JP2006332285A - 積層セラミックコンデンサ及びその製造方法 - Google Patents

積層セラミックコンデンサ及びその製造方法 Download PDF

Info

Publication number
JP2006332285A
JP2006332285A JP2005152955A JP2005152955A JP2006332285A JP 2006332285 A JP2006332285 A JP 2006332285A JP 2005152955 A JP2005152955 A JP 2005152955A JP 2005152955 A JP2005152955 A JP 2005152955A JP 2006332285 A JP2006332285 A JP 2006332285A
Authority
JP
Japan
Prior art keywords
ceramic
internal electrode
viewed
length direction
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005152955A
Other languages
English (en)
Inventor
Tatsuya Kojima
達也 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005152955A priority Critical patent/JP2006332285A/ja
Priority to US11/406,352 priority patent/US7394644B2/en
Priority to KR1020060046514A priority patent/KR100822956B1/ko
Priority to CNA2006100898458A priority patent/CN1870190A/zh
Priority to TW095118353A priority patent/TWI299172B/zh
Publication of JP2006332285A publication Critical patent/JP2006332285A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/01Form of self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • Y10T29/435Solid dielectric type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

【課題】 セラミック基体の寸法歪みを解消して実装時における装着不良を防止しながら、製造工程を簡略化し得、尚且つ、シートアタックを防止し得る積層セラミックコンデンサを提供する。
【解決手段】 内部電極21〜2nは、セラミック基体1の内部で厚さ方向Tに間隔を隔てて積層され、セラミック基体1の、長さ方向Lでみた両端部16、17に交互に導出されている。セラミック基体1は、厚さ方向Tに相対する両面101、102のうち一面101が平面状であり、この面101から最外側内部電極2nまでの距離について、長さ方向Lでみた端部17における値Dbが、長さ方向Lでみた中央部18における値Daよりも大きく、比Db/Daが2.1以下である。
【選択図】 図1

Description

本発明は、積層セラミックコンデンサ及びその製造方法に関する。
一般に、積層セラミックコンデンサは、複数の内部電極がセラミック層を挟んで積層され、セラミック基体の両端部に交互に導出された構造となっている。このような積層セラミックコンデンサでは、セラミック基体の端部と中央部との間で、すなわち、積層方向でみて内部電極と余白領域とが交互に位置する部分と、内部電極のみが位置する部分との間で、内部電極の有無による段差が生じる。かかる段差は、セラミック基体の寸法歪みを招き、積層セラミックコンデンサの実装時における装着不良の原因となる。
上記段差の問題を解消するための技術としては、内部電極の周囲に段差吸収用のセラミックペーストを印刷する技術が知られている(特許文献1)。
しかし、内部電極の周囲に段差吸収用のセラミックペーストを印刷する場合、セラミックペーストを正確な印刷パターンで印刷しなければならず、高い印刷精度が要求される。このような工程を付加することは、製造工程の煩雑化を招く。
また、内部電極の周囲に段差吸収用のセラミックペーストを印刷する場合、シートアタックの問題を生じる。すなわち、セラミックペースト内の溶剤がグリーンシートとPETフィルムとの間にまで浸透し、グリーンシートがPETフィルムから剥離してしまう恐れがある。
特開2001−358036号公報
本発明の課題は、セラミック基体の寸法歪みを解消して実装時における装着不良を防止しながら、製造工程を簡略化し得、尚且つ、シートアタックを防止し得る、積層セラミックコンデンサ及びその製造方法を提供することである。
<積層セラミックコンデンサ>
上述した課題を解決するため、本発明は、
「セラミック基体と、複数の内部電極とを備える積層セラミックコンデンサであって、
前記セラミック基体は、長さ方向、幅方向及び厚さ方向で定義される形状であり、
前記複数の内部電極は、前記セラミック基体の内部で厚さ方向に間隔を隔てて積層され、前記セラミック基体の、長さ方向でみた両端部に交互に導出されており、
前記セラミック基体は、厚さ方向に相対する両面のうち一面が平面状であり、前記一面から最外側内部電極までの距離について、長さ方向でみた端部における値Dbが長さ方向でみた中央部における値Daよりも大きく、比Db/Daが2.1以下である、
積層セラミックコンデンサ」
を提供する。
上述した本発明に係る積層セラミックコンデンサでは、複数の内部電極が、セラミック基体の内部で厚さ方向に間隔を隔てて積層され、セラミック基体の、長さ方向でみた両端部に交互に導出されている。従って、積層セラミックコンデンサの基本的構造が得られる。
更に、セラミック基体は、厚さ方向に相対する両面のうち一面が平面状であり、前記一面から最外側内部電極までの距離について、長さ方向でみた端部における値Dbが長さ方向でみた中央部における値Daよりも大きい。かかる構造によれば、セラミック基体の端部及び中央部の間に生じ得る内部電極の段差を吸収し、セラミック基体の寸法歪みを解消することができる。従って、積層セラミックコンデンサの実装時における装着不良(実装不良)を防止することができる。
しかも、上記構造によれば、積層セラミックコンデンサの製造工程において内部電極の周囲に段差吸収用のセラミックペーストを印刷する工程が不要となる。よって、積層セラミックコンデンサの製造工程が簡略化される。
更に、内部電極の周囲に段差吸収用のセラミックペーストを印刷する工程が不要であるから、シートアタックが防止される。
更に本発明では、セラミック基体の前記一面から最外側内部電極までの距離について、端部における値Dbと中央部における値Daとの比Db/Daを2.1以下としてある。比Db/Daを2.1以下とすれば、積層セラミックコンデンサにおける実装不良の発生率及びデラミネーションの発生率を、低い値に抑えることができる。
<積層セラミックコンデンサの製造方法>
更に、本発明は、
「第1のセラミックグリーンシートの一面に複数の内部電極層を、互いに余白領域を隔てて形成し、前記第1のセラミックグリーンシートを複数備えたシート積層体を作製する積層セラミックコンデンサの製造方法であって、
一面に段差吸収層が形成され、内部電極層を有しない第2のセラミックグリーンシートを用意し、
前記複数の第1のセラミックグリーンシートの外側に前記第2のセラミックグリーンシートを少なくとも一層備えたシート積層体を、その積層方向でみて内部電極層と余白領域とが交互に位置する部分に段差吸収層を重ねるように作製する
積層セラミックコンデンサの製造方法」
を提供する。
上述した本発明に係る積層セラミックコンデンサの製造方法では、第1のセラミックグリーンシートの一面に複数の内部電極層を、互いに余白領域を隔てて形成し、前記第1のセラミックグリーンシートを複数備えたシート積層体を作製する。従って、積層セラミックコンデンサの基本的構造が得られることになる。
本発明の特徴としては、一面に段差吸収層が形成され、内部電極層を有しない第2のセラミックグリーンシートを用意する。更に、前記複数の第1のセラミックグリーンシートの外側に前記第2のセラミックグリーンシートを少なくとも一層備えたシート積層体を、その積層方向でみて内部電極層と余白領域とが交互に位置する部分に段差吸収層を重ねるように作製する。かような段差吸収構造によれば、積層方向でみて内部電極層のみが位置する部分と、内部電極層と余白領域とが交互に位置する部分との間に生じ得る段差を吸収することができる。従って、シート積層体を裁断して得られるセラミック基体の寸法歪みを解消することができる。よって、積層セラミックコンデンサの実装時における装着不良を防止することができる。
しかも、上記段差吸収構造によれば、第1のセラミックグリーンシートの一面で内部電極層の周囲に段差吸収用のセラミックペーストを印刷する工程が不要となる。よって、積層セラミックコンデンサの製造工程が簡略化される。
更に、第1のセラミックグリーンシートの一面で内部電極層の周囲に段差吸収用のセラミックペーストを印刷する工程が不要であるから、シートアタックが防止される。
以上述べたように、本発明によれば、セラミック基体の寸法歪みを解消して実装時における装着不良を防止しながら、製造工程を簡略化し得、尚且つ、シートアタックを防止し得る、積層セラミックコンデンサ及びその製造方法を提供することができる。
<積層セラミックコンデンサ>
図1は本発明に係る積層セラミックコンデンサの一実施形態を示す断面図、図2は図1の2−2線に沿った端面図である。図示のように、本発明に係る積層セラミックコンデンサは、セラミック基体1と、n層の内部電極21〜2nとを備える。
セラミック基体1は、例えばチタン酸バリウムを主成分とする誘電体材料などで構成される。セラミック基体1は、長さ方向L、幅方向W及び厚さ方向Tで定義される形状である。具体的には、セラミック基体1は、長さ方向L、幅方向W及び厚さ方向Tを有する略直方体形状となっている。セラミック基体1の寸法について数値例を挙げると、長さ寸法、幅寸法及び厚さ寸法が、それぞれ、3.2mm、1.6mm及び1.6mmである。
長さ方向Lでみたセラミック基体1の両端面160、170には、端子電極41、42が設けられている。端子電極41、42は、例えば、Snを主成分とする外層、Niを主成分とする中間層及びCuを主成分とする下地層からなる多層構造で構成することができる。
内部電極21〜2nは、セラミック基体1の内部で厚さ方向Tに間隔を隔てて積層されている。詳しくは、内部電極21〜2nは、それぞれ、厚さ方向Tに垂直な平面で見て長さ方向L及び幅方向Wを有する長方形状となっており、誘電体層を挟んで積層されている。
更に、内部電極21〜2nは、長さ方向Lでみたセラミック基体1の両端部16、17に交互に導出されている。まず、内部電極21は、長さ方向Lでみた一端が、セラミック基体1の端面160に導出され、端子電極41に接続されており、長さ方向Lでみた他端が、セラミック基体1のもう一つの端面170から長さ方向Lに間隔を隔てている。次の内部電極22は、長さ方向Lでみた一端が、セラミック基体1の端面160から長さ方向Lに間隔を隔てており、長さ方向Lでみた他端が、セラミック基体1の端面170に導出され、端子電極42に接続されている。残りの内部電極23〜2nについても同様である。このような内部電極の導出構造により、長さ方向Lでみたセラミック基体1の両端部16、17では、積層方向Tでみて内部電極と余白領域とが交互に位置することになる。また、長さ方向Lでみたセラミック基体1の中央部18では、積層方向Tでみて内部電極のみが位置することになる。
内部電極21〜2nは、例えばNiまたはCuなどで構成される。内部電極21〜2nの層厚T1及び層数nは、任意の値に設定される。また、セラミック基体1の中央部18でみて内部電極間に挟まれる誘電体層の層厚T2(図1参照)も、任意の値に設定される。
数値例を挙げれば、内部電極の層数nは400、内部電極の層厚T1は1.0μm、誘電体層の層厚T2は1.0μmに設定することができる。
セラミック基体1及び内部電極21〜2nの基本的構成は、以上説明した通りである。次に、本発明の特徴的構成について説明する。
セラミック基体1は、厚さ方向Tに相対する両面101、102のうち一面101が平面状となっている。平面状とは、積層セラミックコンデンサの実装時に装着不良を生じるか否かの観点からみて平面状である旨、解釈できる。
更に、セラミック基体1は、面101から最外側内部電極2nまでの距離について、長さ方向Lでみた端部17における値Dbが、長さ方向Lでみた中央部18における値Daよりも大きくなっている。詳しく説明すると、中央部18では、当該内部電極2nが、面101から厚さ方向Tでみてほぼ一定の位置となっている。端部17では、内部電極2nは、厚さ方向Tでみて、中央部18での位置よりも高い位置となっており、値Dbは、端面170付近でみた値である。
更に、値Dbと値Daとの比Db/Daが2.1以下となっている。従って、比Db/Daの範囲について整理すると、次の通りである。
1<Db/Da≦2.1 (1)
図示実施形態では、セラミック基体1のもう一つの面102も平面状となっている。更に、この面102から最外側内部電極21までの距離についても、長さ方向Lでみた端部16における値が、長さ方向Lでみた中央部18における値よりも大きくなっている。詳細については、面101から内部電極2nまでの距離と同様であり、重複説明を省略する。
図1及び図2を参照して説明したように、本発明に係る積層セラミックコンデンサでは、内部電極21〜2nが、セラミック基体1の内部で厚さ方向Tに間隔を隔てて積層され、長さ方向Lでみたセラミック基体1の両端部16、17に交互に導出されている。従って、積層セラミックコンデンサの基本的構造が得られる。
更に、セラミック基体1は、厚さ方向Tに相対する両面101、102のうち一面101が平面状であり、この面101から最外側内部電極2nまでの距離について、長さ方向Lでみた端部17における値Dbが、長さ方向Lでみた中央部18における値Daよりも大きい。かかる構造によれば、セラミック基体1の端部17及び中央部18の間に生じ得る内部電極21〜2nの段差を吸収し、セラミック基体1の寸法歪みを解消することができる。従って、積層セラミックコンデンサの実装時における装着不良(実装不良)を防止することができる。
しかも、上記構造によれば、積層セラミックコンデンサの製造工程において内部電極21〜2nの周囲に段差吸収用のセラミックペーストを印刷する工程が不要となる。よって、積層セラミックコンデンサの製造工程が簡略化される。
更に、内部電極21〜2nの周囲に段差吸収用のセラミックペーストを印刷する工程が不要であるから、シートアタックが防止される。
更に本発明では、セラミック基体の面101から最外側内部電極2nまでの距離について、端部17における値Dbと中央部18における値Daとの比Db/Daを2.1以下としてある。比Db/Daを2.1以下とすれば、積層セラミックコンデンサにおける実装不良の発生率及びデラミネーションの発生率を、低い値に抑えることができる。
以下、表1〜表4を参照し、実験データを挙げて説明する。表では、各サンプルNoごとに、内部電極層の層数n、内部電極の層厚T1、誘電体層の層厚T2、内部電極の層厚T1と誘電体層の層厚T2との比T1/T2、外装厚み、セラミック基体の中央部における値Da、端部における値Db、端部の値Dbと中央部の値Daとの比Db/Da、太鼓化率、実装不良の発生率、及び、デラミネーションの発生率を示す。太鼓化率とは、チップの変形度を表すものであり、数値が大きいほど変形が大きく、実装不良を発生させやすい。また、実装不良の発生率及びデラミネーションの発生率とは、各サンプルNoごとに、100000個の積層セラミックコンデンサを作製したときの実装不良の発生率及びデラミネーションの発生率を示している。
まず、表1は、値Daを200μm、内部電極層の層厚T1を1.5μmとしたときの実験データである。
Figure 2006332285
表1を参照すると、比Db/Daが2.10以下の領域では、実装不良の発生率が50ppm以下に抑えられる。また、デラミネーションの発生率も0.3%以下に抑えられる。
これに対し、比Db/Daが2.10を超えると、実装不良の発生率が50ppmを超え、急激に増大する。また、デラミネーションの発生率も0.3%を超え、急激に増大する。例えば、比Db/Daが3.50のとき、実装不良の発生率は3000ppmとなり、デラミネーションの発生率は3.0%となる。
次に、表2は、値Daを200μm、内部電極層の層厚T1を1.0μmとしたときの実験データである。
Figure 2006332285
表2を参照すると、比Db/Daが2.10以下の領域では、実装不良の発生率が50ppm以下に抑えられる。また、デラミネーションの発生率も0.3%以下に抑えられる。
これに対し、比Db/Daが2.10を超えると、実装不良の発生率が50ppmを超え、急激に増大する。また、デラミネーションの発生率も0.3%を超え、急激に増大する。例えば、比Db/Daが3.00のとき、実装不良の発生率は800ppmとなり、デラミネーションの発生率は1.2%となる。
次に、表3は、値Daを100μm、内部電極層の層厚T1を1.5μmとしたときの実験データである。
Figure 2006332285
表3を参照すると、比Db/Daが2.10以下の領域では、実装不良の発生率が50ppm以下に抑えられる。また、デラミネーションの発生率も0.3%以下に抑えられる。
これに対し、比Db/Daが2.10を超えると、実装不良の発生率が50ppmを超え、急激に増大する。また、デラミネーションの発生率も0.3%を超え、急激に増大する。例えば、比Db/Daが2.40のとき、実装不良の発生率は80ppmとなり、デラミネーションの発生率は0.4%となる。
最後に、表4は、値Daを100μm、内部電極層の層厚T1を1.0μmとしたときの実験データである。
Figure 2006332285
表4を参照すると、比Db/Daが2.10以下の領域では、実装不良の発生率が50ppm以下に抑えられる。また、デラミネーションの発生率も0.3%以下に抑えられる。
これに対し、比Db/Daが2.10を超えると、実装不良の発生率が50ppmを超え、急激に増大する。また、デラミネーションの発生率も0.3%を超え、急激に増大する。例えば、比Db/Daが2.40のとき、実装不良の発生率は100ppmとなり、デラミネーションの発生率は0.5%となる。
以上、表1〜表4の実験データから、比Db/Daの上限値を2.10に設定できることが理解されよう。
なお、比Db/Daの下限値については、実質上、比Db/Da>1であると考えられる。本発明は、少なくとも1つの内部電極の周囲に段差吸収用のセラミックペーストを印刷しない構成を前提としたものであり、値Dbは値Daよりも大きい。
<積層セラミックコンデンサの製造方法>
次に、本発明に係る積層セラミックコンデンサの製造方法の一実施形態について説明する。この実施形態は、図1及び図2に示した積層セラミックコンデンサの製造方法に係る。
図3は本発明に係る積層セラミックコンデンサの製造方法の一実施形態に含まれるステップを示す図、図4は図3の4−4線に沿った端面図である。図3及び図4を参照すると、第1のセラミックグリーンシート(未焼成セラミックシート)11が、支持体91の一面に付着されている。第1のセラミックグリーンシート11は、セラミック粉末、溶剤及びバインダなどを混合したセラミックペーストで構成され、一定の厚さとなっている。第1のセラミックグリーンシート11の厚さは、例えば1.5μmである。また、支持体91は、適当な可撓性プラスチックフィルムで構成される。
次に、図3及び図4に示すように、第1のセラミックグリーンシート11の一面に複数の内部電極層20を形成する。これらの内部電極層20は、第1のセラミックグリーンシート11の面上で互いに長さ方向Lに余白領域S1を隔て、かつ、幅方向Wに余白領域S2を隔てるように形成される。詳しく説明すると、内部電極層20は、それぞれ、長さ方向L及び幅方向Wを有する長方形状となっており、長さ方向Lでみた長さL0は例えば6.0mm、幅方向Wでみた幅W0は例えば1.2mmとなっている。これらの内部電極層20は、長さ方向L及び幅方向Wに沿って行列状に配置されている。余白領域S1は、幅方向Wに延びる帯状の領域であり、長さ方向Lでみた幅L1は例えば0.4mmとなっている。また、余白領域S2は、長さ方向Lに延びる帯状の領域であり、幅方向Wでみた幅W2は例えば0.4mmとなっている。
このような内部電極層20は、導体粉末、溶剤及びバインダなどを混合した導体ペーストを、所定パターンで印刷することにより形成される。印刷手法としては、スクリーン印刷法、グラビア印刷法またはオフセット印刷法などが挙げられる。内部電極層20の層厚については、先述した通りである。
図5は、図3及び図4に示した積層セラミックコンデンサの製造方法に含まれるもう一つのステップを示す図、図6は図5の6−6線に沿った端面図である。図5及び図6を参照すると、第2のセラミックグリーンシート12が、支持体92の一面に付着されている。第2のセラミックグリーンシート12は、第1のセラミックグリーンシート11と同様なセラミックペーストで構成され、一定の厚さとなっている。第2のセラミックグリーンシート12の厚さは、例えば1.5μmである。
次に、図5及び図6に示すように、第2のセラミックグリーンシート12の一面に段差吸収層14を形成する。段差吸収層14は、長さ方向Lでみて、図3及び図4に示した余白領域S1と、追加的領域S3とを含むパターンで形成される。追加的領域S3は、長さ方向Lに隣り合う余白領域S1の間にそれぞれ設けられ、幅方向Wに延びる帯状の領域である。追加的領域S3は、長さ方向Lでみて余白領域S1と同じ幅L1を有する。追加的領域S3と余白領域S1との間の間隔L2は、例えば2.8mmである。
また、段差吸収層14は、幅方向Wでみて、図3に示した余白領域S2を含むパターンで形成される。
このような段差吸収層14は、セラミックペーストを所定のパターンで印刷することにより形成される。印刷手法としては、スクリーン印刷法、グラビア印刷法またはオフセット印刷法などが挙げられる。段差吸収層14は、基本的には、第2のセラミックグリーンシート12と同様な構成のセラミックペーストで構成される。
段差吸収層14の層厚は、積層セラミックコンデンサの製造工程における各種数値、例えば、段差吸収層を有する第2のセラミックグリーンシートの積層数、内部電極層の層厚及び層数などを考慮して定められる。段差吸収層の層厚について数値例を挙げると、段差吸収層を有する第2のセラミックグリーンシートの積層数が40、内部電極層の層厚および層数がそれぞれ1.0μm、400のとき、段差吸収層の層厚を3.0μmとすることができる。
図3、図4に示したステップ及び図5、図6に示したステップの間で時間的な順序関係は任意である。例えば、図3、図4のステップを行った後に図5、図6のステップを行ってもよいし、図5、図6のステップを行った後に図3、図4のステップを行ってもよい。または、図3、図4のステップと、図5、図6のステップとを同時に行ってもよい。
次に、図7に示すように、複数層(n層)の第1のセラミックグリーンシート11の外側に第2のセラミックグリーンシート12を少なくとも一層備えたシート積層体を作製する。詳しくは、内部電極層20及び余白領域S1が備えられた第1のセラミックグリーンシート11を、単位層61〜6nとしてシート積層体を作製する。更にこれらの単位層61〜6nに加え、段差吸収層14が備えられた第2のセラミックグリーンシート12を、上層単位層51〜5m及び下層単位層71〜7mとしてシート積層体を作製する。上層単位層51〜5m及び下層単位層71〜7mは、それぞれ、単位層61〜6nから積層方向Tでみて、上層及び下層に位置する。
シート積層体の作製において、単位層61〜6nは、長さ方向Lでみた位置を交互にずらして配置される。具体的には、単位層61〜6nは、積層方向Tでみて内部電極層20のみが位置する部分81のほかに、内部電極層20と余白領域S1とが交互に位置する部分82が生じるように配置される。更に具体的には、積層方向Tでみて内部電極層20のみが位置する部分81は、長さ方向Lでみた内部電極層20の両端部に在る。積層方向Tでみて内部電極層20と余白領域S1とが交互に位置する部分82は、長さ方向Lでみた内部電極層20の中央部に在る。
上層単位層51〜5mは、長さ方向L及び幅方向Wに関し、単位層61〜6nの位置に基づいて配置される。具体的に、長さ方向Lに関する配置位置について説明すると、上層単位層51〜5mは、積層方向Tでみて内部電極層20と余白領域S1とが交互に位置する部分82に段差吸収層14を重ねるような位置に配置される。また、幅方向Wに関する配置位置について説明すると、上層単位層51〜5mは、幅方向Wでみた内部電極層20の間の余白領域S2(図3参照)に段差吸収層14を重ねるような位置に配置される。
下層単位層71〜7mも、長さ方向L及び幅方向Wに関し、単位層61〜6nの位置に基づいて配置される。詳細については、上層単位層51〜5mと同様であり、重複説明を省略する。
図示実施形態では、シート積層体を作製するための手法として、内部電極層20を備えた第1のセラミックグリーンシート11を単位層61〜6nとして用意し、段差吸収層14を備えた第2のセラミックグリーンシート12を上層単位層51〜5m及び下層単位層71〜7mとして用意した後、これらの単位層51〜5m、61〜6n及び71〜7mを順次に積層台93上で積層する手法が採用されているが、本発明は、かかる手法に限定されない。例えば、上層単位層51〜5mの一次積層体、単位層61〜6nの一次積層体及び下層単位層71〜7mの一次積層体を作製した後、これらの一次積層体を積層してシート積層体を作製する手法を採用してもよい。また、セラミックグリーンシートの形成工程や、内部電極層及び段差吸収層の印刷工程などを、必要な回数だけ可撓性支持体上で繰り返することによりシート積層体を作製する手法を採用してもよい。
このようにして得られたシート積層体を加圧した後、一チップ領域に裁断すると、積層グリーンチップが得られる。更に脱バインダ、焼成及び端子電極形成等の工程を行うと、図1及び図2に示した積層セラミックコンデンサが得られる。
本発明に係る積層セラミックコンデンサの製造方法においては、図3及び図4に示すように、第1のセラミックグリーンシート11の一面に複数の内部電極層20を、互いに余白領域S1を隔てて形成する。更に、図7に示すように、第1のセラミックグリーンシート11を複数層(n層)備えたシート積層体を作製する。従って、積層セラミックコンデンサの基本的構造が得られることになる。
本発明の特徴としては、図5及び図6に示すように、一面に段差吸収層14が形成され、内部電極層を有しない第2のセラミックグリーンシート12を用意する。更に、図7に示すように、複数層の第1のセラミックグリーンシート11の外側に第2のセラミックグリーンシート12を少なくとも一層備えたシート積層体を、その積層方向Tでみて内部電極層20と余白領域S1とが交互に位置する部分82に段差吸収層14を重ねるように作製する。
かような段差吸収構造によれば、積層方向Tでみて内部電極層20のみが位置する部分81と、内部電極層20と余白領域S1とが交互に位置する部分82との間に生じ得る段差を吸収することができる。従って、シート積層体を裁断して得られるセラミック基体の寸法歪みを解消することができる。よって、積層セラミックコンデンサの実装時における装着不良を防止することができる。
しかも、上記段差吸収構造によれば、第1のセラミックグリーンシート11の一面で内部電極層20の周囲に段差吸収用のセラミックペーストを印刷する工程が不要となる。よって、積層セラミックコンデンサの製造工程が簡略化される。
更に、第1のセラミックグリーンシート11の一面で内部電極層20の周囲に段差吸収用のセラミックペーストを印刷する工程が不要であるから、シートアタックが防止される。
図7を参照すると、図示実施形態では、シート積層体の構成として、第2のセラミックグリーンシート12が複数層の第1のセラミックグリーンシート11からみて上層及び下層の両方に備えられた構成が採用されているが、本発明は、かかる構成に限定されない。この点については、例えば、第2のセラミックグリーンシート12が複数層の第1のセラミックグリーンシート11からみて下層にしか備えられていない構成でも、同様な作用効果が得られることから明らかであろう。
また、図示実施形態では、シート積層体の構成として、第2のセラミックグリーンシート12が複数層備えられた構成が採用されているが、本発明は、そのような構成に限定されることはなく、第2のセラミックグリーンシート12の層数は任意である。この点については、例えば、第2のセラミックグリーンシート12が一層しか備えられていない構成でも、基本的な作用効果が得られることから明らかであろう。
本発明に係る積層セラミックコンデンサの一実施形態を示す断面図である。 図1の2−2線に沿った端面図である。 本発明に係る積層セラミックコンデンサの製造方法の一実施形態に含まれるステップを示す図である。 図3の4−4線に沿った端面図である。 図3及び図4に示した積層セラミックコンデンサの製造方法に含まれるもう一つのステップを示す図である。 図5の6−6線に沿った端面図である。 図3、図4に示したステップ及び図5、図6に示したステップの後のステップを示す図である。
符号の説明
1 セラミック基体
21〜2n 内部電極層

Claims (2)

  1. セラミック基体と、複数の内部電極とを備える積層セラミックコンデンサであって、
    前記セラミック基体は、長さ方向、幅方向及び厚さ方向で定義される形状であり、
    前記複数の内部電極は、前記セラミック基体の内部で厚さ方向に間隔を隔てて積層され、前記セラミック基体の、長さ方向でみた両端部に交互に導出されており、
    前記セラミック基体は、厚さ方向に相対する両面のうち一面が平面状であり、前記一面から最外側内部電極までの距離について、長さ方向でみた端部における値Dbが長さ方向でみた中央部における値Daよりも大きく、比Db/Daが2.1以下である、
    積層セラミックコンデンサ。
  2. 第1のセラミックグリーンシートの一面に複数の内部電極層を、互いに余白領域を隔てて形成し、前記第1のセラミックグリーンシートを複数備えたシート積層体を作製する積層セラミックコンデンサの製造方法であって、
    一面に段差吸収層が形成され、内部電極層を有しない第2のセラミックグリーンシートを用意し、
    前記複数の第1のセラミックグリーンシートの外側に前記第2のセラミックグリーンシートを少なくとも一層備えたシート積層体を、その積層方向でみて内部電極層と余白領域とが交互に位置する部分に段差吸収層を重ねるように作製する
    積層セラミックコンデンサの製造方法。
JP2005152955A 2005-05-25 2005-05-25 積層セラミックコンデンサ及びその製造方法 Pending JP2006332285A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005152955A JP2006332285A (ja) 2005-05-25 2005-05-25 積層セラミックコンデンサ及びその製造方法
US11/406,352 US7394644B2 (en) 2005-05-25 2006-04-19 Laminated ceramic capacitor and manufacturing method therefor
KR1020060046514A KR100822956B1 (ko) 2005-05-25 2006-05-24 적층 세라믹 콘덴서 및 그 제조방법
CNA2006100898458A CN1870190A (zh) 2005-05-25 2006-05-24 叠层陶瓷电容器及其制造方法
TW095118353A TWI299172B (en) 2005-05-25 2006-05-24 Laminated ceramic capacitor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152955A JP2006332285A (ja) 2005-05-25 2005-05-25 積層セラミックコンデンサ及びその製造方法

Publications (1)

Publication Number Publication Date
JP2006332285A true JP2006332285A (ja) 2006-12-07

Family

ID=37418886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152955A Pending JP2006332285A (ja) 2005-05-25 2005-05-25 積層セラミックコンデンサ及びその製造方法

Country Status (5)

Country Link
US (1) US7394644B2 (ja)
JP (1) JP2006332285A (ja)
KR (1) KR100822956B1 (ja)
CN (1) CN1870190A (ja)
TW (1) TWI299172B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292737A (ja) * 2006-03-28 2007-11-08 Fujifilm Corp ピペットチップ、液体受構造、及び、液体供給装置
JP2009289958A (ja) * 2008-05-29 2009-12-10 Tdk Corp 積層型電子部品の製造方法
JP2010050390A (ja) * 2008-08-25 2010-03-04 Murata Mfg Co Ltd 積層型コイル部品の製造方法
JP2011135035A (ja) * 2009-12-23 2011-07-07 Samsung Electro-Mechanics Co Ltd 積層セラミックキャパシタ及びその製造方法
KR101762032B1 (ko) * 2015-11-27 2017-07-26 삼성전기주식회사 적층 세라믹 전자부품 및 그 제조 방법
US11894188B2 (en) 2021-05-27 2024-02-06 Tdk Corporation Multilayer capacitor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080174931A1 (en) * 2007-01-18 2008-07-24 Skamser Daniel J Vertical electrode layer design to minimize flex cracks in capacitors
KR101070068B1 (ko) 2009-12-24 2011-10-04 삼성전기주식회사 적층 세라믹 커패시터
KR20120043501A (ko) * 2010-10-26 2012-05-04 삼성전기주식회사 적층 세라믹 전자부품 및 이의 제조방법
KR101141417B1 (ko) * 2010-11-22 2012-05-03 삼성전기주식회사 적층 세라믹 커패시터 및 그 제조방법
KR101843182B1 (ko) 2011-05-31 2018-03-28 삼성전기주식회사 적층 세라믹 전자부품
KR101946259B1 (ko) * 2011-05-31 2019-02-12 삼성전기 주식회사 적층 세라믹 전자부품
KR102029469B1 (ko) 2012-02-17 2019-10-07 삼성전기주식회사 적층 세라믹 전자 부품 및 그 제조 방법
KR20140080291A (ko) 2012-12-20 2014-06-30 삼성전기주식회사 적층 세라믹 전자부품 및 이의 제조방법
KR101452074B1 (ko) * 2012-12-27 2014-10-16 삼성전기주식회사 적층 세라믹 커패시터 및 그 실장 기판
KR101474152B1 (ko) 2013-07-17 2014-12-23 삼성전기주식회사 적층 세라믹 커패시터 및 그 제조 방법
KR101499723B1 (ko) * 2013-08-14 2015-03-06 삼성전기주식회사 적층 세라믹 커패시터의 실장 기판
JP2015026841A (ja) * 2013-10-25 2015-02-05 株式会社村田製作所 積層セラミックコンデンサ
TWI814730B (zh) * 2017-07-19 2023-09-11 日商太陽誘電股份有限公司 積層陶瓷電容器及其製造方法
JP7231340B2 (ja) * 2018-06-05 2023-03-01 太陽誘電株式会社 セラミック電子部品およびその製造方法
JP2021019018A (ja) * 2019-07-17 2021-02-15 株式会社村田製作所 積層セラミック電子部品およびその製造方法
JP2021086972A (ja) * 2019-11-29 2021-06-03 株式会社村田製作所 積層セラミックコンデンサ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297773A (en) * 1978-11-16 1981-11-03 Avx Corporation Method of manufacturing a monolithic ceramic capacitor
JPH0752698B2 (ja) 1989-01-20 1995-06-05 太陽誘電株式会社 積層セラミックコンデンサの製造方法
JPH08316093A (ja) 1995-05-19 1996-11-29 Murata Mfg Co Ltd 積層セラミック電子部品の製造方法
JPH09260193A (ja) 1996-03-26 1997-10-03 Taiyo Yuden Co Ltd 積層コンデンサ
JPH11162781A (ja) 1997-11-21 1999-06-18 Murata Mfg Co Ltd 積層セラミック電子部品の製造方法
JP3466524B2 (ja) 1999-11-30 2003-11-10 京セラ株式会社 積層型電子部品およびその製法
JP4714996B2 (ja) 2000-04-10 2011-07-06 株式会社村田製作所 積層型セラミック電子部品およびその製造方法
JP2003229324A (ja) 2002-02-01 2003-08-15 Kyocera Corp 積層セラミックコンデンサおよびその製造方法
JP3922436B2 (ja) 2002-03-08 2007-05-30 Tdk株式会社 積層セラミック電子部品、積層セラミック電子部品の製造方法、及び、積層セラミック電子部品の製造装置
JP2003347146A (ja) 2002-05-29 2003-12-05 Kyocera Corp 積層セラミックコンデンサおよびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292737A (ja) * 2006-03-28 2007-11-08 Fujifilm Corp ピペットチップ、液体受構造、及び、液体供給装置
JP2009289958A (ja) * 2008-05-29 2009-12-10 Tdk Corp 積層型電子部品の製造方法
JP2010050390A (ja) * 2008-08-25 2010-03-04 Murata Mfg Co Ltd 積層型コイル部品の製造方法
JP2011135035A (ja) * 2009-12-23 2011-07-07 Samsung Electro-Mechanics Co Ltd 積層セラミックキャパシタ及びその製造方法
KR101762032B1 (ko) * 2015-11-27 2017-07-26 삼성전기주식회사 적층 세라믹 전자부품 및 그 제조 방법
US10304632B2 (en) 2015-11-27 2019-05-28 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component with improved withstand voltage characteristics and method of manufacturing the same
US10943736B2 (en) 2015-11-27 2021-03-09 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing a multilayer ceramic electronic component with improved withstand voltage characteristics
US11894188B2 (en) 2021-05-27 2024-02-06 Tdk Corporation Multilayer capacitor

Also Published As

Publication number Publication date
TW200707484A (en) 2007-02-16
US7394644B2 (en) 2008-07-01
CN1870190A (zh) 2006-11-29
KR100822956B1 (ko) 2008-04-17
TWI299172B (en) 2008-07-21
KR20060121745A (ko) 2006-11-29
US20060256504A1 (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP2006332285A (ja) 積層セラミックコンデンサ及びその製造方法
JP5332475B2 (ja) 積層セラミック電子部品およびその製造方法
US7295420B2 (en) Multilayer electronic component and manufacturing method thereof
JP2005259982A (ja) 積層セラミックコンデンサ
JP2007243040A (ja) 積層セラミック電子部品
US7828033B2 (en) Method of manufacturing multilayer capacitor and multilayer capacitor
JP5852321B2 (ja) 積層セラミックコンデンサ
JP2009164446A (ja) 積層セラミックコンデンサおよびその製造方法
JP3316731B2 (ja) 積層セラミック電子部品
JP2000012377A (ja) 積層セラミック電子部品及びその製造方法
JP2009043867A (ja) セラミックグリーンシート構造、及び、積層セラミック電子部品の製造方法
JP4623305B2 (ja) 積層電子部品の製造方法
JP4502130B2 (ja) 積層電子部品の製造方法
JP2006066831A (ja) 積層セラミックコンデンサ
JP2000277382A (ja) 多連型積層セラミックコンデンサ及びその製造方法
JP4539489B2 (ja) 積層コンデンサの製造方法
JP2005327999A (ja) 積層セラミックコンデンサ
JP2006286860A (ja) 積層電子部品及びその製造方法
JP2006324538A (ja) 積層型電子部品の製造方法および積層型電子部品の内部電極形成用スクリーン印刷版
JP2005303029A (ja) 積層セラミック電子部品の製造方法
KR100846079B1 (ko) 적층 콘덴서의 제조 방법 및 적층 콘덴서
JP2009224503A (ja) 積層コンデンサ
JP5006510B2 (ja) 積層セラミック電子部品の製造方法
JP2005129612A (ja) 積層型セラミック電子部品の製造方法
WO2024135066A1 (ja) 積層セラミックコンデンサ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090311