EP3538585A1 - Kompositwerkstoffe basierend auf isocyanuratpolymeren mit dualer härtung - Google Patents

Kompositwerkstoffe basierend auf isocyanuratpolymeren mit dualer härtung

Info

Publication number
EP3538585A1
EP3538585A1 EP17801426.2A EP17801426A EP3538585A1 EP 3538585 A1 EP3538585 A1 EP 3538585A1 EP 17801426 A EP17801426 A EP 17801426A EP 3538585 A1 EP3538585 A1 EP 3538585A1
Authority
EP
European Patent Office
Prior art keywords
isocyanate
component
polymerizable composition
reactive
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17801426.2A
Other languages
English (en)
French (fr)
Inventor
Paul Heinz
Richard MEISENHEIMER
Alisa KAYSER
Jörg TILLACK
Dirk Achten
Thomas Buesgen
Michael Ludewig
Christoph TOMCZYK
Roland Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Covestro Deutschland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Deutschland AG filed Critical Covestro Deutschland AG
Publication of EP3538585A1 publication Critical patent/EP3538585A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8125Unsaturated isocyanates or isothiocyanates having two or more isocyanate or isothiocyanate groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • B29C39/006Monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/214Doctor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F120/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/006Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
    • C08F283/008Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00 on to unsaturated polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • C08G18/022Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/04Polymeric products of isocyanates or isothiocyanates with vinyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1816Catalysts containing secondary or tertiary amines or salts thereof having carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • C08G18/622Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
    • C08G18/6225Polymers of esters of acrylic or methacrylic acid
    • C08G18/6229Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/675Low-molecular-weight compounds
    • C08G18/6755Unsaturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/728Polymerisation products of compounds having carbon-to-carbon unsaturated bonds and having isocyanate or isothiocyanate groups or groups forming isocyanate or isothiocyanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/81Unsaturated isocyanates or isothiocyanates
    • C08G18/8141Unsaturated isocyanates or isothiocyanates masked
    • C08G18/815Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
    • C08G18/8158Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
    • C08G18/8175Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/244Stepwise homogeneous crosslinking of one polymer with one crosslinking system, e.g. partial curing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane

Definitions

  • the present invention relates to polymerizable compositions containing components that can be crosslinked by isocyanurate bonds as well as by a free-radical reaction mechanism. It further relates to methods by which polymers can be made from these compositions.
  • WO 2015/155195 describes a composite material obtainable from a reinforcing material and a polyurethane composition consisting of at least one polyisocyanate (PIC), a PIC-reactive component consisting of at least one polyol and at least one methacrylate having OH groups, and a radical initiator.
  • PIC polyisocyanate
  • PIC-reactive component consisting of at least one polyol and at least one methacrylate having OH groups
  • a radical initiator a radical initiator
  • WO 2016/087366 describes a free-radically polymerizable composition consisting of a polyurethane which contains double bonds and a reactive diluent based on various methacrylates.
  • the disadvantage here is the two-stage reaction procedure, since first a polyurethane starting from an isocyanate-containing component and a polyol prepared, and must be greatly diluted. Subsequent crosslinking takes place exclusively via a free radical polymerization in a separate step.
  • WO 2016/170057, WO 2016/170059 and WO 2016/170061 describe the preparation of polyisocyanurate plastics by polyaddition of oligomeric isocyanates.
  • the use of oligomeric isocyanates instead of monomeric isocyanates results in less heat of reaction being produced during the polymerization and thus rapid polymerization is possible without the reaction mixture overheating. This is particularly important in the production of moldings, since here the heat generated in the interior of the molded body can be dissipated only limited over the surface.
  • the monomer-poor polyisocyanate compositions described in these applications as starting materials have the disadvantage of a high, relatively high viscosity, which may be a hindrance in some applications. This is especially true for the production of highly filled composites.
  • the addition of monomeric polyisocyanates as reactive diluents is undesirable because of the above-described problem of heat of reaction.
  • monomeric polyisocyanates are highly volatile and therefore should not be used for reasons of occupational safety.
  • conventional organic solvents can be used to reduce the viscosity.
  • these are disadvantageous for reasons of environmental protection, since they are released during or after the polymerization in the ambient air.
  • the use of solvents in the production of moldings can lead to material defects, for example to the formation of voids, since the volume of the evaporating solvent is missing in the material.
  • the present invention was initially based on the object of providing a reaction system with a dual curing mechanism in which the mixing ratio of the reactants can be set in a significantly wider range than in the known polyurethane systems.
  • the present invention relates to a polymerizable composition for producing a composite
  • a polymerizable composition for producing a composite comprising a) a reactive resin having a ratio of isocyanate groups to isocyanate-reactive groups of at least 2.0 to 1.0 containing the components a) an isocyanate component A;
  • component B has at least one ethylenic double bond but no isocyanate-reactive group
  • component D in a molecule has at least one isocyanate-reactive group and at least one ethylenic double bond
  • the component E in a molecule has both at least one isocyanate group and at least one ethylenic double bond; and b) at least one filler J.
  • a “reactive resin” is a mixture which can be cured by a combination of free-radical polymerization and crosslinking of the isocyanate groups of the isocyanate component with one another to form a solid material.
  • reaction mixture is also used synonymously below.
  • the reactive resin serves as a matrix material in which the filler J is embedded.
  • the components A to I defined below are obligatory or optional components of the reactive resin.
  • the isocyanate component A allows the formation of a polymer formed by the addition of isocyanate groups. In particular, isocyanurate groups are formed.
  • the crosslinking of the isocyanate groups contained in the isocyanate component A gives the polymer the majority of its mechanical and chemical stability.
  • the crosslinking of the isocyanate groups is mediated by the trimerization catalyst C.
  • Components B, D and E are each characterized by the presence of an ethylenic double bond. This double bond is prerequisite for the fact that a second crosslinking mechanism is available in addition to the polyaddition of the isocyanate groups in the polymerizable composition.
  • a second crosslinking mechanism is available in addition to the polyaddition of the isocyanate groups in the polymerizable composition.
  • Component B decreases the viscosity of the polymerizable composition. It can thus advantageously serve as a reactive diluent, i. it becomes part of the polymer after completion of the polymerization process. It can also serve the rapid build-up of viscosity, if initially, preferably by ionizing radiation, a radical polymerization of the ethylenic double bonds is initiated and only after the crosslinking of the isocyanate groups is performed.
  • the component B is used in combination with a component D or E. It can also be used in combination with both components.
  • Components D and E mediate cross-linking of the radical B-forming network of component B with the polyaddition of the isocyanate-forming polymer of isocyanate component A. They thus ensure that no two separate polymer networks of components A and B, but a uniform polymer network.
  • components D and F allow the construction of a polymer network by radical polymerization.
  • the complete curing of the polymerizable composition according to the invention can take place separately in time in two different process steps.
  • the free-radical crosslinking of the viscosity which initially imparts a certain degree of dimensional stability to the resulting product in components D and E, but without further processing, e.g. by bending pressing or embossing impossible.
  • Only subsequent cross-linking of the isocyanate groups with one another leads to complete curing, which gives the product its final stability. This results in a uniform polymer network, since the components B and D always react with the isocyanate groups of the isocyanate component A.
  • the polymerizable composition contains at least one of the two components D and E, but no component B.
  • composition according to the invention contains a component B and at least one of the two components D and E. Particularly preferred is the combination of B and D.
  • the polymerizable composition of the present invention preferably contains the isocyanate component A and component B in an amount that has the viscosity of the undiluted isocyanate component of at most 75%, more preferably at most 50%, even more preferably at most 33% of the viscosity of an undiluted isocyanate component A. lowers.
  • the presence of at least one component D or E in this embodiment is preferred, but not mandatory.
  • the proportion of component A to the total amount of components B, D and E is such that the polymerizable composition has a viscosity of at most 100,000 mPas, more preferably at most 10,000 mPas, even more preferably at most 5,000 mPas and most preferably at most 2,000 mPas.
  • the proportion of component A to the total amount of components B, D and E is such that the polymerizable composition has a viscosity of at most 100,000 mPas, more preferably of highest 10,000 mPas, even more preferably at most 5,000 mPas, and most preferably at most 2,000 mPas.
  • the above conditions are particularly satisfied when the mass ratio of components A and B is in the range of 95 to 5 to 30 to 70, preferably 95 to 5 to 50 to 50, and more preferably 92.5 to 7.5 to 70 to 30.
  • the molar ratio of isocyanate groups and ethylenic double bonds is preferably in a range of 1 to 10 to 10 to 1, more preferably 1 to 5 to 8 to 1, and even more preferably 1 to 3 to 5 to 1).
  • the molecular ratio of these functional groups can be determined by integrating the signals of a sample in the 13 C-NM spectrum.
  • the polymer obtainable by polymerization of the reactive resin according to the invention obtains its advantageous properties quite substantially by crosslinking the isocyanate groups with one another. Therefore, it is essential to the invention that the ratio of isocyanate groups to the total amount of isocyanate-reactive in the reactive resin is limited so that a clear molar excess of isocyanate groups is present.
  • the molar ratio of isocyanate groups of the isocyanate component to isocyanate-reactive groups in the reactive resin is therefore at least 2.0 to 1.0, preferably at least 3.0 to 1.0, more preferably at least 4.0 to 1.0, and even more preferably at least 8.0 to 1.0.
  • isocyanate-reactive groups are hydroxyl, thiol, carboxyl and amino groups, amides, urethanes, acid anhydrides and epoxides contained in the polymerizable composition Isocyanate groups are present in components A and, when present, E.
  • the isocyanate-reactive groups may in principle be present in all other components except component B.
  • the use of the reactive resin according to the invention allows greater flexibility in the selection of the proportions of the individual components.
  • the molar ratio of isocyanate groups to isocyanate-reactive groups must be close to 1: 1 as far as possible.
  • there is a significant excess of isocyanate groups which is therefore not only acceptable, but even desirable, because the resulting polymer owes its advantageous properties quite substantially to the reaction of isocyanate groups with other isocyanate groups.
  • the resulting structures, in particular the isocyanurate groups lead to polymers with particular hardness and particular resistance to chemicals.
  • isocyanurate groups already intrinsically flame-retardant, so that can be omitted for many applications of the otherwise necessary addition of flame retardants.
  • isocyanate component A refers to the isocyanate component in the reactive resin. In other words, it is the sum of all compounds in the reactive resin which have isocyanate groups with the exception of component E.
  • the isocyanate component A is therefore used as educt If “isocyanate component A” is used here, in particular "preparation of isocyanate component A”, then this means that isocyanate component A exists and is used as starting material
  • the isocyanate component A preferably contains at least one polyisocyanate.
  • polyurethanes e.g polyurethanes, polyureas and polyisocyanurates
  • low molecular weight compounds eg those with uretdione, isocyanurate, allophanate, biuret, Iminooxadiazinedione and / or oxadiazinetrione structure.
  • polyisocyanates refers to monomeric and / or oligomeric polyisocyanates alike, but to understand many aspects of the invention it is important to distinguish between monomeric diisocyanates and oligomeric polyisocyanates.
  • Oligomeric polyisocyanates are referred to in this application. then it means polyisocyanates which are composed of at least two monomeric diisocyanate molecules, ie they are compounds which are or contain a reaction product of at least two monomeric diisocyanate molecules.
  • oligomeric polyisocyanates from monomeric diisocyanates is also referred to herein as modifying monomeric diisocyanates.
  • This "modification” as used herein means the reaction of monomeric diisocyanates to oligomeric polyisocyanates having uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure.
  • hexamethylene diisocyanate is a "monomeric diisocyanate” because it contains two isocyanate groups and is not a reaction product of at least two polyisocyanate molecules:
  • oligomeric polyisocyanates in the meaning of the invention .
  • Parents of such "oligomeric polyisocyanates" are starting from the monomeric HDI, e.g. the HDI isocyanurate and the HDI biuret, each composed of three monomeric HDI building blocks:
  • HDI isocyanurate HDI biuret (idealized structural formulas)
  • the weight fraction of isocyanate groups based on the total amount of isocyanate component A is at least 15% by weight.
  • the isocyanate component A may consist essentially of monomeric polyisocyanates or substantially of oligomeric polyisocyanates. But it can also contain oligomeric and monomeric polyisocyanates in any mixing ratios.
  • the isocyanate component A used as starting material in the trimerization is low in monomer (i.e., low in monomeric diisocyanates) and already contains oligomeric polyisocyanates.
  • the terms "low in monomer” and “low in monomeric diisocyanates” are used interchangeably herein with respect to isocyanate component A.
  • the isocyanate component A is a proportion of monomeric diisocyanates in the isocyanate component A of at most 20 wt .-%, in particular at most 15 wt .-% or at most 10 wt .-%, each based on the weight of the isocyanate component A, has.
  • the isocyanate component A preferably has a content monomeric diisocyanates of at most 5 wt .-%, preferably at most 2.0 wt .-%, particularly preferably at most 1.0 wt .-%, each based on the weight of the isocyanate component A, on.
  • Particularly good results are obtained when the isocyanate component A is substantially free of monomeric diisocyanates. Substantially free means that the content of monomeric diisocyanates is at most 0.5% by weight, based on the weight of the isocyanate component A.
  • the isocyanate component A is completely or at least 80, 85, 90, 95, 98, 99 or 99.5 wt .-%, each based on the weight of the isocyanate component A, of oligomeric polyisocyanates.
  • a content of oligomeric polyisocyanates of at least 99 wt .-% is preferred.
  • This content of oligomeric polyisocyanates refers to the isocyanate component A as provided. That the oligomeric polyisocyanates are not formed during the process according to the invention as an intermediate, but are already present at the beginning of the reaction in the isocyanate component used as starting material A.
  • Polyisocyanate compositions which are low in monomer or substantially free of monomeric isocyanates can be obtained by carrying out, after the actual modification reaction, in each case at least one further process step for separating off the unreacted excess monomeric diisocyanates.
  • This monomer removal can be carried out in a particularly practical manner by processes known per se, preferably by thin-layer distillation under high vacuum or by extraction with suitable isocyanate-inert solvents, for example aliphatic or cycloaliphatic hydrocarbons, such as pentane, hexane, heptane, cyclopentane or cyclohexane.
  • the novel isocyanate component A is obtained by modifying monomeric diisocyanates with subsequent removal of unreacted monomers.
  • a low-monomer isocyanate component A contains a monomeric foreign diisocyanate.
  • monomeric foreign diisocyanate means that it differs from the monomeric diisocyanates used to prepare the oligomeric polyisocyanates contained in the isocyanate component A.
  • the isocyanate component A is a proportion of monomeric foreign diisocyanate in the isocyanate component A of at most 20 wt .-%, in particular at most 15 wt .-% or at most 10 wt .-%, each based on the weight of the isocyanate component A, has.
  • the isocyanate component A preferably has a monomeric foreign diisocyanate content of at most 5% by weight, preferably at most 2.0% by weight, particularly preferably at most 1.0% by weight, based in each case on the weight of the isocyanate component A.
  • the isocyanate component A comprises monomeric monoisocyanates or monomeric isocyanates having an isocyanate functionality greater than two, i. with more than two isocyanate groups per molecule.
  • monomeric monoisocyanates or monomeric isocyanates having an isocyanate functionality greater than two has been found to be advantageous for affecting the network density of the coating.
  • the isocyanate component A is a proportion of monomeric monoisocyanates or monomeric isocyanates having an isocyanate functionality greater than two in the isocyanate component A of at most 20 wt .-%, in particular at most 15 wt .-% or at most 10 wt .-% , in each case based on the weight of the isocyanate component A.
  • the isocyanate component A has a content of monomeric monoisocyanates or monomeric isocyanates having an isocyanate functionality greater than two of at most 5 wt .-%, preferably at most 2.0 wt .-%, particularly preferably at most 1.0 wt .-%, each based on the weight of the isocyanate component A, on.
  • no monomeric monoisocyanate or monomeric isocyanate with an isocyanate functionality greater than two is used.
  • the oligomeric polyisocyanates may in particular have uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structures.
  • the oligomeric polyisocyanates have at least one of the following oligomeric structural types or mixtures thereof:
  • an isocyanate component A is used whose Isocyanurat Modellanteil
  • an isocyanate component A is used whose isocyanurate structure content is at least 50 mol%, preferably at least 60 mol%. %, more preferably at least 70 mole%, even more preferably at least 80 mole%, even more preferably at least 90 mole% and most preferably at least 95 mole% based on the sum of the oligomeric structures of the group consisting of uretdione , Isocyanurat-, allophanate, biuret, Iminooxadiazindion- and Oxadiazintrion Modell in the isocyanate component A, is.
  • an isocyanate component A which, in addition to the isocyanurate structure, contains at least one further oligomeric polyisocyanate with uretdione, biuret, allophanate, iminooxadiazinedione and oxadiazinetrione structure and mixtures thereof.
  • the proportions of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure in the isocyanate component A can be e.g. be determined by NM spectroscopy.
  • the 13C-NMR spectroscopy, preferably proton-decoupled, may preferably be used in this case since the stated oligomeric structures give characteristic signals.
  • an oligomeric isocyanate component A to be used in the process according to the invention and / or the oligomeric polyisocyanates contained therein preferably has an (average) NCO Functionality of from 2.0 to 5.0, preferably from 2.3 to 4.5.
  • the isocyanate component A to be used according to the invention has a content of isocyanate groups of 8.0 to 28.0% by weight, preferably from 14.0 to 25.0% by weight, in each case based on the weight of the Isocyanate component A, has.
  • the isocyanate component A according to the invention is defined by containing oligomeric polyisocyanates consisting of monomeric diisocyanates, regardless of the type of modification reaction used, while maintaining a degree of oligomerization of 5 to 45%, preferably 10 to 40% preferably 15 to 30% were obtained.
  • degree of oligomerization is the percentage of isocyanate groups originally present in the starting mixture which is consumed during the manufacturing process to form uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structures.
  • Suitable polyisocyanates for the preparation of the isocyanate component A to be used in the process according to the invention and the monomeric and / or oligomeric polyisocyanates contained therein are any, in various ways, for example by phosgenation in the liquid or gas phase or on a phosgene-free route, such. by thermal urethane cleavage, accessible polyisocyanates. Particularly good results are obtained when the polyisocyanates are monomeric diisocyanates.
  • Preferred monomeric diisocyanates are those which have a molecular weight in the range of 140 to 400 g / mol, with aliphatic, cycloaliphatic, araliphatic and / or aromatically bonded isocyanate groups, such as.
  • BDI 1,4-diisocyanatobutane
  • PDI 1,5-diisocyanatopentane
  • HDI 1,6-diisocyanatohexane
  • 2-methyl-l 5-diisocyanatopentane
  • l 5-diisocyanato-2,2-dimethylpentane
  • 2,2,4- and 2,4,4-trimethyl-1,6-diisocyanatohexane 1,10-diisocyanatodecane
  • 1,3- and 1,4-diisocyanatocyclohexane 1,4-diisocyanato-3,3, 5-trimethylcyclohexane
  • 1,3-diisocyanato-2-methylcyclohexane 1,3-diisocyanato-4-methylcyclohexane
  • Suitable monomeric monoisocyanates which can optionally be used in the isocyanate component A are, for example, n-butyl isocyanate, n-amyl isocyanate, n-hexyl isocyanate, n-heptyl isocyanate, n-octyl isocyanate, undecyl isocyanate, dodecyl isocyanate, tetradecyl isocyanate, cetyl isocyanate, stearyl isocyanate, cyclopentyl isocyanate, cyclohexyl isocyanate, 3- or 4-methylcyclohexyl isocyanate or any mixtures of such monoisocyanates.
  • the isocyanate component A contains at most 30% by weight, in particular at most 20% by weight, at most 15% by weight, at most 10% by weight, at most 5% by weight or at most 1% by weight. %, in each case based on the weight of the isocyanate component A, of aromatic polyisocyanates.
  • aromatic polyisocyanate means a polyisocyanate having at least one aromatic-bonded isocyanate group.
  • aromatically bound isocyanate groups is meant isocyanate groups which are bonded to an aromatic hydrocarbon radical.
  • an isocyanate component A which has exclusively aliphatically and / or cycloaliphatically bonded isocyanate groups.
  • aliphatic or cycloaliphatic bound isocyanate groups is meant isocyanate groups which are bonded to an aliphatic or cycloaliphatic hydrocarbon radical.
  • an isocyanate component A is used which consists of or contains one or more oligomeric polyisocyanates, the one or more oligomeric polyisocyanates having exclusively aliphatically and / or cycloaliphatically bonded isocyanate groups.
  • the isocyanate component A is at least 70, 80, 85, 90, 95, 98 or 99 wt .-%, each based on the weight of the isocyanate component A, of polyisocyanates exclusively aliphatic and / or cycloaliphatic bound Having isocyanate groups. Practical experiments have shown that particularly good results can be achieved with isocyanate components A in which the oligomeric polyisocyanates contained therein have exclusively aliphatically and / or cycloaliphatically bonded isocyanate groups.
  • a polyisocyanate A composition which consists of or contains one or more oligomeric polyisocyanates, wherein the one or more oligomeric polyisocyanates based on 1,4-diisocyanatobutane (BDI), 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), isophorone diisocyanate (IPDI) or 4,4'-diisocyanatodicyclohexylmethane (H 12MDI) or mixtures thereof.
  • BDI 1,4-diisocyanatobutane
  • PDI 1,5-diisocyanatopentane
  • HDI 1,6-diisocyanatohexane
  • IPDI isophorone diisocyanate
  • H 12MDI 4,4'-diisocyanatodicyclohexylmethane
  • isocyanate components A having a viscosity of greater than 500 mPas and less than 200,000 mPas, preferably greater than 1,000 mPas and less than 100,000 mPas, more preferably greater than 1,000 mPas and less than 50,000 mPas and even more preferably greater than 1,000 mPas and less than 25,000 mPas, measured in accordance with DIN EN ISO 3219 at 21 ° C.
  • component B all compounds are suitable which contain at least one ethylenic double bond.
  • This ethylenic double bond is crosslinkable by a radical reaction mechanism with other ethylenic double bonds.
  • This condition preferably fulfills activated double bonds located between the - and the ⁇ -carbon atom adjacent to an activating group.
  • the activating group is preferably a carboxyl or carbonyl group.
  • component B is an acrylate, a methacrylate, the ester of an acrylate or the esters of a methacrylate.
  • Component B preferably contains no isocyanate-reactive groups as defined above in this application.
  • Preferred components B are components B1 with one, components B2 with two and components B3 with three of the ethylenic double bonds described above. Particularly preferred are Bl and / or B2.
  • component B used is a mixture of at least one component B1 and at least one component B2.
  • a mixture of at least one component Bl and at least one component B3 is used as component B.
  • component B is a mixture of at least one component B2 and at least one component B3.
  • component B a mixture of at least one component Bl, at least component B2 and at least one component B3 is used.
  • a mixture of at least one component Bl with at least one component B2 is used.
  • the mass ratio of the components Bl and B2 is preferably between 30: 1 and 1: 30, more preferably between 20: 1 and 1:20, even more preferably between 1:10 and 10: 1, and most preferably between 2: 1 and 1: 2.
  • Preferred components Bl are methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, iso-propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, iso-octyl (meth) acrylate, decyl (meth) acrylate, benzyl ( meth) acrylate, Tetrahydrofurfuryl (meth) acrylate, octadecyl (meth) acrylate, dodecyl (meth) acrylate,
  • Preferred components B2 are vinyl (meth) acrylate, tetraethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylates, 1,6-hexanediol di (meth) acrylate, neopentyl glycol propoxylate di (meth) acrylate, tripropylene glycol di (meth) acrylate, bisphenol A ethoxylated di (meth ) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, hexamethylene glycol di (meth) acrylate, bisphenol A di (meth) acrylate and 4,4'-bis (2- (meth) acryloyloxyethoxy) diphenylpropane ,
  • Preferred components B3 are ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated glycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane ethoxytri (meth (acrylate, trimethylolpropane tri (meth) acrylate, alkoxylated tria (meth) crylate and tris (2- (meth) acryloylethyl) isocyanurate.
  • the trimerization catalyst C may be mixed from one or more types of catalyst but contains at least one catalyst which effects the trimerization of isocyanate groups to isocyanurates or iminooxadiazinediones.
  • Suitable catalysts for the process according to the invention are, for example, simple tertiary amines, such as e.g. Triethylamine, tributylamine, ⁇ , ⁇ -dimethylaniline, N ethylpiperidine or N, N'-dimethylpiperazine.
  • Suitable catalysts are also the tertiary hydroxyalkylamines described in GB 2 221 465, e.g. Triethanolamine, N-methyldiethanolamine, dimethylethanolamine, N-isopropyldiethanolamine and 1- (2-hydroxyethyl) pyrrolidine, or those known from GB 2 222 161, from mixtures of tertiary bicyclic amines, e.g. DBU, with simple low molecular weight aliphatic alcohols existing catalyst systems.
  • simple tertiary amines such as e.g. Triethylamine, tributylamine, ⁇ , ⁇ -dimethylani
  • trimerization catalysts for the process according to the invention is a multiplicity of different metal compounds. Suitable examples are described in DE-A 3,240,613 as catalysts octoates and naphthenates of manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium or lead or mixtures thereof with acetates of lithium, sodium, potassium, Calciu m or barium, the known from DE-A 3 219 608 sodium and potassium salts of linear or branched alkanecarboxylic acids having up to 10 carbon atoms, such as propionic, butyric, valeric, caproic, heptanoic, caprylic, pelargonic, capric and Undecylic acid, the known from EP-A 0 100 129 alkali or alkaline earth metal salts of aliphatic, cycloaliphatic or aromatic mono- and polycarboxylic acids having 2 to 20 C atoms, such as, for example, sodium or potassium benzoate, the al
  • trimerization catalysts for the process according to the invention are, for example, the quaternary ammonium hydroxides known from DE-A 1 667 309, EP-A 0 013 880 and EP-A 0 047 452, such as, for example, US Pat. tetraethylammonium,
  • Trimethylbenzylammonium hydroxide N, N-dimethyl-N-dodecyl-N- (2-hydroxyethyl) ammonium hydroxide, N- (2-hydroxyethyl) -N, N-dimethylN- (2,2'-dihydroxymethylbutyl) -ammonium hydroxide and (2-hydroxyethyl) -l, 4-diazabicyclo [2.2.2] octane hydroxide (monoadduct of ethylene oxide and water on 1,4-diazabicyclo [2.2.2] octane) obtained from EP-A 37 65 or EP -A 10 589 known quaternary hydroxyalkylammonium hydroxides, such as N, N, N-trimethyl-N- (2-hydroxyethyl) -ammonium hydroxide, the trialkylhydroxyalkylammonium carboxylates known from DE-A 2631733, EP-A 0 671 426, EP-A 1 5
  • N, N, N-trimethyl-N-2-hydroxypropylammonium p-tert-butylbenzoate and N, N, N-trimethyl-N-2-hydroxypropylammonium 2-ethylhexanoate those known from EP-A 1 229 016 quaternary Benzylammonium carboxylates, such as N-benzyl-N, N-dimethyl-N-ethylammonium pivalate, N-benzyl-N, N-dimethyl-N-ethylammonium 2-ethylhexanoate, N-benzyl-N, N, N-tributylammonium 2-ethylhexanoate, N, N-dimethyl-N-ethyl-N- (4-methoxybenzyl) ammonium 2-ethylhexanoate or N, N, N-tributyl-N- (4-methoxybenzyl) ammonium pivalate, which are known from
  • N-methyl-N, N, N-trialkylammonium fluorides with C 8 -C 10 -alkyl radicals N, N, N, N-tetra-n-butylammonium fluoride, ⁇ , ⁇ , ⁇ -trimethyl-N-benzylammonium fluoride, tetramethyl phosphonium fluoride .
  • Tetraethylphosphonium fluoride or tetra-n-butylphosphonium fluoride the known from EP-A 0 798 299, EP-A 0 896 009 and EP-A 0 962 455 known quaternary ammonium and Phosphoniumpolyfluoride, such as benzyl-trimethylammoniumhydrogenpolyfluorid, from EP-A 0 668 271 known tetraalkylammonium alkyl carbonates, which are obtainable by reaction of tertiary amines with dialkyl, or betaine structurized quaternary Ammonioalkylcarbonate known from WO 1999/023128 known quaternary ammonium bicarbonates, such as choline bicarbonate, known from EP 0,102,482, from tertiary Amines and alkylating esters of acids of phosphorus available quaternary ammonium salts, such as reaction products of triethylamine, DABCO or N-
  • trimerization catalysts C according to the invention can be found, for example, in J.H. Saunders and K.C. Frisch, Polyurethanes Chemistry and Technology, p. 94 ff (1962) and the literature cited therein.
  • carboxylates and phenolates with metal or ammonium ions are the anions of all aliphatic or cycloaliphatic carboxylic acids, preferably those with mono- or polycarboxylic acids having 1 to 20 C atoms.
  • Suitable metal ions are derived from alkali or alkaline earth metals, manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium, tin, titanium, hafnium or lead.
  • Preferred alkali metals are lithium, sodium and potassium, more preferably sodium and potassium.
  • Preferred alkaline earth metals are magnesium, calcium, strontium and barium.
  • sodium or potassium benzoate the alkali phenolates known from GB-PS 1 391 066 and GB-PS 1 386 399, such as.
  • sodium or potassium phenolate and known from GB 809 809 alkali and alkaline earth oxides, hydroxides, carbonates, alkoxides and - phenolates.
  • the trimerization catalyst C preferably contains a polyether. This is especially preferred when the catalyst contains metal ions.
  • Preferred polyethers are selected from the group consisting of crown ether, diethylene glycol, polyethylene and polypropylene glycols. In the process according to the invention, it has proven to be particularly practical to use a trimerization catalyst B which contains as polyether a polyethylene glycol or a crown ether, more preferably 18-crown-6 or 15-crown-5.
  • the Trimiers istskatalysator B contains a polyethylene glycol having a number average molecular weight of 100 to 1000 g / mol, preferably 300 g / mol to 500 g / mol and in particular 350 g / mol to 450 g / mol.
  • a polyethylene glycol having a number average molecular weight of 100 to 1000 g / mol, preferably 300 g / mol to 500 g / mol and in particular 350 g / mol to 450 g / mol.
  • Very particularly preferred is the combination of the above-described carboxylates and phenolates of alkali or alkaline earth metals with a polyether.
  • Component D is a compound which defines in a molecule at least one isocyanate-reactive group as defined earlier in this application and has at least one ethylenic double bond.
  • the isocyanate-reactive group of component D may also be a uretdione group.
  • Ethylenic double bonds are preferably those which are crosslinkable by a radical reaction mechanism with other ethylenic double bonds. Corresponding activated double bonds are defined in more detail for component B above in this application.
  • Preferred components D are alkoxyalkyl (meth) acrylates having 2 to 12 carbon atoms in the hydroxyalkyl radical. Particular preference is given to 2-hydroxyethyl acrylate, the isomer mixture or 4-hydroxybutyl acrylate formed in the addition of propylene oxide onto acrylic acid.
  • Component E is a compound which has both at least one isocyanate group and at least one ethylenic double bond in one molecule. It can advantageously be obtained by crosslinking a component D described in the preceding section with a monomeric or oligomeric polyisocyanate as described above in this application. This crosslinking is effected by reaction of the isocyanate-reactive groups, in this case in particular a hydroxyl, amino or thiol group, and an isocyanate group of the polyisocyanate. This is preferably catalyzed by a component G as described later in this application. But it is also any other suitable and known in the art catalyst conceivable. Also can be completely dispensed with a catalyst.
  • oligomeric polyisocyanate based on hexamethylene diisocyanate or pentamethylene diisocyanate is combined with a component D selected from the group consisting of 2-hydroxyethyl acrylate, the mixture of isomers resulting from the addition of propylene oxide to acrylic acid and 4-hydroxybutyl acrylate.
  • Further preferred components E are 2-isocyanatoethyl (meth) acrylate, tris (2-hydroxyethyl) isocyanate tri (meth) acrylate, vinyl isocyanate, allyl isocyanate and 3-isopropenyl, - dimethylbenzyl isocyanate
  • the free-radical polymerization of the ethylenically unsaturated compounds present in the reaction mixture can be effected by actinic radiation with sufficient energy content. This is in particular UV-VIS radiation in the wave range between 200 and 500 nm.
  • the polymerizable composition according to the invention need not contain any component F.
  • At least one component F which is suitable as an initiator of a radical polymerization of the ethylenic double bonds present in the polymerizable composition according to the invention.
  • Initiators of this type have the effect, under suitable conditions, in particular on heating or the action of suitable radiation, of forming radicals which react with the ethylenic double bonds to give vinyl radicals, which in turn react in a chain reaction with further ethylenic double bonds.
  • the component F contains at least one radiation-activated initiator F1 or at least one temperature-activated initiator F2. However, it may also contain a mixture of at least one radiation-activated initiator F1 and at least one temperature-activated initiator F2.
  • Preferred radiation-activated initiators Fl are compounds of the unimolecular type (I) and of the bimolecular type (II).
  • Suitable type (I) systems are aromatic ketone compounds, such as. As benzophenones in combination with tertiary amines, alkylbenzophenones, 4,4'-bis (dimethylamino) benzophenone (Michler's ketone), anthrone and halogenated benzophenones or mixtures of the types mentioned.
  • type (II) initiators such as benzoin and its derivatives, benzil ketals, acylphosphine oxides, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bisacylphosphine oxides, phenylglyoxylic acid esters, camphorquinone, ⁇ -aminoalkylphenones, dialkoxyacetophenones and hydroxyalkylphenones.
  • lrgacur ® phenyl ketone, a mixture of benzophenone and (l-hydroxycyclohexyl), Messrs.
  • Ciba, Lampertheim, DE 500, Irgacure ® 819 DW (Phenylbis- (2, 4, 6-trimethylbenzoyl) phosphine oxide, Fa. Ciba, Lampertheim, DE) or Esacure ® KIP EM (oligo- [2-hydroxy-2-methyl-l- [4- (l-methylvinyl) phenyl] -propanone], Fa. Lamberti, Aldizzate, Italy) and bis ( 4-methoxybenzoyl) diethylgerman. It is also possible to use mixtures of these compounds.
  • photoinitiators Care should be taken with the photoinitiators to have sufficient reactivity with the source of radiation used.
  • photoinitiators There are a variety of photoinitiators known in the market. Commercially available photoinitiators cover the wavelength range in the entire UV-VIS spectrum.
  • Preferred temperature-activated initiators F2 are organic azo compounds, organic peroxides and CC-cleaving initiators, such as benzpinacol silyl ethers, N, N-diacyl-hydroxylamines, alkylated N, N-diacyl-hydroxylamines or O-acylated N, N-diacyl-hydroxylamines.
  • inorganic peroxides such as peroxodisulfates.
  • Other suitable thermal free radical initiators are azobisisobutyronitrile (AIBN), dibenzoyl peroxide (DBPO), di-tert-butyl peroxide, dicumyl peroxide (DCP) and peroxybenzoic acid ieri-butyl ester.
  • AIBN azobisisobutyronitrile
  • DBPO dibenzoyl peroxide
  • DCP dicumyl peroxide
  • peroxybenzoic acid ieri-butyl ester peroxybenzoic acid ieri-
  • Component G is a catalyst which catalyzes the crosslinking of an isocyanate group with an isocyanate-reactive group. This is preferably a urethane group, a Thiourethanomia or a urea group.
  • the polymerizable composition preferably contains a component G when a component D with at least one isocyanate-reactive group is present.
  • a component G also in this case is not mandatory, since the crosslinking of isocyanate groups with isocyanate-reactive groups, the trimerization catalysts used C can be accelerated and runs well without catalysis sufficiently fast, if the reaction temperature is high enough.
  • the addition of a component G can be dispensed with in particular if the crosslinking of the isocyanate groups present in the isocyanate component A is carried out at temperatures of at least 60 ° C., preferably at least 120 ° C.
  • Preferred components G are the typical urethanization catalysts, as indicated, for example, in Becker / Braun, Kunststoffhandbuch Volume 7, Polyurethanes, Chapter 3.4.
  • the catalyst used may in particular be a compound selected from the group of tertiary amines, tertiary amine salts, metal salts and organometallic compounds, preferably from the group of tin salts, tin organyls and bismuth organyls.
  • the viscosity of the polymerizable composition according to the invention is preferably adjusted by the use of a component B in a suitable concentration. These act as reactive diluents and fundamentally make it possible to dispense with the use of additional solvents for lowering the viscosity of the isocyanate component A.
  • the polymerizable composition according to the invention may contain all solvents known to those skilled in the art for the dilution of isocyanates.
  • the polymerizable composition according to the invention additionally comprises at least one additive I selected from the group consisting of UV stabilizers, antioxidants, mold release agents, water scavengers, slip additives, defoamers, leveling agents, rheology additives, flame retardants and pigments.
  • additives selected from the group consisting of UV stabilizers, antioxidants, mold release agents, water scavengers, slip additives, defoamers, leveling agents, rheology additives, flame retardants and pigments.
  • auxiliaries and additives are usually present in an amount of at most 10% by weight, preferably at most 5% by weight and more preferably at most 3% by weight, based on the polymerizable composition of the invention.
  • the polymerizable composition comprises at least one organic filler J1 and / or at least one inorganic filler J2.
  • Said fillers can be present in any shape and size known to those skilled in the art. These are in particular particulate fillers having a particle size distribution of a polydispersity of at most 50, preferably at most 30 and very particularly preferably at most 10 lO with an average grain diameter of at most 0.1 mm and preferably at most 0.05 mm.
  • fillers having an aspect ratio of at least 1000 are used.
  • particulate fillers and fillers having an aspect ratio of at least 1000 in a weight ratio of 1: 100 to 100: 1 are preferably used 1:80 to 50: 1 and more preferably 1:50 and 20: 1.
  • the fillers are predominantly inorganic in nature, preferably based on (semi) metal salts and (semi) metal oxides.
  • Preferred organic fillers J1 are wood, cellulose, paper, cardboard, tissue chips, cork, wheat chaff, polydextrose, cellulose, aramids, polyethylene, carbon, carbon nanotubes, polyesters, nylon, plexiglas, flax, hemp and sisal.
  • Preferred inorganic fillers J 2 are AlOH 3 , CaCO 3 , silicon dioxide, magnesium carbonate, TiO 2 , ZnS, minerals containing silicates, sulfates, carbonates and the like, such as magnesite, barite, mica, dolomite, kaolin, talc, clay minerals, and carbon black, graphite, boron nitride , Glass, basalt, boron, ceramics and silicic acid.
  • the polymerizable composition according to the invention is preferably suitable for producing a highly filled composite material.
  • "Highly filled” means that filler contents of up to 50% by volume to 80% by volume, preferably 60% to 80% by volume, can be achieved.
  • the filler is a fibrous filler J3.
  • the fibrous filler J3 may be made of any of the inorganic fibers, organic fibers, natural fibers or mixtures thereof known to those skilled in the art.
  • the fact that a fibrous filler is made of one or a mixture of different materials does not exclude that it contains other substances, e.g. serve as sizing.
  • Preferred inorganic fibers are glass fibers, basalt fibers, boron fibers, ceramic fibers, whiskers, silica fibers and metallic reinforcing fibers.
  • Preferred organic fibers are aramid fibers, carbon fibers, carbon nanorhorm, polyester fibers, nylon fibers and Plexiglas fibers.
  • Preferred natural fibers are flax fibers, hemp fibers, wood fibers, cellulose fibers and sisal fibers.
  • fibrous fillers J3 are all fibers whose aspect ratio is greater than 1000, preferably greater than 5000, more preferably greater than 10,000, and most preferably greater than 50,000.
  • the aspect ratio is defined as the length of the fiber divided by the diameter.
  • the fibrous fillers J3 preferably have a minimum length of 1 m, more preferably 50 m and most preferably 100 m.
  • the fibrous filler J3 is selected from the group consisting of glass fibers, basalt fibers, carbon fibers and mixtures thereof.
  • the fibers can be present individually, but they can also be woven or knitted into mats or tiles in any shape known to those skilled in the art.
  • the individual fibers preferably have a diameter of less than 0.1 mm, more preferably less than 0.05 mm, and even more preferably less than 0.03 mm.
  • the sizing agent is a thin polymeric film which often contains reactive groups and improves wetting with the resin or interfacial bonding between the matrix and the fiber.
  • the fibers used have a low water content.
  • water may be absorbed on the surface of the fibers and later undergo undesirable side reactions with the isocyanate groups. It has therefore proved to be advantageous if the water content of the fibers is less than 5% by weight, preferably less than 3% by weight, more preferably less than 2% by weight, in particular less than 1% by weight and most preferably less than zero , 5 wt .-% based on the total weight of fibers.
  • the fibers have no moisture content. This can optionally be achieved by drying the fibers. The moisture content of the fibers can be determined by gravimetric measurement before and after drying, preferably at 120 ° C for 2 hours.
  • At least 50%, more preferably at least 70%, even more preferably at least 80% and most preferably at least 90% of the fibers are oriented parallel to one another. Fibers are oriented parallel to each other when the angle between them is less than 15 degrees, preferably less than 10 degrees and even more preferably less than 5 degrees, over a length of 0.5 m, preferably 1 m, and more preferably 2 m. Most preferably, the angle between at least 90% of the fibers over a length of 2 m is at most 10 degrees and even more preferably at most 5 degrees.
  • the person skilled in the art is aware that the above-mentioned information makes sense only when using individual fibers. As far as the fibers used are in the form of mats or nonwovens, it follows from the arrangement of the fibers in these materials that these conditions can not be met.
  • the ratio between the reactive resin, the fibrous filler J3 and all other constituents of the composite is preferably chosen such that the fiber content is at least 30% by volume, preferably 45% by volume, more preferably at least 50% by volume, even more preferably at least 60% by volume and most preferably at least 65% by volume of the cured composite material.
  • the present invention relates to the use of at least one component selected from the group consisting of components B, D and E for the preparation of a polymerizable composition having a ratio of isocyanate groups to isocyanate-reactive groups of at least 2.0 to 1.0 which contains an isocyanate component A and a filler J and is polymerizable both by free-radical polymerization and by crosslinking of isocyanate groups with one another.
  • At least one component B is used as defined above in this application.
  • the present invention relates to a process for the preparation of a polymer comprising the steps of a) providing the reactive resin described above in this application; b) providing at least one filler J described above in this application; c) wetting the filler J with the reactive resin mixture;
  • viscosity is first built up by method step d) before the final curing of the polymer takes place in method step e).
  • the two process steps do not have to follow one another directly in time. It is particularly preferred that between the two process steps, a further step takes place, in which the product of process step d) is transformed.
  • the polymerizable composition according to the invention does not contain a temperature-activated initiator F2.
  • a temperature-activated initiator F2 is used in a simultaneous implementation of process steps d) and e), since in this case the temperature increase required for the crosslinking of the isocyanate groups in process step e) also cross-links the ethylenic double bonds in process step d). causes.
  • the method according to the invention comprises a further process step f) in which the isocyanate-reactive group of component D is crosslinked with an isocyanate group of isocyanate component A or a reaction product of isocyanate component A.
  • Said process step f) can be carried out before process step d), it can be carried out between process steps d) and e), it can be carried out in parallel to process step d) or e) or else after process steps d) and e). In any case, it will be carried out after process step c).
  • the process step f) is preferably carried out in parallel to the process step e), since there is already an increase in temperature, which also causes the reaction of components A and D.
  • the filler J in process step c) J is wetted with the reactive resin mixture from process step a). Good wetting is necessary to ensure transfer of force between the filler and the matrix in the finished part and include inclusions, e.g. Air, avoid.
  • the wetting step can be carried out both continuously and discontinuously; preferred is a continuous process.
  • all known methods are suitable which allow a good wetting of the filler with the resin matrix. Called here without claim to Completeness Doctor blade, dip, injection box, spray method, resin injection method, resin infusion method with vacuum or pressure, applicator roll and hand lamination method.
  • the dipping bath is used according to a particularly preferred embodiment of the invention.
  • the dry fibers are drawn through an open resin bath, with the deflection of the fibers via guide diaphragms in and out of the resin bath (bath process).
  • the fibers can also be drawn straight through the impregnating device without deflection (pull-through method).
  • the injection box is used in the case of a fibrous filler J.
  • the fibers are drawn without deflection in the impregnating unit, which already has the shape of the later profile.
  • the reactive resin mixture is pumped into the box, preferably transversely to the fiber direction.
  • the process according to the invention is preferably a pultrusion process in which the process step c) is carried out in a dipping bath or in an injection box as described above and the process step e) is carried out without further intermediary process steps such that the wetted fibers of the Filler pulled by a heated tool whose profile corresponds to the profile of the workpiece to be produced.
  • temperature-activated initiators are preferably used.
  • the viscosity of the reactive resin is preferably adjusted to be between 10 mPas and 10,000 mPas, preferably between 10 and 5,000 mPas and even more preferably between 10 and 2,000 mPas.
  • the crosslinking of the ethylenic double bonds contained in the polymerizable composition according to the invention is carried out by a free-radical polymerization.
  • This polymerization reaction when a radiation-activated initiator Fl is present, according to the invention by the use of radiation, which is suitable for its activation, initiated.
  • a temperature-activated initiator F2 is present in the polymerizable composition used, crosslinking of the ethylenic double bonds is initiated by heating the polymerizable composition to the required temperature.
  • the use of sufficiently high-energy radiation, as defined above in this application is sufficient for initiation of the free-radical polymerization in process step d), irrespective of the presence of initiators F1 or F1.
  • the "crosslinking" of the isocyanate component A in process step e) is a process in which the isocyanate groups contained therein together with or forming at least one structure selected from the group consisting of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and oxadiazinetrione structures
  • the isocyanate groups originally present in the isocyanate component A are consumed by forming the abovementioned groups, and the monomeric and oligomeric polyisocyanates contained in the isocyanate component A are combined to form a polymer network.
  • the crosslinking reaction results in at most 20%, preferably at most 10%, particularly preferably at most 5%, very particularly preferably at most 2% and in particular at most 1 % of the total nitrogen content of the isocyanate component A in urethane and / or allophanate groups.
  • the cured isocyanate component A is not completely free of urethane and allophanate groups. It therefore preferably contains at least 0.1% of urethane and / or allophanate groups, based on the total nitrogen content, taking into account the upper limits defined in the preceding paragraph.
  • the crosslinking of the isocyanate groups present in the polymerizable composition according to the invention predominantly by cyclotrimerization of at least 50%, preferably at least 60%, more preferably at least 70%, especially at least 80% and most preferably 90% of present in the isocyanate component A.
  • free isocyanate groups to Isocyanurat Modelltechniken takes place.
  • corresponding proportions of the nitrogen originally contained in the isocyanate component A are bound in isocyanurate structures.
  • the abovementioned temperatures are maintained in process step c) until at least 50%, preferably at least 75% and even more preferably at least 90% of the free isocyanate groups present in the isocyanate component A at the beginning of process step b) are consumed.
  • the percentage of isocyanate groups still present can be determined by comparing the content of isocyanate groups in% by weight in the isocyanate component A present at the beginning of process step b with the content of isocyanate groups in% by weight in the reaction product, for example be determined by the aforementioned comparison of the intensity of the isocyanate at about 2270 cm-1 by means of I spectroscopy.
  • process step e) of course depends on the geometry of the workpiece to be produced, in particular the ratio of surface area and volume, since in the core of the resulting workpiece, the required temperature for the required minimum period must be achieved. The person skilled in the art can determine these parameters by simple preliminary tests.
  • crosslinking of the abovementioned proportions of free isocyanate groups is achieved if the abovementioned temperatures are kept for 1 minute to 4 hours. Particularly preferred is a period between 1 minute and 15 minutes at temperatures between 180 ° C and 220 ° C or a period of 5 minutes to 120 minutes at a temperature of 120 ° C.
  • process step e) is preferably carried out in a mold heated to the above temperatures and having a recess in the shape of the profile to be produced, through which the fibrous filler J3 wetted with the reactive resin passes becomes.
  • the present invention relates to a composite obtainable by the method described above.
  • the composite is preferably present as a shaped body.
  • the molded article may preferably be obtained by casting using suitable molds.
  • the composite material is present as an open or closed hollow body.
  • a "molded article” is defined as having an edge length of at least 0.5 mm, preferably at least 1 mm in at least one of the three dimensions and a dimension of at least 2 cm, preferably at least 5 cm, in at least one of the other two dimensions. It preferably has an edge length of at least 2 cm in all three dimensions.
  • the composite of the present invention is the product of a pultrusion process, i. it contains a fibrous filler J and has a profile.
  • a "profile” as understood in the present application is a body that has substantially the same cross-section over its entire length
  • the "profile” is preferably at least 2 meters, more preferably at least 10 meters, and even more preferably at least 50 meters long , It is expressly intended that the profile can be divided into several segments after the curing of the reactive resin. The previously given lengths then refer to a hypothetical undivided product, as it emerges from the process and without any further division.
  • a profile has "the same cross-section over its entire length, even if these sections are short in relation to the overall length of the profile differing cross-section are short if their total length is less than 10%, preferably less than 5%, and most preferably less than 1% of the total length of the hypothetical undivided profile deviates from the desired value.
  • RT room temperature
  • phase transitions were determined by means of DSC (Differential Scanning Calorimetry) using a Mettler DSC 12E (Mettler Toledo GmbH, Giessen, Germany) in accordance with DIN EN 61006. Calibration was performed by the temperature of the indium-lead melted on-set. 10 mg of substance were weighed into normal capsules. The measurement was carried out by three heats from -50 ° C to +200 ° C at a heating rate of 20 K / min with subsequent cooling at a cooling rate of 320 K / min. The cooling was carried out by liquid nitrogen. Nitrogen was used as purge gas. The given values are based on the evaluation of the 2nd heating curve. The glass transition temperature T g was obtained from the temperature at half the height of a glass transition stage.
  • the infrared spectra were measured on a Bruker FT-IR spectrometer equipped with an ATR unit.
  • Polyisocyanate AI HDI trimer (NCO functionality> 3) with an NCO content of 23.0 wt .-% of the company. Covestro AG. The viscosity is about 1200 mPa-s at 23 ° C (DIN EN ISO 3219 / A.3).
  • Polyisocyanate A2 PDI trimer (NCO functionality> 3) with an NCO content of 21.5% by weight from Covestro AG.
  • the viscosity is about 9500 mPa-s at 23 ° C (DIN EN ISO 3219 / A.3).
  • Hydroxypropyl methacrylate (HPMA) was obtained with a purity of 98 wt .-% of the Fa. GmbH GmbH.
  • IBOMA Isobornyl methacrylate
  • Trigonox "C peroxybenzoic acid, iperi-butyl ester
  • Potassium acetate was obtained with a purity of> 99 wt .-% of the company. ACROS.
  • Polyethylene glycol (PEG) 400 was obtained with a purity of> 99 wt .-% of the company. ACROS.
  • the mold release agent INT-1940 RTM was manufactured by Axel Plastics Research Laboratories, INC. and is, according to the data sheet, a mixture of organic fatty acids and esters.
  • the 910A-10P short glass fiber was supplied by Owens Corning and was present in about 4.5 mm long bundles. The diameter of the individual fibers was 0.01 mm.
  • the continuous glass fiber was a standard size glass fiber bundle for UP, VE and epoxy resin type 4800 Tex Advantex 399 'from 3B-fiberglass.
  • the continuous glass fibers have a diameter of 24 microns according to the data sheet, are boron-free and consist of E-CR glass.
  • the tensile modulus is 81-83 GPa, the tensile strength is 2200-2400 MPa and the density is 2.62 g / cm 3 .
  • Potassium acetate (5.0 g) was stirred in the PEG 400 (95.0 g) at r.t. until everything was dissolved. There was thus obtained a 5 wt .-% solution of potassium acetate in PEG 400 and used without further treatment as a catalyst.
  • the isocyanate composition was first prepared by mixing the corresponding isocyanate components (AI or A2) with a corresponding amount of catalyst K, initiator and acrylate at 23 ° C. in a Speedmixer DAC 150.1 FVZ from Hauschild for 60-300 ° to prepare the polyisocyanurate composites Seconds at 2750 min-1. Subsequently, the isocyanate composition was first one tenth of the amount of short glass fiber added. The entire mass was mixed in a Speedmixer DAC 150.1 FVZ from Hauschild for 60 to 300 seconds at 2750 min-1, whereby the short-glass fiber bundles exfoliate and all forms a pulpy mass. Now add the remaining amount of short glass fiber and mix the mass again for about 60 seconds at 2750 min-1 in the Speedmixer.
  • the mixture was then placed in a mold (metal lid, about 6 cm in diameter and about 1 cm high) and cured in the oven.
  • polyisocyanate AI (16.13 g) was treated with initiator I (0.064 g), Catalyst K (0.595 g) and HPMA (1.60 g) according to the above mentioned.
  • the mixture after production had a viscosity of 929 mPas.
  • polyisocyanate AI (16.13 g) was treated with initiator I (0.064 g), Catalyst K (0.595 g) and HPMA (1.60 g) according to the above mentioned.
  • initiator I 0.064 g
  • Catalyst K 0.595 g
  • HPMA 1.3 g
  • polyisocyanate AI (2.2 g) was treated with initiator I (0.12 g), Catalyst K (12.3 g), HPMA (0.29 g), HDDA (3.08 g), IBOMA (3 , 08 g) according to the above-mentioned preparation instructions for reaction mixtures.
  • the mixture had a viscosity of 611 mPas after preparation. After curing for 5 minutes at 220 ° C, a material having a T G of 102 ° C was obtained.
  • polyisocyanate A2 (29.7 g) was treated with initiator I (0.16 g), Catalyst K (1.23 g), HPMA (0.41 g), HDDA (4.21 g), IBOMA (4 , 21 g) according to the above-mentioned preparation instructions for reaction mixtures.
  • the mixture after production had a viscosity of 1560 mPas. After curing for 10 minutes at 200 ° C, a material having a T G of 126 ° C was obtained. Preparation of the resin mixture for pultrusion
  • the isocyanate was placed in an open container at room temperature and stirred using a Dispermat ® and dissolver disc at 100 revolutions per minute (rpm). Subsequently, first the acrylate, and then the mold release agent was added and the stirring speed increased to 300 rpm and stirred for a further 5 min, so that a homogeneous mixture was formed. Now, the catalyst solution and the initiator were metered in and the resin mixture was stirred for a further 5 minutes at 300 rpm. This reactive resin mixture was used without further treatment for pultrusion.
  • polyisocyanate AI (3.22 kg) was treated with initiator I (12 g), Catalyst K (123 g), HPMA (29 g), HDDA (308 g), IBOMA (308 g), and INT-1940 RTM mold release (103 g) according to the above Preparation procedure for resin mixture for pultrusion treated.
  • the mixture had a viscosity of 611 mPas after preparation.
  • the glass fiber bundles (126 rovings) were oriented and passed through an injection box, which was firmly connected to the tool and was filled with the resin mixture via a window opening at the top of the box.
  • the glass fibers so impregnated with resin were drawn directly into the heated tool.
  • the pulling speed was 0.3 m / min and 0.5 m / min.
  • the deduction forces were approx. 0.7 t. In each case 5 m profile were produced at both speeds.
  • the surface of the profile was homogeneous and dull, and the glass content was 80 mass%.
  • polyisocyanate A2 (2.97 kg) was treated with initiator I (16 g), catalyst K (123 g), HPMA (41 g), HDDA (421 g), IBOMA (421 g) and mold release agent INT-1940 RTM (102 g) according to the above Preparation procedure for resin mixture for pultrusion treated.
  • the glass fiber bundles (126 rovings) were oriented and passed through an injection box, which was firmly connected to the tool and was filled with the resin mixture via a window opening at the top of the box.
  • the glass fibers so impregnated with resin were drawn directly into the heated tool.
  • the pulling speed was 0.3 m / min and 0.5 m / min.
  • the deduction forces were approx. 0.7 t. In each case 5 m profile were produced at both speeds.
  • the surface of the profile was homogeneous and dull, and the glass content was 80 mass%. Comparative Example 7
  • polyisocyanate AI 93.5 g
  • Catalyst K 4.0 g
  • the mixture after production had a viscosity of 2180 mPas.
  • polyisocyanate A2 93.5 g
  • catalyst K 4.0 g
  • the mixture had a viscosity of more than 10,000 mPas after preparation.
  • polyisocyanate A2 (4.39 kg) was treated with catalyst K (188 g), and mold release agent INT-1940 RTM (117 g) according to the above-mentioned preparation for resin mixture for pultrusion.
  • the mixture after production had a comparatively high viscosity of more than 10,000 mPas. After curing for 3 minutes at 220 ° C, a material having a T G of 126 ° C was obtained.
  • the glass fiber bundles (126 rovings) were oriented and passed through an injection box, which was firmly connected to the tool and was filled with the resin mixture via a window opening at the top of the box.
  • the treated glass fibers were drawn directly into the heated tool.
  • the pulling speed was 0.2 m / min and 0.3 m / min.
  • the deduction forces were between approx. 0.4 and 0.9 t.
  • the glass fibers came out of the tool almost unchanged because the resin could not penetrate the fibers due to the high viscosity.
  • Exemplary embodiments 1, 3 and 4 show that addition of double bond-containing (acrylate-based) monomers to polyisocyanate-based reaction mixtures leads to significantly reduced starting viscosities in comparison with pure polyisocyanate-based reaction mixtures (compare Comparative Examples 7 and 8). Such reduced initial viscosities often aid in the use of such formulations as resins for (composite) fiber composites, as they facilitate the wetting of (fibrous) fillers (see below).
  • the working examples 1, 3 and 4 furthermore show that a combination of the addition reaction of isocyanate groups with the radical polymerization of double bond-containing monomers leads in principle to cured plastics having high glass transition temperatures.
  • Embodiment 2 shows that such blends are well suited to embed (fibrous) fillers without sacrificing material properties (e.g., Tg).
  • embodiments 5 and 6 show that such mixtures are well suited to continuously produce fiber composite materials with very high filler contents (> 80% by mass) by means of pultrusion.
  • Comparative Example 9 demonstrates that too high starting viscosities of polymer resins prevent the continuous production of fiber composites.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Toxicology (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die vorliegende Erfindung betrifft polymerisierbare Zusammensetzungen, die Komponenten enthalten, welche sowohl durch Isocyanuratbindungen als auch durch einen radikalischen Reaktionsmechanismus vernetzt werden können. Sie betrifft weiterhin Verfahren, mit denen aus diesen Zusammensetzungen Polymere hergestellt werden können.

Description

Kompositwerkstoffe basierend auf Isocvanuratpolvmeren mit dualer Härtung
Die vorliegende Erfindung betrifft polymerisierbare Zusammensetzungen, die Komponenten enthalten, welche sowohl durch Isocyanuratbindungen als auch durch einen radikalischen Reaktionsmechanismus vernetzt werden können. Sie betrifft weiterhin Verfahren, mit denen aus diesen Zusammensetzungen Polymere hergestellt werden können.
WO 2015/155195 beschreibt ein Kompositmaterial erhältlich aus einem Verstärkungsmaterial und einer Polyurethanzusammensetzung bestehend aus mindestens einem Polyisocyanat (PIC), einer PIC- reaktiven Komponente, bestehend aus mindestens einem Polyol und mindestens einem Methacrylat mit OH-Gruppen, sowie einem Radikalstarter. Die Additionsreaktion zwischen PIC und OH-Gruppen findet simultan mit der radikalisch initiierten Kettenpolymerisation der Methacrylate statt. Nachteilig bei dem verwendeten Verfahren ist neben den kurzen Topf-/Gelzeiten der Polyurethan- Zusammensetzungen die Tatsache, dass bei der Herstellung von Polyurethanen das Mischungsverhältnis der Komponenten, insbesondere des Polyisocyanats und des Polyols durch die Notwendigkeit begrenzt ist, das molare Verhältnis von Isocyanat und mit Isocyanat reaktiven Gruppen nahe bei 1 : 1 zu halten.
WO 2016/087366 beschreibt eine radikalisch polymerisierbare Zusammensetzung bestehend aus einem Polyurethan, welches Doppelbindungen enthält, sowie einem Reaktivverdünner auf Basis von verschiedenen Methacrylaten.
Nachteilig ist hier die zweistufige Reaktionsführung, da zuerst ein Polyurethan ausgehend von einer isocyanathaltigen Komponente und einem Polyol hergestellt, und stark verdünnt werden muss. Die anschließende Vernetzung erfolgt ausschließlich über eine radikalische Polymerisation in einem separaten Schritt.
WO 2016/170057, WO 2016/170059 und WO 2016/170061 beschreiben die Herstellung von Polyisocyanuratkunststoffen durch Polyaddition oligomerer Isocyanate. Die Verwendung oligomerer Isocyanate an Stelle von monomeren Isocyanaten führt dazu, dass bei der Polymerisation weniger Reaktionswärme entsteht und so eine schnelle Polymerisation möglich ist, ohne dass das Reaktionsgemisch dabei überhitzt. Dies ist insbesondere bei der Herstellung von Formkörpern wichtig, da hier die im Inneren des Formkörpers entstehende Wärme nur eingeschränkt über die Oberfläche abgeführt werden kann.
Die in diesen Anmeldungen als Edukte beschriebenen monomerarmen Polyisocyanatzusammensetzungen haben den Nachteil einer hohen relativ hohen Viskosität, die bei manchen Anwendungen hinderlich sein kann. Dies gilt insbesondere für die Herstellung hochgefüllter Verbundwerkstoffe. Die Beimengung monomerer Polyisocyanate als Reaktivverdünner ist wegen des oben beschriebenen Problems der Reaktionswärme nicht wünschenswert. Außerdem sind monomere Polyisocyanate leicht flüchtig und sollten deswegen aus Gründen des Arbeitsschutzes möglichst nicht eingesetzt werden. Alternativ können konventionelle organische Lösungsmittel zur Reduzierung der Viskosität eingesetzt werden. Allerdings sind diese aus Gründen des Umweltschutzes nachteilig, da sie bei oder nach der Polymerisation in die Umgebungsluft abgegeben werden. Außerdem kann die Verwendung von Lösemitteln bei der Herstellung von Formkörpern zu Materialdefekten, z.B. zur Bildung von Hohlräumen, führen, da das Volumen des verdampfenden Lösemittels im Material fehlt.
Der vorliegenden Erfindung lag zunächst die Aufgabe zugrunde, ein Reaktionssystem mit einem dualen Härtungsmechanismus bereitzustellen, bei dem das Mischungsverhältnis der Reaktanden in einem deutlich weiteren Bereich einstellbar ist als bei den bekannten Polyurethan-Systemen.
Weiterhin war es wünschenswert, ein Reaktionssystem für die Herstellung von Polyisocyanuratkunststoffen zu finden, bei dem die Viskosität des Polyisocyanats auch ohne die Verwendung hoher Anteile von monomeren Polyisocyanaten oder organischen Lösemitteln abgesenkt werden kann. Im Idealfall sollten derartige Zusätze vollkommen verzichtbar sein.
Diese Aufgaben werden durch die in den Ansprüchen und in der untenstehenden Beschreibung offenbarten Ausführungsformen der Erfindung gelöst.
In einer ersten Ausführungsform betrifft die vorliegende Erfindung eine polymerisierbare Zusammensetzung zur Herstellung eines Verbundwerkstoffs enthaltend a) ein reaktives Harz mit einem Verhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen von wenigstens 2,0 zu 1,0 enthaltend die Komponenten al) eine Isocyanatkomponente A;
a2) wenigstens einen Trimerisierungskatalysator C; und
a3) wenigstens eine Komponente ausgewählt aus der Gruppe bestehend aus den Komponenten B, D und E, wobei die Komponente B wenigstens eine ethylenische Doppelbindung, aber keine mit Isocyanat reaktive Gruppe aufweist;
die Komponente D in einem Molekül wenigstens eine mit Isocyanat reaktive Gruppe und wenigstens eine ethylenische Doppelbindung aufweist; und
die Komponente E in einem Molekül sowohl wenigstens eine Isocyanatgruppe und wenigstens eine ethylenische Doppelbindung aufweist; und b) wenigstens einen Füllstoff J.
Ein„reaktives Harz" ist ein Gemisch, das durch eine Kombination von radikalischer Polymerisation und Vernetzung der Isocyanatgruppen der Isocyanatkomponente untereinander zu einem festen Werkstoff ausgehärtet werden kann. Synonym wird im Folgenden auch der Begriff „Reaktionsgemisch" verwendet. Das reaktive Harz dient als Matrixmaterial, in das der Füllstoff J eingebettet wird. Die weiter unten definierten Komponenten A bis I sind obligatorische oder optionale Bestandteile des reaktiven Harzes.
Die Isocyanatkomponente A ermöglicht die Ausbildung eines Polymers, das durch die Addition von Isocyanatgruppen entsteht. Hierbei entstehen insbesondere Isocyanuratgruppen. Die Vernetzung der in der Isocyanatkomponente A enthaltenen Isocyanatgruppen verleiht dem Polymer den Hauptanteil seiner mechanischen und chemischen Stabilität. Vermittelt wird die Vernetzung der Isocyanatgruppen durch den Trimerisierungskatalysator C.
Die Komponenten B, D und E sind jeweils durch die Anwesenheit einer ethylenischen Doppelbindung gekennzeichnet. Diese Doppelbindung ist Voraussetzu ng dafür, dass in der polymerisierbaren Zusammensetzung neben der Polyaddition der Isocyanatgruppen ein zweiter Vernetzungsmechanismus zur Verfügung steht. Hierbei hat der Einsatz einzelner dieser Komponenten oder bestimmter Kombinationen von Komponenten spezifische Vorteile:
Die Komponente B setzt die Viskosität der polymerisierbaren Zusammensetzung herab. Sie kann so vorteilhaft als Reaktivverdünner dienen, d.h. sie wird nach Abschluss des Polymerisationsprozesses Teil des Polymers. Sie kann auch dem schnellen Aufbau von Viskosität dienen, wenn zunächst, vorzugsweise durch ionisierende Strahlung, eine radikalische Polymerisation der ethylenischen Doppelbindungen eingeleitet wird und erst im Anschluss die Vernetzung der Isocyanatgruppen durchgeführt wird.
Ist in der polymerisierbaren Zusammensetzung nur eine Komponente B ohne Komponenten D oder E anwesend, entstehen durch die zwei unterschiedlichen Vernetzungsmechanismen zwei unterschiedliche Polymernetzwerke. Das kann im fertigen Produkt zu Trübungen und unter Umständen zu schlechteren mechanischen Eigenschaften führen.
Wenn dieses vermieden werden soll, wird die Komponente B kombiniert mit einer Komponente D oder E eingesetzt. Sie kann auch kombiniert mit beiden Komponenten eingesetzt werden. Die Komponenten D und E vermitteln die Quervernetzung des durch radikalische Polymerisation entstehenden Netzwerks der Komponente B mit dem durch Polyaddition der Isocyanatgruppen entstehenden Polymer der Isocyanatkomponente A. Sie sorgen so dafür, dass im Polymer keine zwei getrennten Polymernetzwerke der Komponenten A und B vorliegen, sondern ein einheitliches Polymernetzwerk.
In Abwesenheit einer Komponente B ermöglichen die Komponenten D und F den Aufbau eines Polymernetzwerks durch radikalische Polymerisation. Auf diese Weise kann die vollständige Aushärtung der erfindungsgemäßen polymerisierbaren Zusammensetzung zeitlich getrennt in zwei unterschiedlichen Verfahrensschritten erfolgen. Beispielsweise kann in der polymerisierbaren Zusammensetzung zunächst durch die radikalische Vernetzung der in den Komponenten D und E zunächst Viskosität aufgebaut werden, die dem entstehenden Produkt bereits ein gewisses Maß an Formstabilität verleiht, ohne aber die weitere Bearbeitung z.B. durch Biegen Pressen oder Prägen unmöglich zu machen. Erst die anschließend erfolgende Vernetzung der Isocyanatgruppen untereinander führt zu einer vollständigen Aushärtung, die dem Produkt seine endgültige Stabilität verleiht. Es entsteht hier ein einheitliches Polymernetzwerk, da die Komponenten B und D immer auch mit den Isocyanatgruppen der Isocyanatkomponente A reagieren.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält die polymerisierbare Zusammensetzung wenigstens eine der beiden Komponenten D und E, aber keine Komponente B.
In einer anderen bevorzugten Ausführungsform enthält die erfindungsgemäße Zusammensetzung eine Komponente B und wenigstens eine der beiden Komponenten D und E. Besonders bevorzugt ist die Kombination von B und D.
In einer bevorzugten Ausführungsform enthält die erfindungsgemäße polymerisierbare Zusammensetzung die Isocyanatkomponente A und die Komponente B vorzugsweise in einem Mengenverhältnis, das die Viskosität der unverdünnten Isocyanatkomponente auf höchstens 75 %, stärker bevorzugt höchstens 50 %, noch stärker bevorzugt höchstens 33 % der Viskosität einer unverdünnten Isocyanatkomponente A absenkt. Die Anwesenheit wenigstens einer Komponente D oder E ist in dieser Ausführungsform bevorzugt, aber nicht obligatorisch.
In einer bevorzugten Ausführungsform ist das Mengenverhältnis der Komponente A zur Gesamtmenge der Komponenten B, D und E so bemessen, dass die polymerisierbare Zusammensetzung eine Viskosität von höchstens 100.000 mPas, stärker bevorzugt von höchsten 10.000 mPas, noch stärker bevorzugt von höchstens 5.000 mPas und am stärksten bevorzugt höchstens 2.000 mPas aufweist.
In einer bevorzugten Ausführungsform ist das Mengenverhältnis der Komponente A zur Gesamtmenge der Komponenten B, D und E so bemessen, dass die polymerisierbare Zusammensetzung eine Viskosität von höchstens 100.000 mPas, stärker bevorzugt von höchsten 10.000 mPas, noch stärker bevorzugt von höchstens 5.000 mPas und am stärksten bevorzugt höchstens 2.000 mPas aufweist.
Die obigen Bedingungen werden insbesondere erfüllt, wenn das Massenverhältnis der Komponenten A und B im Bereich von 95 zu 5 bis 30 zu 70, bevorzugt 95 zu 5 bis 50 zu 50 und stärker bevorzugt 92,5 zu 7,5 bis 70 zu 30 liegt.
Das molare Verhältnis von Isocyanatgruppen und ethylenischen Doppelbindungen liegt vorzugsweise in einem Bereich von 1 zu 10 bis 10 zu 1, stärker bevorzugt 1 zu 5 bis 8 zu 1 und noch stärker bevorzugt 1 zu 3 bis 5 zu 1) liegt. Das molekulare Verhältnis dieser funktionellen Gruppen lässt sich durch die Integration der Signale einer Probe im 13C-NM -Spektrum ermitteln.
Das durch Polymerisation des erfindungsgemäßen reaktiven Harzes erhältliche Polymer erhält seine vorteilhaften Eigenschaften ganz wesentlich durch Vernetzung der Isocyanatgruppen untereinander. Deswegen ist es erfindungswesentlich, dass das Verhältnis von Isocyanatgruppen zur Gesamtmenge der mit Isocyanat reaktiven im reaktiven Harz so beschränkt ist, dass ein deutlicher molarer Überschuss an Isocyanatgruppen vorliegt. Das molare Verhältnis von Isocyanatgruppen der Isocyanatkomponente zu mit Isocyanat reaktiven Gruppen im reaktiven Harz liegt deswegen wenigstens bei 2,0 zu 1,0, bevorzugt wenigstens bei 3,0 zu 1,0, stärker bevorzugt bei wenigstens 4,0 zu 1,0 und noch stärker bevorzugt wenigstens bei 8,0 zu 1,0.„Mit Isocyanat reaktive Gruppen" sind im Sinne der vorliegenden Anmeldung Hydroxyl-, Thiol-, Carboxyl- und Aminogruppen, Amide, Urethane, Säureanhydride und Epoxide. Die in der polymerisierbaren Zusammensetzung enthaltenen Isocyanatgruppen sind in den Komponenten A und - wenn anwesend - E enthalten. Die mit Isocyanat reaktiven Gruppen können grundsätzlich in allen anderen Komponenten mit Ausnahme der Komponente B enthalten sein.
Im Vergleich zu den aus WO 2015/155195 bekannten Polyurethanharzen mit zusätzlicher Strahlenhärtung ermöglicht die Verwendung des erfindungsgemäßen reaktiven Harzes eine größeren Flexibilität bei der Auswahl der Mengenanteile der Einzelkomponenten. Wenn ein Polyurethan oder ein Polyharnstoff erhalten werden soll, so muss das molare Verhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen nach Möglichkeit nahe bei 1 : 1 liegen. Gemäß der vorliegenden Erfindung liegt aber ein deutlicher Überschuss an Isocyanatgruppen vor, der deswegen nicht nur akzeptabel, sondern sogar erwünscht ist, weil das entstehende Polymer seine vorteilhaften Eigenschaften ganz wesentlich der Reaktion von Isocyanatgruppen mit anderen Isocyanatgruppen verdankt. Die so entstehenden Strukturen, insbesondere die Isocyanuratgruppen, führen zu polymeren mit besonderer Härte und besonderer Beständigkeit gegenüber Chemikalien. Auch wirken Isocyanuratgruppen bereits intrinsisch flammhemmend, so dass für viele Anwendungen der sonst notwendige Zusatz von Flammschutzmitteln entfallen kann. Isocyanatkomponente A
Unter„Isocyanatkomponente A" wird im Sinne der Erfindung die Isocyanatkomponente im reaktiven Harz bezeichnet. Anders ausgedrückt handelt es sich dabei um die Summe aller Verbindungen im reaktiven Harz, die Isocyanat-Gruppen aufweisen mit Ausnahme der Komponente E. Die Isocyanatkomponente A wird also als Edukt im erfindungsgemäßen Verfahren eingesetzt. Wenn hier von „Isocyanatkomponente A" insbesondere von „Bereitstellen der Isocyanatkomponente A" die Rede ist, dann bedeutet dies, dass die Isocyanatkomponente A als Edukt existiert und eingesetzt wird. Die Isocyanatkomponente A enthält vorzugsweise wenigstens ein Polyisocyanat.
Der Begriff„Polyisocyanat", wie hier verwendet, ist eine Sammelbezeichnung für Verbindungen, die im Molekül zwei oder mehrere Isocyanat-Gruppen (hierunter versteht der Fachmann freie Isocyanat- Gruppen der allgemeinen Struktur -N=C=0) enthalten. Einfachste und wichtigste Vertreter dieser Polyisocyanate sind die Diisocyanate. Diese haben die allgemeinen Struktur 0=C=N-R-N=C=0, wobei R üblicherweise für aliphatische, alicyclische und/oder aromatische Reste steht.
Aus Polyisocyanaten lassen sich wegen der Mehrfachfunktionalität (> 2 Isocyanat-Gruppen) eine Vielzahl von Polymeren (z.B. (z. B. Polyurethane, Polyharnstoffe und Polyisocyanurate) und niedermolekularen Verbindungen (z.B. solche mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur) herstellen.
Der Begriff „Polyisocyanate" bezeichnet in dieser Anmeldung monomere und/oder oligomere Polyisocyanate gleichermaßen. Zum Verständnis vieler Aspekte der Erfindung ist es jedoch wichtig, zwischen monomeren Diisocyanaten und oligomeren Polyisocyanaten zu unterscheiden. Wenn in dieser Anmeldung von„oligomeren Polyisocyanaten" die Rede ist, dann sind damit Polyisocyanate gemeint, die aus mindestens zwei monomeren Diisocyanatmolekülen aufgebaut sind, d.h. es sind Verbindungen, die ein Reaktionsprodukt aus mindestens zwei monomeren Diisocyanatmolekülen darstellen oder enthalten.
Die Herstellung oligomerer Polyisocyanate aus monomeren Diisocyanaten wird hier auch als Modifizierung monomerer Diisocyanate bezeichnet. Diese „Modifizierung", wie hier verwendet, bedeutet dabei die Reaktion monomerer Diisocyanate zu oligomeren Polyisocyanaten mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur.
So ist z.B. Hexamethylendiisocyanat (HDI) ein „monomeres Diisocyanat", da es zwei Isocyanat- Gruppen enthält und kein Reaktionsprodukt aus mindestens zwei Polyisocyanatmolekülen darstellt:
HDI
Reaktionsprodukte aus mindestens zwei HDI-Molekülen, die immer noch über mindestens zwei Isocyanat-Gruppen verfügen, sind demgegenüber „oligomere Polyisocyanate" im Sinne der Erfindung. Vertreter solcher„oligomerer Polyisocyanate" sind ausgehend von dem monomeren HDI z.B. das HDI-Isocyanurat und das HDI-Biuret, die jeweils aus drei monomeren HDI Bausteinen aufgebaut sind :
(CH2)6-NCO
(CH2)6NCO
I I H l
OCN-(H2C)6" ^C" ^(CH2)6-NCO ΟΟΝ(ΟΗ2)6 γ ΟΗ2)6ΝΟΟ
O O
HDI- Isocyanurat HDI-Biuret (idealisierte Strukturformeln)
Erfindungsgemäß beträgt der Gewichtsanteil an Isocyanatgruppen bezogen auf die Gesamtmenge der Isocyanatkomponente A wenigstens 15 Gew.-%.
Grundsätzlich sind monomere und oligomere Polyisocyanate zur Verwendung in der erfindungsgemäßen Isocyanatkomponente A gleichermaßen geeignet. Folglich kann die Isocyanatkomponente A im Wesentlichen aus monomeren Polyisocyanaten oder im Wesentlichen aus oligomeren Polyisocyanaten bestehen. Sie kann aber auch oligomere und monomere Polyisocyanate in beliebigen Mischungsverhältnissen enthalten.
In einer bevorzugten Ausführungsform der Erfindung ist die bei der Trimerisierung als Edukt eingesetzte Isocyanatkomponente A monomerarm (d.h. arm an monomeren Diisocyanaten) und enthält bereits oligomere Polyisocyanate. Die Begriffe „monomerarm" und „arm an monomeren Diisocyanaten" werden hier in Bezug auf die Isocyanatkomponente A synonym verwendet.
Besonders praxisgerechte Ergebnisse stellen sich ein, wenn die Isocyanatkomponente A einen Anteil an monomeren Diisocyanaten in der Isocyanatkomponente A von höchstens 20 Gew.-%, insbesondere höchstens 15 Gew.-% oder höchstens 10 Gew.-%, jeweils bezogen auf das Gewicht der Isocyanatkomponente A, aufweist. Vorzugsweise weist die Isocyanatkomponente A einen Gehalt an monomeren Diisocyanaten von höchstens 5 Gew.-%, vorzugsweise höchstens 2,0 Gew.-%, besonders bevorzugt höchstens 1,0 Gew.-%, jeweils bezogen auf das Gewicht der Isocyanatkomponente A, auf. Besonders gute Ergebnisse stellen sich ein, wenn die Isocyanatkomponente A im Wesentlichen frei von monomeren Diisocyanaten ist. Im Wesentlichen frei bedeutet dabei, dass der Gehalt an monomeren Diisocyanaten höchstens 0,5 Gew.-%, bezogen auf das Gewicht der Isocyanatkomponente A, beträgt.
Gemäß einer besonders bevorzugten Ausführungsform der Erfindung besteht die Isocyanatkomponente A vollständig oder zu mindestens 80, 85, 90, 95, 98, 99 oder 99,5 Gew.-%, jeweils bezogen auf das Gewicht der Isocyanatkomponente A, aus oligomeren Polyisocyanaten. Hierbei ist ein Gehalt an oligomeren Polyisocyanaten von wenigstens 99 Gew.-% bevorzugt. Dieser Gehalt an oligomeren Polyisocyanaten bezieht sich auf die Isocyanatkomponente A, wie sie bereitgestellt wird. D.h. die oligomeren Polyisocyanate werden nicht während des erfindungsgemäßen Verfahrens als Zwischenprodukt gebildet, sondern liegen bereits zu Beginn der Reaktion in der als Edukt eingesetzten Isocyanatkomponente A vor.
Polyisocyanatzusammensetzungen, die monomerarm oder im Wesentlichen frei von monomeren Isocyanaten sind, lassen sich erhalten, indem nach der eigentlichen Modifizierungsreaktion in jedem Fall mindestens ein weiterer Verfahrensschritt zur Abtrennung der nicht umgesetzten überschüssigen monomeren Diisocyanate durchgeführt wird. Diese Monomerenabtrennung kann besonders praxisgerecht nach an sich bekannten Verfahren, vorzugsweise durch Dünnschichtdestillation im Hochvakuum oder durch Extraktion mit geeigneten gegenüber Isocyanatgruppen inerten Lösungsmitteln, beispielsweise aliphatischen oder cycloaliphatischen Kohlenwasserstoffen wie Pentan, Hexan, Heptan, Cyclopentan oder Cyclohexan, erfolgen.
Gemäß einer bevorzugten Ausführungsform der Erfindu ng wird die erfindungsgemäße Isocyanatkomponente A durch Modifizierung monomerer Diisocyanate mit anschließender Abtrennung nicht umgesetzter Monomere erhalten.
Gemäß einer besonderen Ausführungsform der Erfindung enthält eine monomerarme Isocyanatkomponente A jedoch ein monomeres Fremddiisocyanat. Hierbei bedeutet„monomeres Fremddiisocyanat", dass es sich von den monomeren Diisocyanaten, die zur Herstellung der in der Isocyanatkomponente A enthaltenen oligomeren Polyisocyanaten verwendet wurden, unterscheidet.
Eine Zugabe von monomerem Fremddiisocyanat kann zur Erzielung spezieller technischer Effekte, wie z.B. einer besonderen Härte vorteilhaft sein. Besonders praxisgerechte Ergebnisse stellen sich ein, wenn die Isocyanatkomponente A einen Anteil an monomeren Fremddiisocyanat in der Isocyanatkomponente A von höchstens 20 Gew.-%, insbesondere höchstens 15 Gew.-% oder höchstens 10 Gew.-%, jeweils bezogen auf das Gewicht der Isocyanatkomponente A, aufweist. Vorzugsweise weist die Isocyanatkomponente A einen Gehalt an monomeren Fremddiisocyanat von höchstens 5 Gew.-%, vorzugsweise höchstens 2,0 Gew.-%, besonders bevorzugt höchstens 1,0 Gew.- %, jeweils bezogen auf das Gewicht der Isocyanatkomponente A, auf.
Gemäß einer weiteren besonderen Ausführungsform des erfindungsgemäßen Verfahrens enthält die Isocyanatkomponente A monomere Monoisocyanate oder monomere Isocyanate mit einer Isocyanatfunktionalität größer zwei, d.h. mit mehr als zwei Isocyanatgruppen pro Molekül. Die Zugabe von monomeren Monoisocyanaten oder monomeren Isocyanaten mit einer Isocyanatfunktionalität größer zwei hat sich als vorteilhaft erwiesen, um die Netzwerkdichte der Beschichtung zu beeinflussen. Besonders praxisgerechte Ergebnisse stellen sich ein, wenn die Isocyanatkomponente A einen Anteil an monomeren Monoisocyanaten oder monomeren Isocyanaten mit einer Isocyanatfunktionalität größer zwei in der Isocyanatkomponente A von höchstens 20 Gew.-%, insbesondere höchstens 15 Gew.-% oder höchstens 10 Gew.-%, jeweils bezogen auf das Gewicht der Isocyanatkomponente A, aufweist. Vorzugsweise weist die Isocyanatkomponente A einen Gehalt an monomeren Monoisocyanaten oder monomeren Isocyanaten mit einer Isocyanatfunktionalität größer zwei von höchstens 5 Gew.-%, vorzugsweise höchstens 2,0 Gew.-%, besonders bevorzugt höchstens 1,0 Gew.-%, jeweils bezogen auf das Gewicht der Isocyanatkomponente A, auf. Vorzugsweise wird bei der erfindungsgemäßen Trimerisierungsreaktion kein monomeres Monoisocyanat oder monomeres Isocyanat mit einer Isocyanatfunktionalität größer zwei mitverwendet.
Die oligomeren Polyisocyanate können erfindungsgemäß insbesondere Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur aufweisen. Gemäß einer Ausführungsform der Erfindung weisen die oligomeren Polyisocyanate mindestens eine der folgenden oligomeren Strukturtypen oder deren Gemische auf:
Uretdion Isocyanurat Allophanat Biuret Iminooxadiazindion Oxadiazintrion
Gemäß einer bevorzugten Ausführungsform der Erfindung wird eine Isocyanatkomponente A eingesetzt, deren Isocyanuratstrukturanteil
Gemäß einer bevorzugten Ausführungsform der Erfindung wird eine Isocyanatkomponente A eingesetzt, deren Isocyanuratstrukturanteil mindestens 50 mol-%, vorzugsweise mindestens 60 mol- %, stärker bevorzugt mindestens 70 mol-%, noch stärker bevorzugt mindestens 80 mol-%, noch stärker bevorzugt mindestens 90 mol-% und besonders bevorzugt mindestens 95 mol-% bezogen auf die Summe der vorliegenden oligomeren Strukturen aus der Gruppe, bestehend aus Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und Oxadiazintrionstruktur in der Isocyanatkomponente A, beträgt.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung wird im erfindungsgemäßen Verfahren eine Isocyanatkomponente A, die neben der Isocyanuratstruktur mindestens ein weiteres oligomeres Polyisocyanat mit Uretdion-, Biuret-, Allophanat-, Iminooxadiazindion- und Oxadiazintrionstruktur und Mischungen davon enthält, eingesetzt.
Die Anteile an Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur in der Isocyanatkomponente A können z.B. durch NM -Spektroskopie bestimmt werden. Bevorzugt lässt sich hierbei die 13C-NMR-Spektroskopie, vorzugsweise protonenentkoppelt, einsetzen, da die genannten oligomeren Strukturen charakteristische Signale liefern.
Unabhängig vom der zugrunde liegenden oligomeren Struktur (Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur) weist eine beim erfindungsgemäßen Verfahren einzusetzende oligomere Isocyanatkomponente A und/oder die darin enthaltenen oligomeren Polyisocyanate vorzugsweise eine (mittlere) NCO-Funktionalität von 2,0 bis 5,0, vorzugsweise von 2,3 bis 4,5 auf.
Besonders praxisgerechte Ergebnisse stellen sich ein, wenn die erfindungsgemäß einzusetzende Isocyanatkomponente A einen Gehalt an Isocyanatgruppen von 8,0 bis 28,0 Gew.-%, vorzugsweise von 14,0 bis 25,0 Gew.-%, jeweils bezogen auf das Gewicht der Isocyanatkomponente A, aufweist.
Herstellverfahren für die in der Isocyanatkomponente A erfindungsgemäß einzusetzenden oligomeren Polyisocyanate mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur sind beispielsweise in J. Prakt. Chem. 336 (1994) 185 - 200, in DE-A 1 670 666, DE-A 1 954 093, DE-A 2 414 413, DE-A 2 452 532, DE-A 2 641 380, DE-A 3 700 209, DE-A 3 900 053 und DE-A 3 928 503 oder in EP-A 0 336 205, EP A 0 339 396 und EP-A 0 798 299 beschrieben.
Gemäß einer zusätzlichen oder alternativen Ausführungsform der Erfindung ist die erfindungsgemäße Isocyanatkomponente A dadurch definiert, dass sie oligomere Polyisocyanate enthält, die aus monomeren Diisocyanaten unabhängig von der Art der verwendeten Modifizierungsreaktion unter Einhaltung eines Oligomerisierungsgrades von 5 bis 45 %, vorzugsweise 10 bis 40 %, besonders bevorzugt 15 bis 30 %, erhalten wurden. Unter "Oligomerisierungsgrad" ist dabei der Prozentsatz der in der Ausgangsmischung ursprünglich vorhandenen Isocyanatgruppen zu verstehen, der während des Herstellprozesses unter Bildung von Uretdion-, Isocyanurat-, Allophanat- , Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstrukturen verbraucht wird.
Geeignete Polyisocyanate zur Herstellung der beim erfindungsgemäßen Verfahren einzusetzenden Isocyanatkomponente A und der darin enthaltenen monomeren und/oder oligomeren Polyisocyanate sind beliebige, auf verschiedene Weise, beispielsweise durch Phosgenierung in der Flüssig- oder Gasphase oder auf phosgenfreien Weg, wie z.B. durch thermische Urethanspaltung, zugängliche Polyisocyanate. Besonders gute Ergebnisse stellen sich ein, wenn es sich bei den Polyisocyanaten um monomere Diisocyanate handelt. Bevorzugte monomere Diisocyanate sind solche, die ein Molekulargewicht im Bereich von 140 bis 400 g/mol aufweisen, mit aliphatisch, cycloaliphatisch, araliphatisch und/oder aromatisch gebundenen Isocyanatgruppen, wie z. B. 1,4- Diisocyanatobutan (BDI), 1,5-Diisocyanatopentan (PDI), 1,6-Diisocyanatohexan (HDI), 2-Methyl-l,5- diisocyanatopentan, l,5-Diisocyanato-2,2-dimethylpentan, 2,2,4- bzw. 2,4,4-Trimethyl-l,6- diisocyanatohexan, 1,10-Diisocyanatodecan, 1,3- und 1,4-Diisocyanatocyclohexan, 1,4-Diisocyanato- 3,3,5-trimethylcyclohexan, l,3-Diisocyanato-2-methylcyclohexan, l,3-Diisocyanato-4- methylcyclohexan, l-lsocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (Isophorondiisocyanat; IPDI), l-lsocyanato-l-methyl-4(3)-isocyanatomethylcyclohexan, 2,4'- und 4,4'- Diisocyanatodicyclohexylmethan(H12MDI), 1,3-und l,4-Bis(isocyanatomethyl)cyclohexan, Bis- (isocyanatomethyl)-norbornan (NBDI), 4,4'-Diisocyanato-3,3'-dimethyldicyclohexylmethan, 4,4'- Diisocyanato-3,3',5,5'-tetramethyl-dicyclohexylmethan, 4,4'-Diisocyanato-l,l'-bi(cyclohexyl), 4,4'- Diisocyanato-3,3'-dimethyl-l,l'-bi(cyclohexyl), 4,4'-Diisocyanato-2,2',5,5'-tetra-methyl-l,l'- bi(cyclohexyl), 1,8-Diisocyanato-p-menthan, 1,3-Diisocyanato-adamantan, l,3-Dimethyl-5,7- diisocyanatoadamantan, 1,3- und l^-Bis-fiso-cyanatomethylJbenzol (Xyxlylendiisocyanat; XDI), 1,3- und l,4-Bis(l-isocyanato-l-methy ethyl)-benzol (TMXDI) und Bis(4-(l-isocyanato-l- methylethyl)phenyl)-carbonat, 2,4- und 2,6-Diisocyanatotoluol (TDI), 2,4'- und 4,4'- Diisocyanatodiphenylmethan (MDI), 1,5-Diisocyanatonaphthalin sowie beliebige Gemische solcher Diisocyanate. Weitere ebenfalls geeignete Diisocyanate finden sich darüber hinaus beispielsweise in Justus Liebigs Annalen der Chemie Band 562 (1949) S. 75 - 136.
Geeignete monomere Monoisocyanate, die in der Isocyanatkomponente A gegebenenfalls eingesetzt werden können, sind beispielsweise n-Butylisocyanat, n-Amylisocyanat, n-Hexylisocyanat, n- Heptylisocyanat, n-Octylisocyanat, Undecylisocyanat, Dodecylisocyanat, Tetradecylisocyanat, Cetylisocyanat, Stearylisocyanat, Cyclopentylisocyanat, Cyclohexylisocyanat, 3- bzw. 4- Methylcyclohexylisocyanat oder beliebige Gemische solcher Monoisocyanate. Als monomeres Isocyanat mit einer Isocyanatfunktionalität größer zwei, das der Isocyanatkomponente A gegebenenfalls zugesetzt werden kann, sei beispielhaft 4-lsocyanatomethyl-l,8-octandiisocyanat (Triisocyanatononan; TIN) genannt. Gemäß einer Ausführungsform der Erfindung enthält die Isocyanatkomponente A höchstens 30 Gew.-%, insbesondere höchstens 20 Gew.-%, höchstens 15 Gew.-%, höchstens 10 Gew.-%, höchstens 5 Gew.-% oder höchstens 1 Gew.-%, jeweils bezogen auf das Gewicht der Isocyanatkomponente A, an aromatischen Polyisocyanaten. Wie hier verwendet, bedeutet„aromatisches Polyisocyanat" ein Polyisocyanat, welches mindestens eine aromatisch gebundene Isocyanatgruppe aufweist.
Unter aromatisch gebundenen Isocyanat-Gruppen werden Isocyanat-Gruppen verstanden, die an einen aromatischen Kohlenwasserstoffrest gebunden sind.
Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine Isocyanatkomponente A eingesetzt, die ausschließlich aliphatisch und/oder cycloaliphatisch gebundene Isocyanat-Gruppen aufweist.
Unter aliphatisch bzw. cycloaliphatisch gebundenen Isocyanat-Gruppen werden Isocyanat-Gruppen verstanden, die an einen aliphatischen bzw. cycloal iphatischen Kohlenwasserstoffrest gebunden sind. Gemäß einer anderen bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine Isocyanatkomponente A eingesetzt, die aus einem oder mehreren oligomeren Polyisocyanaten besteht oder diese enthält, wobei die ein oder mehreren oligomeren Polyisocyanate ausschließlich aliphatisch und/oder cycloaliphatisch gebundene Isocyanat-Gruppen aufweisen.
Gemäß einer weiteren Ausführungsform der Erfindung besteht die Isocyanatkomponente A zu mindestens 70, 80, 85, 90, 95, 98 oder 99 Gew.-%, jeweils bezogen auf das Gewicht der Isocyanatkomponente A, aus Polyisocyanaten, die ausschließlich aliphatisch und/oder cycloaliphatisch gebundene Isocyanat-Gruppen aufweisen. Praktische Versuche haben gezeigt, dass sich besonders gute Ergebnisse mit Isocyanatkomponenten A erzielen lassen, bei denen die darin enthaltenen oligomeren Polyisocyanate ausschließlich aliphatisch und/oder cycloaliphatisch gebundene Isocyanat-Gruppen aufweisen.
Gemäß einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird eine Polyisocyanatzusammensetzung A eingesetzt, die aus einem oder mehreren oligomeren Polyisocyanaten besteht oder diese enthält, wobei die ein oder mehreren oligomeren Polyisocyanate auf Basis von 1,4-Diisocyanatobutan (BDI), 1,5-Diisocyanatopentan (PDI), 1,6-Diisocyanatohexan (HDI), Isophorondiisocyanat (IPDI) oder 4,4'-Diisocyanatodicyclohexylmethan (H 12MDI) oder deren Mischungen aufgebaut sind.
Gemäß einer weiteren Ausführungsform der Erfindung werden beim erfindungsgemäßen Verfahren Isocyanatkomponenten A mit einer Viskosität größer 500 mPas und geringer 200.000 mPas, vorzugsweise größer 1.000 mPas und geringer 100.000 mPas, stärker bevorzugt größer 1.000 mPas und geringer 50.000 mPas und noch stärker bevorzugt größer 1.000 mPas und geringer 25.000 mPas , gemessen nach DIN EN ISO 3219 bei 21 °C, eingesetzt.
Komponente B
Als Komponente B sind alle Verbindungen geeignet, die wenigstens eine ethylenische Doppelbindung enthalten. Diese ethylenische Doppelbindung ist durch einen radikalischen Reaktionsmechanismus mit anderen ethylenischen Doppelbindungen vernetzbar. Diese Bedingung erfüllen vorzugsweise aktivierte Doppelbindungen, die sich zwischen dem - und dem ß-Kohlenstoffatom neben einer aktivierenden Gruppe befinden. Bei der aktivierenden Gruppe handelt es sich vorzugsweise um eine Carboxyl- oder Carbonylgruppe. Ganz besonders bevorzugt ist die Komponente B ein Acrylat, ein Methacrylat, der Ester eines Acrylats oder der Ester eines Methacrylats. Vorzugsweise enthält die Komponente B keine mit Isocyanat reaktiven Gruppen wie weiter oben in dieser Anmeldung definiert.
Bevorzugte Komponenten B sind Komponenten Bl mit einer, Komponenten B2 mit zweien und Komponenten B3 mit dreien der oben beschriebenen ethylenischen Doppelbindungen. Besonders bevorzugt sind Bl und / oder B2.
In einer bevorzugten Ausführungsform wird als Komponente B ein Gemisch aus wenigstens einer Komponente Bl und wenigstens einer Komponente B2 verwendet.
In einer weiteren bevorzugten Ausführungsform wird als Komponente B ein Gemisch aus wenigstens einer Komponente Bl und wenigstens einer Komponente B3 verwendet.
In noch einer weiteren bevorzugten Ausführungsform wird als Komponente B ein Gemisch aus wenigstens einer Komponente B2 und wenigstens einer Komponente B3 verwendet.
In noch einer weiteren bevorzugten Ausführungsform wird als Komponente B ein Gemisch aus wenigstens einer Komponente Bl, wenigstens Komponente B2 und wenigstens einer Komponente B3 verwendet. Bevorzugt wird ein Gemisch aus wenigstens einer Komponente Bl mit wenigstens einer Komponente B2 verwendet. Hierbei liegt das Massenverhältnis der Komponenten Bl und B2 vorzugsweise zwischen 30 : 1 und 1 :30, stärker bevorzugt zwischen 20 : 1 und 1 : 20, noch stärker bevorzugt zwischen 1 : 10 und 10 : 1 und am stärksten bevorzugt zwischen 2 : 1 und 1 : 2.
Bevorzugte Komponenten Bl sind Methyl(meth)acrylat, Ethyl(meth)acrylat , Propyl(meth)acrylat , iso- Propyl(meth)acrylat, Butyl(meth)acrylat, iso-Butyl(meth)acrylat, tert-Butyl(meth)acrylat, Hexyl(meth)acrylat, Heptyl(meth)acrylat, 2-Ethylhexyl(meth)acrylat, Cyclohexyl(meth)acrylat, Octyl(meth)acrylat, iso-Octyl(meth)acrylat, Decyl(meth)acrylat, Benzyl(meth)acrylat, Tetrahydrofurfuryl(meth)acrylat, Octadecyl(meth) acrylat, Dodecyl(meth)acrylat,
Tetradecyl(meth)acrylat, Oleyl(meth)acrylat, 4-Methylphenyl(meth)acrylat, Benzyl(meth)acrylat, Furfuryl(meth)acrylat, Cetyl(meth)acrylat, 2-Phenylethyl(meth)acrylat, lsobornyl(meth)acrylat, Neopentyl(meth)acrylat, Methacrylamid und n-lsopropylmethacrylamid.
Bevorzugte Komponenten B2 sind Vinyl(meth)acrylat, Tetraethylenglycoldi(meth)acrylat, Dipropylenglycoldi(meth)acrylate, l,6-Hexandioldi(meth)acrylat, Neopentylglycolpropoxylatdi(meth)acrylat, Tripropyleneglycoldi(meth)acrylat, Bisphenol A ethoxyliertes Di(meth)acrylat, Ethylenglycoldi(meth)acrylat, Propylenglycoldi(meth)acrylat, Neopentylglycoldi(meth)acrylat, Hexamethylenglycoldi(meth)acrylat, Bisphenol A Di(meth)acrylat und 4,4'-Bis(2-(meth)acryloyloxyethoxy)diphenylpropan.
Bevorzugte Komponenten B3 sind ethoxyliertes Trimethylolpropanetri(meth)acrylat, Propoxyliertes Glyceroltri(meth)acrylat, Pentaerythritoltri(meth)acrylat, Trimethylolpropanethoxytri(meth (acrylat, Trimethylolpropantri(meth)acrylat, Alkoxyliertes Tria(meth)crylat und tris(2- (meth)acryloylethyl)isocyanurat.
Trimerisierungskatalysator C
Der Trimerisierungskatalysator C kann aus einem oder verschiedenen Katalysatortypen gemischt sein, enthält aber mindestens einen Katalysator, der die Trimerisierung von Isocyanatgruppen zu Isocyanuraten oder Iminooxadiazindionen bewirkt.
Geeignete Katalysatoren für das erfindungsgemäße Verfahren sind beispielsweise einfache tertiäre Amine, wie z.B. Triethylamin, Tributylamin, Ν,Ν-Dimethylanilin, N Ethylpiperidin oder N, N'- Dimethylpiperazin. Geeignete Katalysatoren sind auch die in der GB 2 221 465 beschriebenen tertiären Hydroxyalkylamine, wie z.B. Triethanolamin, N Methyl-diethanolamin, Dimethylethanolamin, N-Isopropyldiethanolamin und l-(2-Hydroxyethyl)pyrrolidin, oder die aus der GB 2 222 161 bekannten, aus Gemischen tertiärer bicyclischer Amine, wie z.B. DBU, mit einfachen niedermolekularen aliphatischen Alkoholen bestehenden Katalysatorsysteme.
Als Trimerisierungskatalysatoren für das erfindungsgemäße Verfahren ebenfalls geeignet ist eine Vielzahl unterschiedlicher Metallverbindungen. Geeignet sind beispielsweise die in der DE-A 3 240 613 als Katalysatoren beschriebenen Oktoate und Naphthenate von Mangan, Eisen, Cobalt, Nickel, Kupfer, Zink, Zirkonium, Cer oder Blei oder deren Gemische mit Acetaten von Lithium, Natrium, Kalium, Calciu m oder Barium, die aus DE-A 3 219 608 bekannten Natrium- und Kalium-Salze von linearen oder verzweigten Alkancarbonsäuren mit bis zu 10 C-Atomen, wie z.B. von Propionsäure, Buttersäure, Valeriansäure, Capronsäure, Heptansäure, Caprylsäure, Pelargonsäure, Caprinsäure und Undecylsäure, die aus der EP-A 0 100 129 bekannten Alkali- oder Erdalkalimetallsalze von aliphatischen, cycloaliphatischen oder aromatischen Mono- und Polycarbonsäuren mit 2 bis 20 C- Atomen, wie z.B. Natrium- oder Kaliumbenzoat, die aus der GB-PS 1 391 066 und GB-PS 1 386 399 bekannten Alkaliphenolate, wie z.B. Natrium- oder Kaliumphenolat, die aus der GB 809 809 bekannten Alkali- und Erdalkalioxide, -hydroxide, -carbonate, -alkoholate und -phenolate, Alkalimetallsalze von enolisierbaren Verbindungen sowie Metallsalze schwacher aliphatischer bzw. cycloaliphatischer Carbonsäuren, wie z.B. Natriummethoxid, Natriumacetat, Kaliumacetat, Natriumacetoessigester, Blei-2-ethylhexanoat und Bleinaphthenat, die aus der EP-A 0 056 158 und EP-A 0 056 159 bekannten, mit Kronenethern oder Polyetheralkoholen komplexierten basischen Alkalimetallverbindungen, wie z.B. komplexierte Natrium- oder Kaliumcarboxylate, das aus der EP-A 0 033 581 bekannte Pyrrolidinon-Kaliumsalz, die aus der Anmeldung EP 13196508.9 bekannten ein- oder mehrkernigen Komplexverbindung von Titan, Zirkonium und/oder Hafnium, wie z.B. Zirkoniumtetra-n-butylat, Zirkoniumtetra-2-ethylhexanoat und Zirkoniumtetra-2-ethylhexylat, sowie Zinnverbindungen der in European Polymer Journal, Vol. 16, 147 - 148 (1979) beschriebenen Art, wie z.B. Dibutylzinndichlorid, Diphenylzinndichlorid, Triphenylstannanol, Tributylzinnacetat, Tributylzinnoxid, Zinndioktoat, Dibutyl(dimethoxy)stannan und Tributylzinnimidazolat.
Weitere für das erfindungsgemäße Verfahren geeignete Trimerisierungskatalysatoren sind beispielsweise die aus der DE-A 1 667 309, EP-A 0 013 880 und EP-A 0 047 452 bekannten quaternären Ammoniumhydroxyde, wie z.B. Tetraethylammoniumhydroxid,
Trimethylbenzylammoniumhydroxid, N,N-Dimethyl-N-dodecyl-N-(2-hydroxyäthyl)ammonium- hydroxid, N-(2-Hydroxyäthyl)-N,N-dimethylN-(2,2'-dihydroxymethylbutyl)-ammoniumhydroxid und 1- (2-Hydroxyethyl)-l,4-diazabicyclo-[2.2.2]-octanhydroxid (Monoaddukt von Äthylenoxid und Wasser an l,4-Diazabicyclo-[2.2.2]-octan), die aus EP-A 37 65 oder EP-A 10 589 bekannten quaternären Hydroxyalkylammoniumhydroxide, wie z.B. N,N,N-Trimethyl-N-(2-hydroxyäthyl)-ammonium- hydroxid, die aus DE-A 2631733, EP-A 0 671 426, EP-A 1 599 526 und US 4,789,705 bekannten Trialkylhydroxylalkylammoniumcarboxylate, wie z.B. N,N,N-Trimethyl-N-2-hydroxypropylammonium- p-tert.-butylbenzoat und N,N,N-Trimethyl-N-2-hydroxypropylammonium-2-ethylhexanoat, die aus der EP-A 1 229 016 bekannten quartären Benzylammoniumcarboxylate, wie z.B. N-Benzyl-N,N- dimethyl-N-ethylammoniumpivalat, N-Benzyl-N,N-dimethyl-N-ethylammonium-2-ethylhexanoat, N- Benzyl-N,N,N-tributylammonium-2-ethylhexanoat, N,N-Dimethyl-N-ethyl-N-(4-methoxy- benzyl)ammonium-2-ethylhexanoat oder N,N,N-Tributyl-N-(4-methoxybenzyl)ammonium-pivalat, die aus der WO 2005/087828 bekannten tetrasubstituierten Ammonium-a-hydroxycarboxylate, wie z.B. Tetramethylammonium-Iactat, die aus der EP-A 0 339 396, EP-A 0 379 914 und EP-A 0 443 167 bekannten quartären Ammonium- oder Phosphoniumfluoride, wie z.B. N-Methyl-N,N,N- trialkylammoniumfluoride mit C8-C10-Alkylresten, N,N,N,N-Tetra-n-butylammoniumfluorid, Ν,Ν,Ν- Trimethyl-N-benzylammonium-fluorid, Tetramethyl phosphonium-fluorid,
Tetraethylphosphoniumfluorid oder Tetra-n-butylphosphoniumfluorid, die aus der EP-A 0 798 299, EP-A 0 896 009 und EP-A 0 962 455 bekannten quaternären Ammonium- und Phosphoniumpolyfluoride, wie z.B. Benzyl-trimethylammoniumhydrogenpolyfluorid, die aus der EP-A 0 668 271 bekannten Tetraalkylammoniumalkylcarbonate, die durch Umsetzung tertiärer Amine mit Dialkylcarbonaten erhältlich sind, oder betainstrukturierte Quartär-Ammonioalkylcarbonate, die aus der WO 1999/023128 bekannten quaternären Ammoniumhydrogencarbonate, wie z.B. Cholin- bicarbonat, die aus der EP 0 102 482 bekannten, aus tertiären Aminen und alkylierend wirkenden Estern von Säuren des Phosphors erhältlichen quartären Ammoniumsalze, wie z.B. Umsetzungsprodukte von Triethylamin, DABCO oder N-Methylmorpholin mit Methanphosphonsäuredimethylester, oder die aus WO 2013/167404 bekannten tetrasubstituierten Ammoniumsalze von Lactamen, wie z.B. Trioctylammoniumcaprolactamat oder Dodecyltrimethylammoniumcaprolactamat.
Weitere erfindungsgemäß geeignete Trimerisierungskatalysatoren C finden sich beispielsweise in J. H. Saunders und K. C. Frisch, Polyurethanes Chemistry and Technology, S. 94 ff (1962) und der dort zitierten Literatur.
Besonders bevorzugt sind Carboxylate und Phenolate mit Metall- oder Ammoniumionen als Gegenion. Geeignete Carboxylate sind die Anionen aller aliphatischen oder cycloaliphatischen Carbonsäuren, bevorzugt solcher mit Mono- oder Polycarbonsäuren mit 1 bis 20 C-Atomen. Geeignete Metallionen sind abgeleitet von Alkali- oder Erdalkalimetallen, Mangan, Eisen, Cobalt, Nickel, Kupfer, Zink, Zirkonium, Cer, Zinn, Titan, Hafnium oder Blei. Bevorzugte Alkalimetalle sind Lithium, Natrium und Kalium, besonders bevorzugt Natrium und Kalium. Bevorzugte Erdalkalimetalle sind Magnesium, Calcium, Strontium und Barium.
Ganz besonders bevorzugt sind die in der DE-A 3 240 613 als Katalysatoren beschriebenen Oktoate und Naphthenate von Mangan, Eisen, Cobalt, Nickel, Kupfer, Zink, Zirkonium, Cer oder Blei oder deren Gemische mit Acetaten von Lithium, Natrium, Kalium, Calcium oder Barium.
Ebenfalls ganz besonders bevorzugt sind Natrium- oder Kaliumbenzoat, die aus der GB-PS 1 391 066 und GB-PS 1 386 399 bekannten Alkaliphenolate, wie z. B. Natrium- oder Kaliumphenolat, sowie die aus der GB 809 809 bekannten Alkali- und Erdalkalioxide, -hydroxide, -carbonate, -alkoholate und - phenolate.
Der Trimerisierungskatalysator C enthält vorzugsweise einen Polyether. Dies ist insbesondere bevorzugt, wenn der Katalysator Metallionen enthält. Bevorzugte Polyether sind ausgewählt aus der Gruppe bestehend aus Kronenether, Diethylenglycol, Polyethylen- und Polypropylenglykolen. Als besonders praxisgerecht hat es sich im erfindungsgemäßen Verfahren erwiesen einen Trimerisierungskatalysator B einzusetzen, der als Polyether ein Polyethylenglykol oder einen Kronenether, besonders bevorzugt 18-Krone-6 oder 15-Krone-5, enthält. Bevorzugt enthält der Trimiersierungskatalysator B ein Polyethylenglykol mit einem zahlenmittleren Molekulargewicht von 100 bis 1000 g/mol, bevorzugt 300 g/mol bis 500 g/mol und insbesondere 350 g/mol bis 450 g/mol. Ganz besonders bevorzugt ist die Kombination aus den oben beschriebenen Carboxylaten und Phenolaten von Alkali- oder Erdalkalimetallen mit einem Polyether.
Komponente D
Die Komponente D ist eine Verbindung, die in einem Molekül wenigstens eine mit Isocyanat reaktive Gruppe wie weiter oben in dieser Anmeldung definiert und wenigstens eine ethylenische Doppelbindung aufweist. Die mit Isocyanat reaktive Gruppe der Komponente D kann auch eine Uretdiongruppe sein. Ethylenische Doppelbindungen sind vorzugsweise solche, die durch einen radikalischen Reaktionsmechanismus mit anderen ethylenischen Doppelbindungen vernetzbar sind. Entsprechende aktivierte Doppelbindungen sind für die Komponente B weiter oben in dieser Anmeldung näher definiert.
Bevorzugte Komponenten D sind Alkoxyalkyl(meth)acrylate mit 2 bis 12 Kohlenstoffatomen im Hydroxyalkylrest. Besonders bevorzugt sind 2-Hydroxyethylacrylat, das bei der Anlagerung von Propylenoxid an Acrylsäure entstehende Isomerengemisch oder 4-Hydroxybutylacrylat.
Komponente E
Die Komponente E ist eine Verbindung, die in einem Molekül sowohl wenigstens eine Isocyanatgruppe und wenigstens eine ethylenische Doppelbindung aufweist. Sie kann vorteilhaft dadurch erhalten werden, dass eine im vorangehenden Abschnitt beschriebene Komponente D mit einem monomeren oder oligomeren Polyisocyanat wie weiter oben in dieser Anmeldung beschrieben vernetzt wird. Diese Vernetzung erfolgt durch Reaktion der mit Isocyanat reaktiven Gruppen, in diesem Fall insbesondere einer Hydroxyl-, Amino- oder Thiolgruppe, und einer Isocyanatgruppe des Polyisocyanats. Dies wird vorzugsweise durch eine Komponente G wie weiter unten in dieser Anmeldung katalysiert. Es ist aber auch jeder andere geeignete und dem Fachmann bekannte Katalysator denkbar. Auch kann gänzlich auf einen Katalysator verzichtet werden.
Besonders bevorzugt sind Kombinationen in denen ein auf Hexamethylendiisocyanat oder Pentamethylendiisocyanat basierendes oligomeres Polyisocyanat kombiniert wird mit einer Komponente D ausgewählt aus der Gruppe bestehend aus 2-Hydroxyethylacrylat, dem bei der Anlagerung von Propylenoxid an Acrylsäure entstehenden Isomerengemisch und 4- Hydroxybutylacrylat.
Weitere bevorzugte Komponenten E sind 2-lsocyanatoethyl(meth)acrylat, Tris(2- hydroxyethyl)isocyanattri(meth)acrylat, Vinylisocyante, Allylisocyante und 3-lsopropenyl- , - dimethylbenzyl isocyanat
Komponente F Grundsätzlich kann die radikalische Polymerisation der im Reaktionsgemisch enthaltenen ethylenisch ungesättigten Verbindungen durch aktinische Strahlung mit ausreichendem Energiegehalt bewirkt werden. Dies ist insbesondere UV-VIS Strahlung im Wellenbereich zwischen 200 und 500 nm. In diesem Fall muss die erfindungsgemäße polymerisierbare Zusammensetzung keine Komponente F enthalten.
Wenn aber auf den Einsatz entsprechender Strahlung verzichtet werden soll, dann ist die Anwesenheit wenigstens einer Komponente F erforderlich, die als Initiator einer radikalischen Polymerisation der in der erfindungsgemäßen polymerisierbaren Zusammensetzung enthaltenen ethylenischen Doppelbindungen geeignet ist. Derartige Initiatoren wirken dadurch, dass sie unter geeigneten Bedingungen, insbesondere bei Erwärmen oder der Einwirkung geeigneter Strahlung, Radikale bilden, die mit den ethylenischen Doppelbindungen reagieren, so dass Vinylradikale entstehen, die ihrerseits in einer Kettenreaktion mit weiteren ethylenischen Doppelbindungen reagieren. Die Komponente F enthält wenigstens einen strahlenaktivierten Initiator Fl oder wenigstens einen temperaturaktivierten Initiator F2. Sie kann aber auch ein Gemisch aus wenigstens einem strahlenaktiviertem Initiator Fl und wenigstens einem temperaturaktivierten Initiator F2 enthalten.
Bevorzugte strahlungsaktivierte Initiatoren Fl sind Verbindungen des unimolekularen Typs (I) und des bimolekularen Typs (II). Geeignete Typ (I)-Systeme sind aromatische Ketonverbindungen, wie z. B. Benzophenone in Kombination mit tertiären Aminen, Alkylbenzophenone, 4,4'- Bis(dimethylamino)benzophenon (Michlers Keton), Anthron und halogenierte Benzophenone oder Mischungen der genannten Typen. Weiter geeignet sind Typ (ll)-lnitiatoren wie Benzoin und seine Derivate, Benzilketale, Acylphosphinoxide, 2,4,6-Trimethyl-benzoyldiphenylphosphinoxid, Bisacylphosphinoxide, Phenylglyoxylsäureester, Campherchinon, α-Aminoalkylphenone, , - Dialkoxyacetophenone und -Hydroxyalkylphenone. Spezielle Beispiele sind lrgacur®500 (eine Mischung von Benzophenon und (l-Hydroxycyclohexyl)phenylketon, Fa. Ciba, Lampertheim, DE), lrgacure®819 DW (Phenylbis-(2, 4, 6-trimethylbenzoyl)phosphinoxid, Fa. Ciba, Lampertheim, DE) oder Esacure® KIP EM (Oligo-[2-hydroxy-2-methyl-l-[4-(l-methylvinyl)-phenyl]-propanone], Fa. Lamberti, Aldizzate, Italien) und Bis-(4-methoxybenzoyl)diethylgerman. Es können auch Gemische dieser Verbindungen eingesetzt werden.
Bei den Photoinitiatoren sollte darauf geachtet werden, dass sie eine ausreichende Reaktivität gegenüber der verwendeten Strahlenquelle haben. Es ist eine Vielzahl von Photoinitiatoren auf dem Markt bekannt. Durch kommerziell verfügbare Photoinitiatoren wird der Wellenlängenbereich im gesamten UV-VIS Spektrum abgedeckt.
Bevorzugte temperaturaktivierte Initiatoren F2 sind organische Azoverbindungen, organische Peroxiden und C-C-spaltenden Initiatoren, wie Benzpinakolsilylether, N,N-Diacyl-Hydroxylamine, O- alkylierte N,N-Diacyl-Hydroxylamine oder O-acylierte N,N-Diacyl-Hydroxylamine. Ebenfalls geeignet sind anorganische Peroxide wie Peroxodisulfate. Weitere geeignete thermische Radikalstarter sind Azobisisobutyronitril (AIBN), Dibenzoylperoxid (DBPO), Di-tert-butylperoxid, Dicumylperoxid (DCP) und Peroxybenzoesäure-ieri-butylester. Der Fachmann kann aber auch alle anderen ihm bekannten thermischen Initiatoren einsetzen.
Komponente G
Bei der Komponente G handelt es sich um einen Katalysator, der die Vernetzung einer Isocyanatgruppe mit einer mit Isocyanat reaktiven Gruppe katalysiert. Hierbei entsteht vorzugsweise eine Urethangruppe, eine Thiourethangruppe oder eine Harnstoffgruppe.
Die polymerisierbare Zusammensetzung enthält vorzugsweise dann eine Komponente G, wenn eine Komponente D mit wenigstens einer gegenüber Isocyanat reaktiven Gruppe anwesend ist. Allerdings ist die Verwendung einer Komponente G auch in diesem Fall nicht obligatorisch, da die Vernetzung von Isocyanatgruppen mit gegenüber Isocyanat reaktiven Gruppen auch die verwendeten Trimerisierungskatalysatoren C beschleunigt werden kann und auch ganz ohne Katalyse hinreichend schnell abläuft, wenn die Reaktionstemperatur hoch genug ist. Auf den Zusatz einer Komponente G kann insbesondere dann verzichtet werden, wenn die Vernetzung der in der Isocyanatkomponente A enthaltenen Isocyanatgruppen bei Temperaturen von wenigstens 60 °C, bevorzugt wenigstens 120 °C durchgeführt wird.
Bevorzugte Komponenten G sind die typischen Urethanisierungskatalysatoren wie sie beispielweise in Becker / Braun, Kunststoffhandbuch Band 7, Polyurethane, Kapitel 3.4 angegeben werden. Als Katalysator kann insbesondere eine Verbindung ausgewählt aus der Gruppe der tert.- Amine, tert.- Aminsalze, Metallsalze und Metallorganyle, bevorzugt aus der Gruppe der Zinnsalze, Zinnorganyle und der Bismutorganyle eingesetzt werden.
Komponente H
Die Viskosität der polymerisierbaren Zusammensetzung wird erfindungsgemäß vorzugsweise durch die Verwendung einer Komponente B in geeigneter Konzentration eingestellt. Diese wirken als Reaktivverdünner und ermöglichen grundsätzlich den Verzicht auf die Verwendung von zusätzlichen Lösemitteln zur Absenkung der Viskosität der Isocyanatkomponente A.
In besonderen Ausführungsformen kann es aber wünschenswert sein, der erfindungsgemäßen polymerisierbaren Zusammensetzung zusätzlich ein für Isocyanate geeignetes Lösemittel zuzufügen. Dies kann z.B. wünschenswert sein, wenn der Anteil der Komponente B in der polymerisierbaren Zusammensetzung begrenzt werden soll und eine Viskositätsabsenkung angestrebt wird, die mit diesem begrenzten Anteil der Komponente B nicht erreichbar ist. In diesem Fall kann die erfindungsgemäße polymerisierbare Zusammensetzung alle dem Fachmann bekannten für die Verdünnung von Isocyanaten geeigneten Lösemittel enthalten. Dies sind bevorzugt Hexan, Toluol, Xylol, Chlorbenzol, Essigsäureethylester, Essigsäurebutylester, Diethylenglykoldimethylether, Dipropylenglykoldimethylether, Ethylenglykolmonomethyl- oder -ethyletheracetat, Diethylenglykolethyl- und -butyletheracetat, Propylenglykolmonomethyl-etheracetat, 1- Methoxypropyl-2-acetat, 3- Methoxy-n-butylacetat, Propylenglykoldiacetat, Aceton, Methylethylketon, Methylisobutylketon, Cyclohexanon, Lactone, wie ß-Propiolacton, y-Butyrolacton, ε-Caprolacton und ε-Methylcaprolacton, aber auch Lösungsmittel wie N-Methylpyrrolidon und N- Methylcaprolactam, 1,2-Propylencarbonat, Methylenchlorid, Dimethylsulfoxid, Triethylphosphat oder beliebige Gemische derartiger Lösungsmittel.
Komponente I
In einer bevorzugten Ausführungsform enthält die erfindungsgemäße polymerisierbare Zusammensetzung zusätzlich wenigstens ein Additiv I ausgewählt aus der Gruppe bestehend aus UV Stabilisatoren, Antioxidantien, Formtrennmitteln, Wasserfängern, Slipadditiven, Entschäumern, Verlaufsmitteln, Rheologieadditiven, Flammschutzmitteln und Pigmenten. Diese Hilfs- und Zusatzmittel, liegen üblicherweise in einer Menge von höchstens 10 Gew.-%, vorzugsweise höchstens 5 Gew.-% und besonders bevorzugt höchstens 3 Gew.-%, bezogen auf die erfindungsgemäße polymerisierbare Zusammensetzung vor.
Komponente J
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung enthält die polymerisierbare Zusammensetzung wenigstens einen organischen Füllstoff Jl und / oder wenigstens einen anorganischen Füllstoff J2. Besagte Füllstoffe können in jeder dem Fachmann bekannten Form und Größe vorliegen. Dies sind insbesondere partikuläre Füllstoffe mit einer Korngrößenverteilung einer Polydispersität von höchstens 50, bevorzugt höchstens 30 und ganz besonders bevorzugt höchstenslO mit einem mittleren Korndurchmesser von höchstens 0,1 mm und bevorzugt höchstens 0,05 mm.
In einer weiteren besonders bevorzugten Ausführungsform werden Füllstoffe mit einem Aspektverhältnis von wenigstens 1000 verwendet.
In einer weiteren besonders bevorzugten Ausführungsform werde partikuläre Füllstoffe und Füllstoffe mit einem Aspektverhältnis von wenigstens 1000 in einem Gewichtsverhältnis von 1:100 bis 100:1 eingesetzt bevorzugt 1:80 bis 50:1 und besonders bevorzugt 1:50 und 20:1.
Die Füllstoffe sind in einer bevorzugten Ausführungsform vorwiegend anorganischer Natur, bevorzugt auf Basis von (Halb)Metallsalzen und (Halb)Metalloxiden. Bevorzugte organische Füllstoffe Jl sind Holz, Zellstoff, Papier, Pappe, Gewebeschnitzel, Kork, Weizenspreu, Polydextrose, Cellulose, Aramide, Polyethylen, Kohlenstoff, Kohlenstoffnanoröhrchen, Polyester, Nylon, Plexiglas, Flachs, Hanf und sowie Sisal.
Bevorzugte anorganische Füllstoffe J2 sind AIOH3, CaC03, Siliziumdioxid, Magnesiumcarbonat, Ti02, ZnS, Mineralien enthaltend Silikate, Sulfate, Carbonate und Ähnliches wie Magnesit, Baryt, Glimmer, Dolomit, Kaolin, Talk, Tonmineralien, sowie Ruß, Graphit, Bornitrid, Glas, Basalt, Bor, Keramik und Kieselsäure.
Die erfindungsgemäße polymerisierbare Zusammensetzung ist vorzugsweise zur Herstellung eines hochgefüllten Verbundwerkstoffs geeignet. „Hochgefüllt" bedeutet dass Füllstoffgehalte bis zu 50 vol-% bis 80 vol-%, bevorzugt 60 bis 80 vol-% erreicht werden können.
In einer besonders bevorzugten Ausführungsform ist der Füllstoff ein faserförmiger Füllstoff J3. Der faserförmige Füllstoff J3 kann aus allen dem Fachmann bekannten anorganischen Fasern, organischen Fasern, Naturfasern oder deren Mischungen hergestellt sein. Dass ein faserförmiger Füllstoff aus einem Material oder einer Mischung verschiedener Materialien hergestellt ist, schließt nicht aus, dass er weitere Stoffe enthält, die z.B. als Schlichten dienen.
Bevorzugte anorganische Fasern sind Glasfasern, Basaltfasern, Borfasern, Keramikfasern, Whisker, Kieselsäurefasern sowie metallische Verstärkungsfasern. Bevorzugte organische Fasern sind Aramidfasern, Kohlenstofffasern, Kohlenstoffnanoröh rchen, Polyester-Fasern, Nylon-Fasern sowie Plexiglas-Fasern. Bevorzugte Naturfasern sind Flachs-Fasern, Hanf-Fasern, Holzfasern, Cellulosefasern sowie Sisalfasern.
Als faserförmige Füllstoffe J3 sind erfindungsgemäß alle Fasern geeignet, deren Aspektverhältnis, größer 1000, bevorzugt größer 5000, stärker bevorzugt größer 10.000 und am stärksten bevorzugt größer 50.000 ist. Das Aspektverhältnis ist definiert als die Länge der Faser geteilt durch den Durchmesser.
Die faserförmigen Füllstoffe J3 weisen bei Einhaltung des oben definierten Aspektverhältnisses bevorzugt eine Mindestlänge von 1 m, besonders bevorzugt 50 m und ganz besonders bevorzugt 100 m auf.
Gemäß einer bevorzugten Ausführungsform der Erfindung ist der faserförmige Füllstoff J3 ausgewählt aus der Gruppe bestehend aus Glasfasern, Basaltfasern, Kohlenstofffasern und Mischungen daraus. Die Fasern können einzeln vorliegen, sie können aber auch in jeder dem Fachmann bekannten Form zu Matten oder Fliesen gewebt oder gewirkt vorliegen. Vorzugsweise liegen weniger als 50 Gew.-%, stärker bevorzugt weniger als 35 Gew.-%, noch stärker bevorzugt weniger als 20 Gew.-% uns am stärksten bevorzugt weniger als 10 Gew.-% der verwendeten Fasern in Form von Matten oder Fliesen vor.
Die einzelnen Fasern haben vorzugsweise einen Durchmesser von weniger 0,1 mm, stärker bevorzugt weniger 0,05 mm, und noch stärker bevorzugt weniger 0,03 mm.
Gemäß einer bevorzugten Ausführungsform der Erfindung befindet sich auf der Oberfläche der Fasern eine Schlichte. Die Schlichte ist ein dünner Polymerfilm, der häufig reaktive Gruppen enthält und die Benetzung mit dem Harz bzw. die Anbindung zwischen der Matrix und der Faser verbessert.
Gemäß einer weiteren Ausführungsform der Erfindung zeigen die verwendeten Fasern einen geringen Wassergehalt. Wasser kann zum Beispiel auf der Oberfläche der Fasern absorbiert sein und später mit dem Isocyanatgruppen unerwünschte Nebenreaktionen eingehen. Es hat sich daher als vorteilhaft erwiesen, wenn der Wassergehalt der Fasern geringer 5 Gew.-%, bevorzugt geringer 3 Gew.-%, stärker bevorzugt geringer 2 Gew.-%, insbesondere geringer 1 Gew.-% und am stärksten bevorzugt geringer 0,5 Gew.-% bezogen auf das Gesamtgewicht an Fasern ist. Am besten haben die Fasern keinen Feuchtegehalt. Dies kann gegebenenfalls durch eine Trocknung der Fasern erreicht werden. Der Feuchtegehalt der Fasern kann durch gravimetrisches Messen vor und nach der Trocknung, vorzugsweise bei 120 °C für 2 Stunden, bestimmt werden.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind wenigstens 50 %, stärker bevorzugt wenigstens 70 %, noch stärker bevorzugt wenigstens 80 % und ganz besonders bevorzugt wenigstens 90 % der Fasern parallel zueinander orientiert. Fasern sind parallel zueinander orientiert, wenn der Winkel zwischen ihnen weniger als 15 Grad, bevorzugt weniger als 10 Grad und noch stärker bevorzugt weniger als 5 Grad betrachtet auf einer Länge von 0,5 m, bevorzugt 1 m und besonders bevorzugt 2 m beträgt. Ganz besonders bevorzugt beträgt der Winkel zwischen wenigstens 90 % der Fasern auf einer Länge von 2 m höchstens 10 Grad und noch stärker bevorzugt höchstens 5 Grad. Dem Fachmann ist bewusst, dass die vorgenannten Angaben nur bei der Verwendung einzelner Fasern sinnvoll sind. Soweit die verwendeten Fasern in Form von Matten oder Vliesen vorliegen, ergibt es sich aus der Anordnung der Fasern in diesen Materialien, dass diese Bedingungen nicht eingehalten werden können.
Das Verhältnis zwischen dem reaktiven Harz, dem faserförmigen Füllstoff J3 und allen weiteren Bestandteilen des Verbundwerkstoffs wird vorzugsweise so gewählt, dass der Fasergehalt wenigstens 30 Vol.-%, bevorzugt 45 Vol.-%, stärker bevorzugt wenigstens 50 Vol.-%, noch stärker bevorzugt wenigstens 60 Vol.-% und am stärksten bevorzugt wenigstens 65 Vol.-% des ausgehärteten Verbundwerkstoffs beträgt. Verwendung
In einer weiteren Ausführungsform betrifft die vorliegende Erfindung die Verwendung wenigstens einer Komponente ausgewählt aus der Gruppe bestehend aus den Komponenten B, D und E zur Herstellung einer polymerisierbaren Zusammensetzung mit einem Verhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen von wenigstens 2,0 zu 1,0, welche eine Isocyanatkomponente A und einen Füllstoff J enthält und sowohl durch radikalische Polymerisation als auch durch Vernetzung von Isocyanatgruppen untereinander polymerisierbar ist.
Vorzugsweise wird zusätzlich wenigstens eine Komponente B wie oben in dieser Anmeldung definiert verwendet.
Alle für die polymerisierbare Zusammensetzung A weiter oben in dieser Anmeldung gegebenen Definitionen sind auch für diese Ausführungsform anwendbar. Dies gilt insbesondere für die Mengenverhältnisse der Komponenten A, B, D und E sowie das Verhältnis von Isocyanatgruppen zur Gesamtmenge der mit Isocyanat reaktiven Gruppen in der polymerisierbaren Zusammensetzung.
Verfahren
In einer weiteren Ausführungsform betrifft die vorliegende Erfindung ein Verfahren zur Herstellung eines Polymers enthaltend die Schritte a) Bereitstellen des weiter oben in dieser Anmeldung beschriebenen reaktiven Harzes; b) Bereitstellung wenigstens eines oben in dieser Anmeldung beschriebenen Füllstoffs J; c) Benetzen des Füllstoffs J mit der reaktiven Harzmischung;
d) Vernetzung der in besagter polymerisierbarer Zusammensetzung enthaltenen ethylenischen Doppelbindungen ; und
e) Vernetzung der in besagter polymerisierbarer Zusammensetzung enthaltenen Isocyanatgruppen; wobei die Verfahrensschritte d) und e) gleichzeitig oder in jeder beliebigen Reihenfolge durchgeführt werden und der Verfahrensschritt c) vor den Verfahrensschritten d) und e) durchgeführt wird.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird zunächst durch den Verfahrensschritt d) Viskosität aufgebaut, bevor die endgültige Aushärtung des Polymers in Verfahrensschritt e) erfolgt. Hierbei müssen die beiden Verfahrensschritte zeitlich nicht unmittelbar aufeinander folgen. Es ist insbesondere bevorzugt, dass zwischen beiden Verfahrensschritten ein weiterer Arbeitsschritt erfolgt, in dem das Produkt des Verfahrensschrittes d) umgeformt wird. Alle weiter oben zur erfindungsgemäßen polymerisierbaren Zusammensetzung gegebenen Definitionen gelten auch für das erfindungsgemäße Verfahren soweit im Folgenden nicht anders angegeben.
Wenn die Verfahrensschritte d) und e) nicht gleichzeitig durchgeführt werden sollen, ist es bevorzugt, dass die erfindungsgemäße polymerisierbare Zusammensetzung keinen temperaturaktivierten Initiator F2 enthält. Umgekehrt ist es vorteilhaft, dass bei einer gleichzeitigen Durchführung der Verfahrensschritte d) und e) ein temperaturaktivierter Initiator F2 verwendet wird, da in diesem Fall die für die Vernetzung der Isocyanatgruppen in Verfahrensschritt e) erforderliche Temperaturerhöhung auch die Vernetzung der ethylenischen Doppelbindungen in Verfahrensschritt d) bewirkt.
Wenn die polymerisierbare Zusammensetzung wenigstens eine Komponente D enthält ist es bevorzugt, dass das erfindungsgemäße Verfahren einen weiteren Verfahrensschritt f) enthält, in dem die mit Isocyanat reaktive Gruppe der Komponente D mit einer Isocyanatgruppe der Isocyanatkomponente A oder eines Reaktionsprodukts der Isocyanatkomponente A vernetzt wird. Besagter Verfahrensschritt f) kann vor dem Verfahrensschritt d) durchgeführt werden, er kann zwischen den Verfahrensschritten d) und e) durchgeführt werden, er kann parallel zu Verfahrensschritt d) oder e) oder aber auch nach den Verfahrensschritten d) und e) durchgeführt werden. Er wird aber auf jeden Fall nach den Verfahrensschritt c) durchgeführt.
Da die Vernetzung einer Isocyanatgruppe der Komponente A und einer mit Isocyanat reaktiven Gruppe der Komponente D auch durch den Trimerisierungskatalysator C alleine oder gänzlich ohne Unterstützung eines Katalysators abläuft, erfolgt der Verfahrensschritt f) vorzugsweise parallel zum Verfahrensschritt e), da dort bereits eine Temperaturerhöhung erfolgt, die auch die Reaktion der Komponenten A und D bewirkt.
Benetzen des Füllstoffs mit der reaktiven Harzmischung
Zur Herstellung der erfindungsgemäßen anisotropen Verbundwerkstoffe wird der Füllstoff J in Verfahrensschritt c)J mit der reaktiven Harzmischung aus Verfahrensschritt a) benetzt. Eine gute Benetzung ist notwendig um eine Kraftübertragung zwischen dem Füllstoff und der Matrix im fertigen Bauteil zu gewährleisten und Einschlüsse, z.B. Luft, zu vermeiden.
Der Benetzungsschritt kann sowohl kontinuierlich als auch diskontinuierlich durchgeführt werden; bevorzugt ist ein kontinuierlicher Prozess.
Gemäß einer Ausführungsform der Erfindung sind alle bekannten Verfahren geeignet, die eine gute Benetzung des Füllstoffs mit der Harzmatrix ermöglichen. Genannt seien hier ohne Anspruch auf Vollständigkeit Rakeln, Tauchbad, Injektionsbox, Sprühverfahren, Harzinjektionsverfahren, Harzinfusionsverfahren mit Vakuum oder Druck, Auftragrolle und Handlaminationsverfahren.
Wenn es sich um einen faserförmigen Füllstoff J3 handelt, wird gemäß einer besonders bevorzugten Ausführungsform der Erfindung das Tauchbad verwendet. Dabei werden die trockenen Fasern durch ein offenes Harzbad gezogen, wobei die Umlenkung der Fasern über Führungsblenden in und aus dem Harzbad erfolgt (Wannenverfahren). Alternativ dazu können die Fasern auch ohne Umlenkung gerade durch die Imprägniervorrichtung gezogen werden (Durchziehverfahren).
Gemäß einer weiteren besonders bevorzugten Ausführungsform der Erfindung wird bei einem faserförmigen Füllstoff J die Injektionsbox verwendet. Bei der Injektionsbox werden die Fasern ohne Umlenkung in die Imprägniereinheit eingezogen, die bereits die Form des späteren Profils aufweist. Mittels Druck wird die reaktive Harzmischung in die Box, bevorzugt transversal zur Faserrichtung, gepumpt.
Es hat sich als vorteilhaft erwiesen, wenn die Fasern eines faserförmigen Füllstoffs J3, die in Form von Faserbündeln, sogenannten rovings, vorliegen, vor dem Tränkungsschritt gespreizt werden, um eine bessere Imprägnierung der Einzelfasern zu erreichen. Dies kann beispielhaft durch Umlenkung an Umlenkrollen oder Führungsblenden erreicht werden.
Wenn faserförmige Füllstoffe J3 verarbeitet werden, ist das erfindungsgemäße Verfahren vorzugsweise ein Pultrusionsverfahren, bei dem der Verfahrensschritt c) wie oben beschrieben im Tauchbad oder in einer Injektionsbox durchgeführt wird und der Verfahrensschritt e) ohne weitere zwischengeschaltete Verfahrensschritte dadurch durchgeführt wird, dass die benetzten Fasern des Füllstoffs durch ein beheiztes Werkzeug gezogen, dessen Profil dem Profil des herzustellenden Werkstücks entspricht. In dieser Ausführungsform werden bevorzugt temperaturaktivierte Initiatoren verwendet. Die Viskosität des reaktiven Harzes wird vorzugsweise so eingestellt, dass sie zwischen 10 mPas und 10.000 mPas liegt, bevorzugt zwischen 10 und 5.000 mPas und noch stärker bevorzugt zwischen 10 und 2.000 mPas.
Vernetzung der ethylenischen Doppelbindungen
Die Vernetzung der in der erfindungsgemäßen polymerisierbaren Zusammensetzung enthaltenen ethylenischen Doppelbindungen erfolgt durch eine radikalische Polymerisation. Diese Polymerisationsreaktion wird, wenn ein strahlenaktivierter Initiator Fl anwesend ist, erfindungsgemäß durch den Einsatz von Strahlung, die die zu dessen Aktivierung geeignet ist, eingeleitet. Wenn ein temperaturaktivierter Initiator F2 in der verwendeten polymerisierbaren Zusammensetzung anwesend ist, wird die Vernetzung der ethylenischen Doppelbindungen durch Aufheizen der polymerisierbaren Zusammensetzung auf die erforderliche Temperatur gestartet. Grundsätzlich genügt aber - unabhängig von der Anwesenheit von Initiatoren Fl oder F2 - auch der Einsatz von hinreichend energiereicher Strahlung wie weiter oben in dieser Anmeldung definiert zur Einleitung der radikalischen Polymerisation in Verfahrensschritt d).
Vernetzung der Isocyanatgruppen
Die„Vernetzung" der Isocyanatkomponente A in Verfahrensschritt e) ist ein Prozess, in dem die darin enthaltenen Isocyanatgruppen unter Ausbildung wenigstens einer Struktur ausgewählt aus der Gruppe bestehend aus Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und Oxadiazintrionstrukturen miteinander oder mit bereits vorliegenden Urethangruppen reagieren. Hierbei werden die in der Isocyanatkomponente A ursprünglich vorliegenden Isocyanatgruppen verbraucht. Durch die Ausbildung der vorgenannten Gruppen werden die in Isocyanatkomponente A enthaltenen monomeren und oligomeren Polyisocyanate zu einem Polymernetzwerk verbunden.
Da in der erfindungsgemäßen polymerisierbaren Zusammensetzung ein deutlicher molarer Überschuss von Isocyanatgruppen gegenüber mit Isocyanat reaktiven Gruppen vorliegt, führt die Vernetzungsreaktion dazu, dass höchstens 20 %, bevorzugt höchstens 10 %, besonders bevorzugt höchstens 5 %, ganz besonders bevorzugt höchstens 2 % und insbesondere höchstens 1 % des Gesamtstickstoffgehaltes der Isocyanatkomponente A in Urethan- und/oder Allophanatgruppen vorliegen.
In einer besonders bevorzugten Ausführungsform der Erfindung ist die ausgehärtete Isocyanatkomponente A aber nicht vollständig frei von Urethan- und Allophanatgruppen. Bevorzugt enthält sie deswegen unter Beachtung der im vorangehenden Absatz definierten Obergrenzen wenigstens 0,1 % Urethan- und/oder Allophanatgruppen bezogen auf den Gesamtstickstoffgehalt.
Es ist bevorzugt, dass die Vernetzung der in der erfindungsgemäßen polymerisierbarer Zusammensetzung enthaltenen Isocyanatgruppen vorwiegend durch Cyclotrimerisierung von mindestens 50 %, vorzugsweise mindestens 60 %, besonders bevorzugt mindestens 70 %, insbesondere mindestens 80 % und ganz besonders bevorzugt 90 % der in der Isocyanatkomponente A vorliegenden freien Isocyanatgruppen zu Isocyanuratstruktureinheiten erfolgt. Somit sind im fertigen Werkstoff entsprechende Anteile des in der Isocyanatkomponente A ursprünglich enthaltenen Stickstoffs in Isocyanuratstrukturen gebunden. Nebenreaktionen, insbesondere solche zu Uretdion-, Allophanat-, und/oder Iminooxadiazindionstrukturen treten jedoch üblicherweise auf und können sogar gezielt genutzt werden, um z.B. die Glasübergangstemperatur (Tg) des erhaltenen Polyisocyanuratkunststoffs vorteilhaft zu beeinflussen. Der oben definierte Gehalt an Urethan- und/oder Allophanatgruppen liegt jedoch vorzugsweise auch in dieser Ausführungsform vor. Die Vernetzung der Isocyanatgruppen erfolgt vorzugsweise bei Temperaturen zwischen 50 °C und 220 °C, stärker bevorzugt zwischen 80 °C und 200 °C und noch stärker bevorzugt zwischen 100 °C und 200 °C.
Die oben genannten Temperaturen werden in Verfahrensschritt c) gehalten, bis wenigstens 50 %, bevorzugt wenigstens 75 % und noch stärker bevorzugt wenigstens 90 % die in der Isocyanatkomponente A zu Beginn des Verfahrensschrittes b) vorliegenden freien Isocyanatgruppen verbraucht sind. Der Prozentsatz an noch vorhandenen Isocyanat-Gruppen kann durch einen Vergleich des Gehalts an Isocyanat-Gruppen in Gew.-% in der zu Beginn des Verfahrensschritts b) vorliegenden Isocyanatkomponente A mit dem Gehalt an Isocyanat-Gruppen in Gew.-% im Reaktionsprodukt, beispielsweise durch vorgenannten Vergleich der Intensität der Isocyanatbande bei ca. 2270 cm-1 mittels I -Spektroskopie, bestimmt werden.
Die genaue Zeitdauer des Verfahrensschrittes e) hängt dabei natürlich von der Geometrie des anzufertigenden Werkstücks, insbesondere dem Verhältnis von Oberfläche und Volumen, ab, da auch im Kern des Entstehenden Werkstücks die erforderliche Temperatur für die erforderliche Mindestdauer erreicht werden muss. Der Fachmann kann diese Parameter durch einfache Vorversuche bestimmen.
Grundsätzlich wird eine Vernetzung der oben genannten Anteile freier Isocyanatgruppen erreicht, wenn die oben genannten Temperaturen für 1 Minute bis 4 Stunden gehalten werden. Besonders bevorzugt ist eine Zeitdauer zwischen 1 Minute und 15 Minuten bei Temperaturen zwischen 180 °C und 220 °C oder eine Zeitdauer von 5 Minuten bis 120 Minuten bei einer Temperatur von 120 °C.
Wenn es sich bei dem Verfahren um ein Pultrusionsverfahren handelt, so erfolgt der Verfahrensschritt e) vorzugsweise in einem auf die oben genannten Temperaturen erhitzten Werkzeug, das eine Aussparung in Form des herzustellenden Profils aufweist, durch welche der mit dem reaktiven Harz benetzte Faserförmige Füllstoff J3 durchgezogen wird.
Verbundwerkstoff
In noch einer weiteren Ausführungsform betrifft die vorliegende Erfindung einen Verbundwerkstoff, der durch das oben beschriebene Verfahren erhältlich ist.
Der Verbundwerkstoff liegt vorzugsweise als Formkörper vor.
Der Formkörper kann bevorzugt durch Gießen unter Verwendung geeigneter Formen erhalten werden. In besonders bevorzugten Ausführungsformen liegt der Verbundwerkstoff als offener oder geschlossener Hohlkörper vor.
Ein „Formkörper" ist dadurch definiert, dass er in mindestens einer der drei Dimensionen eine Kantenlänge von wenigstens 0,5 mm, bevorzugt wenigstens 1 mm aufweist und in mindestens einer der beiden anderen Dimension eine Abmessung von wenigstens 2 cm, bevorzugt wenigstens 5 cm. Bevorzugt weist er in allen drei Dimensionen eine Kantenlänge von wenigstens 2 cm auf.
Besonders bevorzugt ist der der erfindungsgemäße Verbundwerkstoff das Produkt eines Pultrusionsverfahrens, d.h. er enthält einen faserförmigen Füllstoff J und weist ein Profil auf. Ein „Profil" wie in der vorliegenden Anmeldung verstanden, ist ein Körper, der im Wesentlichen über seine gesamte Länge den gleichen Querschnitt aufweist. Das„Profil" ist bevorzugt wenigstens 2 m, stärker bevorzugt wenigstens 10 m und noch stärker bevorzugt wenigstens 50 m lang. Es ist ausdrücklich vorgesehen, dass das Profil nach der Aushärtung des reaktiven Harzes in mehrere Segmente zerteilt werden kann. Die vorher angegebenen Längen beziehen sich dann auf ein hypothetisches unzerteiltes Produkt, wie es aus dem Verfahren hervorgeht und ohne weitere Zerteilung vorläge.
Ein Profil weist auch dann„im Wesentlichen über seine ganze Länge den gleichen Querschnitt auf", wenn dieser Querschnitt fertigungsbedingt nicht immer zu jeder Zeit erreicht wird. H ierbei ist vorausgesetzt, dass diese Abschnitte im Verhältnis zur Gesamtlänge des Profils kurz sind. Besagte Abschnitte mit abweichendem Querschnitt sind dann kurz, wenn ihre Gesamtlänge weniger als 10 %, bevorzugt weniger als 5 % und am stärksten bevorzugt weniger als 1 % der Gesamtlänge des hypothetischen unzerteilten Profils ausmacht. Als abweichender Querschnitt wird ein Wert verstanden, der mindestens 10 % vom Durchschnittswert oder gewünschtem Wert abweicht.
Die folgenden Beispiele dienen nur dazu, die Erfindung zu illustrieren. Sie sollen den Schutzbereich der Patentansprüche in keiner Weise beschränken.
Beispiele
Allgemeine Angaben:
Alle Prozentangaben beziehen sich, sofern nicht abweichend angegeben, auf Gewichtsprozent (Gew.- %).
Die zur Zeit der Versuchsdurchführung herrschende U mgebungstemperatur von 23 °C wird als RT (Raumtemperatur) bezeichnet.
Die nachstehend aufgeführten Methoden zur Bestimmung der entsprechenden Parameter wurden zur Durchführung bzw. Auswertung der Beispiele angewandt und sind auch die Methoden zur Bestimmung der erfindungsgemäß relevanten Parameter im Allgemeinen.
Bestimmung der Phasenübergänge mittels DSC
Die Phasenübergänge wurde mittels DSC (Differential Scanning Calorimetry) mit einem Mettler DSC 12E (Mettler Toledo GmbH, Gießen, DE) entsprechend DIN EN 61006 bestimmt. Eine Kalibrierung erfolgte durch die Temperatur des Schmelz-Onsets von Indium und Blei. Es wurden 10 mg Substanz in Normalkapseln eingewogen. Die Messung erfolgte durch drei Aufheizungen von -50 °C bis +200 °C bei einer Heizrate von 20 K/min mit anschließender Abkühlung mit einer Kühlrate von 320 K/min. Die Kühlung erfolgte durch flüssigen Stickstoff. Als Spülgas wurde Stickstoff verwendet. Die angegebenen Werte basieren jeweils auf der Auswertung der 2. Aufheizkurve. Die Glasübergangstemperatur Tg wurde aus der Temperatur bei der halben Höhe einer Glasübergangsstufe erhalten.
Bestimmung von Infrarotspektren
Die Infrarotspektren wurden an einem mit einer ATR-Einheit ausgerüstetem FT-IR-Spektrometer der Firma Bruker gemessen.
Ausgangsverbindungen
Polyisocyanat AI: HDI-Trimerisat (NCO-Funktionalität >3) mit einem NCO-Gehalt von 23,0 Gew.-% von der Fa. Covestro AG. Die Viskosität beträgt ca. 1200 mPa-s bei 23°C (DIN EN ISO 3219/A.3).
Polyisocyanat A2: PDI-Trimerisat (NCO-Funktionalität >3) mit einem NCO-Gehalt von 21,5 Gew.-% von der Fa. Covestro AG. Die Viskosität beträgt ca. 9500 mPa-s bei 23 °C (DIN EN ISO 3219/A.3).
Hexandioldiacrylat (HDDA) wurde mit einer Reinheit von <= 100 Gew.-% von der Fa. Sigma-Aldrich bezogen. Hydroxypropylmethacrylat (HPMA) wurde mit einer Reinheit von 98 Gew.-% von der Fa. aber GmbH, bezogen.
Isobornyl methacrylat (IBOMA) wurde mit einer Reinheit von <= 100 Gew.-% von der Fa. Sigma Aldrich bezogen.
Initiator: Trigonox" C (Peroxybenzoesäure-ieri-butylester) wurde mit einer Reinheit von 98 Gew.-% von Akzo Nobel bezogen.
Kaliumacetat wurde mit einer Reinheit von > 99 Gew.-% von der Fa. ACROS bezogen.
Polyethylenglycol (PEG) 400 wurde mit einer Reinheit von > 99 Gew.-% von der Fa. ACROS bezogen.
Das Entformungsmittel INT - 1940 RTM wurde von der Firma Axel Plastics Research Laboratories, INC. erworben und ist laut Datenblatt eine Mischung aus organischen Fettsäuren und Estern.
Die Kurzglasfaser mit der Bezeichnung 910A-10P wurde von der Fa. Owens Corning geliefert und lag in ca 4,5 mm langen Bündeln vor. Der Durchmesser der einzelnen Fasern betrug 0,01 mm.
Bei der Endlosglasfaser handelte es sich um Glasfaserbündel mit Standardschlichte für UP-, VE- und Epoxidharze mit der Bezeichnung Typ ,Advantex 399' mit 4800 Tex der Firma 3B-fibreglass. Die Endlosglasfaser haben entsprechend dem Datenblatt einen Durchmesser von 24 Mikrometer, sind Bor-frei und bestehen aus E-CR Glas. Der Zugmodul beträgt 81-83 GPa, die Zugfestigkeit 2200-2400 MPa und die Dichte 2,62 g/ cm3.
Alle Rohstoffe mit Ausnahme des Katalysators wurden vor Verwendung im Vakuum entgast, das Polyethylenglycol zusätzlich getrocknet.
Herstellung von Katalysator K:
Kaliumacetat (5,0 g) wurde in dem PEG 400 (95,0 g) bei RT solange gerührt, bis alles gelöst war. Es wurde so eine 5 Gew.-% Lösung von Kaliumacetat in PEG 400 erhalten und ohne weitere Behandlung als Katalysator eingesetzt.
Herstellung der Reaktionsmischungen
Wenn nicht anders angegeben wurde zur Herstellung der Polyisocyanuratkomposite zunächst die Isocyanatzusammensetzung durch Vermischen der entsprechenden Isocyanatkomponenten (AI oder A2) mit einer entsprechenden Menge Katalysator K, Initiator und Acrylat bei 23 °C in einem Speedmixer DAC 150.1 FVZ der Fa. Hauschild für 60 - 300 Sekunden bei 2750 min-1 hergestellt. Anschließend wurde der Isocyanatzusammensetzung zunächst ein Zehntel der Kurzglasfasermenge zugefügt. Die gesamte Masse wurde in einem Speedmixer DAC 150.1 FVZ der Fa. Hauschild für 60 bis 300 Sekunden bei 2750 min-1 vermischt, wobei die Kurzglasfaserbündel exfolieren und alles eine breiige Masse bildet. Nun wird die restliche Kurzglasfasermenge zugegeben und die Masse wieder für ca. 60 Sekunden bei 2750 min-1 im Speedmixer gemischt.
Anschließend wurde die Mischung in eine Form (Metalldeckel, ca. 6 cm im Durchmesser und ca. 1 cm hoch) verbracht und im Ofen ausgehärtet.
Ausführungsbeispiel 1
Wie oben beschrieben wurde Polyisocyanat AI (16,13 g) mit Initiator I (0,064 g), Katalysator K (0,595 g) und HPMA (1,60 g) laut der o.g. Herstellvorschrift für Reaktionsmischungen behandelt und die Masse ohne Zugabe von Glasfasern in die Form gefüllt. Die Mischung hatte nach der Herstellung eine Viskosität von 929 mPas.
Nach einer Aushärtung von 3 min bei 200 °C wurde ein Material mit einer TG von 58 °C erhalten. Nach einer stufenweisen Aushärtung von 3 min bei 100 °C und 3 min bei 200 °C wurde ein Material mit einer TG von 87 °C erhalten.
Ausführungsbeispiel 2
Wie oben beschrieben wurde Polyisocyanat AI (16,13 g) mit Initiator I (0,064 g), Katalysator K (0,595 g) und HPMA (1,60 g) laut der o.g. Herstellvorschrift für Reaktionsmischungen behandelt, die Kurzglasfaser (4,0 g) eingearbeitet und die Masse in die Form gefüllt.
Nach einer Aushärtung von 3 min bei 200 °C wurde ein Material mit einer TG von 87 °C erhalten. Nach einer Aushärtung von 2 min bei 100 °C und 2 min bei 200 °C wurde ein Material mit einer TG von 91 °C erhalten.
Ausführungsbeispiel 3
Wie oben beschrieben wurde Polyisocyanat AI (32,2 g) mit Initiator I (0,12 g), Katalysator K (12,3 g), HPMA (0,29 g), HDDA (3,08 g), IBOMA (3,08 g) laut der o.g. Herstellvorschrift für Reaktionsmischungen behandelt. Die Mischung hatte nach der Herstellung eine Viskosität von 611 mPas. Nach einer Aushärtung von 5 min bei 220 °C wurde ein Material mit einer TG von 102 °C erhalten.
Ausführungsbeispiel 4
Wie oben beschrieben wurde Polyisocyanat A2 (29,7 g) mit Initiator I (0,16 g), Katalysator K (1,23 g), HPMA (0,41 g), HDDA (4,21 g), IBOMA (4,21 g) laut der o.g. Herstellvorschrift für Reaktionsmischungen behandelt. Die Mischung hatte nach der Herstellung eine Viskosität von 1560 mPas. Nach einer Aushärtung von 10 min bei 200 °C wurde ein Material mit einer TG von 126 °C erhalten. Herstellung der Harzmischung für Pultrusion
Das Isocyanat wurde in einem offenen Behälter bei Raumtemperatur vorgelegt und mittels Dispermat® und Dissolverscheibe bei 100 Umdrehungen pro Minute (rpm) gerührt. Anschließend wurde zunächst das Acrylat, und dann das Entformungsmittel zugegeben und die Rührgeschwindigkeit auf 300 rpm erhöht und alles weitere 5 min gerührt, so dass eine homogene Mischung entstand. Nun wurden die Katalysatorlösung und der Initiator zudosiert und die Harzmischung weitere 5 min bei 300 rpm gerührt. Diese reaktive Harzmischung wurde ohne weitere Behandlung für die Pultrusion verwendet.
Ausführungsbeispiel 5
Wie oben beschrieben wurde Polyisocyanat AI (3,22 kg) mit Initiator I (12 g), Katalysator K (123 g), HPMA (29 g), HDDA (308 g), IBOMA (308 g) und Entformungsmittel INT - 1940 RTM (103 g) laut der o.g. Herstellvorschrift für Harzmischung für Pultrusion behandelt. Die Mischung hatte nach der Herstellung eine Viskosität von 611 mPas.
Die Glasfaserbündel (126 rovings) wurden orientiert und durch eine Injektionsbox geleitet, welche mit dem Werkzeug fest verbunden war und über eine Fensteröffnung an der Oberseite der Box mit der Harzmischung gefüllt wurde. Die so mit Harz getränkten Glasfasern wurden direkt in das beheizte Werkzeug eingezogen. Die Temperaturzonen waren Hl = 180 °C, H2 = 220 °C, H3 = 200 °C und H4 = 180 °C. Die Zuggeschwindigkeit betrug 0,3 m/min und 0,5 m/min. Die Abzugskräfte lagen bei ca. 0,7 t. Es wurden bei beiden Geschwindigkeiten jeweils 5 m Profil hergestellt. Die Oberfläche des Profils war homogen und matt, und der Glasgehalt betrug 80 Massen%.
Ausführungsbeispiel 6
Wie oben beschrieben wurde Polyisocyanat A2 (2,97 kg) mit Initiator I (16 g), Katalysator K (123 g), HPMA (41 g), HDDA (421 g), IBOMA (421 g) und Entformungsmittel INT - 1940 RTM (102 g) laut der o.g. Herstellvorschrift für Harzmischung für Pultrusion behandelt.
Die Glasfaserbündel (126 rovings) wurden orientiert und durch eine Injektionsbox geleitet, welche mit dem Werkzeug fest verbunden war und über eine Fensteröffnung an der Oberseite der Box mit der Harzmischung gefüllt wurde. Die so mit Harz getränkten Glasfasern wurden direkt in das beheizte Werkzeug eingezogen. Die Temperaturzonen waren Hl = 180 °C, H2 = 220 °C, H3 = 200 °C und H4 = 180 °C. Die Zuggeschwindigkeit betrug 0,3 m/min und 0,5 m/min. Die Abzugskräfte lagen bei ca. 0,7 t. Es wurden bei beiden Geschwindigkeiten jeweils 5 m Profil hergestellt. Die Oberfläche des Profils war homogen und matt, und der Glasgehalt betrug 80 Massen%. Vergleichsbeispiel 7
Wie oben beschrieben wurde Polyisocyanat AI (93,5 g) und Katalysator K (4,0 g) laut der o.g. Herstellvorschrift für Reaktionsmischungen behandelt und die Masse in die Form gefüllt. Die Mischung hatte nach der Herstellung eine Viskosität von 2180 mPas.
Nach einer Aushärtung von 3 min bei 220 °C wurde ein Material mit einer TG von 98 °C erhalten. Vergleichsbeispiel 8
Wie oben beschrieben wurde Polyisocyanat A2 (93,5 g) und Katalysator K (4,0 g) laut der o.g. Herstellvorschrift für Reaktionsmischungen behandelt und die Masse in die Form gefüllt. Die Mischung hatte nach der Herstellung eine Viskosität mehr als 10000 mPas.
Nach einer Aushärtung von 3 min bei 220 °C wurde ein Material mit einer TG von 128 °C erhalten.
Vergleichsbeispiel 9
Wie oben beschrieben wurde Polyisocyanat A2 (4,39 kg) mit Katalysator K (188 g), und Entformungsmittel INT - 1940 RTM (117 g) laut der o.g. Herstellvorschrift für Harzmischung für Pultrusion behandelt. Die M ischung hatte nach der Herstellung eine im Vergleich hohe Viskosität von mehr als 10000 mPas. Nach einer Aushärtung von 3 min bei 220 °C wurde ein Material mit einer TG von 126 °C erhalten.
Die Glasfaserbündel ( 126 rovings) wurden orientiert und durch eine Injektionsbox geleitet, welche mit dem Werkzeug fest verbunden war und über eine Fensteröffnung an der Oberseite der Box mit der Harzmischung gefüllt wurde. Die so behandelten Glasfasern wurden direkt in das beheizte Werkzeug eingezogen. Die Temperaturzonen waren H l = 180 °C, H2 = 220 °C, H3 = 200 °C und H4 = 180 °C. Die Zuggeschwindigkeit betrug 0,2 m/min und 0,3 m/min. Die Abzugskräfte lagen zwischen ca. 0,4 und 0,9 t. Die Glasfasern kamen fast unverändert aus dem Werkzeug, da das Harz aufgrund der hohen Viskosität die Fasern nicht durchträn ken konnte.
Diskussion
Die Ausführungsbeispiele 1, 3 und 4 zeigen, dass eine Zugabe von doppelbindungshaltigen (Acrylat- basierten) Monomeren zu Polyisocyanat-basierten Reaktionsmischungen, zu signifikant reduzierten Ausgangsviskositäten im Vergleich mit reinen Polyisocyanat-basierten Reaktionsmischungen (vgl. Vergleichsbeispiele 7 und 8) führen. Derartig verminderte Ausgangsviskositäten helfen oft bei der Verwendung solcher M ischungen als Harze für (Faser-) Verbundmaterialien, da sie die Benetzung von (faserförmigen) Füllstoffen erleichtern (s.u.). Die Ausführungsbeispiele 1, 3 und 4 zeigen weiterhin, dass eine Kombination der Additionsreaktion von Isocyanatgruppen mit der radikalischen Polymerisation von doppelbindungshaltigen Monomeren grundsätzlich zu ausgehärteten Kunstoffen mit hohen Glasübergangstemperaturen führt.
Darüber hinaus zeigt Ausführungsbeispiel 2, dass solche Mischungen gut geeignet sind, um (faserförmige) Füllstoffe einzubetten ohne Einbußen bei Materialeigenschaften (z.B. Tg) einzugehen. Die Ausführungsbeispiele 5 und 6 zeigen schließlich, dass derartige Mischungen gut geeignet sind um Faserverbundwerkstoffe mit sehr hohen Füllstoffanteilen (>80 Massen%) mittels Pultrusion kontinuierlich herzustellen. Wohingegen das Vergleichsbeispiel 9 belegt, dass zu hohe Ausgangsviskositäten von Polymerharzen die kontinuierliche Herstellung von Faserverbundmaterialien verhindern.

Claims

Patentansprüche
1. Polymerisierbare Zusammensetzung zur Herstellung eines Verbundwerkstoffs enthaltend a) ein reaktives Harz mit einem Verhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen von wenigstens 2,0 zu 1,0 enthaltend die Komponenten al) eine Isocyanatkomponente A;
a2) wenigstens einen Trimerisierungskatalysator C; und
a3) wenigstens eine Komponente ausgewählt aus der Gruppe bestehend aus den Komponenten B, D und E, wobei die Komponente B wenigstens eine ethylenische Doppelbindung, aber keine mit Isocyanat reaktive Gruppe aufweist;
die Komponente D in einem Molekül wenigstens eine mit Isocyanat reaktive Gruppe und wenigstens eine ethylenische Doppelbindung aufweist; und
die Komponente E in einem Molekül sowohl wenigstens eine Isocyanatgruppe und wenigstens eine ethylenische Doppelbindung aufweist; und b) wenigstens einen Füllstoff J.
2. Die polymerisierbare Zusammensetzung nach Anspruch 1, wobei das reaktive Harz a) wenigstens eine Komponente B enthält.
3. Die polymerisierbare Zusammensetzung nach Anspruch 1 oder 2, wobei das reaktive Harz a) wenigstens eine Komponente D oder E enthält.
4. Die polymerisierbare Zusammensetzung nach Anspruch 2 oder 3, wobei das Mengenverhältnis der Komponente A zur Gesamtmenge der Komponenten B, D und E so bemessen ist, dass das reaktive Harz eine Viskosität von höchstens 10.000 mPas aufweist.
5. Die polymerisierbare Zusammensetzung nach einem der Ansprüche 1 bis 4, wobei das molare Verhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen im reaktiven Harz wenigstens 4,0 zu 1,0 beträgt.
6. Die polymerisierbare Zusammensetzung nach einem der Ansprüche 1 bis 5, wobei das reaktive Harz zusätzlich eine Komponente F enthält, die als Initiator einer radikalischen Polymerisation der in der erfindungsgemäßen polymerisierbaren Zusammensetzung enthaltenen ethylenischen Doppelbindungen geeignet ist.
7. Verwendung wenigstens einer Komponente ausgewählt aus der Gruppe bestehend aus den Komponenten B, D und E zur Herstellung einer polymerisierbaren Zusammensetzung mit einem Verhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen von wenigstens 2,0 zu 1,0, welche eine Isocyanatkomponente A und einen Füllstoff J enthält und sowohl durch radikalische Polymerisation als auch durch Vernetzung von Isocyanatgruppen untereinander polymerisierbar ist.
8. Verfahren zur Herstellung eines Polymers enthaltend die Schritte a) Bereitstellen eines reaktiven Harzes wie in den Ansprüchen 1 bis 6 definiert;
b) Bereitstellung wenigstens eines Füllstoffs J;
c) Benetzen des Füllstoffs J mit der reaktiven Harzmischung;
d) Vernetzung der in besagter polymerisierbarer Zusammensetzung enthaltenen ethylenischen Doppelbindungen; und
e) Vernetzung der in besagter polymerisierbarer Zusammensetzung enthaltenen Isocyanatgruppen; wobei die Verfahrensschritte d) und e) gleichzeitig oder in jeder beliebigen Reihenfolge durchgeführt werden und der Verfahrensschritt c) vor den Verfahrensschritten d) und e) durchgeführt wird.
9. Das Verfahren nach Anspruch 8, wobei das reaktive Harz einen temperaturaktivierten Initiator F2 enthält, die polymerisierbare Zusammensetzung wenigstens einen faserförmigen Füllstoff J3 enthält und die Verfahrensschritte d) und e) parallel durchgeführt werden.
10. Das Verfahren nach Anspruch 8 oder 9 , wobei die polymerisierbare Zusammensetzung wenigstens eine Komponente E enthält und das Verfahren einen weiteren Verfahrensschritt d) enthält, in dem die mit Isocyanat reaktive Gruppe der Komponente E mit einer Isocyanatgruppe der Isocyanatkomponente A oder eines Reaktionsprodukts der Isocyanatkomponente A vernetzt wird.
11. Das Verfahren nach einem der Ansprüche 8 bis 10, wobei in Verfahrensschritt b) wenigstens 50 % der in der Isocyanatkomponente A vorliegenden freien Isocyanatgruppen zu Isocyanuratstruktureinheiten umgesetzt werden.
12. Verbundwerkstoff, erhältlich durch das Verfahren nach einem der Ansprüche 8 bis 11.
13. Der Verbundwerkstoff nach Anspruch 12, vorliegend als Profil.
14. Der Verbundwerkstoff nach Anspruch 12, vorliegend als Hohlkörper.
15. Der Verbundwerkstoff nach Anspruch 12, vorliegend als Formkörper und hergestellt durch ein Gussverfahren.
EP17801426.2A 2016-11-14 2017-11-14 Kompositwerkstoffe basierend auf isocyanuratpolymeren mit dualer härtung Pending EP3538585A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16198688 2016-11-14
PCT/EP2017/079208 WO2018087395A1 (de) 2016-11-14 2017-11-14 Kompositwerkstoffe basierend auf isocyanuratpolymeren mit dualer härtung

Publications (1)

Publication Number Publication Date
EP3538585A1 true EP3538585A1 (de) 2019-09-18

Family

ID=57354125

Family Applications (4)

Application Number Title Priority Date Filing Date
EP17797645.3A Active EP3538584B1 (de) 2016-11-14 2017-11-14 Verfahren zur herstellung eines gegenstandes aus einem vorläufer und verwendung eines radikalisch vernetzbaren harzes in einem additiven fertigungsverfahren
EP17801429.6A Pending EP3538586A1 (de) 2016-11-14 2017-11-14 Beschichtungszusammensetzungen mit dualer härtung
EP17801426.2A Pending EP3538585A1 (de) 2016-11-14 2017-11-14 Kompositwerkstoffe basierend auf isocyanuratpolymeren mit dualer härtung
EP17794993.0A Pending EP3538583A1 (de) 2016-11-14 2017-11-14 Isocyanuratpolymere mit dualer härtung

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP17797645.3A Active EP3538584B1 (de) 2016-11-14 2017-11-14 Verfahren zur herstellung eines gegenstandes aus einem vorläufer und verwendung eines radikalisch vernetzbaren harzes in einem additiven fertigungsverfahren
EP17801429.6A Pending EP3538586A1 (de) 2016-11-14 2017-11-14 Beschichtungszusammensetzungen mit dualer härtung

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17794993.0A Pending EP3538583A1 (de) 2016-11-14 2017-11-14 Isocyanuratpolymere mit dualer härtung

Country Status (6)

Country Link
US (5) US11590692B2 (de)
EP (4) EP3538584B1 (de)
JP (1) JP7216644B2 (de)
KR (1) KR102388093B1 (de)
CN (5) CN109963890A (de)
WO (4) WO2018087396A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2685216C2 (ru) 2014-11-24 2019-04-16 Ют-Баттелле, Ллк Способы реактивной трехмерной печати путем экструзии
US10434704B2 (en) 2017-08-18 2019-10-08 Ppg Industries Ohio, Inc. Additive manufacturing using polyurea materials
CN111344328B (zh) * 2017-11-09 2023-05-30 科思创德国股份有限公司 制造物件的方法和可自由基交联树脂在增材制造法中的用途
ES2981974T3 (es) * 2017-11-14 2024-10-14 Covestro Deutschland Ag Productos semiacabados basados en el mecanismo de reticulación dual
EP3827122B1 (de) * 2018-07-25 2024-08-28 Suominen Corporation 3d-gedruckte hülse
GB201819984D0 (en) 2018-12-07 2019-01-23 Ge Healthcare Bio Sciences Ab Chromatography column and method of assembling the same
MX2021007168A (es) 2018-12-18 2021-08-05 Dow Global Technologies Llc Formulaciones de espuma híbrida.
EP3917984A1 (de) 2019-02-01 2021-12-08 Basf Se Polyurethan und reaktiver uv-feuchtigkeitsdoppelhärtender pu-schmelzkleber damit
CN114096395A (zh) * 2019-07-04 2022-02-25 株式会社理光 增材制造物体的制造方法和制造设备、用于增材制造的固化用液体和用于增材制造的套组
US20220153910A1 (en) * 2020-11-18 2022-05-19 Covestro Llc Polyurethane and polyisocyanurate hybrid coatings
US20220153911A1 (en) * 2020-11-18 2022-05-19 Covestro Llc Polyurethane and polyisocyanurate hybrid materials and method of preparing the same
US20240301154A1 (en) 2021-03-29 2024-09-12 Covestro Deutschland Ag Polyisocyanurate-prepregs and fiber composite components produced therefrom
EP4092064A1 (de) 2021-05-17 2022-11-23 Covestro Deutschland AG Licht- und wärmehärtbares harz zur generativen fertigung
EP4116348A1 (de) 2021-07-09 2023-01-11 Covestro Deutschland AG Photo- und wärmehärtbares harz zur verwendung in additiven fertigungsverfahren
EP4166331A1 (de) 2021-10-12 2023-04-19 Covestro Deutschland AG Licht- und wärmehärtbares harz zur verwendung in generativen fertigungsverfahren
CN115160908B (zh) * 2022-07-06 2023-07-07 海利得新材料研究(上海)有限公司 无溶剂uv哑光涂料及其制备方法

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB809809A (en) 1956-11-16 1959-03-04 Ici Ltd Polymeric isocyanates and their manufacture
GB952931A (en) 1961-05-25 1964-03-18 Ici Ltd Improved polyisocyanate compositions
GB966338A (en) 1961-10-26 1964-08-12 Ici Ltd Polyurethane surface coatings
US3211703A (en) 1962-03-23 1965-10-12 Monsanto Res Corp Polyaliphatic polyisocyanurate laminating resin prepared in the presence of a cocatalyst system
DE1226109B (de) 1964-04-20 1966-10-06 Bayer Ag Verfahren zur Herstellung von Polyisocyanaten mit Isocyanuratstruktur
CA932333A (en) 1966-02-02 1973-08-21 Farbenfabriken Bayer Aktiengesellschaft Compounds containing the 2,4,6-triketo-1,3,5-oxadiazine ring
GB1200542A (en) 1967-01-19 1970-07-29 Takeda Chemical Industries Ltd A method for producing isocyanate trimers
DE1954093C3 (de) 1968-11-15 1978-12-21 Mobay Chemical Corp., Pittsburgh, Pa. (V.St.A.) Verfahren zur Herstellung von polymeren organischen Isocyanaten
GB1391066A (en) 1971-07-16 1975-04-16 Ici Ltd Urethane oils
GB1386399A (en) 1971-07-16 1975-03-05 Ici Ltd Isocyanurate polymers
BE795448A (nl) * 1972-02-24 1973-08-16 Shell Int Research Werkwijze voor de bereiding van hardbare composities
DE2414413C3 (de) 1974-03-26 1978-08-24 Bayer Ag, 5090 Leverkusen Verwendung von Lösungen von Polyisocyanaten mit Isocyanuratstruktur in Zweikomponenten-Polyurethan-Lacken
DE2452532C3 (de) 1974-11-06 1978-08-24 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Polyisocyanaten mit Isocyanurat-Struktur
US4040992A (en) 1975-07-29 1977-08-09 Air Products And Chemicals, Inc. Catalysis of organic isocyanate reactions
DE2641380C2 (de) 1976-09-15 1989-11-23 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Polyisocyanaten mit Isocyanuratstruktur
DE2722400C2 (de) * 1977-05-17 1985-05-30 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von wärmebeständigen, blasenfreien Isocyanuratgruppen aufweisenden Kunststoffen
EP0000659B1 (de) * 1977-07-27 1981-09-09 Ici Americas Inc. Durch Trimerisation eines isocyanatgruppenhaltigen Urethans aus einem aromatischen Polyisocyanat und einem Vinylidencarbonyloxyalkanol gebildete Isocyanurat-Zusammensetzung und daraus erhaltene Lösungen, Polymere und Laminate.
US4128537A (en) * 1977-07-27 1978-12-05 Ici Americas Inc. Process for preparing ethylenically unsaturated isocyanurates
US4159376A (en) 1977-07-27 1979-06-26 Ici Americas Inc. Isocyanurates from unsaturated monohydric alcohols and polyisocyanates
US4145544A (en) 1977-07-27 1979-03-20 Ici Americas Inc. Preparation of isocyanurates
DE2806731A1 (de) 1978-02-17 1979-08-23 Bayer Ag Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten
US4296215A (en) * 1978-07-27 1981-10-20 Ici Americas Inc. Method to thicken dissolved thermoset resins
AU521632B2 (en) * 1978-07-27 1982-04-22 Ici Americas Inc. Thermoset resins
US4232133A (en) * 1978-07-27 1980-11-04 Ici Americas Inc. Polyisocyanurate containing molding compositions
CA1112243A (en) 1978-09-08 1981-11-10 Manfred Bock Process for the preparation of polyisocyanates containing isocyanurate groups and the use thereof
DE2901479A1 (de) 1979-01-16 1980-07-24 Bayer Ag Neue isocyanato-isocyanurate, ein verfahren zu ihrer herstellung, sowie ihre verwendung als isocyanatkomponente in polyurethan-lacken
CA1127644A (en) 1980-01-28 1982-07-13 Anupama Mishra Isocyanurate products and polyurethanes therefrom
DE3033860A1 (de) 1980-09-09 1982-04-15 Bayer Ag, 5090 Leverkusen Neue isocyanato-isocyanurate, ein verfahren zu ihrer herstellung, sowie ihre verwendung als isocyanatkomponente in polyurethanlacken
DE3100263A1 (de) 1981-01-08 1982-08-12 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten und ihre verwendung bei der herstellung von polyurethanen
DE3100262A1 (de) 1981-01-08 1982-08-05 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten, als katalysator-komponente fuer dieses verfahren geeignete loesungen, sowie die verwendung der verfahrensprodukte als isocyanat-komponente bei der herstellung von polyurethanen
US4352906A (en) * 1981-08-06 1982-10-05 Ici Americas Inc. Blister resistant calcium carbonate filled polyisocyanurate resin molding compositions
JPS58162581A (ja) 1982-03-19 1983-09-27 Nippon Polyurethan Kogyo Kk ポリウレタン塗料用組成物
DE3227489A1 (de) 1982-07-23 1984-01-26 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten und ihre verwendung als isocyanatkomponente zur herstellung von polyurethanen
PT77070B (en) 1982-07-29 1986-01-27 Dsm Resins Bv Oligomerisation of polyisocyanates
AT375652B (de) 1982-10-29 1984-08-27 Valentina Alexandro Postnikova Verfahren zur herstellung von arylaliphatischen polyisozyanuraten
JPH0641500B2 (ja) * 1984-04-30 1994-06-01 旭オーリン株式会社 重合体生成物の製造方法
JPH0641501B2 (ja) * 1984-04-30 1994-06-01 旭オーリン株式会社 重合体生成物の製造法
DE3521618A1 (de) 1985-06-15 1986-12-18 Bayer Ag, 5090 Leverkusen In wasser dispergierbare polyisocyanat-zubereitung und ihre verwendung als zusatzmittel fuer waessrige klebstoffe
JPH0678418B2 (ja) 1986-03-10 1994-10-05 大日本インキ化学工業株式会社 樹脂組成物
JP2598391B2 (ja) * 1986-03-24 1997-04-09 三菱化学株式会社 磁気記録媒体の製造方法
DE3700209A1 (de) 1987-01-07 1988-07-21 Bayer Ag Verfahren zur herstellung von polyisocyanaten mit biuretstruktur
DE3737244A1 (de) 1987-11-03 1989-05-18 Bayer Ag Verfahren zur herstellung von isocyanuratgruppen und olefinische doppelbindungen aufweisenden verbindungen und ihre verwendung als bindemittel
DE3811350A1 (de) 1988-04-02 1989-10-19 Bayer Ag Verfahren zur herstellung von isocyanuratpolyisocyanaten, die nach diesem verfahren erhaltenen verbindungen und ihre verwendung
DE3814167A1 (de) 1988-04-27 1989-11-09 Bayer Ag Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten und ihre verwendung
DE3819627A1 (de) 1988-06-09 1989-12-14 Bayer Ag Uv-haertbare beschichtungen fuer polycarbonatformkoerper
US5130402A (en) * 1988-07-01 1992-07-14 Sanyo Chemical Industries, Ltd. Coating composition and plastisol composition, and articles coated therewith
CA1334848C (en) 1988-08-05 1995-03-21 William E. Slack Process for the production of polyisocyanates which contain isocyanurate groups
CA1334849C (en) 1988-08-24 1995-03-21 Bayer Corporation Process for the production of polyisocyanates which contain isocyanurate groups
US4855383A (en) * 1988-09-23 1989-08-08 Ashland Oil, Inc. In situ quaternary ammonium catalyst formation for curing polymeric isocyanates
DE3900053A1 (de) 1989-01-03 1990-07-12 Bayer Ag Verfahren zur herstellung von uretdion- und isocyanuratgruppen aufweisenden polyisocyanaten, die nach diesem verfahren erhaeltlichen polyisocyanate und ihre verwendung in zweikomponenten-polyurethanlacken
DE3902078A1 (de) 1989-01-25 1990-07-26 Bayer Ag Verfahren zur herstellung von modifizierten, isocyanuratgruppen aufweisenden polyisocyanaten und ihre verwendung
US5091496A (en) * 1989-05-19 1992-02-25 Mitsui Toatsu Chemicals, Inc. Polyisocyanatoalkylphenyl-isocyanurates, method for the preparation thereof and use thereof
DE3928503A1 (de) 1989-08-29 1991-03-07 Bayer Ag Verfahren zur herstellung von loesungen von isocyanuratgruppen aufweisenden polyisocyanaten in lackloesungsmitteln und ihre verwendung
DE4005762A1 (de) 1990-02-23 1991-08-29 Bayer Ag Trimerisierungskatalysatoren, ein verfahren zu ihrer herstellung und ihre verwendung bei der herstellung von isocyanuratgruppen aufweisenden polyisocyanaten
US5234970A (en) * 1991-07-16 1993-08-10 W. R. Grace & Co.-Conn. Dual curing composition based on isocyanate trimer and use thereof
GB9116781D0 (en) * 1991-08-02 1991-09-18 Ici Plc Curable compositions
US5322861A (en) * 1991-10-01 1994-06-21 Mitsubishi Kasei Corporation Ultraviolet-hardening urethane acrylate oligomer
DE4136618A1 (de) 1991-11-07 1993-05-13 Bayer Ag Wasserdispergierbare polyisocyanatgemische
IT1255279B (it) * 1992-05-20 1995-10-26 Sir Ind Spa Composizioni poliestere/isocianato reticolabili adatte alla preparazione di manufatti in composito particolarmente con processi ad iniezione, procedimento per la loro preparazione e loro utilizzo
US5370908A (en) 1993-05-24 1994-12-06 Olin Corporation Low VOC, heat-curable, one-component and two-component coating compositions based on organic polyisocyanates
DE4405055A1 (de) 1994-02-17 1995-08-24 Basf Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten und ihre Verwendung
DE4405054A1 (de) 1994-02-17 1995-08-24 Basf Ag Modifizierte (cyclo)aliphatische Polyisocyanatmischungen, Verfahren zu ihrer Herstellung und ihre Verwendung
JPH07329191A (ja) * 1994-06-09 1995-12-19 Denken Eng Kk 光造形法
DE19611849A1 (de) 1996-03-26 1997-10-02 Bayer Ag Neue Isocyanattrimerisate und Isocyanattrimerisatmischungen, deren Herstellung und Verwendung
CN1259148A (zh) * 1997-04-01 2000-07-05 亨茨曼Ici化学品有限公司 多异氰酸酯基干凝胶
DE19734048A1 (de) 1997-08-06 1999-02-11 Bayer Ag Verfahren zur Herstellung von Polyisocyanaten, damit hergestellte Polyisocyanate und deren Verwendung
ZA9810038B (en) 1997-11-04 2000-05-03 Rhodia Chimie Sa A catalyst and a method for the trimerization of isocyanates.
DE19818312A1 (de) * 1998-04-23 1999-10-28 Bayer Ag Wäßriges Beschichtungssytem aus UV-härtenden Isocyanatgruppen aufweisenden Urethan(meth)acrylatisocyanaten
DE59903289D1 (de) 1998-06-02 2002-12-12 Bayer Ag Verfahren zur Herstellung Iminooxadiazindiongruppen enthaltender Polyisocyanate
DE19929064A1 (de) * 1999-06-25 2000-12-28 Bayer Ag Verfahren zur Herstellung Uretdiongruppen aufweisender Polyadditionsverbindungen
BR0014422A (pt) * 1999-09-30 2002-06-11 Basf Ag Dispersão aquosa de poliuretano curável por u.v. e calor, e, uso da dispersão de poliuretano
WO2001053277A1 (fr) * 2000-01-20 2001-07-26 Rhodia Chimie Procede d'obtention de polyisocyanate(s) ramifie(s) faiblement colore(s), et composition en decoulant
DE10016194A1 (de) 2000-03-31 2001-10-04 Bayer Ag Beschichtungssystem enthaltend UV-härtbare, Isocyanatgruppen aufweisende Urethan(meth)acrylate und Hydroxylgruppen aufweisende Urethan(meth)acrylate
DE10041634C2 (de) * 2000-08-24 2002-10-17 Basf Coatings Ag Wäßrige Dispersion und ihre Verwendung zur Herstellung von thermisch und mit aktinischer Strahlung härtbaren Beschichtungsstoffen, Klebstoffen und Dichtungsmassen
DE10065176A1 (de) 2000-12-23 2002-06-27 Degussa Katalysator und Verfahren zur Herstellung von niedrigviskosen und farbreduzierten isocyanuratgruppenhaltigen Polyisocyanaten
DE10248324A1 (de) * 2002-10-17 2004-05-06 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und Verfahren zum Beschichten miktoporöser Oberflächen
JP2004217808A (ja) * 2003-01-16 2004-08-05 Mitsubishi Chemicals Corp 活性エネルギー線硬化性樹脂組成物並びにそれを用いた印刷インキ用バインダー及び積層シート
EP1599526B1 (de) 2003-02-28 2012-06-13 Dow Global Technologies LLC Herstellung von isocyanuratgruppenhaltigen polyisocyanatmischungen
JP2004315617A (ja) 2003-04-14 2004-11-11 Mitsubishi Rayon Co Ltd 立体造形用組成物、及び立体造形物
JP2005015627A (ja) 2003-06-26 2005-01-20 Jsr Corp 光硬化性液状樹脂組成物
DE102004012571A1 (de) 2004-03-12 2005-09-29 Basf Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten und ihre Verwendung
DE102004043537A1 (de) * 2004-09-09 2006-03-16 Bayer Materialscience Ag Herstellung von neuen strahlenhärtenden Bindemitteln
DE102004063102A1 (de) * 2004-12-22 2006-07-13 Basf Ag Strahlungshärtbare Verbindungen
EP1940903A2 (de) * 2005-09-22 2008-07-09 E.I.Du pont de nemours and company Verfahren zur herstellung von anhaftenden beschichtungen auf harzsubstraten
KR101376401B1 (ko) * 2005-10-27 2014-03-27 3디 시스템즈 인코오퍼레이티드 무-안티몬 광경화성 수지 조성물 및 3차원 물품
DE102005057682A1 (de) * 2005-12-01 2007-06-06 Basf Ag Strahlungshärtbare wasserelmulgierbare Polyisocyanate
US20070299242A1 (en) * 2006-06-21 2007-12-27 Bayer Materialscience Llc Pendant acrylate and/or methacrylate-containing polyether monols and polyols
DE102006051897A1 (de) * 2006-10-31 2008-05-08 Bayer Materialscience Ag Bedruckte, verformbare Folien
CN101284955B (zh) * 2007-04-11 2011-03-30 比亚迪股份有限公司 一种双重固化涂料组合物及其制备方法
CN101918466B (zh) * 2007-11-19 2013-01-30 氰特表面技术有限公司 可辐射固化组合物
US20110201709A1 (en) * 2008-11-10 2011-08-18 Dow Global Technologies Llc Isocyanate trimerisation catalyst system, a precursor formulation, a process for trimerising isocyanates, rigid polyisocyanurate/polyurethane foams made therefrom, and a process for making such foams
JP5215897B2 (ja) * 2009-02-06 2013-06-19 日本ビー・ケミカル株式会社 塗膜形成方法
KR101145582B1 (ko) * 2009-03-23 2012-05-15 디아이씨 가부시끼가이샤 보호 점착 필름, 스크린 패널, 및 휴대 전자 단말기
EP2489699B1 (de) * 2009-10-16 2014-07-16 Posco Strahlungshärtbare harzzusammensetzung und fingerabdrucksichere harzzusammensetzung damit
US8372330B2 (en) * 2009-10-19 2013-02-12 Global Filtration Systems Resin solidification substrate and assembly
KR101995185B1 (ko) * 2009-12-17 2019-07-01 디에스엠 아이피 어셋츠 비.브이. 트라이아릴 설포늄 보레이트 양이온 광개시제를 포함하는 적층식 제작을 위한 액체 방사선 경화성 수지
US8580887B2 (en) * 2010-07-30 2013-11-12 Basf Se High-functionality polyisocyanates containing urethane groups
US9157007B2 (en) 2011-03-09 2015-10-13 3D Systems, Incorporated Build material and applications thereof
CN102504174A (zh) * 2011-12-19 2012-06-20 烟台德邦科技有限公司 一种聚氨酯丙烯酸酯及其制备方法以及应用
US9574078B2 (en) * 2011-12-22 2017-02-21 Covestro Deutschland Ag Aqueous polyacrylate copolymer dispersions with high OH group content
JP2015510535A (ja) * 2012-02-08 2015-04-09 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH 硬質ポリウレタン−ポリイソシアヌレートフォームの製造方法
WO2013167404A1 (en) 2012-05-08 2013-11-14 Basf Se Preparation of polyisocyanates having isocyanurate groups and their use
CN102675590B (zh) * 2012-05-25 2014-04-02 深圳职业技术学院 一种含脂环族环氧和双键的双重固化树脂的制备方法及应用
RU2015101285A (ru) * 2012-06-18 2016-08-10 Ппг Индастриз Огайо, Инк. Композиции двойного отверждения, пригодные для покрытия металлических подложек, и способы использования указанных композиций
CN102977335B (zh) * 2012-11-30 2015-04-22 深圳职业技术学院 一种以环氧氯丙烷为原料制备含光-热双重固化基团树脂的方法
JP2016511172A (ja) * 2013-02-08 2016-04-14 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG ハードコートを用いるプラスチック基材の改善された最大加工処理温度
WO2014156814A1 (ja) * 2013-03-27 2014-10-02 Dic株式会社 活性エネルギー線硬化性組成物、その硬化塗膜、及び該硬化塗膜を有する物品
WO2015028397A1 (en) * 2013-08-26 2015-03-05 Basf Se Radiation-curable water-dispersible polyurethane (meth)acrylates
WO2015060259A1 (ja) * 2013-10-21 2015-04-30 三井化学株式会社 光学材料用重合性組成物および光学材料
EP2883895B1 (de) 2013-12-10 2017-09-13 Covestro Deutschland AG Iminooxadiazindion-Polyisocyanate
CN104974502B (zh) * 2014-04-10 2019-12-27 科思创德国股份有限公司 聚氨酯复合材料及其制备方法
JP2016002683A (ja) 2014-06-16 2016-01-12 コニカミノルタ株式会社 3d造形物の製造方法、3d造形用光硬化性組成物および3d造形用インクセット
EP2993195A1 (de) * 2014-09-05 2016-03-09 Huntsman International Llc Verfahren zur Verbesserung der Frakturbeständigkeit von Polyisocyanurat mit Reaktionsprodukten
CN105778005B (zh) * 2014-12-01 2020-04-28 科思创德国股份有限公司 可自由基聚合的聚氨酯组合物
JP2016135477A (ja) 2015-01-20 2016-07-28 関西ペイント株式会社 基材の被膜形成方法
GB201501965D0 (en) * 2015-02-05 2015-03-25 Lumina Adhesives Ab Polyurethane based switchable adhesives
JP6381474B2 (ja) * 2015-03-31 2018-08-29 三井化学株式会社 硬化性ポリウレタン樹脂組成物および硬化物
FR3035109B1 (fr) * 2015-04-20 2017-04-28 Arkema France Urethanes aminoacrylate-acrylates de haute fonctionnalite derives de l'addition d'un aminoalcool a amine secondaire sur un acrylate multifonctionnel.
KR20170139022A (ko) 2015-04-21 2017-12-18 코베스트로 도이칠란트 아게 단열성 조건 하에 제조된 폴리이소시아누레이트 중합체를 기재로 하는 고형물
US10752723B2 (en) 2015-04-21 2020-08-25 Covestro Deutschland Ag Polyisocyanurate polymer and process for the production of polyisocyanurate polymers
JP7029295B2 (ja) 2015-04-21 2022-03-03 コベストロ、ドイチュラント、アクチエンゲゼルシャフト 高い熱安定性を有するポリイソシアヌレートプラスチック
CN104830222B (zh) * 2015-04-28 2017-04-12 中科院广州化学有限公司南雄材料生产基地 一种可双重固化的低表面能聚氨酯涂料及其制备方法
ES2818580T3 (es) 2016-09-20 2021-04-13 Covestro Intellectual Property Gmbh & Co Kg Materiales composites anisotrópicos basados en poliisocianatos

Also Published As

Publication number Publication date
CN109923143B (zh) 2022-04-22
CN109963890A (zh) 2019-07-02
EP3538584A1 (de) 2019-09-18
JP7216644B2 (ja) 2023-02-01
US20180133953A1 (en) 2018-05-17
US20200190245A1 (en) 2020-06-18
US20190337224A1 (en) 2019-11-07
US20190367665A1 (en) 2019-12-05
WO2018087395A1 (de) 2018-05-17
EP3538586A1 (de) 2019-09-18
CN114874411A (zh) 2022-08-09
JP2019535554A (ja) 2019-12-12
CN110023368A (zh) 2019-07-16
WO2018087399A1 (de) 2018-05-17
KR102388093B1 (ko) 2022-04-20
US20190367666A1 (en) 2019-12-05
EP3538584B1 (de) 2020-08-26
WO2018087382A1 (de) 2018-05-17
US10449714B2 (en) 2019-10-22
CN109923142A (zh) 2019-06-21
US11590692B2 (en) 2023-02-28
KR20190086447A (ko) 2019-07-22
US11613072B2 (en) 2023-03-28
WO2018087396A1 (de) 2018-05-17
CN109923143A (zh) 2019-06-21
EP3538583A1 (de) 2019-09-18

Similar Documents

Publication Publication Date Title
EP3538585A1 (de) Kompositwerkstoffe basierend auf isocyanuratpolymeren mit dualer härtung
EP3452529B1 (de) Verfahren zur herstellung eines polyisocyanurat-kompositwerkstoffs
EP3515958B1 (de) Anisotrope verbundstoffmaterialien auf basis von polyisocyanaten
EP3085718B1 (de) Polyisocyanuratkunststoff enthaltend siloxangruppen und verfahren zu dessen herstellung
EP1634901B1 (de) Niedrigviskose Allophanate mit aktinisch härtbaren Gruppen
EP1634902B1 (de) Niedrigviskose Allophanate mit aktinisch härtbaren Gruppen
EP3452528A1 (de) Verfahren zur herstellung eines polyisocyanurat-kompositwerkstoffs
WO2015052038A1 (de) Polyfunktionelle urethan(meth)acrylate aus monomer armen diisocyanat-monoaddukten
EP3743449B1 (de) Halbzeuge basierend auf dualem vernetzungsmechanismus
EP2581398B1 (de) Verfahren zur Herstellung von niedrigviskosen, wasseremulgierbaren Allophanaten mit strahlenhärtbaren Gruppen
EP3728369B1 (de) Polyurethanverbundwerkstoffe basierend auf thermolatenten katalysatoren
EP3794049B1 (de) Verfahren zur herstellung eines polyisocyanatpolymers und eines polyisocyanuratkunststoffs
EP3867293A1 (de) Wasserfrei härtende klebstoffe auf polyisocyanatbasis
WO2019219614A1 (de) Verfahren zur herstellung von verbundwerkstoffen aus polyethylenfasern mit ultrahohem molekulargewicht und vernetzten polyisocyanaten
EP3440122B1 (de) Gefärbte kunststoffe basierend auf vernetzten polyisocyanaten
WO2020152107A1 (de) Kompositwerkstoffe basierend auf urethan- und isocyanuratpolymeren mit dualer härtung
EP1493764A1 (de) Verfahren zur lösemittelfreien Herstellung ethylenisch ungesättiger Polyurethane

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190614

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COVESTRO DEUTSCHLAND AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COVESTRO INTELLECTUAL PROPERTY GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210607

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COVESTRO DEUTSCHLAND AG