させることができる。
なお、バックライトの光源としてLEDを用いた場合も、図35の(C)に示すように輝度を変化させて駆動することができる。
なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
(実施の形態8)
本実施の形態においては、各種液晶モードについて説明する。
まず、断面図を用いて各種液晶モードについて説明する。
図39(A)、(B)は、TNモードの断面の模式図を示す。
互いに対向するように配置された第1の基板50101及び第2の基板50102に、液晶層50100が挟持されている。第1の基板50101の上面には、第1の電極50105が形成されている。第2の基板50102の上面には、第2の電極50106が形成されている。第1の基板50101の液晶層と反対側には、第1の偏光板50103が配置されている。第2の基板50102の液晶層と反対側には、第2の偏光板50104が配置されている。なお、第1の偏光板50103と第2の偏光板50104とは、クロスニコルになるように配置されている。
第1の偏光板50103は、第1の基板50101の上面に配置されてもよい。第2の偏光板50104は、第2の基板50102の上面に配置されてもよい。
第1の電極50105及び第2の電極50106のうち、少なくとも一方(又は両方)の電極が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
図36(A)は、第1の電極50105及び第2の電極50106に電圧が印加(縦電界方式と呼ぶ)された場合の断面の模式図である。液晶分子が縦に並んだ状態となるため、バックライトからの光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板50103と第2の偏光板50104とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過できない。したがって、黒色表示が行われる。
なお、第1の電極50105及び第2の電極50106に印加する電圧を制御することで、液晶分子の状態を制御することが可能である。したがって、バックライトからの光が基板を通過する量を制御できるため、所定の映像表示を行うことが可能である。
図36(B)は、第1の電極50105及び第2の電極50106に電圧が印加されていない場合の断面の模式図である。液晶分子が横に並び、平面内で回転している状態となるため、バックライトからの光は液晶分子の複屈折の影響を受ける。そして、第1の偏光板50103と第2の偏光板50104とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過する。したがって、白色表示が行われる。いわゆるノーマリーホワイトモードである。
図36(A)、(B)に示した構成を有する液晶表示装置は、カラーフィルタを設けることで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板50101側又は第2の基板50102側に設けることができる。
TNモードに使用される液晶材料は、公知のものを使用すればよい。
図37(A)、(B)は、VAモードの断面の模式図を示す。VAモードは、無電界の時に液晶分子が基板に垂直となるように配向されているモードである。
互いに対向するように配置された第1の基板50201及び第2の基板50202に、液晶層50200が挟持されている。第1の基板50201の上面には、第1の電極50205が形成されている。第2の基板50202の上面には、第2の電極50206が形成されている。第1の基板50201の液晶層と反対側には、第1の偏光板50203が配置されている。第2の基板50202の液晶層と反対側には、第2の偏光板50204が配置されている。なお、第1の偏光板50203と第2の偏光板50204とは、クロスニコルになるように配置されている。
第1の偏光板50203は、第1の基板50201の上面に配置されてもよい。第2の偏光板50204は、第2の基板50202の上面に配置されてもよい。
第1の電極50205及び第2の電極50206のうち、少なくとも一方(又は両方)の電極が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
図37(A)は、第1の電極50205及び第2の電極50206に電圧が印加(縦電界方式と呼ぶ)された場合の断面の模式図である。液晶分子が横に並んだ状態となるため、バックライトからの光は液晶分子の複屈折の影響を受ける。そして、第1の偏光板50203と第2の偏光板50204とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過する。したがって、白色表示が行われる。
なお、第1の電極50205及び第2の電極50206に印加する電圧を制御することで、液晶分子の状態を制御することが可能である。したがって、バックライトからの光が基板を通過する量を制御できるため、所定の映像表示を行うことが可能である。
図37(B)は、第1の電極50205及び第2の電極50206に電圧が印加されていない場合の断面の模式図である。液晶分子が縦に並んだ状態となるため、バックライトからの光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板50203と第2の偏光板50204とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過しない。したがって、黒色表示が行われる。いわゆるノーマリーブラックモードである。
図37(A)、(B)に示した構成を有する液晶表示装置は、カラーフィルタを設けることで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板50201側又は第2の基板50202側に設けることができる。
VAモードに使用される液晶材料は、公知のものを使用すればよい。
図37(C)、(D)は、MVAモードの断面の模式図を示す。MVAモードは、それぞれの部分の視野角依存性を互いに補償する方法である。
互いに対向するように配置された第1の基板50211及び第2の基板50212に、液晶層50210が挟持されている。第1の基板50211の上面には、第1の電極50215が形成されている。第2の基板50212の上面には、第2の電極50216が形成されている。第1の電極50215上には、配向制御用に第1の突起物502117が形成されている。第2の電極50216上には、配向制御用に第2の突起物502118が形成されている。第1の基板50211の液晶層と反対側には、第1の偏光板50213が配置されている。第2の基板50212の液晶層と反対側には、第2の偏光板50214が配置されている。なお、第1の偏光板50213と第2の偏光板50214とは、クロスニコルになるように配置されている。
第1の偏光板50213は、第1の基板50211の上面に配置されてもよい。第2の偏光板50214は、第2の基板50212の上面に配置されてもよい。
第1の電極50215及び第2の電極50216のうち、少なくとも一方(又は両方)の電極が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
図37(C)は、第1の電極50215及び第2の電極50216に電圧が印加(縦電界方式と呼ぶ)された場合の断面の模式図である。液晶分子が第1の突起物502117及び第2の突起物502118に対して倒れて並んだ状態となるため、バックライトからの光は液晶分子の複屈折の影響を受ける。そして、第1の偏光板50213と第2の偏光板50214とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過する。したがって、白色表示が行われる。
なお、第1の電極50215及び第2の電極50216に印加する電圧を制御することで、液晶分子の状態を制御することが可能である。したがって、バックライトからの光が基板を通過する量を制御できるため、所定の映像表示を行うことが可能である。
図37(D)は、第1の電極50215及び第2の電極50216に電圧が印加されていない場合の断面の模式図である。液晶分子が縦に並んだ状態となるため、バックライトからの光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板50213と第2の偏光板50214とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過しない。したがって、黒色表示が行われる。いわゆるノーマリーブラックモードである。
図37(C)、(D)に示した構成を有する液晶表示装置は、カラーフィルタを設けることで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板50211側又は第2の基板50212側に設けることができる。
MVAモードに使用される液晶材料は、公知のものを使用すればよい。
図38(A)、(B)は、OCBモードの断面の模式図を示す。OCBモードは、液晶層内で液晶分子の配列が光学的に補償状態を形成しているため、視野角依存が少ない。この液晶分子の状態は、ベンド配向と呼ばれる。
互いに対向するように配置された第1の基板50301及び第2の基板50302に、液晶層50300が挟持されている。第1の基板50301の上面には、第1の電極50305が形成されている。第2の基板50302の上面には、第2の電極50306が形成されている。第1の基板50301の液晶層と反対側には、第1の偏光板50303が配置されている。第2の基板50302の液晶層と反対側には、第2の偏光板50304が配置されている。なお、第1の偏光板50303と第2の偏光板50304とは、クロスニコルになるように配置されている。
第1の偏光板50303は、第1の基板50301の上面に配置されてもよい。第2の偏光板50304は、第2の基板50302の上面に配置されてもよい。
第1の電極50305及び第2の電極50306のうち、少なくとも一方(又は両方)の電極が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
図38(A)は、第1の電極50305及び第2の電極50306に電圧が印加(縦電界方式と呼ぶ)された場合の断面の模式図である。液晶分子が縦に並んだ状態となるため、バックライトからの光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板50303と第2の偏光板50304とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過しない。したがって、黒色表示が行われる。
なお、第1の電極50305及び第2の電極50306に印加する電圧を制御することで、液晶分子の状態を制御することが可能である。したがって、バックライトからの光が基板を通過する量を制御できるため、所定の映像表示を行うことが可能である。
図38(B)は、第1の電極50305及び第2の電極50306に電圧が印加されていない場合の断面の模式図である。液晶分子がベンド配向の状態となるため、バックライトからの光は液晶分子の複屈折の影響を受ける。そして、第1の偏光板50303と第2の偏光板50304とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過する。したがって、白色表示が行われる。いわゆるノーマリーホワイトモードである。
図38(A)、(B)に示した構成を有する液晶表示装置は、カラーフィルタを設けることで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板50301側又は第2の基板50302側に設けることができる。
OCBモードに使用される液晶材料は、公知のものを使用すればよい。
図38(C)、(D)は、FLCモード又はAFLCモードの断面の模式図を示す。
互いに対向するように配置された第1の基板50311及び第2の基板50312に、液晶層50310が挟持されている。第1の基板50311の上面には、第1の電極50315が形成されている。第2の基板50312の上面には、第2の電極50316が形成されている。第1の基板50311の液晶層と反対側には、第1の偏光板50313が配置されている。第2の基板50312の液晶層と反対側には、第2の偏光板50314が配置されている。なお、第1の偏光板50313と第2の偏光板50314とは、クロスニコルになるように配置されている。
第1の偏光板50313は、第1の基板50311の上面に配置されてもよい。第2の偏光板50314は、第2の基板50312の上面に配置されてもよい。
第1の電極50315及び第2の電極50316のうち、少なくとも一方(又は両方)の電極が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
図38(C)は、第1の電極50315及び第2の電極50316に電圧が印加(縦電界方式と呼ぶ)された場合の断面の模式図である。液晶分子がラビング方向からずれた方向で横に並んでいる状態となるため、バックライトからの光は液晶分子の複屈折の影響を受ける。そして、第1の偏光板50313と第2の偏光板50314とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過する。したがって、白色表示が行われる。
なお、第1の電極50315及び第2の電極50316に印加する電圧を制御することで、液晶分子の状態を制御することが可能である。したがって、バックライトからの光が基板を通過する量を制御できるため、所定の映像表示を行うことが可能である。
図38(D)は、第1の電極50315及び第2の電極50316に電圧が印加されていない場合の断面の模式図である。液晶分子がラビング方向に沿って横に並んだ状態となるため、バックライトからの光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板50313と第2の偏光板50314とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過しない。したがって、黒色表示が行われる。いわゆるノーマリーブラックモードである。
図38(C)、(D)に示した構成を有する液晶表示装置は、カラーフィルタを設けることで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板50311側又は第2の基板50312側に設けることができる。
FLCモード又はAFLCモードに使用される液晶材料は、公知のものを使用すればよい。
図39(A)、(B)は、IPSモードの断面の模式図を示す。IPSモードは、液晶層内で液晶分子の配列が光学的に補償状態を形成しているため、液晶分子を基板に対して常に平面内で回転させるモードであり、電極は一方の基板側のみに設けた横電界方式をとる。
互いに対向するように配置された第1の基板50401及び第2の基板50402に、液晶層50400が挟持されている。第1の基板50401の上面には、第1の電極50405及び第2の電極50406が形成されている。第1の基板50401の液晶層と反対側には、第1の偏光板50403が配置されている。第2の基板50402の液晶層と反対側には、第2の偏光板50404が配置されている。なお、第1の偏光板50403と第2の偏光板50404とは、クロスニコルになるように配置されている。
第1の偏光板50403は、第1の基板50401の上面に配置されてもよい。第2の偏光板50404は、第2の基板50402の上面に配置されてもよい。
第1の電極50405及び第2の電極50406のうち、少なくとも一方(又は両方)の電極が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
図39(A)は、第1の電極50405及び第2の電極50406に電圧が印加(縦電界方式と呼ぶ)された場合の断面の模式図である。液晶分子がラビング方向からずれた電気力線に沿って配向した状態となるため、バックライトからの光は液晶分子の複屈折の影響を受ける。そして、第1の偏光板50403と第2の偏光板50404とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過する。したがって、白色表示が行われる。
なお、第1の電極50405及び第2の電極50406に印加する電圧を制御することで、液晶分子の状態を制御することが可能である。したがって、バックライトからの光が基板を通過する量を制御できるため、所定の映像表示を行うことが可能である。
図39(B)は、第1の電極50405及び第2の電極50406に電圧が印加されていない場合の断面の模式図である。液晶分子がラビング方向に沿って横に並んだ状態となるため、バックライトからの光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板50403と第2の偏光板50404とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過しない。したがって、黒色表示が行われる。いわゆるノーマリーブラックモードである。
図39(A)、(B)に示した構成を有する液晶表示装置は、カラーフィルタを設けることで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板50401側又は第2の基板50402側に設けることができる。
IPSモードに使用される液晶材料は、公知のものを使用すればよい。
図39(C)、(D)は、FFSモードの断面の模式図を示す。FFSモードは、液晶層内で液晶分子の配列が光学的に補償状態を形成しているため、液晶分子を基板に対して常に平面内で回転させるモードであり、電極は一方の基板側のみに設けた横電界方式をとる。
互いに対向するように配置された第1の基板50411及び第2の基板50412に、液晶層50410が挟持されている。第1の基板50411の上面には、第2の電極50416が形成されている。第2の電極50416の上面には、絶縁膜50417が形成されている。絶縁膜50417上には、第2の電極50416が形成されている。第1の基板50411の液晶層と反対側には、第1の偏光板50413が配置されている。第2の基板50412の液晶層と反対側には、第2の偏光板50414が配置されている。なお、第1の偏光板50413と第2の偏光板50414とは、クロスニコルになるように配置されている。
第1の偏光板50413は、第1の基板50411の上面に配置されてもよい。第2の偏光板50414は、第2の基板50412の上面に配置されてもよい。
第1の電極50415及び第2の電極50416のうち、少なくとも一方(又は両方)の電極が透光性を有していればよい(透過型又は反射型)。あるいは、両方の電極が透光性を有し、かつ一方の電極の一部が反射性を有していてもよい(半透過型)。
図39(C)は、第1の電極50415及び第2の電極50416に電圧が印加(縦電界方式と呼ぶ)された場合の断面の模式図である。液晶分子がラビング方向からずれた電気力線に沿って配向した状態となるため、バックライトからの光は液晶分子の複屈折の影響を受ける。そして、第1の偏光板50413と第2の偏光板50414とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過する。したがって、白色表示が行われる。
なお、第1の電極50415及び第2の電極50416に印加する電圧を制御することで、液晶分子の状態を制御することが可能である。したがって、バックライトからの光が基板を通過する量を制御できるため、所定の映像表示を行うことが可能である。
図39(D)は、第1の電極50415及び第2の電極50416に電圧が印加されていない場合の断面の模式図である。液晶分子がラビング方向に沿って横に並んだ状態となるため、バックライトからの光は液晶分子の複屈折の影響を受けない。そして、第1の偏光板50413と第2の偏光板50414とがクロスニコルになるように配置されているため、バックライトからの光は基板を通過しない。したがって、黒色表示が行われる。いわゆるノーマリーブラックモードである。
図39(C)、(D)に示した構成を有する液晶表示装置は、カラーフィルタを設けることで、フルカラー表示を行うことができる。カラーフィルタは、第1の基板50411側又は第2の基板50412側に設けることができる。
FFSモードに使用される液晶材料は、公知のものを使用すればよい。
次に、上面図を用いて各種液晶モードを説明する。
図40は、MVAモードを適用した画素部の上面図を示す。MVAモードは、それぞれの部分の視野角依存性を互いに補償する方法である。
図40は、第1の電極50501、第2の電極(50502a、50502b、50502c)、及び突起物50503を示している。第1の電極50501は、対向基板の全面に形成されている。形状がくの字型となるように、第2の電極(50502a、50502b、50502c)が形成されている。形状が第2の電極(50502a、50502b、50502c)と対応するように、第1の電極50501上に第2の電極(50502a、50502b、50502c)が形成されている。
第2の電極(50502a、50502b、50502c)の開口部は、突起物のように機能する。
第1の電極50501及び第2の電極(50502a、50502b、50502c)に電圧が印加(縦電界方式と呼ぶ)された場合、液晶分子が第2の電極(50502a、50502b、50502c)の開口部及び突起物50503に対して倒れて並んだ状態となる。一対の偏光板がクロスニコルとなるように配置されているときには、バックライトからの光が基板を通過するため、白色表示が行われる。
なお、第1の電極50501及び第2の電極(50502a、50502b、50502c)に印加する電圧を制御することで、液晶分子の状態を制御することが可能である。したがって、バックライトからの光が基板を通過する量を制御できるため、所定の映像表示を行うことが可能である。
第1の電極50501及び第2の電極(50502a、50502b、50502c)に電圧が印加されていない場合、液晶分子が縦に並んだ状態となる。一対の偏光板がクロスニコルとなるように配置されているときには、バックライトからの光がパネルを通過しないため、黒色表示が行われる。いわゆる、ノーマリーブラックモードである。
MVAモードに使用される液晶材料は、公知のものを使用すればよい。
図41(A)、(B)、(C)、(D)は、IPSモードを適用した画素部の上面図を示す。IPSモードは、液晶層内で液晶分子の配列が光学的に補償状態を形成しているため、液晶分子を基板に対して常に平面内で回転させるモードであり、電極は一方の基板側のみに設けた横電界方式をとる。
IPSモードでは、一対の電極が異なる形状となるように形成される。
図41(A)は、第1の電極50601及び第2の電極50602を示している。第1の電極50601及び第2の電極50602は、波状形状である。
図41(B)は、第1の電極50611及び第2の電極50612を示している。第1の電極50611及び第2の電極50612は、同心円状の開口部を有する形状である。
図41(C)は、第1の電極50631及び第2の電極50632を示している。第1の電極50631及び第2の電極50632は、櫛場状であり一部重なっている形状である。
図41(D)は、第1の電極50641及び第2の電極50642を示している。第1の電極50641及び第2の電極50642は、櫛場状であり電極同士がかみ合うような形状である。
第1の電極(50601、50611、50621、50631)及び第2の電極(50602、50612、50622、50632)に電圧が印加(縦電界方式と呼ぶ)された場合、液晶分子がラビング方向からずれた電気力線に沿って配向した状態となる。一対の偏光板がクロスニコルとなるように配置されているときには、バックライトからの光が基板を通過するため、白色表示が行われる。
なお、第1の電極(50601、50611、50621、50631)及び第2の電極(50602、50612、50622、50632)に印加する電圧を制御することで、液晶分子の状態を制御することが可能である。したがって、バックライトからの光が基板を通過する量を制御できるため、所定の映像表示を行うことが可能である。
第1の電極(50601、50611、50621、50631)及び第2の電極(50602、50612、50622、50632)に電圧が印加されていない場合、液晶分子がラビング方向に沿って横に並んだ状態となる。一対の偏光板がクロスニコルとなるように配置されているときには、バックライトからの光が基板を通過しないため、黒色表示が行われる。いわいるノーマリーブラックモードである。
IPSモードに使用される液晶材料は、公知のものを使用すればよい。
図42(A)、(B)、(C)、(D)は、FFSモードを適用した画素部の上面図を示す。FFSモードは、液晶層内で液晶分子の配列が光学的に補償状態を形成しているため、液晶分子を基板に対して常に平面内で回転させるモードであり、電極は一方の基板側のみに設けた横電界方式をとる。
FFSモードでは、第2の電極の上面に、第1の電極が様々な形状となるように形成される。
図42(A)は、第1の電極50701及び第2の電極50702を示している。第1の電極50701は、屈曲したくの字形状である。第2の電極50702は、パターン形成されていなくてもよい。
図42(B)は、第1の電極50711及び第2の電極50712を示している。第1の電極50711は、同心円状の形状である。第2の電極50712は、パターン形成されていなくてもよい。
図42(C)は、第1の電極50731及び第2の電極50732を示している。第1の電極50731は、櫛場状で電極同士がかみ合うような形状である。第2の電極50732は、パターン形成されていなくてもよい。
図42(D)は、第1の電極50741及び第2の電極50742を示している。第1の電極50741は、櫛場状の形状である。第2の電極50742は、パターン形成されていなくてもよい。
第1の電極(50701、50711、50721、50731)及び第2の電極(50702、50712、50722、50732)に電圧が印加(縦電界方式と呼ぶ)された場合、液晶分子がラビング方向からずれた電気力線に沿って配向した状態となる。一対の偏光板がクロスニコルとなるように配置されているときには、バックライトからの光が基板を通過するため、白色表示が行われる。
なお、第1の電極(50701、50711、50721、50731)及び第2の電極(50702、50712、50722、50732)に印加する電圧を制御することで、液晶分子の状態を制御することが可能である。したがって、バックライトからの光が基板を通過する量を制御できるため、所定の映像表示を行うことが可能である。
第1の電極(50701、50711、50721、50731)及び第2の電極(50702、50712、50722、50732)に電圧が印加されていない場合、液晶分子がラビング方向に沿って横に並んだ状態となる。一対の偏光板がクロスニコルとなるように配置されているときには、バックライトからの光が基板を通過しないため、黒色表示が行われる。いわいるノーマリーブラックモードである。
IPSモードに使用される液晶材料は、公知のものを使用すればよい。
なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態および実施例の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態および実施例の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
なお、本実施の形態は、他の実施の形態および実施例で述べた内容(一部でもよい)を、具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示している。したがって、他の実施の形態および実施例で述べた内容は、本実施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
(実施の形態9)
本実施の形態においては、トランジスタの構造及び作製方法について説明する。
図43は、本発明を適用できる半導体装置が有することのできるトランジスタの構造及び作製方法の例を示す図である。図43(A)は、本発明を適用できる半導体装置が有することのできるトランジスタの構造の例を示す図である。また、図43(B)乃至(G)は、本発明を適用できる半導体装置が有することのできるトランジスタの作製方法の例を示す図である。
なお、本発明を適用できる半導体装置が有することのできるトランジスタの構造及び作製方法は、図43に示すものに限定されず、様々な構造及び作製方法を用いることができる。
まず、図43(A)を参照し、本発明を適用できる半導体装置が有することのできるトランジスタの構造の例について説明する。図43(A)は複数の異なる構造を有するトランジスタの断面図である。ここで、図43(A)においては、複数の異なる構造を有するトランジスタを並置して示しているが、これは、発明を適用できる半導体装置が有することのできるトランジスタの構造を説明するための表現であり、発明を適用できる半導体装置が有することのできるトランジスタが、実際に図43(A)のように並置されている必要はなく、必要に応じてつくり分けることができる。
次に、本発明を適用できる半導体装置が有することのできるトランジスタを構成する各層の特徴について説明する。
基板110111は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどのガラス基板、石英基板、セラミック基板又はステンレスを含む金属基板等を用いることができる。他にも、ポリエチレンテレフタレ−ト(PET)、ポリエチレンナフタレ−ト(PEN)、ポリエ−テルサルフォン(PES)に代表されるプラスチック又はアクリル等の可撓性を有する合成樹脂からなる基板を用いることも可能である。可撓性を有する基板を用いることによって、折り曲げが可能である半導体装置を作製することが可能となる。また、可撓性を有す基板であれば、基板の面積及び基板の形状に大きな制限はないため、基板110111として、例えば、1辺が1メ−トル以上であって、矩形状のものを用いれば、生産性を格段に向上させることができる。このような利点は、円形のシリコン基板を用いる場合と比較すると、大きな優位点である。
絶縁膜110112は、下地膜として機能する。基板110111からNaなどのアルカリ金属又はアルカリ土類金属が、半導体素子の特性に悪影響を及ぼすのを防ぐために設ける。絶縁膜110112としては、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)等の酸素又は窒素を有する絶縁膜の単層構造若しくはこれらの積層構造で設けることができる。例えば、絶縁膜110112を2層構造で設ける場合、1層目の絶縁膜として窒化酸化珪素膜を設け、2層目の絶縁膜として酸化窒化珪素膜を設けるとよい。また、絶縁膜110112を3層構造で設ける場合、1層目の絶縁膜として酸化窒化珪素膜を設け、2層目の絶縁膜として窒化酸化珪素膜を設け、3層目の絶縁膜として酸化窒化珪素膜を設けるとよい。
半導体層110113、110114、110115は、非晶質(アモルファス)半導体又はセミアモルファス半導体(SAS)で形成することができる。あるいは、多結晶半導体層を用いても良い。SASは、非晶質と結晶構造(単結晶、多結晶を含む)の中間的な構造を有し、自由エネルギー的に安定な第3の状態を有する半導体であって、短距離秩序を持ち格子歪みを有する結晶質な領域を含んでいる。少なくとも膜中の一部の領域には、0.5〜20nmの結晶領域を観測することができ、珪素を主成分とする場合にはラマンスペクトルが520cm−1よりも低波数側にシフトしている。X線回折では珪素結晶格子に由来するとされる(111)、(220)の回折ピ−クが観測される。未結合手(ダングリングボンド)の補償するものとして水素又はハロゲンを少なくとも1原子%又はそれ以上含ませている。SASは、材料ガスをグロ−放電分解(プラズマCVD)して形成する。材料ガスとしては、SiH4、その他にもSi2H6、SiH2Cl2、SiHCl3、SiCl4、SiF4などを用いることが可能である。あるいは、GeF4を混合させても良い。この材料ガスをH2、あるいは、H2とHe、Ar、Kr、Neから選ばれた一種又は複数種の希ガス元素で希釈してもよい。希釈率は2〜1000倍の範囲。圧力は概略0.1Pa〜133Paの範囲、電源周波数は1MHz〜120MHz、好ましくは13MHz〜60MHz。基板加熱温度は300℃以下でよい。膜中の不純物元素として、酸素、窒素、炭素などの大気成分の不純物は1×1020cm−1以下とすることが望ましく、特に、酸素濃度は5×1019/cm3以下、好ましくは1×1019/cm3以下とする。ここでは、公知の手段(スパッタ法、LPCVD法、プラズマCVD法等)を用いてシリコン(Si)を主成分とする材料(例えばSixGe1−x等)で非晶質半導体層を形成し、当該非晶質半導体層をレ−ザ結晶化法、RTA又はファーネスアニール炉を用いる熱結晶化法、結晶化を助長する金属元素を用いる熱結晶化法などの公知の結晶化法により結晶化させる。
絶縁膜110116は、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)等の酸素又は窒素を有する絶縁膜の単層構造、若しくはこれらの積層構造で設けることができる。
ゲート電極110117は、単層の導電膜、又は二層、三層の導電膜の積層構造とすることができる。ゲート電極110117の材料としては、公知の導電膜を用いることができる。たとえば、タンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(W)、クロム(Cr)、シリコン(Si)などの元素の単体膜、あるいは、前記元素の窒化膜(代表的には窒化タンタル膜、窒化タングステン膜、窒化チタン膜)、あるいは、前記元素を組み合わせた合金膜(代表的にはMo−W合金、Mo−Ta合金)、あるいは、前記元素のシリサイド膜(代表的にはタングステンシリサイド膜、チタンシリサイド膜)などを用いることができる。なお、上述した単体膜、窒化膜、合金膜、シリサイド膜などは、単層で用いてもよいし、積層して用いてもよい。
絶縁膜110118は、公知の手段(スパッタ法又はプラズマCVD法等)によって、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)等の酸素又は窒素を有する絶縁膜やDLC(ダイヤモンドライクカ−ボン)等の炭素を含む膜の単層構造、若しくはこれらの積層構造で設けることができる。
絶縁膜110119は、シロキサン樹脂、あるいは、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)等の酸素又は窒素を有する絶縁膜やDLC(ダイヤモンドライクカ−ボン)等の炭素を含む膜、あるいは、エポキシ、ポリイミド、ポリアミド、ポリビニルフェノ−ル、ベンゾシクロブテン、アクリル等の有機材料、からなる単層若しくは積層構造で設けることができる。なお、シロキサン樹脂とは、Si−O−Si結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いることもできる。あるいは、置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。なお、本発明に適応できる半導体装置において、絶縁膜110118を設けずにゲート電極110117を覆うように直接絶縁膜110119を設けることも可能である。
導電膜110123は、Al、Ni、C、W、Mo、Ti、Pt、Cu、Ta、Au、Mnなどの元素の単体膜、あるいは、前記元素の窒化膜、あるいは、前記元素を組み合わせた合金膜、あるいは、前記元素のシリサイド膜などを用いることができる。例えば、前記元素を複数含む合金として、C及びTiを含有したAl合金、Niを含有したAl合金、C及びNiを含有したAl合金、C及びMnを含有したAl合金等を用いることができる。また、積層構造で設ける場合、AlをMo又はTiなどで挟み込んだ構造とすることができる。こうすることで、Alの熱や化学反応に対する耐性を向上することができる。
次に、図43(A)に示した、複数の異なる構造を有するトランジスタの断面図を参照して、各々の構造の特徴について説明する。
110101は、シングルドレイントランジスタであり、簡便な方法で製造できるため、製造コストが低く、歩留まりを高く製造できる利点がある。ここで、半導体層110113、110115は、それぞれ不純物の濃度が異なり、半導体層110113はチャネル領域、半導体層110115はソース領域及びドレイン領域として用いる。このように、不純物の量を制御することで、半導体層の抵抗率を制御できる。また、半導体層と導電膜110123との電気的な接続状態を、オ−ミック接続に近づけることができる。なお、不純物の量の異なる半導体層を作り分ける方法としては、ゲート電極110117をマスクとして半導体層に不純物をド−ピングする方法を用いることができる。
110102は、ゲート電極110117に一定以上のテーパー角を有するトランジスタであり、簡便な方法で製造できるため、製造コストが低く、歩留まりを高く製造できる利点がある。ここで、半導体層110113、110114、110115は、それぞれ不純物濃度が異なり、半導体層110113はチャネル領域、半導体層110114は低濃度ドレイン(Lightly Doped Drain:LDD)領域、半導体層110115はソース領域及びドレイン領域として用いる。このように、不純物の量を制御することで、半導体層の抵抗率を制御できる。また、半導体層と導電膜110123との電気的な接続状態を、オ−ミック接続に近づけることができる。また、LDD領域を有するため、トランジスタ内部に高電界がかかりにくく、ホットキャリアによる素子の劣化を抑制することができる。なお、不純物の量の異なる半導体層を作り分ける方法としては、ゲート電極110117をマスクとして半導体層に不純物をド−ピングする方法を用いることができる。110102においては、ゲート電極110117が一定以上のテーパー角を有しているため、ゲート電極110117を通過して半導体層にド−ピングされる不純物の濃度に勾配を持たせることができ、簡便にLDD領域を形成することができる。
110103は、ゲート電極110117が少なくとも2層で構成され、下層のゲート電極が上層のゲート電極よりも長い形状を有するトランジスタである。本明細書中においては、上層のゲート電極及び下層のゲート電極の形状を、帽子型と呼ぶ。ゲート電極110117の形状が帽子型であることによって、フォトマスクを追加することなく、LDD領域を形成することができる。なお、110103のように、LDD領域がゲート電極110117と重なっている構造を、特にGOLD構造(Gate Overlapped LDD)と呼ぶ。なお、ゲート電極110117の形状を帽子型とする方法としては、次のような方法を用いてもよい。
まず、ゲート電極110117をパタ−ニングする際に、ドライエッチングにより、下層のゲート電極及び上層のゲート電極をエッチングして側面に傾斜(テーパー)のある形状にする。続いて、異方性エッチングにより上層のゲート電極の傾斜を垂直に近くなるように加工する。これにより、断面形状が帽子型のゲート電極が形成される。その後、2回、不純物元素をド−ピングすることによって、チャネル領域として用いる半導体層110113、LDD領域として用いる半導体層110114、ソ−ス電極及びドレイン電極として用いる半導体層110115が形成される。
なお、ゲート電極110117と重なっているLDD領域をLov領域、ゲート電極110117と重なっていないLDD領域をLoff領域と呼ぶことにする。ここで、Loff領域はオフ電流値を抑える効果は高いが、ドレイン近傍の電界を緩和してホットキャリアによるオン電流値の劣化を防ぐ効果は低い。一方、Lov領域はドレイン近傍の電界を緩和し、オン電流値の劣化の防止には有効であるが、オフ電流値を抑える効果は低い。よって、種々の回路毎に、求められる特性に応じた構造のトランジスタを作製することが好ましい。たとえば、本発明に適応できる半導体装置を表示装置として用いる場合、画素トランジスタは、オフ電流値を抑えるために、Loff領域を有するトランジスタを用いることが好適である。一方、周辺回路におけるトランジスタは、ドレイン近傍の電界を緩和し、オン電流値の劣化を防止するために、Lov領域を有するトランジスタを用いることが好適である。
110104は、ゲート電極110117の側面に接して、サイドウォ−ル110121を有するトランジスタである。サイドウォ−ル110121を有することによって、サイドウォ−ル110121と重なる領域をLDD領域とすることができる。
110105は、半導体層にマスクを用いてド−ピングすることにより、LDD(Loff)領域を形成したトランジスタである。こうすることにより、確実にLDD領域を形成することができ、トランジスタのオフ電流値を低減することができる。
110106は、半導体層にマスクを用いてド−ピングすることにより、LDD(Lov)領域を形成したトランジスタである。こうすることにより、確実にLDD領域を形成することができ、トランジスタのドレイン近傍の電界を緩和し、オン電流値の劣化を低減することができる。
次に、図43(B)乃至(G)を参照して、本発明を適用できる半導体装置が有することのできるトランジスタの作製方法の例を説明する。
なお、本発明を適用できる半導体装置が有することのできるトランジスタの構造及び作製方法は、図43に示すものに限定されず、様々な構造及び作製方法を用いることができる。
本実施の形態においては、基板110111の表面に、絶縁膜110112の表面に、半導体層110113の表面に、110114の表面に、110115の表面に、絶縁膜110116の表面に、絶縁膜110118の表面に、又は絶縁膜110119の表面に、プラズマ処理を用いて酸化又は窒化を行うことにより、半導体層又は絶縁膜を酸化又は窒化することができる。このように、プラズマ処理を用いて半導体層又は絶縁膜を酸化又は窒化することによって、当該半導体層又は当該絶縁膜の表面を改質し、CVD法やスパッタ法により形成した絶縁膜と比較してより緻密な絶縁膜を形成することができるため、ピンホール等の欠陥を抑制し半導体装置の特性等を向上させることが可能となる。
まず、基板110111の表面をフッ酸(HF)、アルカリ又は純水を用いて洗浄する。基板110111は、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどのガラス基板、石英基板、セラミック基板又はステンレスを含む金属基板等を用いることができる。他にも、ポリエチレンテレフタレ−ト(PET)、ポリエチレンナフタレ−ト(PEN)、ポリエ−テルサルフォン(PES)に代表されるプラスチックや、アクリル等の可撓性を有する合成樹脂からなる基板を用いることも可能である。なお、ここでは基板110111としてガラス基板を用いる場合を示す。
ここで、基板110111の表面にプラズマ処理を行うことで、基板110111の表面を酸化又は窒化することによって、基板110111の表面に酸化膜又は窒化膜を形成してもよい(図43(B))。表面にプラズマ処理を行うことで形成された酸化膜又は窒化膜などの絶縁膜を、以下では、プラズマ処理絶縁膜とも記す。図43(B)においては、絶縁膜110131がプラズマ処理絶縁膜である。一般的に、ガラス又はプラスチック等の基板上に薄膜トランジスタ等の半導体素子を設ける場合、ガラス又はプラスチック等に含まれるNaなどの、アルカリ金属又はアルカリ土類金属等の不純物元素が半導体素子に混入して汚染することによって、半導体素子の特性に影響を及ぼす恐れがある。しかし、ガラス又はプラスチック等からなる基板の表面を窒化することにより、基板に含まれるNaなどの、アルカリ金属又はアルカリ土類金属等の不純物元素が半導体素子に混入するのを防止することができる。
なお、プラズマ処理により表面を酸化する場合には、酸素雰囲気下(例えば、酸素(O2)と希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)雰囲気下、あるいは、酸素と水素(H2)と希ガス雰囲気下、あるいは、一酸化二窒素と希ガス雰囲気下)でプラズマ処理を行う。一方、プラズマ処理により半導体層を窒化する場合には、窒素雰囲気下(例えば、窒素(N2)と希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)雰囲気下、あるいは、窒素と水素と希ガス雰囲気下、あるいは、NH3と希ガス雰囲気下)でプラズマ処理を行う。希ガスとしては、例えばArを用いることができる。あるいは、ArとKrを混合したガスを用いてもよい。そのため、プラズマ処理絶縁膜は、プラズマ処理に用いた希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)を含んでいる。たとえば、Arを用いた場合にはプラズマ処理絶縁膜にArが含まれている。
また、プラズマ処理は、上記ガスの雰囲気中において、電子密度が1×1011cm−3以上1×1013cm−3以下であり、プラズマの電子温度が0.5ev以上1.5eV以下で行うことが好適である。プラズマの電子密度が高密度であり、被処理物付近での電子温度が低いため、被処理物に対するプラズマによる損傷を防止することができる。また、プラズマの電子密度が1×1011cm−3以上と高密度であるため、プラズマ処理を用いて、被照射物を酸化又は窒化することよって形成される酸化物又は窒化膜は、CVD法やスパッタ法等により形成された膜と比較して膜厚等が均一性に優れ、且つ緻密な膜を形成することができる。あるいは、プラズマの電子温度が1eV以下と低いため、従来のプラズマ処理や熱酸化法と比較して低温度で酸化又は窒化処理を行うことができる。たとえば、ガラス基板の歪点温度よりも100度以上低い温度でプラズマ処理を行っても十分に酸化又は窒化処理を行うことができる。なお、プラズマを形成するための周波数としては、マイクロ波(2.45GHz)等の高周波を用いることができる。なお、以下に特に断らない場合は、プラズマ処理として上記条件を用いて行うものとする。
なお、図43(B)においては、基板110111の表面をプラズマ処理することによってプラズマ処理絶縁膜を形成する場合を示しているが、本実施の形態は、基板110111の表面にプラズマ処理絶縁膜を形成しない場合も含む。
なお、図43(C)乃至(G)においては、被処理物の表面をプラズマ処理することによって形成されるプラズマ処理絶縁膜を図示しないが、本実施の形態においては、基板110111、絶縁膜110112、半導体層110113、110114、110115、絶縁膜110116、絶縁膜110118、又は絶縁膜110119の表面に、プラズマ処理を行なうことによって形成されるプラズマ処理絶縁膜が存在する場合も含む。
次に、基板110111上に公知の手段(スパッタ法、LPCVD法、プラズマCVD法等)を用いて絶縁膜110112を形成する(図43(C))。絶縁膜110112としては、酸化珪素(SiOx)又は酸化窒化珪素(SiOxNy)(x>y)を用いることができる。
ここで、絶縁膜110112の表面にプラズマ処理を行い、絶縁膜110112を酸化又は窒化することによって、絶縁膜110112の表面にプラズマ処理絶縁膜を形成してもよい。絶縁膜110112の表面を酸化することによって、絶縁膜110112の表面を改質しピンホール等の欠陥の少ない緻密な膜を得ることができる。また、絶縁膜110112の表面を酸化することによって、N原子の含有率が低いプラズマ処理絶縁膜を形成することができるため、プラズマ処理絶縁膜に半導体層を設けた場合にプラズマ処理絶縁膜と半導体層界面特性が向上する。また、プラズマ処理絶縁膜は、プラズマ処理に用いた希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)を含んでいる。なお、プラズマ処理は上述した条件下で同様に行うことができる。
次に、絶縁膜110112上に島状の半導体層110113、110114を形成する(図43(D))。島状の半導体層110113、110114は、絶縁膜110112上に公知の手段(スパッタ法、LPCVD法、プラズマCVD法等)を用いてシリコン(Si)を主成分とする材料(例えばSixGe1−x等)等を用いて非晶質半導体層を形成し、当該非晶質半導体層を結晶化させ、半導体層を選択的にエッチングすることにより設けることができる。なお、非晶質半導体層の結晶化は、レ−ザ結晶化法、RTA又はファーネスアニール炉を用いる熱結晶化法、結晶化を助長する金属元素を用いる熱結晶化法又はこれら方法を組み合わせた方法等の公知の結晶化法により行うことができる。なお、ここでは、島状の半導体層の端部を直角に近い形状(θ=85〜100°)で設ける。あるいは、低濃度ドレイン領域となる半導体層110114は、マスクを用いて不純物をド−ピングすることによって形成されてもよい。
ここで、半導体層110113、110114の表面にプラズマ処理を行い、半導体層110113、110114の表面を酸化又は窒化することによって、半導体層110113、110114の表面にプラズマ処理絶縁膜を形成してもよい。例えば、半導体層110113、110114としてSiを用いた場合、プラズマ処理絶縁膜として、酸化珪素(SiOx)又は窒化珪素(SiNx)が形成される。あるいは、プラズマ処理により半導体層110113、110114を酸化させた後に、再度プラズマ処理を行うことによって窒化させてもよい。この場合、半導体層110113、110114に接して酸化珪素(SiOx)が形成され、当該酸化珪素の表面に窒化酸化珪素(SiNxOy)(x>y)が形成される。なお、プラズマ処理により半導体層を酸化する場合には、酸素雰囲気下(例えば、酸素(O2)と希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)雰囲気下、あるいは、酸素と水素(H2)と希ガス雰囲気下又は一酸化二窒素と希ガス雰囲気下)、でプラズマ処理を行う。一方、プラズマ処理により半導体層を窒化する場合には、窒素雰囲気下(例えば、窒素(N2)と希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)雰囲気下、あるいは、窒素と水素と希ガス雰囲気下又はNH3と希ガス雰囲気下)、でプラズマ処理を行う。希ガスとしては、例えばArを用いることができる。また、ArとKrを混合したガスを用いてもよい。そのため、プラズマ処理絶縁膜は、プラズマ処理に用いた希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)を含んでいる。たとえば、Arを用いた場合にはプラズマ処理絶縁膜にArが含まれている。
次に、絶縁膜110116を形成する(図43(E))。絶縁膜110116は、公知の手段(スパッタ法、LPCVD法、プラズマCVD法等)を用いて、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)等の酸素又は窒素を有する絶縁膜の単層構造、又はこれらの積層構造で設けることができる。なお、半導体層110113、110114の表面をプラズマ処理することにより、半導体層110113、110114の表面にプラズマ処理絶縁膜を形成した場合には、プラズマ処理絶縁膜を絶縁膜110116として用いることも可能である。
ここで、絶縁膜110116の表面にプラズマ処理を行い、絶縁膜110116の表面を酸化又は窒化することによって、絶縁膜110116の表面にプラズマ処理絶縁膜を形成してもよい。なお、プラズマ処理絶縁膜は、プラズマ処理に用いた希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)を含んでいる。また、プラズマ処理は上述した条件下で同様に行うことができる。
あるいは、一旦酸素雰囲気下でプラズマ処理を行うことにより絶縁膜110116を酸化させた後に、再度窒素雰囲気下でプラズマ処理を行うことにより窒化させてもよい。このように、絶縁膜110116にプラズマ処理を行い、絶縁膜110116の表面を酸化又は窒化することによって、絶縁膜110116の表面を改質し緻密な膜を形成することができる。プラズマ処理を行うことによって得られた絶縁膜は、CVD法やスパッタ法で形成された絶縁膜と比較して緻密でピンホール等の欠陥も少ないため、薄膜トランジスタの特性を向上させることができる。
次に、ゲート電極110117を形成する(図43(F))。ゲート電極110117は、公知の手段(スパッタ法、LPCVD法、プラズマCVD法等)を用いて形成することができる。
110101においては、ゲート電極110117を形成した後に不純物ド−ピングを行なうことで、ソース領域及びドレイン領域として用いる半導体層110115を形成することができる。
110102においては、ゲート電極110117を形成した後に不純物ド−ピングを行なうことで、LDD領域として用いる110114と、半導体層ソース領域及びドレイン領域として用いる半導体層110115を形成することができる。
110103においては、ゲート電極110117を形成した後に不純物ド−ピングを行なうことで、LDD領域として用いる110114と、半導体層ソース領域及びドレイン領域として用いる半導体層110115を形成することができる。
110104においては、ゲート電極110117の側面にサイドウォ−ル110121を形成した後、不純物ド−ピングを行なうことで、LDD領域として用いる110114と、半導体層ソース領域及びドレイン領域として用いる半導体層110115を形成することができる。
なお、サイドウォ−ル110121は、酸化珪素(SiOx)又は窒化珪素(SiNx)を用いることができる。サイドウォ−ル110121をゲート電極110117の側面に形成する方法としては、たとえば、ゲート電極110117を形成した後に、酸化珪素(SiOx)又は窒化珪素(SiNx)を公知の方法で成膜した後に、異方性エッチングによって酸化珪素(SiOx)又は窒化珪素(SiNx)膜をエッチングする方法を用いることができる。こうすることで、ゲート電極110117の側面にのみ酸化珪素(SiOx)又は窒化珪素(SiNx)膜を残すことができるので、ゲート電極110117の側面にサイドウォ−ル110121を形成することができる。
110105においては、ゲート電極110117を覆うようにマスク110122を形成した後、不純物ド−ピングを行なうことで、LDD(Loff)領域として用いる110114と、半導体層ソース領域及びドレイン領域として用いる半導体層110115を形成することができる。
110106においては、ゲート電極110117を形成した後に不純物ド−ピングを行なうことで、LDD(Lov)領域として用いる110114と、半導体層ソース領域及びドレイン領域として用いる半導体層110115を形成することができる。
次に、絶縁膜110118を形成する(図43(G))。絶縁膜110118は、公知の手段(スパッタ法やプラズマCVD法等)により、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)等の酸素又は窒素を有する絶縁膜やDLC(ダイヤモンドライクカ−ボン)等の炭素を含む膜の単層構造、又はこれらの積層構造で設けることができる。
ここで、絶縁膜110118の表面にプラズマ処理を行い、絶縁膜110118の表面を酸化又は窒化することによって、絶縁膜110118の表面にプラズマ処理絶縁膜を形成してもよい。なお、プラズマ処理絶縁膜は、プラズマ処理に用いた希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)を含んでいる。また、プラズマ処理は上述した条件下で同様に行うことができる。
次に、絶縁膜110119を形成する。絶縁膜110119は、公知の手段(スパッタ法やプラズマCVD法等)により、酸化珪素(SiOx)、窒化珪素(SiNx)、酸化窒化珪素(SiOxNy)(x>y)、窒化酸化珪素(SiNxOy)(x>y)等の酸素又は窒素を有する絶縁膜やDLC(ダイヤモンドライクカ−ボン)等の炭素を含む膜を用いることができる他に、エポキシ、ポリイミド、ポリアミド、ポリビニルフェノ−ル、ベンゾシクロブテン、アクリル等の有機材料やシロキサン樹脂の単層構造、又はこれらの積層構造で設けることができる。なお、シロキサン樹脂とは、Si−O−Si結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いることもできる。あるいは、置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。また、プラズマ処理絶縁膜には、プラズマ処理に用いた希ガス(He、Ne、Ar、Kr、Xeの少なくとも一つを含む)が含まれており、例えばArを用いた場合にはプラズマ処理絶縁膜中にArが含まれている。
絶縁膜110119としてポリイミド、ポリアミド、ポリビニルフェノ−ル、ベンゾシクロブテン、アクリル等の有機材料やシロキサン樹脂等を用いた場合、絶縁膜110119の表面をプラズマ処理により酸化又は窒化することにより、当該絶縁膜の表面を改質することができる。表面を改質することによって、絶縁膜110119の強度が向上し開口部形成時等におけるクラックの発生やエッチング時の膜減り等の物理的ダメ−ジを低減することが可能となる。また、絶縁膜110119の表面が改質されることによって、絶縁膜110119上に導電膜110123を形成する場合に導電膜との密着性が向上する。例えば、絶縁膜110119としてシロキサン樹脂を用いてプラズマ処理を用いて窒化を行った場合、シロキサン樹脂の表面が窒化されることにより窒素又は希ガスを含むプラズマ処理絶縁膜が形成され、物理的強度が向上する。
次に、半導体層110115と電気的に接続された導電膜110123を形成するため、絶縁膜110119、絶縁膜110118、絶縁膜110116にコンタクトホールを形成する。なお、コンタクトホールの形状はテーパー状であってもよい。こうすることで、導電膜110123のカバレッジを向上させることができる。
図44は、ボトムゲート型のトランジスタの断面構造及び容量素子の断面構造を示す。
基板110501上に第1の絶縁膜(絶縁膜110502)が全面に形成されている。第1の絶縁膜は、基板側からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうことを防ぐ機能を有する。つまり、第1の絶縁膜は下地膜としての機能を有する。したがって、信頼性の高いトランジスタを作製することができる。なお、第1の絶縁膜としては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの単層、又はこれらの積層を用いることができる。
第1の絶縁膜上に、第1の導電層(導電層110503及び導電層110504)が形成されている。導電層110503は、トランジスタ110520のゲート電極として機能する部分を含む。導電層110504は、容量素子110521の第1の電極として機能する部分を含む。なお、第1の導電層としては、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、Ag、Au、Pt、NA−Si、Zn、Fe、Ba、Geなど、又はこれらの合金を用いることができる。あるいは、これらの元素(合金も含む)の積層を用いることができる。
少なくとも第1の導電層を覆うように、第2の絶縁膜(絶縁膜110522)が形成されている。第2の絶縁膜は、ゲート絶縁膜としての機能を有する。なお、第2の絶縁膜としては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの単層、又はこれらの積層を用いることができる。
なお、半導体層に接する部分の第2の絶縁膜としては、酸化シリコン膜を用いることが望ましい。なぜなら、半導体層と第2の絶縁膜とが接する界面におけるトラップ準位が少なくなるからである。
なお、第2の絶縁膜がMoと接する場合、Moと接する部分の第2の絶縁膜としては酸化シリコン膜を用いることが望ましい。なぜなら、酸化シリコン膜はMoを酸化させないからである。
第2の絶縁膜上のうち第1の導電層と重なって形成されている部分の一部に、フォトリソグラフィ法、インクジェット法又は印刷法などによって、半導体層が形成されている。そして、半導体層の一部は、第2の絶縁膜上のうち第1の導電層と重なって形成されていない部分まで延長されている。半導体層は、チャネル形成領域(チャネル形成領域110510)、LDD領域(LDD領域110508、LDD領域110509)、不純物領域(不純物領域110505、不純物領域110506、不純物領域110507)を有している。チャネル形成領域110510は、トランジスタ110520のチャネル形成領域として機能する。LDD領域110508及びLDD領域110509は、トランジスタ110520のLDD領域とし機能する。なお、LDD領域110508及びLDD領域110509は必ずしも必要ではない。不純物領域110505は、トランジスタ110520のソース電極及びドレイン電極の一方として機能する部分を含む。不純物領域100506は、トランジスタ110520のソース電極及びドレイン電極の他方として機能する部分を含む。不純物領域110507は、容量素子110521の第2の電極として機能する部分を含む。
全面に、第3の絶縁膜(絶縁膜110511)が形成されている。第3の絶縁膜の一部には、選択的にコンタクトホールが形成されている。絶縁膜110511は、層間膜としての機能を有する。第3の絶縁膜としては、無機材料(酸化シリコン、窒化シリコン、酸化窒化シリコンなど)あるいは、低誘電率の有機化合物材料(感光性又は非感光性の有機樹脂材料)などを用いることができる。あるいは、シロキサンを含む材料を用いることもできる。なお、シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される材料である。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。あるいは、置換基としてフルオロ基を用いてもよい。あるいは、置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。
第3の絶縁膜上に、第2の導電層(導電層110512及び導電層110513)が形成されている。導電層110512は、第3の絶縁膜に形成されたコンタクトホールを介してトランジスタ110520のソース電極及びドレイン電極の他方と接続されている。したがって、導電層110512は、トランジスタ110520のソース電極及びドレイン電極の他方として機能する部分を含む。導電層110513は、容量素子110521の第1の電極として機能する部分を含む。なお、第2の導電層としては、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、Ag、Au、Pt、NA−Si、Zn、Fe、Ba、Geなど、又はこれらの合金を用いることができる。あるいは、これらの元素(合金も含む)の積層を用いることができる。
なお、第2の導電層が形成された後の工程として、様々な絶縁膜、又は様々な導電膜が形成されていてもよい。
トランジスタの半導体層にアモルファスシリコン(a−Si:H)膜を用いた場合のトランジスタ及び容量素子の構造について説明する。
図45は、トップゲート型のトランジスタの断面構造及び容量素子の断面構造を示す。
基板110201上に第1の絶縁膜(絶縁膜110202)が全面に形成されている。第1の絶縁膜は、基板側からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうことを防ぐ機能を有する。つまり、第1の絶縁膜は下地膜としての機能を有する。したがって、信頼性の高いトランジスタを作製することができる。なお、第1の絶縁膜としては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの単層、又はこれらの積層を用いることができる。
なお、第1の絶縁膜を必ずしも形成する必要はない。この場合は、工程数の削減を図ることができる。製造コストの削減を図ることができる。構造を簡単にできるので、歩留まりの向上を図ることができる。
第1の絶縁膜上に、第1の導電層(導電層110203、導電層110204及び導電層110205)が形成されている。導電層110203は、トランジスタ110220のソ−ス電極及びドレイン電極の一方の電極として機能する部分を含む。導電層110204は、トランジスタ110220のソ−ス電極及びドレイン電極の他方の電極として機能する部分を含む。導電層110205は、容量素子110221の第1の電極として機能する部分を含む。なお、第1の導電層としては、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、Ag、Au、Pt、NA−Si、Zn、Fe、Ba、Geなど、又はこれらの合金を用いることができる。あるいは、これらの元素(合金も含む)の積層を用いることができる。
導電層110203及び導電層110204の上部に、第1の半導体層(半導体層110206及び半導体層110207)が形成されている。半導体層110206は、ソ−ス電極とドレイン電極の一方の電極として機能する部分を含む。半導体層110207は、ソ−ス電極とドレイン電極の他方の電極として機能する部分を含む。なお、第1の半導体層としては、リン等を含んだシリコン等を用いることができる。
導電層110203と導電層110204との間であって、かつ第1の絶縁膜上に、第2の半導体層(半導体層110208)が形成されている。そして、半導体層110208の一部は、導電層110203上及び導電層110204上まで延長されている。半導体層110208は、トランジスタ110220のチャネル領域として機能する部分を含む。なお、第2の半導体層としては、アモルファスシリコン(a−Si:H)等の非結晶性を有する半導体層、又は微結晶半導体(μ−Si:H)等の半導体層などを用いることができる。
少なくとも半導体層110208及び導電層110205を覆うように、第2の絶縁膜(絶縁膜110209及び絶縁膜110210)が形成されている。第2の絶縁膜は、ゲート絶縁膜としての機能を有する。なお、第2の絶縁膜としては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの単層、又はこれらの積層を用いることができる。
なお、第2の半導体層に接する部分の第2の絶縁膜としては、酸化シリコン膜を用いることが望ましい。なぜなら、第2の半導体層と第2の絶縁膜とが接する界面におけるトラップ準位が少なくなるからである。
なお、第2の絶縁膜がMoと接する場合、Moと接する部分の第2の絶縁膜としては酸化シリコン膜を用いることが望ましい。なぜなら、酸化シリコン膜はMoを酸化させないからである。
第2の絶縁膜上に、第2の導電層(導電層110211及び導電層110212)が形成されている。導電層110211は、トランジスタ110220のゲート電極として機能する部分を含む。導電層110212は、容量素子110221の第2の電極、又は配線としての機能を有する。なお、第2の導電層としては、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、Ag、Au、Pt、NA−Si、Zn、Fe、Ba、Geなど、又はこれらの合金を用いることができる。あるいは、これらの元素(合金も含む)の積層を用いることができる。
なお、第2の導電層が形成された後の工程として、様々な絶縁膜、又は様々な導電膜が形成されていてもよい。
図46は、逆スタガ型(ボトムゲート型)のトランジスタの断面構造及び容量素子の断面構造を示す。特に、図46に示すトランジスタは、チャネルエッチ型と呼ばれる構造である。
基板110301上に第1の絶縁膜(絶縁膜110302)が全面に形成されている。第1の絶縁膜は、基板側からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうことを防ぐ機能を有する。つまり、第1の絶縁膜は下地膜としての機能を有する。したがって、信頼性の高いトランジスタを作製することができる。なお、第1の絶縁膜としては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの単層、又はこれらの積層を用いることができる。
なお、第1の絶縁膜を必ずしも形成する必要はない。この場合は、工程数の削減を図ることができる。製造コストの削減を図ることができる。構造を簡単にできるので、歩留まりの向上を図ることができる。
第1の絶縁膜上に、第1の導電層(導電層110303及び導電層110304)が形成されている。導電層110303は、トランジスタ110320のゲート電極として機能する部分を含む。導電層110304は、容量素子110321の第1の電極として機能する部分を含む。なお、第1の導電層としては、Ti、Mo、TB、Cr、W、Bl、Nd、Cu、Bg、Bu、Pt、NA−Si、Zn、Fe、Ba、Geなど、又はこれらの合金を用いることができる。あるいは、これらの元素(合金も含む)の積層を用いることができる。
少なくとも第1の導電層を覆うように、第2の絶縁膜(絶縁膜110302)が形成されている。第2の絶縁膜は、ゲート絶縁膜としての機能を有する。なお、第2の絶縁膜としては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの単層、又はこれらの積層を用いることができる。
なお、半導体層に接する部分の第2の絶縁膜としては、酸化シリコン膜を用いることが望ましい。なぜなら、半導体層と第2の絶縁膜とが接する界面におけるトラップ準位が少なくなるからである。
なお、第2の絶縁膜がMoと接する場合、Moと接する部分の第2の絶縁膜としては酸化シリコン膜を用いることが望ましい。なぜなら、酸化シリコン膜はMoを酸化させないからである。
第2の絶縁膜上のうち第1の導電層と重なって形成されている部分の一部に、フォトリソグラフィ法、インクジェット法又は印刷法などによって、第1の半導体層(半導体層110306)が形成されている。そして、半導体層110308の一部は、第2の絶縁膜上のうち第1の導電層と重なって形成されていない部分まで延長されている。半導体層110306は、トランジスタ110320のチャネル領域として機能する部分を含む。なお、半導体層110306としては、アモルファスシリコン(A−Si:H)等の非結晶性を有する半導体層、又は微結晶半導体(μ−Si:H)等の半導体層などを用いることができる。
第1の半導体層上の一部に、第2の半導体層(半導体層110307及び半導体層110307)が形成されている。半導体層110307は、ソ−ス電極とドレイン電極の一方の電極として機能する部分を含む。半導体層110308は、ソ−ス電極とドレイン電極の他方の電極として機能する部分を含む。なお、第2の導体層としては、リン等を含んだシリコン等を用いることができる。
第2の半導体層上及び第2の絶縁膜上に、第2の導電層(導電層110309、導電層110310及び導電層110311)が形成されている。導電層110309は、トランジスタ110320のソ−ス電極とドレイン電極の一方として機能する部分を含む。導電層110310は、トランジスタ110320のソ−スとドレイン電極の他方として機能する部分を含む。導電層110312は、容量素子110321の第2の電極として機能する部分を含む。なお、第2の導電層としては、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、Ag、Au、Pt、NA−Si、Zn、Fe、Ba、Geなど、又はこれらの合金を用いることができる。あるいは、これらの元素(合金も含む)の積層を用いることができる。
なお、第2の導電層が形成された後の工程として、様々な絶縁膜、又は様々な導電膜が形成されていてもよい。
ここで、チャネルエッチ型のトランジスタが特徴とする工程の一例を説明する。同じマスクを用いて、第1の半導体層及び第2の半導体層を形成することができる。具体的には、第1の半導体層と第2の半導体層とは連続して成膜される。そして、第1の半導体層及び第2の半導体層は、同じマスクを用いて形成される。
チャネルエッチ型のトランジスタが特徴とする工程の別の一例を説明する。新たなマスクを用いることなく、トランジスタのチャネル領域を形成することができる。具体的には、第2の導電層が形成された後で、第2の導電層をマスクとして用いて第2の半導体層の一部を除去する。あるいは、第2の導電層と同じマスクを用いて第2の半導体層の一部を除去する。そして、除去された第2の半導体層の下部に形成されている第1の半導体層がトランジスタのチャネル領域となる。
図47は、逆スタガ型(ボトムゲート型)のトランジスタの断面構造及び容量素子の断面構造を示す。特に、図47に示すトランジスタは、チャネル保護型(チャネルストップ型)と呼ばれる構造である。
基板110401上に第1の絶縁膜(絶縁膜110402)が全面に形成されている。第1の絶縁膜は、基板側からの不純物が半導体層に影響を及ぼし、トランジスタの性質が変化してしまうことを防ぐ機能を有する。つまり、第1の絶縁膜は下地膜としての機能を有する。したがって、信頼性の高いトランジスタを作製することができる。なお、第1の絶縁膜としては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの単層、又はこれらの積層を用いることができる。
なお、第1の絶縁膜を必ずしも形成する必要はない。この場合は、工程数の削減を図ることができる。製造コストの削減を図ることができる。構造を簡単にできるので、歩留まりの向上を図ることができる。
第1の絶縁膜上に、第1の導電層(導電層110403及び導電層110404)が形成されている。導電層110403は、トランジスタ110420のゲート電極として機能する部分を含む。導電層110404は、容量素子110421の第1の電極として機能する部分を含む。なお、第1の導電層としては、Ti、Mo、Ta、Cr、W、Cl、Nd、Cu、Cg、Cu、Pt、NC、Si、Zn、Fe、Ba、Geなど、又はこれらの合金を用いることができる。あるいは、これらの元素(合金も含む)の積層を用いることができる。
少なくとも第1の導電層を覆うように、第2の絶縁膜(絶縁膜110402)が形成されている。第2の絶縁膜は、ゲート絶縁膜としての機能を有する。なお、第2の絶縁膜としては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの単層、又はこれらの積層を用いることができる。
なお、半導体層に接する部分の第2の絶縁膜としては、酸化シリコン膜を用いることが望ましい。なぜなら、半導体層と第2の絶縁膜とが接する界面におけるトラップ準位が少なくなるからである。
なお、第2の絶縁膜がMoと接する場合、Moと接する部分の第2の絶縁膜としては酸化シリコン膜を用いることが望ましい。なぜなら、酸化シリコン膜はMoを酸化させないからである。
第2の絶縁膜上のうち第1の導電層と重なって形成されている部分の一部に、フォトリソグラフィ法、インクジェット法又は印刷法などによって、第1の半導体層(半導体層110406)が形成されている。そして、半導体層110408の一部は、第2の絶縁膜上のうち第1の導電層と重なって形成されていない部分まで延長されている。半導体層110406は、トランジスタ110420のチャネル領域として機能する部分を含む。なお、半導体層110406としては、アモルファスシリコン(C−Si:H)等の非結晶性を有する半導体層、又は微結晶半導体(μ−Si:H)等の半導体層などを用いることができる。
第1の半導体層上の一部に、第3の絶縁膜(絶縁膜110412)が形成されている。絶縁膜110412は、トランジスタ110420のチャネル領域がエッチングによって除去されることを防止する機能を有する。つまり、絶縁膜110412は、チャネル保護膜(チャネルストップ膜)として機能する。なお、第3の絶縁膜としては、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜(SiOxNy)などの単層、又はこれらの積層を用いることができる。
第1の半導体層上の一部及び第3の絶縁膜上の一部に、第2の半導体層(半導体層110407及び半導体層110408)が形成されている。半導体層110407は、ソ−ス電極とドレイン電極の一方の電極として機能する部分を含む。半導体層110408は、ソ−ス電極とドレイン電極の他方の電極として機能する部分を含む。なお、第2の導体層としては、リン等を含んだシリコン等を用いることができる。
第2の半導体層上に、第2の導電層(導電層110409、導電層110410及び導電層110411)が形成されている。導電層110409は、トランジスタ110420のソ−ス電極とドレイン電極の一方として機能する部分を含む。導電層110410は、トランジスタ110420のソ−スとドレイン電極の他方として機能する部分を含む。導電層110411は、容量素子110421の第2の電極として機能する部分を含む。なお、第2の導電層としては、Ti、Mo、Ta、Cr、W、Al、Nd、Cu、Ag、Au、Pt、NC、Si、Zn、Fe、Ca、Geなど、又はこれらの合金を用いることができる。あるいは、これらの元素(合金も含む)の積層を用いることができる。
なお、第2の導電層が形成された後の工程として、様々な絶縁膜、又は様々な導電膜が形成されていてもよい。
ここで、チャネル保護型のトランジスタが特徴とする工程の一例を説明する。同じマスクを用いて、第1の半導体層、第2の半導体層及び第2の導電層を形成することができる。同時に、チャネル領域を形成することができる。具体的には、第1の半導体層を成膜し、次に第3の絶縁膜(チャネル保護膜、チャネルストップ膜)を、マスクを用いて形成し、次に第2の半導体層と第2の導電層とを連続して成膜する。そして、第2の導電層が成膜された後で、第1の半導体層、第2の半導体層及び第2の導電層が同じマスクを用いて形成される。ただし、第3の絶縁膜の下部の第1の半導体層は、第3の絶縁膜によって保護されるのでエッチングによって除去されない。この部分(第1の半導体層のうち上部に第3の絶縁膜が形成された部分)がチャネル領域となる。
なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態および実施例の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態および実施例の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
なお、本実施の形態は、他の実施の形態および実施例で述べた内容(一部でもよい)を、具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示している。したがって、他の実施の形態および実施例で述べた内容は、本実施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
(実施の形態10)
本実施の形態においては、表示装置の一例、特に光学的な取り扱いを行なう場合について説明する。
図81(A)及び図81(B)に示す背面投影型表示装置130100は、プロジェクタユニット130111、ミラー130112、スクリーンパネル130101を備えている。その他に、スピーカー130102、操作スイッチ類130104を備えていてもよい。このプロジェクタユニット130111は、背面投影型表示装置130100の筐体130110の下部に配設され、映像信号に基づいて映像を映し出す投射光をミラー130112に向けて投射する。背面投影型表示装置130100はスクリーンパネル130101の背面から投影される映像を表示する構成となっている。
一方、図82は、前面投影型表示装置130200を示している。前面投影型表示装置130200は、プロジェクタユニット130111と投射光学系130201を備えている。この投射光学系130201は前面に配設するスクリーン等に映像を投影する構成となっている。
図81に示す背面投影型表示装置130100、図82に示す前面投影型表示装置130200に適用されるプロジェクタユニット130111の構成を以下に説明する。
図83は、プロジェクタユニット130111の一構成例を示している。このプロジェクタユニット130111は、光源ユニット130301及び変調ユニット130304を備えている。光源ユニット130301は、レンズ類を含んで構成される光源光学系130303と、光源ランプ130302を備えている。光源ランプ130302は迷光が拡散しないように筐体内に収納されている。光源ランプ130302としては、大光量の光を放射可能な、例えば、高圧水銀ランプ又はキセノンランプなどが用いられる。光源光学系130303は、光学レンズ、偏光機能を有するフィルム、位相差を調節するためのフィルム、IRフィルム等を適宜設けて構成される。そして、光源ユニット130301は、放射光が変調ユニット130304に入射するように配設されている。変調ユニット130304は、複数の表示パネル130308、カラーフィルタ、ダイクロイックミラー130305、全反射ミラー130306、プリズム130309、投射光学系130310を備えている。光源ユニット130301から放射された光は、ダイクロイックミラー130305で複数の光路に分離される。
各光路には、所定の波長若しくは波長帯の光を透過するカラーフィルタと、表示パネル130308が備えられている。透過型である表示パネル130308は映像信号に基づいて透過光を変調する。表示パネル130308を透過した各色の光は、プリズム130309に入射し投射光学系130310を通して、スクリーン上に映像を表示する。なお、フレネルレンズがミラー及びスクリーンの間に配設されていてもよい。そして、プロジェクタユニット130111によって投射されミラーで反射される投影光は、フレネルレンズによって概略平行光に変換され、スクリーンに投影される。
図84で示すプロジェクタユニット130111は、反射型の表示パネル130407、130408、130409を備えた構成を示している。
図84で示すプロジェクタユニット130111は、光源ユニット130301と変調ユニット130400を備えている。光源ユニット130301は、図83と同様の構成であってもよい。光源ユニット130301からの光は、ダイクロイックミラー130401、130402、全反射ミラー130403により、複数の光路に分けられて、偏光ビームスプリッタ130404、130405、130406に入射する。偏光ビームスプリッタ130404、130405、130406は、各色に対応する反射型表示パネル130407、130408、130409に対応して設けられている。反射型表示パネル130407、130408、130409は、映像信号に基づいて反射光を変調する。反射型表示パネル130407、130408、130409で反射された各色の光は、プリズム130309に入射することで合成されて、投射光学系130411を通して投射される。
光源ユニット130301から放射された光は、ダイクロイックミラー130401で赤の波長領域の光のみを透過し、緑及び青の波長領域の光を反射する。さらに、ダイクロイックミラー130402では、緑の波長領域の光のみが反射される。ダイクロイックミラー130401を透過した赤の波長領域の光は、全反射ミラー130403で反射され、偏光ビームスプリッタ130404へ入射し、青の波長領域の光は偏光ビームスプリッタ130405へ入射し、緑の波長領域の光は偏光ビームスプリッタ130406に入射する。偏光ビームスプリッタ130404、130405、130406は、入射光をP偏光とS偏光とに分離する機能を有し、且つP偏光のみを透過させる機能を有している。反射型表示パネル130407、130408、130409は、映像信号に基づいて、入射した光を偏光する。
各色に対応する反射型表示パネル130407、130408、130409には各色に対応するS偏光のみが入射する。なお、反射型表示パネル130407、130408、130409は液晶パネルであってもよい。このとき、液晶パネルは電界制御複屈折モード(ECB)で動作する。そして、液晶分子は基板に対してある角度をもって垂直配向している。よって、反射型表示パネル130407、130408、130409は画素がオフ状態にある時は入射光の偏光状態を変化させないで反射させるように表示分子が配向している。そして、画素がオン状態にある時は表示分子の配向状態が変化し、入射光の偏光状態が変化する。
図84に示すプロジェクタユニット130111は、図81に示す背面投影型表示装置130100及び、図82に示す前面投影型表示装置130200に適用することができる。
図85で示すプロジェクタユニットは単板式の構成を示している。図85(A)に示したプロジェクタユニット130111は、光源ユニット130301、表示パネル130507、投射光学系130511、位相差板130504を備えている。投射光学系130511は一つ又は複数のレンズにより構成されている。表示パネル130507にはカラーフィルタが備えられていてもよい。
図85(B)は、フィールドシーケンシャル方式で動作するプロジェクタユニット130111の構成を示している。フィールドシーケンシャル方式は、赤、緑、青などの各色の光を時間的にずらせて順次表示パネルに入射させて、カラーフィルタ無しでカラー表示を行う方式である。特に、入力信号変化に対する応答速度の大きい表示パネルと組み合わせると、高精細な映像を表示することができる。図85(B)では、光源ユニット130301と表示パネル130508の間に、赤、緑、青などの複数のカラーフィルタが備えられた回動式のカラーフィルタ板130505を備えている。
図85(C)で示すプロジェクタユニット130111は、カラー表示の方式として、マクロレンズを使った色分離方式の構成を示している。この方式は、マイクロレンズアレイ130506を表示パネル130509の光入射側に備え、各色の光をそれぞれの方向から照明することでカラー表示を実現する方式である。この方式を採用するプロジェクタユニット130111は、カラーフィルタによる光の損失が少ないので、光源ユニット130301からの光を有効に利用することができるという特徴を有している。図85(C)に示すプロジェクタユニット130111は、表示パネル130509に対して各色の光をそれぞれの方向から照明するように、ダイクロイックミラー130501、ダイクロイックミラー130502、赤色光用ダイクロイックミラー130503を備えている。
なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態および実施例の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態および実施例の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
なお、本実施の形態は、他の実施の形態および実施例で述べた内容(一部でもよい)を、具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示している。したがって、他の実施の形態および実施例で述べた内容は、本実施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
(実施の形態11)
本実施の形態においては、表示装置の動作について説明する。
図71は、表示装置の構成例を示す図である。
表示装置180100は、画素部180101、信号線駆動回路180103及び走査線駆動回路180104を有する。画素部180101には、複数の信号線S1乃至Smが信号線駆動回路180103から列方向に延伸して配置されている。画素部180101には、複数の走査線G1乃至Gnが走査線駆動回路180104から行方向に延伸して配置されている。そして、複数の信号線S1乃至Smと複数の走査線G1乃至Gnとがそれぞれ交差するところで、画素180102がマトリクス状に配置されている。
なお、信号線駆動回路180103は、信号線S1乃至Snそれぞれに信号を出力する機能を有する。この信号をビデオ信号と呼んでもよい。なお、走査線駆動回路180104は、走査線G1乃至Gmそれぞれに信号を出力する機能を有する。この信号を走査信号と呼んでもよい。
なお、画素180102は、少なくとも信号線と接続されたスイッチング素子を有している。このスイッチング素子は、走査線の電位(走査信)によってオン、オフが制御される。そして、スイッチング素子がオンしている場合に画素180102は選択され、オフしている場合に画素180102は選択されない。
画素180102が選択されている場合(選択状態)は、信号線から画素180102にビデオ信号が入力される。そして、画素180102の状態(例えば、輝度、透過率、保持容量の電圧など)は、この入力されたビデオ信号に応じて変化する。
画素180102が選択されていない場合(非選択状態)は、ビデオ信号が画素180102に入力されない。ただし、画素180102は選択時に入力されたビデオ信号に応じた電位を保持しているため、画素180102はビデオ信号に応じた(例えば、輝度、透過率、保持容量の電圧など)を維持する。
なお、表示装置の構成は、図71に限定されない。例えば、画素180102の構成に応じて、新たに配線(走査線、信号線、電源線、容量線又はコモン線など)を追加してもよい。別の例として、様々な機能を有する回路を追加してもよい。
図72は、表示装置の動作を説明するためのタイミングチャートの一例を示す。
図72のタイミングチャートは、1画面分の画像を表示する期間に相当する1フレーム期間を示す。1フレーム期間は特に限定はしないが、画像を見る人がちらつき(フリッカー)を感じないように少なくとも1/60秒以下とすることが好ましい。
図72のタイミングチャートは、1行目の走査線G1、i行目の走査線Gi(走査線G1乃至Gmのうちいずれか一)、i+1行目の走査線Gi+1及びm行目の走査線Gmがそれぞれ選択されるタイミングを示している。
なお、走査線が選択されると同時に、当該走査線に接続されている画素180102も選択される。例えば、i行目の走査線Giが選択されていると、i行目の走査線Giに接続されている画素180102も選択される。
走査線G1乃至Gmの走査線それぞれは、1行目の走査線G1からm行目の走査線Gmまで順に選択される(以下、走査するともいう)。例えば、i行目の走査線Giが選択されている期間は、i行目の走査線Gi以外の走査線(G1乃至Gi−1、Gi+1乃至Gm)は選択されない。そして、次の期間に、i+1行目の走査線Gi+1が選択される。なお、1つの走査線が選択されている期間を1ゲート選択期間と呼ぶ。
したがって、ある行の走査線が選択されると、当該走査線に接続された複数の画素180102に、信号線G1乃至信号線Gmそれぞれからビデオ信号が入力される。例えば、i行目の走査線Giが選択されている間、i行目の走査線Giに接続されている複数の画素180102は、各々の信号線S1乃至Snから任意のビデオ信号をそれぞれ入力する。こうして、個々の複数の画素180102を走査信号及びビデオ信号によって、独立して制御することができる。
次に、1ゲート選択期間を複数のサブゲート選択期間に分割した場合について説明する。
図73は、1ゲート選択期間を2つのサブゲート選択期間(第1のサブゲート選択期間及び第2のサブゲート選択期間)に分割した場合のタイミングチャートを示す。
なお、1ゲート選択期間を3つ以上のサブゲート選択期間に分割することもできる。
図73のタイミングチャートは、1画面分の画像を表示する期間に相当する1フレーム期間を示す。1フレーム期間は特に限定はしないが、画像を見る人がちらつき(フリッカー)を感じないように少なくとも1/60秒以下とすることが好ましい。
なお、1フレームは2つのサブフレーム(第1のサブフレーム及び第2のサブフレーム)に分割されている。
図73のタイミングチャートは、i行目の走査線Gi、i+1行目の走査線Gi+1、j行目の走査線Gj(走査線Gi+1乃至Gmのうちいずれか一)、j+1行目の走査線及びGj+1行目の走査線Gj+1がそれぞれ選択されるタイミングを示している。
なお、走査線が選択されると同時に、当該走査線に接続されている画素180102も選択される。例えば、i行目の走査線Giが選択されていると、i行目の走査線Giに接続されている画素180102も選択される。
なお、走査線G1乃至Gmの走査線それぞれは、各サブゲート選択期間内で順に走査される。例えば、ある1ゲート選択期間において、第1のサブゲート選択期間ではi行目の走査線Giが選択され、第2のサブゲート選択期間ではj行目の走査線Gjが選択される。すると、1ゲート選択期間において、あたかも同時に2行分の走査信号を選択したかのように動作させることが可能となる。このとき、第1のサブゲート選択期間と第2のサブゲート選択期間とで、別々のビデオ信号が信号線S1乃至Snに入力される。したがって、i行目に接続されている複数の画素180102とj行目に接続されている複数の画素180102とには、別々のビデオ信号を入力することができる。
次に、入力される画像データのフレームレート(入力フレームレートとも記す)と、表示のフレームレート(表示フレームレートとも記す)を変換する駆動方法について説明する。なお、フレームレートとは、1秒間あたりのフレームの数であり、単位はHzである。
本実施の形態では、入力フレームレートは、表示のフレームレートと、必ずしも一致していなくてもよい。入力フレームレートと表示フレームレートが異なる場合は、画像データのフレームレートを変換する回路(フレームレート変換回路)によって、フレームレートを変換することができる。こうすることによって、入力フレームレートと表示フレームレートが異なっている場合でも、様々な表示フレームレートで表示を行なうことができる。
入力フレームレートが表示フレームレートよりも大きい場合、入力される画像データの一部を破棄することで、様々な表示フレームレートに変換して表示を行なうことができる。この場合は、表示フレームレートを小さくできるため、表示するための駆動回路の動作周波数を小さくすることができ、消費電力を低減できる。一方、入力フレームレートが表示フレームレートよりも小さい場合、入力される画像データの全部または一部を複数回表示させる、入力される画像データから別の画像を生成する、入力される画像データとは関係のない画像を生成する、等の手段を用いることで、様々な表示フレームレートに変換して表示を行なうことができる。この場合は、表示フレームレートを大きくすることによって、動画の品質を向上することができる。
本実施の形態においては、入力フレームレートが表示フレームレートよりも小さい場合のフレームレート変換方法について詳細に説明する。なお、入力フレームレートが表示フレームレートよりも大きい場合のフレームレート変換方法については、入力フレームレートが表示フレームレートよりも小さい場合のフレームレート変換方法の逆の手順を実行することによって実現することができる。
本実施の形態においては、入力フレームレートと同じフレームレートで表示される画像のことを基本画像と呼ぶこととする。一方、基本画像とは異なるフレームレートで表示される画像であって、入力フレームレートと表示フレームレートの整合を取るために表示される画像のことを、補間画像と呼ぶこととする。基本画像には、入力される画像データと同じ画像を用いることができる。補間画像には、基本画像と同じ画像を用いることができる。さらに、基本画像とは異なる画像を作成し、作成した画像を補間画像とすることもできる。
補間画像を作成する場合は、入力される画像データの時間的変化(画像の動き)を検出し、これらの中間状態の画像を補間画像とする方法、基本画像の輝度にある係数をかけた画像を補間画像とする方法、入力された画像データから、異なる複数の画像を作成し、当該複数の画像を時間的に連続して提示する(当該複数の画像のうちの1つを基本画像とし、残りを補間画像とする)ことで、入力された画像データに対応する画像が表示されたように観察者に知覚させる方法、等がある。入力された画像データから異なる複数の画像を作成する方法としては、入力された画像データのガンマ値を変換する方法、入力された画像データに含まれる階調値を分割する方法、等がある。
なお、中間状態の画像(中間画像)とは、入力された画像データの時間的変化(画像の動き)を検出し、検出された動きを内挿して求められた画像である。このような方法によって中間画像を求めることを、動き補償と呼ぶこととする。
次に、フレームレート変換方法の具体例について説明する。この方法によれば、任意の有理数(n/m)倍のフレームレート変換を実現することができる。ここで、nおよびmは1以上の整数とする。本実施の形態におけるフレームレート変換方法は、第1のステップと、第2のステップに分けて取り扱うことができる。ここで、第1のステップは、任意の有理数(n/m)倍にフレームレート変換するステップである。ここでは、補間画像として基本画像を用いてもよいし、動き補償によって求めた中間画像を補間画像として用いてもよい。第2のステップは、入力された画像データまたは第1のステップにおいてフレームレート変換された各々の画像から、異なる複数の画像(サブ画像)を作成し、当該複数のサブ画像を時間的に連続して表示する方法を行なうためのステップである。第2のステップによる方法を用いることによって、実際は複数の異なる画像を表示しているのにもかかわらず、見た目上、元の画像が表示されたように人間の目に知覚させることもできる。
なお、本実施の形態におけるフレームレート変換方法は、第1のステップおよび第2のステップを両方用いてもよいし、第1のステップを省略して第2のステップのみ用いてもよいし、第2のステップを省略して第1のステップのみを用いてもよい。
まず、第1のステップとして、任意の有理数(n/m)倍のフレームレート変換について説明する。(図74参照)図74は、横軸は時間であり、縦軸は様々なnおよびmについて場合分けを行なって示したものである。図74内の図形は、表示される画像の模式図を表しており、その横位置によって表示されるタイミングを表している。さらに、図形内に表示した点によって、画像の動きを模式的に表しているものとする。ただし、これは説明のための例であり、表示される画像はこれに限定されない。この方法は、様々な画像に対して適用することができる。
期間Tinは、入力画像データの周期を表している。入力画像データの周期は、入力フレームレートに対応している。たとえば、入力フレームレートが60Hzの場合は、入力画像データの周期は1/60秒である。同様に、入力フレームレートが50Hzであれば、入力画像データの周期は1/50秒である。このように、入力画像データの周期(単位:秒)は入力フレームレート(単位:Hz)の逆数となる。なお、入力フレームレートは様々なものを用いることができる。たとえば、24Hz、50Hz、60Hz、70Hz、48Hz、100Hz、120Hz、140Hz、等を挙げることができる。ここで、24Hzはフィルム映画等に用いられるフレームレートである。50Hzは、PAL規格の映像信号等に用いられるフレームレートである。60Hzは、NTSC規格の映像信号等に用いられるフレームレートである。70Hzは、パーソナルコンピュータのディスプレイ入力信号等に用いられるフレームレートである。48Hz、100Hz、120Hz、140Hz、は、これらの2倍のフレームレートである。なお、2倍に限らず、様々な倍数のフレームレートであってもよい。このように、本実施の形態に示す方法によれば、様々な規格の入力信号に対してフレームレートの変換を実現することができる。
第1のステップにおける任意の有理数(n/m)倍のフレームレート変換の手順は、以下のとおりである。手順1として、第1の基本画像に対する第kの補間画像(kは1以上の整数;初期値は1)の表示タイミングを決定する。第kの補間画像の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk(m/n)倍した期間が経過した時点であるとする。手順2として、第kの補間画像の表示タイミングの決定に用いた係数k(m/n)が、整数であるかどうかを判別する。整数であった場合は、第kの補間画像の表示タイミングにおいて第(k(m/n)+1)の基本画像を表示し、第1のステップを終了する。整数でなかった場合は、手順3に進む。手順3として、第kの補間画像として用いる画像を決定する。具体的には、第kの補間画像の表示タイミングの決定に用いた係数k(m/n)を、x+y/nの形に変換する。ここで、xおよびyは整数であり、yはnよりも小さい数であるとする。そして、第kの補間画像を動き補償によって求めた中間画像とする場合は、第kの補間画像は、第(x+1)の基本画像から第(x+2)の基本画像までの画像の動きを(y/n)倍した動きに相当する画像として求めた中間画像とする。第kの補間画像を基本画像と同じ画像とする場合は、第(x+1)の基本画像を用いることができる。なお、画像の動きを(y/n)倍した動きに相当する画像として中間画像を求める方法については、別の部分で詳細に述べる。手順4として、対象とする補間画像を次の補間画像に移す。具体的には、kの値を1増加させ、手順1に戻る。
次に、第1のステップにおける手順において、nおよびmの値を具体的に示して詳細に説明する。
なお、第1のステップにおける手順を実行する仕組みは、装置に実装されたものであってもよいし、装置の設計段階であらかじめ決められたものであってもよい。第1のステップにおける手順を実行する仕組みが装置に実装されていれば、状況に応じた最適な動作が行われるように、駆動方法を切り替えることが可能となる。なお、ここでいう状況とは、画像データの内容、装置内外の環境(温度、湿度、気圧、光、音、磁界、電界、放射線量、高度、加速度、移動速度、等)、ユーザ設定、ソフトウエアバージョン、等を含む。一方、第1のステップにおける手順を実行する仕組みが装置の設計段階であらかじめ決められたものであれば、それぞれの駆動方法に最適な駆動回路を用いることができ、さらに、仕組みが決められていることによって、量産効果による製造コストの低減が期待できる。
n=1,m=1、すなわち変換比(n/m)が1(図74のn=1,m=1の箇所)の場合は、第1のステップにおける動作は次のようになる。まず、k=1のとき、手順1では、第1の基本画像に対する第1の補間画像の表示タイミングを決定する。第1の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk(m/n)倍すなわち1倍した期間が経過した時点である。
次に、手順2では、第1の補間画像の表示タイミングの決定に用いた係数k(m/n)が、整数であるかどうかを判別する。ここで、係数k(m/n)は1であるので、整数である。したがって、第1の補間画像の表示タイミングにおいては第(k(m/n)+1)すなわち第2の基本画像を表示し、第1のステップを終了する。
すなわち、変換比が1である場合は、第kの画像は基本画像であり、第k+1の画像は基本画像であり、画像表示周期は、入力画像データの周期の1倍であることを特徴とする。
具体的な表現としては、変換比が1(n/m=1)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、を、入力画像データの周期と等倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第i+1の画像データにしたがって表示されることを特徴とする。
ここで、変換比が1である場合は、フレームレート変換回路を省略することができるため、製造コストを低減できるという利点を有する。さらに、変換比が1である場合は、変換比が1より小さい場合よりも動画の品質を向上できるという利点を有する。さらに、変換比が1である場合は、変換比が1より大きい場合よりも消費電力および製造コストを低減できるという利点を有する。
n=2,m=1、すなわち変換比(n/m)が2(図74のn=2,m=1の箇所)の場合は、第1のステップにおける動作は次のようになる。まず、k=1のとき、手順1では、第1の基本画像に対する第1の補間画像の表示タイミングを決定する。第1の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk(m/n)倍すなわち1/2倍した期間が経過した時点である。
次に、手順2では、第1の補間画像の表示タイミングの決定に用いた係数k(m/n)が、整数であるかどうかを判別する。ここで、係数k(m/n)は1/2であるので、整数ではない。したがって、手順3に進む。
手順3では、第1の補間画像として用いる画像を決定する。そのために、係数1/2をx+y/nの形に変換する。係数1/2の場合は、x=0,y=1である。そして、第1の補間画像を動き補償によって求めた中間画像とする場合は、第1の補間画像は、第(x+1)すなわち第1の基本画像から第(x+2)すなわち第2の基本画像までの画像の動きをy/n倍すなわち1/2倍した動きに相当する画像として求めた中間画像とする。第1の補間画像を基本画像と同じ画像とする場合は、第(x+1)すなわち第1の基本画像を用いることができる。
ここまでの手順により、第1の補間画像の表示タイミングと、第1の補間画像として表示する画像を決定することができた。次に、手順4では、対象とする補間画像を、第1の補間画像から第2の補間画像へ移す。すなわち、kを1から2に変更し、手順1に戻る。
k=2のとき、手順1では、第1の基本画像に対する第2の補間画像の表示タイミングを決定する。第2の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk(m/n)倍すなわち1倍した期間が経過した時点である。
次に、手順2では、第2の補間画像の表示タイミングの決定に用いた係数k(m/n)が、整数であるかどうかを判別する。ここで、係数k(m/n)は1であるので、整数である。したがって、第2の補間画像の表示タイミングにおいては第(k(m/n)+1)すなわち第2の基本画像を表示し、第1のステップを終了する。
すなわち、変換比が2(n/m=2)である場合は、第kの画像は基本画像であり、第k+1の画像は補間画像であり、第k+2の画像は基本画像であり、画像表示周期は、入力画像データの周期の1/2倍であることを特徴とする。
具体的な表現としては、変換比が2(n/m=2)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、を、入力画像データの周期の1/2倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを1/2倍した動きに相当する画像データにしたがって表示され、前記第k+2の画像は、前記第i+1の画像データにしたがって表示されることを特徴とする。
さらに別の具体的な表現としては、変換比が2(n/m=2)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、を、入力画像データの周期の1/2倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データにしたがって表示され、前記第k+2の画像は、前記第i+1の画像データにしたがって表示されることを特徴とする。
具体的には、変換比が2である場合は、2倍速駆動、または単に倍速駆動とも呼ばれる。たとえば、入力フレームレートが60Hzであれば、表示フレームレートは120Hz(120Hz駆動)である。そして、ひとつの入力画像に対し、画像を2回連続して表示することになる。このとき、補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、特に顕著な画質改善効果をもたらす。これは、液晶素子の静電容量が印加電圧によって変動してしまう、いわゆるダイナミックキャパシタンスによる書き込み電圧不足の問題に関係する。すなわち、表示フレームレートを入力フレームレートよりも大きくすることによって、画像データの書き込み動作の頻度を大きくできるので、ダイナミックキャパシタンスによる書き込み電圧不足に起因する、動画の尾引き、残像等の障害を低減することができる。さらに、液晶表示装置の交流駆動と120Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を120Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、60Hz、120Hz、240Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。
n=3,m=1、すなわち変換比(n/m)が3(図74のn=3,m=1の箇所)の場合は、第1のステップにおける動作は次のようになる。まず、k=1のとき、手順1では、第1の基本画像に対する第1の補間画像の表示タイミングを決定する。第1の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk(m/n)倍すなわち1/3倍した期間が経過した時点である。
次に、手順2では、第1の補間画像の表示タイミングの決定に用いた係数k(m/n)が、整数であるかどうかを判別する。ここで、係数k(m/n)は1/3であるので、整数ではない。したがって、手順3に進む。
手順3では、第1の補間画像として用いる画像を決定する。そのために、係数1/3をx+y/nの形に変換する。係数1/3の場合は、x=0,y=1である。そして、第1の補間画像を動き補償によって求めた中間画像とする場合は、第1の補間画像は、第(x+1)すなわち第1の基本画像から第(x+2)すなわち第2の基本画像までの画像の動きをy/n倍すなわち1/3倍した動きに相当する画像として求めた中間画像とする。第1の補間画像を基本画像と同じ画像とする場合は、第(x+1)すなわち第1の基本画像を用いることができる。
ここまでの手順により、第1の補間画像の表示タイミングと、第1の補間画像として表示する画像を決定することができた。次に、手順4では、対象とする補間画像を、第1の補間画像から第2の補間画像へ移す。すなわち、kを1から2に変更し、手順1に戻る。
k=2のとき、手順1では、第1の基本画像に対する第2の補間画像の表示タイミングを決定する。第2の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk(m/n)倍すなわち2/3倍した期間が経過した時点である。
次に、手順2では、第2の補間画像の表示タイミングの決定に用いた係数k(m/n)が、整数であるかどうかを判別する。ここで、係数k(m/n)は2/3であるので、整数ではない。したがって、手順3に進む。
手順3では、第2の補間画像として用いる画像を決定する。そのために、係数2/3をx+y/nの形に変換する。係数2/3の場合は、x=0,y=2である。そして、第2の補間画像を動き補償によって求めた中間画像とする場合は、第2の補間画像は、第(x+1)すなわち第1の基本画像から第(x+2)すなわち第2の基本画像までの画像の動きをy/n倍すなわち2/3倍した動きに相当する画像として求めた中間画像とする。第2の補間画像を基本画像と同じ画像とする場合は、第(x+1)すなわち第1の基本画像を用いることができる。
ここまでの手順により、第2の補間画像の表示タイミングと、第2の補間画像として表示する画像を決定することができた。次に、手順4では、対象とする補間画像を、第2の補間画像から第3の補間画像へ移す。すなわち、kを2から3に変更し、手順1に戻る。
k=3のとき、手順1では、第1の基本画像に対する第3の補間画像の表示タイミングを決定する。第3の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk(m/n)倍すなわち1倍した期間が経過した時点である。
次に、手順2では、第3の補間画像の表示タイミングの決定に用いた係数k(m/n)が、整数であるかどうかを判別する。ここで、係数k(m/n)は1であるので、整数である。したがって、第3の補間画像の表示タイミングにおいては第(k(m/n)+1)すなわち第2の基本画像を表示し、第1のステップを終了する。
すなわち、変換比が3(n/m=3)である場合は、第kの画像は基本画像であり、第k+1の画像は補間画像であり、第k+2の画像は補間画像であり、第k+3の画像は基本画像であり、画像表示周期は、入力画像データの周期の1/3倍であることを特徴とする。
具体的な表現としては、変換比が3(n/m=3)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、第k+3の画像と、を、入力画像データの周期の1/3倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを1/3倍した動きに相当する画像データにしたがって表示され、前記第k+2の画像は、前記第iの画像から前記第i+1の画像までの動きを2/3倍した動きに相当する画像データにしたがって表示され、前記第k+3の画像は、前記第i+1の画像データにしたがって表示されることを特徴とする。
さらに別の具体的な表現としては、変換比が3(n/m=3)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、第k+3の画像と、を、入力画像データの周期の1/3倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データにしたがって表示され、前記第k+2の画像は、前記第iの画像データにしたがって表示され、前記第k+3の画像は、前記第i+1の画像データにしたがって表示されることを特徴とする。
ここで、変換比が3である場合は、変換比が3より小さい場合よりも動画の品質を向上できるという利点を有する。さらに、変換比が3である場合は、変換比が3より大きい場合よりも消費電力および製造コストを低減できるという利点を有する。
具体的には、変換比が3である場合は、3倍速駆動とも呼ばれる。たとえば、入力フレームレートが60Hzであれば、表示フレームレートは180Hz(180Hz駆動)である。そして、ひとつの入力画像に対し、画像を3回連続して表示することになる。このとき、補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と180Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を180Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、45Hz、90Hz、180Hz、360Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。
n=3,m=2、すなわち変換比(n/m)が3/2(図74のn=3,m=2の箇所)の場合は、第1のステップにおける動作は次のようになる。まず、k=1のとき、手順1では、第1の基本画像に対する第1の補間画像の表示タイミングを決定する。第1の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk(m/n)倍すなわち2/3倍した期間が経過した時点である。
次に、手順2では、第1の補間画像の表示タイミングの決定に用いた係数k(m/n)が、整数であるかどうかを判別する。ここで、係数k(m/n)は2/3であるので、整数ではない。したがって、手順3に進む。
手順3では、第1の補間画像として用いる画像を決定する。そのために、係数2/3をx+y/nの形に変換する。係数2/3の場合は、x=0,y=2である。そして、第1の補間画像を動き補償によって求めた中間画像とする場合は、第1の補間画像は、第(x+1)すなわち第1の基本画像から第(x+2)すなわち第2の基本画像までの画像の動きをy/n倍すなわち2/3倍した動きに相当する画像として求めた中間画像とする。第1の補間画像を基本画像と同じ画像とする場合は、第(x+1)すなわち第1の基本画像を用いることができる。
ここまでの手順により、第1の補間画像の表示タイミングと、第1の補間画像として表示する画像を決定することができた。次に、手順4では、対象とする補間画像を、第1の補間画像から第2の補間画像へ移す。すなわち、kを1から2に変更し、手順1に戻る。
k=2のとき、手順1では、第1の基本画像に対する第2の補間画像の表示タイミングを決定する。第2の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk(m/n)倍すなわち4/3倍した期間が経過した時点である。
次に、手順2では、第2の補間画像の表示タイミングの決定に用いた係数k(m/n)が、整数であるかどうかを判別する。ここで、係数k(m/n)は4/3であるので、整数ではない。したがって、手順3に進む。
手順3では、第2の補間画像として用いる画像を決定する。そのために、係数4/3をx+y/nの形に変換する。係数4/3の場合は、x=1,y=1である。そして、第2の補間画像を動き補償によって求めた中間画像とする場合は、第2の補間画像は、第(x+1)すなわち第2の基本画像から第(x+2)すなわち第3の基本画像までの画像の動きをy/n倍すなわち1/3倍した動きに相当する画像として求めた中間画像とする。第2の補間画像を基本画像と同じ画像とする場合は、第(x+1)すなわち第2の基本画像を用いることができる。
ここまでの手順により、第2の補間画像の表示タイミングと、第2の補間画像として表示する画像を決定することができた。次に、手順4では、対象とする補間画像を、第2の補間画像から第3の補間画像へ移す。すなわち、kを2から3に変更し、手順1に戻る。
k=3のとき、手順1では、第1の基本画像に対する第3の補間画像の表示タイミングを決定する。第3の補間画像の表示タイミングは、第1の基本画像が表示されてから、入力画像データの周期をk(m/n)倍すなわち2倍した期間が経過した時点である。
次に、手順2では、第3の補間画像の表示タイミングの決定に用いた係数k(m/n)が、整数であるかどうかを判別する。ここで、係数k(m/n)は2であるので、整数である。したがって、第3の補間画像の表示タイミングにおいては第(k(m/n)+1)すなわち第3の基本画像を表示し、第1のステップを終了する。
すなわち、変換比が3/2(n/m=3/2)である場合は、第kの画像は基本画像であり、第k+1の画像は補間画像であり、第k+2の画像は補間画像であり、第k+3の画像は基本画像であり、画像表示周期は、入力画像データの周期の2/3倍であることを特徴とする。
具体的な表現としては、変換比が3/2(n/m=3/2)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、第i+2の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、第k+3の画像と、を、入力画像データの周期の2/3倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを2/3倍した動きに相当する画像データにしたがって表示され、前記第k+2の画像は、前記第i+1の画像から前記第i+2の画像までの動きを1/3倍した動きに相当する画像データにしたがって表示され、前記第k+3の画像は、前記第i+2の画像データにしたがって表示されることを特徴とする。
さらに別の具体的な表現としては、変換比が3/2(n/m=3/2)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、第i+2の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、第k+3の画像と、を、入力画像データの周期の2/3倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データにしたがって表示され、前記第k+2の画像は、前記第i+1の画像データにしたがって表示され、前記第k+3の画像は、前記第i+2の画像データにしたがって表示されることを特徴とする。
ここで、変換比が3/2である場合は、変換比が3/2より小さい場合よりも動画の品質を向上できるという利点を有する。さらに、変換比が3/2である場合は、変換比が3/2より大きい場合よりも消費電力および製造コストを低減できるという利点を有する。
具体的には、変換比が3/2である場合は、3/2倍速駆動または1.5倍速駆動とも呼ばれる。たとえば、入力フレームレートが60Hzであれば、表示フレームレートは90Hz(90Hz駆動)である。そして、2つの入力画像に対し、画像を3回連続して表示することになる。このとき、補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。特に、120Hz駆動(倍速駆動)、180Hz駆動(3倍速駆動)等の駆動周波数の大きな駆動方法と比較すると、動き補償によって中間画像を求める回路の動作周波数を低減できるため、安価な回路が使用でき、製造コストおよび消費電力を低減できる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と90Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を90Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、45Hz、90Hz、180Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。
上記以外の正の整数nおよびmについては手順の詳細は省略するが、第1のステップにおけるフレームレート変換の手順にしたがうことで、変換比は任意の有理数(n/m)として設定することができる。なお、正の整数nおよびmの組み合わせのうち、変換比(n/m)が約分できる組み合わせについては、約分した後の変換比と同様に取り扱うことができる。
たとえば、n=4,m=1、すなわち変換比(n/m)が4(図74のn=4,m=1の箇所)の場合は、第kの画像は基本画像であり、第k+1の画像は補間画像であり、第k+2の画像は補間画像であり、第k+3の画像は補間画像であり、第k+4の画像は基本画像であり、画像表示周期は、入力画像データの周期の1/4倍であることを特徴とする。
さらに具体的な表現としては、変換比が4(n/m=4)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、第k+3の画像と、第k+4の画像と、を、入力画像データの周期の1/4倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを1/4倍した動きに相当する画像データにしたがって表示され、前記第k+2の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを1/2倍した動きに相当する画像データにしたがって表示され、前記第k+3の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを3/4倍した動きに相当する画像データにしたがって表示され、前記第k+4の画像は、前記第i+1の画像データにしたがって表示されることを特徴とする。
さらに別の具体的な表現としては、変換比が4(n/m=4)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、第k+3の画像と、第k+4の画像と、を、入力画像データの周期の1/4倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データにしたがって表示され、前記第k+2の画像は、前記第iの画像データにしたがって表示され、前記第k+3の画像は、前記第iの画像データにしたがって表示され、前記第k+4の画像は、前記第i+1の画像データにしたがって表示されることを特徴とする。
ここで、変換比が4である場合は、変換比が4より小さい場合よりも動画の品質を向上できるという利点を有する。さらに、変換比が4である場合は、変換比が4より大きい場合よりも消費電力および製造コストを低減できるという利点を有する。
具体的には、変換比が4である場合は、4倍速駆動とも呼ばれる。たとえば、入力フレームレートが60Hzであれば、表示フレームレートは240Hz(240Hz駆動)である。そして、1つの入力画像に対し、画像を4回連続して表示することになる。このとき、補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。特に、120Hz駆動(倍速駆動)、180Hz駆動(3倍速駆動)等の駆動周波数の小さな駆動方法と比較すると、さらに精度の高い動き補償によって求めた中間画像を補間画像として用いることができるため、さらに動画の動きを滑らかにすることができ、動画の品質を顕著に向上させることが可能である。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と240Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を240Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、40Hz、60Hz、120Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。
さらに、たとえば、n=4,m=3、すなわち変換比(n/m)が4/3(図74のn=4,m=3の箇所)の場合は、第kの画像は基本画像であり、第k+1の画像は補間画像であり、第k+2の画像は補間画像であり、第k+3の画像は補間画像であり、第k+4の画像は基本画像であり、画像表示周期は、入力画像データの周期の3/4倍であることを特徴とする。
さらに具体的な表現としては、変換比が4/3(n/m=4/3)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、第i+2の画像データと、第i+3の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、第k+3の画像と、第k+4の画像と、を、入力画像データの周期の3/4倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを3/4倍した動きに相当する画像データにしたがって表示され、前記第k+2の画像は、前記第i+1の画像から前記第i+2の画像までの動きを1/2倍した動きに相当する画像データにしたがって表示され、前記第k+3の画像は、前記第i+2の画像から前記第i+3の画像までの動きを1/4倍した動きに相当する画像データにしたがって表示され、前記第k+4の画像は、前記第i+3の画像データにしたがって表示されることを特徴とする。
さらに別の具体的な表現としては、変換比が4/3(n/m=4/3)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、第i+2の画像データと、第i+3の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、第k+3の画像と、第k+4の画像と、を、入力画像データの周期の3/4倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データにしたがって表示され、前記第k+2の画像は、前記第i+1の画像データにしたがって表示され、前記第k+3の画像は、前記第i+2の画像データにしたがって表示され、前記第k+4の画像は、前記第i+3の画像データにしたがって表示されることを特徴とする。
ここで、変換比が4/3である場合は、変換比が4/3より小さい場合よりも動画の品質を向上できるという利点を有する。さらに、変換比が4/3である場合は、変換比が4/3より大きい場合よりも消費電力および製造コストを低減できるという利点を有する。
具体的には、変換比が4/3である場合は、4/3倍速駆動または1.25倍速駆動とも呼ばれる。たとえば、入力フレームレートが60Hzであれば、表示フレームレートは80Hz(80Hz駆動)である。そして、3つの入力画像に対し、画像を4回連続して表示することになる。このとき、補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。特に、120Hz駆動(倍速駆動)、180Hz駆動(3倍速駆動)等の駆動周波数の大きな駆動方法と比較すると、動き補償によって中間画像を求める回路の動作周波数を低減できるため、安価な回路が使用でき、製造コストおよび消費電力を低減できる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と80Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を80Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、40Hz、80Hz、160Hz、240Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。
さらに、たとえば、n=5,m=1、すなわち変換比(n/m)が5(図74のn=5,m=1の箇所)の場合は、第kの画像は基本画像であり、第k+1の画像は補間画像であり、第k+2の画像は補間画像であり、第k+3の画像は補間画像であり、第k+4の画像は補間画像であり、第k+5の画像は基本画像であり、画像表示周期は、入力画像データの周期の1/5倍であることを特徴とする。
さらに具体的な表現としては、変換比が5(n/m=5)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、第k+3の画像と、第k+4の画像と、第k+5の画像と、を、入力画像データの周期の1/5倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを1/5倍した動きに相当する画像データにしたがって表示され、前記第k+2の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを2/5倍した動きに相当する画像データにしたがって表示され、前記第k+3の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを3/5倍した動きに相当する画像データにしたがって表示され、前記第k+4の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを4/5倍した動きに相当する画像データにしたがって表示され、前記第k+5の画像は、前記第i+1の画像データにしたがって表示されることを特徴とする。
さらに別の具体的な表現としては、変換比が5(n/m=5)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、第k+3の画像と、第k+4の画像と、第k+5の画像と、を、入力画像データの周期の1/5倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データにしたがって表示され、前記第k+2の画像は、前記第iの画像データにしたがって表示され、前記第k+3の画像は、前記第iの画像データにしたがって表示され、前記第k+4の画像は、前記第iの画像データにしたがって表示され、前記第k+5の画像は、前記第i+1の画像データにしたがって表示されることを特徴とする。
ここで、変換比が5である場合は、変換比が5より小さい場合よりも動画の品質を向上できるという利点を有する。さらに、変換比が5である場合は、変換比が5より大きい場合よりも消費電力および製造コストを低減できるという利点を有する。
具体的には、変換比が5である場合は、5倍速駆動とも呼ばれる。たとえば、入力フレームレートが60Hzであれば、表示フレームレートは300Hz(300Hz駆動)である。そして、1つの入力画像に対し、画像を5回連続して表示することになる。このとき、補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。特に、120Hz駆動(倍速駆動)、180Hz駆動(3倍速駆動)等の駆動周波数の小さな駆動方法と比較すると、さらに精度の高い動き補償によって求めた中間画像を補間画像として用いることができるため、さらに動画の動きを滑らかにすることができ、動画の品質を顕著に向上させることが可能である。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と300Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を300Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、50Hz、60Hz、100Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。
さらに、たとえば、n=5,m=2、すなわち変換比(n/m)が5/2(図74のn=5,m=2の箇所)の場合は、第kの画像は基本画像であり、第k+1の画像は補間画像であり、第k+2の画像は補間画像であり、第k+3の画像は補間画像であり、第k+4の画像は補間画像であり、第k+5の画像は基本画像であり、画像表示周期は、入力画像データの周期の1/5倍であることを特徴とする。
さらに具体的な表現としては、変換比が5/2(n/m=5/2)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、第i+2の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、第k+3の画像と、第k+4の画像と、第k+5の画像と、を、入力画像データの周期の1/5倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを2/5倍した動きに相当する画像データにしたがって表示され、前記第k+2の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを4/5倍した動きに相当する画像データにしたがって表示され、前記第k+3の画像は、前記第i+1の画像データから前記第i+2の画像データまでの動きを1/5倍した動きに相当する画像データにしたがって表示され、前記第k+4の画像は、前記第i+1の画像データから前記第i+2の画像データまでの動きを3/5倍した動きに相当する画像データにしたがって表示され、前記第k+5の画像は、前記第i+2の画像データにしたがって表示されることを特徴とする。
さらに別の具体的な表現としては、変換比が5/2(n/m=5/2)である場合は、第i(iは正の整数)の画像データと、第i+1の画像データと、第i+2の画像データと、が、入力画像データとして一定の周期で順次入力され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、第k+3の画像と、第k+4の画像と、第k+5の画像と、を、入力画像データの周期の1/5倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データにしたがって表示され、前記第k+2の画像は、前記第iの画像データにしたがって表示され、前記第k+3の画像は、前記第i+1の画像データにしたがって表示され、前記第k+4の画像は、前記第i+1の画像データにしたがって表示され、前記第k+5の画像は、前記第i+2の画像データにしたがって表示されることを特徴とする。
ここで、変換比が5/2である場合は、変換比が5/2より小さい場合よりも動画の品質を向上できるという利点を有する。さらに、変換比が5/2である場合は、変換比が5より大きい場合よりも消費電力および製造コストを低減できるという利点を有する。
具体的には、変換比が5である場合は、5/2倍速駆動または2.5倍速駆動とも呼ばれる。たとえば、入力フレームレートが60Hzであれば、表示フレームレートは150Hz(150Hz駆動)である。そして、2つの入力画像に対し、画像を5回連続して表示することになる。このとき、補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。特に、120Hz駆動(倍速駆動)等の駆動周波数の小さな駆動方法と比較すると、さらに精度の高い動き補償によって求めた中間画像を補間画像として用いることができるため、さらに動画の動きを滑らかにすることができ、動画の品質を顕著に向上させることが可能である。さらに、180Hz駆動(3倍速駆動)等の駆動周波数の大きな駆動方法と比較すると、動き補償によって中間画像を求める回路の動作周波数を低減できるため、安価な回路が使用でき、製造コストおよび消費電力を低減できる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と150Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を150Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、50Hz、75Hz、150Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。
このように、正の整数nおよびmを様々に設定することによって、変換比は任意の有理数(n/m)として設定することができる。詳細な説明は省略するが、nが10以下の範囲では、
n=1,m=1、すなわち変換比(n/m)=1(1倍速駆動、60Hz)、
n=2,m=1、すなわち変換比(n/m)=2(2倍速駆動、120Hz)、
n=3,m=1、すなわち変換比(n/m)=3(3倍速駆動、180Hz)、
n=3,m=2、すなわち変換比(n/m)=3/2(3/2倍速駆動、90Hz)、
n=4,m=1、すなわち変換比(n/m)=4(4倍速駆動、240Hz)、
n=4,m=3、すなわち変換比(n/m)=4/3(4/3倍速駆動、80Hz)、
n=5,m=1、すなわち変換比(n/m)=5/1(5倍速駆動、300Hz)、
n=5,m=2、すなわち変換比(n/m)=5/2(5/2倍速駆動、150Hz)、
n=5,m=3、すなわち変換比(n/m)=5/3(5/3倍速駆動、100Hz)、
n=5,m=4、すなわち変換比(n/m)=5/4(5/4倍速駆動、75Hz)、
n=6,m=1、すなわち変換比(n/m)=6(6倍速駆動、360Hz)、
n=6,m=5、すなわち変換比(n/m)=6/5(6/5倍速駆動、72Hz)、
n=7,m=1、すなわち変換比(n/m)=7(7倍速駆動、420Hz)、
n=7,m=2、すなわち変換比(n/m)=7/2(7/2倍速駆動、210Hz)、
n=7,m=3、すなわち変換比(n/m)=7/3(7/3倍速駆動、140Hz)、
n=7,m=4、すなわち変換比(n/m)=7/4(7/4倍速駆動、105Hz)、
n=7,m=5、すなわち変換比(n/m)=7/5(7/5倍速駆動、84Hz)、
n=7,m=6、すなわち変換比(n/m)=7/6(7/6倍速駆動、70Hz)、
n=8,m=1、すなわち変換比(n/m)=8(8倍速駆動、480Hz)、
n=8,m=3、すなわち変換比(n/m)=8/3(8/3倍速駆動、160Hz)、
n=8,m=5、すなわち変換比(n/m)=8/5(8/5倍速駆動、96Hz)、
n=8,m=7、すなわち変換比(n/m)=8/7(8/7倍速駆動、68.6Hz)、
n=9,m=1、すなわち変換比(n/m)=9(9倍速駆動、540Hz)、
n=9,m=2、すなわち変換比(n/m)=9/2(9/2倍速駆動、270Hz)、
n=9,m=4、すなわち変換比(n/m)=9/4(9/4倍速駆動、135Hz)、
n=9,m=5、すなわち変換比(n/m)=9/5(9/5倍速駆動、108Hz)、
n=9,m=7、すなわち変換比(n/m)=9/7(9/7倍速駆動、77.1Hz)、
n=9,m=8、すなわち変換比(n/m)=9/8(9/8倍速駆動、67.5Hz)、
n=10,m=1、すなわち変換比(n/m)=10(10倍速駆動、600Hz)、
n=10,m=3、すなわち変換比(n/m)=10/3(10/3倍速駆動、200Hz)、
n=10,m=7、すなわち変換比(n/m)=10/7(10/7倍速駆動、85.7Hz)、
n=10,m=9、すなわち変換比(n/m)=10/9(10/9倍速駆動、66.7Hz)、
以上の組み合わせが考えられる。なお、周波数の表記は入力フレームレートが60Hzであるときの例であり、その他の入力フレームレートに対しては、それぞれの変換比を入力フレームレートと積算した値が駆動周波数となる。
なお、nが10より大きい整数である場合については、具体的なnおよびmの数字は挙げないが、様々なnおよびmに対し、この、第1のステップにおけるフレームレート変換の手順が適用できることは明らかである。
なお、表示される画像のうち、入力される画像データに動き補償を行なうことなく表示できる画像がどの程度含まれているかによって、変換比を決定することができる。具体的には、mが小さいほど、入力される画像データに動き補償を行なうことなく表示できる画像の割合は大きくなる。動き補償を行なう頻度が小さいと、動き補償を行なう回路の動作頻度を減少させることができるため、消費電力を小さくでき、さらに、動き補償によってエラーが含まれる画像(画像の動きを正確に反映していない中間画像)が作成されてしまう可能性を低くすることができるため、画像の品質を向上させることができる。このような変換比としては、nが10以下の範囲においては、たとえば、1,2,3,3/2,4,5,5/2,6,7,7/2,8,9,9/2,10が挙げられる。このような変換比を用いると、特に補間画像として動き補償によって求められた中間画像を用いる場合において、画像の品質を高くすることができ、かつ、消費電力を低減することができる。なぜならば、mが2である場合は、入力される画像データに動き補償を行なうことなく表示できる画像の数が比較的多く(入力される画像データの総数に対して1/2だけ存在する)、動き補償を行う頻度が減少するためである。さらに、mが1である場合は、入力される画像データに動き補償を行なうことなく表示できる画像の数が多く(入力される画像データの総数に等しい)、動き補償を行うことがないためである。一方、mは大きいほど、精度の高い動き補償によって作成された中間画像を用いることができるので、画像の動きをより滑らかにできるという利点を有する。
なお、表示装置が液晶表示装置である場合は、液晶素子の応答時間にしたがって変換比を決定することができる。ここでは、液晶素子の応答時間とは、液晶素子に印加する電圧を変化させてから液晶素子が応答するまでの時間である。液晶素子の応答時間が、液晶素子に印加する電圧の変化量によって異なる場合は、複数の代表的な電圧変化における応答時間の平均値とすることができる。または、液晶素子の応答時間は、MPRT(Moving Picture Response Time)で定義されるものであってもよい。そして、フレームレート変換によって、画像表示周期が液晶素子の応答時間に近くなるように、変換比を決定できる。具体的には、液晶素子の応答時間は、入力画像データの周期と変換比の逆数を積算した値から、この値の半分程度の値までの時間であることが好ましい。こうすることで、液晶素子の応答時間に合った画像表示周期とすることができるので、画質を向上することができる。たとえば、液晶素子の応答時間が4ミリ秒以上8ミリ秒以下の場合に、倍速駆動(120Hz駆動)とすることができる。これは、120Hz駆動の画像表示周期が約8ミリ秒であり、120Hz駆動の画像表示周期の半分が約4ミリ秒であることによる。同様に、たとえば、液晶素子の応答時間が3ミリ秒以上6ミリ秒以下の場合に、3倍速駆動(180Hz駆動)とすることができ、液晶素子の応答時間が5ミリ秒以上11ミリ秒以下の場合に、1.5倍速駆動(90Hz駆動)とすることができ、液晶素子の応答時間が2ミリ秒以上4ミリ秒以下の場合に、4倍速駆動(240Hz駆動)とすることができ、液晶素子の応答時間が6ミリ秒以上12ミリ秒以下の場合に、1.25倍速駆動(80Hz駆動)とすることができる。なお、他の駆動周波数についても同様である。
なお、変換比は、動画の品質と、消費電力および製造コストのトレードオフによっても決定することができる。つまり、変換比を大きくすることによって動画の品質を上げることができる一方で、変換比を小さくすることによって消費電力および製造コストを低減できる。すなわち、nが10以下の範囲における各々の変換比は、以下のような利点を有する。
変換比が1である場合は、変換比が1より小さい場合よりも動画の品質を向上でき、変換比が1より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の1倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が2である場合は、変換比が2より小さい場合よりも動画の品質を向上でき、変換比が2より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の1/2倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が3である場合は、変換比が3より小さい場合よりも動画の品質を向上でき、変換比が3より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の1/3倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が3/2である場合は、変換比が3/2より小さい場合よりも動画の品質を向上でき、変換比が3/2より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の2/3倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が4である場合は、変換比が4より小さい場合よりも動画の品質を向上でき、変換比が4より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の1/4倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が4/3である場合は、変換比が4/3より小さい場合よりも動画の品質を向上でき、変換比が4/3より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の3/4倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が5である場合は、変換比が5より小さい場合よりも動画の品質を向上でき、変換比が5より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の1/5倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が5/2である場合は、変換比が5/2より小さい場合よりも動画の品質を向上でき、変換比が5/2より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の2/5倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が5/3である場合は、変換比が5/3より小さい場合よりも動画の品質を向上でき、変換比が5/3より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の3/5倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が5/4である場合は、変換比が5/4より小さい場合よりも動画の品質を向上でき、変換比が5/4より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の4/5倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が6である場合は、変換比が6より小さい場合よりも動画の品質を向上でき、変換比が6より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の1/6倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が6/5である場合は、変換比が6/5より小さい場合よりも動画の品質を向上でき、変換比が6/5より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の5/6倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が7である場合は、変換比が7より小さい場合よりも動画の品質を向上でき、変換比が7より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の1/7倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が7/2である場合は、変換比が7/2より小さい場合よりも動画の品質を向上でき、変換比が7/2より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の2/7倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が7/3である場合は、変換比が7/3より小さい場合よりも動画の品質を向上でき、変換比が7/3より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の3/7倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が7/4である場合は、変換比が7/4より小さい場合よりも動画の品質を向上でき、変換比が7/4より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の4/7倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が7/5である場合は、変換比が7/5より小さい場合よりも動画の品質を向上でき、変換比が7/5より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の5/7倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が7/6である場合は、変換比が7/6より小さい場合よりも動画の品質を向上でき、変換比が7/6より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の6/7倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が8である場合は、変換比が8より小さい場合よりも動画の品質を向上でき、変換比が8より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の1/8倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が8/3である場合は、変換比が8/3より小さい場合よりも動画の品質を向上でき、変換比が8/3より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の3/8倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が8/5である場合は、変換比が8/5より小さい場合よりも動画の品質を向上でき、変換比が8/5より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の5/8倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が8/7である場合は、変換比が8/7より小さい場合よりも動画の品質を向上でき、変換比が8/7より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の7/8倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が9である場合は、変換比が9より小さい場合よりも動画の品質を向上でき、変換比が9より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の1/9倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が9/2である場合は、変換比が9/2より小さい場合よりも動画の品質を向上でき、変換比が9/2より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の2/9倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が9/4である場合は、変換比が9/4より小さい場合よりも動画の品質を向上でき、変換比が9/4より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の4/9倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が9/5である場合は、変換比が9/5より小さい場合よりも動画の品質を向上でき、変換比が9/5より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の5/9倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が9/7である場合は、変換比が9/7より小さい場合よりも動画の品質を向上でき、変換比が9/7より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の7/9倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が9/8である場合は、変換比が9/8より小さい場合よりも動画の品質を向上でき、変換比が9/8より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の8/9倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が10である場合は、変換比が10より小さい場合よりも動画の品質を向上でき、変換比が10より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが小さいので、高い画質を得られる一方で消費電力を低減できる。さらに、液晶素子の応答時間が入力画像データの周期の1/10倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が10/3である場合は、変換比が10/3より小さい場合よりも動画の品質を向上でき、変換比が10/3より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の3/10倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が10/7である場合は、変換比が10/7より小さい場合よりも動画の品質を向上でき、変換比が10/7より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の7/10倍程度である液晶表示装置に適用することで、画質を向上することができる。
変換比が10/9である場合は、変換比が10/9より小さい場合よりも動画の品質を向上でき、変換比が10/9より大きい場合よりも消費電力および製造コストを低減できる。さらに、mが大きいので、画像の動きをより滑らかにできる。さらに、液晶素子の応答時間が入力画像データの周期の9/10倍程度である液晶表示装置に適用することで、画質を向上することができる。
なお、nが10より大きい範囲における各々の変換比においても、同様な利点を有するのは明らかである。
次に、第2のステップとして、入力された画像データにしたがった画像または第1のステップにおいて任意の有理数(n/m)倍にフレームレート変換された各々の画像(元画像と呼ぶこととする)から、異なる複数の画像(サブ画像)を作成し、当該複数のサブ画像を時間的に連続して提示する方法について説明する。こうすることによって、実際は複数の画像を提示しているのにもかかわらず、見た目上、1つの元画像が表示されたように人間の目に知覚させることもできる。
なお、ここでは、1つの元画像から作成されたサブ画像のうち、先に表示されるサブ画像を、第1のサブ画像と呼ぶこととする。ここで、第1のサブ画像を表示するタイミングは、第1のステップで決められた元画像を表示するタイミングと同じであるとする。一方、その後に表示されるサブ画像を、第2のサブ画像と呼ぶこととする。第2のサブ画像を表示するタイミングは、第1のステップで決められた元画像を表示するタイミングに関わらず、任意に決めることができる。なお、実際に表示させる画像は、第2のステップにおける方法により元画像から作成された画像である。なお、サブ画像を作成するための元画像も、様々な画像を用いることができる。なお、サブ画像の数は2つに限定されず、2つより大きくてもよい。第2のステップにおいては、サブ画像の数をJ個(Jは2以上の整数)と表記する。このとき、第1のステップで決められた元画像を表示するタイミングと同じタイミングで表示されるサブ画像を、第1のサブ画像と呼び、それ以降に続いて表示されるサブ画像を、表示される順番にしたがって第2のサブ画像、第3のサブ画像〜第Jのサブ画像、と呼ぶこととする。
1つの元画像から複数のサブ画像を作成する方法としては、様々なものがあるが、主なものとしては次のような方法を挙げることができる。1つは、元画像をそのままサブ画像として用いる方法である。1つは、元画像の明るさを複数のサブ画像に分配する方法である。1つは、動き補償によって求めた中間画像をサブ画像として用いる方法である。
ここで、元画像の明るさを複数のサブ画像に分配する方法は、さらに複数の方法に分けることができる。主なものとしては次のような方法を挙げることができる。1つは、少なくとも1つのサブ画像を黒画像とする方法(黒挿入法と呼ぶこととする)である。1つは、元画像の明るさを複数の範囲に分割し、当該範囲における明るさを制御するときは、全てのサブ画像のうち唯1つのサブ画像によって行なう方法(時分割階調制御法と呼ぶこととする)である。1つは、一方のサブ画像を、元画像のガンマ値を変更した明るい画像とし、他方のサブ画像を、元画像のガンマ値を変更した暗い画像とする方法(ガンマ補完法と呼ぶこととする)である。
上に挙げたいくつかの方法を、それぞれ簡単に説明する。元画像をそのままサブ画像として用いる方法は、第1のサブ画像として、元画像をそのまま用いる。さらに、第2のサブ画像として、元画像をそのまま用いる。この方法を用いると、サブ画像を新たに作成する回路を動作させることがない、または当該回路そのものを用いる必要がなくなるため、消費電力および製造コストを低減することができる。特に、液晶表示装置においては、第1のステップにおいて、動き補償によって求めた中間画像を補間画像としたフレームレート変換を行なった後にこの方法を用いることが好ましい。なぜならば、動き補償によって求めた中間画像を補間画像とすることで、動画の動きを滑らかにしつつ、同じ画像を繰り返し表示することで、液晶素子のダイナミックキャパシタンスによる書き込み電圧不足に起因する、動画の尾引き、残像等の障害を低減することができるからである。
次に、元画像の明るさを複数のサブ画像に分配する方法における、画像の明るさおよびサブ画像が表示される期間の長さの設定方法について詳細に説明する。なお、Jはサブ画像の数を表し、2以上の整数であるとする。小文字のjは大文字のJとは区別される。jは1以上J以下の整数であるとする。
通常のホールド駆動における画素の明るさをL、元画像データの周期をT、
第jのサブ画像における画素の明るさをLj、第jのサブ画像が表示される期間の長さをTj、とすると、LjとTjについて積をとり、これのj=1からj=Jまでの総和(L1T1+L2T2+〜+LJTJ)が、LとTの積(LT)と等しくなっていること(明るさが不変であること)が好ましい。さらに、Tjの、j=1からj=Jまでの総和(T1+T2+〜+TJ)が、Tと等しくなっていること(元画像の表示周期が維持されること)が好ましい。ここで、明るさが不変であり、かつ、元画像の表示周期が維持されることを、サブ画像分配条件と呼ぶこととする。
元画像の明るさを複数のサブ画像に分配する方法のうち、黒挿入法は、少なくとも1つのサブ画像を黒画像とする方法である。こうすることによって、表示方法を擬似的にインパルス型とすることができるため、表示方法がホールド型であることに起因する動画の品質の低下を防ぐことができる。ここで、黒画像の挿入に伴う、表示画像の明るさの低下を防ぐために、サブ画像分配条件に従うことが好ましい。しかし、表示画像の明るさの低下が許容できるような状況(周囲が暗い等)である場合、ユーザによって表示画像の明るさの低下が許容する設定になっている場合などであれば、サブ画像分配条件に従わなくてもよい。たとえば、1つのサブ画像は元画像と同じものとし、他のサブ画像を黒画像としてもよい。この場合は、サブ画像分配条件にしたがったときと比べて、消費電力を低減できる。さらに、液晶表示装置においては、一方のサブ画像を、明るさの最大値に制限をつけずに元画像の全体的な明るさを大きくしたものとするとき、バックライトの明るさを大きくすることで、サブ画像分配条件を実現してもよい。この場合は、画素に書き込む電圧値を制御することなく、サブ画像分配条件を満足することができるため、画像処理回路の動作を省略でき、消費電力を低減できる。
なお、黒挿入法は、いずれか1つのサブ画像において、全ての画素のLjを0とすることを特徴とする。こうすることにより、表示方法を擬似的にインパルス型とすることができるため、表示方法がホールド型であることに起因する動画の品質の低下を防ぐことができる。
元画像の明るさを複数のサブ画像に分配する方法のうち、時分割階調制御法は、元画像の明るさを複数の範囲に分割し、当該範囲における明るさを制御するときは、全てのサブ画像のうち唯1つのサブ画像によって行なう方法である。こうすることによって、明るさを低下させることなく、表示方法を擬似的にインパルス型とすることができるため、表示方法がホールド型であることに起因する動画の品質の低下を防ぐことができる。
元画像の明るさを複数の範囲に分割する方法としては、明るさの最大値(Lmax)を、サブ画像の数だけ分割する方法がある。これは、たとえば、0からLmaxまでの明るさが256段階(階調0から階調255)で調節できる表示装置において、サブ画像の数を2としたとき、階調0から階調127までを表示するときは、一方のサブ画像の明るさを階調0から階調255の範囲で調節する一方で、他方のサブ画像の明るさを階調0とし、階調128から階調255までを表示するときは、一方のサブ画像の明るさを階調255とする一方で、他方のサブ画像の明るさを階調0から階調255の範囲で調節する方法である。こうすることによって、元画像が表示されたように人間の目に知覚させることができ、かつ、擬似的にインパルス型とすることができるので、ホールド型であることに起因する動画の品質の低下を防ぐことができる。なお、サブ画像の数は2より大きくてもよい。たとえば、サブ画像の数を3としたときは、元画像の明るさの段階(階調0から階調255)を、3つに分割する。なお、元画像の明るさの段階の数とサブ画像の数によっては、明るさの段階の数がサブ画像の数で割り切れない場合もあるが、分割後のそれぞれの明るさの範囲に含まれる明るさの段階の数は、ちょうど同じでなくても、適宜振り分ければよい。
なお、時分割階調制御法においても、サブ画像分配条件を満たすことによって、明るさの低下などがおこらず、元画像と同様な画像を表示することができるため、好ましい。
元画像の明るさを複数のサブ画像に分配する方法のうち、ガンマ補完法は、一方のサブ画像を、元画像のガンマ特性を変更した明るい画像とし、他方のサブ画像を、元画像のガンマ特性を変更した暗い画像とする方法である。こうすることによって、明るさを低下させることなく、表示方法を擬似的にインパルス型とすることができるため、表示方法がホールド型であることに起因する動画の品質の低下を防ぐことができる。ここで、ガンマ特性とは、明るさの段階(階調)に対する明るさの程度のことである。通常、ガンマ特性は線形に近くなるように調整される。これは、明るさの段階である階調に対する明るさの変化が比例するようにすれば、滑らかな階調を得ることができるからである。ガンマ補完法では、一方のサブ画像のガンマ特性を線形からずらして、中間の明るさ(中間調)の領域において、線形よりも明るくなるように調整する(中間調が本来よりも明るい画像となる)。そして、他方のサブ画像のガンマ特性も線形からずらして、同じく中間調の領域において、線形よりも暗くなるように調整する(中間調が本来よりも暗い画像となる)。ここで、一方のサブ画像を線形より明るくした量と、他方のサブ画像を線形より暗くした量を、全ての階調において概等しくすることが好ましい。こうすることで、元画像が表示されたように人間の目に知覚させることができ、かつ、ホールド型であることに起因する動画の品質の低下を防ぐことができる。なお、サブ画像の数は2より大きくてもよい。たとえば、サブ画像の数を3としたときは、3つのサブ画像について、それぞれガンマ特性を調整し、線形から明るくした量の合計と、線形から暗くした量の合計が概等しくなるようにすればよい。
なお、ガンマ補完法においても、サブ画像分配条件を満たすことによって、明るさの低下などがおこらず、元画像と同様な画像を表示することができるため、好ましい。さらに、ガンマ補完法においては、階調に対するそれぞれのサブ画像の明るさLjの変化がガンマ曲線にしたがっているため、それぞれのサブ画像がそれ自体で階調を滑らかに表示でき、最終的に人間の目で知覚される画像の品質も向上するという利点を有する。
動き補償によって求めた中間画像をサブ画像として用いる方法は、一方のサブ画像を、前後の画像から動き補償によって求めた中間画像とする方法である。こうすることで、画像の動きを滑らかにすることができるので、動画の品質を向上できる。
次に、サブ画像を表示するタイミングと、サブ画像を作成する方法との関係について説明する。第1のサブ画像を表示するタイミングは、第1のステップで決められた元画像を表示するタイミングと同じであり、第2のサブ画像を表示するタイミングは、第1のステップで決められた元画像を表示するタイミングに関わらず、任意に決めることができるとしたが、第2のサブ画像を表示するタイミングにしたがって、サブ画像自体を変化させてもよい。こうすることで、第2のサブ画像を表示するタイミングを様々に変化させたとしても、元画像が表示されたように人間の目に知覚させることができる。具体的には、第2のサブ画像を表示するタイミングを早くした場合は、第1のサブ画像はより明るくし、第2のサブ画像はより暗くすることができる。さらに、第2のサブ画像を表示するタイミングを遅くした場合は、第1のサブ画像はより暗くし、第2のサブ画像はより明るくすることができる。これは、人間の目が知覚する明るさは、画像を表示する期間の長さによって変わるためである。より詳細には、人間の目が知覚する明るさは、画像を表示する期間が長いほど明るくなり、画像を表示する期間が短いほど暗くなる。すなわち、第2のサブ画像を表示するタイミングを早くすることによって、第1のサブ画像を表示する期間の長さが短くなり、第2のサブ画像を表示する期間の長さが長くなるため、そのままでは第1のサブ画像は暗く、第2のサブ画像は明るく、人間の目に知覚されてしまう。その結果、元画像とは異なる画像が人間の目に知覚されてしまうことになるが、これを防ぐために、第1のサブ画像はより明るくし、第2のサブ画像はより暗くすることができる。同様に、第2のサブ画像を表示するタイミングを遅くすることによって、第1のサブ画像を表示する期間の長さが長くなり、第2のサブ画像を表示する期間の長さが短くなる場合は、第1のサブ画像はより暗くし、第2のサブ画像はより明るくすることができる。
上記の説明に基づいて、第2のステップにおける処理手順を、以下に示す。
手順1として、1つの元画像から複数のサブ画像を作成する方法を決定する。より詳細には、複数のサブ画像を作成する方法は、元画像をそのままサブ画像として用いる方法、元画像の明るさを複数のサブ画像に分配する方法、動き補償によって求めた中間画像をサブ画像として用いる方法、から選択することができる。
手順2として、サブ画像の数Jを決定する。なお、Jは2以上の整数である。
手順3として、第jのサブ画像における画素の明るさLj、第jのサブ画像が表示される期間の長さTjを、手順1で選択した方法にしたがって決定する。手順3により、それぞれのサブ画像が表示される期間の長さと、それぞれのサブ画像に含まれる個々の画素の明るさが具体的に決められる。
手順4として、手順1乃至手順3のそれぞれで決定された事項にしたがって、元画像を処理し、実際に表示する。
手順5として、対象とする元画像を次の元画像に移す。そして、手順1に戻る。
なお、第2のステップにおける手順を実行する仕組みは、装置に実装されたものであってもよいし、装置の設計段階であらかじめ決められたものであってもよい。第2のステップにおける手順を実行する仕組みが装置に実装されていれば、状況に応じた最適な動作が行われるように、駆動方法を切り替えることが可能となる。なお、ここでいう状況とは、画像データの内容、装置内外の環境(温度、湿度、気圧、光、音、磁界、電界、放射線量、高度、加速度、移動速度、等)、ユーザ設定、ソフトウエアバージョン、等を含む。一方、第2のステップにおける手順を実行する仕組みが装置の設計段階であらかじめ決められたものであれば、それぞれの駆動方法に最適な駆動回路を用いることができ、さらに、仕組みが決められていることによって、量産効果による製造コストの低減が期待できる。
次に、第2のステップにおける手順によって決められる様々な駆動方法を、それぞれ、第1のステップにおけるnおよびmの値を具体的に示して詳細に説明する。
第2のステップにおける手順1において、元画像をそのままサブ画像として用いる方法が選択された場合、駆動方法は次のようになる。
第i(iは正の整数)の画像データと、第i+1の画像データと、が、一定の周期Tで順次用意され、前記周期Tは、J(Jは2以上の整数)個のサブ画像表示期間に分割され、前記第iの画像データは、複数の画素にそれぞれ固有の明るさLを持たせることができるデータであり、第j(jは1以上J以下の整数)のサブ画像は、それぞれ固有の明るさLjを持つ画素が複数並置されることによって構成され、第jのサブ画像表示期間Tjだけ表示される画像であり、前記L、前記T、前記Lj、前記Tj、を、サブ画像分配条件を満たす表示装置の駆動方法であって、全てのjにおいて、第jのサブ画像に含まれるそれぞれの画素の明るさLjが、それぞれの画素に対しLj=Lであることを特徴とする。ここで、一定の周期Tで順次用意される画像データとしては、第1のステップにおいて作成された元画像データを用いることができる。すなわち、第1のステップの説明で挙げた全ての表示パターンを、上記駆動方法と組み合わせることができる。
そして、第2のステップにおける手順2において、サブ画像の数Jが2と決定され、手順3において、T1=T2=T/2と決定された場合、上記駆動方法は、図75に示すようなものとなる。
図75において、横軸は時間であり、縦軸は第1のステップにおいて用いた様々なnおよびmについて場合分けを行なって示したものである。
たとえば、第1のステップにおいて、n=1,m=1、すなわち変換比(n/m)が1であるときは、図75のn=1,m=1の箇所に示すような駆動方法となる。このとき、表示フレームレートは入力される画像データのフレームレートの2倍(2倍速駆動)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フレームレートは120Hz(120Hz駆動)である。そして、ひとつの入力される画像データに対し、画像を2回連続して表示することになる。ここで、2倍速駆動である場合は、フレームレートが2倍速より小さい場合よりも動画の品質を向上でき、2倍速より大きい場合よりも消費電力および製造コストを低減できる。さらに、第2のステップの手順1において、元画像をそのままサブ画像として用いる方法が選択されることによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と120Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を120Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、60Hz、120Hz、240Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さらに、液晶素子の応答時間が入力画像データの周期の1/2倍程度である液晶表示装置に適用することで、画質を向上することができる。
さらに、たとえば、第1のステップにおいて、n=2,m=1、すなわち変換比(n/m)が2であるときは、図75のn=2,m=1の箇所に示すような駆動方法となる。このとき、表示フレームレートは入力される画像データのフレームレートの4倍(4倍速駆動)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フレームレートは240Hz(240Hz駆動)である。そして、ひとつの入力される画像データに対し、画像を4回連続して表示することになる。このとき、第1のステップにおける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。ここで、4倍速駆動である場合は、フレームレートが4倍速より小さい場合よりも動画の品質を向上でき、4倍速より大きい場合よりも消費電力および製造コストを低減できる。さらに、第2のステップの手順1において、元画像をそのままサブ画像として用いる方法が選択されることによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と240Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を240Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、60Hz、120Hz、240Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さらに、液晶素子の応答時間が入力画像データの周期の1/4倍程度である液晶表示装置に適用することで、画質を向上することができる。
さらに、たとえば、第1のステップにおいて、n=3,m=1、すなわち変換比(n/m)が3であるときは、図75のn=3,m=1の箇所に示すような駆動方法となる。このとき、表示フレームレートは入力される画像データのフレームレートの6倍(6倍速駆動)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フレームレートは360Hz(360Hz駆動)である。そして、ひとつの入力される画像データに対し、画像を6回連続して表示することになる。このとき、第1のステップにおける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。ここで、6倍速駆動である場合は、フレームレートが6倍速より小さい場合よりも動画の品質を向上でき、6倍速より大きい場合よりも消費電力および製造コストを低減できる。さらに、第2のステップの手順1において、元画像をそのままサブ画像として用いる方法が選択されることによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と360Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を360Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、60Hz、120Hz、180Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さらに、液晶素子の応答時間が入力画像データの周期の1/6倍程度である液晶表示装置に適用することで、画質を向上することができる。
さらに、たとえば、第1のステップにおいて、n=3,m=2、すなわち変換比(n/m)が3/2であるときは、図75のn=3,m=2の箇所に示すような駆動方法となる。このとき、表示フレームレートは入力される画像データのフレームレートの3倍(3倍速駆動)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フレームレートは180Hz(180Hz駆動)である。そして、ひとつの入力される画像データに対し、画像を3回連続して表示することになる。このとき、第1のステップにおける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。ここで、3倍速駆動である場合は、フレームレートが3倍速より小さい場合よりも動画の品質を向上でき、3倍速より大きい場合よりも消費電力および製造コストを低減できる。さらに、第2のステップの手順1において、元画像をそのままサブ画像として用いる方法が選択されることによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と180Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を180Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、60Hz、120Hz、180Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さらに、液晶素子の応答時間が入力画像データの周期の1/3倍程度である液晶表示装置に適用することで、画質を向上することができる。
さらに、たとえば、第1のステップにおいて、n=4,m=1、すなわち変換比(n/m)が4であるときは、図75のn=4,m=1の箇所に示すような駆動方法となる。このとき、表示フレームレートは入力される画像データのフレームレートの8倍(8倍速駆動)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フレームレートは480Hz(480Hz駆動)である。そして、ひとつの入力される画像データに対し、画像を8回連続して表示することになる。このとき、第1のステップにおける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。ここで、8倍速駆動である場合は、フレームレートが8倍速より小さい場合よりも動画の品質を向上でき、8倍速より大きい場合よりも消費電力および製造コストを低減できる。さらに、第2のステップの手順1において、元画像をそのままサブ画像として用いる方法が選択されることによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と480Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を480Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、60Hz、120Hz、240Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さらに、液晶素子の応答時間が入力画像データの周期の1/8倍程度である液晶表示装置に適用することで、画質を向上することができる。
さらに、たとえば、第1のステップにおいて、n=4,m=3、すなわち変換比(n/m)が4/3であるときは、図75のn=4,m=3の箇所に示すような駆動方法となる。このとき、表示フレームレートは入力される画像データのフレームレートの8/3倍(8/3倍速駆動)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フレームレートは160Hz(160Hz駆動)である。そして、3つの入力される画像データに対し、画像を8回連続して表示することになる。このとき、第1のステップにおける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。ここで、8/3倍速駆動である場合は、フレームレートが8/3倍速より小さい場合よりも動画の品質を向上でき、8/3倍速より大きい場合よりも消費電力および製造コストを低減できる。さらに、第2のステップの手順1において、元画像をそのままサブ画像として用いる方法が選択されることによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と160Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を160Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、40Hz、80Hz、160Hz、320Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さらに、液晶素子の応答時間が入力画像データの周期の3/8倍程度である液晶表示装置に適用することで、画質を向上することができる。
さらに、たとえば、第1のステップにおいて、n=5,m=1、すなわち変換比(n/m)が5であるときは、図75のn=5,m=1の箇所に示すような駆動方法となる。このとき、表示フレームレートは入力される画像データのフレームレートの10倍(10倍速駆動)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フレームレートは600Hz(600Hz駆動)である。そして、ひとつの入力される画像データに対し、画像を10回連続して表示することになる。このとき、第1のステップにおける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。ここで、10倍速駆動である場合は、フレームレートが10倍速より小さい場合よりも動画の品質を向上でき、10倍速より大きい場合よりも消費電力および製造コストを低減できる。さらに、第2のステップの手順1において、元画像をそのままサブ画像として用いる方法が選択されることによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と600Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を600Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、60Hz、100Hz、120Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さらに、液晶素子の応答時間が入力画像データの周期の1/10倍程度である液晶表示装置に適用することで、画質を向上することができる。
さらに、たとえば、第1のステップにおいて、n=5,m=2、すなわち変換比(n/m)が5/2であるときは、図75のn=5,m=2の箇所に示すような駆動方法となる。このとき、表示フレームレートは入力される画像データのフレームレートの5倍(5倍速駆動)となる。具体的には、たとえば、入力フレームレートが60Hzであれば、表示フレームレートは300Hz(300Hz駆動)である。そして、1つの入力される画像データに対し、画像を5回連続して表示することになる。このとき、第1のステップにおける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。ここで、5倍速駆動である場合は、フレームレートが5倍速より小さい場合よりも動画の品質を向上でき、5倍速より大きい場合よりも消費電力および製造コストを低減できる。さらに、第2のステップの手順1において、元画像をそのままサブ画像として用いる方法が選択されることによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の交流駆動と300Hz駆動を組み合わせるのも効果的である。すなわち、液晶表示装置の駆動周波数を300Hzとしつつ、交流駆動の周波数をその整数倍または整数分の一(たとえば、30Hz、50Hz、60Hz、100Hz等)とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さらに、液晶素子の応答時間が入力画像データの周期の1/5倍程度である液晶表示装置に適用することで、画質を向上することができる。
このように、第2のステップにおける手順1において、元画像をそのままサブ画像として用いる方法が選択され、
第2のステップにおける手順2において、サブ画像の数が2と決定され、
第2のステップにおける手順3において、T1=T2=T/2と決定された場合は、第1のステップにおけるnおよびmの値によって決められる変換比のフレームレート変換に対し、表示フレームレートをさらに2倍のフレームレートとすることができるため、動画の品質をさらに向上させることが可能となる。さらに、当該表示フレームレートより小さい表示フレームレートである場合よりも動画の品質を向上でき、当該表示フレームレートより大きい表示フレームレートである場合よりも消費電力および製造コストを低減できる。さらに、第2のステップの手順1において、元画像をそのままサブ画像として用いる方法が選択されることによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の駆動周波数を大きくしつつ、交流駆動の周波数をその整数倍または整数分の一とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さらに、液晶素子の応答時間が入力画像データの周期の(1/(変換比の2倍))倍程度である液晶表示装置に適用することで、画質を向上することができる。
なお、詳細な説明が省略したが、上に上げた変換比以外の場合においても、同様な利点を有するのは明らかである。たとえば、nが10以下の範囲においては、上に挙げたもののほかに、
n=5,m=3、すなわち変換比(n/m)=5/3(10/3倍速駆動、200Hz)、
n=5,m=4、すなわち変換比(n/m)=5/4(5/2倍速駆動、150Hz)、
n=6,m=1、すなわち変換比(n/m)=6(12倍速駆動、720Hz)、
n=6,m=5、すなわち変換比(n/m)=6/5(12/5倍速駆動、144Hz)、
n=7,m=1、すなわち変換比(n/m)=7(14倍速駆動、840Hz)、
n=7,m=2、すなわち変換比(n/m)=7/2(7倍速駆動、420Hz)、
n=7,m=3、すなわち変換比(n/m)=7/3(14/3倍速駆動、280Hz)、
n=7,m=4、すなわち変換比(n/m)=7/4(7/2倍速駆動、210Hz)、
n=7,m=5、すなわち変換比(n/m)=7/5(14/5倍速駆動、168Hz)、
n=7,m=6、すなわち変換比(n/m)=7/6(7/3倍速駆動、140Hz)、
n=8,m=1、すなわち変換比(n/m)=8(16倍速駆動、960Hz)、
n=8,m=3、すなわち変換比(n/m)=8/3(16/3倍速駆動、320Hz)、
n=8,m=5、すなわち変換比(n/m)=8/5(16/5倍速駆動、192Hz)、
n=8,m=7、すなわち変換比(n/m)=8/7(16/7倍速駆動、137Hz)、
n=9,m=1、すなわち変換比(n/m)=9(18倍速駆動、1080Hz)、
n=9,m=2、すなわち変換比(n/m)=9/2(9倍速駆動、540Hz)、
n=9,m=4、すなわち変換比(n/m)=9/4(9/2倍速駆動、270Hz)、
n=9,m=5、すなわち変換比(n/m)=9/5(18/5倍速駆動、216Hz)、
n=9,m=7、すなわち変換比(n/m)=9/7(18/7倍速駆動、154Hz)、
n=9,m=8、すなわち変換比(n/m)=9/8(9/4倍速駆動、135Hz)、
n=10,m=1、すなわち変換比(n/m)=10(20倍速駆動、1200Hz)、
n=10,m=3、すなわち変換比(n/m)=10/3(20/3倍速駆動、400Hz)、
n=10,m=7、すなわち変換比(n/m)=10/7(20/7倍速駆動、171Hz)、
n=10,m=9、すなわち変換比(n/m)=10/9(20/9倍速駆動、133Hz)、
以上の組み合わせが考えられる。なお、周波数の表記は入力フレームレートが60Hzであるときの例であり、その他の入力フレームレートに対しては、それぞれの変換比の2倍を入力フレームレートと積算した値が駆動周波数となる。
なお、nが10より大きい整数である場合については、具体的なnおよびmの数字は挙げないが、様々なnおよびmに対し、この、第2のステップにおける手順が適用できることは明らかである。
なお、J=2とする場合、第1のステップにおける変換比が2より大きいと、特に効果的である。なぜならば、第2のステップにおいて、サブ画像の数をJ=2のように比較的小さくすれば、その分、第1のステップにおける変換比を大きくすることができるからである。このような変換比は、nが10以下の範囲においては、3、4、5、5/2、6、7、7/2、7/3、8、8/3、9、9/2、9/4、10、10/3、が挙げられる。第1のステップ後の表示フレームレートがこのような値の場合、J=3以上とすることによって、第2のステップにおけるサブ画像の数が小さいことによる利点(消費電力および製造コストの低減等)と、最終的な表示フレームレートが大きいことによる利点(動画の品質向上、フリッカの低減等)を、両立させることが可能となる。
なお、ここでは、手順2においてサブ画像の数Jが2と決定され、手順3においてT1=T2=T/2と決定された場合について説明したが、これに限定されないのは明らかである。
たとえば、第2のステップにおける手順3において、T1<T2と決定された場合は、第1のサブ画像をより明るく、第2のサブ画像をより暗くすることができる。さらに、第2のステップにおける手順3において、T1>T2と決定された場合は、第1のサブ画像をより暗く、第2のサブ画像をより明るくすることができる。こうすることで、元画像をきちんと人間の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にすることもできるため、動画の品質を向上できる。ただし、上記の駆動方法のように、手順1において、元画像をそのままサブ画像として用いる方法が選択された場合は、サブ画像の明るさを変化させずに、そのまま表示してもよい。なぜならば、この場合はサブ画像として用いる画像が同じであるため、サブ画像の表示タイミングに関わらず、元画像をきちんと表示することができるからである。
さらに、手順2において、サブ画像の数Jが2ではなく、それ以外の値に決定されてもよいことは明らかである。この場合、第1のステップにおけるnおよびmの値によって決められる変換比のフレームレート変換に対し、表示フレームレートをさらにJ倍のフレームレートとすることができるため、動画の品質をさらに向上させることが可能となる。さらに、当該表示フレームレートより小さい表示フレームレートである場合よりも動画の品質を向上でき、当該表示フレームレートより大きい表示フレームレートである場合よりも消費電力および製造コストを低減できる。さらに、第2のステップの手順1において、元画像をそのままサブ画像として用いる方法が選択されることによって、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、液晶表示装置の駆動周波数を大きくしつつ、交流駆動の周波数をその整数倍または整数分の一とすることによって、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。さらに、液晶素子の応答時間が入力画像データの周期の(1/(変換比のJ倍))倍程度である液晶表示装置に適用することで、画質を向上することができる。
たとえば、J=3である場合は、特に、サブ画像の数が3より小さい場合よりも動画の品質を向上でき、サブ画像の数が3より大きい場合よりも消費電力および製造コストを低減できるという利点を有する。さらに、液晶素子の応答時間が入力画像データの周期の(1/(変換比の3倍))倍程度である液晶表示装置に適用することで、画質を向上することができる。
さらに、たとえば、J=4である場合は、特に、サブ画像の数が4より小さい場合よりも動画の品質を向上でき、サブ画像の数が4より大きい場合よりも消費電力および製造コストを低減できるという利点を有する。さらに、液晶素子の応答時間が入力画像データの周期の(1/(変換比の4倍))倍程度である液晶表示装置に適用することで、画質を向上することができる。
さらに、たとえば、J=5である場合は、特に、サブ画像の数が5より小さい場合よりも動画の品質を向上でき、サブ画像の数が5より大きい場合よりも消費電力および製造コストを低減できるという利点を有する。さらに、液晶素子の応答時間が入力画像データの周期の(1/(変換比の5倍))倍程度である液晶表示装置に適用することで、画質を向上することができる。
さらに、Jが上に挙げたもの以外であっても、同様な利点を有する。
なお、J=3以上とする場合、第1のステップにおける変換比は様々な値をとることができるが、特に、第1のステップにおける変換比が比較的小さい場合(2以下)に、J=3以上とするのが効果的である。なぜならば、第1のステップ後の表示フレームレートが比較的小さければ、その分、第2のステップにおいて、Jを大きくすることができるからである。このような変換比は、nが10以下の範囲においては、1、2、3/2、4/3、5/3、5/4、6/5、7/4、7/5、7/6、8/7、9/5、9/7、9/8、10/7、10/9、が挙げられる。このうち、変換比が1、2、3/2、4/3、5/3、5/4の場合については、図76に図示する。このように、第1のステップ後の表示フレームレートが比較的小さな値の場合、J=3以上とすることによって、第1のステップにおける表示フレームレートが小さいことによる利点(消費電力および製造コストの低減等)と、最終的な表示フレームレートが大きいことによる利点(動画の品質向上、フリッカの低減等)を、両立させることが可能となる。
次に、第2のステップにおける手順によって決められる駆動方法の別の例について説明する。
第2のステップにおける手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、黒挿入法が選択された場合、駆動方法は次のようになる。
第i(iは正の整数)の画像データと、第i+1の画像データと、が、一定の周期Tで順次用意され、前記周期Tは、J(Jは2以上の整数)個のサブ画像表示期間に分割され、前記第iの画像データは、複数の画素にそれぞれ固有の明るさLを持たせることができるデータであり、第j(jは1以上J以下の整数)のサブ画像は、それぞれ固有の明るさLjを持つ画素が複数並置されることによって構成され、第jのサブ画像表示期間Tjだけ表示される画像であり、前記L、前記T、前記Lj、前記Tj、を、サブ画像分配条件を満たす表示装置の駆動方法であって、少なくとも1つのjにおいて、第jのサブ画像に含まれる全て画素の明るさLjが、Lj=0であることを特徴とする。ここで、一定の周期Tで順次用意される画像データとしては、第1のステップにおいて作成された元画像データを用いることができる。すなわち、第1のステップの説明で挙げた全ての表示パターンを、上記駆動方法と組み合わせることができる。
なお、上記の駆動方法は、第1のステップにおいて用いた様々なnおよびmについて、それぞれ組み合わせて実施できることは明らかである。
そして、第2のステップにおける手順2において、サブ画像の数Jが2と決定され、手順3において、T1=T2=T/2と決定された場合、上記駆動方法は、図75に示すようなものとなる。図75に示す駆動方法(様々なnおよびmにおける表示タイミング)の特徴および利点は既に述べたので、ここでは詳細な説明は省略するが、第2のステップにおける手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、黒挿入法が選択された場合においても同様な利点を有するのは明らかである。たとえば、第1のステップにおける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。さらに、表示フレームレートが大きい場合は、動画の品質を向上でき、表示フレームレートが小さい場合は、消費電力および製造コストを低減できる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。
第2のステップの手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、黒挿入法が選択されることによる特徴的な利点としては、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができることである。さらに、画像データに含まれる階調値によらずに擬似的にインパルス型の表示方法とすることができるため、動画の品質を向上できる。
なお、ここでは、手順2においてサブ画像の数Jが2と決定され、手順3においてT1=T2=T/2と決定された場合について説明したが、これに限定されないのは明らかである。
たとえば、第2のステップにおける手順3において、T1<T2と決定された場合は、第1のサブ画像をより明るく、第2のサブ画像をより暗くすることができる。さらに、第2のステップにおける手順3において、T1>T2と決定された場合は、第1のサブ画像をより暗く、第2のサブ画像をより明るくすることができる。こうすることで、元画像をきちんと人間の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にすることもできるため、動画の品質を向上できる。ただし、上記の駆動方法のように、手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、黒挿入法が選択された場合は、サブ画像の明るさを変化させずに、そのまま表示してもよい。なぜならば、この場合はサブ画像の明るさを変えない場合は、元画像の全体の明るさが暗くなって表示されるだけであるからである。すなわち、この方法を表示装置の明るさの制御に積極的に用いることで、動画の品質を向上させつつ、明るさの制御も可能となる。
さらに、手順2において、サブ画像の数Jが2ではなく、それ以外の値に決定されてもよいことは明らかである。その場合の利点は既に述べたので、ここでは詳細な説明は省略するが、第2のステップにおける手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、黒挿入法が選択された場合においても同様な利点を有するのは明らかである。たとえば、液晶素子の応答時間が入力画像データの周期の(1/(変換比のJ倍))倍程度である液晶表示装置に適用することで、画質を向上することができる。
次に、第2のステップにおける手順によって決められる駆動方法の別の例について説明する。
第2のステップにおける手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、時分割階調制御法が選択された場合、駆動方法は次のようになる。
第i(iは正の整数)の画像データと、第i+1の画像データと、が、一定の周期Tで順次用意され、前記周期Tは、J(Jは2以上の整数)個のサブ画像表示期間に分割され、前記第iの画像データは、複数の画素にそれぞれ固有の明るさLを持たせることができるデータであり、前記固有の明るさLは、最大値がLmaxであり、第j(jは1以上J以下の整数)のサブ画像は、それぞれ固有の明るさLjを持つ画素が複数並置されることによって構成され、第jのサブ画像表示期間Tjだけ表示される画像であり、前記L、前記T、前記Lj、前記Tj、を、サブ画像分配条件を満たす表示装置の駆動方法であって、前記固有の明るさLを表示するにあたって、(j−1)×Lmax/JからJ×Lmax/Jの明るさの範囲における明るさの調節は、前記J個のサブ画像表示期間のうち唯1つのサブ画像表示期間における明るさの調節によって行なうことを特徴とする。ここで、一定の周期Tで順次用意される画像データとしては、第1のステップにおいて作成された元画像データを用いることができる。すなわち、第1のステップの説明で挙げた全ての表示パターンを、上記駆動方法と組み合わせることができる。
なお、上記の駆動方法は、第1のステップにおいて用いた様々なnおよびmについて、それぞれ組み合わせて実施できることは明らかである。
そして、第2のステップにおける手順2において、サブ画像の数Jが2と決定され、手順3において、T1=T2=T/2と決定された場合、上記駆動方法は、図75に示すようなものとなる。
図75に示す駆動方法(様々なnおよびmにおける表示タイミング)の特徴および利点は既に述べたので、ここでは詳細な説明は省略するが、第2のステップにおける手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、時分割階調制御法が選択された場合においても同様な利点を有するのは明らかである。たとえば、第1のステップにおける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。さらに、表示フレームレートが大きい場合は、動画の品質を向上でき、表示フレームレートが小さい場合は、消費電力および製造コストを低減できる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。
第2のステップの手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、時分割階調制御法が選択されることによる特徴的な利点としては、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができることである。さらに、擬似的にインパルス型の表示方法とすることができるため、動画の品質が向上でき、かつ、表示装置の明るさが小さくなってしまうことがないため、さらに消費電力を低減できる。
なお、ここでは、手順2においてサブ画像の数Jが2と決定され、手順3においてT1=T2=T/2と決定された場合について説明したが、これに限定されないのは明らかである。
たとえば、第2のステップにおける手順3において、T1<T2と決定された場合は、第1のサブ画像をより明るく、第2のサブ画像をより暗くすることができる。さらに、第2のステップにおける手順3において、T1>T2と決定された場合は、第1のサブ画像をより暗く、第2のサブ画像をより明るくすることができる。こうすることで、元画像をきちんと人間の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にすることもできるため、動画の品質を向上できる。こうすることで、元画像をきちんと人間の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にすることもできるため、動画の品質を向上できる。
さらに、手順2において、サブ画像の数Jが2ではなく、それ以外の値に決定されてもよいことは明らかである。その場合の利点は既に述べたので、ここでは詳細な説明は省略するが、第2のステップにおける手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、時分割階調制御法が選択された場合においても同様な利点を有するのは明らかである。たとえば、液晶素子の応答時間が入力画像データの周期の(1/(変換比のJ倍))倍程度である液晶表示装置に適用することで、画質を向上することができる。
次に、第2のステップにおける手順によって決められる駆動方法の別の例について説明する。
第2のステップにおける手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、ガンマ補完法が選択された場合、駆動方法は次のようになる。
第i(iは正の整数)の画像データと、第i+1の画像データと、が、一定の周期Tで順次用意され、前記周期Tは、J(Jは2以上の整数)個のサブ画像表示期間に分割され、前記第iの画像データは、複数の画素にそれぞれ固有の明るさLを持たせることができるデータであり、第j(jは1以上J以下の整数)のサブ画像は、それぞれ固有の明るさLjを持つ画素が複数並置されることによって構成され、第jのサブ画像表示期間Tjだけ表示される画像であり、前記L、前記T、前記Lj、前記Tj、を、サブ画像分配条件を満たす表示装置の駆動方法であって、それぞれのサブ画像において、階調に対する明るさの変化の特性を、線形からずらし、線形から明るい方へずらした明るさの量の合計と、線形から暗い方へずらした明るさの量の合計が、全ての階調において概等しいことを特徴とする。ここで、一定の周期Tで順次用意される画像データとしては、第1のステップにおいて作成された元画像データを用いることができる。すなわち、第1のステップの説明で挙げた全ての表示パターンを、上記駆動方法と組み合わせることができる。
なお、上記の駆動方法は、第1のステップにおいて用いた様々なnおよびmについて、それぞれ組み合わせて実施できることは明らかである。
そして、第2のステップにおける手順2において、サブ画像の数Jが2と決定され、手順3において、T1=T2=T/2と決定された場合、上記駆動方法は、図75に示すようなものとなる。
図75に示す駆動方法(様々なnおよびmにおける表示タイミング)の特徴および利点は既に述べたので、ここでは詳細な説明は省略するが、第2のステップにおける手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、ガンマ補完法が選択された場合においても同様な利点を有するのは明らかである。たとえば、第1のステップにおける補間画像が動き補償によって求められた中間画像である場合は、動画の動きを滑らかにすることができるため、動画の品質を顕著に向上させることが可能である。さらに、表示フレームレートが大きい場合は、動画の品質を向上でき、表示フレームレートが小さい場合は、消費電力および製造コストを低減できる。さらに、表示装置がアクティブマトリクス方式の液晶表示装置である場合は、ダイナミックキャパシタンスによる書き込み電圧不足の問題が回避できるため、動画の尾引き、残像等の障害に対し特に顕著な画質改善効果をもたらす。さらに、交流駆動によって現れるフリッカを、人間の目に知覚されない程度に低減することができる。
第2のステップの手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、ガンマ補完法が選択されることによる特徴的な利点としては、動き補償によって中間画像を作成する回路の動作を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができることである。さらに、画像データに含まれる階調値によらずに擬似的にインパルス型の表示方法とすることができるため、動画の品質を向上できる。さらに、画像データを直接ガンマ変換することによってサブ画像を求めてもよい。この場合は、動画の動きの大きさなどによって、様々にガンマ値を制御できる利点を有する。さらに、画像データは直接ガンマ変換せず、デジタルアナログ変換回路(DAC)の参照電圧を変えることによって、ガンマ値を変化させたサブ画像を求める構成であってもよい。この場合は、画像データを直接ガンマ変換することがないので、ガンマ変換を行なう回路を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができる。さらに、ガンマ補完法においては、階調に対するそれぞれのサブ画像の明るさLjの変化がガンマ曲線にしたがっているため、それぞれのサブ画像がそれ自体で階調を滑らかに表示でき、最終的に人間の目で知覚される画像の品質も向上するという利点を有する。
なお、ここでは、手順2においてサブ画像の数Jが2と決定され、手順3においてT1=T2=T/2と決定された場合について説明したが、これに限定されないのは明らかである。
たとえば、第2のステップにおける手順3において、T1<T2と決定された場合は、第1のサブ画像をより明るく、第2のサブ画像をより暗くすることができる。さらに、第2のステップにおける手順3において、T1>T2と決定された場合は、第1のサブ画像をより暗く、第2のサブ画像をより明るくすることができる。こうすることで、元画像をきちんと人間の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にすることもできるため、動画の品質を向上できる。なお、上記の駆動方法のように、手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、ガンマ法が選択された場合は、サブ画像の明るさを変化させる場合に、ガンマ値を変化させてもよい。すなわち、第2のサブ画像の表示タイミングにしたがって、ガンマ値を決めてもよい。こうすることで、画像全体の明るさを変化させる回路を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができる。
さらに、手順2において、サブ画像の数Jが2ではなく、それ以外の値に決定されてもよいことは明らかである。その場合の利点は既に述べたので、ここでは詳細な説明は省略するが、第2のステップにおける手順1において、元画像の明るさを複数のサブ画像に分配する方法のうち、時分割階調制御法が選択された場合においても同様な利点を有するのは明らかである。たとえば、液晶素子の応答時間が入力画像データの周期の(1/(変換比のJ倍))倍程度である液晶表示装置に適用することで、画質を向上することができる。
次に、第2のステップにおける手順によって決められる駆動方法の別の例について、詳細に説明する。
第2のステップにおける手順1において、動き補償によって求めた中間画像をサブ画像として用いる方法が選択され、第2のステップにおける手順2において、サブ画像の数が2と決定され、第2のステップにおける手順3において、T1=T2=T/2と決定された場合は、第2のステップにおける手順によって決められる駆動方法は、次のようになる。
第i(iは正の整数)の画像データと、第i+1の画像データと、が、一定の周期Tで順次用意され、第k(kは正の整数)の画像と、第k+1の画像と、第k+2の画像と、を、元画像データの周期の1/2倍の間隔で順次表示する表示装置の駆動方法であって、前記第kの画像は、前記第iの画像データにしたがって表示され、前記第k+1の画像は、前記第iの画像データから前記第i+1の画像データまでの動きを1/2倍した動きに相当する画像データにしたがって表示され、前記第k+2の画像は、前記第i+1の画像データにしたがって表示されることを特徴とする。ここで、一定の周期Tで順次用意される画像データとしては、第1のステップにおいて作成された元画像データを用いることができる。すなわち、第1のステップの説明で挙げた全ての表示パターンを、上記駆動方法と組み合わせることができる。
なお、上記の駆動方法は、第1のステップにおいて用いた様々なnおよびmについて、それぞれ組み合わせて実施できることは明らかである。
第2のステップにおける手順1において、動き補償によって求めた中間画像をサブ画像として用いる方法が選択されることによる特徴的な利点は、第1のステップにおける手順において、動き補償によって求めた中間画像を補間画像とする場合に、第1のステップにおいて用いた中間画像を求める方法が、第2のステップでもそのままの方法で用いることができる点である。すなわち、動き補償によって中間画像を求める回路を、第1のステップだけではなく、第2のステップでも利用することができるので、回路を有効に利用できるようになり、処理効率を向上できる。また、画像の動きをさらに滑らかにすることができるため、動画の品質をさらに向上させることができる。
なお、ここでは、手順2においてサブ画像の数Jが2と決定され、手順3においてT1=T2=T/2と決定された場合について説明したが、これに限定されないのは明らかである。
たとえば、第2のステップにおける手順3において、T1<T2と決定された場合は、第1のサブ画像をより明るく、第2のサブ画像をより暗くすることができる。さらに、第2のステップにおける手順3において、T1>T2と決定された場合は、第1のサブ画像をより暗く、第2のサブ画像をより明るくすることができる。こうすることで、元画像をきちんと人間の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にすることもできるため、動画の品質を向上できる。こうすることで、元画像をきちんと人間の目に知覚させることができると同時に、表示を擬似的にインパルス駆動にすることもできるため、動画の品質を向上できる。なお、上記の駆動方法のように、手順2において、動き補償によって求めた中間画像をサブ画像として用いる方法が選択された場合は、サブ画像の明るさを変化させなくてもよい。なぜならば、中間状態の画像はそれ自体で画像として完結しているため、第2のサブ画像の表示タイミングが変化しても、人間の目に知覚される画像としては変化しないためである。この場合は、画像全体の明るさを変化させる回路を停止または当該回路自体を装置から省略することができるため、消費電力および装置の製造コストを低減することができる。
さらに、手順2において、サブ画像の数Jが2ではなく、それ以外の値に決定されてもよいことは明らかである。その場合の利点は既に述べたので、ここでは詳細な説明は省略するが、第2のステップにおける手順1において、動き補償によって求めた中間画像をサブ画像として用いる方法が選択された場合においても同様な利点を有するのは明らかである。たとえば、液晶素子の応答時間が入力画像データの周期の(1/(変換比のJ倍))倍程度である液晶表示装置に適用することで、画質を向上することができる。
次に、図77を参照して、入力フレームレートと表示フレームレートが異なる場合の、フレームレート変換方法の具体例について説明する。図77(A)乃至(C)に示す方法においては、画像上の円形の領域がフレームによって位置が変化する領域であり、画像上の三角形の領域がフレームによって位置がほぼ変化しない領域であるとしている。ただし、これは説明のための例であり、表示される画像はこれに限定されない。図77(A)乃至(C)の方法は、様々な画像に対して適用することができる。
図77(A)は、表示フレームレートが入力フレームレートの2倍(変換比が2)である場合を表している。変換比が2である場合は、変換比が2より小さい場合よりも動画の品質を向上できるという利点を有する。さらに、変換比が2である場合は、変換比が2より大きい場合よりも消費電力および製造コストを低減できるという利点を有する。図77(A)は、横軸を時間として、表示される画像の時間的な変化の様子を、模式的に表したものである。ここで、注目している画像のことを、第pの画像(pは正の整数)と表記することとする。そして、注目している画像の次に表示される画像を、第(p+1)の画像、注目している画像の前に表示される画像を、第(p―1)の画像、というように、注目している画像からどれだけ離れて表示されるかということを、便宜的に表記することとする。そして、画像180701は第pの画像、画像180702は第(p+1)の画像、画像180703は第(p+2)の画像、画像180704は第(p+3)の画像、画像180705は第(p+4)の画像であるとする。期間Tinは、入力画像データの周期を表している。なお、図77(A)は変換比が2である場合を表しているため、期間Tinは、第pの画像が表示されてから第(p+1)の画像が表示されるまで期間の2倍の長さとなる。
ここで、第(p+1)の画像180702は、第pの画像180701から第(p+2)の画像180703までの画像の変化量を検出することで、第pの画像180701および第(p+2)の画像180703の中間状態となるように作成された画像であってもよい。図77(A)では、フレームによって位置が変化する領域(円形の領域)と、フレームによって位置がほぼ変化しない領域(三角形の領域)と、によって、中間状態の画像の様子を表している。すなわち、第(p+1)の画像180702における円形の領域の位置は、第pの画像180701における位置と、第(p+2)の画像180703における位置の中間の位置としている。つまり、第(p+1)の画像180702は、動き補償を行なって画像データを補間したものである。このように、画像上で動きのある物体に対して動き補償を行い、画像データを補間することによって、なめらかな表示を行なうことができる。
さらに、第(p+1)の画像180702は、第pの画像180701および第(p+2)の画像180703の中間状態となるように作成された上で、画像の輝度を一定の規則で制御した画像であってもよい。一定の規則とは、たとえば、図77(A)のように、第pの画像180701の代表的な輝度をL、第(p+1)の画像180702の代表的な輝度をLcとしたとき、LとLcで、L>Lcという関係があってもよい。望ましくは、0.1L<Lc<0.8Lという関係があってもよい。さらに望ましくは、0.2L<Lc<0.5Lという関係があってもよい。または、逆にLとLcで、L<Lcという関係があってもよい。望ましくは、0.1Lc<L<0.8Lcという関係があってもよい。さらに望ましくは、0.2Lc<L<0.5Lcという関係があってもよい。このようにすることで、表示を擬似的にインパルス型とすることができるため、目の残像を抑えることができる。
なお、画像の代表的な輝度については、後に図78を参照して詳しく述べる。
このように、動画ボケに対する2つの異なる原因(画像の動きがなめらかではないこと、および目の残像)を同時に解決することによって、動画ボケを大幅に低減することができる。
さらに、第(p+3)の画像180704についても、第(p+2)の画像180703および第(p+4)の画像180705から同様な方法を用いて作成されてもよい。すなわち、第(p+3)の画像180704は、第(p+2)の画像180703から第(p+4)の画像180705までの画像の変化量を検出することで、第(p+2)の画像180703および第(p+4)の画像180705の中間状態となるように作成された画像であって、さらに、画像の輝度を一定の規則で制御した画像であってもよい。
図77(B)は、表示フレームレートが、入力フレームレートの3倍(変換比が3)である場合を表している。図77(B)は、横軸を時間として、表示される画像の時間的な変化の様子を、模式的に表したものである。画像180711は第pの画像、画像180712は第(p+1)の画像、画像180713は第(p+2)の画像、画像180714は第(p+3)の画像、画像180715は第(p+4)の画像、画像180716は第(p+5)の画像、画像180717は第(p+6)の画像であるとする。期間Tinは、入力画像データの周期を表している。なお、図77(B)は変換比が3である場合を表しているため、期間Tinは、第pの画像が表示されてから第(p+1)の画像が表示されるまで期間の3倍の長さとなる。
ここで、第(p+1)の画像180712および第(p+2)の画像180713は、第pの画像180711から第(p+3)の画像180714までの画像の変化量を検出することで、第pの画像180711および第(p+3)の画像180714の中間状態となるように作成された画像であってもよい。図77(B)では、フレームによって位置が変化する領域(円形の領域)と、フレームによって位置がほぼ変化しない領域(三角形の領域)と、によって、中間状態の画像の様子を表している。すなわち、第(p+1)の画像180712および第(p+2)の画像180713における円形の領域の位置は、第pの画像180711における位置と、第(p+3)の画像180714における位置の中間の位置としている。具体的には、第pの画像180711および第(p+3)の画像180714から検出した、円形の領域が移動する量をXとしたとき、第(p+1)の画像180712における円形の領域の位置は、第pの画像180711における位置から、(1/3)X程度変位した位置であっても良い。さらに、第(p+2)の画像180713における円形の領域の位置は、第pの画像180711における位置から、(2/3)X程度変位した位置であっても良い。つまり、第(p+1)の画像180712および第(p+2)の画像180713は、動き補償を行なって画像データを補間したものである。このように、画像上で動きのある物体に対して動き補償を行い、画像データを補間することにより、なめらかな表示を行なうことができる。
さらに、第(p+1)の画像180712および第(p+2)の画像180713は、第pの画像180711および第(p+3)の画像180714の中間状態となるように作成された上で、画像の輝度を一定の規則で制御した画像であってもよい。一定の規則とは、たとえば、図77(B)のように、第pの画像180711の代表的な輝度をL、第(p+1)の画像180712の代表的な輝度をLc1、第(p+2)の画像180713の代表的な輝度をLc2としたとき、L、Lc1、Lc2において、L>Lc1またはL>Lc2またはLc1=Lc2という関係があってもよい。望ましくは、0.1L<Lc1=Lc2<0.8Lという関係があってもよい。さらに望ましくは、0.2L<Lc=Lc2<0.5Lという関係があってもよい。または、逆にL、Lc1、Lc2において、L<Lc1またはL<Lc2またはLc1=Lc2という関係があってもよい。望ましくは、0.1Lc1=0.1Lc2<L<0.8Lc1=0.8Lc2という関係があってもよい。さらに望ましくは、0.2Lc1=0.2Lc2<L<0.5Lc1=0.5Lc2という関係があってもよい。このようにすることで、表示を擬似的にインパルス型とすることができるため、目の残像を抑えることができる。または、輝度を変化させる画像が交互に現れるようにしてもよい。こうすることで、輝度が変化する周期を短くすることができるので、フリッカを低減することができる。
このように、動画ボケに対する2つの異なる原因(画像の動きがなめらかではないこと、および目の残像)を同時に解決することによって、動画ボケを大幅に低減することができる。
さらに、第(p+4)の画像180715および第(p+5)の画像180716についても、第(p+3)の画像180714および第(p+6)の画像180717から同様な方法を用いて作成されてもよい。すなわち、第(p+4)の画像180715および第(p+5)の画像180716は、第(p+3)の画像180714から第(p+6)の画像180717までの画像の変化量を検出することで、第(p+3)の画像180714および第(p+6)の画像180717の中間状態となるように作成された画像であって、さらに、画像の輝度を一定の規則で制御した画像であってもよい。
なお、図77(B)の方法を用いると、表示フレームレートが大きいので、画像の動きが目の動きによく追従できるようになり、画像の動きをなめらかに表示することができるため、動画ボケを大幅に低減することができる。
図77(C)は、表示フレームレートが、入力フレームレートの1.5倍(変換比1.5)である場合を表している。図77(C)は、横軸を時間として、表示される画像の時間的な変化の様子を、模式的に表したものである。画像180721は第pの画像、画像180722は第(p+1)の画像、画像180723は第(p+2)の画像、画像180724は第(p+3)の画像であるとする。なお、実際には表示されなくてもよいが、画像180725は入力画像データであり、第(p+1)の画像180722および第(p+2)の画像180723が作成されるために用いられていてもよい。期間Tinは、入力画像データの周期を表している。なお、図77(C)は変換比が1.5である場合を表しているため、期間Tinは、第pの画像が表示されてから第(p+1)の画像が表示されるまで期間の1.5倍の長さとなる。
ここで、第(p+1)の画像180722および第(p+2)の画像180723は、第pの画像180721から画像180725を経由して第(p+3)の画像180724までの画像の変化量を検出することで、第pの画像180721および第(p+3)の画像180724の中間状態となるように作成された画像であってもよい。図77(C)では、フレームによって位置が変化する領域(円形の領域)と、フレームによって位置がほぼ変化しない領域(三角形の領域)と、によって、中間状態の画像の様子を表している。すなわち、第(p+1)の画像180722および第(p+2)の画像180723における円形の領域の位置は、第pの画像180721における位置と、第(p+3)の画像180724における位置の中間の位置としている。つまり、第(p+1)の画像180722および第(p+2)の画像180723は、動き補償を行なって画像データを補間したものである。このように、画像上で動きのある物体に対して動き補償を行い、画像データを補間することにより、なめらかな表示を行なうことができる。
さらに、第(p+1)の画像180722および第(p+2)の画像180723は、第pの画像180721および第(p+3)の画像180724の中間状態となるように作成された上で、画像の輝度を一定の規則で制御した画像であってもよい。一定の規則とは、たとえば、図77(C)のように、第pの画像180721の代表的な輝度をL、第(p+1)の画像180722の代表的な輝度をLc1、第(p+2)の画像180723の代表的な輝度をLc2としたとき、L、Lc1、Lc2において、L>Lc1またはL>Lc2またはLc1=Lc2という関係があってもよい。望ましくは、0.1L<Lc1=Lc2<0.8Lという関係があってもよい。さらに望ましくは、0.2L<Lc=Lc2<0.5Lという関係があってもよい。または、逆にL、Lc1、Lc2において、L<Lc1またはL<Lc2またはLc1=Lc2という関係があってもよい。望ましくは、0.1Lc1=0.1Lc2<L<0.8Lc1=0.8Lc2という関係があってもよい。さらに望ましくは、0.2Lc1=0.2Lc2<L<0.5Lc1=0.5Lc2という関係があってもよい。このようにすることで、表示を擬似的にインパルス型とすることができるため、目の残像を抑えることができる。または、輝度を変化させる画像が交互に現れるようにしてもよい。こうすることで、輝度が変化する周期を短くすることができるので、フリッカを低減することができる。
このように、動画ボケに対する2つの異なる原因(画像の動きがなめらかではないこと、および目の残像)を同時に解決することによって、動画ボケを大幅に低減することができる。
なお、図77(C)の方法を用いると、表示フレームレートが小さいので、表示装置に信号を書き込む時間を長くすることができる。そのため、表示装置のクロック周波数を小さくできるので、消費電力を低減することができる。また、動き補償を行なう処理速度を遅くできるので、消費電力を低減することができる。
次に、図78を参照して、画像の代表的な輝度について説明する。図78(A)乃至(D)に示す図は、横軸を時間として、表示される画像の時間的な変化の様子を、模式的に表したものである。図78(E)は、ある領域内の画像の輝度を測定する方法の一例である。
画像の輝度を測定する方法としては、画像を構成するそれぞれの画素に対し、個別に輝度を測定する方法がある。この方法を用いると、画像の細部まで厳密に輝度を測定することができる。
ただし、画像を構成するそれぞれの画素に対し、個別に輝度を測定する方法は、非常に労力を要するため、別の方法を用いてもよい。画像の輝度を測定する別の方法としては、画像内のある領域に注目し、その領域の平均的な輝度を測定する方法がある。この方法によって、簡易に画像の輝度を測定することができる。本実施の形態においては、画像内のある領域の平均的な輝度を測定する方法によって求めた輝度を、便宜的に、画像の代表的な輝度と呼ぶこととする。
そして、画像の代表的な輝度を求めるために、画像内のどの領域に注目するかという点について、以下で説明する。
図78(A)は、画像の変化に対し、位置がほぼ変化しない領域(三角形の領域)の輝度を、画像の代表的な輝度とする方法の例を表している。期間Tinは入力画像データの周期、画像180801は第pの画像、画像180802は第(p+1)の画像、画像180803は第(p+2)の画像、第1の領域180804は第pの画像180801における輝度測定領域、第2の領域180805は第(p+1)の画像180802における輝度測定領域、第3の領域180806は第(p+2)の画像180803における輝度測定領域を、それぞれ表している。ここで、第1乃至第3の領域は、装置内の空間的な位置としては、概同じであるとしてよい。つまり、第1乃至第3の領域で画像の代表的な輝度を測定することによって、画像の代表的な輝度の時間変化を求めることができる。
画像の代表的な輝度を測定することで、表示が擬似的にインパルス型となっているかどうかを判断することができる。たとえば、第1の領域180804で測定される輝度をL、第2の領域180805で測定される輝度をLcとしたとき、Lc<Lであれば、表示は擬似的にインパルス型であるといえる。このようなときに、動画の品質は向上しているといえる。
なお、輝度測定領域において、時間の変化に対する画像の代表的な輝度の変化量(相対輝度)が、次のような範囲であると、画質を向上することができる。相対輝度としては、たとえば、第1の領域180804と第2の領域180805、第2の領域180805と第3の領域180806、第1の領域180804と第3の領域180806のそれぞれに対し、大きい方の輝度に対する小さい方の輝度の割合とすることができる。つまり、時間の変化に対する画像の代表的な輝度の変化量が0であるとき、相対輝度は100%となる。そして、相対輝度が80%以下であれば、動画の品質を向上できる。特に、相対輝度が50%以下であれば、動画の品質を顕著に向上できる。さらに、相対輝度が10%以上であれば、消費電力を低減し、かつフリッカを抑えることができる。特に、相対輝度が20%以上であれば、消費電力およびフリッカを顕著に低減することができる。すなわち、相対輝度が10%以上80%以下であれば、動画の品質を向上させ、かつ、消費電力およびフリッカを低減することができる。さらに、相対輝度が20%以上50%以下であれば、動画の品質を顕著に向上させ、かつ、消費電力およびフリッカを顕著に低減することができる。
図78(B)は、タイル状に分割された領域の輝度を測定し、その平均値を画像の代表的な輝度とする方法の例を表している。期間Tinは入力画像データの周期、画像180811は第pの画像、画像180812は第(p+1)の画像、画像180813は第(p+2)の画像、第1の領域180814は第pの画像180811における輝度測定領域、第2の領域180815は第(p+1)の画像180812における輝度測定領域、第3の領域180816は第(p+2)の画像180813における輝度測定領域を、それぞれ表している。ここで、第1乃至第3の領域は、装置内の空間的な位置としては、概同じであるとしてよい。つまり、第1乃至第3の領域で画像の代表的な輝度を測定することによって、画像の代表的な輝度の時間変化を求めることができる。
画像の代表的な輝度を測定することで、表示が擬似的にインパルス型となっているかどうかを判断することができる。たとえば、第1の領域180814で測定される輝度の全ての領域における平均値をL、第2の領域180815で測定される輝度の全ての領域における平均値をLcとしたとき、Lc<Lであれば、表示は擬似的にインパルス型であるといえる。このようなときに、動画の品質は向上しているといえる。
なお、輝度測定領域において、時間の変化に対する画像の代表的な輝度の変化量(相対輝度)が、次のような範囲であると、画質を向上することができる。相対輝度としては、たとえば、第1の領域180814と第2の領域180815、第2の領域180815と第3の領域180816、第1の領域180814と第3の領域180816のそれぞれに対し、大きい方の輝度に対する小さい方の輝度の割合とすることができる。つまり、時間の変化に対する画像の代表的な輝度の変化量が0であるとき、相対輝度は100%となる。そして、相対輝度が80%以下であれば、動画の品質を向上できる。特に、相対輝度が50%以下であれば、動画の品質を顕著に向上できる。さらに、相対輝度が10%以上であれば、消費電力を低減し、かつフリッカを抑えることができる。特に、相対輝度が20%以上であれば、消費電力およびフリッカを顕著に低減することができる。すなわち、相対輝度が10%以上80%以下であれば、動画の品質を向上させ、かつ、消費電力およびフリッカを低減することができる。さらに、相対輝度が20%以上50%以下であれば、動画の品質を顕著に向上させ、かつ、消費電力およびフリッカを顕著に低減することができる。
図78(C)は、画像の中央の領域の輝度を測定し、その平均値を画像の代表的な輝度とする方法の例を表している。期間Tinは入力画像データの周期、画像180821は第pの画像、画像180822は第(p+1)の画像、画像180823は第(p+2)の画像、第1の領域180824は第pの画像180821における輝度測定領域、第2の領域180825は第(p+1)の画像180822における輝度測定領域、第3の領域180826は第(p+2)の画像180823における輝度測定領域を、それぞれ表している。
画像の代表的な輝度を測定することで、表示が擬似的にインパルス型となっているかどうかを判断することができる。たとえば、第1の領域180824で測定される輝度をL、第2の領域180825で測定される輝度をLcとしたとき、Lc<Lであれば、表示は擬似的にインパルス型であるといえる。このようなときに、動画の品質は向上しているといえる。
なお、輝度測定領域において、時間の変化に対する画像の代表的な輝度の変化量(相対輝度)が、次のような範囲であると、画質を向上することができる。相対輝度としては、たとえば、第1の領域180824と第2の領域180825、第2の領域180825と第3の領域180826、第1の領域180824と第3の領域180826のそれぞれに対し、大きい方の輝度に対する小さい方の輝度の割合とすることができる。つまり、時間の変化に対する画像の代表的な輝度の変化量が0であるとき、相対輝度は100%となる。そして、相対輝度が80%以下であれば、動画の品質を向上できる。特に、相対輝度が50%以下であれば、動画の品質を顕著に向上できる。さらに、相対輝度が10%以上であれば、消費電力を低減し、かつフリッカを抑えることができる。特に、相対輝度が20%以上であれば、消費電力およびフリッカを顕著に低減することができる。すなわち、相対輝度が10%以上80%以下であれば、動画の品質を向上させ、かつ、消費電力およびフリッカを低減することができる。さらに、相対輝度が20%以上50%以下であれば、動画の品質を顕著に向上させ、かつ、消費電力およびフリッカを顕著に低減することができる。
図78(D)は、画像全体からサンプリングした複数の点の輝度を測定し、その平均値を画像の代表的な輝度とする方法の例を表している。期間Tinは入力画像データの周期、画像180831は第pの画像、画像180832は第(p+1)の画像、画像180833は第(p+2)の画像、第1の領域180834は第pの画像180831における輝度測定領域、第2の領域180835は第(p+1)の画像180832における輝度測定領域、第3の領域180836は第(p+2)の画像180833における輝度測定領域を、それぞれ表している。
画像の代表的な輝度を測定することで、表示が擬似的にインパルス型となっているかどうかを判断することができる。たとえば、第1の領域180834で測定される輝度の全ての領域における平均値をL、第2の領域180835で測定される輝度の全ての領域における平均値をLcとしたとき、Lc<Lであれば、表示は擬似的にインパルス型であるといえる。このようなときに、動画の品質は向上しているといえる。
なお、輝度測定領域において、時間の変化に対する画像の代表的な輝度の変化量(相対輝度)が、次のような範囲であると、画質を向上することができる。相対輝度としては、たとえば、第1の領域180834と第2の領域180835、第2の領域180835と第3の領域180836、第1の領域180834と第3の領域180836のそれぞれに対し、大きい方の輝度に対する小さい方の輝度の割合とすることができる。つまり、時間の変化に対する画像の代表的な輝度の変化量が0であるとき、相対輝度は100%となる。そして、相対輝度が80%以下であれば、動画の品質を向上できる。特に、相対輝度が50%以下であれば、動画の品質を顕著に向上できる。さらに、相対輝度が10%以上であれば、消費電力を低減し、かつフリッカを抑えることができる。特に、相対輝度が20%以上であれば、消費電力およびフリッカを顕著に低減することができる。すなわち、相対輝度が10%以上80%以下であれば、動画の品質を向上させ、かつ、消費電力およびフリッカを低減することができる。さらに、相対輝度が20%以上50%以下であれば、動画の品質を顕著に向上させ、かつ、消費電力およびフリッカを顕著に低減することができる。
図78(E)は、図78(A)乃至(D)に示す図における、輝度測定領域内の測定方法を示した図である。領域180841は注目している輝度測定領域、点180842は輝度測定領域180841内の輝度測定点である。時間分解能の高い輝度計測機器は、その測定対象範囲が小さい場合があるため、領域180841が大きい場合は、領域全てを測定するのではなく、図78(E)のように、領域180841内を点状で偏り無く、複数の点で測定し、その平均値をもって領域180841の輝度であるとしてもよい。
なお、画像がR、G、Bの3原色の組み合わせを持つ場合は、測定される輝度は、R、G、Bを合わせた輝度であってもよいし、RおよびGを合わせた輝度、GおよびBを合わせた輝度、BおよびRを合わせた輝度であってもよいし、R、G、Bそれぞれの輝度であってもよい。
次に、入力画像データに含まれる画像の動きを検出し、中間状態の画像を作成する方法、および入力画像データに含まれる画像の動き等に従って駆動方法を制御する方法について説明する。
図79を参照して、入力画像データに含まれる画像の動きを検出し、中間状態の画像を作成する方法の例について説明する。図79(A)は、表示フレームレートが、入力フレームレートの2倍(変換比が2)である場合を表したものである。図79(A)は、横軸を時間として、画像の動きを検出する方法を、模式的に表したものである。期間Tinは入力画像データの周期、画像180901は第pの画像、画像180902は第(p+1)の画像、画像180903は第(p+2)の画像を、それぞれ表している。また、画像中に、時間に依存しない領域として、第1の領域180904、第2の領域180905および第3の領域180906を設ける。
まず、第(p+2)の画像180903においては、画像をタイル状の複数の領域に分割し、そのうちの1つの領域である第3の領域180906内の画像データに着目する。
次に、第pの画像180901において、第3の領域180906を中心とした第3の領域180906よりも大きな範囲に着目する。ここで、第3の領域180906を中心とした第3の領域180906よりも大きな範囲は、データ検索範囲である。データ検索範囲は、水平方向(X方向)の範囲を180907、垂直方向(Y方向)の範囲を180908とする。なお、データ検索範囲の水平方向の範囲180907および垂直方向の範囲180908は、第3の領域180906の水平方向の範囲および垂直方向の範囲を、それぞれ15画素分程度拡大した範囲であってもよい。
そして、データ検索範囲内において、前記第3の領域180906内の画像データと最も類似した画像データを持つ領域を検索する。検索方法は、最小二乗法などを用いることができる。検索の結果、最も類似した画像データを持つ領域として、第1の領域180904が導出されたとする。
次に、導出された第1の領域180904と、第3の領域180906との位置の違いを表す量として、ベクトル180909を導出する。なお、ベクトル180909を、動きベクトルと呼ぶことにする。
そして、第(p+1)の画像180902においては、動きベクトル180909から求めたベクトル180910と、第(p+2)の画像180903における第3の領域180906内の画像データと、第pの画像180901における第1の領域180904内の画像データと、によって、第2の領域180905を形成する。
ここで、動きベクトル180909から求めたベクトル180910を変位ベクトルと呼ぶことにする。変位ベクトル180910は、第2の領域180905を形成する位置を決める役割を持つ。第2の領域180905は、第3の領域180906から変位ベクトル180910だけ離れた位置に形成される。なお、変位ベクトル180910は、動きベクトル180909に係数(1/2)をかけた量であってもよい。
第(p+1)の画像180902における第2の領域180905内の画像データは、第(p+2)の画像180903における第3の領域180906内の画像データと、第pの画像180901における第1の領域180904内の画像データによって決められるとしてもよい。たとえば、第(p+1)の画像180902における第2の領域180905内の画像データは、第(p+2)の画像180903における第3の領域180906内の画像データと、第pの画像180901における第1の領域180904内の画像データの平均値であってもよい。
このようにして、第(p+2)の画像180903における第3の領域180906に対応する、第(p+1)の画像180902における第2の領域180905を形成することができる。なお、以上の処理を、第(p+2)の画像180903における他の領域にも行なうことで、第(p+2)の画像180903と第pの画像180901の中間状態となる、第(p+1)の画像180902を形成することができる。
図79(B)は、表示フレームレートが、入力フレームレートの3倍(変換比が3)である場合を表したものである。図79(B)は、横軸を時間として、画像の動きを検出する方法を、模式的に表したものである。期間Tinは入力画像データの周期、画像180911は第pの画像、画像180912は第(p+1)の画像、画像180913は第(p+2)の画像、画像180914は第(p+3)の画像を、それぞれ表している。また、画像中に、時間に依存しない領域として、第1の領域180915、第2の領域180916、第3の領域180917および第4の領域180918を設ける。
まず、第(p+3)の画像180914においては、画像をタイル状の複数の領域に分割し、そのうちの1つの領域である第4の領域180918内の画像データに着目する。
次に、第pの画像180911において、第4の領域180918を中心とした第4の領域180918よりも大きな範囲に着目する。ここで、第4の領域180918を中心とした第4の領域180918よりも大きな範囲は、データ検索範囲である。データ検索範囲は、水平方向(X方向)の範囲を180919、垂直方向(Y方向)の範囲を180920とする。なお、データ検索範囲の水平方向の範囲180919および垂直方向の範囲180920は、第4の領域180918の水平方向の範囲および垂直方向の範囲を、それぞれ15画素分程度拡大した範囲であってもよい。
そして、データ検索範囲内において、前記第4の領域180918内の画像データと最も類似した画像データを持つ領域を検索する。検索方法は、最小二乗法などを用いることができる。検索の結果、最も類似した画像データを持つ領域として、第1の領域180915が導出されたとする。
次に、導出された第1の領域180915と、第4の領域180918との位置の違いを表す量として、ベクトル180921を導出する。なお、ベクトル180921を、動きベクトルと呼ぶことにする。
そして、第(p+1)の画像180912および、第(p+2)の画像180913においては、動きベクトル180921から求めたベクトル180922および180923と、第(p+3)の画像180915における第4の領域180918内の画像データと、第pの画像180911における第1の領域180915内の画像データと、によって、第2の領域180916および第3の領域180917を形成する。
ここで、動きベクトル180921から求めたベクトル180922を第1の変位ベクトルと呼ぶことにする。また、ベクトル180923を第2の変位ベクトルと呼ぶことにする。第1の変位ベクトル180922は、第2の領域180916を形成する位置を決める役割を持つ。第2の領域180916は、第4の領域180918から第1の変位ベクトル180922だけ離れた位置に形成される。なお、変位ベクトル180922は、動きベクトル180921に(1/3)をかけた量であってもよい。また、第2の変位ベクトル180923は、第3の領域180917を形成する位置を決める役割を持つ。第3の領域180917は、第4の領域180918から第2の変位ベクトル180923だけ離れた位置に形成される。なお、変位ベクトル180923は、動きベクトル180921に(2/3)をかけた量であってもよい。
第(p+1)の画像180912における第2の領域180916内の画像データは、第(p+3)の画像180914における第4の領域180918内の画像データと、第pの画像180911における第1の領域180915内の画像データによって決められるとしてもよい。たとえば、第(p+1)の画像180912における第2の領域180916内の画像データは、第(p+3)の画像180914における第4の領域180918内の画像データと、第pの画像180911における第1の領域180915内の画像データの平均値であってもよい。
第(p+2)の画像180913における第3の領域180917内の画像データは、第(p+3)の画像180914における第4の領域180918内の画像データと、第pの画像180911における第1の領域180915内の画像データによって決められるとしてもよい。たとえば、第(p+2)の画像180913における第3の領域180917内の画像データは、第(p+3)の画像180914における第4の領域180918内の画像データと、第pの画像180911における第1の領域180915内の画像データの平均値であってもよい。
このようにして、第(p+3)の画像180914における第4の領域180918に対応する、第(p+1)の画像180902における第2の領域180916、および第(p+2)の画像180913における第3の領域180917を形成することができる。なお、以上の処理を、第(p+3)の画像180914における他の領域にも行なうことで、第(p+3)の画像180914と第pの画像180911の中間状態となる、第(p+1)の画像180912および第(p+2)の画像180913を形成することができる。
次に、図80を参照して、入力画像データに含まれる画像の動きを検出し、中間状態の画像を作成する回路の例について説明する。図80(A)は、表示領域に画像を表示するためのソースドライバ、ゲートドライバを含む周辺駆動回路と、周辺駆動回路を制御する制御回路の接続関係を表した図である。図80(B)は、前記制御回路の詳細な回路構成の一例を表した図である。図80(C)は、前記制御回路に含まれる画像処理回路の詳細な回路構成の一例を表した図である。図80(D)は、前記制御回路に含まれる画像処理回路の詳細な回路構成の別の例を表した図である。
図80(A)のように、本実施の形態における装置は、制御回路181011と、ソースドライバ181012と、ゲートドライバ181013と、表示領域181014と、を含んでいてもよい。
なお、制御回路181011、ソースドライバ181012およびゲートドライバ181013は、表示領域181014が形成されている基板と同一の基板上に形成されていてもよい。
なお、制御回路181011、ソースドライバ181012およびゲートドライバ181013は、これらのうち一部が、表示領域181014が形成されている基板と同一の基板上に形成され、その他の回路は、表示領域181014が形成されている基板とは異なる基板上に形成されていてもよい。たとえば、ソースドライバ181012およびゲートドライバ181013が、表示領域181014が形成されている基板と同一の基板上に形成され、制御回路181011は異なる基板上に外付けICとして形成されていてもよい。同様に、ゲートドライバ181013が、表示領域181014が形成されている基板と同一の基板上に形成され、その他の回路は異なる基板上に外付けICとして形成されていてもよい。同様に、ソースドライバ181012、ゲートドライバ181013および制御回路181011の一部が、表示領域181014が形成されている基板と同一の基板上に形成され、その他の回路は異なる基板上に外付けICとして形成されていてもよい。
制御回路181011は、外部画像信号181000と、水平同期信号181001と、垂直同期信号181002と、が入力され、画像信号181003と、ソーススタートパルス181004と、ソースクロック181005と、ゲートスタートパルス181006と、ゲートクロック181007と、が出力される構成であってもよい。
ソースドライバ181012は、画像信号181003と、ソーススタートパルス181004と、ソースクロック181005と、が入力され、画像信号181003に従った電圧または電流を表示領域181014に出力する構成であってもよい。
ゲートドライバ181013は、ゲートスタートパルス181006と、ゲートクロック181007と、が入力され、ソースドライバ181012から出力される信号を表示領域181014に書き込むタイミングを指定する信号が出力される構成であってもよい。
外部画像信号181000の周波数と、画像信号181003の周波数が異なっている場合、ソースドライバ181012およびゲートドライバ181013を駆動するタイミングを制御する信号も、入力される水平同期信号181001および垂直同期信号181002とは異なる周波数を持つことになる。そのため、画像信号181003の処理に加えて、ソースドライバ181012およびゲートドライバ181013を駆動するタイミングを制御する信号も処理する必要がある。制御回路181011は、そのための機能を持った回路であってもよい。たとえば、外部画像信号181000の周波数に対して画像信号181003の周波数が倍であった場合、制御回路181011は、外部画像信号181000に含まれる画像信号を補間して倍の周波数の画像信号181003を生成し、かつ、タイミングを制御する信号も倍の周波数になるように制御する。
また、制御回路181011は、図80(B)のように、画像処理回路181015と、タイミング発生回路181016と、を含んでいてもよい。
画像処理回路181015は、外部画像信号181000と、周波数制御信号181008と、が入力され、画像信号181003が出力される構成であってもよい。
タイミング発生回路181016は、水平同期信号181001と、垂直同期信号181002と、が入力され、ソーススタートパルス181004と、ソースクロック181005と、ゲートスタートパルス181006と、ゲートクロック181007と、周波数制御信号181008と、が出力される構成であってもよい。なお、タイミング発生回路181016は、周波数制御信号181008の状態を指定するためのデータを保持するメモリまたはレジスタ等を含んでいてもよい。また、タイミング発生回路181016は、外部から周波数制御信号181008の状態を指定する信号が入力される構成であってもよい。
画像処理回路181015は、図80(C)のように、動き検出回路181020と、第1のメモリ181021と、第2のメモリ181022と、第3のメモリ181023と、輝度制御回路181023と、高速処理回路181025と、を含んでいてもよい。
動き検出回路181020は、複数の画像データが入力され、画像の動きが検出され、前記複数の画像データの中間状態である画像データが出力される構成であってもよい。
第1のメモリ181021は、外部映像信号181000が入力され、前記外部映像信号181000を一定期間保持しつつ、動き検出回路181020と第2のメモリ181022に前記外部映像信号181000を出力する構成であってもよい。
第2のメモリ181022は、第1のメモリ181021から出力された画像データが入力され、前記画像データを一定期間保持しつつ、動き検出回路181020と高速処理回路181025に前記画像データを出力する構成であってもよい。
第3のメモリ181023は、動き検出回路181020から出力された画像データが入力され、前記画像データを一定期間保持しつつ、輝度制御回路181024に前記画像データを出力する構成であってもよい。
高速処理回路181025は、第2のメモリ181022から出力された画像データと、輝度制御回路181024から出力された画像データと、周波数制御信号181008と、が入力され、前記画像データを、画像信号181003として出力する構成であってもよい。
外部画像信号181000の周波数と、画像信号181003の周波数が異なっている場合、画像処理回路181015によって、外部画像信号181000に含まれる画像信号を補間して画像信号181003を生成してもよい。入力された外部画像信号181000は、一旦第1のメモリ181021に保持される。そのとき、第2のメモリ181022には、1つ前のフレームで入力された画像データが保持されている。動き検出回路181020は、第1のメモリ181021および第2のメモリ181022に保持された画像データを適宜読み込み、両者の画像データの違いから動きベクトルを検出し、さらに、中間状態の画像データを生成してもよい。生成された中間状態の画像データは、第3のメモリ181023によって保持される。
動き検出回路181020が中間状態の画像データを生成しているとき、高速処理回路181025は、第2のメモリ181022に保持されている画像データを、画像信号181003として出力する。その後、第3のメモリ181023に保持された画像データを輝度制御回路181024を通じて画像信号181003として出力する。このとき、第2のメモリ181022および第3のメモリ181023が更新される周波数は外部画像信号181000の周波数と同じだが、高速処理回路181025を通じて出力される画像信号181003の周波数は、外部画像信号181000の周波数と異なっていてもよい。具体的には、たとえば、画像信号181003の周波数は外部画像信号181000の周波数の1.5倍、2倍、3倍が挙げられる。しかし、これに限定されるものではなく、様々な周波数とすることができる。なお、画像信号181003の周波数は、周波数制御信号181008によって指定されてもよい。
図80(D)に示した画像処理回路181015の構成は、図80(C)に示した画像処理回路181015の構成に、第4のメモリ181026を加えたものである。このように、第1のメモリ181021から出力された画像データと、第2のメモリ181022から出力された画像データに加えて、第4のメモリ181026から出力された画像データも動き検出回路181020に出力することで、正確に画像の動きを検出することが可能になる。
なお、入力される画像データが、データ圧縮等のために、すでに動きベクトルを含んでいるような場合、たとえばMPEG(Moving Picture Expert Group)の規格に基づく画像データである場合は、これを用いて中間状態の画像を補間画像として生成すればよい。このとき、動き検出回路181020に含まれる、動きベクトルを生成する部分は不要となる。また、画像信号181023に係るエンコードおよびデコード処理も簡単なものとなるため、消費電力を低減できる。
なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態の図で述べた内容(一部でもよい)対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
なお、本実施の形態は、他の実施の形態で述べた内容(一部でもよい)を、具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示している。したがって、他の実施の形態で述べた内容は、本実施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。
(実施の形態12)
本実施形態においては、本発明に係る電子機器の例について説明する。
図48は表示パネル900101と、回路基板900111を組み合わせた表示パネルモジュールを示している。表示パネル900101は画素部900102、走査線駆動回路900103及び信号線駆動回路900104を有している。回路基板900111には、例えば、コントロール回路900112及び信号分割回路900113などが形成されている。表示パネル900101と回路基板900111とは接続配線900114によって接続されている。接続配線にはFPC等を用いることができる。
表示パネル900101は、画素部900102と一部の周辺駆動回路(複数の駆動回路のうち動作周波数の低い駆動回路)を基板上にトランジスタを用いて一体形成し、一部の周辺駆動回路(複数の駆動回路のうち動作周波数の高い駆動回路)をICチップ上に形成し、そのICチップをCOG(Chip On Glass)などで表示パネル900101に実装してもよい。こうすることで、回路基板900111の面積を削減でき、小型の表示装置を得ることができる。あるいは、そのICチップをTAB(Tape Auto Bonding)又はプリント基板を用いて表示パネル900101に実装してもよい。こうすることで、表示パネル900101の面積を小さくできるので、額縁サイズの小さい表示装置を得ることができる。
例えば、消費電力の低減を図るため、ガラス基板上にトランジスタを用いて画素部を形成し、全ての周辺駆動回路をICチップ上に形成し、そのICチップをCOG又はTABで表示パネルに実装してもよい。
図48に示した表示パネルモジュールによって、テレビ受像機を完成させることができる。図49は、テレビ受像機の主要な構成を示すブロック図である。チューナ900201は映像信号と音声信号を受信する。映像信号は、映像信号増幅回路900202と、映像信号増幅回路900202から出力される信号を赤、緑、青の各色に対応した色信号に変換する映像信号処理回路900203と、その映像信号を駆動回路の入力仕様に変換するためのコントロール回路900212により処理される。コントロール回路900212は、走査線側と信号線側にそれぞれ信号を出力する。デジタル駆動する場合には、信号線側に信号分割回路900213を設け、入力デジタル信号をm個(mは正の整数)に分割して供給する構成としても良い。
チューナ900201で受信した信号のうち、音声信号は音声信号増幅回路900205に送られ、その出力は音声信号処理回路900206を経てスピーカー900207に供給される。制御回路900208は受信局(受信周波数)及び音量の制御情報を入力部900209から受け、チューナ900201又は音声信号処理回路900206に信号を送出する。
図49とは別の形態の表示パネルモジュールを組み込んだテレビ受像器について図50(A)に示す。図50(A)において、筐体900301内に収められた表示画面900302は、表示パネルモジュールで形成される。なお、スピーカー900303、操作スイッチ900304などが適宜備えられていてもよい。
図50(B)に、ワイヤレスでディスプレイのみを持ち運び可能なテレビ受像器を示す。筐体900312にはバッテリー及び信号受信器が内蔵されており、そのバッテリーで表示部900313又はスピーカー部900317を駆動させる。バッテリーは充電器900310で繰り返し充電が可能となっている。充電器900310は映像信号を送受信することが可能で、その映像信号をディスプレイの信号受信器に送信することができる。筐体900312は操作キー900316によって制御する。あるいは、図50(B)に示す装置は、操作キー900316を操作することによって、筐体900312から充電器900310に信号を送ることが可能である、映像音声双方向通信装置であってもよい。あるいは、操作キー900316を操作することによって、筐体900312から充電器900310に信号を送り、さらに充電器900310が送信できる信号を他の電子機器に受信させることによって、他の電子機器の通信制御も可能である、汎用遠隔制御装置であってもよい。本発明を表示部900313に適用することができる。
図51(A)は、表示パネル900401とプリント配線基板900402を組み合わせたモジュールを示している。表示パネル900401は、複数の画素が設けられた画素部900403と、第1の走査線駆動回路900404、第2の走査線駆動回路900405と、選択された画素にビデオ信号を供給する信号線駆動回路900406を備えていてもよい。
プリント配線基板900402には、コントローラ900407、中央処理装置(CPU)900408、メモリ900409、電源回路900410、音声処理回路900411及び送受信回路900412などが備えられている。プリント配線基板900402と表示パネル900401は、フレキシブル配線基板(FPC)900413により接続されている。フレキシブル配線基板(FPC)900413には、保持容量、バッファ回路などを設け、電源電圧又は信号にノイズの発生、及び信号の立ち上がり時間の増大を防ぐ構成としても良い。なお、コントローラ900407、音声処理回路900411、メモリ900409、中央処理装置(CPU)900408、電源回路900410などは、COG(Chip On Glass)方式を用いて表示パネル900401に実装することもできる。COG方式により、プリント配線基板900402の規模を縮小することができる。
プリント配線基板900402に備えられたインターフェース(I/F)部900414を介して、各種制御信号の入出力が行われる。そして、アンテナとの間の信号の送受信を行うためのアンテナ用ポート900415が、プリント配線基板900402に設けられている。
図51(B)は、図51(A)に示したモジュールのブロック図を示す。このモジュールは、メモリ900409としてVRAM900416、DRAM900417、フラッシュメモリ900418などが含まれている。VRAM900416にはパネルに表示する画像のデータが、DRAM900417には画像データ又は音声データが、フラッシュメモリには各種プログラムが記憶されている。
電源回路900410は、表示パネル900401、コントローラ900407、中央処理装置(CPU)900408、音声処理回路900411、メモリ900409、送受信回路900412を動作させる電力を供給する。ただし、パネルの仕様によっては、電源回路900410に電流源が備えられている場合もある。
中央処理装置(CPU)900408は、制御信号生成回路900420、デコーダ900421、レジスタ900422、演算回路900423、RAM900424、中央処理装置(CPU)900408用のインターフェース(I/F)部900419などを有している。インターフェース(I/F)部900419を介して中央処理装置(CPU)900408に入力された各種信号は、一旦レジスタ900422に保持された後、演算回路900423、デコーダ900421などに入力される。演算回路900423では、入力された信号に基づき演算を行い、各種命令を送る場所を指定する。一方デコーダ900421に入力された信号はデコードされ、制御信号生成回路900420に入力される。制御信号生成回路900420は入力された信号に基づき、各種命令を含む信号を生成し、演算回路900423において指定された場所、具体的にはメモリ900409、送受信回路900412、音声処理回路900411、コントローラ900407などに送る。
メモリ900409、送受信回路900412、音声処理回路900411、コントローラ900407は、それぞれ受けた命令に従って動作する。以下その動作について簡単に説明する。
入力手段900425から入力された信号は、インターフェース(I/F)部900414を介してプリント配線基板900402に実装された中央処理装置(CPU)900408に送られる。制御信号生成回路900420は、ポインティングデバイス又はキーボードなどの入力手段900425から送られてきた信号に従い、VRAM900416に格納してある画像データを所定のフォーマットに変換し、コントローラ900407に送付する。
コントローラ900407は、パネルの仕様に合わせて中央処理装置(CPU)900408から送られてきた画像データを含む信号にデータ処理を施し、表示パネル900401に供給する。コントローラ900407は、電源回路900410から入力された電源電圧、又は中央処理装置(CPU)900408から入力された各種信号をもとに、Hsync信号、Vsync信号、クロック信号CLK、交流電圧(AC Cont)、切り替え信号L/Rを生成し、表示パネル900401に供給する。
送受信回路900412では、アンテナ900428において電波として送受信される信号が処理されており、具体的にはアイソレータ、バンドパスフィルタ、VCO(Voltage Controlled Oscillator)、LPF(Low Pass Filter)、カプラ、バランなどの高周波回路を含んでいてもよい。送受信回路900412において送受信される信号のうち音声情報を含む信号が、中央処理装置(CPU)900408からの命令に従って、音声処理回路900411に送られる。
中央処理装置(CPU)900408の命令に従って送られてきた音声情報を含む信号は、音声処理回路900411において音声信号に復調され、スピーカー900427に送られる。マイク900426から送られてきた音声信号は、音声処理回路900411において変調され、中央処理装置(CPU)900408からの命令に従って、送受信回路900412に送られる。
コントローラ900407、中央処理装置(CPU)900408、電源回路900410、音声処理回路900411、メモリ900409を、本実施形態のパッケージとして実装することができる。
勿論、本実施の形態はテレビ受像機に限定されず、パーソナルコンピュータのモニタをはじめ、鉄道の駅又は空港などにおける情報表示盤、街頭における広告表示盤など特に大面積の表示媒体として様々な用途に適用することができる。
次に、図52を参照して、本発明に係る携帯電話の構成例について説明する。
表示パネル900501はハウジング900530に脱着自在に組み込まれる。ハウジング900530は表示パネル900501のサイズに合わせて、形状又は寸法を適宜変更することができる。表示パネル900501を固定したハウジング900530はプリント基板900531に嵌入されモジュールとして組み立てられる。
表示パネル900501はFPC900513を介してプリント基板900531に接続される。プリント基板900531には、スピーカー900532、マイクロフォン900533、送受信回路900534、CPU及びコントローラなどを含む信号処理回路900535が形成されている。このようなモジュールと、入力手段900536、バッテリー900537を組み合わせ、筐体900539に収納する。表示パネル900501の画素部は筐体900539に形成された開口窓から視認できように配置する。
表示パネル900501は、画素部と一部の周辺駆動回路(複数の駆動回路のうち動作周波数の低い駆動回路)を基板上にトランジスタを用いて一体形成し、一部の周辺駆動回路(複数の駆動回路のうち動作周波数の高い駆動回路)をICチップ上に形成し、そのICチップをCOG(Chip On Glass)で表示パネル900501に実装しても良い。あるいは、そのICチップをTAB(Tape Auto Bonding)又はプリント基板を用いてガラス基板と接続してもよい。このような構成とすることで、表示装置の低消費電力化を図り、携帯電話機の一回の充電による使用時間を長くすることができる。携帯電話機の低コスト化を図ることができる。
図52に示した携帯電話は、様々な情報(静止画、動画、テキスト画像など)を表示する機能を有する。カレンダー、日付又は時刻などを表示部に表示する機能を有する。表示部に表示した情報を操作又は編集する機能を有する。様々なソフトウェア(プログラム)によって処理を制御する機能を有する。無線通信機能を有する。無線通信機能を用いて他の携帯電話、固定電話又は音声通信機器と通話する機能を有する。無線通信機能を用いて様々なコンピュータネットワークに接続する機能を有する。無線通信機能を用いて様々なデータの送信又は受信を行う機能を有する。着信、データの受信、又はアラームに応じてバイブレータが動作する機能を有する。着信、データの受信、又はアラームに応じて音が発生する機能を有する。なお、図52に示した携帯電話が有する機能はこれに限定されず、様々な機能を有することができる。
図53で示す携帯電話機は、操作スイッチ類900604、マイクロフォン900605などが備えられた本体(A)900601と、表示パネル(A)900608、表示パネル(B)900609、スピーカー900606などが備えられた本体(B)900602とが、蝶番900610で開閉可能に連結されている。表示パネル(A)900608と表示パネル(B)900609は、回路基板900607と共に本体(B)900602の筐体900603の中に収納される。表示パネル(A)900608及び表示パネル(B)900609の画素部は筐体900603に形成された開口窓から視認できるように配置される。
表示パネル(A)900608と表示パネル(B)900609は、その携帯電話機900600の機能に応じて画素数などの仕様を適宜設定することができる。例えば、表示パネル(A)900608を主画面とし、表示パネル(B)900609を副画面として組み合わせることができる。
本実施形態に係る携帯電話機は、その機能又は用途に応じてさまざまな態様に変容し得る。例えば、蝶番900610の部位に撮像素子を組み込んで、カメラ付きの携帯電話機としても良い。操作スイッチ類900604、表示パネル(A)900608、表示パネル(B)900609を一つの筐体内に納めた構成としても、上記した作用効果を奏することができる。表示部を複数個そなえた情報表示端末に本実施形態の構成を適用しても、同様な効果を得ることができる。
図53に示した携帯電話は、様々な情報(静止画、動画、テキスト画像など)を表示する機能を有する。カレンダー、日付又は時刻などを表示部に表示する機能を有する。表示部に表示した情報を操作又は編集する機能を有する。様々なソフトウェア(プログラム)によって処理を制御する機能を有する。無線通信機能を有する。無線通信機能を用いて他の携帯電話、固定電話又は音声通信機器と通話する機能を有する。無線通信機能を用いて様々なコンピュータネットワークに接続する機能を有する。無線通信機能を用いて様々なデータの送信又は受信を行う機能を有する。着信、データの受信、又はアラームに応じてバイブレータが動作する機能を有する。着信、データの受信、又はアラームに応じて音が発生する機能を有する。なお、図53に示した携帯電話が有する機能はこれに限定されず、様々な機能を有することができる。
本発明を様々な電子機器に適用することができる。具体的には、電子機器の表示部に適用することができる。そのような電子機器として、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ、ナビゲーションシステム、音響再生装置(カーオーディオ、オーディオコンポ等)、コンピュータ、ゲーム機器、携帯情報端末(モバイルコンピュータ、携帯電話、携帯型ゲーム機又は電子書籍等)、記録媒体を備えた画像再生装置(具体的にはDigital Versatile Disc(DVD)等の記録媒体を再生し、その画像を表示しうるディスプレイを備えた装置)などが挙げられる。
図54(A)はディスプレイであり、筐体900711、支持台900712、表示部900713等を含む。図54(A)に示すディスプレイは、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能を有する。なお、図54(A)に示すディスプレイが有する機能はこれに限定されず、様々な機能を有することができる。
図54(B)はカメラであり、本体900721、表示部900722、受像部900723、操作キー900724、外部接続ポート900725、シャッター900726等を含む。図54(B)に示すカメラは、静止画を撮影する機能を有する。動画を撮影する機能を有する。撮影した画像(静止画、動画)を自動で補正する機能を有する。撮影した画像を記録媒体(外部又はデジタルカメラに内臓)に保存する機能を有する。撮影した画像を表示部に表示する機能を有する。なお、図54(B)に示すカメラが有する機能はこれに限定されず、様々な機能を有することができる。
図54(C)はコンピュータであり、本体900731、筐体900732、表示部900733、キーボード900734、外部接続ポート900735、ポインティングデバイス900736等を含む。図54(C)に示すコンピュータは、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能を有する。様々なソフトウェア(プログラム)によって処理を制御する機能を有する。無線通信又は有線通信などの通信機能を有する。通信機能を用いて様々なコンピュータネットワークに接続する機能を有する。通信機能を用いて様々なデータの送信又は受信を行う機能を有する。なお、図54(C)に示すコンピュータが有する機能はこれに限定されず、様々な機能を有することができる。
図54(D)はモバイルコンピュータであり、本体900741、表示部900742、スイッチ900743、操作キー900744、赤外線ポート900745等を含む。図54(D)に示すモバイルコンピュータは、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能を有する。表示部にタッチパネルの機能を有する。カレンダー、日付又は時刻などを表示する機能を表示部に有する。様々なソフトウェア(プログラム)によって処理を制御する機能を有する。無線通信機能を有する。無線通信機能を用いて様々なコンピュータネットワークに接続する機能を有する。無線通信機能を用いて様々なデータの送信又は受信を行う機能を有する。なお、図54(D)に示すモバイルコンピュータが有する機能はこれに限定されず、様々な機能を有することができる。
図54(E)は記録媒体を備えた携帯型の画像再生装置(たとえば、DVD再生装置)であり、本体900751、筐体900752、表示部A900753、表示部B900754、記録媒体(DVD等)読み込み部900755、操作キー900756、スピーカー部900757等を含む。表示部A900753は主として画像情報を表示し、表示部B900754は主として文字情報を表示することができる。
図54(F)はゴーグル型ディスプレイであり、本体900761、表示部900762、イヤホン900763、支持部900764を含む。図54(F)に示すゴーグル型ディスプレイは、外部から取得した画像(静止画、動画、テキスト画像など)を表示部に表示する機能を有する。なお、図54(F)に示すゴーグル型ディスプレイが有する機能はこれに限定されず、様々な機能を有することができる。
図54(G)は携帯型遊技機であり、筐体900771、表示部900772、スピーカー部900773、操作キー900774、記憶媒体挿入部900775等を含む。本発明の表示装置を表示部900772に用いた携帯型遊技機は、鮮やかな色彩を表現することができる。図54(G)に示す携帯型遊技機は、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能を有する。他の携帯型遊技機と無線通信を行って情報を共有する機能を有する。なお、図54(G)に示す携帯型遊技機が有する機能はこれに限定されず、様々な機能を有することができる。
図54(H)はテレビ受像機能付きデジタルカメラであり、本体900781、表示部900782、操作キー900783、スピーカー900784、シャッター900785、受像部900786、アンテナ900787等を含む。図54(H)に示すテレビ受像機付きデジタルカメラは、静止画を撮影する機能を有する。動画を撮影する機能を有する。撮影した画像を自動で補正する機能を有する。アンテナから様々な情報を取得する機能を有する。撮影した画像、又はアンテナから取得した情報を保存する機能を有する。撮影した画像、又はアンテナから取得した情報を表示部に表示する機能を有する。なお、図54(H)に示すテレビ受像機付きデジタルカメラが有する機能はこれに限定されず、様々な機能を有することができる。
図54(A)乃至(E)に示したように、本発明に係る電子機器は、何らかの情報を表示するための表示部を有することを特徴とする。本発明に係る電子機器は、データが重複している場合に該データをメモリに格納することで回路の動作頻度を減少させることができるので、消費電力が小さく、長時間の電池駆動が可能である。
次に、本発明に係る半導体装置の応用例を説明する。
図55に、本発明に係る半導体装置を、建造物と一体にして設けた例について示す。図55は、筐体900810、表示部900811、操作部であるリモコン装置900812、スピーカー部900813等を含む。本発明に係る半導体装置は、壁かけ型として建物と一体となっており、設置するスペースを広く必要とすることなく設置可能である。
図56に、建造物内に本発明に係る半導体装置を、建造物と一体にして設けた別の例について示す。表示パネル900901は、ユニットバス900902と一体に取り付けられており、入浴者は表示パネル900901の視聴が可能になる。表示パネル900901は入浴者が操作することで情報を表示する機能を有する。広告又は娯楽手段として利用できる機能を有する。
なお、本発明に係る半導体装置は、図56で示したユニットバス900902の側壁だけではなく、様々な場所に設置することができる。たとえば、鏡面の一部又は浴槽自体と一体にするなどとしてもよい。このとき、表示パネル900901の形状は、鏡面又は浴槽の形状に合わせたものとなっていてもよい。
図57に、本発明に係る半導体装置を、建造物と一体にして設けた別の例について示す。表示パネル901002は、柱状体901001の曲面に合わせて湾曲させて取り付けられている。なお、ここでは柱状体901001を電柱として説明する。
図57に示す表示パネル901002は、人間の視点より高い位置に設けられている。電柱のように屋外で繰り返し林立している建造物に表示パネル901002を設置することで、不特定多数の視認者に広告を行なうことができる。ここで、表示パネル901002は、外部からの制御により、同じ画像を表示させること、及び瞬時に画像を切替えることが容易であるため、極めて効率的な情報表示、及び広告効果が期待できる。表示パネル901002に自発光型の表示素子を設けることで、夜間であっても、視認性の高い表示媒体として有用であるといえる。電柱に設置することで、表示パネル901002の電力供給手段の確保が容易である。災害発生時などの非常事態の際には、被災者に素早く正確な情報を伝達する手段ともなり得る。
なお、表示パネル901002としては、たとえば、フィルム状の基板に有機トランジスタなどのスイッチング素子を設けて表示素子を駆動することにより画像の表示を行なう表示パネルを用いることができる。
なお、本実施形態において、建造物として壁、柱状体、ユニットバスを例としたが、本実施形態はこれに限定されず、様々な建造物に本発明に係る半導体装置を設置することができる。
次に、本発明に係る半導体装置を、移動体と一体にして設けた例について示す。
図58は、本発明に係る半導体装置を、自動車と一体にして設けた例について示した図である。表示パネル901102は、自動車の車体901101と一体に取り付けられており、車体の動作又は車体内外から入力される情報をオンデマンドに表示することができる。なお、ナビゲーション機能を有していてもよい。
なお、本発明に係る半導体装置は、図58で示した車体901101だけではなく、様々な場所に設置することができる。たとえば、ガラス窓、ドア、ハンドル、シフトレバー、座席シート、ルームミラー等と一体にしてもよい。このとき、表示パネル901102の形状は、設置するもの形状に合わせたものとなっていてもよい。
図59は、本発明に係る半導体装置を、列車車両と一体にして設けた例について示した図である。
図59(a)は、列車車両のドア901201のガラスに表示パネル901202を設けた例について示した図である。従来の紙による広告に比べて、広告切替えの際に必要となる人件費がかからないという利点がある。表示パネル901202は、外部からの信号により表示部で表示される画像の切り替えを瞬時に行なうことが可能であるため、たとえば、電車の乗降客の客層が入れ替わる時間帯ごとに表示パネルの画像を切り替えることができ、より効果的な広告効果が期待できる。
図59(b)は、列車車両のドア901201のガラスの他に、ガラス窓901203、及び天井901204に表示パネル901202を設けた例について示した図である。このように、本発明に係る半導体装置は、従来では設置が困難であった場所に容易に設置することが可能であるため、効果的な広告効果を得ることができる。本発明に係る半導体装置は、外部からの信号により表示部で表示される画像の切り替えを瞬時に行なうことが可能であるため、広告切替え時のコスト及び時間が削減でき、より柔軟な広告の運用及び情報伝達が可能となる。
なお、本発明に係る半導体装置は、図59で示したドア901201、ガラス窓901203、及び天井901204だけではなく、様々な場所に設置することができる。たとえば、つり革、座席シート、てすり、床等と一体にしてもよい。このとき、表示パネル901202の形状は、設置するもの形状に合わせたものとなっていてもよい。
なお、本実施形態において、移動体としては電車車両本体、自動車車体、飛行機車体について例示したがこれに限定されず、自動二輪車、自動四輪車(自動車、バス等を含む)、電車(モノレール、鉄道等を含む)、船舶等、様々なものに設置することができる。本発明に係る半導体装置は、外部からの信号により、移動体内における表示パネルの表示を瞬時に切り替えることが可能であるため、移動体に本発明に係る半導体装置を設置することにより、移動体を不特定多数の顧客を対象とした広告表示板、災害発生時の情報表示板、等の用途に用いることが可能となる。
なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容(一部でもよい)は、別の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、これまでに述べた図において、各々の部分に関して、別の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
同様に、本実施の形態の各々の図で述べた内容(一部でもよい)は、別の実施の形態および実施例の図で述べた内容(一部でもよい)に対して、適用、組み合わせ、又は置き換えなどを自由に行うことが出来る。さらに、本実施の形態の図において、各々の部分に関して、別の実施の形態および実施例の部分を組み合わせることにより、さらに多くの図を構成させることが出来る。
なお、本実施の形態は、他の実施の形態および実施例で述べた内容(一部でもよい)を、具現化した場合の一例、少し変形した場合の一例、一部を変更した場合の一例、改良した場合の一例、詳細に述べた場合の一例、応用した場合の一例、関連がある部分についての一例などを示している。したがって、他の実施の形態および実施例で述べた内容は、本実施の形態への適用、組み合わせ、又は置き換えを自由に行うことができる。