US20190367666A1 - Dual-curing coating compositions - Google Patents
Dual-curing coating compositions Download PDFInfo
- Publication number
- US20190367666A1 US20190367666A1 US16/349,373 US201716349373A US2019367666A1 US 20190367666 A1 US20190367666 A1 US 20190367666A1 US 201716349373 A US201716349373 A US 201716349373A US 2019367666 A1 US2019367666 A1 US 2019367666A1
- Authority
- US
- United States
- Prior art keywords
- isocyanate
- component
- composition
- groups
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000008199 coating composition Substances 0.000 title claims description 21
- 239000000203 mixture Substances 0.000 claims abstract description 83
- 238000000034 method Methods 0.000 claims abstract description 71
- 239000012948 isocyanate Substances 0.000 claims description 103
- 150000002513 isocyanates Chemical class 0.000 claims description 101
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 83
- 238000000576 coating method Methods 0.000 claims description 38
- 230000008569 process Effects 0.000 claims description 35
- 239000011248 coating agent Substances 0.000 claims description 34
- 238000004132 cross linking Methods 0.000 claims description 34
- 239000003054 catalyst Substances 0.000 claims description 32
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 claims description 19
- 238000005829 trimerization reaction Methods 0.000 claims description 15
- 230000005855 radiation Effects 0.000 claims description 14
- 238000010526 radical polymerization reaction Methods 0.000 claims description 14
- 239000003999 initiator Substances 0.000 claims description 9
- 239000007795 chemical reaction product Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 4
- 230000001070 adhesive effect Effects 0.000 claims description 4
- 239000000047 product Substances 0.000 claims description 4
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 abstract description 18
- 230000007246 mechanism Effects 0.000 abstract description 7
- 238000007348 radical reaction Methods 0.000 abstract description 4
- 239000005056 polyisocyanate Substances 0.000 description 58
- 229920001228 polyisocyanate Polymers 0.000 description 58
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 55
- 125000005442 diisocyanate group Chemical group 0.000 description 27
- -1 aromatic radicals Chemical class 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 15
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical group NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 13
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical group O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 12
- PJMDLNIAGSYXLA-UHFFFAOYSA-N 6-iminooxadiazine-4,5-dione Chemical group N=C1ON=NC(=O)C1=O PJMDLNIAGSYXLA-UHFFFAOYSA-N 0.000 description 12
- 238000007373 indentation Methods 0.000 description 12
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical group NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 11
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 10
- HXSACZWWBYWLIS-UHFFFAOYSA-N oxadiazine-4,5,6-trione Chemical group O=C1ON=NC(=O)C1=O HXSACZWWBYWLIS-UHFFFAOYSA-N 0.000 description 10
- 238000001723 curing Methods 0.000 description 9
- 239000004814 polyurethane Substances 0.000 description 9
- 229920002635 polyurethane Polymers 0.000 description 9
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 8
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 8
- 229910052708 sodium Inorganic materials 0.000 description 8
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 7
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 7
- 229910052783 alkali metal Inorganic materials 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 150000001340 alkali metals Chemical class 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 229910052751 metal Chemical class 0.000 description 6
- 239000002184 metal Chemical class 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920000570 polyether Polymers 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- 239000000376 reactant Substances 0.000 description 5
- 150000003512 tertiary amines Chemical class 0.000 description 5
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 4
- 241000428199 Mustelinae Species 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical class OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 239000004721 Polyphenylene oxide Substances 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 4
- 239000002981 blocking agent Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 150000007942 carboxylates Chemical class 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 235000011056 potassium acetate Nutrition 0.000 description 4
- 125000001453 quaternary ammonium group Chemical group 0.000 description 4
- DFPJRUKWEPYFJT-UHFFFAOYSA-N 1,5-diisocyanatopentane Chemical compound O=C=NCCCCCN=C=O DFPJRUKWEPYFJT-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 229910052684 Cerium Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical class CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 239000012965 benzophenone Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 150000003983 crown ethers Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 3
- 150000004679 hydroxides Chemical class 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 125000005609 naphthenate group Chemical group 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 125000005474 octanoate group Chemical group 0.000 description 3
- 239000000123 paper Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- OVBFMUAFNIIQAL-UHFFFAOYSA-N 1,4-diisocyanatobutane Chemical compound O=C=NCCCCN=C=O OVBFMUAFNIIQAL-UHFFFAOYSA-N 0.000 description 2
- RXYPXQSKLGGKOL-UHFFFAOYSA-N 1,4-dimethylpiperazine Chemical compound CN1CCN(C)CC1 RXYPXQSKLGGKOL-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- JLTDJTHDQAWBAV-UHFFFAOYSA-N N,N-dimethylaniline Chemical compound CN(C)C1=CC=CC=C1 JLTDJTHDQAWBAV-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 229920002396 Polyurea Polymers 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 150000008366 benzophenones Chemical class 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 150000003951 lactams Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 235000014380 magnesium carbonate Nutrition 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000006011 modification reaction Methods 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 238000006384 oligomerization reaction Methods 0.000 description 2
- 239000012766 organic filler Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000582 polyisocyanurate Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 2
- 239000004300 potassium benzoate Substances 0.000 description 2
- 235000010235 potassium benzoate Nutrition 0.000 description 2
- 229940103091 potassium benzoate Drugs 0.000 description 2
- ZGJADVGJIVEEGF-UHFFFAOYSA-M potassium;phenoxide Chemical compound [K+].[O-]C1=CC=CC=C1 ZGJADVGJIVEEGF-UHFFFAOYSA-M 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000004299 sodium benzoate Substances 0.000 description 2
- 235000010234 sodium benzoate Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- MGAXYKDBRBNWKT-UHFFFAOYSA-N (5-oxooxolan-2-yl)methyl 4-methylbenzenesulfonate Chemical compound C1=CC(C)=CC=C1S(=O)(=O)OCC1OC(=O)CC1 MGAXYKDBRBNWKT-UHFFFAOYSA-N 0.000 description 1
- WHIVNJATOVLWBW-PLNGDYQASA-N (nz)-n-butan-2-ylidenehydroxylamine Chemical compound CC\C(C)=N/O WHIVNJATOVLWBW-PLNGDYQASA-N 0.000 description 1
- VNMOIBZLSJDQEO-UHFFFAOYSA-N 1,10-diisocyanatodecane Chemical compound O=C=NCCCCCCCCCCN=C=O VNMOIBZLSJDQEO-UHFFFAOYSA-N 0.000 description 1
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 1
- KCZQSKKNAGZQSZ-UHFFFAOYSA-N 1,3,5-tris(6-isocyanatohexyl)-1,3,5-triazin-2,4,6-trione Chemical compound O=C=NCCCCCCN1C(=O)N(CCCCCCN=C=O)C(=O)N(CCCCCCN=C=O)C1=O KCZQSKKNAGZQSZ-UHFFFAOYSA-N 0.000 description 1
- AZYRZNIYJDKRHO-UHFFFAOYSA-N 1,3-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC(C(C)(C)N=C=O)=C1 AZYRZNIYJDKRHO-UHFFFAOYSA-N 0.000 description 1
- OHTRJOZKRSVAOX-UHFFFAOYSA-N 1,3-diisocyanato-2-methylcyclohexane Chemical compound CC1C(N=C=O)CCCC1N=C=O OHTRJOZKRSVAOX-UHFFFAOYSA-N 0.000 description 1
- WZZDGHUQRSGHLQ-UHFFFAOYSA-N 1,3-diisocyanato-5,7-dimethyladamantane Chemical compound C1C(C2)(C)CC3(N=C=O)CC1(C)CC2(N=C=O)C3 WZZDGHUQRSGHLQ-UHFFFAOYSA-N 0.000 description 1
- MLXLDKWQJYBKOH-UHFFFAOYSA-N 1,3-diisocyanatoadamantane Chemical compound C1C(C2)CC3CC1(N=C=O)CC2(N=C=O)C3 MLXLDKWQJYBKOH-UHFFFAOYSA-N 0.000 description 1
- AGJCSCSSMFRMFQ-UHFFFAOYSA-N 1,4-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=C(C(C)(C)N=C=O)C=C1 AGJCSCSSMFRMFQ-UHFFFAOYSA-N 0.000 description 1
- OHLKMGYGBHFODF-UHFFFAOYSA-N 1,4-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=C(CN=C=O)C=C1 OHLKMGYGBHFODF-UHFFFAOYSA-N 0.000 description 1
- ROHUXHMNZLHBSF-UHFFFAOYSA-N 1,4-bis(isocyanatomethyl)cyclohexane Chemical compound O=C=NCC1CCC(CN=C=O)CC1 ROHUXHMNZLHBSF-UHFFFAOYSA-N 0.000 description 1
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- OUJCKESIGPLCRN-UHFFFAOYSA-N 1,5-diisocyanato-2,2-dimethylpentane Chemical compound O=C=NCC(C)(C)CCCN=C=O OUJCKESIGPLCRN-UHFFFAOYSA-N 0.000 description 1
- AHBNSOZREBSAMG-UHFFFAOYSA-N 1,5-diisocyanato-2-methylpentane Chemical compound O=C=NCC(C)CCCN=C=O AHBNSOZREBSAMG-UHFFFAOYSA-N 0.000 description 1
- QGLRLXLDMZCFBP-UHFFFAOYSA-N 1,6-diisocyanato-2,4,4-trimethylhexane Chemical compound O=C=NCC(C)CC(C)(C)CCN=C=O QGLRLXLDMZCFBP-UHFFFAOYSA-N 0.000 description 1
- YXRKNIZYMIXSAD-UHFFFAOYSA-N 1,6-diisocyanatohexane Chemical compound O=C=NCCCCCCN=C=O.O=C=NCCCCCCN=C=O.O=C=NCCCCCCN=C=O YXRKNIZYMIXSAD-UHFFFAOYSA-N 0.000 description 1
- VNQXSTWCDUXYEZ-UHFFFAOYSA-N 1,7,7-trimethylbicyclo[2.2.1]heptane-2,3-dione Chemical compound C1CC2(C)C(=O)C(=O)C1C2(C)C VNQXSTWCDUXYEZ-UHFFFAOYSA-N 0.000 description 1
- ZVEMLYIXBCTVOF-UHFFFAOYSA-N 1-(2-isocyanatopropan-2-yl)-3-prop-1-en-2-ylbenzene Chemical compound CC(=C)C1=CC=CC(C(C)(C)N=C=O)=C1 ZVEMLYIXBCTVOF-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- UJVPXDHXSWWVTJ-UHFFFAOYSA-N 1-isocyanato-3-methylcyclohexane Chemical compound CC1CCCC(N=C=O)C1 UJVPXDHXSWWVTJ-UHFFFAOYSA-N 0.000 description 1
- WXIOQJUEBPUFHH-UHFFFAOYSA-N 1-isocyanato-4-(2-isocyanatopropan-2-yl)-1-methylcyclohexane Chemical compound O=C=NC(C)(C)C1CCC(C)(N=C=O)CC1 WXIOQJUEBPUFHH-UHFFFAOYSA-N 0.000 description 1
- OMZHEJRBEBSQCV-UHFFFAOYSA-N 1-isocyanato-4-(4-isocyanato-2,5-dimethylcyclohexyl)-2,5-dimethylcyclohexane Chemical group CC1CC(N=C=O)C(C)CC1C1C(C)CC(N=C=O)C(C)C1 OMZHEJRBEBSQCV-UHFFFAOYSA-N 0.000 description 1
- MELMSOZIBFBMCE-UHFFFAOYSA-N 1-isocyanato-4-(4-isocyanato-3-methylcyclohexyl)-2-methylcyclohexane Chemical group C1CC(N=C=O)C(C)CC1C1CC(C)C(N=C=O)CC1 MELMSOZIBFBMCE-UHFFFAOYSA-N 0.000 description 1
- XXHBOIDTCOIIII-UHFFFAOYSA-N 1-isocyanato-4-(4-isocyanatocyclohexyl)cyclohexane Chemical group C1CC(N=C=O)CCC1C1CCC(N=C=O)CC1 XXHBOIDTCOIIII-UHFFFAOYSA-N 0.000 description 1
- SWSXEZOUBBVKCO-UHFFFAOYSA-N 1-isocyanato-4-methylcyclohexane Chemical compound CC1CCC(N=C=O)CC1 SWSXEZOUBBVKCO-UHFFFAOYSA-N 0.000 description 1
- YIDSTEJLDQMWBR-UHFFFAOYSA-N 1-isocyanatododecane Chemical compound CCCCCCCCCCCCN=C=O YIDSTEJLDQMWBR-UHFFFAOYSA-N 0.000 description 1
- RFXBSYPBSRSQDU-UHFFFAOYSA-N 1-isocyanatoheptane Chemical compound CCCCCCCN=C=O RFXBSYPBSRSQDU-UHFFFAOYSA-N 0.000 description 1
- GFLXBRUGMACJLQ-UHFFFAOYSA-N 1-isocyanatohexadecane Chemical compound CCCCCCCCCCCCCCCCN=C=O GFLXBRUGMACJLQ-UHFFFAOYSA-N 0.000 description 1
- QWDQYHPOSSHSAW-UHFFFAOYSA-N 1-isocyanatooctadecane Chemical compound CCCCCCCCCCCCCCCCCCN=C=O QWDQYHPOSSHSAW-UHFFFAOYSA-N 0.000 description 1
- DYQFCTCUULUMTQ-UHFFFAOYSA-N 1-isocyanatooctane Chemical compound CCCCCCCCN=C=O DYQFCTCUULUMTQ-UHFFFAOYSA-N 0.000 description 1
- CSMJMAQKBKGDQX-UHFFFAOYSA-N 1-isocyanatotetradecane Chemical compound CCCCCCCCCCCCCCN=C=O CSMJMAQKBKGDQX-UHFFFAOYSA-N 0.000 description 1
- JXAYHHMVMJVFPQ-UHFFFAOYSA-N 1-isocyanatoundecane Chemical compound CCCCCCCCCCCN=C=O JXAYHHMVMJVFPQ-UHFFFAOYSA-N 0.000 description 1
- BUZMJVBOGDBMGI-UHFFFAOYSA-N 1-phenylpropylbenzene Chemical compound C=1C=CC=CC=1C(CC)C1=CC=CC=C1 BUZMJVBOGDBMGI-UHFFFAOYSA-N 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- VFTFKUDGYRBSAL-UHFFFAOYSA-N 15-crown-5 Chemical compound C1COCCOCCOCCOCCO1 VFTFKUDGYRBSAL-UHFFFAOYSA-N 0.000 description 1
- XEZNGIUYQVAUSS-UHFFFAOYSA-N 18-crown-6 Chemical compound C1COCCOCCOCCOCCOCCO1 XEZNGIUYQVAUSS-UHFFFAOYSA-N 0.000 description 1
- MPARHIHLIXVYMF-UHFFFAOYSA-M 2,2-bis(hydroxymethyl)butyl-(2-hydroxyethyl)-dimethylazanium;hydroxide Chemical compound [OH-].CCC(CO)(CO)C[N+](C)(C)CCO MPARHIHLIXVYMF-UHFFFAOYSA-M 0.000 description 1
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 1
- MOYOOFATMSXWQO-UHFFFAOYSA-M 2,2-dimethylpropanoate;tributyl-[(4-methoxyphenyl)methyl]azanium Chemical compound CC(C)(C)C([O-])=O.CCCC[N+](CCCC)(CCCC)CC1=CC=C(OC)C=C1 MOYOOFATMSXWQO-UHFFFAOYSA-M 0.000 description 1
- VZDIRINETBAVAV-UHFFFAOYSA-N 2,4-diisocyanato-1-methylcyclohexane Chemical compound CC1CCC(N=C=O)CC1N=C=O VZDIRINETBAVAV-UHFFFAOYSA-N 0.000 description 1
- MZEGJNMYXWIQFF-UHFFFAOYSA-N 2,5-diisocyanato-1,1,3-trimethylcyclohexane Chemical compound CC1CC(N=C=O)CC(C)(C)C1N=C=O MZEGJNMYXWIQFF-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical group COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- HHRGNKUNRVABBN-UHFFFAOYSA-N 2-[2-hydroxyethyl(propan-2-yl)amino]ethanol Chemical compound OCCN(C(C)C)CCO HHRGNKUNRVABBN-UHFFFAOYSA-N 0.000 description 1
- HLFNUPJVFUAPLD-UHFFFAOYSA-M 2-ethylhexanoate;2-hydroxypropyl(trimethyl)azanium Chemical compound CC(O)C[N+](C)(C)C.CCCCC(CC)C([O-])=O HLFNUPJVFUAPLD-UHFFFAOYSA-M 0.000 description 1
- ZRAFROCVCJSQSP-UHFFFAOYSA-M 2-ethylhexanoate;ethyl-[(4-methoxyphenyl)methyl]-dimethylazanium Chemical compound CCCCC(CC)C([O-])=O.CC[N+](C)(C)CC1=CC=C(OC)C=C1 ZRAFROCVCJSQSP-UHFFFAOYSA-M 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- KIZQNNOULOCVDM-UHFFFAOYSA-M 2-hydroxyethyl(trimethyl)azanium;hydroxide Chemical compound [OH-].C[N+](C)(C)CCO KIZQNNOULOCVDM-UHFFFAOYSA-M 0.000 description 1
- UUNHRGSUOBTBKW-UHFFFAOYSA-M 2-hydroxypropanoate;tetramethylazanium Chemical compound C[N+](C)(C)C.CC(O)C([O-])=O UUNHRGSUOBTBKW-UHFFFAOYSA-M 0.000 description 1
- YQIGLEFUZMIVHU-UHFFFAOYSA-N 2-methyl-n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C(C)=C YQIGLEFUZMIVHU-UHFFFAOYSA-N 0.000 description 1
- OELQSSWXRGADDE-UHFFFAOYSA-N 2-methylprop-2-eneperoxoic acid Chemical compound CC(=C)C(=O)OO OELQSSWXRGADDE-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- ZDKYYMRLZONTFK-UHFFFAOYSA-N 3,4-bis(isocyanatomethyl)bicyclo[2.2.1]heptane Chemical compound C1CC2(CN=C=O)C(CN=C=O)CC1C2 ZDKYYMRLZONTFK-UHFFFAOYSA-N 0.000 description 1
- XYYXDARQOHWBPO-UHFFFAOYSA-N 3,5-dimethyl-1h-1,2,4-triazole Chemical compound CC1=NNC(C)=N1 XYYXDARQOHWBPO-UHFFFAOYSA-N 0.000 description 1
- SDXAWLJRERMRKF-UHFFFAOYSA-N 3,5-dimethyl-1h-pyrazole Chemical compound CC=1C=C(C)NN=1 SDXAWLJRERMRKF-UHFFFAOYSA-N 0.000 description 1
- QMYGFTJCQFEDST-UHFFFAOYSA-N 3-methoxybutyl acetate Chemical compound COC(C)CCOC(C)=O QMYGFTJCQFEDST-UHFFFAOYSA-N 0.000 description 1
- VATRWWPJWVCZTA-UHFFFAOYSA-N 3-oxo-n-[2-(trifluoromethyl)phenyl]butanamide Chemical compound CC(=O)CC(=O)NC1=CC=CC=C1C(F)(F)F VATRWWPJWVCZTA-UHFFFAOYSA-N 0.000 description 1
- NXQWWXHHRBLONY-UHFFFAOYSA-N 4-(isocyanatomethyl)octane Chemical compound CCCCC(CCC)CN=C=O NXQWWXHHRBLONY-UHFFFAOYSA-N 0.000 description 1
- TXQQENWTALNFDC-UHFFFAOYSA-M 4-tert-butylbenzoate;2-hydroxypropyl(trimethyl)azanium Chemical compound CC(O)C[N+](C)(C)C.CC(C)(C)C1=CC=C(C([O-])=O)C=C1 TXQQENWTALNFDC-UHFFFAOYSA-M 0.000 description 1
- MGYGFNQQGAQEON-UHFFFAOYSA-N 4-tolyl isocyanate Chemical compound CC1=CC=C(N=C=O)C=C1 MGYGFNQQGAQEON-UHFFFAOYSA-N 0.000 description 1
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 1
- AWQSAIIDOMEEOD-UHFFFAOYSA-N 5,5-Dimethyl-4-(3-oxobutyl)dihydro-2(3H)-furanone Chemical compound CC(=O)CCC1CC(=O)OC1(C)C AWQSAIIDOMEEOD-UHFFFAOYSA-N 0.000 description 1
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 1
- WZRNGGFHDMOCEA-UHFFFAOYSA-N 7-methyloxepan-2-one Chemical compound CC1CCCCC(=O)O1 WZRNGGFHDMOCEA-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- XSNCKIXIJLKQTI-SWUBSKDPSA-N CC(C)/N=C1/OC(=O)N(C(C)C)C(=O)N1C(C)C.CC(C)C1C(=O)C(C(C)C)C1=O.CC(C)N1C(=N)OC(=O)N(C(C)C)C1=O.CC(C)N1C(=O)N(C(C)C)C(=O)N(C(C)C)C1=O.CC(C)NC(=O)N(C(=O)NC(C)C)C(C)C.CC(C)NC(=O)N(C(=O)OC(C)C)C(C)C Chemical compound CC(C)/N=C1/OC(=O)N(C(C)C)C(=O)N1C(C)C.CC(C)C1C(=O)C(C(C)C)C1=O.CC(C)N1C(=N)OC(=O)N(C(C)C)C1=O.CC(C)N1C(=O)N(C(C)C)C(=O)N(C(C)C)C1=O.CC(C)NC(=O)N(C(=O)NC(C)C)C(C)C.CC(C)NC(=O)N(C(=O)OC(C)C)C(C)C XSNCKIXIJLKQTI-SWUBSKDPSA-N 0.000 description 1
- MKVRGRZUVQGKTK-UHFFFAOYSA-N CCCCCC.N#COCCCCCCN1C(=O)N(CCCCCCN=C=O)C(=O)N(CCCCCCN=C=O)C1=O.O=C=NCCCCCCNC(=O)N(CCCCCCN=C=O)C(=O)CN=C=O Chemical compound CCCCCC.N#COCCCCCCN1C(=O)N(CCCCCCN=C=O)C(=O)N(CCCCCCN=C=O)C1=O.O=C=NCCCCCCNC(=O)N(CCCCCCN=C=O)C(=O)CN=C=O MKVRGRZUVQGKTK-UHFFFAOYSA-N 0.000 description 1
- WDWYFUZTKBFUPA-UHFFFAOYSA-N CNN(NC)C(C1=CC=CC=C1)CCC Chemical compound CNN(NC)C(C1=CC=CC=C1)CCC WDWYFUZTKBFUPA-UHFFFAOYSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- BWLUMTFWVZZZND-UHFFFAOYSA-N Dibenzylamine Chemical compound C=1C=CC=CC=1CNCC1=CC=CC=C1 BWLUMTFWVZZZND-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- ZMDDERVSCYEKPQ-UHFFFAOYSA-N Ethyl (mesitylcarbonyl)phenylphosphinate Chemical compound C=1C=CC=CC=1P(=O)(OCC)C(=O)C1=C(C)C=C(C)C=C1C ZMDDERVSCYEKPQ-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- LUKYUIDCZNHKLS-UHFFFAOYSA-N I.O=C=NCCCCCCN=C=O.[HH] Chemical compound I.O=C=NCCCCCCN=C=O.[HH] LUKYUIDCZNHKLS-UHFFFAOYSA-N 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 238000005684 Liebig rearrangement reaction Methods 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- HTLZVHNRZJPSMI-UHFFFAOYSA-N N-ethylpiperidine Chemical compound CCN1CCCCC1 HTLZVHNRZJPSMI-UHFFFAOYSA-N 0.000 description 1
- ZWXPDGCFMMFNRW-UHFFFAOYSA-N N-methylcaprolactam Chemical compound CN1CCCCCC1=O ZWXPDGCFMMFNRW-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005643 Pelargonic acid Substances 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- APQHKWPGGHMYKJ-UHFFFAOYSA-N Tributyltin oxide Chemical compound CCCC[Sn](CCCC)(CCCC)O[Sn](CCCC)(CCCC)CCCC APQHKWPGGHMYKJ-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- KIMKGBGMXUPKJT-UHFFFAOYSA-N [diethyl-(4-methoxybenzoyl)germyl]-(4-methoxyphenyl)methanone Chemical compound C=1C=C(OC)C=CC=1C(=O)[Ge](CC)(CC)C(=O)C1=CC=C(OC)C=C1 KIMKGBGMXUPKJT-UHFFFAOYSA-N 0.000 description 1
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 description 1
- OHBRHBQMHLEELN-UHFFFAOYSA-N acetic acid;1-butoxybutane Chemical compound CC(O)=O.CCCCOCCCC OHBRHBQMHLEELN-UHFFFAOYSA-N 0.000 description 1
- KVXNKFYSHAUJIA-UHFFFAOYSA-N acetic acid;ethoxyethane Chemical compound CC(O)=O.CCOCC KVXNKFYSHAUJIA-UHFFFAOYSA-N 0.000 description 1
- PXAJQJMDEXJWFB-UHFFFAOYSA-N acetone oxime Chemical compound CC(C)=NO PXAJQJMDEXJWFB-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- RJGDLRCDCYRQOQ-UHFFFAOYSA-N anthrone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3CC2=C1 RJGDLRCDCYRQOQ-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WURBFLDFSFBTLW-UHFFFAOYSA-N benzil Chemical compound C=1C=CC=CC=1C(=O)C(=O)C1=CC=CC=C1 WURBFLDFSFBTLW-UHFFFAOYSA-N 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- YSUSJOARGJTHCW-UHFFFAOYSA-M benzyl(tributyl)azanium;2-ethylhexanoate Chemical compound CCCCC(CC)C([O-])=O.CCCC[N+](CCCC)(CCCC)CC1=CC=CC=C1 YSUSJOARGJTHCW-UHFFFAOYSA-M 0.000 description 1
- YOUGRGFIHBUKRS-UHFFFAOYSA-N benzyl(trimethyl)azanium Chemical compound C[N+](C)(C)CC1=CC=CC=C1 YOUGRGFIHBUKRS-UHFFFAOYSA-N 0.000 description 1
- KFSZGBHNIHLIAA-UHFFFAOYSA-M benzyl(trimethyl)azanium;fluoride Chemical compound [F-].C[N+](C)(C)CC1=CC=CC=C1 KFSZGBHNIHLIAA-UHFFFAOYSA-M 0.000 description 1
- LDORUASMJWQVLD-UHFFFAOYSA-M benzyl-ethyl-dimethylazanium;2,2-dimethylpropanoate Chemical compound CC(C)(C)C([O-])=O.CC[N+](C)(C)CC1=CC=CC=C1 LDORUASMJWQVLD-UHFFFAOYSA-M 0.000 description 1
- PDCXNUDBSXMPTJ-UHFFFAOYSA-M benzyl-ethyl-dimethylazanium;2-ethylhexanoate Chemical compound CCCCC(CC)C([O-])=O.CC[N+](C)(C)CC1=CC=CC=C1 PDCXNUDBSXMPTJ-UHFFFAOYSA-M 0.000 description 1
- 150000003939 benzylamines Chemical class 0.000 description 1
- NDKBVBUGCNGSJJ-UHFFFAOYSA-M benzyltrimethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)CC1=CC=CC=C1 NDKBVBUGCNGSJJ-UHFFFAOYSA-M 0.000 description 1
- VEZXCJBBBCKRPI-UHFFFAOYSA-N beta-propiolactone Chemical compound O=C1CCO1 VEZXCJBBBCKRPI-UHFFFAOYSA-N 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- NRYUXUHIGUILJE-UHFFFAOYSA-N bis[4-(2-isocyanatopropan-2-yl)phenyl] carbonate Chemical compound C1=CC(C(C)(N=C=O)C)=CC=C1OC(=O)OC1=CC=C(C(C)(C)N=C=O)C=C1 NRYUXUHIGUILJE-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229930006711 bornane-2,3-dione Natural products 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- BSDOQSMQCZQLDV-UHFFFAOYSA-N butan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] BSDOQSMQCZQLDV-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- KQWGXHWJMSMDJJ-UHFFFAOYSA-N cyclohexyl isocyanate Chemical compound O=C=NC1CCCCC1 KQWGXHWJMSMDJJ-UHFFFAOYSA-N 0.000 description 1
- 238000006006 cyclotrimerization reaction Methods 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- RJGHQTVXGKYATR-UHFFFAOYSA-L dibutyl(dichloro)stannane Chemical compound CCCC[Sn](Cl)(Cl)CCCC RJGHQTVXGKYATR-UHFFFAOYSA-L 0.000 description 1
- ZXDVQYBUEVYUCG-UHFFFAOYSA-N dibutyltin(2+);methanolate Chemical compound CCCC[Sn](OC)(OC)CCCC ZXDVQYBUEVYUCG-UHFFFAOYSA-N 0.000 description 1
- ISXUHJXWYNONDI-UHFFFAOYSA-L dichloro(diphenyl)stannane Chemical compound C=1C=CC=CC=1[Sn](Cl)(Cl)C1=CC=CC=C1 ISXUHJXWYNONDI-UHFFFAOYSA-L 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical group CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- UYAAVKFHBMJOJZ-UHFFFAOYSA-N diimidazo[1,3-b:1',3'-e]pyrazine-5,10-dione Chemical compound O=C1C2=CN=CN2C(=O)C2=CN=CN12 UYAAVKFHBMJOJZ-UHFFFAOYSA-N 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000012972 dimethylethanolamine Substances 0.000 description 1
- ATLPLEZDTSBZQG-UHFFFAOYSA-L dioxido-oxo-propan-2-yl-$l^{5}-phosphane Chemical compound CC(C)P([O-])([O-])=O ATLPLEZDTSBZQG-UHFFFAOYSA-L 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- QKEFILMVJRWDRR-UHFFFAOYSA-M dodecyl-(2-hydroxyethyl)-dimethylazanium;hydroxide Chemical compound [OH-].CCCCCCCCCCCC[N+](C)(C)CCO QKEFILMVJRWDRR-UHFFFAOYSA-M 0.000 description 1
- VICYBMUVWHJEFT-UHFFFAOYSA-N dodecyltrimethylammonium ion Chemical compound CCCCCCCCCCCC[N+](C)(C)C VICYBMUVWHJEFT-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- XBRDBODLCHKXHI-UHFFFAOYSA-N epolamine Chemical compound OCCN1CCCC1 XBRDBODLCHKXHI-UHFFFAOYSA-N 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- BFWMWWXRWVJXSE-UHFFFAOYSA-M fentin hydroxide Chemical compound C=1C=CC=CC=1[Sn](C=1C=CC=CC=1)(O)C1=CC=CC=C1 BFWMWWXRWVJXSE-UHFFFAOYSA-M 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- ANJPRQPHZGHVQB-UHFFFAOYSA-N hexyl isocyanate Chemical compound CCCCCCN=C=O ANJPRQPHZGHVQB-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- DQKGOGJIOHUEGK-UHFFFAOYSA-M hydron;2-hydroxyethyl(trimethyl)azanium;carbonate Chemical compound OC([O-])=O.C[N+](C)(C)CCO DQKGOGJIOHUEGK-UHFFFAOYSA-M 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- CZALJDQHONFVFU-UHFFFAOYSA-N isocyanatocyclopentane Chemical compound O=C=NC1CCCC1 CZALJDQHONFVFU-UHFFFAOYSA-N 0.000 description 1
- WARQUFORVQESFF-UHFFFAOYSA-N isocyanatoethene Chemical class C=CN=C=O WARQUFORVQESFF-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- GIWKOZXJDKMGQC-UHFFFAOYSA-L lead(2+);naphthalene-2-carboxylate Chemical compound [Pb+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 GIWKOZXJDKMGQC-UHFFFAOYSA-L 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- DLSOILHAKCBARI-UHFFFAOYSA-N n-benzyl-2-methylpropan-2-amine Chemical compound CC(C)(C)NCC1=CC=CC=C1 DLSOILHAKCBARI-UHFFFAOYSA-N 0.000 description 1
- HNHVTXYLRVGMHD-UHFFFAOYSA-N n-butyl isocyanate Chemical compound CCCCN=C=O HNHVTXYLRVGMHD-UHFFFAOYSA-N 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012860 organic pigment Substances 0.000 description 1
- 125000001190 organyl group Chemical group 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- XMAXUBOLEVIRGX-UHFFFAOYSA-N phosphanium;fluoride Chemical class [F-].[PH4+] XMAXUBOLEVIRGX-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 150000003017 phosphorus Chemical class 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000011495 polyisocyanurate Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- GDNULDIPPDQVRH-UHFFFAOYSA-N potassium;pyrrolidin-2-one Chemical compound [K].O=C1CCCN1 GDNULDIPPDQVRH-UHFFFAOYSA-N 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 239000002987 primer (paints) Substances 0.000 description 1
- 229960000380 propiolactone Drugs 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 229940116423 propylene glycol diacetate Drugs 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- UAKCMIIOSJFOTD-UHFFFAOYSA-M sodium;3-oxobutanoate Chemical compound [Na+].CC(=O)CC([O-])=O UAKCMIIOSJFOTD-UHFFFAOYSA-M 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 1
- BJQWBACJIAKDTJ-UHFFFAOYSA-N tetrabutylphosphanium Chemical compound CCCC[P+](CCCC)(CCCC)CCCC BJQWBACJIAKDTJ-UHFFFAOYSA-N 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- JDRNNVMPFUXWQD-UHFFFAOYSA-M tetraethylphosphanium;fluoride Chemical compound [F-].CC[P+](CC)(CC)CC JDRNNVMPFUXWQD-UHFFFAOYSA-M 0.000 description 1
- VBHJAIGGLJOOLJ-UHFFFAOYSA-M tetramethylphosphanium;fluoride Chemical compound [F-].C[P+](C)(C)C VBHJAIGGLJOOLJ-UHFFFAOYSA-M 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- GNABDJMISKSNIQ-UHFFFAOYSA-N tributyl(imidazol-1-yl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)N1C=CN=C1 GNABDJMISKSNIQ-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- PWBHRVGYSMBMIO-UHFFFAOYSA-M tributylstannanylium;acetate Chemical compound CCCC[Sn](CCCC)(CCCC)OC(C)=O PWBHRVGYSMBMIO-UHFFFAOYSA-M 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- XTAZYLNFDRKIHJ-UHFFFAOYSA-O trioctylazanium Chemical compound CCCCCCCC[NH+](CCCCCCCC)CCCCCCCC XTAZYLNFDRKIHJ-UHFFFAOYSA-O 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/81—Unsaturated isocyanates or isothiocyanates
- C08G18/8125—Unsaturated isocyanates or isothiocyanates having two or more isocyanate or isothiocyanate groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/112—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C39/00—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
- B29C39/003—Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
- B29C39/006—Monomers or prepolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/124—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
- B29C64/129—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/214—Doctor blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/245—Platforms or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/264—Arrangements for irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/295—Heating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F120/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F120/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F120/10—Esters
- C08F120/34—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
- C08F120/36—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/34—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
- C08F220/36—Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/006—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
- C08F283/008—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00 on to unsaturated polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/02—Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
- C08G18/022—Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only the polymeric products containing isocyanurate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/04—Polymeric products of isocyanates or isothiocyanates with vinyl compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/18—Catalysts containing secondary or tertiary amines or salts thereof
- C08G18/1816—Catalysts containing secondary or tertiary amines or salts thereof having carbocyclic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/225—Catalysts containing metal compounds of alkali or alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/16—Catalysts
- C08G18/22—Catalysts containing metal compounds
- C08G18/24—Catalysts containing metal compounds of tin
- C08G18/244—Catalysts containing metal compounds of tin tin salts of carboxylic acids
- C08G18/246—Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/62—Polymers of compounds having carbon-to-carbon double bonds
- C08G18/6216—Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
- C08G18/622—Polymers of esters of alpha-beta ethylenically unsaturated carboxylic acids
- C08G18/6225—Polymers of esters of acrylic or methacrylic acid
- C08G18/6229—Polymers of hydroxy groups containing esters of acrylic or methacrylic acid with aliphatic polyalcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/671—Unsaturated compounds having only one group containing active hydrogen
- C08G18/672—Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/675—Low-molecular-weight compounds
- C08G18/6755—Unsaturated carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/728—Polymerisation products of compounds having carbon-to-carbon unsaturated bonds and having isocyanate or isothiocyanate groups or groups forming isocyanate or isothiocyanate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/73—Polyisocyanates or polyisothiocyanates acyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/751—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
- C08G18/752—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
- C08G18/753—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
- C08G18/755—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/79—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
- C08G18/791—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
- C08G18/792—Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/81—Unsaturated isocyanates or isothiocyanates
- C08G18/8141—Unsaturated isocyanates or isothiocyanates masked
- C08G18/815—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
- C08G18/8158—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
- C08G18/8175—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
- C08J3/244—Stepwise homogeneous crosslinking of one polymer with one crosslinking system, e.g. partial curing
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/14—Polyurethanes having carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J175/00—Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
- C09J175/04—Polyurethanes
- C09J175/14—Polyurethanes having carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2075/00—Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/14—Glass
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2475/00—Presence of polyurethane
Definitions
- the present invention relates to polymerizable compositions comprising components which can be crosslinked either via isocyanurate bonds or by a free-radical reaction mechanism. It further describes processes by which polymers can be prepared from these compositions.
- WO 2015/155195 describes a composite material obtainable from a reinforcing material and a polyurethane composition consisting of at least one polyisocyanate (PIC), a PIC-reactive component consisting of at least one polyol and at least one methacrylate having OH groups, and a free-radical initiator.
- PIC polyisocyanate
- PIC-reactive component consisting of at least one polyol and at least one methacrylate having OH groups
- a free-radical initiator a free-radical initiator.
- a disadvantage of the process used, in addition to the short pot lives/gel times of the polyurethane compositions, is the fact that, in the preparation of polyurethanes, the mixing ratio of the components, especially of the polyisocyanate and the polyol, is limited by the necessity of keeping the molar ratio of isocyanate and isocyanate-reactive groups close to 1:1.
- WO 2016/087366 describes a free-radically polymerizable composition consisting of a polyurethane containing double bonds and a reactive diluent based on various methacrylates.
- a disadvantage here is the two-stage reaction regime (the reaction of the hydroxymethacrylate with an isocyanate takes place in the first stage, and the reaction of the isocyanate-bonded (meth)acrylates to give polyacrylates takes place in the second stage, in order to obtain a crosslinked composition).
- a further disadvantage is the necessity of working under precise stoichiometric conditions in order to avoid free unconverted isocyanate.
- U.S. Pat No. 6,133,397 and PCT/EP2017/073276 describe coating compositions that are cured primarily through the crosslinking of isocyanate groups with one another. This forms isocyanurate groups inter alia that impart advantageous properties to the coatings formed.
- the low-monomer polyisocyanate compositions described as reactants in these applications have a relatively high viscosity which can be a hindrance in some applications.
- monomeric polyisocyanates as reactive diluents is undesirable for reasons of occupational hygiene in many cases since these compounds are firstly volatile, and secondly act as irritants.
- conventional organic solvents can be used to reduce the viscosity.
- these are disadvantageous for reasons of environmental protection since they are released into the environment during or after the polymerization.
- compositions having a viscosity in the unprocessed state that can be adjusted with maximum freedom according to the demands of the respective application, and the viscosity of which can be increased with maximum speed after application to a surface.
- the coatings formed are also to have good optical properties, especially clarity.
- the present invention relates to a coating composition having a ratio of isocyanate groups to isocyanate-reactive groups of at least 2.0:1.0, comprising:
- the isocyanate component A enables the formation of a polymer that forms through the addition of isocyanate groups. This forms isocyanurate groups in particular.
- the crosslinking of the isocyanate groups present in the isocyanate component A endows the polymer with the majority of its mechanical and chemical stability.
- the crosslinking of the isocyanate groups is mediated by the trimerization catalyst C.
- Components B, D and E are each characterized by the presence of an ethylenic double bond. This double bond is a prerequisite for a second crosslinking mechanism to be available in addition to the polyaddition of the isocyanate groups in the polymerizable composition.
- Each of these components enables crosslinking by free-radical polymerization. This is a crosslinking mechanism that enables the buildup of viscosity within a period of a few seconds.
- Component B lowers the viscosity of the polymerizable composition and can be rapidly crosslinked by free-radical polymerization and thus used for rapid buildup of viscosity. If there is just a component B present in the polymerizable composition without components D or E, the two different crosslinking mechanisms give rise to two different polymer networks. This can lead to turbidity in the finished product and under some circumstances to poorer mechanical properties.
- component B is used in combination with a component D or E. It can also be used in combination with both components.
- Components D and E mediate the crosslinking of the network, formed by free-radical polymerization, of component B with the polymer of isocyanate component A formed through polyaddition of the isocyanate groups. They thus ensure that there are no two separate polymer networks of components A and B present in the polymer, but rather a single polymer network.
- components D and E enable the formation of a polymer network via free-radical polymerization. Similarly to the case of exclusive use of component B, rapid buildup of viscosity after application of the composition of the invention is enabled. However, unlike component B, components D and E are only of limited suitability as reactive diluents.
- the polymerizable composition contains at least one of the two components D and E, but no component B.
- the composition of the invention contains a component B and at least one of the two components D and E. Particular preference is given to the combination of B and D.
- the proportions of components B, D and E are adjusted such that the coating composition, after the free-radical polymerization of the ethylenic double bonds, does not run on a vertical surface within a period of at least 30 seconds, preferably at least 2 minutes and more preferably at least 10 minutes.
- a coating composition does not run if no difference in the coating thickness is visually perceptible between the upper end of the surface and the lower end thereof after the aforementioned time.
- Whether a coating composition fulfils this criterion can be determined by simple preliminary tests.
- the composition is applied to a surface and treated with actinic radiation so as to initiate free-radical polymerization. Subsequently, the surface is stored vertically at 23° C. (room temperature) for the abovementioned period and then visually assessed.
- target coating thicknesses are at least 0.005 mm, preferably at least 0.02 mm and most preferably at least 0.04 mm, and at most 5 mm, preferably at most 0.5 mm and most preferably at most 0.1 mm.
- the proportion of components B, D and E in the composition of the invention is such that the viscosity of the coating is at least doubled, preferably quadrupled and more preferably dectupled after polymerization triggered by actinic radiation.
- the dynamic viscosity to EN ISO 2884-1:2006 measured in a cone-plate viscometer at room temperature after polymerization with actinic radiation is at least 200 mPas, preferably at least 500 mPas, more preferably at least 1000 mPas, even more preferably at least 10 000 mPas and even more preferably still at least 100 000 mPas.
- the polymerizable composition of the invention comprises isocyanate component A and component B preferably in a quantitative ratio that lowers the viscosity of the undiluted isocyanate component to at most 75%, preferably at most 25%, more preferably at most 5% and most preferably to at most 1% of the viscosity of undiluted isocyanate component A.
- the presence of at least one of components D and E is particularly preferred in this embodiment.
- the quantitative ratio of component A to the total amount of components B, D and E is such that the polymerizable composition before each crosslinking has a viscosity at room temperature of at most 100 000 mPas, more preferably of at most 10 000 mPas, even more preferably of at most 1000 mPas and most preferably at most 100 mPas.
- the polymer obtainable by polymerizing the coating composition of the invention receives its advantageous properties very substantially through crosslinking of the isocyanate groups with one another. Consequently, it is essential to the invention that the ratio of isocyanate groups to the total amount of the isocyanate-reactive groups in the polymerizable composition is restricted such that there is a distinct molar excess of isocyanate groups.
- the molar ratio of isocyanate groups of the isocyanate component to isocyanate-reactive groups in the reactive resin is consequently at least 2.0:1.0, preferably at least 3.0:1.0, more preferably at least 4.0:1.0 and even more preferably at least 8.0:1,0.
- Isocyanate-reactive groups in the context of the present application are hydroxyl, thiol, carboxyl and amino groups, amides, urethanes, acid anhydrides and epoxides.
- the isocyanate groups present in the polymerizable composition are present in components A and—if present—E.
- the isocyanate-reactive groups may in principle be present in all other components except for component B.
- the use of the polymerizable composition of the invention enables greater flexibility in the selection of the proportions of the individual components. If a polyurethane or a polyurea is to be obtained, the molar ratio of isocyanate groups to isocyanate-reactive groups must if possible be close to 1:1. According to the present invention, however, there is a distinct excess of isocyanate groups that is consequently not just acceptable but actually desired because the polymer formed owes its advantageous properties very substantially to the reaction of isocyanate groups with other isocyanate groups.
- the structures thus formed, especially the isocyanurate groups lead to polymers with exceptional hardness and exceptional stability to chemicals.
- Isocyanate component A in the context of the invention refers to the isocyanate component in the starting reaction mixture. In other words, this is the sum total of all the compounds in the starting reaction mixture that have isocyanate groups, except for component E.
- the isocyanate component A is thus used as reactant in the process of the invention.
- isocyanate component A especially to “providing the isocyanate component A”, this means that the isocyanate component A exists and is used as reactant.
- the isocyanate component A preferably contains at least one polyisocyanate.
- polyisocyanate as used here is a collective term for compounds containing two or more isocyanate groups in the molecule (this is understood by the person skilled in the art to mean free isocyanate groups of the general structure —N ⁇ C ⁇ O).
- the simplest and most important representatives of these polyisocyanates are the diisocyanates. These have the general structure O ⁇ C ⁇ N—R—N ⁇ C ⁇ O where R typically represents aliphatic, alicyclic and/or aromatic radicals.
- polyisocyanates Because of the polyfunctionality ( ⁇ 2 isocyanate groups), it is possible to use polyisocyanates to produce a multitude of polymers (e.g. polyurethanes, polyureas and polyisocyanurates) and low molecular weight compounds (for example those having uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structure).
- polymers e.g. polyurethanes, polyureas and polyisocyanurates
- low molecular weight compounds for example those having uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structure.
- polyisocyanates in this application refers equally to monomeric and/or oligomeric polyisocyanates. For the understanding of many aspects of the invention, however, it is important to distinguish between monomeric diisocyanates and oligomeric polyisocyanates. Where reference is made in this application to “oligomeric polyisocyanates”, this means polyisocyanates formed from at least two monomeric diisocyanate molecules, i.e. compounds that constitute or contain a reaction product formed from at least two monomeric diisocyanate molecules.
- oligomeric polyisocyanates from monomeric diisocyanates is also referred to here as modification of monomeric diisocyanates.
- modification means the reaction of monomeric diisocyanates to give oligomeric polyisocyanates having uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structure.
- hexamethylene diisocyanate is a “monomeric diisocyanate” since it contains two isocyanate groups and is not a reaction product of at least two polyisocyanate molecules:
- oligomeric polyisocyanates within the context of the invention.
- Representatives of such “oligomeric polyisocyanates” are, proceeding from monomeric HDI, for example, HDI isocyanurate and HDI biuret, each of which is formed from three monomeric HDI units:
- the proportion by weight of isocyanate groups based on the total amount of the isocyanate component A is at least 15% by weight.
- the isocyanate component A may consist essentially of monomeric polyisocyanates or essentially of oligomeric polyisocyanates. It may alternatively comprise oligomeric and monomeric polyisocyanates in any desired mixing ratios.
- the isocyanate component A used as reactant in the trimerization has a low level of monomers (i.e. a low level of monomeric diisocyanates) and already contains oligomeric polyisocyanates.
- a low level of monomers i.e. a low level of monomeric diisocyanates
- oligomeric polyisocyanates already contains oligomeric polyisocyanates.
- the isocyanate component A has a proportion of monomeric diisocyanates in the isocyanate component A of not more than 20% by weight, especially not more than 15% by weight or not more than 10% by weight, based in each case on the weight of the isocyanate component A.
- the isocyanate component A has a content of monomeric diisocyanates of not more than 5% by weight, preferably not more than 2.0% by weight, more preferably not more than 1.0% by weight, based in each case on the weight of the isocyanate component A.
- Particularly good results are established when the isocyanate component A is essentially free of monomeric diisocyanates. “Essentially free” here means that the content of monomeric diisocyanates is not more than 0.5% by weight, based on the weight of the isocyanate component A.
- the isocyanate component A consists entirely or to an extent of at least 80%, 85%, 90%, 95%, 98%, 99% or 99.5% by weight, based in each case on the weight of the isocyanate component A, of oligomeric polyisocyanates. Preference is given here to a content of oligomeric polyisocyanates of at least 99% by weight. This content of oligomeric polyisocyanates relates to the isocyanate component A as provided. In other words, the oligomeric polyisocyanates are not formed as intermediate during the process of the invention, but are already present in the isocyanate component A used as reactant on commencement of the reaction.
- Polyisocyanate compositions which have a low level of monomers or are essentially free of monomeric isocyanates can be obtained by conducting, after the actual modification reaction, in each case, at least one further process step for removal of the unconverted excess monomeric diisocyanates.
- This removal of monomers can be effected in a particularly practical manner by processes known per se, preferably by thin-film distillation under high vacuum or by extraction with suitable solvents that are inert toward isocyanate groups, for example aliphatic or cycloaliphatic hydrocarbons such as pentane, hexane, heptane, cyclopentane or cyclohexane.
- the isocyanate component A of the invention is obtained by modifying monomeric diisocyanates with subsequent removal of unconverted monomers.
- an isocyanate component A having a low level of monomers contains an extra monomeric diisocyanate.
- extra monomeric diisocyanate means that it differs from the monomeric diisocyanates which have been used for preparation of the oligomeric polyisocyanates present in the isocyanate component A.
- the isocyanate component A has a proportion of extra monomeric diisocyanate in the isocyanate component A of not more than 20% by weight, especially not more than 15% by weight or not more than 10% by weight, based in each case on the weight of the isocyanate component A.
- the isocyanate component A has a content of extra monomeric diisocyanate of not more than 5% by weight, especially not more than 2.0% by weight, more preferably not more than 1.0% by weight, based in each case on the weight of the isocyanate component A.
- the isocyanate component A contains monomeric monoisocyanates or monomeric isocyanates having an isocyanate functionality greater than two, i.e. having more than two isocyanate groups per molecule.
- monomeric monoisocyanates or monomeric isocyanates having an isocyanate functionality greater than two has been found to be advantageous in order to influence the network density of the coating.
- the isocyanate component A has a proportion of monomeric monoisocyanates or monomeric isocyanates having an isocyanate functionality greater than two in the isocyanate component A of not more than 20% by weight, especially not more than 15% by weight or not more than 10% by weight, based in each case on the weight of the isocyanate component A.
- the isocyanate component A has a content of monomeric monoisocyanates or monomeric isocyanates having an isocyanate functionality greater than two of not more than 5% by weight, preferably not more than 2.0% by weight, more preferably not more than 1.0% by weight, based in each case on the weight of the isocyanate component A.
- no monomeric monoisocyanate or monomeric isocyanate having an isocyanate functionality greater than two is used in the trimerization reaction of the invention.
- the oligomeric polyisocyanates may, in accordance with the invention, especially have uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structure.
- the oligomeric polyisocyanates have at least one of the following oligomeric structure types or mixtures thereof:
- an isocyanate component A is used, wherein the isocyanurate structure component is at least 50 mol %, preferably at least 60 mol %, more preferably at least 70 mol %, even more preferably at least 80 mol %, even more preferably still at least 90 mol % and especially preferably at least 95 mol %, based on the sum total of the oligomeric structures from the group consisting of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and oxadiazinetrione structure present in the isocyanate component A, is used.
- an isocyanate component A containing, as well as the isocyanurate structure, at least one further oligomeric polyisocyanate having uretdione, biuret, allophanate, iminooxadiazinedione and oxadiazinetrione structure and mixtures thereof is used.
- the proportions of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structure in the isocyanate component A can be determined, for example, by NMR spectroscopy. It is possible here with preference to use 13C NMR spectroscopy, preferably in proton-decoupled form, since the oligomeric structures mentioned give characteristic signals.
- an oligomeric isocyanate component A for use in the process of the invention and/or the oligomeric polyisocyanates present therein preferably have/has an (average) NCO functionality of 2.0 to 5.0, preferably of 2.3 to 4.5.
- the isocyanate component A to be used in accordance with the invention has a content of isocyanate groups of 8.0% to 28.0% by weight, preferably of 14.0% to 25.0% by weight, based in each case on the weight of the isocyanate component A.
- the isocyanate component A of the invention is defined in that it contains oligomeric polyisocyanates which have been obtained from monomeric diisocyanates, irrespective of the nature of the modification reaction used, with observation of an oligomerization level of 5% to 45%, preferably 10% to 40%, more preferably 15% to 30%.
- Oligomerization level is understood here to mean the percentage of isocyanate groups originally present in the starting mixture which are consumed during the preparation process to form uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structures.
- Suitable polyisocyanates for production of the isocyanate component A for use in the process of the invention and the monomeric and/or oligomeric polyisocyanates present therein are any desired polyisocyanates obtainable in various ways, for example by phosgenation in the liquid or gas phase or by a phosgene-free route, for example by thermal urethane cleavage. Particularly good results are established when the polyisocyanates are monomeric diisocyanates.
- Preferred monomeric diisocyanates are those having a molecular weight in the range from 140 to 400 g/mol, having aliphatically, cycloaliphaticaily, araliphatically and/or aromatically bonded isocyanate groups, for example 1,4-diisocyanatobutane (BDI), 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), 2-methyl-1,5-diisocyanatopentane, 1,5-diisocyanato-2,2-dimethylpentane, 2,2,4- or 2,4,4-trimethyl-1,6-diisocyanatohexane, 1,10-diisocyanatodecane, 1,3- and 1,4-diisocyanatocyclohexane, 1,4-diisocyanato-3,3,5-trimethylcyclohexane, 1,3-diisocyanato-2-methylcyclo
- Suitable monomeric monoisocyanates which can optionally be used in the isocyanate component A are, for example, n-butyl isocyanate, n-amyl isocyanate, n-hexyl isocyanate, n-heptyl isocyanate, n-octyl isocyanate, undecyl isocyanate, dodecyl isocyanate, tetradecyl isocyanate, cetyl isocyanate, stearyl isocyanate, cyclopentyl isocyanate, cyclohexyl isocyanate, 3- or 4-methylcyclohexyl isocyanate or any desired mixtures of such monoisocyanates.
- An example of a monomeric isocyanate having an isocyanate functionality greater than two which can optionally be added to the isocyanate component A is 4-isocyanatomethyloctane 1,8-diisocyanate (triisocyanatononane; TIN).
- the isocyanate component A contains not more than 30% by weight, especially not more than 20% by weight, not more than 15% by weight, not more than 10% by weight, not more than 5% by weight or not more than 1% by weight, based in each case on the weight of the isocyanate component A, of aromatic polyisocyanates.
- aromatic polyisocyanate means a polyisocyanate having at least one aromatically bonded isocyanate group.
- Aromatically bonded isocyanate groups are understood to mean isocyanate groups bonded to an aromatic hydrocarbyl radical.
- an isocyanate component A having exclusively aliphatically and/or cycloaliphatically bonded isocyanate groups is used.
- Aliphatically and cycloaliphatically bonded isocyanate groups are understood to mean isocyanate groups bonded, respectively, to an aliphatic and cycloaliphatic hydrocarbyl radical.
- an isocyanate component A consisting of or comprising one or more oligomeric polyisocyanates is used, where the one or more oligomeric polyisocyanates has/have exclusively aliphatically and/or cycloaliphatically bonded isocyanate groups.
- the isocyanate component A consists to an extent of at least 70%, 80%, 85%, 90%, 95%, 98% or 99% by weight, based in each case on the weight of the isocyanate component A, of polyisocyanates having exclusively aliphatically and/or cycloaliphatically bonded isocyanate groups. Practical experiments have shown that particularly good results can be achieved with isocyanate component A in which the oligomeric polyisocyanates present therein have exclusively aliphatically and/or cycloaliphatically bonded isocyanate groups.
- a polyisocyanate composition A which consists of or comprises one or more oligomeric polyisocyanates, where the one or more oligomeric polyisocyanates is/are based on 1,4-diisocyanatobutane (BDI), 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), isophorone diisocyanate (IPDI) or 4,4′-diisocyanatodicyclohexylmethane (H12MDI) or mixtures thereof.
- BDI 1,4-diisocyanatobutane
- PDI 1,5-diisocyanatopentane
- HDI 1,6-diisocyanatohexane
- IPDI isophorone diisocyanate
- H12MDI 4,4′-diisocyanatodicyclohexylmethane
- isocyanate components A having a viscosity greater than 500 mPas and less than 200 000 mPas, preferably greater than 1000 mPas and less than 100 000 mPas, more preferably greater than 1000 mPas and less than 50 000 mPas and even more preferably greater than 1000 mPas and less than 25 000 mPas, measured according to DIN EN ISO 3219 at 21° C., are used.
- Suitable components B are all compounds containing at least one ethylenic double bond.
- This ethylenic double bond is crosslinkable with other ethylenic double bonds by a free-radical reaction mechanism.
- This condition is met by preferably activated double bonds between the ⁇ carbon atom and the ⁇ carbon atom alongside an activating group.
- the activating group is preferably a carboxyl or carbonyl group.
- component B is an acrylate, a methacrylate, the ester of an acrylate or the ester of a methacrylate.
- component B does not contain any of the isocyanate-reactive groups as defined further up in this application or any isocyanate group either.
- Preferred components B are components B1 with one, component B2 with two and component B3 with three of the above-described ethylenic double bonds. Particular preference is given to B1 and/or B2.
- component B used is a mixture of at least one component B1 and at least one component B2.
- component B used is a mixture of at least one component B1 and at least one component B3.
- component B used is a mixture of at least one component B2 and at least one component B3.
- component B used is a mixture of at least one component B1, at least one component B2 and at least one component B3. Preference is given to using a mixture of at least one component B1 with at least one component B2.
- the mass ratio of components B1 and B2 here is preferably between 30:1 and 1:30, more preferably between 20:1 and 1:20, even more preferably between 1:10 and 10:1 and most preferably between 2:1 and 1:2.
- Preferred components B1 are methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, decyl (meth)acrylate, benzyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, octadecyl (meth)acrylate, dodecyl (meth)acrylate, tetradecyl (meth)acrylate, oleyl (meth
- Preferred components B2 are vinyl (meth)acrylate, tetraethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, hexane-1,6-diol di(meth)acrylate, neopentyl glycol propoxylate di(meth)acrylate, tripropylene glycol di(meth)acrylate, bisphenol A ethoxylated di (meth)acrylate, ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, hexamethylene glycol di(meth)acrylate, bisphenol A di(meth)acrylate and 4,4′-bis(2-(meth)acryloyloxyethoxy)diphenylpropane.
- Preferred components B3 are ethoxylated trimethylolpropane tri(meth)acrylate, propoxylated glycerol tri(meth)acrylate, pentaerythritol tri(meth)acrylate, trimethylolpropane ethoxytri(meth)acrylate, trimethylolpropane tri(meth)acrylate, alkoxylated tri(meth)acrylate and tris(2-(meth)acryloylethyl) isocyanurate.
- the trimerization catalyst C may be mixed from one catalyst type or different catalyst types, but contains at least one catalyst that brings about the trimerization of isocyanate groups to isocyanurates or iminooxadiazinediones.
- Suitable catalysts for the process of the invention are, for example, simple tertiary amines, for example triethylamine, tributylamine, N,N-dimethylaniline, N-ethylpiperidine or N,N′-dimethylpiperazine.
- Suitable catalysts are also the tertiary hydroxyalkylamines described in GB 2 221 465, for example triethanolamine, N-methyldiethanolamine, dimethylethanolamine, N-isopropyldiethanolamine and 1-(2-hydroxyethyl)pyrrolidine, or the catalyst systems known from GB 2 222 161 that consist of mixtures of tertiary bicyclic amines, for example DBU, with simple aliphatic alcohols of low molecular weight.
- trimerization catalysts for the process of the invention are a multitude of different metal compounds. Suitable examples are the octoates and naphthenates of manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium or lead or mixtures thereof with acetates of lithium, sodium, potassium, calcium or barium that are described as catalysts in DE-A 3 240 613, the sodium and potassium salts of linear or branched alkanecarboxylic acids having up to 10 carbon atoms that are known from DE-A 3 219 608, for example of propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, pelargonic acid, capric acid and undecylenoic acid, the alkali metal or alkaline earth metal salts of aliphatic, cycloaliphatic or aromatic mono- and polycarboxylic acids having 2 to 20 carbon atoms that are known from EP-A 0 100 129, for example
- dibutyltin dichloride diphenyltin dichloride, triphenylstannanol, tributyltin acetate, tributyltin oxide, tin dioctoate, dibutyl(dimethoxy)stannane and tributyltin imidazolate.
- trimerization catalysts suitable for the process of the invention are, for example, the quaternary ammonium hydroxides known from DE-A 1 667 309, EP-A 0 013 880 and EP-A 0 047 452, for example tetraethylammonium hydroxide, trimethylbenzylammonium hydroxide, N,N-dimethyl-N-dodecyl-N-(2-hydroxyethyl)ammonium hydroxide, N-(2-hydroxyethyl)-N,N-dimethyl-N-(2,2′-dihydroxymethylbutyl)ammonium hydroxide and 1-(2-hydroxyethyl)-1,4-diazabicyclo[2.2.2]octane hydroxide (monoadduct of ethylene oxide and water with 1,4-diazabicyclo[2.2.2]octane), the quaternary hydroxyalkylammonium hydroxides known from EP-A 37 65 or EP-A 10 5
- trimerization catalysts C suitable for the process of the invention can be found, for example, in J. H. Saunders and K. C. Frisch, Polyurethanes Chemistry and Technology, p. 94 ff. (1962) and the literature cited therein.
- carboxylates and phenoxides with metal or ammonium ions are the anions of all aliphatic or cycloaliphatic carboxylic acids, preferably those with mono- or polycarboxylic acids having 1 to 20 carbon atoms.
- Suitable metal ions are derived from alkali metals or alkaline earth metals, manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium, tin, titanium, hafnium or lead.
- Preferred alkali metals are lithium, sodium and potassium, more preferably sodium and potassium.
- Preferred alkaline earth metals are magnesium, calcium, strontium and barium.
- octoate and naphthenate catalysts described in DE-A 3 240 613 are octoates and naphthenates of manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium or lead, or mixtures thereof with acetates of lithium, sodium, potassium, calcium or barium.
- the trimerization catalyst C preferably contains a polyether. This is especially preferred when the catalyst contains metal ions.
- Preferred polyethers are selected from the group consisting of crown ethers, diethylene glycol, polyethylene glycols and polypropylene glycols. It has been found to be of particular practical relevance in the process of the invention to use a trimerization catalyst B containing, as polyether, a polyethylene glycol or a crown ether, more preferably 18-crown-6 or 15-crown-5.
- the trimerization catalyst B comprises a polyethylene glycol having a number-average molecular weight of 100 to 1000 g/mol, preferably 300 g/mol to 500 g/mol and especially 350 g/mol to 450 g/mol.
- Component D is a compound having at least one isocyanate-reactive group as defined further up in this application and at least one ethylenic double bond in one molecule.
- the isocyanate-reactive group of component D may also be a uretdione group.
- Ethylenic double bonds are preferably those that are crosslinkable with other ethylenic double bonds by a free-radical reaction mechanism.
- Corresponding activated double bonds are defined in detail further up in this application for component B.
- Preferred components D are alkoxyalkyl (meth)acrylates having 2 to 12 carbon atoms in the hydroxyalkyl radical. Particular preference is given to 2-hydroxyethyl acrylate, the isomer mixture formed on addition of propylene oxide onto acrylic acid, or 4-hydroxybutyl acrylate.
- Component E is a compound having both at least one isocyanate group and at least one ethylenic double bond in one molecule. It can advantageously be obtained by crosslinking a component D described in the preceding paragraph with a monomeric or oligomeric polyisocyanate as described further up in this application. This crosslinking is effected by the reaction of the isocyanate-reactive groups, in this case especially a hydroxyl, amino or thiol group, and an isocyanate group of the polyisocyanate. This is preferably catalyzed by a component G, which is described further down in this application. But any other suitable catalyst known to those skilled in the art is also conceivable. It is also possible to dispense with a catalyst entirely.
- the isocyanate group of component E may also be in reversibly blocked form.
- the reversible blocking of isocyanate groups is preferably effected with blocking agents that are free of elimination products.
- the free-radically crosslinkable structural material contains blocked or unblocked NCO groups.
- the process of the invention further includes the step of deblocking these NCO groups. After they have been deblocked, they are thus available for further reactions.
- the blocking agent is chosen such that, on heating in the process of the invention, the NCO groups are at least partly deblocked.
- blocking agents are alcohols, lactams, oximes, malonic esters, alkyl acetoacetates, triazoles, phenols, imidazoles, pyrazoles and amines, for example butanone oxime, diisopropylamine, 1,2,4-triazole, dimethyl-1,2,4-triazole, imidazole, diethyl malonate, ethyl acetoacetate, acetone oxime, 3,5-dimethylpyrazole, ⁇ -caprolactam, N-methyl-, N-ethyl-, N-(iso)propyl-, N-n-butyl-, N-isobutyl-, N-tert-butylbenzylamine or 1,1-dimethylbenzylamine, N-alkyl-N-1,1-dimethylmethylphenylamine,
- a hexamethylene diisocyanate- or pentamethylene diisocyanate-based oligomeric polyisocyanate is combined with a component D selected from the group consisting of 2-hydroxyethyl acrylate, the isomer mixture formed on addition of propylene oxide onto acrylic acid, and 4-hydroxybutyl acrylate.
- Further preferred components E are 2-isocyanatoethyl (meth)acrylate, tris(2-hydroxyethyl) isocyanate tri(meth)acrylate, vinyl isocyanates, allyl isocyanates and 3-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate.
- free-radical polymerization of the ethylenically unsaturated compounds present in the reaction mixture can be brought about by actinic radiation with a sufficient energy content. This is especially UV-VIS radiation in the wavelength range between 200 and 500 nm.
- the polymerizable composition of the invention need not contain any component F.
- the presence of at least one component F suitable as an initiator for a free-radical polymerization of the ethylenic double bonds present in the polymerizable composition of the invention is required.
- This component F is preferably a radiation-activated initiator.
- Preferred radiation-activated initiators F are compounds of the unimolecular type (I) and of the bimolecular type (II).
- Suitable type (I) systems are aromatic ketone compounds, for example benzophenones in combination with tertiary amines, alkylbenzophenones, 4,4′-bis(dimethylamino)benzophenone (Michler's ketone), anthrone and halogenated benzophenones or mixtures of the recited types.
- type (II) initiators such as benzoin and derivatives thereof, benzil ketals, acylphosphine oxides, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bisacylphosphine oxides, phenylglyoxylic esters, camphorquinone, ⁇ -aminoalkylphenones, ⁇ , ⁇ -dialkoxyacetophenones and ⁇ -hydroxyalkylphenones.
- Irgacure®500 a mixture of benzophenone and 1-hydroxycyclohexyl phenyl ketone, from Ciba, Lampertheim, Del.
- Irgacure®819 DW phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, from Ciba, Lampertheim, Del.
- Esacure® KIP EM oligo-[2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanones], from Lamberti, Aldizzate, Italy
- Mixtures of these compounds may also be employed.
- photoinitiators have a sufficient reactivity toward the radiation source used.
- a multitude of photoinitiators is known on the market. Commercially available photoinitiators cover the wavelength range of the entire UV-VIS spectrum.
- Component G is a catalyst that catalyzes the crosslinking of an isocyanate group with an isocyanate-reactive group. This preferably gives rise to a urethane group, a thiourethane group or a urea group.
- the polymerizable composition preferably contains a component G when a component D having at least one isocyanate-reactive group is present.
- a component G is not obligatory in this case either, since the crosslinking of isocyanate groups with isocyanate-reactive groups can also be accelerated by the trimerization catalysts C used and also proceeds at sufficient speed even entirely without catalysis when the reaction temperature is high enough. It is possible to dispense with the addition of a component G especially when the crosslinking of the isocyanate groups present in the isocyanate component A is conducted at a temperature of at least 60° C., preferably at least 120° C.
- Preferred components G are the typical urethanization catalysts as specified, for example, in Becker/Braun, Kunststoffhandbuch [Plastics Handbook] volume 7, Polyurethane [Polyurethanes], section 3.4.
- the catalyst used may especially be a compound selected from the group of the tertiary amines, tertiary amine salts, metal salts and metal organyls, preferably from the group of the tin salts, tin organyls and bismuth organyls.
- the viscosity of the polymerizable composition is preferably adjusted by the use of a component B in suitable concentration.
- a component B act as reactive diluents and basically make it possible to dispense with the use of additional solvents to lower the viscosity of the isocyanate component A.
- the polymerizable composition of the invention may contain all solvents suitable for the dilution of isocyanates that are known to the person skilled in the art.
- the polymerizable composition of the invention additionally comprises at least one additive I selected from the group consisting of UV stabilizers, antioxidants, mold release agents, water scavengers, slip additives, defoamers, leveling agents, rheology additives, flame retardants and pigments.
- additives selected from the group consisting of UV stabilizers, antioxidants, mold release agents, water scavengers, slip additives, defoamers, leveling agents, rheology additives, flame retardants and pigments.
- These auxiliaries and additives, except for the flame retardants are typically present in an amount of not more than 20% by weight, preferably not more than 10% by weight and more preferably not more than 3% by weight, based on the polymerizable composition of the invention. According to the end use, flame retardants may be present in higher amounts of up to a maximum of 40% by weight.
- the polymerizable composition comprises at least one organic filler and/or at least one inorganic filler.
- Said fillers may be present in any shape and size known to the person skilled in the art.
- Preferred organic fillers are dyes and organic nanoparticles, for example those based on carbon.
- Preferred inorganic fillers are pigments AlOH 3 , CaCO 3 , silicon dioxide, magnesium carbonate, TiO 2 , ZnS, minerals containing silicates, sulfates, carbonates and the like, such as magnesite, baryte, mica, dolomite, kaolin, talc, clay minerals, and carbon black, graphite, boron nitride, glass, basalt, boron, ceramic and silica.
- the coating composition of the invention more preferably contains at least one organic or inorganic pigment.
- the present invention relates to the use of at least one component selected from the group consisting of components B, D and E for production of a coating composition having a ratio of isocyanate groups to isocyanate-reactive groups of at least 2.0:1.0, which contains an isocyanate component A and is polymerizable either by free-radical polymerization or by crosslinking of isocyanate groups with one another.
- At least one component B as defined above in this application is additionally used.
- the present invention relates to a process for preparing a coating, comprising the steps of
- process step b) is conducted first, then process step c) and finally process step d).
- the process of the invention includes a further reaction step e) in which the isocyanate-reactive group of component D is crosslinked with an isocyanate group of the isocyanate component A or of a reaction product of the isocyanate component A.
- Said process step e) is preferably conducted after process step c). In most cases, however, it will be effected in parallel to process step e) since both the crosslinking of isocyanate groups with one another and the reaction of isocyanate groups with isocyanate-reactive groups proceed at similar temperatures.
- process step c) is conducted prior to process steps d) and e).
- composition of the invention can be applied by different methods known per se. These are preferably spraying, painting, dipping, pouring, flow-coating or coating with the aid of brushes, rolls, nozzles or coating bars. Particular preference is given to printing technologies, especially screen-printing, valvejet, bubblejet and piezo printing.
- the surface to be coated has to be adequately wetted by the composition of the invention. Adequate wettability of a surface is preferably defined in that the contact angle of the liquid on the surface is not more than 100°, the contact angle measurement preferably being conducted by means of a tensiometer by the Wilhelmy method.
- the surface to be coated consists of a material selected from the group consisting of minerals, metal, rigid plastics, flexible plastics, textiles, leather, wood, wood derivatives and paper.
- Minerals are preferably selected from the group consisting of glass, stone, ceramic materials and concrete. In a particularly preferred embodiment, these materials are already in the form of surfaces modified with customary organic or inorganic or hybrid lacquers, primers or waxes.
- the ethylenic double bonds present in the polymerizable composition of the invention are crosslinked by a free-radical polymerization.
- This polymerization reaction is initiated in accordance with the invention by the use of radiation suitable for activation of the radiation-activated initiator F. In principle, however—irrespective of the presence of an initiator—the use of sufficiently high-energy radiation as defined further up in this application is also sufficient to initiate the free-radical polymerization in process step c).
- process step c) is conducted not more than 120 seconds, more preferably not more than 30 seconds, after process step b).
- the “crosslinking” of the isocyanate component A in process step d) is a process in which the isocyanate groups present therein react with one another or with urethane groups already present to form at least one structure selected from the group consisting of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and oxadiazinetrione structures.
- the isocyanate groups originally present in the isocyanate component A are consumed.
- the formation of the aforementioned groups results in combination of the monomeric and oligomeric polyisocyanates present in the isocyanate composition A to form a polymer network.
- the result of the crosslinking reaction is that at most 20%, preferably at most 10%, more preferably at most 5%, even more preferably at most 2% and especially at most 1% of the total nitrogen content of the isocyanate component A is present in urethane and/or allophanate groups.
- the cured isocyanate component A is not entirely free of urethane and allophanate groups. Consequently, taking account of the upper limits defined in the preceding paragraph, it preferably contains at least 0.1% urethane and/or allophanate groups based on the total nitrogen content.
- the crosslinking of the isocyanate groups present in the polymerizable composition of the invention proceeds predominantly via cyclotrimerization of at least 50%, preferably at least 60%, more preferably at least 70%, especially at least 80% and most preferably 90% of the free isocyanate groups present in the isocyanate component A to give isocyanurate structural units,
- cyclotrimerization of at least 50%, preferably at least 60%, more preferably at least 70%, especially at least 80% and most preferably 90% of the free isocyanate groups present in the isocyanate component A to give isocyanurate structural units
- the crosslinking of the isocyanate groups is preferably effected at temperatures between 50° C. and 220° C., more preferably between 80° C. and 200° C. and even more preferably between 100° C. and 200° C.
- the abovementioned temperatures are maintained in process step d) until at least 50%, preferably at least 75% and even more preferably at least 90% of the free isocyanate groups present in the isocyanate component A at the start of process step b) have been consumed.
- the percentage of isocyanate groups still present can be determined by a comparison of the content of isocyanate groups in % by weight in the isocyanate component A present at the start of process step b) with the content of isocyanate groups in % by weight in the reaction product, for example by the aforementioned comparison of the intensity of the isocyanate band at about 2270 cm ⁇ 1 by means of IR spectroscopy.
- process step d) naturally depends on the geometry of the workpiece to be created, especially the ratio of surface area and volume, since the required temperature has to be attained for the minimum time required even in the core of the workpiece being formed. The person skilled in the art is able to determine these parameters by simple preliminary tests.
- crosslinking of the above mentioned proportions of free isocyanate groups is achieved when the abovementioned temperatures are maintained for 1 minute to 4 hours. Particular preference is given to a duration between 1 minute and 15 minutes at temperatures between 180° C. and 220° C. or a duration of 5 minutes to 120 minutes at a temperature of 120° C.
- the present invention relates to a coating obtainable by the process described above.
- a “coating” is preferably characterized in that it has been applied to a substrate.
- This substrate is preferably selected from the group consisting of wood, plastic, metal, natural rock, concrete, paper and glass.
- the present invention also relates to a substrate coated with the polymer of the invention.
- the coating is more preferably characterized in that the layer thickness is at least 0.005 mm and at most 5 mm and preferably has a measurement in at least one of the two other dimensions of at least a factor of 10, more preferably 100, of the layer thickness. Preferably in both the aforementioned factors are attained in both further dimensions.
- the present invention relates to at least one coating which is compressed between two substrates having been applied to at least one substrate and is then polymerized and crosslinked and hence acts as an adhesive.
- the at least one coating between the two substrates, at least one of which has been coated in accordance with the invention is prepolymerized by use of actinic radiation and/or heat with the aim of obtaining a dimensionally stable adhesive coating according to the invention prior to the compression.
- RT room temperature
- Polyisocyanate A HDI trimer (NCO functionality >3) with an NCO content of 23.0% by weight from Covestro AG.
- the viscosity is about 1200 mPa ⁇ s at 23° C. (DIN EN ISO 3219/A.3).
- HDDA hexanediol diacrylate
- Potassium acetate was sourced with a purity of >99% by weight from ACROS.
- Lucirin TPO-L is an ethyl (2,4,6-trimethylbenzoyl)phenylphosphinate from BASF.
- Polyethylene glycol (PEG) 400 was sourced with a purity of >99% by weight from ACROS.
- Potassium acetate (5.0 g) was stirred in the PEG 400 (95.0 g) at RT until all of it had dissolved. In this way, a 5% by weight solution of potassium acetate in PEG 400 was obtained and was used as catalyst without further treatment.
- reaction mixture was prepared by mixing polyisocyanate (A1-A2) and the acrylate(s) with an appropriate amount of catalyst, initiator and optionally additive at 23° C. in a Speedmixer DAC 150.1 FVZ from Hauschild at 2750 min ⁇ 1 .
- the layer applied was treated by means of UV curing with a gallium-doped mercury vapor lamp and an undoped mercury vapor lamp, both operated at 80 W/cm and with a belt speed of 5 m/min.
- the dose obtained under these conditions is 1400 mJ/cm 2 .
- the plate was placed on its edge and it was observed whether the UV light-treated coating runs or not.
- the coating was cured completely.
- it was introduced into an air circulation oven at 180° C. for 15 min.
- the coated plate was placed onto a paper towel on its edge for 10 min, and a visual assessment was made as to whether the coating runs. If there is a perceptible change in the coating as a result of the upright position (for example formation of a bulge at the lower edge), the coating is classified as “runs off”.
- a small piece of cotton wool is soaked with acetone and placed onto the coating surface. Every minute, the piece of cotton wool was soaked again with acetone in order to compensate for the evaporation. For this purpose, the acetone was added by means of a wash bottle in order that the piece of cotton wool is not moved during the contact operation. After 1 min and 5 min, the acetone-soaked piece of cotton wool is removed, the affected site is dried off and an inspection is made immediately in order to anticipate any regeneration. The test area is inspected for changes visually and by touching by hand. Subsequently, an assessment is made as to whether and what changes have occurred in the test area.
- An assessment is made of softening or discoloration of the coating surface.
- Hardness is the mechanical resistance of a body to the penetration of another body. It is the quotient of measured indentation force and the contact area of the indentation body on penetration into the surface. The contact area is calculated with the known geometry of the penetration body and the measured indentation depth.
- indentation force and indentation depth are measured during the deformation, taking account of the elastic and plastic deformation.
- a pyramidal indentation body (Vickers tip) presses into the coating with rising test force.
- Indentation force, indentation depth and indentation body geometry are used to calculate a Martens hardness value (HM).
- Hardness was determined by means of a Fischerscope H100C in accordance with DIN EN ISO 14577-1.
- the samples are conditioned under standard climatic conditions at 23° C. and 50% rel. humidity for at least 16 h and then analyzed.
- Choice of maximum indentation force either the same for all samples within the test series or individual assessment and adjustment for each sample.
- the adjustment criterion here is the Buckle rule, according to which the maximum indentation force is adjusted such that the penetration depth attained is not more than 10% of the coating thickness.
- the measurement result reported in table 1 is the Martens hardness HM (F) in N/mm 2 as an average from 5 measurements.
- the reaction mixture was coated with a coating bar in a thickness of 250 ⁇ m onto the tin-free side of a glass plate and then UV-treated with a gallium-doped mercury vapor lamp and an undoped mercury vapor lamp. Subsequently, the samples were cured in an air circulation oven at 180° C. for 15 min.
- Examples B1 to B5 show that runoff-free films are obtained after radiative curing and homogeneous clear hard films after complete curing.
- Comparative example V1 shows that the straight isocyanate after radiative curing does not form a runoff-free layer.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Toxicology (AREA)
- Polyurethanes Or Polyureas (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Paints Or Removers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
- The present invention relates to polymerizable compositions comprising components which can be crosslinked either via isocyanurate bonds or by a free-radical reaction mechanism. It further describes processes by which polymers can be prepared from these compositions.
- WO 2015/155195 describes a composite material obtainable from a reinforcing material and a polyurethane composition consisting of at least one polyisocyanate (PIC), a PIC-reactive component consisting of at least one polyol and at least one methacrylate having OH groups, and a free-radical initiator. The addition reaction between PIC and OH groups takes place simultaneously with the free-radically initiated chain polymerization of the methacrylates. A disadvantage of the process used, in addition to the short pot lives/gel times of the polyurethane compositions, is the fact that, in the preparation of polyurethanes, the mixing ratio of the components, especially of the polyisocyanate and the polyol, is limited by the necessity of keeping the molar ratio of isocyanate and isocyanate-reactive groups close to 1:1.
- WO 2016/087366 describes a free-radically polymerizable composition consisting of a polyurethane containing double bonds and a reactive diluent based on various methacrylates.
- A disadvantage here is the two-stage reaction regime (the reaction of the hydroxymethacrylate with an isocyanate takes place in the first stage, and the reaction of the isocyanate-bonded (meth)acrylates to give polyacrylates takes place in the second stage, in order to obtain a crosslinked composition). A further disadvantage is the necessity of working under precise stoichiometric conditions in order to avoid free unconverted isocyanate.
- U.S. Pat No. 6,133,397 and PCT/EP2017/073276 describe coating compositions that are cured primarily through the crosslinking of isocyanate groups with one another. This forms isocyanurate groups inter alia that impart advantageous properties to the coatings formed.
- The low-monomer polyisocyanate compositions described as reactants in these applications have a relatively high viscosity which can be a hindrance in some applications.
- The addition of monomeric polyisocyanates as reactive diluents is undesirable for reasons of occupational hygiene in many cases since these compounds are firstly volatile, and secondly act as irritants. Alternatively, conventional organic solvents can be used to reduce the viscosity. However, these are disadvantageous for reasons of environmental protection since they are released into the environment during or after the polymerization.
- At the same time, it is desirable for coating applications when the viscosity of the coating composition even immediately before application can be increased to such an extent that running of the coating off an oblique surface is avoided. Since the crosslinking reaction of isocyanate groups, for example to give isocyanurate groups, generally takes at least a few minutes, the compositions described in U.S. Pat. No. 6,133,397 do not meet this requirement.
- What are desirable, therefore, are compositions having a viscosity in the unprocessed state, without use of organic solvents, that can be adjusted with maximum freedom according to the demands of the respective application, and the viscosity of which can be increased with maximum speed after application to a surface. To the extent that such coatings are used for production of coatings, the coatings formed are also to have good optical properties, especially clarity.
- This object is achieved by the embodiments of the invention disclosed in the claims and in the description below.
- In a first embodiment, the present invention relates to a coating composition having a ratio of isocyanate groups to isocyanate-reactive groups of at least 2.0:1.0, comprising:
-
- a) an isocyanate component A;
- b) at least one trimerization catalyst C; and
- c) at least one component selected from the group consisting of components B, D and E, where
- component B has at least one ethylenic double bond but no isocyanate-reactive group;
- component D has at least one isocyanate-reactive group and at least one ethylenic double bond in one molecule; and
- component E has both at least one isocyanate group and at least one ethylenic double bond in one molecule.
- The isocyanate component A enables the formation of a polymer that forms through the addition of isocyanate groups. This forms isocyanurate groups in particular. The crosslinking of the isocyanate groups present in the isocyanate component A endows the polymer with the majority of its mechanical and chemical stability. The crosslinking of the isocyanate groups is mediated by the trimerization catalyst C.
- Components B, D and E are each characterized by the presence of an ethylenic double bond. This double bond is a prerequisite for a second crosslinking mechanism to be available in addition to the polyaddition of the isocyanate groups in the polymerizable composition. Each of these components enables crosslinking by free-radical polymerization. This is a crosslinking mechanism that enables the buildup of viscosity within a period of a few seconds. The use of these individual components or particular combinations of components has specific advantages here:
- Component B lowers the viscosity of the polymerizable composition and can be rapidly crosslinked by free-radical polymerization and thus used for rapid buildup of viscosity. If there is just a component B present in the polymerizable composition without components D or E, the two different crosslinking mechanisms give rise to two different polymer networks. This can lead to turbidity in the finished product and under some circumstances to poorer mechanical properties.
- In areas of application where this is to be avoided, component B is used in combination with a component D or E. It can also be used in combination with both components. Components D and E mediate the crosslinking of the network, formed by free-radical polymerization, of component B with the polymer of isocyanate component A formed through polyaddition of the isocyanate groups. They thus ensure that there are no two separate polymer networks of components A and B present in the polymer, but rather a single polymer network.
- Even if they are used without an additional component B, components D and E enable the formation of a polymer network via free-radical polymerization. Similarly to the case of exclusive use of component B, rapid buildup of viscosity after application of the composition of the invention is enabled. However, unlike component B, components D and E are only of limited suitability as reactive diluents.
- In a preferred embodiment of the present invention, the polymerizable composition contains at least one of the two components D and E, but no component B.
- In another preferred embodiment, the composition of the invention contains a component B and at least one of the two components D and E. Particular preference is given to the combination of B and D.
- In a preferred embodiment, the proportions of components B, D and E are adjusted such that the coating composition, after the free-radical polymerization of the ethylenic double bonds, does not run on a vertical surface within a period of at least 30 seconds, preferably at least 2 minutes and more preferably at least 10 minutes. A coating composition does not run if no difference in the coating thickness is visually perceptible between the upper end of the surface and the lower end thereof after the aforementioned time.
- Whether a coating composition fulfils this criterion can be determined by simple preliminary tests. The composition is applied to a surface and treated with actinic radiation so as to initiate free-radical polymerization. Subsequently, the surface is stored vertically at 23° C. (room temperature) for the abovementioned period and then visually assessed.
- Dimensional stability of a coating results from the interplay between coating thickness and viscosity. The higher the coating thickness, the higher the viscosity of the coating has to be.
- In a particular embodiment of the invention, target coating thicknesses are at least 0.005 mm, preferably at least 0.02 mm and most preferably at least 0.04 mm, and at most 5 mm, preferably at most 0.5 mm and most preferably at most 0.1 mm.
- In a further preferred embodiment, the proportion of components B, D and E in the composition of the invention is such that the viscosity of the coating is at least doubled, preferably quadrupled and more preferably dectupled after polymerization triggered by actinic radiation.
- In a further preferred embodiment, the dynamic viscosity to EN ISO 2884-1:2006 measured in a cone-plate viscometer at room temperature after polymerization with actinic radiation is at least 200 mPas, preferably at least 500 mPas, more preferably at least 1000 mPas, even more preferably at least 10 000 mPas and even more preferably still at least 100 000 mPas.
- In a preferred embodiment, the polymerizable composition of the invention comprises isocyanate component A and component B preferably in a quantitative ratio that lowers the viscosity of the undiluted isocyanate component to at most 75%, preferably at most 25%, more preferably at most 5% and most preferably to at most 1% of the viscosity of undiluted isocyanate component A. The presence of at least one of components D and E is particularly preferred in this embodiment.
- In a preferred embodiment, the quantitative ratio of component A to the total amount of components B, D and E is such that the polymerizable composition before each crosslinking has a viscosity at room temperature of at most 100 000 mPas, more preferably of at most 10 000 mPas, even more preferably of at most 1000 mPas and most preferably at most 100 mPas.
- The polymer obtainable by polymerizing the coating composition of the invention receives its advantageous properties very substantially through crosslinking of the isocyanate groups with one another. Consequently, it is essential to the invention that the ratio of isocyanate groups to the total amount of the isocyanate-reactive groups in the polymerizable composition is restricted such that there is a distinct molar excess of isocyanate groups. The molar ratio of isocyanate groups of the isocyanate component to isocyanate-reactive groups in the reactive resin is consequently at least 2.0:1.0, preferably at least 3.0:1.0, more preferably at least 4.0:1.0 and even more preferably at least 8.0:1,0. “Isocyanate-reactive groups” in the context of the present application are hydroxyl, thiol, carboxyl and amino groups, amides, urethanes, acid anhydrides and epoxides. The isocyanate groups present in the polymerizable composition are present in components A and—if present—E. The isocyanate-reactive groups may in principle be present in all other components except for component B.
- By comparison with the polyurethane resins known from WO 2015/155195 with additional radiative curing, the use of the polymerizable composition of the invention enables greater flexibility in the selection of the proportions of the individual components. If a polyurethane or a polyurea is to be obtained, the molar ratio of isocyanate groups to isocyanate-reactive groups must if possible be close to 1:1. According to the present invention, however, there is a distinct excess of isocyanate groups that is consequently not just acceptable but actually desired because the polymer formed owes its advantageous properties very substantially to the reaction of isocyanate groups with other isocyanate groups. The structures thus formed, especially the isocyanurate groups, lead to polymers with exceptional hardness and exceptional stability to chemicals.
- Isocyanate Component A
- “Isocyanate component A” in the context of the invention refers to the isocyanate component in the starting reaction mixture. In other words, this is the sum total of all the compounds in the starting reaction mixture that have isocyanate groups, except for component E. The isocyanate component A is thus used as reactant in the process of the invention. When reference is made here to “isocyanate component A”, especially to “providing the isocyanate component A”, this means that the isocyanate component A exists and is used as reactant. The isocyanate component A preferably contains at least one polyisocyanate.
- The term “polyisocyanate” as used here is a collective term for compounds containing two or more isocyanate groups in the molecule (this is understood by the person skilled in the art to mean free isocyanate groups of the general structure —N═C═O). The simplest and most important representatives of these polyisocyanates are the diisocyanates. These have the general structure O═C═N—R—N═C═O where R typically represents aliphatic, alicyclic and/or aromatic radicals.
- Because of the polyfunctionality (≥2 isocyanate groups), it is possible to use polyisocyanates to produce a multitude of polymers (e.g. polyurethanes, polyureas and polyisocyanurates) and low molecular weight compounds (for example those having uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structure).
- The term “polyisocyanates” in this application refers equally to monomeric and/or oligomeric polyisocyanates. For the understanding of many aspects of the invention, however, it is important to distinguish between monomeric diisocyanates and oligomeric polyisocyanates. Where reference is made in this application to “oligomeric polyisocyanates”, this means polyisocyanates formed from at least two monomeric diisocyanate molecules, i.e. compounds that constitute or contain a reaction product formed from at least two monomeric diisocyanate molecules.
- The preparation of oligomeric polyisocyanates from monomeric diisocyanates is also referred to here as modification of monomeric diisocyanates. This “modification” as used here means the reaction of monomeric diisocyanates to give oligomeric polyisocyanates having uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structure.
- For example, hexamethylene diisocyanate (HDI) is a “monomeric diisocyanate” since it contains two isocyanate groups and is not a reaction product of at least two polyisocyanate molecules:
- Reaction products which are formed from at least two HDI molecules and still have at least two isocyanate groups, by contrast, are “oligomeric polyisocyanates” within the context of the invention. Representatives of such “oligomeric polyisocyanates” are, proceeding from monomeric HDI, for example, HDI isocyanurate and HDI biuret, each of which is formed from three monomeric HDI units:
- According to the invention, the proportion by weight of isocyanate groups based on the total amount of the isocyanate component A is at least 15% by weight.
- In principle, monomeric and oligomeric polyisocyanates are equally suitable for use in the isocyanate component A of the invention. Consequently, the isocyanate component A may consist essentially of monomeric polyisocyanates or essentially of oligomeric polyisocyanates. It may alternatively comprise oligomeric and monomeric polyisocyanates in any desired mixing ratios.
- In a preferred embodiment of the invention, the isocyanate component A used as reactant in the trimerization has a low level of monomers (i.e. a low level of monomeric diisocyanates) and already contains oligomeric polyisocyanates. The expressions “having a low level of monomers” and “having a low level of monomeric diisocyanates” are used here synonymously in relation to the isocyanate component A.
- Results of particular practical relevance are established when the isocyanate component A has a proportion of monomeric diisocyanates in the isocyanate component A of not more than 20% by weight, especially not more than 15% by weight or not more than 10% by weight, based in each case on the weight of the isocyanate component A. Preferably, the isocyanate component A has a content of monomeric diisocyanates of not more than 5% by weight, preferably not more than 2.0% by weight, more preferably not more than 1.0% by weight, based in each case on the weight of the isocyanate component A. Particularly good results are established when the isocyanate component A is essentially free of monomeric diisocyanates. “Essentially free” here means that the content of monomeric diisocyanates is not more than 0.5% by weight, based on the weight of the isocyanate component A.
- In a particularly preferred embodiment of the invention, the isocyanate component A consists entirely or to an extent of at least 80%, 85%, 90%, 95%, 98%, 99% or 99.5% by weight, based in each case on the weight of the isocyanate component A, of oligomeric polyisocyanates. Preference is given here to a content of oligomeric polyisocyanates of at least 99% by weight. This content of oligomeric polyisocyanates relates to the isocyanate component A as provided. In other words, the oligomeric polyisocyanates are not formed as intermediate during the process of the invention, but are already present in the isocyanate component A used as reactant on commencement of the reaction.
- Polyisocyanate compositions which have a low level of monomers or are essentially free of monomeric isocyanates can be obtained by conducting, after the actual modification reaction, in each case, at least one further process step for removal of the unconverted excess monomeric diisocyanates. This removal of monomers can be effected in a particularly practical manner by processes known per se, preferably by thin-film distillation under high vacuum or by extraction with suitable solvents that are inert toward isocyanate groups, for example aliphatic or cycloaliphatic hydrocarbons such as pentane, hexane, heptane, cyclopentane or cyclohexane.
- In a preferred embodiment of the invention, the isocyanate component A of the invention is obtained by modifying monomeric diisocyanates with subsequent removal of unconverted monomers.
- In a particular embodiment of the invention, an isocyanate component A having a low level of monomers, however, contains an extra monomeric diisocyanate. In this context, “extra monomeric diisocyanate” means that it differs from the monomeric diisocyanates which have been used for preparation of the oligomeric polyisocyanates present in the isocyanate component A.
- An addition of extra monomeric diisocyanate may be advantageous for achievement of special technical effects, for example an exceptional hardness. Results of particular practical relevance are established when the isocyanate component A has a proportion of extra monomeric diisocyanate in the isocyanate component A of not more than 20% by weight, especially not more than 15% by weight or not more than 10% by weight, based in each case on the weight of the isocyanate component A. Preferably, the isocyanate component A has a content of extra monomeric diisocyanate of not more than 5% by weight, especially not more than 2.0% by weight, more preferably not more than 1.0% by weight, based in each case on the weight of the isocyanate component A.
- In a further particular embodiment of the process of the invention, the isocyanate component A contains monomeric monoisocyanates or monomeric isocyanates having an isocyanate functionality greater than two, i.e. having more than two isocyanate groups per molecule. The addition of monomeric monoisocyanates or monomeric isocyanates having an isocyanate functionality greater than two has been found to be advantageous in order to influence the network density of the coating. Results of particular practical relevance are established when the isocyanate component A has a proportion of monomeric monoisocyanates or monomeric isocyanates having an isocyanate functionality greater than two in the isocyanate component A of not more than 20% by weight, especially not more than 15% by weight or not more than 10% by weight, based in each case on the weight of the isocyanate component A. Preferably, the isocyanate component A has a content of monomeric monoisocyanates or monomeric isocyanates having an isocyanate functionality greater than two of not more than 5% by weight, preferably not more than 2.0% by weight, more preferably not more than 1.0% by weight, based in each case on the weight of the isocyanate component A. Preferably, no monomeric monoisocyanate or monomeric isocyanate having an isocyanate functionality greater than two is used in the trimerization reaction of the invention.
- The oligomeric polyisocyanates may, in accordance with the invention, especially have uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structure. In one embodiment of the invention, the oligomeric polyisocyanates have at least one of the following oligomeric structure types or mixtures thereof:
- In a preferred embodiment of the invention, an isocyanate component A is used, wherein the isocyanurate structure component is at least 50 mol %, preferably at least 60 mol %, more preferably at least 70 mol %, even more preferably at least 80 mol %, even more preferably still at least 90 mol % and especially preferably at least 95 mol %, based on the sum total of the oligomeric structures from the group consisting of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and oxadiazinetrione structure present in the isocyanate component A, is used.
- In a further preferred embodiment of the invention, in the process of the invention, an isocyanate component A containing, as well as the isocyanurate structure, at least one further oligomeric polyisocyanate having uretdione, biuret, allophanate, iminooxadiazinedione and oxadiazinetrione structure and mixtures thereof is used.
- The proportions of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structure in the isocyanate component A can be determined, for example, by NMR spectroscopy. It is possible here with preference to use 13C NMR spectroscopy, preferably in proton-decoupled form, since the oligomeric structures mentioned give characteristic signals.
- Irrespective of the underlying oligomeric structure (uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structure), an oligomeric isocyanate component A for use in the process of the invention and/or the oligomeric polyisocyanates present therein preferably have/has an (average) NCO functionality of 2.0 to 5.0, preferably of 2.3 to 4.5.
- Results of particular practical relevance are established when the isocyanate component A to be used in accordance with the invention has a content of isocyanate groups of 8.0% to 28.0% by weight, preferably of 14.0% to 25.0% by weight, based in each case on the weight of the isocyanate component A.
- Preparation processes for the oligomeric polyisocyanates having uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structure that are to be used in accordance with the invention in the isocyanate component A are described, for example, in J. Prakt. Chem. 336 (1994) 185-200, in DE-A 1 670 666, DE-A 1 954 093, DE-A 2 414 413, DE-A 2 452 532, DE-A 2 641 380, DE-A 3 700 209, DE-A 3 900 053 and DE-A 3 928 503 or in EP-A 0 336 205, EP-A 0 339 396 and EP-A 0 798 299.
- In an additional or alternative embodiment of the invention, the isocyanate component A of the invention is defined in that it contains oligomeric polyisocyanates which have been obtained from monomeric diisocyanates, irrespective of the nature of the modification reaction used, with observation of an oligomerization level of 5% to 45%, preferably 10% to 40%, more preferably 15% to 30%. “Oligomerization level” is understood here to mean the percentage of isocyanate groups originally present in the starting mixture which are consumed during the preparation process to form uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and/or oxadiazinetrione structures.
- Suitable polyisocyanates for production of the isocyanate component A for use in the process of the invention and the monomeric and/or oligomeric polyisocyanates present therein are any desired polyisocyanates obtainable in various ways, for example by phosgenation in the liquid or gas phase or by a phosgene-free route, for example by thermal urethane cleavage. Particularly good results are established when the polyisocyanates are monomeric diisocyanates. Preferred monomeric diisocyanates are those having a molecular weight in the range from 140 to 400 g/mol, having aliphatically, cycloaliphaticaily, araliphatically and/or aromatically bonded isocyanate groups, for example 1,4-diisocyanatobutane (BDI), 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), 2-methyl-1,5-diisocyanatopentane, 1,5-diisocyanato-2,2-dimethylpentane, 2,2,4- or 2,4,4-trimethyl-1,6-diisocyanatohexane, 1,10-diisocyanatodecane, 1,3- and 1,4-diisocyanatocyclohexane, 1,4-diisocyanato-3,3,5-trimethylcyclohexane, 1,3-diisocyanato-2-methylcyclohexane, 1,3-diisocyanato-4-methylcyclohexane, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane (isophorone diisocyanate; IPDI), 1-isocyanato-1-methyl-4(3)-isocyanatomethylcyclohexane, 2,4′- and 4,4′-diisocyanatodicyclohexylmethane (H12MDI), 1,3- and 1,4-bis(isocyanatomethyl)cyclohexane, bis(isocyanatomethyl)norbornane (NBDI), 4,4′-diisocyanato-3,3′-dimethyldicyclohexyl methane, 4,4′-diisocyanato-3,3′,5,5′-tetramethyldicyclohexylmethane, 4,4′-diisocyanato-1,1′-bi(cyclohexyl), 4,4′-diisocyanato-3,3′-dimethyl-1,1′-bi(cyclohexyl), 4,4′-diisocyanato-2,2′,5,5′-tetramethyl-1,1′-bi(cyclohexyl), 1,8-diisocyanato-p-menthane, 1,3-diisocyanatoadamantane, 1,3-dimethyl-5,7-diisocyanatoadamantane, 1,3- and 1,4-bis(isocyanatomethyl)benzene (xylylene diisocyanate; XDI), 1,3- and 1,4-bis(1-isocyanato-1-methylethyl)benzene (TMXDI) and bis(4-(1-isocyanato-1-methylethyl)phenyl) carbonate, 2,4- and 2,6-diisocyanatotoluene (TDI), 2,4′- and 4,4′-diisocyanatodiphenylmethane (MDI), 1,5-diisocyanatonaphthalene and any desired mixtures of such diisocyanates. Further diisocyanates that are likewise suitable can additionally be found, for example, in Justus Liebigs Annalen der Chemie, volume 562 (1949) p. 75-136.
- Suitable monomeric monoisocyanates which can optionally be used in the isocyanate component A are, for example, n-butyl isocyanate, n-amyl isocyanate, n-hexyl isocyanate, n-heptyl isocyanate, n-octyl isocyanate, undecyl isocyanate, dodecyl isocyanate, tetradecyl isocyanate, cetyl isocyanate, stearyl isocyanate, cyclopentyl isocyanate, cyclohexyl isocyanate, 3- or 4-methylcyclohexyl isocyanate or any desired mixtures of such monoisocyanates. An example of a monomeric isocyanate having an isocyanate functionality greater than two which can optionally be added to the isocyanate component A is 4-isocyanatomethyloctane 1,8-diisocyanate (triisocyanatononane; TIN).
- In one embodiment of the invention, the isocyanate component A contains not more than 30% by weight, especially not more than 20% by weight, not more than 15% by weight, not more than 10% by weight, not more than 5% by weight or not more than 1% by weight, based in each case on the weight of the isocyanate component A, of aromatic polyisocyanates. As used here, “aromatic polyisocyanate” means a polyisocyanate having at least one aromatically bonded isocyanate group.
- Aromatically bonded isocyanate groups are understood to mean isocyanate groups bonded to an aromatic hydrocarbyl radical.
- In a preferred embodiment of the process of the invention, an isocyanate component A having exclusively aliphatically and/or cycloaliphatically bonded isocyanate groups is used.
- Aliphatically and cycloaliphatically bonded isocyanate groups are understood to mean isocyanate groups bonded, respectively, to an aliphatic and cycloaliphatic hydrocarbyl radical.
- In another preferred embodiment of the process of the invention, an isocyanate component A consisting of or comprising one or more oligomeric polyisocyanates is used, where the one or more oligomeric polyisocyanates has/have exclusively aliphatically and/or cycloaliphatically bonded isocyanate groups.
- In a further embodiment of the invention, the isocyanate component A consists to an extent of at least 70%, 80%, 85%, 90%, 95%, 98% or 99% by weight, based in each case on the weight of the isocyanate component A, of polyisocyanates having exclusively aliphatically and/or cycloaliphatically bonded isocyanate groups. Practical experiments have shown that particularly good results can be achieved with isocyanate component A in which the oligomeric polyisocyanates present therein have exclusively aliphatically and/or cycloaliphatically bonded isocyanate groups.
- In a particularly preferred embodiment of the process of the invention, a polyisocyanate composition A is used which consists of or comprises one or more oligomeric polyisocyanates, where the one or more oligomeric polyisocyanates is/are based on 1,4-diisocyanatobutane (BDI), 1,5-diisocyanatopentane (PDI), 1,6-diisocyanatohexane (HDI), isophorone diisocyanate (IPDI) or 4,4′-diisocyanatodicyclohexylmethane (H12MDI) or mixtures thereof.
- In a further embodiment of the invention, in the process of the invention, isocyanate components A having a viscosity greater than 500 mPas and less than 200 000 mPas, preferably greater than 1000 mPas and less than 100 000 mPas, more preferably greater than 1000 mPas and less than 50 000 mPas and even more preferably greater than 1000 mPas and less than 25 000 mPas, measured according to DIN EN ISO 3219 at 21° C., are used.
- Component B
- Suitable components B are all compounds containing at least one ethylenic double bond. This ethylenic double bond is crosslinkable with other ethylenic double bonds by a free-radical reaction mechanism. This condition is met by preferably activated double bonds between the α carbon atom and the β carbon atom alongside an activating group. The activating group is preferably a carboxyl or carbonyl group. Most preferably, component B is an acrylate, a methacrylate, the ester of an acrylate or the ester of a methacrylate. Preferably, component B does not contain any of the isocyanate-reactive groups as defined further up in this application or any isocyanate group either.
- Preferred components B are components B1 with one, component B2 with two and component B3 with three of the above-described ethylenic double bonds. Particular preference is given to B1 and/or B2.
- In a preferred embodiment, component B used is a mixture of at least one component B1 and at least one component B2.
- In a further preferred embodiment, component B used is a mixture of at least one component B1 and at least one component B3.
- In yet a further preferred embodiment, component B used is a mixture of at least one component B2 and at least one component B3.
- In yet a further preferred embodiment, component B used is a mixture of at least one component B1, at least one component B2 and at least one component B3. Preference is given to using a mixture of at least one component B1 with at least one component B2. The mass ratio of components B1 and B2 here is preferably between 30:1 and 1:30, more preferably between 20:1 and 1:20, even more preferably between 1:10 and 10:1 and most preferably between 2:1 and 1:2.
- Preferred components B1 are methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, decyl (meth)acrylate, benzyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, octadecyl (meth)acrylate, dodecyl (meth)acrylate, tetradecyl (meth)acrylate, oleyl (meth)acrylate, 4-methylphenyl (meth)acrylate, benzyl (meth)acrylate, furfuryl (meth)acrylate, cetyl (meth)acrylate, 2-phenylethyl (meth)acrylate, isobornyl (meth)acrylate, neopentyl (meth)acrylate, methacrylamide and n-isopropylmethacrylamide.
- Preferred components B2 are vinyl (meth)acrylate, tetraethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, hexane-1,6-diol di(meth)acrylate, neopentyl glycol propoxylate di(meth)acrylate, tripropylene glycol di(meth)acrylate, bisphenol A ethoxylated di (meth)acrylate, ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, hexamethylene glycol di(meth)acrylate, bisphenol A di(meth)acrylate and 4,4′-bis(2-(meth)acryloyloxyethoxy)diphenylpropane.
- Preferred components B3 are ethoxylated trimethylolpropane tri(meth)acrylate, propoxylated glycerol tri(meth)acrylate, pentaerythritol tri(meth)acrylate, trimethylolpropane ethoxytri(meth)acrylate, trimethylolpropane tri(meth)acrylate, alkoxylated tri(meth)acrylate and tris(2-(meth)acryloylethyl) isocyanurate.
- Trimerization Catalyst C
- The trimerization catalyst C may be mixed from one catalyst type or different catalyst types, but contains at least one catalyst that brings about the trimerization of isocyanate groups to isocyanurates or iminooxadiazinediones.
- Suitable catalysts for the process of the invention are, for example, simple tertiary amines, for example triethylamine, tributylamine, N,N-dimethylaniline, N-ethylpiperidine or N,N′-dimethylpiperazine. Suitable catalysts are also the tertiary hydroxyalkylamines described in GB 2 221 465, for example triethanolamine, N-methyldiethanolamine, dimethylethanolamine, N-isopropyldiethanolamine and 1-(2-hydroxyethyl)pyrrolidine, or the catalyst systems known from GB 2 222 161 that consist of mixtures of tertiary bicyclic amines, for example DBU, with simple aliphatic alcohols of low molecular weight.
- Likewise suitable as trimerization catalysts for the process of the invention are a multitude of different metal compounds. Suitable examples are the octoates and naphthenates of manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium or lead or mixtures thereof with acetates of lithium, sodium, potassium, calcium or barium that are described as catalysts in DE-A 3 240 613, the sodium and potassium salts of linear or branched alkanecarboxylic acids having up to 10 carbon atoms that are known from DE-A 3 219 608, for example of propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, pelargonic acid, capric acid and undecylenoic acid, the alkali metal or alkaline earth metal salts of aliphatic, cycloaliphatic or aromatic mono- and polycarboxylic acids having 2 to 20 carbon atoms that are known from EP-A 0 100 129, for example sodium or potassium benzoate, the alkali metal phenoxides known from GB-A 1 391 066 and GB-A 1 386 399, for example sodium or potassium phenoxide, the alkali metal and alkaline earth metal oxides, hydroxides, carbonates, alkoxides and phenoxides known from GB 809 809, alkali metal salts of enolizable compounds and metal salts of weak aliphatic or cycloaliphatic carboxylic acids, for example sodium methoxide, sodium acetate, potassium acetate, sodium acetoacetate, lead 2-ethylhexanoate and lead naphthenate, the basic alkali metal compounds complexed with crown ethers or polyether alcohols that are known from EP-A 0 056 158 and EP-A 0 056 159, for example complexed sodium or potassium carboxylates, the pyrrolidinone-potassium salt known from EP-A 0 033 581, the mono- or polynuclear complex of titanium, zirconium and/or hafnium known from application EP 13196508.9, for example zirconium tetra-n-butoxide, zirconium tetra-2-ethylhexanoate and zirconium tetra-2-ethylhexoxide, and tin compounds of the type described in European Polymer Journal, vol. 16, 147-148 (1979), for example dibutyltin dichloride, diphenyltin dichloride, triphenylstannanol, tributyltin acetate, tributyltin oxide, tin dioctoate, dibutyl(dimethoxy)stannane and tributyltin imidazolate.
- Further trimerization catalysts suitable for the process of the invention are, for example, the quaternary ammonium hydroxides known from DE-A 1 667 309, EP-A 0 013 880 and EP-A 0 047 452, for example tetraethylammonium hydroxide, trimethylbenzylammonium hydroxide, N,N-dimethyl-N-dodecyl-N-(2-hydroxyethyl)ammonium hydroxide, N-(2-hydroxyethyl)-N,N-dimethyl-N-(2,2′-dihydroxymethylbutyl)ammonium hydroxide and 1-(2-hydroxyethyl)-1,4-diazabicyclo[2.2.2]octane hydroxide (monoadduct of ethylene oxide and water with 1,4-diazabicyclo[2.2.2]octane), the quaternary hydroxyalkylammonium hydroxides known from EP-A 37 65 or EP-A 10 589, for example N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium hydroxide, the trialkylhydroxylalkylammonium carboxylates that are known from DE-A 2631733, EP-A 0 671 426, EP-A 1 599 526 and U.S. Pat. No. 4,789,705, for example N,N,N-trimethyl-N-2-hydroxypropylammonium p-tert-butylbenzoate and N,N,N-trimethyl-N-2-hydroxypropylammonium 2-ethylhexanoate, the quaternary benzylammonium carboxylates known from EP-A 1 229 016, such as N-benzyl-N,N-dimethyl-N-ethylammonium pivalate, N-benzyl-N,N-dimethyl-N-ethylammonium 2-ethylhexanoate, N-benzyl-N,N,N-tributylammonium 2-ethylhexanoate, N,N-dimethyl-N-ethyl-N-(4-methoxybenzyl)ammonium 2-ethylhexanoate or N,N,N-tributyl-N-(4-methoxybenzyl)ammonium pivalate, the tetrasubstituted ammonium α-hydroxycarboxylates known from WO 2005/087828, for example tetramethylammonium lactate, the quaternary ammonium or phosphonium fluorides known from EP-A 0 339 396, EP-A 0 379 914 and EP-A 0 443 167, for example N-methyl-N,N,N-trialkylammonium fluorides with C8-C10-alkyl radicals, N,N,N,N-tetra-n-butylammonium fluoride, N,N,N-trimethyl-N-benzylammonium fluoride, tetramethylphosphonium fluoride, tetraethylphosphonium fluoride or tetra-n-butylphosphonium fluoride, the quaternary ammonium and phosphonium polyfluorides known from EP-A 0 798 299, EP-A 0 896 009 and EP-A 0 962 455, for example benzyltrimethylammonium hydrogen polyfluoride, the tetraalkylammonium alkylcarbonates which are known from EP-A 0 668 271 and are obtainable by reaction of tertiary amines with dialkyl carbonates, or betaine-structured quaternary ammonioalkyl carbonates, the quaternary ammonium hydrogencarbonates known from WO 1999/023128, such as choline bicarbonate, the quaternary ammonium salts which are known from EP 0 102 482 and are obtainable from tertiary amines and alkylating esters of phosphorus acids, examples of such salts being reaction products of triethylamine, DABCO or N-methylmorpholine with dimethyl methanephosphonate, or the tetrasubstituted ammonium salts of lactams that are known from WO 2013/167404, for example trioctylammonium caprolactamate or dodecyltrimethylammonium caprolactamate.
- Further trimerization catalysts C suitable for the process of the invention can be found, for example, in J. H. Saunders and K. C. Frisch, Polyurethanes Chemistry and Technology, p. 94 ff. (1962) and the literature cited therein.
- Particular preference is given to carboxylates and phenoxides with metal or ammonium ions as counterion. Suitable carboxylates are the anions of all aliphatic or cycloaliphatic carboxylic acids, preferably those with mono- or polycarboxylic acids having 1 to 20 carbon atoms. Suitable metal ions are derived from alkali metals or alkaline earth metals, manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium, tin, titanium, hafnium or lead. Preferred alkali metals are lithium, sodium and potassium, more preferably sodium and potassium. Preferred alkaline earth metals are magnesium, calcium, strontium and barium.
- Very particular preference is given to the octoate and naphthenate catalysts described in DE-A 3 240 613, these being octoates and naphthenates of manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium or lead, or mixtures thereof with acetates of lithium, sodium, potassium, calcium or barium.
- Very particular preference is likewise given to sodium benzoate or potassium benzoate, to the alkali metal phenoxides known from GB-A 1 391 066 and GB-A 1 386 399, for example sodium phenoxide or potassium phenoxide, and to the alkali metal and alkaline earth metal oxides, hydroxides, carbonates, alkoxides and phenoxides that are known from GB 809 809.
- The trimerization catalyst C preferably contains a polyether. This is especially preferred when the catalyst contains metal ions. Preferred polyethers are selected from the group consisting of crown ethers, diethylene glycol, polyethylene glycols and polypropylene glycols. It has been found to be of particular practical relevance in the process of the invention to use a trimerization catalyst B containing, as polyether, a polyethylene glycol or a crown ether, more preferably 18-crown-6 or 15-crown-5. Preferably, the trimerization catalyst B comprises a polyethylene glycol having a number-average molecular weight of 100 to 1000 g/mol, preferably 300 g/mol to 500 g/mol and especially 350 g/mol to 450 g/mol.
- Very particular preference is given to the combination of the above-described carboxylates and phenoxides of alkali metals or alkaline earth metals with a polyether.
- Component D
- Component D is a compound having at least one isocyanate-reactive group as defined further up in this application and at least one ethylenic double bond in one molecule. The isocyanate-reactive group of component D may also be a uretdione group. Ethylenic double bonds are preferably those that are crosslinkable with other ethylenic double bonds by a free-radical reaction mechanism. Corresponding activated double bonds are defined in detail further up in this application for component B.
- Preferred components D are alkoxyalkyl (meth)acrylates having 2 to 12 carbon atoms in the hydroxyalkyl radical. Particular preference is given to 2-hydroxyethyl acrylate, the isomer mixture formed on addition of propylene oxide onto acrylic acid, or 4-hydroxybutyl acrylate.
- Component E
- Component E is a compound having both at least one isocyanate group and at least one ethylenic double bond in one molecule. It can advantageously be obtained by crosslinking a component D described in the preceding paragraph with a monomeric or oligomeric polyisocyanate as described further up in this application. This crosslinking is effected by the reaction of the isocyanate-reactive groups, in this case especially a hydroxyl, amino or thiol group, and an isocyanate group of the polyisocyanate. This is preferably catalyzed by a component G, which is described further down in this application. But any other suitable catalyst known to those skilled in the art is also conceivable. It is also possible to dispense with a catalyst entirely.
- The isocyanate group of component E may also be in reversibly blocked form. The reversible blocking of isocyanate groups is preferably effected with blocking agents that are free of elimination products.
- In a further preferred embodiment, the free-radically crosslinkable structural material contains blocked or unblocked NCO groups. When the NCO groups are blocked, the process of the invention further includes the step of deblocking these NCO groups. After they have been deblocked, they are thus available for further reactions.
- The blocking agent is chosen such that, on heating in the process of the invention, the NCO groups are at least partly deblocked. Examples of blocking agents are alcohols, lactams, oximes, malonic esters, alkyl acetoacetates, triazoles, phenols, imidazoles, pyrazoles and amines, for example butanone oxime, diisopropylamine, 1,2,4-triazole, dimethyl-1,2,4-triazole, imidazole, diethyl malonate, ethyl acetoacetate, acetone oxime, 3,5-dimethylpyrazole, ε-caprolactam, N-methyl-, N-ethyl-, N-(iso)propyl-, N-n-butyl-, N-isobutyl-, N-tert-butylbenzylamine or 1,1-dimethylbenzylamine, N-alkyl-N-1,1-dimethylmethylphenylamine, adducts of benzylamine onto compounds having activated double bonds, such as malonic esters, N,N-dimethylaminopropylbenzylamine and other optionally substituted benzylamines containing tertiary amino groups and or dibenzylamine or any desired mixtures of these blocking agents.
- Particular preference is given to combinations in which a hexamethylene diisocyanate- or pentamethylene diisocyanate-based oligomeric polyisocyanate is combined with a component D selected from the group consisting of 2-hydroxyethyl acrylate, the isomer mixture formed on addition of propylene oxide onto acrylic acid, and 4-hydroxybutyl acrylate.
- Further preferred components E are 2-isocyanatoethyl (meth)acrylate, tris(2-hydroxyethyl) isocyanate tri(meth)acrylate, vinyl isocyanates, allyl isocyanates and 3-isopropenyl-α,α-dimethylbenzyl isocyanate.
- Component F
- In principle, free-radical polymerization of the ethylenically unsaturated compounds present in the reaction mixture can be brought about by actinic radiation with a sufficient energy content. This is especially UV-VIS radiation in the wavelength range between 200 and 500 nm. In this case, the polymerizable composition of the invention need not contain any component F.
- But if the use of corresponding radiation is to be dispensed with, the presence of at least one component F suitable as an initiator for a free-radical polymerization of the ethylenic double bonds present in the polymerizable composition of the invention is required. This component F is preferably a radiation-activated initiator.
- Preferred radiation-activated initiators F are compounds of the unimolecular type (I) and of the bimolecular type (II). Suitable type (I) systems are aromatic ketone compounds, for example benzophenones in combination with tertiary amines, alkylbenzophenones, 4,4′-bis(dimethylamino)benzophenone (Michler's ketone), anthrone and halogenated benzophenones or mixtures of the recited types. Also suitable are type (II) initiators such as benzoin and derivatives thereof, benzil ketals, acylphosphine oxides, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bisacylphosphine oxides, phenylglyoxylic esters, camphorquinone, α-aminoalkylphenones, α,α-dialkoxyacetophenones and α-hydroxyalkylphenones. Specific examples are Irgacure®500 (a mixture of benzophenone and 1-hydroxycyclohexyl phenyl ketone, from Ciba, Lampertheim, Del.), Irgacure®819 DW (phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide, from Ciba, Lampertheim, Del.) or Esacure® KIP EM (oligo-[2-hydroxy-2-methyl-1-[4-(1-methylvinyl)phenyl]propanones], from Lamberti, Aldizzate, Italy) and bis(4-methoxybenzoyl)diethylgermanium. Mixtures of these compounds may also be employed.
- It should be ensured that the photoinitiators have a sufficient reactivity toward the radiation source used. A multitude of photoinitiators is known on the market. Commercially available photoinitiators cover the wavelength range of the entire UV-VIS spectrum.
- Component G
- Component G is a catalyst that catalyzes the crosslinking of an isocyanate group with an isocyanate-reactive group. This preferably gives rise to a urethane group, a thiourethane group or a urea group.
- The polymerizable composition preferably contains a component G when a component D having at least one isocyanate-reactive group is present. However, the use of a component G is not obligatory in this case either, since the crosslinking of isocyanate groups with isocyanate-reactive groups can also be accelerated by the trimerization catalysts C used and also proceeds at sufficient speed even entirely without catalysis when the reaction temperature is high enough. It is possible to dispense with the addition of a component G especially when the crosslinking of the isocyanate groups present in the isocyanate component A is conducted at a temperature of at least 60° C., preferably at least 120° C.
- Preferred components G are the typical urethanization catalysts as specified, for example, in Becker/Braun, Kunststoffhandbuch [Plastics Handbook] volume 7, Polyurethane [Polyurethanes], section 3.4. The catalyst used may especially be a compound selected from the group of the tertiary amines, tertiary amine salts, metal salts and metal organyls, preferably from the group of the tin salts, tin organyls and bismuth organyls.
- Component H
- According to the invention, the viscosity of the polymerizable composition is preferably adjusted by the use of a component B in suitable concentration. These act as reactive diluents and basically make it possible to dispense with the use of additional solvents to lower the viscosity of the isocyanate component A.
- In particular embodiments, however, it may be desirable to additionally add a solvent suitable for isocyanates to the polymerizable composition of the invention. This may be desirable, for example, when the proportion of component B in the polymerizable composition is to be limited and the aim is a lowering of viscosity unachievable with this limited proportion of component B. In this case, the polymerizable composition of the invention may contain all solvents suitable for the dilution of isocyanates that are known to the person skilled in the art. These are preferably hexane, toluene, xylene, chlorobenzene, ethyl acetate, butyl acetate, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, ethylene glycol monomethyl or monoethyl ether acetate, diethylene glycol ethyl and butyl ether acetate, propylene glycol monomethyl ether acetate, 1-methoxyprop-2-yl acetate, 3-methoxy-n-butyl acetate, propylene glycol diacetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, lactones such as β-propiolactone, γ-butyrolactone, ε-caprolactone and ε-methylcaprolactone, but also solvents such as N-methylpyrrolidone and N-methylcaprolactam, 1,2-propylene carbonate, methylene chloride, dimethyl sulfoxide, triethyl phosphate or any desired mixtures of such solvents.
- Component I
- In a preferred embodiment, the polymerizable composition of the invention additionally comprises at least one additive I selected from the group consisting of UV stabilizers, antioxidants, mold release agents, water scavengers, slip additives, defoamers, leveling agents, rheology additives, flame retardants and pigments. These auxiliaries and additives, except for the flame retardants, are typically present in an amount of not more than 20% by weight, preferably not more than 10% by weight and more preferably not more than 3% by weight, based on the polymerizable composition of the invention. According to the end use, flame retardants may be present in higher amounts of up to a maximum of 40% by weight.
- Component J
- In a particularly preferred embodiment of the present invention, the polymerizable composition comprises at least one organic filler and/or at least one inorganic filler. Said fillers may be present in any shape and size known to the person skilled in the art.
- Preferred organic fillers are dyes and organic nanoparticles, for example those based on carbon.
- Preferred inorganic fillers are pigments AlOH3, CaCO3, silicon dioxide, magnesium carbonate, TiO2, ZnS, minerals containing silicates, sulfates, carbonates and the like, such as magnesite, baryte, mica, dolomite, kaolin, talc, clay minerals, and carbon black, graphite, boron nitride, glass, basalt, boron, ceramic and silica.
- The coating composition of the invention more preferably contains at least one organic or inorganic pigment.
- Use
- In a further embodiment, the present invention relates to the use of at least one component selected from the group consisting of components B, D and E for production of a coating composition having a ratio of isocyanate groups to isocyanate-reactive groups of at least 2.0:1.0, which contains an isocyanate component A and is polymerizable either by free-radical polymerization or by crosslinking of isocyanate groups with one another.
- Preferably, at least one component B as defined above in this application is additionally used.
- All definitions given further up in this application for the coating composition are also applicable to this embodiment. This is especially true of the quantitative ratios of components A, B, D and E and the ratio of isocyanate groups to the total amount of the isocyanate-reactive groups in the polymerizable composition.
- Process
- In a further embodiment, the present invention relates to a process for preparing a coating, comprising the steps of
-
- a) providing a coating composition as described further up in this application;
- b) applying the coating composition to a surface;
- c) crosslinking at least some of the ethylenic double bonds present in said polymerizable composition; and
- d) crosslinking the isocyanate groups present in said polymerizable composition;
- wherein process step b) is conducted first, then process step c) and finally process step d).
- All other definitions given above with regard to the polymerizable composition of the invention are also applicable to the process of the invention, unless stated otherwise hereinafter.
- When the polymerizable composition contains at least one component D, it is preferable that the process of the invention includes a further reaction step e) in which the isocyanate-reactive group of component D is crosslinked with an isocyanate group of the isocyanate component A or of a reaction product of the isocyanate component A. Said process step e) is preferably conducted after process step c). In most cases, however, it will be effected in parallel to process step e) since both the crosslinking of isocyanate groups with one another and the reaction of isocyanate groups with isocyanate-reactive groups proceed at similar temperatures.
- Processes for producing an adhesive bond comprising the steps of
-
- a) providing a coating composition as defined further up in this application;
- b) applying the coating composition to a surface;
- c) polymerizing at least some of the ethylenic double bonds present in said polymerizable composition;
- d) compressing the at least one coated surface together with a further surface; and
- e) crosslinking the reactive isocyanate groups present in said polymerizable composition and the ethylenic double bonds as yet unconverted in process step c);
- wherein process steps c), d) and e) are conducted in any sequence after process step b).
- It is preferable that process step c) is conducted prior to process steps d) and e).
- If not all ethylenic double bonds have yet been polymerized in process step c), the unconverted double bonds are converted in process step e).
- Applying to a Surface
- The composition of the invention can be applied by different methods known per se. These are preferably spraying, painting, dipping, pouring, flow-coating or coating with the aid of brushes, rolls, nozzles or coating bars. Particular preference is given to printing technologies, especially screen-printing, valvejet, bubblejet and piezo printing. The surface to be coated has to be adequately wetted by the composition of the invention. Adequate wettability of a surface is preferably defined in that the contact angle of the liquid on the surface is not more than 100°, the contact angle measurement preferably being conducted by means of a tensiometer by the Wilhelmy method.
- Preferably, the surface to be coated consists of a material selected from the group consisting of minerals, metal, rigid plastics, flexible plastics, textiles, leather, wood, wood derivatives and paper. Minerals are preferably selected from the group consisting of glass, stone, ceramic materials and concrete. In a particularly preferred embodiment, these materials are already in the form of surfaces modified with customary organic or inorganic or hybrid lacquers, primers or waxes.
- Crosslinking of the Ethylenic Double Bonds
- The ethylenic double bonds present in the polymerizable composition of the invention are crosslinked by a free-radical polymerization. This polymerization reaction is initiated in accordance with the invention by the use of radiation suitable for activation of the radiation-activated initiator F. In principle, however—irrespective of the presence of an initiator—the use of sufficiently high-energy radiation as defined further up in this application is also sufficient to initiate the free-radical polymerization in process step c).
- It is preferable that process step c) is conducted not more than 120 seconds, more preferably not more than 30 seconds, after process step b).
- Crosslinking of the Isocyanate Groups
- The “crosslinking” of the isocyanate component A in process step d) is a process in which the isocyanate groups present therein react with one another or with urethane groups already present to form at least one structure selected from the group consisting of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and oxadiazinetrione structures. In this reaction, the isocyanate groups originally present in the isocyanate component A are consumed. The formation of the aforementioned groups results in combination of the monomeric and oligomeric polyisocyanates present in the isocyanate composition A to form a polymer network.
- Since there is a distinct molar excess of isocyanate groups over isocyanate-reactive groups in the polymerizable composition of the invention, the result of the crosslinking reaction is that at most 20%, preferably at most 10%, more preferably at most 5%, even more preferably at most 2% and especially at most 1% of the total nitrogen content of the isocyanate component A is present in urethane and/or allophanate groups.
- In a particularly preferred embodiment of the invention, the cured isocyanate component A, however, is not entirely free of urethane and allophanate groups. Consequently, taking account of the upper limits defined in the preceding paragraph, it preferably contains at least 0.1% urethane and/or allophanate groups based on the total nitrogen content.
- It is preferable that the crosslinking of the isocyanate groups present in the polymerizable composition of the invention proceeds predominantly via cyclotrimerization of at least 50%, preferably at least 60%, more preferably at least 70%, especially at least 80% and most preferably 90% of the free isocyanate groups present in the isocyanate component A to give isocyanurate structural units, Thus, in the finished material, corresponding proportions of the nitrogen originally present in the isocyanate component A are bound within isocyanurate structures. However, side reactions, especially those to give uretdione, allophanate and/or iminooxadiazinedione structures, typically occur and can even be used in a controlled manner in order to advantageously affect, for example, the glass transition temperature (Tg) of the polyisocyanurate plastic obtained. However, the above-defined content of urethane and/or allophanate groups is preferably present in this embodiment too.
- The crosslinking of the isocyanate groups is preferably effected at temperatures between 50° C. and 220° C., more preferably between 80° C. and 200° C. and even more preferably between 100° C. and 200° C.
- The abovementioned temperatures are maintained in process step d) until at least 50%, preferably at least 75% and even more preferably at least 90% of the free isocyanate groups present in the isocyanate component A at the start of process step b) have been consumed. The percentage of isocyanate groups still present can be determined by a comparison of the content of isocyanate groups in % by weight in the isocyanate component A present at the start of process step b) with the content of isocyanate groups in % by weight in the reaction product, for example by the aforementioned comparison of the intensity of the isocyanate band at about 2270 cm−1 by means of IR spectroscopy.
- The exact duration of process step d) naturally depends on the geometry of the workpiece to be created, especially the ratio of surface area and volume, since the required temperature has to be attained for the minimum time required even in the core of the workpiece being formed. The person skilled in the art is able to determine these parameters by simple preliminary tests.
- In principle, crosslinking of the above mentioned proportions of free isocyanate groups is achieved when the abovementioned temperatures are maintained for 1 minute to 4 hours. Particular preference is given to a duration between 1 minute and 15 minutes at temperatures between 180° C. and 220° C. or a duration of 5 minutes to 120 minutes at a temperature of 120° C.
- Polymer
- In yet a further embodiment, the present invention relates to a coating obtainable by the process described above.
- A “coating” is preferably characterized in that it has been applied to a substrate. This substrate is preferably selected from the group consisting of wood, plastic, metal, natural rock, concrete, paper and glass. In this respect, the present invention also relates to a substrate coated with the polymer of the invention. The coating is more preferably characterized in that the layer thickness is at least 0.005 mm and at most 5 mm and preferably has a measurement in at least one of the two other dimensions of at least a factor of 10, more preferably 100, of the layer thickness. Preferably in both the aforementioned factors are attained in both further dimensions.
- In a further embodiment, the present invention relates to at least one coating which is compressed between two substrates having been applied to at least one substrate and is then polymerized and crosslinked and hence acts as an adhesive.
- In a particular embodiment, prior to the compression, the at least one coating between the two substrates, at least one of which has been coated in accordance with the invention, is prepolymerized by use of actinic radiation and/or heat with the aim of obtaining a dimensionally stable adhesive coating according to the invention prior to the compression.
- The examples which follow serve only to illustrate the invention. They are not intended to limit the scope of protection of the patent claims in any manner.
- General Details:
- All percentages, unless stated otherwise, are based on percent by weight (% by weight).
- The ambient temperature of 23° C. at the time of conduct of the experiments is referred to as RT (room temperature).
- The methods detailed hereinafter for determination of the appropriate parameters were employed for conduction and evaluation of the examples and are also the methods for determination of the parameters of relevance in accordance with the invention in general.
- Starting Compounds
- Polyisocyanate A: HDI trimer (NCO functionality >3) with an NCO content of 23.0% by weight from Covestro AG. The viscosity is about 1200 mPa·s at 23° C. (DIN EN ISO 3219/A.3).
- Acrylate 1: hexanediol diacrylate (HDDA) was sourced with a purity of 99% by weight from abcr GmbH or with a purity of <=100% by weight from Sigma-Aldrich.
- Acrylate 2: hydroxypropyl methacrylate (HPMA) was sourced with a purity of 98% by weight from abcr GmbH.
- Potassium acetate was sourced with a purity of >99% by weight from ACROS.
- Lucirin TPO-L is an ethyl (2,4,6-trimethylbenzoyl)phenylphosphinate from BASF.
- Polyethylene glycol (PEG) 400 was sourced with a purity of >99% by weight from ACROS.
- All raw materials except for the catalyst and HPMA were degassed under reduced pressure prior to use.
- Preparation of the Catalysts:
- Potassium acetate (5.0 g) was stirred in the PEG 400 (95.0 g) at RT until all of it had dissolved. In this way, a 5% by weight solution of potassium acetate in PEG 400 was obtained and was used as catalyst without further treatment.
- Preparation of the Reaction Mixture
- Unless stated otherwise, the reaction mixture was prepared by mixing polyisocyanate (A1-A2) and the acrylate(s) with an appropriate amount of catalyst, initiator and optionally additive at 23° C. in a Speedmixer DAC 150.1 FVZ from Hauschild at 2750 min−1.
- This was then knife-coated onto a glass plate (tin-free side, 250 μm).
- In a first crosslinking step, the layer applied was treated by means of UV curing with a gallium-doped mercury vapor lamp and an undoped mercury vapor lamp, both operated at 80 W/cm and with a belt speed of 5 m/min. The dose obtained under these conditions is 1400 mJ/cm2.
- After the first crosslinking step, the plate was placed on its edge and it was observed whether the UV light-treated coating runs or not.
- Subsequently, the coating was cured completely. For this purpose, it was introduced into an air circulation oven at 180° C. for 15 min.
- Test Methods
- Run-Off
- The coated plate was placed onto a paper towel on its edge for 10 min, and a visual assessment was made as to whether the coating runs. If there is a perceptible change in the coating as a result of the upright position (for example formation of a bulge at the lower edge), the coating is classified as “runs off”.
- Acetone Resistance
- A small piece of cotton wool is soaked with acetone and placed onto the coating surface. Every minute, the piece of cotton wool was soaked again with acetone in order to compensate for the evaporation. For this purpose, the acetone was added by means of a wash bottle in order that the piece of cotton wool is not moved during the contact operation. After 1 min and 5 min, the acetone-soaked piece of cotton wool is removed, the affected site is dried off and an inspection is made immediately in order to anticipate any regeneration. The test area is inspected for changes visually and by touching by hand. Subsequently, an assessment is made as to whether and what changes have occurred in the test area.
- An assessment is made of softening or discoloration of the coating surface.
-
- 0 no changes detectable
- 1 swelling ring, hard surface, merely visible alteration/trace of a change in hue
- 2 swelling ring, slight softening/slight change in hue
- 3 distinct softening (possible slight blistering)/moderate change in hue
- 4 significant softening (possibly significant blistering), can be scratched through down to the substrate/significant change in hue
- 5 coating completely destroyed without outside action/very significant change in hue
- Hardness
- Hardness is the mechanical resistance of a body to the penetration of another body. It is the quotient of measured indentation force and the contact area of the indentation body on penetration into the surface. The contact area is calculated with the known geometry of the penetration body and the measured indentation depth.
- In the case of the instrumented indentation test (Martens hardness), indentation force and indentation depth are measured during the deformation, taking account of the elastic and plastic deformation. A pyramidal indentation body (Vickers tip) presses into the coating with rising test force.
- Indentation force, indentation depth and indentation body geometry are used to calculate a Martens hardness value (HM).
- Hardness was determined by means of a Fischerscope H100C in accordance with DIN EN ISO 14577-1.
- The samples are conditioned under standard climatic conditions at 23° C. and 50% rel. humidity for at least 16 h and then analyzed. Choice of maximum indentation force either the same for all samples within the test series or individual assessment and adjustment for each sample. The adjustment criterion here is the Buckle rule, according to which the maximum indentation force is adjusted such that the penetration depth attained is not more than 10% of the coating thickness.
- The measurement result reported in table 1 is the Martens hardness HM (F) in N/mm2 as an average from 5 measurements.
- Visual Assessment
- After complete curing, the film was visually assessed and briefly described.
- Working Examples:
- The amounts of polyisocyanate, acrylate, catalyst solution specified in table 1 were treated according to the abovementioned production method for reaction mixtures.
- The reaction mixture was coated with a coating bar in a thickness of 250 μm onto the tin-free side of a glass plate and then UV-treated with a gallium-doped mercury vapor lamp and an undoped mercury vapor lamp. Subsequently, the samples were cured in an air circulation oven at 180° C. for 15 min.
-
TABLE 1 Compositions and material properties of working examples 1-10 Results Catalyst + initiator Martens Resin composition Amount of hardness HM (F) Acetone resistance Amount of Amount of Amount of Amount of Lucirin [N/mm2] 1 min/5 min Visual observation Isocyanate A Acrylate 1 Acrylate 2 Cat. K1 TPOL-L After After After Runoff Appearance Ex. [g] [g] [g] [g] [g] curing exposure curing after exposure after curing B1 50.0 0.5 9.5 2.0 0.3 133 3/3 0/0 no homogeneous layer B2 50.0 0.375 7.125 2.0 0.3 126 4/4 0/0 no homogeneous layer B3 50.0 0.25 4.75 2.0 0.3 133 5/5 0/0 no homogeneous layer B4 50.0 0.375 9.5 2.0 0.3 130 3-4/4 0/0 no homogeneous layer B5 50.0 0.25 9.5 2.0 0.3 134 3-4/4 0/0-1 no homogeneous layer B6 50.0 0.0 0 2.0 0.3 135 5/5 0/0 obvious homogeneous layer - All examples where the number is preceded by a B are inventive. All examples where the number is preceded by a V are comparative examples and noninventive. Comparative example 1 is prophetic.
- All examples show a high Martens hardness HM (F) after complete curing.
- Examples B1 to B5 show that runoff-free films are obtained after radiative curing and homogeneous clear hard films after complete curing.
- Comparative example V1 shows that the straight isocyanate after radiative curing does not form a runoff-free layer.
Claims (16)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16198688.0 | 2016-11-14 | ||
EP16198688 | 2016-11-14 | ||
PCT/EP2017/079218 WO2018087399A1 (en) | 2016-11-14 | 2017-11-14 | Dual-curing coating compositions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190367666A1 true US20190367666A1 (en) | 2019-12-05 |
Family
ID=57354125
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/349,470 Active 2040-03-23 US11590692B2 (en) | 2016-11-14 | 2017-11-14 | Method for producing an object from a precursor, and use of a radically crosslinkable resin in an additive production method |
US16/349,358 Active US11613072B2 (en) | 2016-11-14 | 2017-11-14 | Dual-curing isocyanurate polymers |
US15/812,116 Active US10449714B2 (en) | 2016-11-14 | 2017-11-14 | Process for producing an object from a precursor and use of a free-radically crosslinkable resin in an additive manufacturing process |
US16/349,322 Pending US20200190245A1 (en) | 2016-11-14 | 2017-11-14 | Composite materials based on dual-curing isocyanurate polymers |
US16/349,373 Pending US20190367666A1 (en) | 2016-11-14 | 2017-11-14 | Dual-curing coating compositions |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/349,470 Active 2040-03-23 US11590692B2 (en) | 2016-11-14 | 2017-11-14 | Method for producing an object from a precursor, and use of a radically crosslinkable resin in an additive production method |
US16/349,358 Active US11613072B2 (en) | 2016-11-14 | 2017-11-14 | Dual-curing isocyanurate polymers |
US15/812,116 Active US10449714B2 (en) | 2016-11-14 | 2017-11-14 | Process for producing an object from a precursor and use of a free-radically crosslinkable resin in an additive manufacturing process |
US16/349,322 Pending US20200190245A1 (en) | 2016-11-14 | 2017-11-14 | Composite materials based on dual-curing isocyanurate polymers |
Country Status (6)
Country | Link |
---|---|
US (5) | US11590692B2 (en) |
EP (4) | EP3538584B1 (en) |
JP (1) | JP7216644B2 (en) |
KR (1) | KR102388093B1 (en) |
CN (5) | CN109963890A (en) |
WO (4) | WO2018087396A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2685216C2 (en) | 2014-11-24 | 2019-04-16 | Ют-Баттелле, Ллк | Methods of reactive three-dimensional printing by extrusion |
US10434704B2 (en) | 2017-08-18 | 2019-10-08 | Ppg Industries Ohio, Inc. | Additive manufacturing using polyurea materials |
CN111344328B (en) * | 2017-11-09 | 2023-05-30 | 科思创德国股份有限公司 | Method for manufacturing an article and use of a free radical crosslinkable resin in an additive manufacturing process |
ES2981974T3 (en) * | 2017-11-14 | 2024-10-14 | Covestro Deutschland Ag | Semi-finished products based on dual cross-linking mechanism |
EP3827122B1 (en) * | 2018-07-25 | 2024-08-28 | Suominen Corporation | 3d printed sleeve |
GB201819984D0 (en) | 2018-12-07 | 2019-01-23 | Ge Healthcare Bio Sciences Ab | Chromatography column and method of assembling the same |
MX2021007168A (en) | 2018-12-18 | 2021-08-05 | Dow Global Technologies Llc | Hybrid foam formulations. |
EP3917984A1 (en) | 2019-02-01 | 2021-12-08 | Basf Se | Polyurethane and uv-moisture dual cure pu reactive hotmelt comprising the same |
CN114096395A (en) * | 2019-07-04 | 2022-02-25 | 株式会社理光 | Manufacturing method and manufacturing apparatus of additive manufactured object, curing liquid for additive manufacturing, and kit for additive manufacturing |
US20220153910A1 (en) * | 2020-11-18 | 2022-05-19 | Covestro Llc | Polyurethane and polyisocyanurate hybrid coatings |
US20220153911A1 (en) * | 2020-11-18 | 2022-05-19 | Covestro Llc | Polyurethane and polyisocyanurate hybrid materials and method of preparing the same |
US20240301154A1 (en) | 2021-03-29 | 2024-09-12 | Covestro Deutschland Ag | Polyisocyanurate-prepregs and fiber composite components produced therefrom |
EP4092064A1 (en) | 2021-05-17 | 2022-11-23 | Covestro Deutschland AG | Photo- and thermally curable resin useful for additive manufacturing |
EP4116348A1 (en) | 2021-07-09 | 2023-01-11 | Covestro Deutschland AG | Photo- and thermally curable resin useful in additive manufacturing processes |
EP4166331A1 (en) | 2021-10-12 | 2023-04-19 | Covestro Deutschland AG | Photo- and thermally curable resin useful in additive manufacturing processes |
CN115160908B (en) * | 2022-07-06 | 2023-07-07 | 海利得新材料研究(上海)有限公司 | Solvent-free UV matte coating and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0007779A1 (en) * | 1978-07-27 | 1980-02-06 | Ici Americas Inc. | Method of increasing the viscosity of a thermoset composition and shaped articles made from this composition |
US20040068028A1 (en) * | 2000-08-24 | 2004-04-08 | Hubert Baumgart | Aqueous dispersion and the use thereof in the production of coating agents, adhesives and sealing agents that can cured by heat or by actinic radiation |
US20070021553A1 (en) * | 2002-10-17 | 2007-01-25 | Basf Coatings Aktiengesellschaft, | Coating material which is thermally curable and curable by means of actinic radiation and method for coating microporous surfaces |
US20100203259A1 (en) * | 2009-02-06 | 2010-08-12 | Nippon Bee Chemical Co., Ltd. | Method of forming a coating film |
US20150051301A1 (en) * | 2012-02-08 | 2015-02-19 | Bayer Intellectual Property Gmbh | Method for producing a hard polyurethane-polyisocyanurate foamed material |
US20160282515A1 (en) * | 2013-10-21 | 2016-09-29 | Mitsui Chemicals, Inc. | Polymerizable composition for optical material and optical material |
Family Cites Families (117)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB809809A (en) | 1956-11-16 | 1959-03-04 | Ici Ltd | Polymeric isocyanates and their manufacture |
GB952931A (en) | 1961-05-25 | 1964-03-18 | Ici Ltd | Improved polyisocyanate compositions |
GB966338A (en) | 1961-10-26 | 1964-08-12 | Ici Ltd | Polyurethane surface coatings |
US3211703A (en) | 1962-03-23 | 1965-10-12 | Monsanto Res Corp | Polyaliphatic polyisocyanurate laminating resin prepared in the presence of a cocatalyst system |
DE1226109B (en) | 1964-04-20 | 1966-10-06 | Bayer Ag | Process for the preparation of polyisocyanates with an isocyanurate structure |
CA932333A (en) | 1966-02-02 | 1973-08-21 | Farbenfabriken Bayer Aktiengesellschaft | Compounds containing the 2,4,6-triketo-1,3,5-oxadiazine ring |
GB1200542A (en) | 1967-01-19 | 1970-07-29 | Takeda Chemical Industries Ltd | A method for producing isocyanate trimers |
DE1954093C3 (en) | 1968-11-15 | 1978-12-21 | Mobay Chemical Corp., Pittsburgh, Pa. (V.St.A.) | Process for the preparation of polymeric organic isocyanates |
GB1391066A (en) | 1971-07-16 | 1975-04-16 | Ici Ltd | Urethane oils |
GB1386399A (en) | 1971-07-16 | 1975-03-05 | Ici Ltd | Isocyanurate polymers |
BE795448A (en) * | 1972-02-24 | 1973-08-16 | Shell Int Research | PROCESS FOR THE PREPARATION OF HARDABLE COMPOSITIONS |
DE2414413C3 (en) | 1974-03-26 | 1978-08-24 | Bayer Ag, 5090 Leverkusen | Use of solutions of polyisocyanates with an isocyanurate structure in two-component polyurethane paints |
DE2452532C3 (en) | 1974-11-06 | 1978-08-24 | Bayer Ag, 5090 Leverkusen | Process for the preparation of polyisocyanates with an isocyanurate structure |
US4040992A (en) | 1975-07-29 | 1977-08-09 | Air Products And Chemicals, Inc. | Catalysis of organic isocyanate reactions |
DE2641380C2 (en) | 1976-09-15 | 1989-11-23 | Bayer Ag, 5090 Leverkusen | Process for the preparation of polyisocyanates with an isocyanurate structure |
DE2722400C2 (en) * | 1977-05-17 | 1985-05-30 | Bayer Ag, 5090 Leverkusen | Process for the production of heat-resistant, bubble-free plastics containing isocyanurate groups |
EP0000659B1 (en) * | 1977-07-27 | 1981-09-09 | Ici Americas Inc. | An isocyanurate composition formed by the trimerisation of an isocyanate group containing urethane of an aromatic polyisocyanate and a vinylidenecarbonyloxyalkanol and solutions, polymers and laminates obtained therefrom. |
US4128537A (en) * | 1977-07-27 | 1978-12-05 | Ici Americas Inc. | Process for preparing ethylenically unsaturated isocyanurates |
US4159376A (en) | 1977-07-27 | 1979-06-26 | Ici Americas Inc. | Isocyanurates from unsaturated monohydric alcohols and polyisocyanates |
US4145544A (en) | 1977-07-27 | 1979-03-20 | Ici Americas Inc. | Preparation of isocyanurates |
DE2806731A1 (en) | 1978-02-17 | 1979-08-23 | Bayer Ag | PROCESS FOR THE PREPARATION OF POLYISOCYANATES HAVING ISOCYANURATE GROUPS |
US4296215A (en) * | 1978-07-27 | 1981-10-20 | Ici Americas Inc. | Method to thicken dissolved thermoset resins |
US4232133A (en) * | 1978-07-27 | 1980-11-04 | Ici Americas Inc. | Polyisocyanurate containing molding compositions |
CA1112243A (en) | 1978-09-08 | 1981-11-10 | Manfred Bock | Process for the preparation of polyisocyanates containing isocyanurate groups and the use thereof |
DE2901479A1 (en) | 1979-01-16 | 1980-07-24 | Bayer Ag | NEW ISOCYANATO ISOCYANURATE, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS ISOCYANATE COMPONENT IN POLYURETHANE LACQUER |
CA1127644A (en) | 1980-01-28 | 1982-07-13 | Anupama Mishra | Isocyanurate products and polyurethanes therefrom |
DE3033860A1 (en) | 1980-09-09 | 1982-04-15 | Bayer Ag, 5090 Leverkusen | NEW ISOCYANATO-ISOCYANURATE, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS ISOCYANATE COMPONENT IN POLYURETHANE PAINTS |
DE3100263A1 (en) | 1981-01-08 | 1982-08-12 | Bayer Ag, 5090 Leverkusen | METHOD FOR PRODUCING POLYISOCYANATES CONTAINING ISOCYANURATE GROUPS AND THE USE THEREOF IN THE PRODUCTION OF POLYURETHANES |
DE3100262A1 (en) | 1981-01-08 | 1982-08-05 | Bayer Ag, 5090 Leverkusen | METHOD FOR THE PRODUCTION OF POLYISOCYANATES CONTAINING ISOCYANURATE GROUPS, SOLUTIONS SUITABLE AS CATALYST COMPONENTS FOR THIS METHOD, AND THE USE OF THE PROCESS PRODUCTS AS THE ISOCYANATE COMPONENT PRODUCT |
US4352906A (en) * | 1981-08-06 | 1982-10-05 | Ici Americas Inc. | Blister resistant calcium carbonate filled polyisocyanurate resin molding compositions |
JPS58162581A (en) | 1982-03-19 | 1983-09-27 | Nippon Polyurethan Kogyo Kk | Preparation of isocyanurate compound and useful composition of product produced thereby |
DE3227489A1 (en) | 1982-07-23 | 1984-01-26 | Bayer Ag, 5090 Leverkusen | METHOD FOR PRODUCING POLYISOCYANATES CONTAINING ISOCYANURATE GROUPS AND THE USE THEREOF AS ISOCYANATE COMPONENTS FOR PRODUCING POLYURETHANES |
PT77070B (en) | 1982-07-29 | 1986-01-27 | Dsm Resins Bv | Oligomerisation of polyisocyanates |
AT375652B (en) | 1982-10-29 | 1984-08-27 | Valentina Alexandro Postnikova | METHOD FOR PRODUCING ARYLALIPHATIC POLYISOZYANURATES |
JPH0641500B2 (en) * | 1984-04-30 | 1994-06-01 | 旭オーリン株式会社 | Method for producing polymer product |
JPH0641501B2 (en) * | 1984-04-30 | 1994-06-01 | 旭オーリン株式会社 | Method for producing polymer product |
DE3521618A1 (en) | 1985-06-15 | 1986-12-18 | Bayer Ag, 5090 Leverkusen | POLYISOCYANATE PREPARATION IN WATER AND THEIR USE AS ADDITIVES FOR AQUEOUS ADHESIVES |
JPH0678418B2 (en) | 1986-03-10 | 1994-10-05 | 大日本インキ化学工業株式会社 | Resin composition |
JP2598391B2 (en) * | 1986-03-24 | 1997-04-09 | 三菱化学株式会社 | Manufacturing method of magnetic recording medium |
DE3700209A1 (en) | 1987-01-07 | 1988-07-21 | Bayer Ag | METHOD FOR PRODUCING POLYISOCYANATES WITH BIURET STRUCTURE |
DE3737244A1 (en) | 1987-11-03 | 1989-05-18 | Bayer Ag | METHOD FOR PRODUCING GROUPS OF ISOCYANURATE AND COMPOUNDS HAVING DOUBLE OLEFINIC LINKS AND THEIR USE AS A BINDING AGENT |
DE3811350A1 (en) | 1988-04-02 | 1989-10-19 | Bayer Ag | METHOD FOR THE PRODUCTION OF ISOCYANURATE POLYISOCYANATES, THE COMPOUNDS OBTAINED BY THIS PROCESS AND THEIR USE |
DE3814167A1 (en) | 1988-04-27 | 1989-11-09 | Bayer Ag | METHOD FOR PRODUCING POLYISOCYANATES CONTAINING ISOCYANURATE GROUPS AND THE USE THEREOF |
DE3819627A1 (en) | 1988-06-09 | 1989-12-14 | Bayer Ag | UV-CARDABLE COATINGS FOR POLYCARBONATE FORMKOERPER |
US5130402A (en) * | 1988-07-01 | 1992-07-14 | Sanyo Chemical Industries, Ltd. | Coating composition and plastisol composition, and articles coated therewith |
CA1334848C (en) | 1988-08-05 | 1995-03-21 | William E. Slack | Process for the production of polyisocyanates which contain isocyanurate groups |
CA1334849C (en) | 1988-08-24 | 1995-03-21 | Bayer Corporation | Process for the production of polyisocyanates which contain isocyanurate groups |
US4855383A (en) * | 1988-09-23 | 1989-08-08 | Ashland Oil, Inc. | In situ quaternary ammonium catalyst formation for curing polymeric isocyanates |
DE3900053A1 (en) | 1989-01-03 | 1990-07-12 | Bayer Ag | PROCESS FOR THE PREPARATION OF POLYISOCYANATES USING URETDION AND ISOCYANATE GROUPS, THE POLYISOCYANATES AVAILABLE FOR THIS PROCESS, AND THEIR USE IN TWO-COMPONENT POLYURETHANE VARNISHES |
DE3902078A1 (en) | 1989-01-25 | 1990-07-26 | Bayer Ag | METHOD FOR PRODUCING MODIFIED POLYISOCYANATES HAVING ISOCYANURATE GROUPS AND THE USE THEREOF |
US5091496A (en) * | 1989-05-19 | 1992-02-25 | Mitsui Toatsu Chemicals, Inc. | Polyisocyanatoalkylphenyl-isocyanurates, method for the preparation thereof and use thereof |
DE3928503A1 (en) | 1989-08-29 | 1991-03-07 | Bayer Ag | METHOD FOR PRODUCING SOLUTIONS OF POLYISOCYANATES CONTAINING ISOCYANURATE GROUPS IN LACQUER SOLVENTS AND THE USE THEREOF |
DE4005762A1 (en) | 1990-02-23 | 1991-08-29 | Bayer Ag | TRIMERIZATION CATALYSTS, A METHOD FOR THE PRODUCTION THEREOF AND THEIR USE IN THE PRODUCTION OF POLYISOCYANATES CONTAINING ISOCYANURATE GROUPS |
US5234970A (en) * | 1991-07-16 | 1993-08-10 | W. R. Grace & Co.-Conn. | Dual curing composition based on isocyanate trimer and use thereof |
GB9116781D0 (en) * | 1991-08-02 | 1991-09-18 | Ici Plc | Curable compositions |
US5322861A (en) * | 1991-10-01 | 1994-06-21 | Mitsubishi Kasei Corporation | Ultraviolet-hardening urethane acrylate oligomer |
DE4136618A1 (en) | 1991-11-07 | 1993-05-13 | Bayer Ag | Water-dispersible polyisocyanate mixtures |
IT1255279B (en) * | 1992-05-20 | 1995-10-26 | Sir Ind Spa | RETICULABLE POLYESTER / ISOCYANATE COMPOSITIONS SUITABLE FOR THE PREPARATION OF COMPOSITE MANUFACTURED PARTICULARLY WITH INJECTION PROCESSES, PROCEDURE FOR THEIR PREPARATION AND USE |
US5370908A (en) | 1993-05-24 | 1994-12-06 | Olin Corporation | Low VOC, heat-curable, one-component and two-component coating compositions based on organic polyisocyanates |
DE4405055A1 (en) | 1994-02-17 | 1995-08-24 | Basf Ag | Process for the preparation of polyisocyanates containing isocyanurate groups and their use |
DE4405054A1 (en) | 1994-02-17 | 1995-08-24 | Basf Ag | Modified (cyclo) aliphatic polyisocyanate mixtures, process for their preparation and their use |
JPH07329191A (en) * | 1994-06-09 | 1995-12-19 | Denken Eng Kk | Photoforming |
DE19611849A1 (en) | 1996-03-26 | 1997-10-02 | Bayer Ag | New isocyanate trimer and isocyanate trimer mixtures, their production and use |
CN1259148A (en) * | 1997-04-01 | 2000-07-05 | 亨茨曼Ici化学品有限公司 | Polyisocyanate based xerogels |
DE19734048A1 (en) | 1997-08-06 | 1999-02-11 | Bayer Ag | Process for the preparation of polyisocyanates, polyisocyanates produced therewith and their use |
ZA9810038B (en) | 1997-11-04 | 2000-05-03 | Rhodia Chimie Sa | A catalyst and a method for the trimerization of isocyanates. |
DE19818312A1 (en) * | 1998-04-23 | 1999-10-28 | Bayer Ag | Aqueous coating system made from UV-curing urethane (meth) acrylate isocyanate groups |
DE59903289D1 (en) | 1998-06-02 | 2002-12-12 | Bayer Ag | Process for the preparation of polyisocyanates containing iminooxadiazinedione groups |
DE19929064A1 (en) * | 1999-06-25 | 2000-12-28 | Bayer Ag | Process for the preparation of polyaddition compounds containing uretdione groups |
BR0014422A (en) * | 1999-09-30 | 2002-06-11 | Basf Ag | Aqueous dispersion of u.v. and heat, and, use of polyurethane dispersion |
WO2001053277A1 (en) * | 2000-01-20 | 2001-07-26 | Rhodia Chimie | Method for obtaining slightly coloured branched polyisocyanate(s), and resulting composition |
DE10016194A1 (en) | 2000-03-31 | 2001-10-04 | Bayer Ag | Coating system containing UV-curable, isocyanate group-containing urethane (meth) acrylates and hydroxyl group-containing urethane (meth) acrylates |
DE10065176A1 (en) | 2000-12-23 | 2002-06-27 | Degussa | Trimerization catalyst for preparation of low viscosity and less colored polyisocyanates containing isocyanurate groups, is a quaternized benzylammonium carboxylate |
JP2004217808A (en) * | 2003-01-16 | 2004-08-05 | Mitsubishi Chemicals Corp | Active energy beam-curable resin composition, and binder for printing ink and laminated sheet using the same |
EP1599526B1 (en) | 2003-02-28 | 2012-06-13 | Dow Global Technologies LLC | Preparation of isocyanurate group containing polyisocyanate mixtures |
JP2004315617A (en) | 2003-04-14 | 2004-11-11 | Mitsubishi Rayon Co Ltd | Composition for three-dimensional molding, and three-dimensional molded product |
JP2005015627A (en) | 2003-06-26 | 2005-01-20 | Jsr Corp | Photocurable liquid resin composition |
DE102004012571A1 (en) | 2004-03-12 | 2005-09-29 | Basf Ag | Process for the preparation of polyisocyanates containing isocyanurate groups and their use |
DE102004043537A1 (en) * | 2004-09-09 | 2006-03-16 | Bayer Materialscience Ag | Production of new radiation-curing binders |
DE102004063102A1 (en) * | 2004-12-22 | 2006-07-13 | Basf Ag | Radiation-curable compounds |
EP1940903A2 (en) * | 2005-09-22 | 2008-07-09 | E.I.Du pont de nemours and company | Method of producing adherent coatings on resinous substrates |
KR101376401B1 (en) * | 2005-10-27 | 2014-03-27 | 3디 시스템즈 인코오퍼레이티드 | Antimony-free photocurable resin composition and three dimensional article |
DE102005057682A1 (en) * | 2005-12-01 | 2007-06-06 | Basf Ag | Radiation curable water emulsifiable polyisocyanates |
US20070299242A1 (en) * | 2006-06-21 | 2007-12-27 | Bayer Materialscience Llc | Pendant acrylate and/or methacrylate-containing polyether monols and polyols |
DE102006051897A1 (en) * | 2006-10-31 | 2008-05-08 | Bayer Materialscience Ag | Printed, deformable films |
CN101284955B (en) * | 2007-04-11 | 2011-03-30 | 比亚迪股份有限公司 | Dual-cured coating composition and method for preparation thereof |
CN101918466B (en) * | 2007-11-19 | 2013-01-30 | 氰特表面技术有限公司 | Radiation curable compositions |
US20110201709A1 (en) * | 2008-11-10 | 2011-08-18 | Dow Global Technologies Llc | Isocyanate trimerisation catalyst system, a precursor formulation, a process for trimerising isocyanates, rigid polyisocyanurate/polyurethane foams made therefrom, and a process for making such foams |
KR101145582B1 (en) * | 2009-03-23 | 2012-05-15 | 디아이씨 가부시끼가이샤 | Adhesive protective film, screen panel, and portable electronic terminal |
EP2489699B1 (en) * | 2009-10-16 | 2014-07-16 | Posco | Radiation curable resin composition, and fingerprint-resistant resin composition containing same |
US8372330B2 (en) * | 2009-10-19 | 2013-02-12 | Global Filtration Systems | Resin solidification substrate and assembly |
KR101995185B1 (en) * | 2009-12-17 | 2019-07-01 | 디에스엠 아이피 어셋츠 비.브이. | Liquid radiation curable resins for additive fabrication comprising a triaryl sulfonium borate cationic photoinitiator |
US8580887B2 (en) * | 2010-07-30 | 2013-11-12 | Basf Se | High-functionality polyisocyanates containing urethane groups |
US9157007B2 (en) | 2011-03-09 | 2015-10-13 | 3D Systems, Incorporated | Build material and applications thereof |
CN102504174A (en) * | 2011-12-19 | 2012-06-20 | 烟台德邦科技有限公司 | Polyurethane acrylic acid ester and preparation method and application thereof |
US9574078B2 (en) * | 2011-12-22 | 2017-02-21 | Covestro Deutschland Ag | Aqueous polyacrylate copolymer dispersions with high OH group content |
WO2013167404A1 (en) | 2012-05-08 | 2013-11-14 | Basf Se | Preparation of polyisocyanates having isocyanurate groups and their use |
CN102675590B (en) * | 2012-05-25 | 2014-04-02 | 深圳职业技术学院 | Preparation method for alicyclic epoxy and double bond contained dual-curing resin and application thereof |
RU2015101285A (en) * | 2012-06-18 | 2016-08-10 | Ппг Индастриз Огайо, Инк. | DUAL CURING COMPOSITIONS SUITABLE FOR COATING METAL SUBSTRATES AND METHODS FOR USING THE SPECIFIED COMPOSITIONS |
CN102977335B (en) * | 2012-11-30 | 2015-04-22 | 深圳职业技术学院 | Method for preparing resin containing light-heat dual cured groups from epoxy chloropropane as raw material |
JP2016511172A (en) * | 2013-02-08 | 2016-04-14 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフトBayer MaterialScience AG | Improved maximum processing temperature of plastic substrates using hard coat |
WO2014156814A1 (en) * | 2013-03-27 | 2014-10-02 | Dic株式会社 | Active-energy-ray-curable composition, cured coating film thereof, and article having said cured coating film |
WO2015028397A1 (en) * | 2013-08-26 | 2015-03-05 | Basf Se | Radiation-curable water-dispersible polyurethane (meth)acrylates |
EP2883895B1 (en) | 2013-12-10 | 2017-09-13 | Covestro Deutschland AG | Polyisocyanates containing iminooxadiazine dione groups |
CN104974502B (en) * | 2014-04-10 | 2019-12-27 | 科思创德国股份有限公司 | Polyurethane composite material and preparation method thereof |
JP2016002683A (en) | 2014-06-16 | 2016-01-12 | コニカミノルタ株式会社 | Method for manufacturing 3d shaped object, photocurable composition for 3d shaping, and ink set for 3d shaping |
EP2993195A1 (en) * | 2014-09-05 | 2016-03-09 | Huntsman International Llc | A method for improving fracture toughness of polyisocyanurate comprising reaction products |
CN105778005B (en) * | 2014-12-01 | 2020-04-28 | 科思创德国股份有限公司 | Free-radically polymerizable polyurethane composition |
JP2016135477A (en) | 2015-01-20 | 2016-07-28 | 関西ペイント株式会社 | Film forming method of substrate |
GB201501965D0 (en) * | 2015-02-05 | 2015-03-25 | Lumina Adhesives Ab | Polyurethane based switchable adhesives |
JP6381474B2 (en) * | 2015-03-31 | 2018-08-29 | 三井化学株式会社 | Curable polyurethane resin composition and cured product |
FR3035109B1 (en) * | 2015-04-20 | 2017-04-28 | Arkema France | HIGH-FUNCTIONALITY AMINOACRYLATE-ACRYLATE URETHANES DERIVED FROM THE ADDITION OF A SECONDARY AMINOALCOHOL AMINOALCOOL TO A MULTIFUNCTIONAL ACRYLATE. |
KR20170139022A (en) | 2015-04-21 | 2017-12-18 | 코베스트로 도이칠란트 아게 | Solids based on polyisocyanurate polymers prepared under adiabatic conditions |
US10752723B2 (en) | 2015-04-21 | 2020-08-25 | Covestro Deutschland Ag | Polyisocyanurate polymer and process for the production of polyisocyanurate polymers |
JP7029295B2 (en) | 2015-04-21 | 2022-03-03 | コベストロ、ドイチュラント、アクチエンゲゼルシャフト | Polyisocyanurate plastic with high thermal stability |
CN104830222B (en) * | 2015-04-28 | 2017-04-12 | 中科院广州化学有限公司南雄材料生产基地 | Dual-curable polyurethane paint with low surface energy and preparation method thereof |
ES2818580T3 (en) | 2016-09-20 | 2021-04-13 | Covestro Intellectual Property Gmbh & Co Kg | Anisotropic composite materials based on polyisocyanates |
-
2017
- 2017-11-14 US US16/349,470 patent/US11590692B2/en active Active
- 2017-11-14 WO PCT/EP2017/079209 patent/WO2018087396A1/en active Application Filing
- 2017-11-14 CN CN201780070301.3A patent/CN109963890A/en active Pending
- 2017-11-14 KR KR1020197013565A patent/KR102388093B1/en active IP Right Grant
- 2017-11-14 US US16/349,358 patent/US11613072B2/en active Active
- 2017-11-14 CN CN202210615172.4A patent/CN114874411A/en active Pending
- 2017-11-14 CN CN201780070395.4A patent/CN109923143B/en active Active
- 2017-11-14 CN CN201780070397.3A patent/CN110023368A/en active Pending
- 2017-11-14 WO PCT/EP2017/079218 patent/WO2018087399A1/en active Application Filing
- 2017-11-14 WO PCT/EP2017/079208 patent/WO2018087395A1/en active Application Filing
- 2017-11-14 EP EP17797645.3A patent/EP3538584B1/en active Active
- 2017-11-14 EP EP17801429.6A patent/EP3538586A1/en active Pending
- 2017-11-14 US US15/812,116 patent/US10449714B2/en active Active
- 2017-11-14 CN CN201780070285.8A patent/CN109923142A/en active Pending
- 2017-11-14 US US16/349,322 patent/US20200190245A1/en active Pending
- 2017-11-14 US US16/349,373 patent/US20190367666A1/en active Pending
- 2017-11-14 WO PCT/EP2017/079155 patent/WO2018087382A1/en active Application Filing
- 2017-11-14 JP JP2019524441A patent/JP7216644B2/en active Active
- 2017-11-14 EP EP17801426.2A patent/EP3538585A1/en active Pending
- 2017-11-14 EP EP17794993.0A patent/EP3538583A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0007779A1 (en) * | 1978-07-27 | 1980-02-06 | Ici Americas Inc. | Method of increasing the viscosity of a thermoset composition and shaped articles made from this composition |
US20040068028A1 (en) * | 2000-08-24 | 2004-04-08 | Hubert Baumgart | Aqueous dispersion and the use thereof in the production of coating agents, adhesives and sealing agents that can cured by heat or by actinic radiation |
US20070021553A1 (en) * | 2002-10-17 | 2007-01-25 | Basf Coatings Aktiengesellschaft, | Coating material which is thermally curable and curable by means of actinic radiation and method for coating microporous surfaces |
US20100203259A1 (en) * | 2009-02-06 | 2010-08-12 | Nippon Bee Chemical Co., Ltd. | Method of forming a coating film |
US20150051301A1 (en) * | 2012-02-08 | 2015-02-19 | Bayer Intellectual Property Gmbh | Method for producing a hard polyurethane-polyisocyanurate foamed material |
US20160282515A1 (en) * | 2013-10-21 | 2016-09-29 | Mitsui Chemicals, Inc. | Polymerizable composition for optical material and optical material |
Also Published As
Publication number | Publication date |
---|---|
CN109923143B (en) | 2022-04-22 |
CN109963890A (en) | 2019-07-02 |
EP3538584A1 (en) | 2019-09-18 |
JP7216644B2 (en) | 2023-02-01 |
US20180133953A1 (en) | 2018-05-17 |
US20200190245A1 (en) | 2020-06-18 |
US20190337224A1 (en) | 2019-11-07 |
US20190367665A1 (en) | 2019-12-05 |
WO2018087395A1 (en) | 2018-05-17 |
EP3538586A1 (en) | 2019-09-18 |
CN114874411A (en) | 2022-08-09 |
JP2019535554A (en) | 2019-12-12 |
CN110023368A (en) | 2019-07-16 |
EP3538585A1 (en) | 2019-09-18 |
WO2018087399A1 (en) | 2018-05-17 |
KR102388093B1 (en) | 2022-04-20 |
EP3538584B1 (en) | 2020-08-26 |
WO2018087382A1 (en) | 2018-05-17 |
US10449714B2 (en) | 2019-10-22 |
CN109923142A (en) | 2019-06-21 |
US11590692B2 (en) | 2023-02-28 |
KR20190086447A (en) | 2019-07-22 |
US11613072B2 (en) | 2023-03-28 |
WO2018087396A1 (en) | 2018-05-17 |
CN109923143A (en) | 2019-06-21 |
EP3538583A1 (en) | 2019-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190367666A1 (en) | Dual-curing coating compositions | |
US11390707B2 (en) | Polyisocyanurate polymers and process for the production of polyisocyanurate polymers | |
US11286332B2 (en) | Hydrophobically modified polyisocyanurate plastic and method for production thereof | |
CA2559734C (en) | Low-viscosity allophanates containing actinically curable groups | |
CN107438635B (en) | Process for making polyisocyanurate plastics | |
CN1746244B (en) | Low viscosity allophanates containing photocurable groups | |
US11279790B2 (en) | Process for producing polyisocyanurate plastics by means of phosphine catalysis | |
JP2019515106A (en) | Method for producing polyisocyanurate composite material | |
US20210032392A1 (en) | Semi-finished product on the basis of a dual crosslinking mechanism | |
US20200332147A1 (en) | Hard coatings with high chemical and mechanical stability | |
CN112204065B (en) | Process for preparing polyisocyanate polymers and polyisocyanurate plastics | |
US20220041792A1 (en) | Composite materials based on dual-cure urethane polymers and dual-cure isocyanurate polymers | |
JP2020525578A (en) | Colored plastics based on crosslinked polyisocyanates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: COVESTRO DEUTSCHLAND AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TILLACK, JOERG;ACHTEN, DIRK;HEINZ, PAUL;AND OTHERS;REEL/FRAME:057503/0769 Effective date: 20210908 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |