JP2019009458A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2019009458A
JP2019009458A JP2018165066A JP2018165066A JP2019009458A JP 2019009458 A JP2019009458 A JP 2019009458A JP 2018165066 A JP2018165066 A JP 2018165066A JP 2018165066 A JP2018165066 A JP 2018165066A JP 2019009458 A JP2019009458 A JP 2019009458A
Authority
JP
Japan
Prior art keywords
layer
transistor
electrode
oxide semiconductor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2018165066A
Other languages
English (en)
Inventor
山崎 舜平
Shunpei Yamazaki
舜平 山崎
秋元 健吾
Kengo Akimoto
健吾 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2019009458A publication Critical patent/JP2019009458A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

【課題】透光性と所謂ノーマリーオフの特性を兼ね備え、透光性とオフ電流が低減され、透光性とオン電流の損失が少なく、また、経時的な特性の変化が抑制されたトランジスタを提供する。【解決手段】トランジスタ151(152)において、チャネル形成領域を含む酸化物半導体層123には、キャリア濃度が可能な限り抑制され、且つ、広いバンドギャップを有する酸化物半導体を用い、ソース電極、及びドレイン電極115a、115bには、水素及び酸素欠損を含む酸化物導電体を用い、該酸化物導電層と該酸化物半導体層の間に水素及び酸素の拡散を阻害するバリア層114a、114bを設け、当該バリア層を介して酸化物導電層と酸化物半導体層を電気的に接続する構成とする。【選択図】図1

Description

半導体素子を用いた半導体装置、及び半導体装置の作製方法に関する。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置
全般を指し、トランジスタ等の半導体素子、半導体素子を用いた半導体回路、電気光学装
置、及び電子機器は全て半導体装置である。
酸化物半導体をチャネル形成領域に用いてトランジスタを作製し、該トランジスタを半導
体回路、IC、電気光学装置、及び電子機器等に応用する技術が注目されている。
特にバンドギャップが広い酸化物半導体は可視光を透過するため、透光性を有する酸化物
導電体を用いたゲート電極、ソース電極、及びドレイン電極と組み合わせて、透光性を有
するトランジスタを作製する試みがなされている。
例えば、酸化物半導体をチャネル形成領域に用いるトランジスタの一態様として、絶縁表
面を有する基板上に、酸化亜鉛や、In−Ga−Zn−O系酸化物半導体等を含む半導体
薄膜(厚さ数〜数百nm程度)を用いてトランジスタを形成し、画像表示装置のスイッチ
ング素子などに用いる技術が特許文献1及び特許文献2で開示されている。
また、酸化物半導体をチャネル形成領域(チャネル領域ともいう)に用いるトランジスタ
は、アモルファスシリコンを用いたトランジスタよりも高い電界効果移動度が得られてい
る。また、酸化物半導体膜はスパッタリング法などによって形成が可能であり、多結晶シ
リコンを用いたトランジスタよりも製造工程が簡単である。
一方、可視光に対する透光性と、導電性を備える酸化物導電体は、液晶ディスプレイなど
の表示装置で必要とされる透明電極材料に用いられている。可視光に対する透光性を有す
る酸化物導電体の多くは、広いバンドギャップを有する金属酸化物を含んでいる。
透光性を有する酸化物導電体としては、例えば、酸化インジウム酸化スズ合金(In
―SnO、ITOと略記する)、酸化亜鉛、アルミニウムを添加した酸化亜鉛(AZ
O)やガリウムを添加した酸化亜鉛(GZO)などをその例に挙げることができる。
これらの透光性を有する酸化物導電体の多くは、不純物等が添加された酸化物半導体であ
る。例えば、ITOにおいては錫が、AZOにおいてはアルミニウムが、GZOにおいて
はガリウムが不純物として、添加されている。
また、前述の酸化物導電体をスパッタリング法で成膜する場合、成膜条件によって導電率
が変化することも知られている。例えば、特許文献3及び特許文献4では、高い導電率を
有する酸化物導電層を、水素を含む還元雰囲気で成膜する技術が開示されている。水素を
含む還元雰囲気で成膜すると、水素や酸素欠損を含む酸化物導電膜が成膜され、酸化物導
電膜の導電性が向上すると言われている。
なお、広いバンドギャップを持つ酸化物半導体の一例である酸化亜鉛が導電性を発現する
理由について、非特許文献1は水素が形成する浅いドナー準位が寄与することを示唆して
いる。
また、半導体装置の一態様である表示装置の画面の解像度は、ハイビジョン画質(HD、
1366×768)、フルハイビジョン画質(FHD、1920×1080)と高精細化
の傾向にあり、解像度が3840×2048または4096×2160といった、いわゆ
る4Kデジタルシネマ用表示装置の開発も急がれている。
このような表示装置の高精細化に伴い、画素の微細化が著しい。特に中小型の表示装置で
は顕著である。
トランジスタを設けた画素をマトリクス状に配置したアクティブマトリクス型半導体装置
では、画素の微細化に伴い、画素に占めるトランジスタの面積が高まり、所謂開口率の低
下が問題になっている。そこで、透光性を有するトランジスタを用いて当該半導体装置の
画素の開口率の向上を図り、液晶ディスプレイ、エレクトロルミネセンスディスプレイ(
ELディスプレイともいう)または電子ペーパーなどの表示装置に応用する技術が期待さ
れている。
また、画素数の増加に伴い一画素当たりの書き込み時間が短くなり、トランジスタには動
作特性の速さ、大きなオン電流等が求められている。加えて近年のエネルギーの枯渇問題
もあって、消費電力を抑制した表示装置が求められている。その結果、ゲート電極の電位
が0のときにオフ状態所謂ノーマリーオフの特性を有し、またオフ電流が低く無駄な漏れ
電流が抑制されたトランジスタが求められている。
また、大型の表示装置においては、画面サイズが対角60インチ以上、さらには、対角1
20インチ以上の画面サイズも視野に入れた開発が行われている。従って、画面サイズの
大型化に伴う配線抵抗の増大を抑制する技術も求められている。
特開2007−123861号公報 特開2007−96055号公報 特開平5−275727号公報 特開平9−293693号公報
WALLE.C、 「Hydrogen as a Cause of Doping in Zinc Oxide」、 PHYS. REV. LETT. (PHYSICAL REVIEW LETTERS)、 July 31、2000、 Vol. 85、 No. 5、 pp. 1012−1015
以上のように、透光性を有するトランジスタにおいても消費電力の低減が求められる。本
発明は、このような技術的背景のもとでなされたものである。
したがって、その目的は、透光性と所謂ノーマリーオフの特性を兼ね備えたトランジスタ
を提供することを課題の一とする。また、透光性とオフ電流が低減された特性を兼ね備え
たトランジスタを提供することを課題の一とする。また、透光性とオン電流の損失が少な
い特性を兼ね備えたトランジスタを提供することを課題の一とする。また、経時的な特性
の変化が抑制されたトランジスタを提供することを課題の一とする。
なお、以下に開示する発明は、上記課題のいずれか一つを解決することを目的とする。
透光性を有するトランジスタを提供するには、透光性を有する導電膜を用いてゲート電極
、ソース電極、及びドレイン電極を作製する必要がある。また、トランジスタのオン電流
の損失を減らすには、ソース電極、及びドレイン電極の導電性を高める必要がある。従っ
て、トランジスタのソース電極、及びドレイン電極に透光性を有する導電層を用いる場合
、酸化物導電層が好適であり、特に導電率を高める酸素欠損や不純物(例えば水素等)を
含む酸化物導電層が高い導電率を有するため好適である。
また、透光性を有するトランジスタを提供するには、チャネル形成領域を含む半導体層に
透光性が必要とされる。トランジスタの消費電力を低減するためには、ノーマリーオフの
動作特性、並びにオフ電流が十分に抑制されたトランジスタ特性が必要とされる。従って
、キャリア濃度が抑制され、且つ広いバンドギャップを有する酸化物半導体層がチャネル
形成領域を含む半導体層に好適である。
しかし、導電率を高める効果を有する酸素欠損や不純物(例えば水素等)を含む酸化物導
電層と、キャリア濃度が抑制され、且つ広いバンドギャップを有する酸化物半導体層を直
接接続する構成とすると、以下の問題が生じる。
酸化物導電層と酸化物半導体層の界面を介して、酸化物導電層が含む水素等の不純物が酸
化物半導体層に拡散すると、酸化物導電層の不純物濃度が低下し、酸化物半導体層の不純
物濃度が高まる。その結果、酸化物導電層の不純物濃度の低下が導電率の低下を招き、ト
ランジスタのオン電流の損失が大きくなる。また、酸化物半導体層の不純物濃度の上昇は
キャリア濃度の上昇を招き、ノーマリーオフの動作特性とオフ電流が十分に抑制された特
性を有するトランジスタの実現が困難になる。
また、酸化物導電層と酸化物半導体層の界面を介して、酸化物導電層が含む酸素欠損に酸
化物半導体層から酸素が拡散すると、酸化物導電層の酸素欠損箇所が減少し、酸化物半導
体層の酸素欠損箇所が増加する。酸化物導電層が含む酸素欠損箇所の減少は導電率の低下
を招き、トランジスタのオン電流の損失が大きくなる。また、酸化物半導体層に生じた酸
素欠損はキャリア濃度の上昇を招き、ノーマリーオフの特性とオフ電流が十分に抑制され
た特性を有するトランジスタの実現が困難になる。
そこで上記目的を達成するために、ソース電極、及びドレイン電極を形成する酸化物導電
層が酸化物半導体層に電気的に接続する領域において、水素及び酸素の移動を抑制すれば
よい。
具体的には、チャネル形成領域を含む酸化物半導体層には、キャリア濃度が可能な限り抑
制され、且つ広いバンドギャップを有する酸化物半導体を用い、該ソース電極、及び該ド
レイン電極には、水素及び酸素欠損を含む酸化物導電体を用い、該酸化物導電層と該酸化
物半導体層の間に水素及び酸素の拡散を阻害するバリア層を設け、当該バリア層を介して
酸化物導電層と酸化物半導体層を電気的に接続する構成とすればよい。
すなわち、本発明の一態様は、透光性を有する基板の絶縁表面上に透光性を有するゲート
電極と、ゲート電極上に第1の絶縁層を有し、第1の絶縁層上に高純度化された酸化物半
導体層と、酸化物半導体層上にゲート電極と端部を重畳する第1の電極、及び第2の電極
を有する半導体装置である。また、酸化物半導体層と第1の電極の間、及び酸化物半導体
層と第2の電極の間にそれぞれ透光性を有するバリア層を有し、酸化物半導体層のチャネ
ルが形成される領域の反対側の面に接する第2の絶縁層を有する半導体装置である。なお
、酸化物半導体層のキャリア濃度が、1×1014/cm未満であり、第1の電極、及
び第2の電極は透光性を有し、抵抗率が2000×10−6Ω・cm以下である酸化物導
電体を含み、また、バリア層が窒化物を含む半導体装置である。
また、本発明の一態様は、ゲート電極と電気的に接続するゲート配線を有し、ゲート配線
が金属を含む上記半導体装置である。
また、本発明の一態様は、第2の絶縁層に形成された開口を介して、第1の電極、または
第2の電極と電気的に接続する信号線を有し、信号線が金属を含む上記半導体装置である
また、本発明の一態様は、信号線上に第3の絶縁層を有し、第3の絶縁層と第1の絶縁層
が周囲を囲んで接する上記半導体装置である。
また、本発明の一態様は、基板上に第1の容量電極と、第1の容量電極上に第1の絶縁層
と、第1の絶縁層上に第2の容量電極を有する。また、第1の容量電極がゲート電極と同
一の材料を含み、第2の容量電極が第1の電極及び第2の電極と同一の材料を含む半導体
装置である。
また、本発明の一態様は、ゲート配線と信号線の交差部に第1の絶縁層、第2の絶縁層、
並びに酸化物半導体層を挟む上記半導体装置である。
また、本発明の一態様は、透光性を有する基板の絶縁表面上に上記半導体装置と、第2の
ゲート電極と、第2のゲート電極上に第1の絶縁層と、第1の絶縁層上に酸化物半導体層
と、酸化物半導体層のチャネル形成領域と重なるチャネル保護層と、チャネル保護層上に
端部を有する第3の電極、及び第4の電極とを有する。また、第2のゲート電極はゲート
配線と同一の材料からなり、チャネル保護層は前記第2の絶縁層と同一の材料からなり、
第3の電極、及び第4の電極は信号線と同一の材料からなる半導体装置である。
また、本発明の一態様は、透光性を有する基板の絶縁表面上に透光性を有する酸化物導電
体を含むゲート電極を形成し、ゲート電極上に第1の絶縁層を形成し、第1の絶縁層上に
透光性を有する酸化物半導体層を形成し、不活性ガス雰囲気中で酸化物半導体層を設けた
基板の温度を350℃以上700℃以下に加熱処理し、酸化物半導体層を覆うバリア層を
形成し、バリア層上に透光性を有する酸化物導電層を還元雰囲気で形成し、ゲート電極上
に端部を重畳し、バリア層を介して酸化物半導体層に電気的に接続する第1の電極、及び
第2の電極を形成し、酸化物半導体層と第1の電極、及び第2の電極上に第2の絶縁層を
形成する、キャリア濃度が1×1014/cm未満の酸化物半導体層と、抵抗率が20
00×10−6Ω・cm以下である酸化物導電層を有する半導体装置の作製方法である。
なお、本明細書において、透光性とは、少なくとも可視光の波長領域の光を透過する性質
を指す。
また、ゲートとは、ゲート電極及びゲート配線の一部または全部のことをいう。ゲート配
線とは、少なくとも一つのトランジスタのゲート電極と、別の電極や別の配線とを電気的
に接続させるための配線のことをいい、例えば表示装置における走査線もゲート配線に含
まれる。
またソースとは、ソース領域、ソース電極、及びソース配線の一部または全部のことをい
う。ソース領域とは、半導体層のうち、抵抗率が一定値以下の領域のことをいう。ソース
電極とは、半導体層にキャリアを供給する導電層のことをいう。ソース配線とは、少なく
とも一つのトランジスタのソース電極と、別の電極や別の配線とを電気的に接続させるた
めの配線のことをいい、例えば表示装置における信号線がソース電極に電気的に接続され
る場合にはソース配線に信号線も含まれる。
またドレインとは、ドレイン領域、ドレイン電極、及びドレイン配線の一部または全部の
ことをいう。ドレイン領域とは、半導体層のうち、抵抗率が一定値以下の領域のことをい
う。ドレイン電極とは、半導体層からキャリアが流出する導電層のことをいう。ドレイン
配線とは、少なくとも一つのトランジスタのドレイン電極と、別の電極や別の配線とを電
気的に接続させるための配線のことをいい、例えば表示装置における信号線がドレイン電
極に電気的に接続される場合にはドレイン配線に信号線も含まれる。
また、本書類(明細書、特許請求の範囲または図面など)において、トランジスタのソー
スとドレインは、トランジスタの構造や動作条件などによって互いに入れ替わるため、い
ずれがソースまたはドレインであるかを限定することが困難である。そこで、本書類(明
細書、特許請求の範囲または図面など)においては、ソース及びドレインのいずれかから
任意に選択した一方をソース及びドレインの一方と表記し、他方の端子をソース及びドレ
インの他方と表記する。
また、本明細書中において、窒化酸化珪素とは、その組成として、酸素よりも窒素の含有
量が多いものであって、好ましくは、RBS及びHFSを用いて測定した場合に、組成範
囲として酸素が5〜30原子%、窒素が20〜55原子%、珪素が25〜35原子%、水
素が10〜30原子%の範囲で含まれるものをいう。また、構成元素の含有比率は、その
合計が100原子%を超えない値をとる。
透光性とノーマリーオフの特性を有するトランジスタを提供できる。また、透光性とオフ
電流が低減された特性を有するトランジスタを提供できる。また、透光性とオン電流の損
失が少ない特性を有するトランジスタを提供できる。また、経時的な特性の変化が抑制さ
れ、信頼性に優れた、上述の透光性を有するトランジスタを提供できる。
実施の形態に係わる半導体装置を説明する図。 酸化物半導体を用いたトランジスタの断面図。 図2のA−A’断面におけるエネルギーバンド図(模式図)。 (A)ゲート(GE1)に正の電位(V>0)が与えられた状態を示し、(B)ゲート(GE1)に負の電位(V<0)が与えられた状態を示す図。 真空準位と金属の仕事関数(φ)、酸化物半導体の電子親和力(χ)の関係を示す図。 実施の形態に係わる半導体装置を説明する図。 実施の形態に係わる半導体装置の作製方法を説明する図。 実施の形態に係わる半導体装置の端子を説明する図。 実施の形態に係わるインバータ回路を説明する図。 表示装置のブロック図を説明する図。 信号線駆動回路の構成を説明する図。 シフトレジスタの構成を説明する図。 シフトレジスタの回路図及び動作を説明するタイミングチャート。 実施の形態に係わる半導体装置を説明する図。 実施の形態に係わる半導体装置を説明する図。 実施の形態に係わる半導体装置の画素等価回路を説明する図。 実施の形態に係わる半導体装置を説明する図。 実施の形態に係わる半導体装置を説明する図。 実施の形態に係わる半導体装置を説明する図。 電子ペーパーの使用形態の例を説明する図。 電子書籍の一例を示す外観図。 テレビジョン装置及びデジタルフォトフレームの例を示す外観図。 遊技機の例を示す外観図。 携帯電話機の一例を示す外観図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定さ
れず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し
得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の
記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において
、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、
その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、半導体装置の一態様として可視光を透過するボトムゲート型のトラン
ジスタについて、図1(A−1)、図1(A−2)、図1(B−1)、及び図1(B−2
)を用いて説明する。
図1(A−1)、及び図1(A−2)は、透光性を有する導電膜を用いて、トランジスタ
の電極及び、当該トランジスタと接続する配線を形成する例を示す図である。
また、図1(B−1)、及び図1(B−2)は透光性を有する導電膜を用いてトランジス
タの電極を形成し、金属を含む導電膜で当該トランジスタと接続する配線を形成する例を
示す図である。
可視光を透過するボトムゲート型のトランジスタの構成の一態様を図1(A−1)、及び
図1(A−2)に示す。図1(A−1)はトランジスタの平面構成を示す上面図であり、
図1(A−2)はトランジスタの積層構成を示す断面図である。なお、図1(A−1)に
おけるP1−P2の鎖線は、図1(A−2)における断面P1−P2に相当する。
断面P1−P2は、トランジスタ151の積層構造を示している。トランジスタ151は
、透光性を有する基板100上に透光性を有する第1の導電層で形成されるゲート電極1
11aと、ゲート電極111a上に透光性を有する第1の絶縁層102と、ゲート電極1
11a上の第1の絶縁層102に接してチャネル形成領域を含む透光性を有する酸化物半
導体層123とを有する。
また、ゲート電極111a上に端部を重畳し、透光性を有する第2の導電層で形成される
第1の電極115aと第2の電極115bを有する。なお、第1の電極115aはバリア
層114aを介して、また、第2の電極115bはバリア層114bを介して酸化物半導
体層123に電気的に接続する。なお、第1の電極115aと第2の電極115bはトラ
ンジスタ151のソース電極またはドレイン電極として機能する。
また、トランジスタ151は、第1の電極115a、第2の電極115b、第1の絶縁層
102、並びに酸化物半導体層123上に第2の絶縁層107を有する。
トランジスタ151を構成する全ての層は透光性を有するため、トランジスタ151は透
光性を有する。
また、可視光を透過するボトムゲート型のトランジスタの構成の別の一態様を図1(B−
1)、及び図1(B−2)に示す。図1(B−1)はトランジスタの平面構成を示す上面
図であり、図1(B−2)はトランジスタの積層構成を示す断面図である。なお、図1(
B−1)におけるQ1−Q2の鎖線は、図1(B−2)における断面Q1−Q2に相当す
る。
断面Q1−Q2は、トランジスタ152の積層構造を示している。トランジスタ152は
、透光性を有する基板100上に透光性を有するゲート電極111aを有する。ゲート電
極111aは図示されていない金属を含むゲート配線層と接続されている。ゲート電極1
11a上に透光性を有する第1の絶縁層102と、ゲート電極111a上の第1の絶縁層
102に接してチャネル形成領域を含む透光性を有する酸化物半導体層123とを有する
また、ゲート電極111a上に端部を重畳し、透光性を有する第1の電極115aと第2
の電極115bを有する。なお、第1の電極115aはバリア層114aを介して、また
、第2の電極115bはバリア層114bを介して酸化物半導体層123に電気的に接続
する。なお、第1の電極115aと第2の電極115bはトランジスタ152のソース電
極またはドレイン電極として機能する。
また、第1の電極115a、第2の電極115b、酸化物半導体層123、並びに第1の
絶縁層102上に第2の絶縁層107を有する。信号線116aは、第2の絶縁層107
に形成した開口部127aを介して第1の電極115aと接続し、信号線116bは第2
の絶縁層107に形成した開口部127bを介して第2の電極115bと接続する。
また、トランジスタ152は、信号線116a、信号線116b、並びに第2の絶縁層1
07上に第3の絶縁層108を有する。また、第3の絶縁層108上に導電層129を設
けてもよい。
なお、第2の絶縁層107に形成した開口部126a、及び開口部126bを介して、第
1の絶縁層の一部である絶縁層102aと第3の絶縁層108が互いに接する構成とする
。絶縁層102aを第3の絶縁層108と同種の絶縁層とすることで、互いに密着し、ト
ランジスタ152の周囲を囲んで接する構成となる。
なお、トランジスタ152を構成する全ての層は透光性を有するため、トランジスタ15
2は透光性を有する。また、トランジスタ152の電極は、金属を含む導電膜で形成した
配線と接続されているため、配線抵抗が抑制された半導体装置を構成できる。また、トラ
ンジスタ152は同種の絶縁層で周囲を囲まれているため、外部からの不純物の拡散が抑
制され、優れた信頼性を有する。
また、導電層129を酸化物半導体層123のチャネル形成領域と重なる位置に設けるこ
とによって、バイアス−熱ストレス試験(以下、BT試験という)におけるトランジスタ
152のしきい値電圧の変化量を低減することができる。なお、BT試験に用いるストレ
ス条件としては、85℃環境下、2×10V/cm、12時間を挙げることができる。
本実施の形態では、酸化物半導体層123としてキャリア濃度が1×1014/cm
満に抑制され、広いバンドギャップを有する高純度化されたIn−Ga−Zn−O系酸化
物半導体を用いる。
高純度化され、キャリア濃度が1×1014/cm未満好ましくは1×1012/cm
以下に抑制され、広いバンドギャップ(具体的には2eV以上、好ましくは2.5eV
以上、より好ましくは3eV以上)を有する酸化物半導体層をチャネル形成領域に用いた
トランジスタは、ゲート電極の電位が0のときにオフ状態(所謂ノーマリーオフの特性)
になる。このような酸化物半導体を用いて作製されるトランジスタは、オフ電流が小さい
なお、トランジスタのチャネルが形成される半導体層にキャリア濃度が1×1014/c
未満、好ましくは1×1012/cm以下に高純度化され、広いバンドギャップを
有する酸化物半導体を適用する意義については、本実施の形態の最後に詳しく説明する。
酸化物半導体層としては、四元系金属酸化物であるIn−Sn−Ga−Zn−O系層や、
三元系金属酸化物であるIn−Ga−Zn−O系層、In−Sn−Zn−O系層、In−
Al−Zn−O系層、Sn−Ga−Zn−O系層、Al−Ga−Zn−O系層、Sn−A
l−Zn−O系層や、二元系金属酸化物であるIn−Zn−O系層、Sn−Zn−O系層
、Al−Zn−O系層、Zn−Mg−O系層、Sn−Mg−O系層、In−Mg−O系層
や、一元系金属酸化物である、In−O系層、Sn−O系層、Zn−O系層などの酸化物
半導体層を用いることができる。また、上記酸化物半導体層にSiOを含んでもよい。
InMO(ZnO)(m>0)のように表記される酸化物半導体材料がある。ここで
、Mはガリウム(Ga)、アルミニウム(Al)、鉄(Fe)、ニッケル(Ni)、マン
ガン(Mn)、コバルト(Co)などから選ばれた一の金属元素または複数の金属元素を
示す。例えばMとしては、Ga、Ga及びAl、Ga及びFe、Ga及びNi、Ga及び
Mn、Ga及びCoなどを適用することができる。MにGaを用いた、InGaO(Z
nO)(m>0)で表記される酸化物半導体は、上記したIn―Ga―Zn―O系酸化
物半導体材料の代表例である。なお、上述の組成は結晶構造から導き出されるものであり
、あくまでも一例に過ぎないことを付記する。
また、酸化物半導体層には、RTA(Rapid Thermal Anneal:ラピ
ッドサーマルアニール)法等で高温短時間の脱水または脱水素化処理をしたものを用いる
。酸化物半導体層は、脱水化または脱水素化の工程により酸素欠損が生じる。従って、酸
素欠損部に酸素が供給される必要がある。この過程を経て高純度化された酸化物半導体層
となる。高純度化された酸化物半導体層のキャリア濃度は1×1014/cm未満、好
ましくは1×1012/cm以下に抑制される。
本実施の形態では、ゲート電極111aを含む第1の導電層と、第1の電極115a、及
び第2の電極115bを含む第2の導電層を、透光性を有する導電膜で形成する。
なお、透光性を有する導電膜は、可視光の透過率が75〜100%である膜厚を指す。ま
た、可視光に対して半透明の導電膜を用いてもよい。可視光に対して半透明とは可視光の
透過率が50〜75%であることを指す。
また、ゲート電極、第1の電極、及び第2の電極として用いる透光性を有する導電膜の電
気抵抗率は200×10−6Ω・cm以上2000×10−6Ω・cm以下、好ましくは
250×10−6Ω・cm以上2000×10−6Ω・cm以下とする。
透光性を有する導電膜としては、酸化物導電膜が好適である。具体的には、酸化タングス
テンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタ
ンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物
(以下、ITOと示す。)、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫
酸化物などを用いることができる。なお、酸化ケイ素を添加したインジウム錫酸化物は結
晶性が抑制され、加工性に優れた非晶質な膜となる。また、酸化亜鉛、アルミニウムを添
加した酸化亜鉛、ガリウムを添加した酸化亜鉛等を用いることができる。本実施の形態で
はインジウム錫酸化物(ITO)を用いる。
透光性を有する酸化物導電層は、その組成、添加する不純物、並びに成膜条件により導電
性を高めることができる。例えば、還元雰囲気で成膜されて酸素欠損が生じた酸化物導電
層は導電性が向上する。また、不純物(例えば水素等を含む化合物等)が添加されること
によって、酸化物導電層は非晶質となり加工性だけでなく、導電性も向上する。
本実施の形態では、バリア層114a、及びバリア層114bを窒化チタンで形成する。
バリア層の厚みは1nm以上50nm以下、好ましくは2nm以上10nm以下とし、透
光性を有する。
バリア層114aは、高純度化された酸化物半導体層123と第1の電極115aの間に
設けられ、バリア層114bは、高純度化された酸化物半導体層123と第2の電極11
5bの間に設けられる。バリア層114a、及びバリア層114bは水素及び酸素の拡散
を阻害する層である。
バリア層114a、及びバリア層114bは、酸化物導電層が含む不純物(例えば、水素
原子を含む不純物)が酸化物半導体層に拡散する現象を抑制する。また、バリア層114
a、及びバリア層114bは、酸化物半導体層が含む酸素原子が酸化物導電層に拡散する
現象を抑制する。
なお、バリア層114a、及びバリア層114bとしては、窒化チタン層の他、窒化タン
タル層、窒化タングステン層、窒化モリブデン層など、導電性の窒化物層や、極薄い窒化
珪素層、窒化アルミニウム層など、バリア性を有する窒化物層を用いることができる。
本実施の形態では、第1の絶縁層102に窒化珪素(SiN(y>0))上に、酸化珪
素を積層した積層体を用いる。また、第2の絶縁層107に酸化珪素上に、窒化珪素(S
iN(y>0))を積層した積層体を用いる。
窒化珪素層を用いることにより、トランジスタ151に設けた酸化物半導体層123に、
外部から不純物が拡散して到達する現象を防止できる。
また、酸化物半導体層123と接する側の第1の絶縁層102、及び酸化物半導体層12
3と接する側の第2の絶縁層107に酸化珪素を用いることにより、酸化物半導体層12
3に生じた酸素欠損に酸素を補填できる。
なお、第1の絶縁層102、及び第2の絶縁層107を構成する酸化珪素、窒化珪素は透
光性を有する。
なお、第1の絶縁層102としては、窒化酸化珪素層、酸化窒化珪素層、窒化珪素層また
は酸化珪素層の他、アルミニウム、タンタル、イットリウム、またはハフニウムの酸化物
、窒化物、酸化窒化物、又は窒化酸化物の一種又はそれらの化合物を少なくとも2種以上
含む化合物層を単層で、または積層して用いることもできる。
特に、第1の絶縁層102に酸化珪素より高い誘電率を有する絶縁層を用いると、ゲート
絶縁層としての特性が向上するため好ましい。
また、基板100は可視光を透過し、絶縁表面を有するものを用いる。例えば、ガラス基
板、セラミック基板の他、作製工程の処理温度に耐えうる程度の耐熱性を有するプラスチ
ック基板等を用いることができる。
ガラス基板としては、例えば、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス若
しくはアルミノケイ酸ガラス等の無アルカリガラス基板を用いるとよい。他に、石英基板
、サファイア基板などを用いることができる。本実施の形態では、基板100にアルミノ
ホウケイ酸ガラスを用いる。
また、基板の大きさは、使用目的、製造装置等を勘案して、適宜決定すればよいが、第3
世代(550mm×650mm)、第3.5世代(600mm×720mm、または62
0mm×750mm)、第4世代(680mm×880mm、または730mm×920
mm)、第5世代(1100mm×1300mm)、第6世代(1500mm×1850
mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400
mm)、第9世代(2400mm×2800mm、2450mm×3050mm)、第1
0世代(2950mm×3400mm)等のガラス基板を用いることができる。
なお基板100上に、下地膜として、窒化珪素膜、窒化酸化珪素膜を、単層若しくは積層
して形成することができる。下地膜は、スパッタリング法、CVD法、塗布法、印刷法等
を適宜用いることができる。なお、膜中にリン(P)や硼素(B)がドープされていても
良い。
ここでは、トランジスタのチャネルが形成される半導体層にキャリア濃度が1×1014
/cm未満、好ましくは1×1012/cm以下に高純度化され、広いバンドギャッ
プを有する酸化物半導体を適用する意義について説明する。
<酸化物半導体の真性化>
酸化物半導体において、DOS(density of state)等の物性研究は多
くなされているが、これらの研究は、局在準位そのものを十分に減らすという思想を含ま
ない。開示する発明の一態様では、局在準位の原因たり得る水や水素を酸化物半導体中よ
り除去することで、高純度化し、真性化(i型化)した酸化物半導体を作製する。これは
、局在準位そのものを十分に減らすという思想に立脚するものである。そして、これによ
って極めて優れた工業製品の製造を可能とするものである。
なお、水素や水などを除去する際には、同時に酸素が除去されてしまうことがある。この
ため、酸素欠乏により発生する金属の未結合手に対して酸素を供給し、酸素欠陥による局
在準位を減少させることにより、酸化物半導体をさらに高純度化、真性化(i型化)する
のは好適である。たとえば、酸化物半導体を含むチャネル形成領域に密接して酸素過剰の
酸化膜を形成し、200℃〜400℃、代表的には250℃程度の温度条件での熱処理を
行うことで、当該酸化膜から酸化物半導体へ酸素を供給して、酸素欠陥による局在準位を
低減させることが可能である。
酸化物半導体の特性を悪化させる要因は、過剰な水素による伝導帯下0.1eV〜0.2
eVの浅い準位や、酸素欠損による深い準位、などに起因するものと考えられる。これら
の欠陥をなくすために、水素を徹底的に除去し、酸素を十分に供給する。
なお、酸化物半導体は一般にn型とされているが、開示する発明の一態様では、水や水素
などの不純物を除去すると共に、酸化物半導体の構成元素である酸素を供給することでi
型化を実現する。この点、シリコンなどのように不純物元素を添加してのi型化ではなく
、従来にない技術思想を含むものといえる。
<酸化物半導体を用いたトランジスタの電導機構>
ここで、酸化物半導体を用いたトランジスタの電導機構につき、図2乃至図5を用いて説
明する。なお、以下の説明では、理解の容易のため理想的な状況を仮定しており、そのす
べてが現実の様子を反映しているとは限らない。また、以下の説明はあくまでも一考察に
過ぎず、発明の有効性に影響を与えるものではないことを付記する。
図2は、酸化物半導体を用いたトランジスタの断面図である。ゲート電極(GE1)上に
ゲート絶縁層(GI)を介して酸化物半導体層(OS)が設けられ、その上にソース電極
(S)及びドレイン電極(D)が設けられている。
図3には、図2のA−A’断面におけるエネルギーバンド図(模式図)を示す。また、図
3中の黒丸(●)は電子を示し、白丸(○)は正孔を示し、それぞれは電荷(−q,+q
)を有している。ドレイン電極に正の電圧(V>0)を印加した上で、破線はゲート電
極に電圧を印加しない場合(V=0)、実線はゲート電極に正の電圧(V>0)を印
加する場合を示す。ゲート電極に電圧を印加しない場合は高いポテンシャル障壁のために
電極から酸化物半導体側へキャリア(電子)が注入されず、電流を流さないオフ状態を示
す。一方、ゲートに正の電圧を印加するとポテンシャル障壁が低下し、電流を流すオン状
態を示す。
図4には、図2におけるB−B’の間におけるエネルギーバンド図(模式図)を示す。図
4(A)は、ゲート電極(GE1)に正の電位(V>0)が与えられた状態であり、ソ
ースとドレインとの間にキャリア(電子)が流れるオン状態を示している。また、図4(
B)は、ゲート(GE1)に負の電位(V<0)が印加された状態であり、オフ状態(
少数キャリアは流れない状態)である場合を示す。
図5は、真空準位と金属の仕事関数(φ)、酸化物半導体の電子親和力(χ)の関係を
示す。
常温において金属中の電子は縮退しており、フェルミ準位は伝導帯内に位置する。従来の
酸化物半導体はn型であり、そのフェルミ準位(E)は、バンドギャップ中央に位置す
る真性フェルミ準位(E)から離れて、伝導帯寄りに位置している。なお、酸化物半導
体において水素はドナーとなりn型化する要因の一つであることが知られている。
これに対して開示する発明の一態様に係る酸化物半導体は、n型化の要因である水素を酸
化物半導体から除去し、酸化物半導体の主成分以外の元素(不純物元素)が極力含まれな
いように高純度化することにより真性(i型)とし、または真性とせんとしたものである
。すなわち、不純物元素を添加してi型化するのでなく、水素や水等の不純物を極力除去
することにより、高純度化された結果、真性(i型)またはそれに近づけることを特徴と
している。これにより、フェルミ準位(E)は真性フェルミ準位(E)と同程度とす
ることができる。
酸化物半導体のバンドギャップ(E)は3.15eVで、電子親和力(χ)は4.3V
と言われている。ソース電極及びドレイン電極を構成するチタン(Ti)の仕事関数は、
酸化物半導体の電子親和力(χ)とほぼ等しい。この場合、金属−酸化物半導体界面にお
いて、電子に対してショットキー型の障壁は形成されない。
このとき電子は、図4(A)で示すように、ゲート絶縁層と高純度化された酸化物半導体
との界面付近(酸化物半導体のエネルギー的に安定な最低部)を移動する。
また、図4(B)に示すように、ゲート電極(GE1)に負の電位が与えられると、少数
キャリアであるホールは実質的にゼロであるため、電流は限りなくゼロに近い値となる。
このように酸化物半導体の主成分以外の元素(不純物元素)が極力含まれないように高純
度化することにより、真性(i型)とし、または実質的に真性となるため、ゲート絶縁層
との界面特性が顕在化する。そのため、ゲート絶縁層には、酸化物半導体と良好な界面を
形成できるものが要求される。具体的には、例えば、VHF帯〜マイクロ波帯の電源周波
数で生成される高密度プラズマを用いたCVD法で作製される絶縁層や、スパッタリング
法で作製される絶縁層などを用いることが好ましい。
酸化物半導体を高純度化しつつ、酸化物半導体とゲート絶縁層との界面を良好なものとす
ることにより、例えば、トランジスタのチャネル幅Wが1×10μm、チャネル長Lが
3μmの場合には、常温で、10−13A以下のオフ電流、0.1V/dec.のサブス
レッショルドスイング値(S値)(ゲート絶縁層の厚さ:100nm)が実現され得る。
このように、酸化物半導体の主成分以外の元素(不純物元素)が極力含まれないように高
純度化することにより、トランジスタの動作を良好なものとすることができる。
このように透光性を有する材料で構成する本実施の形態のトランジスタは透光性を有する
本実施の形態のトランジスタは、酸素欠損や不純物(例えば水素等)を含み、導電率が高
められた酸化物導電層を用いてソース電極、及びドレイン電極を形成しているため、オン
電流の損失が少ない。
広いバンドギャップを有し、キャリア濃度を1×1014/cm未満、好ましくは1×
1012/cm以下に抑制された酸化物半導体を用いるため、本実施の形態のトランジ
スタはノーマリーオフの挙動を示し、そのオフ電流は低い。具体的には、チャネル幅1μ
mあたりの室温でのオフ電流を1×10−16A/μm以下、さらには1aA/μm(1
×10−18A/μm)以下にすることが可能である。
なお、トランジスタのオフ電流の流れ難さをオフ抵抗率として表すことができる。オフ抵
抗率とは、トランジスタがオフのときのチャネル形成領域の抵抗率であり、オフ抵抗率は
オフ電流から算出することができる。
具体的には、オフ電流とドレイン電圧との値が分かればオームの法則からトランジスタが
オフのときの抵抗値(オフ抵抗R)を算出することができる。そして、チャネル形成領域
の断面積Aとチャネル形成領域の長さ(ソースドレイン電極間の距離に相当する)Lが分
かればρ=RA/Lの式(Rはオフ抵抗)からオフ抵抗率ρを算出することができる。
ここで、断面積Aは、チャネル形成領域の膜厚をdとし、チャネル幅をWとするとき、A
=dWから算出することができる。また、チャネル形成領域の長さLはチャネル長Lであ
る。以上のように、オフ電流からオフ抵抗率を算出することができる。
本実施の形態の酸化物半導体層を具備するトランジスタのオフ抵抗率は1×10Ω・m
以上の優れた値を示す。
本実施の形態のトランジスタにおいて、酸化物導電層と高純度化された酸化物半導体層の
間に水素及び酸素の拡散を阻害するバリア層を設けているため、酸化物導電層が含む不純
物(例えば、水素原子を含む不純物)が酸化物半導体層に拡散する現象が抑制される。ま
た、バリア層によって、酸化物半導体層が含む酸素原子が酸化物導電層に拡散する現象が
抑制される。
本実施の形態で例示した透光性を有するトランジスタは、高純度化された酸化物半導体層
がバリア層により保護されているため、ノーマリーオフの特性と、オフ電流が低減された
特性を有し、また経時的に特性が変化し難く、信頼性に優れている。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる
(実施の形態2)
本実施の形態では、半導体装置の一態様として可視光を透過するボトムゲート型のトラン
ジスタを適用した表示装置について図6を用いて説明する。また、可視光を透過するボト
ムゲート型のトランジスタの作製方法について、図7を用いて説明する。
なお、可視光を透過するボトムゲート型のトランジスタと共に作製可能なチャネル保護型
のトランジスタの作製方法についても、図7を用いて説明する。
図6(A)は、可視光を透過するボトムゲート型のトランジスタを適用した表示装置の画
素部の上面図である。また、図6(B)は、可視光を透過するボトムゲート型のトランジ
スタを適用した表示装置の画素部の積層構成を示す断面図である。なお、図6(A)にお
けるA1−A2の鎖線は、図6(B)における断面A1−A2に相当し、図6(A)にお
けるB1−B2の鎖線は、図6(B)における断面B1−B2に相当し、図6(A)にお
けるC1−C2の鎖線は、図6(B)における断面C1−C2に相当し、図6(A)にお
けるD1−D2の鎖線は、図6(B)における断面D1−D2に相当する。
断面A1−A2はトランジスタ153の積層構造を説明する図である。また、断面D1−
D2はトランジスタ153の積層構造を断面A1−A2とは異なる断面から説明する図で
ある。
トランジスタ153は、透光性を有する基板100上にゲート電極111aを有する。な
お、ゲート電極111aはゲート配線111cと電気的に接続されている。また、ゲート
電極111a上に第1の絶縁層102を有し、ゲート電極111a上の第1の絶縁層10
2に接して酸化物半導体層123を有する。また、ゲート電極111a上に端部を重畳す
る第1の電極115a、及び第2の電極115bを有する。なお、第1の電極115aと
酸化物半導体層123の間にはバリア層114aを有し、第2の電極115bと酸化物半
導体層123の間にはバリア層114bを有する。
ゲート電極111a上で、酸化物半導体層123と第1の電極115aとが重なる領域と
、酸化物半導体層123と第2の電極115bとが重なる領域の間で、第2の絶縁層10
7と酸化物半導体層123は接する。第2の絶縁層107に開口部127を形成し、信号
線116aを設け、第2の絶縁層107及び信号線116a上に第3の絶縁層108を有
し、第3の絶縁層108上に第4の絶縁層109を有する。また、第2の絶縁層107、
第3の絶縁層108、及び第4の絶縁層109に形成した開口部128を介して第2の電
極115bと電気的に接続する画素電極120を第4の絶縁層109上に有する。
断面B1−B2は容量部の積層構造を説明する図である。
容量部は基板100上に設けられた第1の容量電極111b上に、第1の絶縁層102及
びバリア層114bを挟んでトランジスタ153の第2の電極115bが延在して形成さ
れている。第1の容量電極111bは、トランジスタ153のゲート電極111aと共に
形成し、第1の絶縁層102、バリア層114b、並びに第2の電極115bはトランジ
スタ153と共に作製できる。
第1の容量電極111b及び第2の電極115bは透光性を有するため、容量部は透光性
を有し、画素の開口率が低下しない。また、第1の容量電極111b及び第2の電極11
5bの間隔が狭いため、大きな容量が得られる。
断面C1−C2はゲート配線111cと信号線116aの交差部の断面構造を説明する図
である。
基板100上に設けられたゲート配線111c上に第1の絶縁層102、酸化物半導体層
113c、第2の絶縁層107を挟んで信号線116aが交差する。ゲート配線111c
はトランジスタ153のゲート電極と接続する。
ゲート配線111cと信号線116aの交差部において、その間隔が広げられているため
、配線容量が低減されている。
次に、可視光を透過するボトムゲート型のトランジスタ153の作製方法について図7を
用いて説明する。
図7(D)に示すトランジスタ153は、図6に示す表示装置の画素部に適用された可視
光を透過するボトムゲート型のトランジスタと同じ構成を有する。
なお、図7(D)には、トランジスタ153と異なる構成を有するが、トランジスタ15
3と並行して同一基板上に作製可能なトランジスタ154も例示されている。
トランジスタ154は、ゲート配線111cと同一の材料からなるゲート電極111dを
有し、信号線116aと同一の材料で形成された第3の電極116c、及び第4の電極1
16dを有する。また、トランジスタ154は、酸化物半導体層113cのチャネル形成
領域上に絶縁層107cを有し、絶縁層107cはチャネル保護層として機能する。
なお、本実施の形態において、「Aと同一の材料からなるB」とは、AとBが同一の工程
にて同一の材料から形成されることを指す。
本実施の形態では、基板100にアルミノホウケイ酸ガラスを用いる。
はじめに、ゲート電極111a、ゲート電極111d、並びにゲート電極と電気的に接続
するゲート配線を形成する。本実施の形態では、ゲート電極111aとなる導電層とゲー
ト配線を含む導電層を合わせて第1の導電層と呼ぶ。なお、ゲート配線は図7には図示さ
れていない。
本実施の形態では、ゲート配線及びゲート電極111dをチタン層とアルミニウム層とチ
タン層を積層した3層構造の導電層を用い、可視光を透過するゲート電極111aとなる
導電層にインジウム錫酸化物(ITO)を用いる。
基板100上に、スパッタリング法を用いて、チタン層とアルミニウム層とチタン層を積
層した3層構造の導電層を成膜する。次いで、第1のフォトリソグラフィ工程で形成した
レジストマスクを用いて選択的にエッチングしてゲート電極111d、及びゲート配線を
形成する。なお、ゲート配線と同一の材料で形成するゲート電極111dは、トランジス
タ154のゲート電極となる。
次に、インジウム錫酸化物(ITO)を成膜し、第2のフォトリソグラフィ工程で形成し
たレジストマスクを用いて選択的にエッチングし、透光性を有するゲート電極111aを
形成する。なお、透光性を有するゲート電極111aはトランジスタ153のゲート電極
となる。
ゲート配線を形成する導電膜としては、Al、Cu、Cr、Ta、Ti、Mo、Wなどの
金属材料、または該金属材料を成分とする合金材料で形成する。また、Al、Cuなどの
金属膜の一方または双方にCr、Ta、Ti、Mo、Wなどの高融点金属膜を積層させた
構成としても良い。また、Si、Ti、Ta、W、Mo、Cr、Nd、Sc、YなどAl
膜に生ずるヒロックやウィスカーの発生を防止する元素が添加されているAl材料を用い
ることで耐熱性を向上させることが可能となる。
本実施の形態では、ゲート配線を形成した後に透光性を有するゲート電極を形成する場合
について説明したが、透光性を有するゲート電極を形成した後にゲート配線を形成しても
よい。
次に、第1の絶縁層102を形成する。本実施の形態では、窒化珪素層上に酸化珪素を積
層して第1の絶縁層102を形成する。
第1の絶縁層102は酸化珪素層、酸化窒化珪素層、窒化酸化珪素層、窒化珪素層、酸化
アルミニウム層、酸化タンタル層などの単層膜または積層膜を用いることができる。また
、膜厚を50nm以上250nm以下とし、CVD法やスパッタ法などで形成する。また
、膜中にリン(P)や硼素(B)がドープされていても良い。
なお、第1の絶縁層102は酸化物半導体層と接する側に酸化物絶縁層を有する構成が好
ましい。また、本実施の形態で用いる、不純物を除去することによりi型化または実質的
にi型化された酸化物半導体(高純度化された酸化物半導体)は界面準位、界面電荷に対
して極めて敏感であるため、絶縁層との界面は重要である。そのため高純度化された酸化
物半導体に接する絶縁層は、高品質化が要求される。
次いで、酸化物半導体層を形成する。本実施の形態では、In−Ga−Zn−O系酸化物
半導体成膜用ターゲットをスパッタリングして成膜したIn−Ga−Zn−O系非単結晶
膜から、酸化物半導体層を形成する。
酸化物半導体層の膜厚は5nm以上200nm以下、好ましくは10nm以上20nm以
下、例えば15nmとする。
なお、酸化物半導体層を成膜する前に、アルゴンガスを導入してプラズマを発生させる逆
スパッタを行い、第1の絶縁層102の表面に付着しているゴミを除去することが好まし
い。
逆スパッタとは、アルゴン雰囲気下で基板にRF電源を用いて電圧を印加してプラズマを
形成して表面を改質する方法である。なお、アルゴン雰囲気に代えて窒素、ヘリウムなど
を用いてもよい。また、アルゴン雰囲気に酸素、NOなどを加えた雰囲気で行ってもよ
い。また、アルゴン雰囲気にCl、CFなどを加えた雰囲気で行ってもよい。
また、逆スパッタ処理後、大気に曝すことなく酸化物半導体膜を成膜することによって、
第1の絶縁層102と酸化物半導体層の界面にゴミや水分が付着するのを防ぐことができ
る。
また、酸化物半導体膜は、希ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下、又は
希ガス(代表的にはアルゴン)及び酸素混合雰囲気下においてスパッタ法により形成する
ことができる。また、スパッタ法を用いる場合、SiOを2重量%以上10重量%以下
含むターゲットを用いて成膜を行い、酸化物半導体膜に結晶化を阻害するSiOx(X>
0)を含ませても良い。
ここでは、In、Ga、及びZnを含む酸化物半導体成膜用ターゲット(モル数比がIn
:Ga:ZnO=1:1:1[mol数比]、またはIn:Ga
:ZnO=1:1:2[mol数比])を用いて、基板とターゲットの間との距離を1
00mm、圧力0.6Pa、直流(DC)電源0.5kW、酸素(酸素流量比率100%
)雰囲気下で成膜する。なお、パルス直流(DC)電源を用いると、ごみが軽減でき、膜
厚分布も均一となるために好ましい。
この場合において、処理室内の残留水分を除去しつつ酸化物半導体膜を成膜することが好
ましい。酸化物半導体膜に水素、水酸基又は水分が含まれないようにするためである。
本実施の形態で用いるマルチチャンバー型のスパッタリング装置は、珪素もしくは酸化珪
素(人工石英)ターゲットと、酸化物半導体成膜用のターゲットを備えており、少なくと
も、酸化物半導体成膜用のターゲットを設けた成膜室は、排気手段としてクライオポンプ
を有している。なお、クライオポンプに代えて、ターボ分子ポンプを用い、当該ターボ分
子ポンプの吸気口上に水分などを吸着させるべくコールドトラップを設ける構成としても
良い。
クライオポンプを用いて排気した成膜室は、例えば、水素原子や、HOなど水素原子を
含む化合物や、炭素原子や炭素原子を含む化合物等が排気されるため、当該成膜室で成膜
した酸化物半導体膜に含まれる不純物の濃度を低減できる。
なお、酸化物半導体膜を第1の絶縁層102上に連続成膜するのが好ましい。
酸化物半導体膜を、成膜する際に用いるスパッタガスは水素、水、水酸基又は水素化物な
どの不純物が、濃度1ppm程度、濃度10ppb程度まで除去された高純度ガスを用い
ることが好ましい。
また、酸化物半導体膜は基板を加熱しながら成膜してもよい。このとき基板温度を100
℃以上600℃以下好ましくは200℃以上400℃以下とする。基板を加熱しながら成
膜することにより、成膜した酸化物半導体膜に含まれる不純物濃度を低減することができ
る。
次に、第3のフォトリソグラフィ工程で形成したレジストマスクを用いて選択的にエッチ
ングし、In−Ga−Zn−O系非単結晶からなる島状の酸化物半導体層113a、及び
酸化物半導体層113cを形成する。
エッチングには、例えば、クエン酸やシュウ酸などの有機酸をエッチング液として用いる
ことができる。島状の酸化物半導体層の端部をテーパー状にエッチングすることで、段差
形状による配線の段切れを防ぐことができる。なお、ここでのエッチングは、ウェットエ
ッチングに限定されずドライエッチングを用いてもよい。
次いで、島状の酸化物半導体層113a、及び酸化物半導体層113cを設けた基板に第
1の加熱処理を施し、島状の酸化物半導体層の脱水化または脱水素化を行う。
なお、本明細書では、窒素、または希ガス等の不活性気体雰囲気下での加熱処理を脱水化
または脱水素化のための加熱処理と呼ぶ。本明細書では、この加熱処理によってHとし
て脱離させていることのみを脱水素化と呼んでいるわけではなく、H、水酸基などを脱離
することを含めて脱水化または脱水素化と便宜上呼ぶこととする。
本実施の形態では、第1の加熱処理として、島状の酸化物半導体層を設けた基板の基板温
度を温度Tに加熱する。温度Tは700℃以下(若しくはガラス基板の歪点以下の温度)
、好ましくは350℃以上500℃以下で1分間以上10分間以下程度のRTA(Rap
id Thermal Anneal)処理で行う
第1の加熱処理に用いる不活性ガス雰囲気としては、窒素、または希ガス(ヘリウム、ネ
オン、アルゴン等)を主成分とする雰囲気であって、雰囲気中に、水、水素などが含まれ
ないことが好ましい。または、加熱処理装置に導入する不活性ガスの純度を、6N(99
.9999%)以上、好ましくは7N(99.99999%)以上、(即ち不純物濃度を
1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。
また、酸化物半導体層に対して脱水化または脱水素化をおこなう際は、酸化物半導体層を
大気にさらすことなく、水または水素を再び混入させないことが重要である。
なお、第1の加熱処理を行う熱処理装置は電気炉や、加熱されたガスなどの媒体からの熱
伝導、または熱輻射によって、被処理物を加熱する装置であっても良い。例えば、GRT
A(Gas Rapid Thermal Anneal)装置、LRTA(Lamp
Rapid Thermal Anneal)装置等のRTA(Rapid Therm
al Anneal)装置を用いることができる。LRTA装置は、ハロゲンランプ、メ
タルハライドランプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムラ
ンプ、高圧水銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加
熱する装置である。
RTA法を用いれば、短時間に脱水化または脱水素化が行えるため、ガラス基板の歪点を
超える温度でも処理することができる。また、GRTA装置は、高温のガスを用いて熱処
理を行う装置である。
また、加熱処理は、このタイミングに限らず、フォトリソグラフィ工程や成膜工程の前後
などで複数回行っても良い。
上記条件で脱水化または脱水素化を十分に行った酸化物半導体層は、昇温脱離ガス分析法
(TDS:Thermal Desorption Spectroscopy)で45
0℃まで昇温して測定した際に、スペクトルに水分の脱離を示す2つのピークのうち、少
なくとも250〜300℃付近に現れる1つのピークは検出されない。
なお、酸化物半導体層は、成膜された段階では多くの未結合手を有する非晶質であるが、
上記脱水化または脱水素化処理の第1の加熱処理を施すことで、近距離にある未結合手同
士が結合し合い、秩序化された非晶質構造とすることができる。また、秩序化が発展する
と、非晶質領域中に微結晶が点在した非晶質と微結晶の混合物が形成される。
なお、酸化物半導体層の第1の加熱処理は、島状の酸化物半導体層に加工する前の酸化物
半導体膜に行うこともできる。その場合には、第1の加熱処理後に、加熱装置から基板を
取り出し、島状の酸化物半導体層に加工するためのフォトリソグラフィ工程を行う。
なお、この段階の断面図を図7(A)に示す。
次いで、バリア層114a、及びバリア層114b、並びに第1の電極115a、及び第
2の電極115bを形成する。
本実施の形態では、バリア層114a、及びバリア層114bとして窒化チタンを用い、
第1の電極115a、及び第2の電極115bとなる第2の導電膜にインジウム錫酸化物
(ITO)を用いる。
第1の絶縁層102上に形成した島状の酸化物半導体層113aを覆って、バリア層とな
る窒化チタン膜を成膜し、窒化チタン膜上に可視光を透過する導電膜であるインジウム錫
酸化物(ITO)膜を成膜する。なお、窒化チタン膜、及びインジウム錫酸化物(ITO
)膜は、スパッタリング法により成膜することができる。
インジウム錫酸化物(ITO)膜は、還元雰囲気で成膜する。例えば、酸化インジウム(
In)と酸化錫(SnO)を重量比で85:15(=In:SnO)で
混合、焼結した直径302mmのターゲットを用い、チャンバー内の圧力を0.4Paと
し、1Kwの電力で、DCスパッタリング法により成膜することができる。成膜ガスとし
ては、アルゴン、酸素、及び水素の混合ガスや、アルゴン、酸素、及び水蒸気の混合ガス
を用いることができる。具体的には、アルゴン、酸素、及び水素を標準状態における体積
比50:1:10(=Ar:O:H)で混合したガスを用いることができる。また、
アルゴン、酸素、及び水蒸気を標準状態における体積比50:1:1(=Ar:O:H
O)で混合したガスを用いることができる。
水素や水蒸気を添加したガスを用いることにより、インジウム錫酸化物(ITO)膜は非
晶質となり加工性が向上する。また、還元雰囲気で成膜されて生じた酸素欠損と、添加さ
れた不純物(例えば水素、水素を含む化合物等)により導電性が向上する。
なお、脱水化または脱水素化された酸化物半導体層113aはバリア層となる窒化チタン
膜で覆われているため、透光性を有する導電膜の導電率を高めるための還元雰囲気に曝さ
れることがない。
次いで、第4のフォトリソグラフィ工程で形成したレジストマスクを用いて選択的にエッ
チングして、バリア層114a、及びバリア層114b並びに第1の電極115a、及び
第2の電極115bを形成する。
なお、この段階の断面図を図7(B)に示す。
また、バリア層114a、及びバリア層114b並びに第1の電極115a、及び第2の
電極115bを形成する前に、第1の絶縁層102を選択的にエッチングし、ゲート配線
、またはゲート電極に達するコンタクトホールを形成してもよい。ゲート配線、またはゲ
ート電極に達するコンタクトホールを形成した後にバリア層となる窒化チタン膜と透光性
を有する導電膜を形成すると、他の導電層を介することなくゲート配線、またはゲート電
極と、窒化チタン膜と透光性を有する導電膜を直接接続できる。このような構成とするこ
とで、接続に要するコンタクトホールの数を減らすことができる。接続に要するコンタク
トホールの数が減ると、電気抵抗を小さくできるだけでなく、コンタクトホールが占有す
る面積も小さくできる。
次いで、第2の絶縁層107を第1の絶縁層102、酸化物半導体層113a及び酸化物
半導体層113c、第1の電極115a、及び第2の電極115b上に形成する。第2の
絶縁層107は無機絶縁層を含み、酸化珪素膜、窒化酸化珪素膜、酸化アルミニウム膜、
または酸化窒化アルミニウム膜などを用いる。また、第2の絶縁層107は、少なくとも
1nm以上の膜厚とし、スパッタリング法など、酸化物絶縁層に水、水素等の不純物を混
入させない方法を適宜用いて形成することができる。この段階で、酸化物半導体層と第2
の絶縁層107が接する領域が形成される。
ゲート電極に重畳し、第2の絶縁層107と第1の絶縁層102に接して挟まれる酸化物
半導体層の領域がチャネル形成領域となる。第2の絶縁層107は酸化物半導体層のチャ
ネル形成領域となる領域上に接して設けられ、チャネル保護層として機能する。
また、第2の絶縁層107は、HOに代表される水素原子を含む化合物や炭素原子を含
む化合物、もしくは水素原子や炭素原子等の不純物の含有量が少ない酸化物半導体層に接
して設けられる。第2の絶縁層107は、水分や、水素イオンや、水酸基などの不純物を
含まず、これらが外部から侵入することをブロックする。
本実施の形態では、第2の絶縁層107として酸化珪素を用いる。
第2の絶縁層107となる酸化珪素膜はスパッタリング法を用いて成膜する。成膜時の基
板温度は室温以上600℃以下、好ましくは200℃以上400℃以下とすればよく、本
実施の形態では100℃とする。酸化珪素膜のスパッタリング法による成膜は、希ガス(
代表的にはアルゴン)雰囲気下、酸素雰囲気下、または希ガス(代表的にはアルゴン)及
び酸素混合雰囲気下において行うことができる。なお、スパッタ法で形成した酸化物絶縁
層は特に緻密であり、接する層へ不純物が拡散する現象を抑制する保護膜として単層であ
っても利用することができる。また、リン(P)や硼素(B)をドープしたターゲットを
用い、酸化物絶縁層にリン(P)や硼素(B)を添加することもできる。
また、ターゲットとして酸化珪素ターゲットまたは珪素ターゲットを用いることができ、
特に珪素ターゲットが好ましい。珪素ターゲットを用いて、酸素、及び希ガス混合雰囲気
下でスパッタリング法により成膜した酸化珪素膜は、珪素原子または酸素原子の未結合手
(ダングリングボンド)を多く含んでいる。
本実施の形態で例示する酸化珪素を用いた第2の絶縁層107は未結合手を多く含むため
、酸化物半導体層113a、酸化物半導体層113cに残存する不純物は、酸化物半導体
層と第2の絶縁層107が接する界面を介して、第2の絶縁層107に拡散し易くなる。
具体的には、酸化物半導体層に含まれる水素原子や、HOなど水素原子を含む化合物が
第2の絶縁層107に拡散移動し易くなる。
本実施の形態では、純度が6Nであり、柱状多結晶Bドープの珪素ターゲット(抵抗値0
.01Ωcm)を用い、基板とターゲットの間との距離(T−S間距離)を89mm、圧
力0.4Pa、直流(DC)電源6kW、酸素(酸素流量比率100%)雰囲気下でパル
スDCスパッタ法により成膜する。膜厚は300nmとする。
次いで、第5のフォトリソグラフィ工程で形成したレジストマスクを用いて選択的にエッ
チングして、第2の絶縁層に開口部126a、開口部126b、開口部127aを設ける
次いで、信号線116a、第3の電極116c、並びに第4の電極116dを形成する。
まず、信号線116a、第3の電極116c、並びに第4の電極116dとなる第3の導
電層を成膜する。
第3の導電層としては、Al、Cu、Cr、Ta、Ti、Mo、Wなどの金属材料、また
は該金属材料を成分とする合金材料で形成する。また、Al、Cuなどの金属膜の一方ま
たは双方にCr、Ta、Ti、Mo、Wなどの高融点金属膜を積層させた構成としても良
い。また、Si、Ti、Ta、W、Mo、Cr、Nd、Sc、YなどAl膜に生ずるヒロ
ックやウィスカーの発生を防止する元素が添加されているAl材料を用いることで耐熱性
を向上させることが可能となる。
第3の導電層として、チタン層とアルミニウム層とチタン層を積層した3層構造の導電膜
を用いる。
第2の絶縁層107、絶縁層107c、及び開口部を覆って、チタン層とアルミニウム層
とチタン層を積層した3層構造の導電膜を、スパッタリング法を用いて成膜する。次いで
、第6のフォトリソグラフィ工程で形成したレジストマスクを用いて選択的にエッチング
して信号線116a、第3の電極116c、並びに第4の電極116dを形成する。なお
、信号線116aと同一の材料で形成する第3の電極116c、及び第4の電極116d
は、トランジスタ154のソース電極またはドレイン電極となる。
なお、この段階の断面図を図7(C)に示す。
次いで、第3の絶縁層108を第2の絶縁層107上に形成する。なお、第3の絶縁層1
08としては、窒化珪素膜、窒化酸化珪素膜、または窒化アルミニウム膜などを用いるこ
とができる。
本実施の形態では、第3の絶縁層108として窒化珪素を用いる。第3の絶縁層108は
RFスパッタ法を用いて形成できる。
第2の絶縁層107の形成後、第2の加熱処理(好ましくは200℃以上400℃以下、
例えば250℃以上350℃以下)を希ガス雰囲気下、または窒素ガス雰囲気下で行って
もよい。
例えば、窒素ガス雰囲気下で250℃、1時間の第2の加熱処理を行う。第2の加熱処理
を行うと、酸化物半導体層113a、及び酸化物半導体層113cの一部が第2の絶縁層
107と接した状態で加熱され、また、酸化物半導体層113aの他の一部はバリア層(
114a及び114b)と接し、酸化物半導体層113cの他の一部が信号線(116a
、及び116b)と接した状態で加熱される。
第1の加熱処理を施して脱水化または脱水素化された酸化物半導体層は、同時に酸素欠損
が生じ、即ちN型化(N化、N化など)する。
N型化(N化、N化など)した酸化物半導体層が酸化物絶縁層と接した状態で第2の
加熱処理を施されると酸素欠損が解消されて高抵抗化(i型化)する。
このような工程を経て酸化物半導体層は高純度化される。また、高純度化された酸化物半
導体層を用いて作製したトランジスタは、ゲート電極の電位が0のときにオフ状態(所謂
ノーマリーオフの特性)のスイッチング素子を実現できる。
なお、トランジスタの電気特性のうち、特にしきい値電圧(Vth)は重要である。電界
効果移動度が高くともしきい値電圧値が高い、或いはしきい値電圧値がマイナスであると
、回路として制御することが困難である。しきい値電圧の絶対値が大きいトランジスタの
場合には、駆動電圧が低い状態ではトランジスタとしてのスイッチング機能を果たすこと
ができず、負荷となる恐れがある。
nチャネル型のトランジスタの場合、ゲート電圧に正の電圧を印加してはじめてチャネル
が形成されて、ドレイン電流が流れ出すトランジスタが望ましい。駆動電圧を高くしない
とチャネルが形成されないトランジスタや、負の電圧状態でもチャネルが形成されてドレ
イン電流が流れるトランジスタは、回路に用いるトランジスタとしては不向きである。な
お、トランジスタのしきい値電圧値がマイナスであると、ゲート電圧が0Vでもソース電
極とドレイン電極の間に電流が流れる、所謂ノーマリーオン特性となりやすい。
アクティブマトリクス型の表示装置においては、回路を構成するトランジスタの電気特性
が重要であり、この電気特性が表示装置の性能を左右する。トランジスタを表示装置に用
いる場合、0Vにできるだけ近い正のしきい値電圧をゲートに加えてチャネルが形成され
ることが表示装置には望ましい。
本実施の形態においては、酸化物半導体層113a、及び酸化物半導体層113cのチャ
ネル形成領域が第2の絶縁層107と接した状態で加熱され、高抵抗化(i型化)する。
その結果、酸化物半導体層113aを有するトランジスタ153、及び酸化物半導体層1
13cを有するトランジスタ154はノーマリーオフの特性を示すようになる。
また、酸化物半導体層に酸素親和性の強い金属導電層が接する場合、第2の加熱処理を行
うと該金属導電層側に酸素が移動しやすくなり、該酸化物半導体層の金属導電層が接する
領域はN型化する。
本実施の形態においては、酸化物半導体層113cの第3の電極116cが接する領域と
、第4の電極116dが接する領域が加熱によりN型化する。
なお、第2の加熱処理を行うタイミングは、第6のフォトリソグラフィ工程の終了直後に
限定されず、第5のフォトリソグラフィ工程よりも後の工程であれば特に限定されない。
以上の工程により、トランジスタ153、及びトランジスタ154を作製することができ
る。
本実施の形態の半導体素子の作製方法によれば、酸化物導電層と高純度化された酸化物半
導体層の間に水素及び酸素の拡散を阻害するバリア層が設けられ、酸化物導電層が含む不
純物(例えば、水素原子を含む不純物)が酸化物半導体層に拡散する現象が抑制された。
半導体素子を作製できる。また、バリア層によって、酸化物半導体層が含む酸素原子が酸
化物導電層に拡散する現象が抑制された半導体素子を作製できる。
また、本実施の形態で例示した半導体素子の作製方法によれば、高純度化された酸化物半
導体層がバリア層により保護され、ノーマリ−オフの特性と、オフ電流が低減された特性
を有し、また経時的に特性が変化し難く、信頼性に優れた透光性を有する半導体素子を作
製できる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる
(実施の形態3)
本実施の形態では、半導体装置と同一基板上に設けられる端子部の構成の一例を図8に示
す。なお、図8において、図1と同じ箇所には同じ符号を用いて説明する。
図8(A−1)、図8(A−2)は、ゲート配線端子部の上面図及び断面図をそれぞれ図
示している。図8(A−1)は図8(A−2)中のj−k線に沿った断面図に相当する。
図8(A−1)において、第1の端子411は入力端子として機能する接続用の端子であ
る。第1の端子411は、ゲート配線と同一の材料で形成される導電層111eと、第2
の導電層と同一の材料で形成される導電層115eが、バリア層114eを介して積層さ
れている。なお、図示されていないが導電層111eはゲート配線と電気的に接続されて
いる。
また、図8(B−1)、図8(B−2)は、ゲート配線端子部の上面図及び断面図をそれ
ぞれ図示している。図8(B−1)は図8(B−2)中のj−k線に沿った断面図に相当
する。
図8(B−1)において、第2の端子412は入力端子として機能する接続用の端子であ
る。第2の端子412は、ゲート配線と同一の材料で形成される導電層111fと、第2
の導電層と同一の材料で形成される導電層115fが、バリア層114fを介して積層さ
れている。導電層111fは第3の導電層と同一の材料で形成される導電層116と電気
的に接続されている。また、図示されていないが導電層116は信号線と電気的に接続さ
れている。
ゲート配線、信号線、共通電位線、及び電源供給線は画素密度に応じて複数本設けられる
ものである。また、端子部においては、ゲート配線と同電位の第1の端子、信号線と同電
位の第2の端子、電源供給線と同電位の第3の端子、共通電位線と同電位の第4の端子な
どが複数並べられて配置される。それぞれの端子の数は、それぞれ任意な数で設ければ良
いものとし、実施者が適宣決定すれば良い。
本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態4)
本実施の形態では、酸化物半導体層のチャネル形成領域の上下に絶縁層を介して一対の電
極層を配置する4端子構造のトランジスタを2つ用いてインバータ回路を構成する例を、
図9を用いて以下に説明する。図9(A)に示すトランジスタは、実施の形態1の図1に
示したトランジスタ152と同様な方法で作成できる。なお、本実施の形態のインバータ
回路は画素部を駆動する駆動回路に用いることができる。
画素部を駆動するための駆動回路は、例えば画素部の周辺に配置され、インバータ回路、
容量、抵抗などを用いて構成する。インバータ回路の一態様には2つのnチャネル型の特
性を有するトランジスタを組み合わせて形成するものがある。例えば、エンハンスメント
型トランジスタとデプレッション型トランジスタとを組み合わせて形成するもの(以下、
EDMOS回路という)と、エンハンスメント型トランジスタ同士で形成するもの(以下
、EEMOS回路という)がある。
駆動回路のインバータ回路の断面構造を図9(A)に示す。
第1のトランジスタ440Aは、基板400上に第1の導電層で形成されるゲート電極4
21aを有し、ゲート電極421a上に第1の絶縁層402に接してチャネル形成領域を
含む酸化物半導体層404aを有する。また、第2の導電層で形成され、ゲート電極42
1a上に端部を重畳し、酸化物半導体層404aにバリア層を介して接する第1の電極4
55aと第2の電極455bを有する。なお、第1の電極455aと第2の電極455b
は第1のトランジスタ440Aのソース電極またはドレイン電極として機能する。また、
第1の電極455a、第2の電極455b、第1の絶縁層402、並びに酸化物半導体層
404a上に、第2の絶縁層428を有し、第2の絶縁層428上に第3の導電層からな
る電極422aを有する。
第2のトランジスタ440Bは、基板400上に第1の導電層で形成されるゲート電極4
21bを有し、ゲート電極421b上に第1の絶縁層402に接してチャネル形成領域を
含む酸化物半導体層404bを有する。また、第2の導電層で形成され、ゲート電極42
1b上に端部を重畳し、酸化物半導体層404bにバリア層を介して接する第3の電極4
55cと第4の電極455dを有する。なお、第3の電極455cと第4の電極455d
は第2のトランジスタ440Bのソース電極またはドレイン電極として機能する。また、
第3の電極455c、第4の電極455d、第1の絶縁層402、並びに酸化物半導体層
404b上に、第2の絶縁層428を有し、第2の絶縁層428上に第3の導電層からな
る電極422bを有する。
なお、第1のトランジスタ440Aと第2のトランジスタ440Bは同一の導電膜で形成
される第2の電極455bと第3の電極455cで電気的に接続されている。また、第3
の電極455cは、コンタクトホール408を介して第2のトランジスタ440Bのゲー
ト電極421bと接続されている。
第1のトランジスタ440A及び第2のトランジスタ440Bは、実施の形態2で説明し
た方法を用いて作製できるため詳細な説明を省略する。なお、第1の絶縁層402にコン
タクトホール408を形成した後に、第2の導電層を設け、コンタクトホール408を介
して第3の電極455cと接続された第2の配線410bと第2の電極455bが直接接
続する構成が好ましい。接続に要するコンタクトホールの数が少ないため、電気抵抗を小
さくできるだけでなく、コンタクトホールが占有する面積を小さくできる。
第1のトランジスタ440Aが有する第1の電極455aと接続する第1の配線410a
は、負の電圧VDLが印加される電源線(負電源線)である。この電源線は、接地電位の
電源線(接地電源線)としてもよい。
また、第2のトランジスタ440Bが有する第4の電極455dと接続する第3の配線4
10cは、正の電圧VDHが印加される電源線(正電源線)である。
また、駆動回路のインバータ回路の上面図を図9(C)に示す。図9(C)において、鎖
線Z1−Z2で切断した断面が図9(A)に相当する。
また、EDMOS回路の等価回路を図9(B)に示す。図9(A)に示す回路接続は、図
9(B)に相当し、第1のトランジスタ440Aをエンハンスメント型のnチャネル型ト
ランジスタとし、第2のトランジスタ440Bをデプレッション型のnチャネル型トラン
ジスタとする例である。
本実施の形態では、第1のトランジスタ440A、及び第2のトランジスタ440Bの閾
値を制御するため、高純度化された酸化物半導体層のチャネル形成領域の上に絶縁層を介
して設けた第3の導電層からなる電極を用いる。具体的には、第1のトランジスタ440
Aをエンハンスメント型、第2のトランジスタ440Bをデプレッション型にするよう、
それぞれの電極422aと電極422bに電圧を与えればよい。
なお、図9(A)及び図9(C)では、第2の配線410bは、第1の絶縁層402に形
成されたコンタクトホール408を介してゲート電極421bと直接接続する例を示した
が、特に限定されず、接続電極を別途設けて第2の配線410bとゲート電極421bと
を電気的に接続してもよい。
以上のように、酸化物半導体層のチャネル形成領域の上に絶縁層を介して電極層を配置し
て、トランジスタの閾値を制御し、インバータ回路を構成できる。デュアルゲート構造に
よりトランジスタの閾値を制御することで、酸化物半導体膜を作り分けずにエンハンスメ
ント型トランジスタとデプレッション型トランジスタを同一基板上に作製できるため作製
工程が簡便である。
また、高純度化された酸化物半導体により高い電界効果移動度を有するトランジスタを用
いて、動特性に優れたインバータ回路を提供できる。
また、本実施の形態は、他の実施の形態と自由に組み合わせることができる。
(実施の形態5)
本実施の形態では、画素部の透光性を有するトランジスタと同一基板上に、同一の工程で
並行して作製できるトランジスタを有する駆動回路と、それを用いた表示装置の駆動方法
の一例について以下に説明する。
画素部に配置するトランジスタは、実施の形態1または実施の形態2に従って形成する。
また、実施の形態1または実施の形態2に示すトランジスタはnチャネル型トランジスタ
であるため、駆動回路のうち、nチャネル型トランジスタで構成することができる駆動回
路の一部を画素部のトランジスタと同一基板上に形成する。
アクティブマトリクス型表示装置のブロック図の一例を図10(A)に示す。表示装置の
基板5300上には、画素部5301、第1の走査線駆動回路5302、第2の走査線駆
動回路5303、信号線駆動回路5304を有する。画素部5301には、複数の信号線
が信号線駆動回路5304から延伸して配置され、複数の走査線が第1の走査線駆動回路
5302、及び第2の走査線駆動回路5303から延伸して配置されている。なお走査線
と信号線との交差領域には、各々、表示素子を有する画素がマトリクス状に配置されてい
る。また、表示装置の基板5300はFPC(Flexible Printed Ci
rcuit)等の接続部を介して、タイミング制御回路5305(コントローラ、制御I
Cともいう)に接続されている。
図10(A)では、第1の走査線駆動回路5302、第2の走査線駆動回路5303、信
号線駆動回路5304は、画素部5301と同じ基板5300上に形成される。そのため
、外部に設ける駆動回路等の部品の数が減るので、コストの低減を図ることができる。ま
た、基板5300外部に駆動回路を設けた場合、配線を延伸させる必要が生じ、配線間の
接続数が増える。同じ基板5300上に駆動回路を設けた場合、その配線間の接続数を減
らすことができ、信頼性の向上、又は歩留まりの向上を図ることができる。
なお、タイミング制御回路5305は、第1の走査線駆動回路5302に対し、一例とし
て、第1の走査線駆動回路用スタート信号(GSP1)(スタート信号はスタートパルス
ともいう)、走査線駆動回路用クロック信号(GCK1)を供給する。また、タイミング
制御回路5305は、第2の走査線駆動回路5303に対し、一例として、第2の走査線
駆動回路用スタート信号(GSP2)、走査線駆動回路用クロック信号(GCK2)を供
給する。信号線駆動回路5304に、信号線駆動回路用スタート信号(SSP)、信号線
駆動回路用クロック信号(SCK)、ビデオ信号用データ(DATA)(単にビデオ信号
ともいう)、ラッチ信号(LAT)を供給するものとする。なお各クロック信号は、周期
のずれた複数のクロック信号でもよいし、クロック信号を反転させた信号(CKB)とと
もに供給されるものであってもよい。なお、第1の走査線駆動回路5302と第2の走査
線駆動回路5303との一方を省略することが可能である。
図10(B)では、駆動周波数が低い回路(例えば、第1の走査線駆動回路5302、第
2の走査線駆動回路5303)を画素部5301と同じ基板5300に形成し、信号線駆
動回路5304を画素部5301とは別の基板に形成する構成について示している。当該
構成により、単結晶半導体を用いたトランジスタと比較すると電界効果移動度が小さいト
ランジスタによって、基板5300に形成する駆動回路を構成することができる。したが
って、表示装置の大型化、工程数の削減、コストの低減、又は歩留まりの向上などを図る
ことができる。
また、実施の形態1または実施の形態2に示すトランジスタは、nチャネル型トランジス
タである。図11(A)、図11(B)ではnチャネル型トランジスタで構成する信号線
駆動回路の構成、動作について一例を示し説明する。
信号線駆動回路は、シフトレジスタ5601、及びスイッチング回路5602を有する。
スイッチング回路5602は、スイッチング回路5602_1〜5602_N(Nは自然
数)という複数の回路を有する。スイッチング回路5602_1〜5602_Nは、各々
、トランジスタ5603_1〜5603_k(kは自然数)という複数のトランジスタを
有する。トランジスタ5603_1〜5603_kは、Nチャネル型トランジスタである
例を説明する。
信号線駆動回路の接続関係について、スイッチング回路5602_1を例にして説明する
。トランジスタ5603_1〜5603_kの第1端子は、各々、配線5604_1〜5
604_kと接続される。トランジスタ5603_1〜5603_kの第2端子は、各々
、信号線S1〜Skと接続される。トランジスタ5603_1〜5603_kのゲートは
、配線5605_1と接続される。
シフトレジスタ5601は、配線5605_1〜5605_Nに順番にHレベル(H信号
、高電源電位レベル、ともいう)の信号を出力し、スイッチング回路5602_1〜56
02_Nを順番に選択する機能を有する。
スイッチング回路5602_1は、配線5604_1〜5604_kと信号線S1〜Sk
との導通状態(第1端子と第2端子との間の導通)を制御する機能、即ち配線5604_
1〜5604_kの電位を信号線S1〜Skに供給するか否かを制御する機能を有する。
このように、スイッチング回路5602_1は、セレクタとしの機能を有する。またトラ
ンジスタ5603_1〜5603_kは、各々、配線5604_1〜5604_kと信号
線S1〜Skとの導通状態を制御する機能、即ち配線5604_1〜5604_kの電位
を信号線S1〜Skに供給する機能を有する。このように、トランジスタ5603_1〜
5603_kは、各々、スイッチとしての機能を有する。
なお、配線5604_1〜5604_kには、各々、ビデオ信号用データ(DATA)が
入力される。ビデオ信号用データ(DATA)は、画像情報又は画像信号に応じたアナロ
グ信号である場合が多い。
次に、図11(A)の信号線駆動回路の動作について、図11(B)のタイミングチャー
トを参照して説明する。図11(B)には、信号Sout_1〜Sout_N、及び信号
Vdata_1〜Vdata_kの一例を示す。信号Sout_1〜Sout_Nは、各
々、シフトレジスタ5601の出力信号の一例であり、信号Vdata_1〜Vdata
_kは、各々、配線5604_1〜5604_kに入力される信号の一例である。なお、
信号線駆動回路の1動作期間は、表示装置における1ゲート選択期間に対応する。1ゲー
ト選択期間は、一例として、期間T1〜期間TNに分割される。期間T1〜TNは、各々
、選択された行に属する画素にビデオ信号用データ(DATA)を書き込むための期間で
ある。
期間T1〜期間TNにおいて、シフトレジスタ5601は、Hレベルの信号を配線560
5_1〜5605_Nに順番に出力する。例えば、期間T1において、シフトレジスタ5
601は、ハイレベルの信号を配線5605_1に出力する。すると、トランジスタ56
03_1〜5603_kはオンになるので、配線5604_1〜5604_kと、信号線
S1〜Skとが導通状態になる。このとき、配線5604_1〜5604_kには、Da
ta(S1)〜Data(Sk)が入力される。Data(S1)〜Data(Sk)は
、各々、トランジスタ5603_1〜5603_kを介して、選択される行に属する画素
のうち、1列目〜k列目の画素に書き込まれる。こうして、期間T1〜TNにおいて、選
択された行に属する画素に、k列ずつ順番にビデオ信号用データ(DATA)が書き込ま
れる。
以上のように、ビデオ信号用データ(DATA)が複数の列ずつ画素に書き込まれること
によって、ビデオ信号用データ(DATA)の数、又は配線の数を減らすことができる。
よって、外部回路との接続数を減らすことができる。また、ビデオ信号が複数の列ずつ画
素に書き込まれることによって、書き込み時間を長くすることができ、ビデオ信号の書き
込み不足を防止することができる。
なお、シフトレジスタ5601及びスイッチング回路5602としては、実施の形態1ま
たは実施の形態2に示すトランジスタで構成される回路を用いることが可能である。この
場合、シフトレジスタ5601が有する全てのトランジスタの極性をNチャネル型、又は
Pチャネル型のいずれかの極性のみで構成することができる。
なお、走査線駆動回路の構成について説明する。走査線駆動回路は、シフトレジスタを有
している。また場合によってはレベルシフタやバッファ等を有していても良い。走査線駆
動回路において、シフトレジスタにクロック信号(CLK)及びスタートパルス信号(S
P)が入力されることによって、選択信号が生成される。生成された選択信号はバッファ
において緩衝増幅され、対応する走査線に供給される。走査線には、1ライン分の画素の
トランジスタのゲート電極が接続されている。そして、1ライン分の画素のトランジスタ
を一斉にONにしなくてはならないので、バッファは大きな電流を流すことが可能なもの
が用いられる。
走査線駆動回路、信号線駆動回路のシフトレジスタについて、図12及び図13を参照し
て説明する。シフトレジスタは、第1のパルス出力回路10_1乃至第Nのパルス出力回
路10_N(Nは3以上の自然数)を有している(図12(A)参照)。図12(A)に
示すシフトレジスタの第1のパルス出力回路10_1乃至第Nのパルス出力回路10_N
には、第1の配線11より第1のクロック信号CK1、第2の配線12より第2のクロッ
ク信号CK2、第3の配線13より第3のクロック信号CK3、第4の配線14より第4
のクロック信号CK4が供給される。また第1のパルス出力回路10_1では、第5の配
線15からのスタートパルスSP1(第1のスタートパルス)が入力される。また2段目
以降の第nのパルス出力回路10_n(nは、2以上N以下の自然数)では、一段前段の
パルス出力回路からの信号(前段信号OUT(n−1)という)(nは2以上の自然数)
が入力される。また第1のパルス出力回路10_1では、2段後段の第3のパルス出力回
路10_3からの信号が入力される。同様に、2段目以降の第nのパルス出力回路10_
nでは、2段後段の第(n+2)のパルス出力回路10_(n+2)からの信号(後段信
号OUT(n+2)という)が入力される。したがって、各段のパルス出力回路からは、
後段及び/または二つ前段のパルス出力回路に入力するための第1の出力信号(OUT(
1)(SR)〜OUT(N)(SR))、別の回路等に入力される第2の出力信号(OU
T(1)〜OUT(N))が出力される。なお、図12(A)に示すように、シフトレジ
スタの最終段の2つの段には、後段信号OUT(n+2)が入力されないが、一例として
は、別途第6の配線16より第2のスタートパルスSP2、第7の配線17より第3のス
タートパルスSP3をそれぞれ入力する構成とすればよい。または、別途シフトレジスタ
の内部で生成された信号であってもよい。例えば、画素部へのパルス出力に寄与しない第
(N+1)のパルス出力回路10_(N+1)、第(N+2)のパルス出力回路10_(
N+2)を設け(ダミー段ともいう)、当該ダミー段より第2のスタートパルス(SP2
)及び第3のスタートパルス(SP3)に相当する信号を生成する構成としてもよい。
なお、クロック信号(CK)は、一定の間隔でHレベルとLレベル(L信号、低電源電位
レベル、ともいう)を繰り返す信号である。ここで、第1のクロック信号(CK1)〜第
4のクロック信号(CK4)は、順に1/4周期分遅延している。本実施の形態では、第
1のクロック信号(CK1)〜第4のクロック信号(CK4)を利用して、パルス出力回
路の駆動の制御等を行う。なお、クロック信号は、入力される駆動回路に応じて、GCK
、SCKということもあるが、ここではCKとして説明を行う
第1の入力端子21、第2の入力端子22及び第3の入力端子23は、第1の配線11〜
第4の配線14のいずれかと電気的に接続されている。例えば、図12(A)において、
第1のパルス出力回路10_1は、第1の入力端子21が第1の配線11と電気的に接続
され、第2の入力端子22が第2の配線12と電気的に接続され、第3の入力端子23が
第3の配線13と電気的に接続されている。また、第2のパルス出力回路10_2は、第
1の入力端子21が第2の配線12と電気的に接続され、第2の入力端子22が第3の配
線13と電気的に接続され、第3の入力端子23が第4の配線14と電気的に接続されて
いる。
第1のパルス出力回路10_1〜第Nのパルス出力回路10_Nの各々は、第1の入力端
子21、第2の入力端子22、第3の入力端子23、第4の入力端子24、第5の入力端
子25、第1の出力端子26、第2の出力端子27を有しているとする(図12(B)参
照)。第1のパルス出力回路10_1において、第1の入力端子21に第1のクロック信
号CK1が入力され、第2の入力端子22に第2のクロック信号CK2が入力され、第3
の入力端子23に第3のクロック信号CK3が入力され、第4の入力端子24にスタート
パルスが入力され、第5の入力端子25に後段信号OUT(3)が入力され、第1の出力
端子26より第1の出力信号OUT(1)(SR)が出力され、第2の出力端子27より
第2の出力信号OUT(1)が出力されていることとなる。また、図示していないが、パ
ルス出力回路は、電源線51、電源線52、及び電源線53と接続されている。
次に、パルス出力回路の具体的な回路構成の一例について、図12(C)で説明する。
第1のパルス出力回路10_1は、第1のトランジスタ31〜第11のトランジスタ41
を有している(図12(C)参照)。また、上述した第1の入力端子21〜第5の入力端
子25、及び第1の出力端子26、第2の出力端子27に加え、第1の高電源電位VDD
が供給される電源線51、第2の高電源電位VCCが供給される電源線52、低電源電位
VSSが供給される電源線53から、第1のトランジスタ31〜第11のトランジスタ4
1に信号、または電源電位が供給される。ここで図12(C)の各電源線の電源電位の大
小関係は、第1の高電源電位VDD>第2の高電源電位VCC>低電源電位VSS(VC
CはVDDより低電位であり、VSSはVCCよりも低電位である)とする。なお、第1
のクロック信号(CK1)〜第4のクロック信号(CK4)は、一定の間隔でHレベルと
Lレベルを繰り返す信号であるが、HレベルのときVDD、LレベルのときVSSである
とする。なお電源線52の電位VCCを、電源線51の電位VDDより低くすることによ
り、動作に影響を与えることなく、トランジスタのゲート電極に印加される電位を低く抑
えることができ、トランジスタのしきい値のシフトを低減し、劣化を抑制することができ
る。
図12(C)において第1のトランジスタ31は、第1端子が電源線51に電気的に接続
され、第2端子が第9のトランジスタ39の第1端子に電気的に接続され、ゲート電極が
第4の入力端子24に電気的に接続されている。第2のトランジスタ32は、第1端子が
電源線53に電気的に接続され、第2端子が第9のトランジスタ39の第1端子に電気的
に接続され、ゲート電極が第4のトランジスタ34のゲート電極に電気的に接続されてい
る。第3のトランジスタ33は、第1端子が第1の入力端子21に電気的に接続され、第
2端子が第1の出力端子26に電気的に接続されている。第4のトランジスタ34は、第
1端子が電源線53に電気的に接続され、第2端子が第1の出力端子26に電気的に接続
されている。第5のトランジスタ35は、第1端子が電源線53に電気的に接続され、第
2端子が第2のトランジスタ32のゲート電極及び第4のトランジスタ34のゲート電極
に電気的に接続され、ゲート電極が第4の入力端子24に電気的に接続されている。第6
のトランジスタ36は、第1端子が電源線52に電気的に接続され、第2端子が第2のト
ランジスタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的に接続さ
れ、ゲート電極が第5の入力端子25に電気的に接続されている。第7のトランジスタ3
7は、第1端子が電源線52に電気的に接続され、第2端子が第8のトランジスタ38の
第2端子に電気的に接続され、ゲート電極が第3の入力端子23に電気的に接続されてい
る。第8のトランジスタ38は、第1端子が第2のトランジスタ32のゲート電極及び第
4のトランジスタ34のゲート電極に電気的に接続され、ゲート電極が第2の入力端子2
2に電気的に接続されている。第9のトランジスタ39は、第1端子が第1のトランジス
タ31の第2端子及び第2のトランジスタ32の第2端子に電気的に接続され、第2端子
が第3のトランジスタ33のゲート電極及び第10のトランジスタ40のゲート電極に電
気的に接続され、ゲート電極が電源線52に電気的に接続されている。第10のトランジ
スタ40は、第1端子が第1の入力端子21に電気的に接続され、第2端子が第2の出力
端子27に電気的に接続され、ゲート電極が第9のトランジスタ39の第2端子に電気的
に接続されている。第11のトランジスタ41は、第1端子が電源線53に電気的に接続
され、第2端子が第2の出力端子27に電気的に接続され、ゲート電極が第2のトランジ
スタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的に接続されてい
る。
図12(C)において、第3のトランジスタ33のゲート電極、第10のトランジスタ4
0のゲート電極、及び第9のトランジスタ39の第2端子の接続箇所をノードAとする。
また、第2のトランジスタ32のゲート電極、第4のトランジスタ34のゲート電極、第
5のトランジスタ35の第2端子、第6のトランジスタ36の第2端子、第8のトランジ
スタ38の第1端子、及び第11のトランジスタ41のゲート電極の接続箇所をノードB
とする(図13(A)参照)。
なお、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子
を有する素子であり、ドレイン領域とソース領域の間にチャネル領域を有しており、ドレ
イン領域とチャネル領域とソース領域とを介して電流を流すことが出来る。ここで、ソー
スとドレインとは、トランジスタの構造や動作条件等によって変わるため、いずれがソー
スまたはドレインであるかを限定することが困難である。そこで、ソース及びドレインと
して機能する領域を、ソースもしくはドレインと呼ばない場合がある。その場合、一例と
しては、それぞれを第1端子、第2端子と表記する場合がある。
ここで、図13(A)に示したパルス出力回路を複数具備するシフトレジスタのタイミン
グチャートについて図13(B)に示す。なおシフトレジスタが走査線駆動回路である場
合、図13(B)中の期間61は垂直帰線期間であり、期間62はゲート選択期間に相当
する。
なお、図13(A)に示すように、ゲート電極に第2の高電源電位VCCが印加される第
9のトランジスタ39を設けておくことにより、ブートストラップ動作の前後において、
以下のような利点がある。
ゲート電極に第2の高電源電位VCCが印加される第9のトランジスタ39がない場合、
ブートストラップ動作によりノードAの電位が上昇すると、第1のトランジスタ31の第
2端子であるソースの電位が上昇していき、第1の高電源電位VDDより大きくなる。そ
して、第1のトランジスタ31のソースが第1端子側、即ち電源線51側に切り替わる。
そのため、第1のトランジスタ31においては、ゲートとソースの間、ゲートとドレイン
の間ともに、大きなバイアス電圧が印加されるために大きなストレスがかかり、トランジ
スタの劣化の要因となりうる。そこで、ゲート電極に第2の高電源電位VCCが印加され
る第9のトランジスタ39を設けておくことにより、ブートストラップ動作によりノード
Aの電位は上昇するものの、第1のトランジスタ31の第2端子の電位の上昇を生じない
ようにすることができる。つまり、第9のトランジスタ39を設けることにより、第1の
トランジスタ31のゲートとソースの間に印加される負のバイアス電圧の値を小さくする
ことができる。よって、本実施の形態の回路構成とすることにより、第1のトランジスタ
31のゲートとソースの間に印加される負のバイアス電圧も小さくできるため、ストレス
による第1のトランジスタ31の劣化を抑制することができる。
なお、第9のトランジスタ39を設ける箇所については、第1のトランジスタ31の第2
端子と第3のトランジスタ33のゲートとの間に第1端子と第2端子を介して接続される
ように設ける構成であればよい。なお、本実施形態でのパルス出力回路を複数具備するシ
フトレジスタの場合、走査線駆動回路より段数の多い信号線駆動回路では、第9のトラン
ジスタ39を省略してもよく、トランジスタ数を削減する利点がある。
なお第1のトランジスタ31乃至第11のトランジスタ41の半導体層として、酸化物半
導体を用いることにより、トランジスタのオフ電流を低減すると共に、オン電流及び電界
効果移動度を高めることが出来る。また、劣化の度合いを低減することが出来るため、回
路内の誤動作を低減することができる。また酸化物半導体を用いたトランジスタは、アモ
ルファスシリコンを用いたトランジスタに比べ、ゲート電極に高電位が印加されることに
よるトランジスタの劣化の程度が小さい。そのため、第2の高電源電位VCCを供給する
電源線に、第1の高電源電位VDDを供給しても同様の動作が得られ、且つ回路間を引き
回す電源線の数を低減することができるため、回路の小型化を図ることが出来る。
なお、第7のトランジスタ37のゲート電極に第3の入力端子23によって供給されるク
ロック信号、第8のトランジスタ38のゲート電極に第2の入力端子22によって供給さ
れるクロック信号は、第7のトランジスタのゲート電極に第2の入力端子22によって供
給されるクロック信号、第8のゲート電極に第3の入力端子23によって供給されるクロ
ック信号となるように、結線関係を入れ替えても同様の作用を奏する。なお、図13(A
)に示すシフトレジスタにおいて、第7のトランジスタ37及び第8のトランジスタ38
が共にオンの状態から、第7のトランジスタ37がオフ、第8のトランジスタ38がオン
の状態、次いで第7のトランジスタ37がオフ、第8のトランジスタ38がオフの状態と
することによって、第2の入力端子22及び第3の入力端子23の電位が低下することで
生じる、ノードBの電位の低下が第7のトランジスタ37のゲート電極の電位の低下、及
び第8のトランジスタ38のゲート電極の電位の低下に起因して2回生じることとなる。
一方、図13(A)に示すシフトレジスタにおいて、第7のトランジスタ37及び第8の
トランジスタ38が共にオンの状態から、第7のトランジスタ37がオン、第8のトラン
ジスタ38がオフの状態、次いで、第7のトランジスタ37がオフ、第8のトランジスタ
38がオフの状態とすることによって、第2の入力端子22及び第3の入力端子23の電
位が低下することで生じるノードBの電位の低下を、第8のトランジスタ38のゲート電
極の電位の低下による一回に低減することができる。そのため、第7のトランジスタ37
のゲート電極に第3の入力端子23からクロック信号CK3が供給され、第8のトランジ
スタ38のゲート電極に第2の入力端子22からクロック信号CK2が供給される結線関
係とすることが好適である。なぜなら、ノードBの電位の変動回数が低減され、ノイズを
低減することが出来るからである。
このように、第1の出力端子26及び第2の出力端子27の電位をLレベルに保持する期
間に、ノードBに定期的にHレベルの信号が供給される構成とすることにより、パルス出
力回路の誤動作を抑制することができる。
(実施の形態6)
本実施の形態では、本発明の半導体装置の一例として、実施の形態1または実施の形態2
と同様に形成したトランジスタを画素部、さらには駆動回路に用いて表示機能を有する半
導体装置(表示装置ともいう)を作製することができる。また、実施の形態1または実施
の形態2と同様に形成したトランジスタを用いた駆動回路の一部または全体を、画素部と
同じ基板上に一体形成し、システムオンパネルを形成することができる。
表示装置は表示素子を含む。表示素子としては液晶素子(液晶表示素子ともいう)、発光
素子(発光表示素子ともいう)を用いることができる。発光素子は、電流または電圧によ
って輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electr
o Luminescence)素子、有機EL素子等が含まれる。また、電子インクな
ど、電気的作用によりコントラストが変化する表示媒体も適用することができる。
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラ
を含むIC等を実装した状態にあるモジュールとを含む。さらに本発明の一態様は、該表
示装置を作製する過程における、表示素子が完成する前の一形態に相当する素子基板に関
し、該素子基板は、電流を表示素子に供給するための手段を複数の各画素に備える。素子
基板は、具体的には、表示素子の画素電極層のみが形成された状態であっても良いし、画
素電極層となる導電膜を成膜した後であって、エッチングして画素電極層を形成する前の
状態であっても良いし、あらゆる形態があてはまる。
なお、本明細書中における表示装置とは、画像表示デバイス、表示デバイス、もしくは光
源(照明装置含む)を指す。また、コネクター、例えばFPC(Flexible pr
inted circuit)もしくはTAB(Tape Automated Bon
ding)テープもしくはTCP(Tape Carrier Package)が取り
付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュ
ール、または表示素子にCOG(Chip On Glass)方式によりIC(集積回
路)が直接実装されたモジュールも全て表示装置に含むものとする。
本実施の形態では、本発明の半導体装置の一形態に相当する液晶表示パネルの外観及び断
面について、図14を用いて説明する。図14は、第1の基板4001上に実施の形態2
と同様に形成したトランジスタ4010、4011、及び液晶素子4013を、第1の基
板4001と第2の基板4006との間にシール材4005によって封止した、パネルの
上面図であり、図14(B)は、図14(A1)(A2)のM−Nにおける断面図に相当
する。
第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲む
ようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回
路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査
線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006
によって、液晶層4008と共に封止されている。また第1の基板4001上のシール材
4005によって囲まれている領域とは異なる領域に、別途用意された基板上に単結晶半
導体膜又は多結晶半導体膜で形成された信号線駆動回路4003が実装されている。
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG法、ワ
イヤボンディング法、或いはTAB法などを用いることができる。図14(A1)は、C
OG法により信号線駆動回路4003を実装する例であり、図14(A2)は、TAB法
により信号線駆動回路4003を実装する例である。
また第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は、
トランジスタを複数有しており、図14(B)では、画素部4002に含まれるトランジ
スタ4010と、走査線駆動回路4004に含まれるトランジスタ4011とを例示して
いる。トランジスタ4010、4011上には絶縁層4020、4021が設けられてい
る。
トランジスタ4010、4011は、例えば実施の形態1または実施の形態2に示すトラ
ンジスタを適用することができる。本実施の形態において、トランジスタ4010、40
11はnチャネル型トランジスタである。
また、液晶素子4013が有する画素電極層4030は、トランジスタ4010と電気的
に接続されている。そして液晶素子4013の対向電極層4031は第2の基板4006
上に形成されている。画素電極層4030と対向電極層4031と液晶層4008とが重
なっている部分が、液晶素子4013に相当する。なお、画素電極層4030、対向電極
層4031はそれぞれ配向膜として機能する絶縁層4032、4033が設けられ、絶縁
層4032、4033を介して液晶層4008を挟持している。
なお、第1の基板4001、第2の基板4006としては、ガラス、金属(代表的にはス
テンレス)、セラミックス、プラスチックを用いることができる。プラスチックとしては
、FRP(Fiberglass−Reinforced Plastics)板、PV
F(ポリビニルフルオライド)フィルム、ポリエステルフィルムまたはアクリル樹脂フィ
ルムを用いることができる。また、アルミニウムホイルをPVFフィルムやポリエステル
フィルムで挟んだ構造のシートを用いることもできる。
またスペーサ4035は絶縁膜を選択的にエッチングすることで得られる柱状のスペーサ
であり、画素電極層4030と対向電極層4031との間の距離(セルギャップ)を制御
するために設けられている。なお球状のスペーサを用いていても良い。また、対向電極層
4031は、トランジスタ4010と同一基板上に設けられる共通電位線と導電性粒子を
介して電気的に接続される。なお、導電性粒子はシール材4005に含有させる。
また、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つで
あり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直
前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善
するために5重量%以上のカイラル剤を混合させた液晶組成物を用いて液晶層4008を
形成する。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が10μs
〜100μsと短く、光学的等方性であるため配向処理が不要であり、視野角依存性が小
さい。
なお本実施の形態は透過型液晶表示装置の例であるが、本発明の一態様は反射型液晶表示
装置でも半透過型液晶表示装置でも適用できる。
また、本実施の形態の液晶表示装置では、基板の外側(視認側)に偏光板を設け、内側に
着色層、表示素子に用いる電極層という順に設ける例を示すが、偏光板は基板の内側に設
けてもよい。また、偏光板と着色層の積層構造も本実施の形態に限定されず、偏光板及び
着色層の材料や作製工程条件によって適宜設定すればよい。また、ブラックマトリクスと
して機能する遮光膜を設けてもよい。
また、本実施の形態では、トランジスタ起因の表面凹凸を低減するため、及びトランジス
タの信頼性を向上させるため、実施の形態1または実施の形態2で得られたトランジスタ
を保護膜や平坦化絶縁膜として機能する絶縁層(絶縁層4020、絶縁層4021)で覆
う構成となっている。なお、保護膜は、大気中に浮遊する有機物や金属物、水蒸気などの
汚染不純物の侵入を防ぐためのものであり、緻密な膜が好ましい。保護膜は、スパッタ法
を用いて、酸化珪素膜、窒化珪素膜、酸化窒化珪素膜、窒化酸化珪素膜、酸化アルミニウ
ム膜、窒化アルミニウム膜、酸化窒化アルミニウム膜、又は窒化酸化アルミニウム膜の単
層、又は積層で形成すればよい。本実施の形態では保護膜をスパッタ法で形成する例を示
すが、特に限定されず種々の方法で形成すればよい。
また、保護膜を形成した後に、インジウム、ガリウム、及び亜鉛を含む酸化物半導体層の
アニール(300℃〜400℃)を行ってもよい。
また、平坦化絶縁膜として絶縁層4021を形成する。絶縁層4021としては、ポリイ
ミド、アクリル樹脂、ベンゾシクロブテン系樹脂、ポリアミド、エポキシ樹脂等の、耐熱
性を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(l
ow−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラ
ス)等を用いることができる。シロキサン系樹脂は、置換基としては有機基(例えばアル
キル基やアリール基)やフルオロ基を用いても良い。また、有機基はフルオロ基を有して
いても良い。なお、これらの材料で形成される絶縁膜を複数積層させることで、絶縁層4
021を形成してもよい。
なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−S
i結合を含む樹脂に相当する。
絶縁層4021の形成法は、特に限定されず、その材料に応じて、スパッタ法、SOG法
、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン
印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイ
フコーター等を用いることができる。絶縁層4021を材料液を用いて形成する場合、ベ
ークする工程で同時に、インジウム、ガリウム、及び亜鉛を含む酸化物半導体層のアニー
ル(300℃〜400℃)を行ってもよい。絶縁層4021の焼成工程とインジウム、ガ
リウム、及び亜鉛を含む酸化物半導体層のアニールを兼ねることで効率よく半導体装置を
作製することが可能となる。
画素電極層4030、対向電極層4031は、酸化タングステンを含むインジウム酸化物
、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、
酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、
インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する
導電性材料を用いることができる。
また、画素電極層4030、対向電極層4031として、導電性高分子(導電性ポリマー
ともいう)を含む導電性組成物を用いて形成することができる。導電性組成物を用いて形
成した画素電極層は、シート抵抗が10000Ω/□以下、波長550nmにおける透光
率が70%以上であることが好ましい。また、導電性組成物に含まれる導電性高分子の抵
抗率が0.1Ω・cm以下であることが好ましい。
導電性高分子としては、いわゆるπ電子共役系導電性高分子を用いることができる。例え
ば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンま
たはその誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
また別途形成された信号線駆動回路4003と、走査線駆動回路4004と、画素部40
02に与えられる各種信号及び電位は、FPC4018から供給されている。
本実施の形態では、接続端子電極4015が、液晶素子4013が有する画素電極層40
30と同じ導電膜から形成され、端子電極4016は、トランジスタ4011のソース電
極層及びドレイン電極層と同じ導電膜で形成されている。
接続端子電極4015は、FPC4018が有する端子と、異方性導電膜4019を介し
て電気的に接続されている。
また図14においては、信号線駆動回路4003を別途形成し、第1の基板4001に実
装している例を示しているが、本実施の形態はこの構成に限定されない。走査線駆動回路
を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部の
みを別途形成して実装しても良い。
図15は、本発明の一態様を適用して作製されるトランジスタ基板2600を用いて半導
体装置として液晶表示モジュールを構成する一例を示している。
図15は液晶表示モジュールの一例であり、トランジスタ基板2600と対向基板260
1がシール材2602により固着され、その間にトランジスタ等を含む画素部2603、
液晶層を含む表示素子2604、着色層2605が設けられ表示領域を形成している。着
色層2605はカラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑、青の
各色に対応した着色層が各画素に対応して設けられている。トランジスタ基板2600と
対向基板2601の外側には偏光板2606、偏光板2607、拡散板2613が配設さ
れている。光源は冷陰極管2610と反射板2611により構成され、回路基板2612
は、フレキシブル配線基板2609によりトランジスタ基板2600の配線回路部260
8と接続され、コントロール回路や電源回路などの外部回路が組みこまれている。また偏
光板と、液晶層との間に位相差板を有した状態で積層してもよい。
液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(I
n−Plane−Switching)モード、FFS(Fringe Field S
witching)モード、MVA(Multi−domain Vertical A
lignment)モード、PVA(Patterned Vertical Alig
nment)モード、ASM(Axially Symmetric aligned
Micro−cell)モード、OCB(Optically Compensated
Birefringence)モード、FLC(Ferroelectric Liq
uid Crystal)モード、AFLC(AntiFerroelectric L
iquid Crystal)モードなどを用いることができる。
以上の工程により、動作の安定性に優れたトランジスタを搭載した表示装置を作製できる
。本実施の形態の液晶表示装置は動作の安定性に優れたトランジスタを搭載しているため
信頼性が高い。
本実施の形態の表示装置は、画素部に透光性を有するトランジスタを有し、開口率が高い
。また、酸素欠損や不純物(例えば水素等)を含み、導電率が高められた酸化物導電層を
用いてソース電極、及びドレイン電極を形成しているため、オン電流の損失が少ない。
また、本実施の形態の表示装置の画素部及び駆動回路に設けたトランジスタは、広いバン
ドギャップを有し、キャリア濃度を1×1014/cm未満、好ましくは1×1012
/cm以下に抑制された酸化物半導体を用いるため、ノーマリーオフの挙動を示し、そ
のオフ電流は低い。具体的には、チャネル幅1μmあたりの室温でのオフ電流を1×10
−16A/μm以下、さらには1aA/μm(1×10−18A/μm)以下にすること
が可能である。
その結果、漏れ電流が抑制され省電力化された表示装置を提供できる。また、オン電流と
オフ電流の比が大きい表示装置を提供できる。また、コントラストが優れ、表示品位が高
い表示装置を提供できる。
また、本実施の形態の表示装置は、高純度化された酸化物半導体層を用いた電界効果移動
度が高いトランジスタを搭載しているため、高速に動作し、動画の表示特性や、高精細な
表示が可能である。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態7)
本実施の形態では、本発明の半導体装置の一例として発光表示装置を示す。表示装置の有
する表示素子としては、本実施の形態ではエレクトロルミネッセンスを利用する発光素子
を用いて示す。エレクトロルミネッセンスを利用する発光素子は、発光材料が有機化合物
であるか、無機化合物であるかによって区別され、一般的に、前者は有機EL素子、後者
は無機EL素子と呼ばれている。
有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子及び正孔が
それぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャリ
ア(電子及び正孔)が再結合することにより、発光性の有機化合物が励起状態を形成し、
その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発
光素子は、電流励起型の発光素子と呼ばれる。
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分
類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有
するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−ア
クセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、
さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利
用する局在型発光である。なお、本実施の形態では、発光素子として有機EL素子を用い
て説明する。
図16は、本発明の一態様を適用した半導体装置の例としてデジタル時間階調駆動を適用
可能な画素構成の一例を示す図である。なお、図中のOSは酸化物半導体(Oxide
Semiconductor)を用いたトランジスタであることを示している。
デジタル時間階調駆動を適用可能な画素の構成及び画素の動作について説明する。本実施
の形態では実施の形態1または実施の形態2で示した酸化物半導体層(In−Ga−Zn
−O系膜)をチャネル形成領域に用いるnチャネル型のトランジスタを1つの画素に2つ
用いる例を示す。
画素6400は、スイッチング用トランジスタ6401、駆動用トランジスタ6402、
発光素子6404及び容量素子6403を有している。スイッチング用トランジスタ64
01はゲートが走査線6406に接続され、第1電極(ソース電極及びドレイン電極の一
方)が信号線6405に接続され、第2電極(ソース電極及びドレイン電極の他方)が駆
動用トランジスタ6402のゲートに接続されている。駆動用トランジスタ6402は、
ゲートが容量素子6403を介して電源線6407に接続され、第1電極が電源線640
7に接続され、第2電極が発光素子6404の第1電極(画素電極層)に接続されている
。発光素子6404の第2電極は共通電極6408に相当する。共通電極6408は、同
一基板上に形成される共通電位線と電気的に接続される。
なお、発光素子6404の第2電極(共通電極6408)には低電源電位が設定されてい
る。なお、低電源電位とは、電源線6407に設定される高電源電位を基準にして低電源
電位<高電源電位を満たす電位であり、低電源電位としては例えばGND、0Vなどが設
定されていても良い。この高電源電位と低電源電位との電位差を発光素子6404に印加
して、発光素子6404に電流を流して発光素子6404を発光させるため、高電源電位
と低電源電位との電位差が発光素子6404の順方向しきい値電圧以上となるようにそれ
ぞれの電位を設定する。
なお、容量素子6403は駆動用トランジスタ6402のゲート容量を代用して省略する
ことも可能である。駆動用トランジスタ6402のゲート容量については、チャネル領域
とゲート電極層との間で容量が形成されていてもよい。なお、実施の形態1及び2で示し
たトランジスタはオフ電流が極めて低いので、容量素子6403の容量を少なくすること
や、容量素子を設けない構成とすることが可能である。
ここで、電圧入力電圧駆動方式の場合には、駆動用トランジスタ6402のゲートには、
駆動用トランジスタ6402が十分にオンするか、オフするかの二つの状態となるような
ビデオ信号を入力する。つまり、駆動用トランジスタ6402は線形領域で動作させる。
駆動用トランジスタ6402は線形領域で動作させるため、電源線6407の電圧よりも
高い電圧を駆動用トランジスタ6402のゲートにかける。なお、信号線6405には、
(電源線電圧+駆動用トランジスタ6402のVth)以上の電圧をかける。
また、デジタル時間階調駆動に代えて、アナログ階調駆動を行う場合、信号の入力を異な
らせることで、図16と同じ画素構成を用いることができる。
アナログ階調駆動を行う場合、駆動用トランジスタ6402のゲートに発光素子6404
の順方向電圧+駆動用トランジスタ6402のVth以上の電圧をかける。発光素子64
04の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なくとも順方向し
きい値電圧を含む。なお、駆動用トランジスタ6402が飽和領域で動作するようなビデ
オ信号を入力することで、発光素子6404に電流を流すことができる。駆動用トランジ
スタ6402を飽和領域で動作させるため、電源線6407の電位は、駆動用トランジス
タ6402のゲート電位よりも高くする。ビデオ信号をアナログとすることで、発光素子
6404にビデオ信号に応じた電流を流し、アナログ階調駆動を行うことができる。
なお、図16に示す画素構成は、これに限定されない。例えば、図16に示す画素に新た
にスイッチ、抵抗素子、容量素子、トランジスタ又は論理回路などを追加してもよい。
次に、発光素子の構成について、図17を用いて説明する。本実施の形態では、駆動用ト
ランジスタがn型の場合を例に挙げて、画素の断面構造について説明する。図17(A)
(B)(C)の半導体装置に用いられる駆動用トランジスタ7001、7011、702
1は、実施の形態1または実施の形態2で示すトランジスタと同様に作製できる。
発光素子は発光を取り出すために少なくとも陽極又は陰極の一方が透明であればよい。そ
して、基板上にトランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取り出
す上面射出や、基板側の面から発光を取り出す下面射出や、基板側の面及び基板とは反対
側の面から発光を取り出す両面射出構造の発光素子があり、本発明の一態様の画素構成は
どの射出構造の発光素子にも適用することができる。
下面射出構造の発光素子について図17(A)を用いて説明する。
駆動用トランジスタ7011がn型で、発光素子7012から発せられる光が第1の電極
7013側に射出する場合の、画素の断面図を示す。図17(A)では、駆動用トランジ
スタ7011のソース電極またはドレイン電極と電気的に接続された透光性を有する導電
膜7017上に、発光素子7012の第1の電極7013が形成されており、第1の電極
7013上にEL層7014、第2の電極7015が順に積層されている。
透光性を有する導電膜7017としては、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物、酸化ケ
イ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いることができる。
また、発光素子の第1の電極7013は様々な材料を用いることができる。例えば、第1
の電極7013を陰極として用いる場合には、仕事関数が小さい材料、具体的には、例え
ば、LiやCs等のアルカリ金属、及びMg、Ca、Sr等のアルカリ土類金属、及びこ
れらを含む合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好
ましい。図17(A)では、第1の電極7013の膜厚は、可視光を透過する程度(好ま
しくは、5nm〜30nm程度)とする。例えば20nmの膜厚を有するアルミニウム膜
を、第1の電極7013として用いる。
なお、透光性を有する導電膜とアルミニウム膜を積層成膜した後、選択的にエッチングし
て透光性を有する導電膜7017と第1の電極7013を形成してもよく、この場合、同
じマスクを用いてエッチングすることができるため、好ましい。
また、隔壁7019は、保護絶縁層7035、オーバーコート層7034及び絶縁層70
32に形成され、且つ、ドレイン電極層に達するコンタクトホール上に、透光性を有する
導電膜7017を介して配置する。なお、第1の電極7013の周縁部は、隔壁で覆って
もよい。隔壁7019は、ポリイミド、アクリル樹脂、ポリアミド、エポキシ樹脂等の有
機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。隔壁7019は、特
に感光性の樹脂材料を用い、第1の電極7013上に開口部を形成し、その開口部の側壁
が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。隔壁7
019として感光性の樹脂材料を用いる場合、レジストマスクを形成する工程を省略する
ことができる。
また、第1の電極7013及び隔壁7019上に形成するEL層7014は、少なくとも
発光層を含めば良く、単数の層で構成されていても、複数の層が積層されるように構成さ
れていてもどちらでも良い。EL層7014を複数の層で構成し、第1の電極7013を
陰極として用いる場合は、第1の電極7013上に電子注入層、電子輸送層、発光層、ホ
ール輸送層、ホール注入層の順に積層する。なおこれらの内、発光層以外の層を全て設け
る必要はない。
また、上記積層順に限定されず、第1の電極7013を陽極として用いる場合は、第1の
電極7013上にホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に
積層してもよい。ただし、消費電力を比較する場合、第1の電極7013を陰極として機
能させ、第1の電極7013上に電子注入層、電子輸送層、発光層、ホール輸送層、ホー
ル注入層の順に積層するほうが、駆動回路部の電圧上昇を抑制でき、消費電力を少なくで
きるため好ましい。
また、EL層7014上に形成する第2の電極7015としては、様々な材料を用いるこ
とができる。例えば、第2の電極7015を陽極として用いる場合、仕事関数が大きい材
料、例えば、ZrN、Ti、W、Ni、Pt、Cr等や、ITO、IZO、ZnOなどの
透明導電性材料が好ましい。また、第2の電極7015上に遮蔽膜7016、例えば光を
遮光する金属、光を反射する金属等を用いる。本実施の形態では、第2の電極7015と
してITO膜を用い、遮蔽膜7016としてTi膜を用いる。
第1の電極7013及び第2の電極7015で、発光層を含むEL層7014を挟んでい
る領域が発光素子7012に相当する。図17(A)に示した素子構造の場合、発光素子
7012から発せられる光は、矢印で示すように第1の電極7013側に射出する。
なお、図17(A)において、発光素子7012から発せられる光は、カラーフィルタ層
7033を通過し、絶縁層7032、ゲート絶縁層7030、及び基板7010を通過し
て射出させる。
カラーフィルタ層7033はインクジェット法などの液滴吐出法や、印刷法、フォトリソ
グラフィ技術を用いたエッチング方法などでそれぞれ形成する。
また、カラーフィルタ層7033はオーバーコート層7034で覆われ、さらに保護絶縁
層7035によって覆う。なお、図17(A)ではオーバーコート層7034は薄い膜厚
で図示したが、オーバーコート層7034は、アクリル樹脂などの樹脂材料を用い、カラ
ーフィルタ層7033に起因する凹凸を平坦化する機能を有している。
次に、両面射出構造の発光素子について、図17(B)を用いて説明する。
図17(B)では、駆動用トランジスタ7021のソース電極またはドレイン電極と電気
的に接続された透光性を有する導電膜7027上に、発光素子7022の第1の電極70
23が形成されており、第1の電極7023上にEL層7024、第2の電極7025が
順に積層されている。
透光性を有する導電膜7027としては、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物、酸化ケ
イ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いることができる。
また、第1の電極7023は様々な材料を用いることができる。例えば、第1の電極70
23を陰極として用いる場合、仕事関数が小さい材料、具体的には、例えば、LiやCs
等のアルカリ金属、及びMg、Ca、Sr等のアルカリ土類金属、及びこれらを含む合金
(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好ましい。金属膜
を第1の電極7023に用いる場合、その膜厚は光を透過する程度(好ましくは、5nm
〜30nm程度)とする。例えば、第1の電極7023を陰極に用いる場合、20nmの
膜厚を有するアルミニウム膜を適用できる。
なお、透光性を有する導電膜と透光性を有する金属膜を積層成膜した後、選択的にエッチ
ングして透光性を有する導電膜7027と第1の電極7023を形成してもよく、この場
合、同じマスクを用いてエッチングすることができ、好ましい。
また、隔壁7029は、保護絶縁層7045、オーバーコート層7044及び絶縁層70
42に形成され、且つドレイン電極層に達するコンタクトホール上に、透光性を有する導
電膜7027を介して配置する。なお、第1の電極7023の周縁部は、隔壁で覆っても
よい。隔壁7029は、ポリイミド、アクリル樹脂、ポリアミド、エポキシ樹脂等の有機
樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。隔壁7029は、特に
感光性の樹脂材料を用い、第1の電極7023上に開口部を形成し、その開口部の側壁が
連続した曲率を持って形成される傾斜面となるように形成することが好ましい。隔壁70
29として感光性の樹脂材料を用いる場合、レジストマスクを形成する工程を省略するこ
とができる。
また、第1の電極7023及び隔壁7029上に形成するEL層7024は、発光層を含
めば良く、単数の層で構成されていても、複数の層が積層されるように構成されていても
どちらでも良い。EL層7024を複数の層で構成し、第1の電極7023を陰極として
用いる場合は、電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層の順に積
層する。なおこれらの層を全て設ける必要はない。
また、上記積層順に限定されず、第1の電極7023を陽極として用いる場合は、第1の
電極7023上にホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に
積層してもよい。ただし、消費電力を比較する場合、第1の電極7023を陰極として用
い、第1の電極7023上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注
入層の順に積層するほうが駆動回路部の電圧上昇を抑制でき、消費電力が少ないため好ま
しい。
また、EL層7024上に形成する第2の電極7025としては、様々な材料を用いるこ
とができる。例えば、第2の電極7025を陽極として用いる場合、仕事関数が大きい材
料、例えば、ITO、IZO、ZnOなどの透明導電性材料を好ましく用いることができ
る。本実施の形態では、第2の電極7025を陽極として用い、酸化珪素を含むITO膜
を形成する。
第1の電極7023及び第2の電極7025で、発光層を含むEL層7024を挟んでい
る領域が発光素子7022に相当する。図17(B)に示した素子構造の場合、発光素子
7022から発せられる光は、矢印で示すように第2の電極7025側と第1の電極70
23側の両方に射出する。
なお、図17(B)において、発光素子7022から第1の電極7023側に発せられる
一方の光は、カラーフィルタ層7043を通過し、絶縁層7042、ゲート絶縁層704
0、及び基板7020を通過して射出させる。
カラーフィルタ層7043はインクジェット法などの液滴吐出法や、印刷法、フォトリソ
グラフィ技術を用いたエッチング方法などでそれぞれ形成する。
また、カラーフィルタ層7043はオーバーコート層7044で覆われ、さらに保護絶縁
層7045によって覆う。
ただし、両面射出構造の発光素子を用い、どちらの表示面もフルカラー表示とする場合、
第2の電極7025側からの光はカラーフィルタ層7043を通過しないため、別途カラ
ーフィルタ層を備えた封止基板を第2の電極7025上方に設けることが好ましい。
次に、上面射出構造の発光素子について、図17(C)を用いて説明する。
図17(C)に、駆動用トランジスタ7001がn型で、発光素子7002から発せられ
る光が第2の電極7005側に抜ける場合の、画素の断面図を示す。図17(C)では、
駆動用トランジスタ7001のソース電極またはドレイン電極と電気的に接続された発光
素子7002の第1の電極7003が形成されており、第1の電極7003上にEL層7
004、第2の電極7005が順に積層されている。
また、第1の電極7003は様々な材料を用いることができる。例えば、第1の電極70
03を陰極として用いる場合、仕事関数が小さい材料、具体的には、例えば、LiやCs
等のアルカリ金属、及びMg、Ca、Sr等のアルカリ土類金属、及びこれらを含む合金
(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好ましい。
また、隔壁7009は、保護絶縁層7052及び絶縁層7055に形成され、且つ、ドレ
イン電極層に達するコンタクトホール上に、第1の電極7003を介して配置する。なお
、第1の電極7003の周縁部を、隔壁で覆ってもよい。隔壁7009は、ポリイミド、
アクリル樹脂、ポリアミド、エポキシ樹脂等の有機樹脂膜、無機絶縁膜または有機ポリシ
ロキサンを用いて形成する。隔壁7009は、特に感光性の樹脂材料を用い、第1の電極
7003上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜
面となるように形成することが好ましい。隔壁7009として感光性の樹脂材料を用いる
場合、レジストマスクを形成する工程を省略することができる。
また、第1の電極7003及び隔壁7009上に形成するEL層7004は、少なくとも
発光層を含めば良く、単数の層で構成されていても、複数の層が積層されるように構成さ
れていてもどちらでも良い。EL層7004を複数の層で構成し、第1の電極7003を
陰極として用いる場合は、電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入
層の順に積層する。なお、これらの層を全て設ける必要はない。
また、上記積層順に限定されず、第1の電極7003を陽極として用いる場合は、第1の
電極7003上にホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に
積層に積層してもよい。
例えば、Ti膜、アルミニウム膜、Ti膜を積層した第1の電極7003を陽極とし、第
1の電極7003上に、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層
の順に積層し、その上にMg:Ag合金薄膜とITOとの積層を形成する。
なお、駆動用トランジスタ7001がn型の場合、第1の電極7003上に電子注入層、
電子輸送層、発光層、ホール輸送層、ホール注入層の順に積層するほうが、駆動回路にお
ける電圧上昇を抑制することができ、消費電力を少なくできるため好ましい。
第2の電極7005は可視光を透過する透光性を有する導電性材料を用いて形成し、例え
ば酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸
化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、イン
ジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物など
の透光性を有する導電膜を用いても良い。
第1の電極7003及び第2の電極7005で発光層を含むEL層7004を挟んでいる
領域が発光素子7002に相当する。図17(C)に示した画素の場合、発光素子700
2から発せられる光は、矢印で示すように第2の電極7005側に射出する。
平坦化絶縁層7053は、ポリイミド、アクリル樹脂、ベンゾシクロブテン系樹脂、ポリ
アミド、エポキシ樹脂等の樹脂材料を用いることができる。また上記樹脂材料の他に、低
誘電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(
リンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁膜を
複数積層させることで、平坦化絶縁層7053を形成してもよい。平坦化絶縁層7053
の形成法は、特に限定されず、その材料に応じて、スパッタ法、SOG法、スピンコート
、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン印刷、オフセッ
ト印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター等を
用いることができる。
また、図17(C)の構造においては、フルカラー表示を行う場合、例えば発光素子70
02として緑色発光素子とし、隣り合う一方の発光素子を赤色発光素子とし、もう一方の
発光素子を青色発光素子とする。また、3種類の発光素子だけでなく白色素子を加えた4
種類の発光素子でフルカラー表示ができる発光表示装置を作製してもよい。
また、図17(C)の構造においては、配置する複数の発光素子を全て白色発光素子とし
て、発光素子7002上方にカラーフィルタなどを有する封止基板を配置する構成とし、
フルカラー表示ができる発光表示装置を作製してもよい。白色などの単色の発光を示す材
料を形成し、カラーフィルタや色変換層を組み合わせることによりフルカラー表示を行う
ことができる。
もちろん単色発光の表示を行ってもよい。例えば、白色発光を用いて照明装置を形成して
もよいし、単色発光を用いてエリアカラータイプの発光装置を形成してもよい。
また、必要があれば、円偏光板などの偏光フィルムなどの光学フィルムを設けてもよい。
なお、ここでは、発光素子として有機EL素子について述べたが、発光素子として無機E
L素子を設けることも可能である。
なお、発光素子の駆動を制御するトランジスタ(駆動用トランジスタ)と発光素子が電気
的に接続されている例を示したが、駆動用トランジスタと発光素子との間に電流制御用ト
ランジスタが接続されている構成であってもよい。
なお本実施の形態で示す半導体装置は、図17に示した構成に限定されるものではなく、
本発明の技術的思想に基づく各種の変形が可能である。
次に、実施の形態1または実施の形態2に示すトランジスタを適用した半導体装置の一形
態に相当する発光表示パネル(発光パネルともいう)の外観及び断面について、図18を
用いて説明する。図18は、第1の基板上に形成されたトランジスタ及び発光素子を、第
2の基板との間にシール材によって封止した、パネルの上面図であり、図18(B)は、
図18(A)のH−Iにおける断面図に相当する。
第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、450
3b、及び走査線駆動回路4504a、4504bを囲むようにして、シール材4505
が設けられている。また画素部4502、信号線駆動回路4503a、4503b、及び
走査線駆動回路4504a、4504bの上に第2の基板4506が設けられている。よ
って画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路45
04a、4504bは、第1の基板4501とシール材4505と第2の基板4506と
によって、充填材4507と共に密封されている。このように外気に曝されないように気
密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィル
ム等)やカバー材でパッケージング(封入)することが好ましい。
また第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4
503b、及び走査線駆動回路4504a、4504bは、トランジスタを複数有してお
り、図18(B)では、画素部4502に含まれるトランジスタ4510と、信号線駆動
回路4503aに含まれるトランジスタ4509とを例示している。
トランジスタ4509、4510は、酸化物半導体層(In−Ga−Zn−O系膜)を含
む信頼性の高い実施の形態1または実施の形態2に示すトランジスタを適用することがで
きる。本実施の形態において、トランジスタ4509、4510はnチャネル型トランジ
スタである。
絶縁層4544上において駆動回路用のトランジスタ4509の酸化物半導体層のチャネ
ル形成領域と重なる位置に導電層4540が設けられている。導電層4540を酸化物半
導体層のチャネル形成領域と重なる位置に設けることによって、BT試験前後におけるト
ランジスタ4509のしきい値電圧の変化量を低減することができる。また、導電層45
40は、電位がトランジスタ4509のゲート電極層と同じでもよいし、異なっていても
良く、第2のゲート電極層として機能させることもできる。また、導電層4540の電位
がGND、0V、或いはフローティング状態であってもよい。
また4511は発光素子に相当し、発光素子4511が有する画素電極である第1の電極
層4517は、トランジスタ4510のソース電極層またはドレイン電極層と電気的に接
続されている。なお発光素子4511の構成は、第1の電極層4517、電界発光層45
12、第2の電極層4513の積層構造であるが、本実施の形態に示した構成に限定され
ない。発光素子4511から取り出す光の方向などに合わせて、発光素子4511の構成
は適宜変えることができる。
隔壁4520は、有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。
特に感光性の材料を用い、第1の電極層4517上に開口部を形成し、その開口部の側壁
が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
電界発光層4512は、単数の層で構成されていても、複数の層が積層されるように構成
されていてもどちらでも良い。
発光素子4511に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極層
4513及び隔壁4520上に保護膜を形成してもよい。保護膜としては、窒化珪素膜、
窒化酸化珪素膜、DLC膜等を形成することができる。
また、信号線駆動回路4503a、4503b、走査線駆動回路4504a、4504b
、または画素部4502に与えられる各種信号及び電位は、FPC4518a、4518
bから供給されている。
本実施の形態では、接続端子電極4515が、発光素子4511が有する第1の電極層4
517と同じ導電膜から形成され、端子電極4516は、トランジスタ4509が有する
ソース電極層及びドレイン電極層と同じ導電膜から形成されている。
接続端子電極4515は、FPC4518aが有する端子と、異方性導電膜4519を介
して電気的に接続されている。
発光素子4511からの光の取り出し方向に位置する第2の基板は透光性でなければなら
ない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまたはアクリル
樹脂フィルムのような透光性を有する材料を用いる。
また、充填材4507としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹
脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル樹
脂、ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)または
EVA(エチレンビニルアセテート)を用いることができる。本実施の形態は充填材とし
て窒素を用いる。
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、
位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよ
い。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により
反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは
、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜によって形成された駆動回
路で実装されていてもよい。また、信号線駆動回路のみ、或いは一部、又は走査線駆動回
路のみ、或いは一部のみを別途形成して実装しても良く、本実施の形態は図18の構成に
限定されない。
以上の工程により、動作の安定性に優れたトランジスタを搭載した表示装置を作製できる
。本実施の形態の発光表示装置は動作の安定性に優れたトランジスタを搭載しているため
信頼性が高い。
また、本実施の形態の表示装置の画素部及び駆動回路に設けたトランジスタは、広いバン
ドギャップを有し、キャリア濃度を1×1014/cm未満、好ましくは1×1012
/cm以下に抑制された酸化物半導体を用いるため、ノーマリーオフの挙動を示し、そ
のオフ電流は低い。具体的には、チャネル幅1μmあたりの室温でのオフ電流を1×10
−16A/μm以下、さらには1aA/μm(1×10−18A/μm)以下にすること
が可能である。
その結果、漏れ電流が抑制され省電力化された表示装置を提供できる。また、オン電流と
オフ電流の比が大きい表示装置を提供できる。また、コントラストが優れ、表示品位が高
い表示装置を提供できる。
また、本実施の形態の表示装置は、高純度化された酸化物半導体層を用いた電界効果移動
度が高いトランジスタを搭載しているため、高速に動作し、動画の表示特性や、高精細な
表示が可能である。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができることとする。
(実施の形態8)
本実施の形態では、本発明の半導体装置の一例である表示装置として電子ペーパーの例を
示す。
図19は、本発明の一態様を適用した表示装置の例としてアクティブマトリクス型の電子
ペーパーを示す。表示装置に用いられるトランジスタ581としては、実施の形態1また
は実施の形態2と同様に作製できる。
図19の電子ペーパーは、ツイストボール表示方式を用いた表示装置の例である。ツイス
トボール表示方式とは、白と黒に塗り分けられた球形粒子を表示素子に用いる電極層であ
る第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の電極層に電位差
を生じさせての球形粒子の向きを制御することにより、表示を行う方法である。
トランジスタ581のソース電極層又はドレイン電極層は、第1の電極層587と絶縁層
585に形成された開口を介して接しており電気的に接続している。第1の電極層587
と第2の電極層588との間には、黒色領域590aと白色領域590bと、黒色領域5
90aと白色領域590bの周りに設けられ液体で満たされているキャビティ594とを
有する球形粒子589が設けられており、球形粒子589の周囲は樹脂等の充填材595
で充填されている(図19参照。)。なお、図19において580は基板、583は層間
絶縁膜、584は保護膜、596は基板である。
また、ツイストボールの代わりに、電気泳動素子を用いることも可能である。透明な液体
と、正に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直径10μm〜20
0μm程度のマイクロカプセルを用いる。第1の電極層と第2の電極層との間に設けられ
るマイクロカプセルは、第1の電極層と第2の電極層によって、電場が与えられると、白
い微粒子と、黒い微粒子が逆の方向に移動し、白または黒を表示することができる。この
原理を応用した表示素子が電気泳動表示素子であり、電気泳動表示素子を用いたデバイス
は一般的に電子ペーパーとよばれている。電気泳動表示素子は、液晶表示素子に比べて反
射率が高いため、補助ライトは不要であり、また消費電力が小さく、薄暗い場所でも表示
部を認識することが可能である。また、表示部に電源が供給されない場合であっても、一
度表示した像を保持することが可能である。従って、例えば電源供給源となる電波発信源
から表示機能付き半導体装置(単に表示装置、又は表示装置を具備する半導体装置ともい
う)を遠ざけた場合であっても、表示された像を保存しておくことが可能となる。
以上の工程により、動作の安定性に優れたトランジスタを搭載した電子ペーパーを作製で
きる。本実施例の電子ペーパーは動作の安定性に優れたトランジスタを搭載しているため
信頼性が高い。
また、本実施の形態の表示装置の画素部及び駆動回路に設けたトランジスタは、広いバン
ドギャップを有し、キャリア濃度を1×1014/cm未満、好ましくは1×1012
/cm以下に抑制された酸化物半導体を用いるため、ノーマリーオフの挙動を示し、そ
のオフ電流は低い。具体的には、チャネル幅1μmあたりの室温でのオフ電流を1×10
−16A/μm以下、さらには1aA/μm(1×10−18A/μm)以下にすること
が可能である。
その結果、漏れ電流が抑制され省電力化された表示装置を提供できる。また、オン電流と
オフ電流の比が大きい表示装置を提供できる。また、コントラストが優れ、表示品位が高
い表示装置を提供できる。
また、本実施の形態の表示装置は、高純度化された酸化物半導体層を用いた電界効果移動
度が高いトランジスタを搭載しているため、高速に動作し、動画の表示特性や、高精細な
表示が可能である。
本実施の形態は、実施の形態1または実施の形態2に記載した構成と適宜組み合わせて実
施することが可能である。
(実施の形態9)
本発明の一態様の表示装置は、電子ペーパーとして適用することができる。電子ペーパー
は、情報を表示するものであればあらゆる分野の電子機器に用いることが可能である。例
えば、電子ペーパーを用いて、電子書籍(電子ブック)、ポスター、電車などの乗り物の
車内広告、クレジットカード等の各種カードにおける表示等に適用することができる。電
子機器の一例を図20、図21に示す。
図20(A)は、電子ペーパーで作られたポスター2631を示している。広告媒体が紙
の印刷物である場合には、広告の交換は人手によって行われるが、本発明の一態様を適用
した電子ペーパーを用いれば短時間で広告の表示を変えることができる。また、表示も崩
れることなく安定した画像が得られる。なお、ポスターは無線で情報を送受信できる構成
としてもよい。
また、図20(B)は、電車などの乗り物の車内広告2632を示している。広告媒体が
紙の印刷物である場合には、広告の交換は人手によって行われるが、本発明の一態様を適
用した電子ペーパーを用いれば人手を多くかけることなく短時間で広告の表示を変えるこ
とができる。また表示も崩れることなく安定した画像が得られる。なお、車内広告は無線
で情報を送受信できる構成としてもよい。
また、図21は、電子書籍2700を示している。例えば、電子書籍2700は、筐体2
701及び筐体2703の2つの筐体で構成されている。筐体2701及び筐体2703
は、軸部2711により一体とされており、該軸部2711を軸として開閉動作を行うこ
とができる。このような構成により、紙の書籍のような動作を行うことが可能となる。
筐体2701には表示部2705が組み込まれ、筐体2703には表示部2707が組み
込まれている。表示部2705及び表示部2707は、続き画面を表示する構成としても
よいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とすること
で、例えば右側の表示部(図21では表示部2705)に文章を表示し、左側の表示部(
図21では表示部2707)に画像を表示することができる。
また、図21では、筐体2701に操作部などを備えた例を示している。例えば、筐体2
701において、電源2721、操作キー2723、スピーカ2725などを備えている
。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同一面にキー
ボードやポインティングディバイスなどを備える構成としてもよい。また、筐体の裏面や
側面に、外部接続用端子(イヤホン端子、USB端子、またはACアダプタ及びUSBケ
ーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成と
してもよい。さらに、電子書籍2700は、電子辞書としての機能を持たせた構成として
もよい。
また、電子書籍2700は、無線で情報を送受信できる構成としてもよい。無線により、
電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすること
も可能である。
上記実施の形態で示したトランジスタを用いて、動作の安定性に優れたトランジスタを搭
載した表示装置を作製できる。動作の安定性に優れたトランジスタを搭載した表示装置は
信頼性が高い。
(実施の形態10)
本発明の一態様に係る半導体装置は、さまざまな電子機器(遊技機も含む)に適用するこ
とができる。電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョ
ン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカ
メラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯
型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げら
れる。
図22(A)は、テレビジョン装置9600を示している。テレビジョン装置9600は
、筐体9601に表示部9603が組み込まれている。表示部9603により、映像を表
示することが可能である。また、本実施の形態では、スタンド9605により筐体960
1を支持した構成を示している。
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリモ
コン操作機9610により行うことができる。リモコン操作機9610が備える操作キー
9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示され
る映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作機
9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機に
より一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線に
よる通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向
(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図22(B)は、デジタルフォトフレーム9700を示している。例えば、デジタルフォ
トフレーム9700は、筐体9701に表示部9703が組み込まれている。表示部97
03は、各種画像を表示することが可能であり、例えばデジタルカメラなどで撮影した画
像データを表示させることで、通常の写真立てと同様に機能させることができる。
なお、デジタルフォトフレーム9700は、操作部、外部接続用端子(USB端子、US
Bケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構
成とする。これらの構成は、表示部と同一面に組み込まれていてもよいが、側面や裏面に
備えるとデザイン性が向上するため好ましい。例えば、デジタルフォトフレームの記録媒
体挿入部に、デジタルカメラで撮影した画像データを記憶したメモリを挿入して画像デー
タを取り込み、取り込んだ画像データを表示部9703に表示させることができる。
また、デジタルフォトフレーム9700は、無線で情報を送受信出来る構成としてもよい
。無線により、所望の画像データを取り込み、表示させる構成とすることもできる。
図23(A)は携帯型遊技機であり、筐体9881と筐体9891の2つの筐体で構成さ
れており、連結部9893により、開閉可能に連結されている。筐体9881には表示部
9882が組み込まれ、筐体9891には表示部9883が組み込まれている。また、図
23(A)に示す携帯型遊技機は、その他、スピーカ部9884、記録媒体挿入部988
6、LEDランプ9890、入力手段(操作キー9885、接続端子9887、センサ9
888(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、
化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振
動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9889)等を備え
ている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも本発明の
一態様に係る半導体装置を備えた構成であればよく、その他付属設備が適宜設けられた構
成とすることができる。図23(A)に示す携帯型遊技機は、記録媒体に記録されている
プログラム又はデータを読み出して表示部に表示する機能や、他の携帯型遊技機と無線通
信を行って情報を共有する機能を有する。なお、図23(A)に示す携帯型遊技機が有す
る機能はこれに限定されず、様々な機能を有することができる。
図23(B)は大型遊技機であるスロットマシン9900を示している。スロットマシン
9900は、筐体9901に表示部9903が組み込まれている。また、スロットマシン
9900は、その他、スタートレバーやストップスイッチなどの操作手段、コイン投入口
、スピーカなどを備えている。もちろん、スロットマシン9900の構成は上述のものに
限定されず、少なくとも本発明の一態様に係る半導体装置を備えた構成であればよく、そ
の他付属設備が適宜設けられた構成とすることができる。
図24は、携帯電話機1000を示している。携帯電話機1000は、筐体1001に組
み込まれた表示部1002の他、操作ボタン1003、外部接続ポート1004、スピー
カ1005、マイク1006などを備えている。
図24に示す携帯電話機1000は、表示部1002を指などで触れることで、情報を入
力することができる。また、電話を掛ける、或いはメールを打つなどの操作は、表示部1
002を指などで触れることにより行うことができる。
表示部1002の画面は主として3つのモードがある。第1は、画像の表示を主とする表
示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示
モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部1002を文字の入力を
主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合
、表示部1002の画面のほとんどにキーボードまたは番号ボタンを表示させることが好
ましい。
また、携帯電話機1000内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを
有する検出装置を設けることで、携帯電話機1000の向き(縦か横か)を判断して、表
示部1002の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部1002を触れること、又は筐体1001の操作
ボタン1003の操作により行われる。また、表示部1002に表示される画像の種類に
よって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画の
データであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部1002の光センサで検出される信号を検知し、表示
部1002のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モード
から表示モードに切り替えるように制御してもよい。
表示部1002は、イメージセンサとして機能させることもできる。例えば、表示部10
02に掌や指を触れることで、掌紋、指紋等を撮像することで、本人認証を行うことがで
きる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシ
ング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
上記実施の形態で示したトランジスタを用いて、動作の安定性に優れたトランジスタを搭
載した表示装置を作製できる。以上の電子機器は動作の安定性に優れたトランジスタを搭
載しているため、信頼性が高い。
10 パルス出力回路
11 配線
12 配線
13 配線
14 配線
15 配線
16 配線
17 配線
21 入力端子
22 入力端子
23 入力端子
24 入力端子
25 入力端子
26 出力端子
27 出力端子
31 トランジスタ
32 トランジスタ
33 トランジスタ
34 トランジスタ
35 トランジスタ
36 トランジスタ
37 トランジスタ
38 トランジスタ
39 トランジスタ
40 トランジスタ
41 トランジスタ
51 電源線
52 電源線
53 電源線
61 期間
62 期間
100 基板
102 絶縁層
102a 絶縁層
107 絶縁層
107c 絶縁層
108 絶縁層
109 絶縁層
111a ゲート電極
111b 容量電極
111c ゲート配線
111d ゲート電極
111e 導電層
111f 導電層
113a 酸化物半導体層
113c 酸化物半導体層
114a バリア層
114b バリア層
114e バリア層
114f バリア層
115a 電極
115b 電極
115e 導電層
115f 導電層
116 導電層
116a 信号線
116b 信号線
116c 電極
116d 電極
120 画素電極
123 酸化物半導体層
126a 開口部
126b 開口部
127 開口部
127a 開口部
127b 開口部
128 開口部
129 導電層
151 トランジスタ
152 トランジスタ
153 トランジスタ
154 トランジスタ
400 基板
402 絶縁層
404a 酸化物半導体層
404b 酸化物半導体層
408 コンタクトホール
410a 配線
410b 配線
410c 配線
411 端子
412 端子
421a ゲート電極
421b ゲート電極
422a 電極
422b 電極
428 絶縁層
440A トランジスタ
440B トランジスタ
455a 電極
455b 電極
455c 電極
455d 電極
580 基板
581 トランジスタ
583 層間絶縁膜
584 保護膜
585 絶縁層
587 電極層
588 電極層
589 球形粒子
590a 黒色領域
590b 白色領域
594 キャビティ
595 充填材
596 基板
1000 携帯電話機
1001 筐体
1002 表示部
1003 操作ボタン
1004 外部接続ポート
1005 スピーカ
1006 マイク
2600 トランジスタ基板
2601 対向基板
2602 シール材
2603 画素部
2604 表示素子
2605 着色層
2606 偏光板
2607 偏光板
2608 配線回路部
2609 フレキシブル配線基板
2610 冷陰極管
2611 反射板
2612 回路基板
2613 拡散板
2631 ポスター
2632 車内広告
2700 電子書籍
2701 筐体
2703 筐体
2705 表示部
2707 表示部
2711 軸部
2721 電源
2723 操作キー
2725 スピーカ
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶層
4010 トランジスタ
4011 トランジスタ
4013 液晶素子
4015 接続端子電極
4016 端子電極
4018 FPC
4019 異方性導電膜
4020 絶縁層
4021 絶縁層
4030 画素電極層
4031 対向電極層
4032 絶縁層
4033 絶縁層
4035 スペーサ
4501 基板
4502 画素部
4503a 信号線駆動回路
4503b 信号線駆動回路
4504a 走査線駆動回路
4504b 走査線駆動回路
4505 シール材
4506 基板
4507 充填材
4509 トランジスタ
4510 トランジスタ
4511 発光素子
4512 電界発光層
4513 電極層
4515 接続端子電極
4516 端子電極
4517 電極層
4518a FPC
4519 異方性導電膜
4520 隔壁
4540 導電層
4544 絶縁層
5300 基板
5301 画素部
5302 走査線駆動回路
5303 走査線駆動回路
5304 信号線駆動回路
5305 タイミング制御回路
5601 シフトレジスタ
5602 スイッチング回路
5603 トランジスタ
5604 配線
5605 配線
6400 画素
6401 スイッチング用トランジスタ
6402 駆動用トランジスタ
6403 容量素子
6404 発光素子
6405 信号線
6406 走査線
6407 電源線
6408 共通電極
7001 駆動用トランジスタ
7002 発光素子
7003 電極
7004 EL層
7005 電極
7009 隔壁
7010 基板
7011 駆動用トランジスタ
7012 発光素子
7013 電極
7014 EL層
7015 電極
7016 遮蔽膜
7017 導電膜
7019 隔壁
7020 基板
7021 駆動用トランジスタ
7022 発光素子
7023 電極
7024 EL層
7025 電極
7027 導電膜
7029 隔壁
7030 ゲート絶縁層
7032 絶縁層
7033 カラーフィルタ層
7034 オーバーコート層
7035 保護絶縁層
7040 ゲート絶縁層
7042 絶縁層
7043 カラーフィルタ層
7044 オーバーコート層
7045 保護絶縁層
7052 保護絶縁層
7053 平坦化絶縁層
7055 絶縁層
9600 テレビジョン装置
9601 筐体
9603 表示部
9605 スタンド
9607 表示部
9609 操作キー
9610 リモコン操作機
9700 デジタルフォトフレーム
9701 筐体
9703 表示部
9881 筐体
9882 表示部
9883 表示部
9884 スピーカ部
9885 操作キー
9886 記録媒体挿入部
9887 接続端子
9888 センサ
9889 マイクロフォン
9890 LEDランプ
9891 筐体
9893 連結部
9900 スロットマシン
9901 筐体
9903 表示部

Claims (1)

  1. 第1の絶縁層と、前記第1の絶縁層上の第1の導電層と、前記第1の導電層上の第2の絶縁層と、前記第2の絶縁層上の第1の半導体層と、前記第1の半導体層上の第2の導電層と、前記第2の導電層と電気的に接続する第3の導電層と、前記第3の導電層と重畳する第2の半導体層と、前記第2の半導体層と重畳する第4の導電層と、を有し、
    前記第2の半導体層は、前記第2の絶縁層上に設けられ、
    前記第4の導電層は、前記第1の絶縁層上に設けられ、
    前記第2の半導体層の幅は、前記第3の導電層の幅より大きい、ことを特徴とする半導体装置。
JP2018165066A 2009-12-11 2018-09-04 半導体装置 Withdrawn JP2019009458A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009282093 2009-12-11
JP2009282093 2009-12-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017111641A Division JP6400150B2 (ja) 2009-12-11 2017-06-06 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020100115A Division JP7059320B2 (ja) 2009-12-11 2020-06-09 半導体装置

Publications (1)

Publication Number Publication Date
JP2019009458A true JP2019009458A (ja) 2019-01-17

Family

ID=44141916

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2010274398A Active JP5690125B2 (ja) 2009-12-11 2010-12-09 半導体装置
JP2015001464A Withdrawn JP2015130510A (ja) 2009-12-11 2015-01-07 半導体装置
JP2017111641A Active JP6400150B2 (ja) 2009-12-11 2017-06-06 半導体装置
JP2018165066A Withdrawn JP2019009458A (ja) 2009-12-11 2018-09-04 半導体装置
JP2020100115A Active JP7059320B2 (ja) 2009-12-11 2020-06-09 半導体装置
JP2022066304A Active JP7390427B2 (ja) 2009-12-11 2022-04-13 半導体装置
JP2023196860A Pending JP2024020477A (ja) 2009-12-11 2023-11-20 半導体装置

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2010274398A Active JP5690125B2 (ja) 2009-12-11 2010-12-09 半導体装置
JP2015001464A Withdrawn JP2015130510A (ja) 2009-12-11 2015-01-07 半導体装置
JP2017111641A Active JP6400150B2 (ja) 2009-12-11 2017-06-06 半導体装置

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2020100115A Active JP7059320B2 (ja) 2009-12-11 2020-06-09 半導体装置
JP2022066304A Active JP7390427B2 (ja) 2009-12-11 2022-04-13 半導体装置
JP2023196860A Pending JP2024020477A (ja) 2009-12-11 2023-11-20 半導体装置

Country Status (5)

Country Link
US (3) US8563976B2 (ja)
JP (7) JP5690125B2 (ja)
KR (1) KR101804589B1 (ja)
TW (1) TWI585975B (ja)
WO (1) WO2011070901A1 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101863941B1 (ko) * 2010-06-08 2018-06-04 삼성디스플레이 주식회사 오프셋 구조의 박막 트랜지스터
US8685787B2 (en) 2010-08-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP5794013B2 (ja) * 2011-07-22 2015-10-14 セイコーエプソン株式会社 電気光学装置および電子機器
KR102101605B1 (ko) * 2011-08-11 2020-04-17 이데미쓰 고산 가부시키가이샤 박막 트랜지스터
WO2013042696A1 (en) * 2011-09-23 2013-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2013054823A1 (en) * 2011-10-14 2013-04-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8988152B2 (en) * 2012-02-29 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101960796B1 (ko) * 2012-03-08 2019-07-16 삼성디스플레이 주식회사 박막 트랜지스터의 제조 방법, 표시 기판의 제조 방법 및 표시 기판
SG10201610711UA (en) * 2012-04-13 2017-02-27 Semiconductor Energy Lab Co Ltd Semiconductor device
KR20130126240A (ko) 2012-05-11 2013-11-20 삼성디스플레이 주식회사 박막 트랜지스터 표시판
JP6021586B2 (ja) * 2012-10-17 2016-11-09 株式会社半導体エネルギー研究所 半導体装置
KR101976133B1 (ko) * 2012-11-20 2019-05-08 삼성디스플레이 주식회사 표시 장치
KR102209871B1 (ko) * 2012-12-25 2021-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR102290247B1 (ko) * 2013-03-14 2021-08-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치와 그 제작 방법
TWI809474B (zh) * 2013-05-16 2023-07-21 日商半導體能源研究所股份有限公司 半導體裝置
JP6104775B2 (ja) 2013-09-24 2017-03-29 株式会社東芝 薄膜トランジスタ及びその製造方法
DE102013111501B4 (de) * 2013-10-18 2024-02-08 Universität Stuttgart Dünnschichttransistor und Verfahren zu seiner Herstellung
JP2016027597A (ja) * 2013-12-06 2016-02-18 株式会社半導体エネルギー研究所 半導体装置
WO2015097595A1 (en) * 2013-12-27 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP6506545B2 (ja) 2013-12-27 2019-04-24 株式会社半導体エネルギー研究所 半導体装置
TWI665778B (zh) * 2014-02-05 2019-07-11 日商半導體能源研究所股份有限公司 半導體裝置、模組及電子裝置
US10199006B2 (en) * 2014-04-24 2019-02-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display module, and electronic device
JP2016072498A (ja) * 2014-09-30 2016-05-09 株式会社東芝 半導体装置
WO2016063159A1 (en) * 2014-10-20 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, module, and electronic device
US20160225915A1 (en) * 2015-01-30 2016-08-04 Cindy X. Qiu Metal oxynitride transistor devices
KR102582523B1 (ko) * 2015-03-19 2023-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 전자 기기
KR102628719B1 (ko) * 2016-02-12 2024-01-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US10096720B2 (en) * 2016-03-25 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device, and electronic device
WO2018020350A1 (en) * 2016-07-26 2018-02-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6816994B2 (ja) * 2016-08-24 2021-01-20 株式会社ジャパンディスプレイ 有機el表示装置
WO2018122665A1 (en) * 2016-12-27 2018-07-05 Semiconductor Energy Laboratory Co., Ltd. Display panel, display device, input/output device, and data processing device
WO2018130899A1 (en) 2017-01-11 2018-07-19 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2018129430A (ja) * 2017-02-09 2018-08-16 株式会社ジャパンディスプレイ 半導体装置
WO2019187047A1 (ja) * 2018-03-30 2019-10-03 シャープ株式会社 表示デバイス
KR102041048B1 (ko) * 2018-05-16 2019-11-06 한국과학기술원 유기 절연체 3중층으로 이루어진 전하 트랩 구조와 이를 이용한 비휘발성 메모리
US11515873B2 (en) 2018-06-29 2022-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10924090B2 (en) 2018-07-20 2021-02-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising holding units
JP7327940B2 (ja) * 2019-01-10 2023-08-16 株式会社ジャパンディスプレイ 半導体装置及び表示装置
JP2021136384A (ja) * 2020-02-28 2021-09-13 株式会社ジャパンディスプレイ 半導体基板及び表示装置
CN116190413A (zh) * 2021-12-24 2023-05-30 北京超弦存储器研究院 半导体结构的制作方法及半导体结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341313A (ja) * 1992-06-05 1993-12-24 Toshiba Corp アクティブマトリクス型液晶表示素子
JPH0829809A (ja) * 1994-07-15 1996-02-02 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
JP2001264802A (ja) * 2000-03-15 2001-09-26 Toshiba Corp マトリクスアレイ基板
JP2008287021A (ja) * 2007-05-17 2008-11-27 Semiconductor Energy Lab Co Ltd 液晶表示装置

Family Cites Families (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JP2771820B2 (ja) 1988-07-08 1998-07-02 株式会社日立製作所 アクティブマトリクスパネル及びその製造方法
JPH0816756B2 (ja) 1988-08-10 1996-02-21 シャープ株式会社 透過型アクティブマトリクス液晶表示装置
JPH05243579A (ja) * 1992-02-28 1993-09-21 Canon Inc 半導体装置
JPH05251705A (ja) * 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP2928016B2 (ja) 1992-03-25 1999-07-28 株式会社富士電機総合研究所 透明導電膜の成膜方法
JP2856376B2 (ja) * 1992-09-11 1999-02-10 シャープ株式会社 アクティブマトリクス基板
JPH06258665A (ja) * 1993-03-04 1994-09-16 Hitachi Ltd 液晶パネルの製造方法
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
US5631473A (en) * 1995-06-21 1997-05-20 General Electric Company Solid state array with supplemental dielectric layer crossover structure
DE69635107D1 (de) 1995-08-03 2005-09-29 Koninkl Philips Electronics Nv Halbleiteranordnung mit einem transparenten schaltungselement
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JPH09293693A (ja) 1996-04-25 1997-11-11 Semiconductor Energy Lab Co Ltd 透明導電膜の成膜方法
JP3819590B2 (ja) * 1998-05-07 2006-09-13 三菱電機株式会社 液晶表示素子ならびに該素子を用いた液晶表示装置、および反射型液晶表示装置
JP3702096B2 (ja) 1998-06-08 2005-10-05 三洋電機株式会社 薄膜トランジスタ及び表示装置
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
JP2002110996A (ja) * 2000-09-29 2002-04-12 Sharp Corp アクティブマトリクス基板および液晶表示装置
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4002410B2 (ja) 2001-06-22 2007-10-31 日本電気株式会社 アクティブマトリックス型液晶表示装置の製造方法
JP2003029293A (ja) 2001-07-13 2003-01-29 Minolta Co Ltd 積層型表示装置及びその製造方法
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7205570B2 (en) 2002-07-19 2007-04-17 Samsung Electronics Co., Ltd. Thin film transistor array panel
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
EP1566420A1 (en) * 2004-01-23 2005-08-24 JSR Corporation Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
EP1737044B1 (en) 2004-03-12 2014-12-10 Japan Science and Technology Agency Amorphous oxide and thin film transistor
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
JP2005284080A (ja) * 2004-03-30 2005-10-13 Sony Corp 電子回路および液晶表示装置
JP4627065B2 (ja) * 2004-05-27 2011-02-09 シャープ株式会社 アクティブマトリクス基板、その画素欠陥修正方法及び製造方法
US7211825B2 (en) * 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
CA2585063C (en) 2004-11-10 2013-01-15 Canon Kabushiki Kaisha Light-emitting device
BRPI0517568B8 (pt) 2004-11-10 2022-03-03 Canon Kk Transistor de efeito de campo
JP5053537B2 (ja) * 2004-11-10 2012-10-17 キヤノン株式会社 非晶質酸化物を利用した半導体デバイス
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7863611B2 (en) * 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
RU2358355C2 (ru) 2004-11-10 2009-06-10 Кэнон Кабусики Кайся Полевой транзистор
KR20060073826A (ko) 2004-12-24 2006-06-29 삼성전자주식회사 박막 트랜지스터 표시판
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI505473B (zh) 2005-01-28 2015-10-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR101127836B1 (ko) * 2005-06-30 2012-03-21 엘지디스플레이 주식회사 박막트랜지스터 기판의 제조 방법
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
KR100729043B1 (ko) 2005-09-14 2007-06-14 삼성에스디아이 주식회사 투명 박막 트랜지스터 및 그의 제조방법
EP1998373A3 (en) 2005-09-29 2012-10-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP5064747B2 (ja) * 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
EP1933293A4 (en) 2005-10-05 2009-12-23 Idemitsu Kosan Co TFT SUBSTRATE AND METHOD FOR MANUFACTURING A TFT SUBSTRATE
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
CN101577281B (zh) 2005-11-15 2012-01-11 株式会社半导体能源研究所 有源矩阵显示器及包含该显示器的电视机
US7745798B2 (en) 2005-11-15 2010-06-29 Fujifilm Corporation Dual-phosphor flat panel radiation detector
JP5129473B2 (ja) 2005-11-15 2013-01-30 富士フイルム株式会社 放射線検出器
US7998372B2 (en) 2005-11-18 2011-08-16 Idemitsu Kosan Co., Ltd. Semiconductor thin film, method for manufacturing the same, thin film transistor, and active-matrix-driven display panel
JP5376750B2 (ja) * 2005-11-18 2013-12-25 出光興産株式会社 半導体薄膜、及びその製造方法、並びに薄膜トランジスタ、アクティブマトリックス駆動表示パネル
JP5395994B2 (ja) * 2005-11-18 2014-01-22 出光興産株式会社 半導体薄膜、及びその製造方法、並びに薄膜トランジスタ
JP2007157916A (ja) * 2005-12-02 2007-06-21 Idemitsu Kosan Co Ltd Tft基板及びtft基板の製造方法
KR100732849B1 (ko) 2005-12-21 2007-06-27 삼성에스디아이 주식회사 유기 발광 표시장치
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5060738B2 (ja) * 2006-04-28 2012-10-31 株式会社ジャパンディスプレイイースト 画像表示装置
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP5127183B2 (ja) 2006-08-23 2013-01-23 キヤノン株式会社 アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140984A (ja) 2006-12-01 2008-06-19 Sharp Corp 半導体素子、半導体素子の製造方法、及び表示装置
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
JP4662075B2 (ja) 2007-02-02 2011-03-30 株式会社ブリヂストン 薄膜トランジスタ及びその製造方法
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
JP2008256854A (ja) * 2007-04-03 2008-10-23 Sharp Corp 薄膜トランジスタアレイ基板、その製造方法および液晶表示装置
JP5197058B2 (ja) * 2007-04-09 2013-05-15 キヤノン株式会社 発光装置とその作製方法
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
JP2009194351A (ja) * 2007-04-27 2009-08-27 Canon Inc 薄膜トランジスタおよびその製造方法
KR101334182B1 (ko) * 2007-05-28 2013-11-28 삼성전자주식회사 ZnO 계 박막 트랜지스터의 제조방법
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5241143B2 (ja) 2007-05-30 2013-07-17 キヤノン株式会社 電界効果型トランジスタ
US7897971B2 (en) 2007-07-26 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Display device
JP5291905B2 (ja) * 2007-08-24 2013-09-18 株式会社半導体エネルギー研究所 記憶装置
US8591650B2 (en) 2007-12-03 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for forming crystalline semiconductor film, method for manufacturing thin film transistor, and method for manufacturing display device
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
JP5213458B2 (ja) 2008-01-08 2013-06-19 キヤノン株式会社 アモルファス酸化物及び電界効果型トランジスタ
JP5540517B2 (ja) 2008-02-22 2014-07-02 凸版印刷株式会社 画像表示装置
JP2009265271A (ja) 2008-04-23 2009-11-12 Nippon Shokubai Co Ltd 電気光学表示装置
US9041202B2 (en) 2008-05-16 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
EP2145643A1 (de) * 2008-07-19 2010-01-20 Markus Storz Portioniertes Arzneimittel
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5484853B2 (ja) 2008-10-10 2014-05-07 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR101642384B1 (ko) 2008-12-19 2016-07-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 트랜지스터의 제작 방법
CN102576732B (zh) 2009-07-18 2015-02-25 株式会社半导体能源研究所 半导体装置与用于制造半导体装置的方法
WO2011010541A1 (en) 2009-07-18 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011010545A1 (en) 2009-07-18 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011010542A1 (en) 2009-07-23 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5642447B2 (ja) 2009-08-07 2014-12-17 株式会社半導体エネルギー研究所 半導体装置
KR101248459B1 (ko) * 2009-11-10 2013-03-28 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
JP5707914B2 (ja) * 2010-12-13 2015-04-30 ソニー株式会社 酸化物半導体を用いる装置、表示装置、及び、電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341313A (ja) * 1992-06-05 1993-12-24 Toshiba Corp アクティブマトリクス型液晶表示素子
JPH0829809A (ja) * 1994-07-15 1996-02-02 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
JP2001264802A (ja) * 2000-03-15 2001-09-26 Toshiba Corp マトリクスアレイ基板
JP2008287021A (ja) * 2007-05-17 2008-11-27 Semiconductor Energy Lab Co Ltd 液晶表示装置

Also Published As

Publication number Publication date
US20110140109A1 (en) 2011-06-16
WO2011070901A1 (en) 2011-06-16
JP5690125B2 (ja) 2015-03-25
KR101804589B1 (ko) 2018-01-10
JP7059320B2 (ja) 2022-04-25
JP2020161829A (ja) 2020-10-01
JP2011142316A (ja) 2011-07-21
US9142683B2 (en) 2015-09-22
US20140017860A1 (en) 2014-01-16
KR20120093396A (ko) 2012-08-22
JP7390427B2 (ja) 2023-12-01
JP2015130510A (ja) 2015-07-16
US8889499B2 (en) 2014-11-18
JP6400150B2 (ja) 2018-10-03
US8563976B2 (en) 2013-10-22
TWI585975B (zh) 2017-06-01
JP2017208550A (ja) 2017-11-24
JP2022095883A (ja) 2022-06-28
US20150076497A1 (en) 2015-03-19
JP2024020477A (ja) 2024-02-14
TW201138110A (en) 2011-11-01

Similar Documents

Publication Publication Date Title
JP6400150B2 (ja) 半導体装置
JP6707167B2 (ja) 半導体装置
JP6529924B2 (ja) 半導体装置
KR101882350B1 (ko) 표시 장치
JP2019169723A (ja) 半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190620

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200310

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200610