EP3867293A1 - Wasserfrei härtende klebstoffe auf polyisocyanatbasis - Google Patents

Wasserfrei härtende klebstoffe auf polyisocyanatbasis

Info

Publication number
EP3867293A1
EP3867293A1 EP19786802.9A EP19786802A EP3867293A1 EP 3867293 A1 EP3867293 A1 EP 3867293A1 EP 19786802 A EP19786802 A EP 19786802A EP 3867293 A1 EP3867293 A1 EP 3867293A1
Authority
EP
European Patent Office
Prior art keywords
isocyanate
coating composition
groups
weight
polyisocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19786802.9A
Other languages
English (en)
French (fr)
Inventor
Dirk Achten
Florian Golling
Christoph Thiebes
Ute Nattke
Piet DRIEST
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Covestro Intellectual Property GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Intellectual Property GmbH and Co KG filed Critical Covestro Intellectual Property GmbH and Co KG
Publication of EP3867293A1 publication Critical patent/EP3867293A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8012Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with diols
    • C08G18/8016Masked aliphatic or cycloaliphatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/092Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/166Catalysts not provided for in the groups C08G18/18 - C08G18/26
    • C08G18/168Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2018Heterocyclic amines; Salts thereof containing one heterocyclic ring having one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/225Catalysts containing metal compounds of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/242Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • C08G18/4837Polyethers containing oxyethylene units and other oxyalkylene units
    • C08G18/4845Polyethers containing oxyethylene units and other oxyalkylene units containing oxypropylene or higher oxyalkylene end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6603Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6607Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • C08G18/725Combination of polyisocyanates of C08G18/78 with other polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7607Compounds of C08G18/7614 and of C08G18/7657
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/792Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aliphatic and/or cycloaliphatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/24Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2317/00Animal or vegetable based
    • B32B2317/16Wood, e.g. woodboard, fibreboard, woodchips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2325/00Polymers of vinyl-aromatic compounds, e.g. polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/06PVC, i.e. polyvinylchloride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane

Definitions

  • the present invention relates to adhesives and coatings with a high ratio of isocyanate groups to isocyanate-reactive groups and their use. These adhesives are characterized in that they cure without the presence of water and at room temperature with the formation of isocyanurate groups.
  • Adhesives based on polyisocyanates which cure at room temperature are known in the prior art (Leimenstoll, Stepanski, polyurethane adhesives, Springer crampmedien, Wiesbaden, 2016; EP 1 343 832 Bl; EP 2 566 906 Al). This hardening is mediated by the formation of polyureas. This process requires water, which reacts with isocyanate groups to release carbon dioxide to form amines, which subsequently react with isocyanate groups to form fluorine groups.
  • Two-component systems made of polyols and isocyanates are also known as adhesives (Leimenstoll, Stepanski, polyurethane adhesives, Springer crampmedien Wiesbaden 2016; EP 1 343 832; CN 107652939; Z. Zaggias, R. Karrer, L. Thiele, Adhesion Kleben und Dichten, 40, 7 , 1996 page 26).
  • the mechanical properties of these adhesives depend very much on the correct mixing ratio of the two components, as this directly affects the degree of crosslinking of the polymer.
  • US 2002/0091222 describes polymerizable compositions for bonding rubber that cure at room temperature.
  • the primary crosslinking mechanism is the formation of polyureas.
  • Crosslinking of isocyanate groups with one another by the formation of isocyanurate groups is only intended to break down excess isocyanate groups. Therefore, the molar ratio of isocyanate groups to groups reactive with isocyanate is at most 2.2: 1.0.
  • the object of the present invention was to provide a coating composition which cures at room temperature without the addition of water or atmospheric moisture and is particularly suitable under these conditions for the production of thick adhesive joints.
  • the present invention relates to a coating composition
  • a coating composition comprising a) a polyisocyanate composition A with an average isocyanate functionality of at least 1.5;
  • At least one catalyst B which catalyzes the reaction of NCO groups to iso cyanurate groups and / or uretdione groups at 23 ° C .; wherein the isocyanate content of the coating composition is at least 5% by weight, based on the total weight of the coating composition.
  • the coating composition according to the invention contains at least one compound C which, on average, contains at least 1.0 isocyanate group-reactive group per molecule.
  • the coating composition according to the invention contains fillers D.
  • the coating composition according to the invention contains additives E.
  • a “coating composition” is a mixture of the above-mentioned components, which is suitable for coating a surface with a hardening film.
  • the coating composition is particularly preferably used as an adhesive for the material connection of two Workpieces.
  • the coating composition is applied to at least one of the two surfaces before the two surfaces are brought into contact with one another.
  • the coating composition may optionally contain additional components as defined below in this application.
  • the coating composition according to the invention has an isocyanate group content of from 5.0 to 60.0% by weight, preferably from 7.0 to 45.0% by weight, more preferably from 10.0 to 30.0% by weight and most preferably from 12.0 to 25% by weight.
  • the organic phase of the coating composition according to the invention has an isocyanate group content of from 5.0 to 60.0% by weight, preferably from 7.0 to 45.0% by weight, more preferably from 10, 0 to 30.0% by weight and most preferably from 12.0 to 25% by weight.
  • “Organic phase” is understood here to mean the entirety of all components of the coating composition which are homogeneously miscible with the polyisocyanate composition A.
  • the coating composition contains less than 0.1% by weight, preferably less than 0.05% by weight, particularly preferably less than 0.01% by weight and very particularly preferably less than 0.005% by weight % Transition metals.
  • Transition metal in the sense of the present application are tin, zinc, zirconium, titanium, iron. Cobalt, nickel, scandium, ytrium, niobium, molybdenum.
  • the coating composition according to the invention is free of tin , Zinc, zirconium and titanium.
  • the coating composition according to the invention is preferably characterized by a water content of at most 1.5% by weight, more preferably at most 0.5% by weight, even more preferably at most 0.3% by weight and very particularly preferably at most 0.1% by weight. -% marked (determined according to DIN EN ISO 15512: 2017-03, method B2).
  • the molar ratio of isocyanate groups to isocyanate-reactive groups in the coating composition according to the invention is at least 2: 1 and more preferably at least 3: 1 and even more preferably at least 5: 1.
  • “Groups reactive with isocyanate” are hydroxyl, amino and thiol groups.
  • polyisocyanate composition A denotes the entirety of all compounds present in the coating composition with at least one isocyanate group.
  • the polyisocyanate composition A preferably contains at least one compound selected from the group consisting of monomeric polyisocyanates, oligomeric polyisocyanates and isocyanate-terminated prepolymers.
  • the totality of all molecules contained in the polyisocyanate composition A with at least one isocyanate group preferably has an average NCO functionality per molecule of 1.5 to 6.5, more preferably 1.8 to 5.0 and particularly preferably 2.0 to 4 , 5 on.
  • polyisocyanates with aliphatic, cycloaliphatic, araliphatic and aromatic bound isocyanate groups are equally suitable as constituents of the polyisocyanate composition A.
  • polyisocyanates with aliphatically and aromatically bound isocyanate groups.
  • Polyisocyanates or polyisocyanate mixtures based on HDI, PDI, BDI, TDI, MDI and multicore MDI homologues (PMDI) are particularly preferred.
  • polyisocyanates refers to monomeric and oligomeric polyisocyanates alike.
  • polyisocyanates which are composed of at least two monomeric polyisocyanate molecules, ie compounds which represent or contain a reaction product of at least two monomeric polyisocyanate molecules.
  • Said monomeric polyisocyanates are preferred diisocyanates, ie monomeric isocyanates with two isocyanate groups per molecule.
  • oligomeric polyisocyanates are characterized by a molecular weight of at most 900 g / mol, preferably at most 800 g / mol and particularly preferably at most 700 g / mol.
  • the production of oligomeric polyisocyanates from monomeric diisocyanates is also referred to here as a modification of monomeric diisocyanates.
  • This “modification”, as used here, means the reaction of monomeric diisocyanates to oligomeric polyisocyanates with urethane, uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure.
  • hexamethylene diisocyanate is a "monomeric diisocyanate” because it contains two isocyanate groups and is not a reaction product from at least two polyisocyanate molecules:
  • reaction products of at least two HDI molecules which still have at least two isocyanate groups are "oligomeric polyisocyanates" within the meaning of the invention.
  • oligomeric polyisocyanates are based on the monomeric HDI, e.g. the HDI isocyanurate and the HDI biuret, which are each made up of three monomeric HDI building blocks:
  • the proportion by weight of isocyanate groups, based on the total amount of isocyanate component A, is at least 5.0% by weight.
  • isocyanate component A can consist essentially of monomeric polyisocyanates or essentially oligomeric polyisocyanates. However, it can also contain oligomeric and monomeric polyisocyanates in any mixing ratio. Monomers and oligomeric polyisocyanates can be found in the polyisocyanate composition A is present in any mixing ratio with one or more isocyanate-terminated prepolymers.
  • the polyisocyanate composition A used as starting material in the trimerization is low in monomer (i.e. low in monomeric polyisocyanates) and already contains oligomeric polyisocyanates.
  • the terms “low in monomer” and “low in monomeric polyisocyanates” are used synonymously here in relation to the polyisocyanate composition A.
  • a "low-monomer" polyisocyanate composition A has a proportion of monomeric diisocyanates of at most 20% by weight, preferably at most 15% by weight, more preferably at most 10% by weight, even more preferably at most 5% by weight and particularly preferably at most 2% by weight, based in each case on the weight of the isocyanate component A.
  • the polyisocyanate composition A is essentially free of monomeric polyisocyanates.
  • the proportion of monomeric polyisocyanates is based on the total weight of the polyisocyanate composition A. preferably at most 1.0% by weight, particularly preferably at most 0.5% by weight and very particularly preferably below 0.1% by weight.
  • Polyisocyanate compositions which are low in monomer or essentially free of monomeric isocyanates can be obtained by carrying out at least one further process step in each case after the actual modification reaction to separate off the unreacted excess monomeric diisocyanates.
  • This separation of monomers can be carried out in a particularly practical manner by processes known per se, preferably by thin-layer distillation under high vacuum or by extraction with suitable solvents which are inert to isocyanate groups, for example aliphatic or cycloaliphatic hydrocarbons such as pentane, hexane, heptane, cyclopentane or cyclohexane.
  • suitable solvents which are inert to isocyanate groups, for example aliphatic or cycloaliphatic hydrocarbons such as pentane, hexane, heptane, cyclopentane or cyclohexane.
  • Further possibilities for reducing the monomer content include reaction with compounds which contain isocyanate-reactive
  • the polyiso cyanate composition A contains monomeric monoisocyanates or monomeric isocyanates with an isocyanate functionality greater than two, ie with more than two isocyanate groups per molecule.
  • monomeric monoisocyanates or monomeric isocyanates with an isocyanate functionality greater than two has proven to be advantageous in order to influence the network density of the adhesives.
  • the isocyanate component A has a proportion of monomeric monoisocyanates or monomeric isocyanates with an isocyanate functionality greater than two in the isocyanate component A of at least 2% by weight and at most 20% by weight, preferably at most 10% by weight and more preferably at most 5% by weight, in each case based on the weight of isocyanate component A.
  • particularly preferred monomeric isocyanates are trisiocyanatononane and stearyl isocyanate.
  • the oligomeric polyisocyanates can have, in particular, uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazinetrione structure.
  • the oligomeric polyisocyanates have at least one of the following oligomeric structure types or mixtures thereof:
  • the polyisocyanate composition A consists of at least 80% by weight of an oligomeric polyisocyanate, the isocyanurate structure fraction of which is at least 50 mol%, preferably at least 60 mol%, more preferably at least 70 mol% more preferably at least 80 mol%, even more preferably at least 90 mol% and particularly preferably at least 95 mol% based on the sum of the oligomeric structures present in said oligomeric polyisocyanate from the group consisting of uretdione, isocyanurate and allophanate , Biuret, iminooxadiazinedione and oxadiazinetrione structure.
  • the polyisocyanate composition A contains an oligomeric polyisocyanate which, in addition to the isocyanurate structure, contains at least one further oligomeric polyisocyanate with uretdione, biuret, allophanate, iminooxa diazinedione and oxadiazinetrione structure and mixtures thereof.
  • the proportions of uretdione, isocyanurate, allophanate, biuret, iminooxadiazinedione and / or oxadiazin trione structure in a polyisocyanate can be determined, for example, by NMR spectroscopy. 13 C-NMR spectroscopy, preferably proton-decoupled, can preferably be used here, since the oligomeric structures mentioned provide characteristic signals.
  • an oligomeric polyisocyanate composition A to be used in the process according to the invention preferably has an (average) NCO functionality of 1.5 to 5 , 0, preferably from 2.3 to 4.5. Particularly practical results are obtained if the polyisocyanate composition A to be used according to the invention has an isocyanate group content of 9.0 to 60.0% by weight, preferably 12.0 to 30.0% by weight, based in each case on the weight of the Isocyanate component A has.
  • Suitable polyisocyanates for the preparation of the polyisocyanate composition A to be used in the process according to the invention and the monomeric and / or oligomeric polyisocyanates contained therein are any, in various ways, for example by phosgenation in the liquid or gas phase or by a phosgene-free route, such as e.g. by thermal urethane cleavage, accessible polyisocyanates.
  • the monomeric polyisocyanates listed below are particularly suitable.
  • Said monomeric polyisocyanates as such - i.e. without prior conversion to oligomeric polyisocyanates - are also preferred components of the polyisocyanate composition A.
  • polyisocyanates with aliphatically bound isocyanate groups are n-butyl isocyanate and all isomers thereof, n-pentyl isocyanate and all isomers thereof, n-hexyl isocyanate and all isomers thereof, 1,4-butyl diisocyanate, 1,5-diisocyanatopentane (PDI), 1,6- Diisocyanatohexane (HDI), 2-methyl-l, 5-diisocyanatopentane, 1,5-diisocyanato-2,2-dimethylpentane, 2,2,4- or 2,4,4-trimethyl-l, 6-diisocyanatohexane 1, 10-di-isocyanatodecane, and triisocyantononane
  • Preferred polyisocyanates with cycloaliphatically bound isocyanate groups are cyclohexyl isocyanate, 1,3- and 1,4-diisocyanatocyclohexane, 1,4-diisocyanato-3,3,5-trimethylcyclohexane, 1,3-diisocyanato-2-methylcyclohexane, 1,3-diisocyanato- 4-methylcyclohexane, l-isocyanato-3,3,5-trimethyl-5-isocyanato-methyl-cyclohexane isophorone diisocyanate; (IPDI), l-isocyanato-l-methyl-4 (3) -isocyanatomethylcyclohexane, 2,4'- and 4,4'-diisocyanatodicyclohexylmethane (H12MDI), 1,3- and 1,4-bis (isocyanatomethyl) - cyclohexane, bis (
  • polyisocyanates with araliphatically bound isocyanate groups are 1,3- and 1,4-bis (isocyanatomethyl) benzene (xylene diisocyanate; XDI), 1,3- and 1,4-bis (l-isocyanato-l-methylethyl) - benzene (TMXDI) and bis (4- (l-isocyanato-l-methylethyl) phenyl) carbonate.
  • isocyanate with an aromatically bonded isocyanate group all the isocyanate groups are bonded directly to carbon atoms which are part of an aromatic ring.
  • Preferred isocyanates with aromatically bonded isocyanate groups are 2,4- and 2,6-diisocyanatotoluene (TDI), 2,4'- and 4,4'-diisocyanatodiphenylmethane (MDI), 1,5-diisocyanatonaphthalene, tris (p-isocyanatophenyl) -thiophosphate and triphenylmethane-4,4 ', 4 "triisocyanate.
  • the polyisocyanate composition A contains compounds which, in addition to the isocyanate group, contain further non-isocyanate-reactive groups.
  • these are silane groups
  • the compounds are then isocyanatosilanes.
  • Such silane groups are also known to the person skilled in the art as organoalkoxysilane or organoacyloxysilane.
  • Silanes have the property of hydrolyzing to organ silanols on contact with moisture, that is to say forming groups with at least one silanol group (Si-OH group), and polymerizing to organosiloxanes by subsequent condensation.
  • Silane or silanol groups can also react with polar groups on the substrate surface to form covalent bonds, which can improve the flow of adhesives to substrates.
  • the isocyanatosilanes according to the invention are preferably isocyanatomethylsilanes or isocyanatopropylsilanes, which are best available commercially, and silane and isocyanate group-containing reaction products of flydroxy and / or amino and / or thiosilanes with polyisocyanates, not all of the isocyanate groups having been reacted, because, for example, the flydroxy and / or amino and / or thio groups are reacted with the isocyanate groups in a stoichiometric deficit.
  • the isocyanatosilane is very particularly preferably selected from the group consisting of 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 1-isocyanatomethyltrimethoxysilane, 1-isocyanatomethyltriethoxysilane, 1-isocyanatomethylmethyldimethoxysilane and 1-isoxysiloxysilane. All silanes can also be present in the form of their oligomers containing siloxane groups.
  • the polyisocyanate composition A consists of at least 80% by weight, more preferably at least 90% by weight, even more preferably at least 95% by weight and most preferably at least 98% by weight from polyisocyanates with aliphatically bound isocyanate groups.
  • isocyanate-terminated prepolymers with a number average molecular weight of at least 400 g / mol, preferably at least 500 g / mol, more preferably at least 600 g / mol and even more preferably at least 700 g / mol.
  • the molecular weight of suitable prepolymers is preferably at most 22,000 g / mol, preferably at most 15,000 g / mol, more preferably at most 9,000 g / mol and particularly preferably at most 5,000 g / mol.
  • Particularly preferred isocyanate-terminated prepolymers have a number average molecular weight between 500 g / mol and 5,000 g / mol.
  • the polyisocyanate composition A can also contain monomeric and / or oligomeric polyisocyanates. This is particularly preferred for those prepolymers whose isocyanate content is too low to achieve the required isocyanate contents of the polyisocyanate composition A defined above. If the isocyanate content of the prepolymer used or a mixture of at least two prepolymers is high enough, the polyisocyanate composition A can also consist exclusively of isocyanate-terminated prepolymers.
  • Isocyanate-terminated prepolymers are obtained by reacting monomeric or oligomeric polyisocyanates with compounds which contain an average of more than one isocyanate-reactive group per molecule, the reaction mixture having a molar excess of isocyanate groups compared to the isocyanate-reactive groups.
  • the compounds which contain on average more than one isocyanate-reactive group per molecule are preferably polyols and / or polyamines, the reaction mixture having a molar excess of isocyanate groups compared to amino and hydroxyl groups. Appropriate manufacturing processes are well known to those skilled in the art.
  • Polyacrylates, polycarbonates, polyesters, polyurethanes or polyethers which are functionalized with at least two NCO-reactive groups, preferably hydroxyl groups, can preferably be used as polyols for building up the isocyanate-terminated prepolymers which can be used according to the invention. Mixtures of at least two of the aforementioned components can also be used.
  • Polyethers are particularly preferred as polyols because they have a flexible and elastic structure that can be used to produce compositions that have excellent elastic properties.
  • polyethers are not only flexible in their basic structure, but at the same time resistant. For example, in contrast to polyesters, for example, water and bacteria do not attack or decompose polyethers.
  • the polyols to be used according to the invention preferably have a number average molecular weight of 400 to 22,000 g / mol.
  • the NCO-reactive polymers to be used according to the invention have a number average molecular weight of 500 to 15,000 g / mol, preferably 600 to 9,000 g / mol, particularly preferably 700 to 5,000 g / mol. These molecular weights are particularly advantageous since the corresponding prepolymers have a balanced ratio of viscosity (easy to process), strength and elasticity.
  • NCO-reactive polymers with a narrow molar mass distribution and thus a low polydispersity are used.
  • the polydispersity represents the ratio of weight-average to number-average molecular weight Mw / Mn.
  • the NCO-reactive polymer preferably has a polydispersity of at most 5, preferably at most 2.5, particularly preferably at most 1.5.
  • NCO-reactive polymers with a bimodal or multimodal molecular weight distribution are used.
  • Bimodality is defined here as the product of a blend of more than one NCO-reactive polymer with a poly dispersity of at most 5, preferably at most 2.5, particularly preferably at most 1.5.
  • this mixing can also take place via the preparation of the isocyanate prepolymer using various polyols with different molecular weight distribution and composition in the preparation of the inventive isocyanate composition.
  • the number and / or weight average molecular weight is determined by gel permeation chromatography (GPC) according to the specification of DIN 55672-1: 2016-03 with THF as an eluent against a polystyrene standard.
  • Polyether polyols which can be prepared by the so-called double metal cyanide catalysis (DMC catalysis) are particularly preferred. This is described, for example, in US Pat. No. 5,158,922 (for example Example 30) and EP 0 654 302 (page 5, line 26 to page 6, line 32). Polyether polyols produced in this way are distinguished by a particularly low polydispersity, by a high average molecular weight and by a very low degree of unsaturation. Corresponding products are available, for example, from Covestro Deutschland AG under the name, Acclaim ® .
  • the polyols to be used according to the invention preferably have an average OH functionality of 1.2 to 3, particularly preferably 1.5 to 2.1.
  • the OH functionality of a connection is to be understood as the mean OH functionality. It indicates the average number of hydroxyl groups per molecule.
  • the average OH functionality of a compound can be calculated based on the number average molecular weight and the hydroxyl number. Unless otherwise stated, the hydroxyl number of a compound is determined according to the standard DIN 53240-1 (2012).
  • polyoxyalkylene diols or polyoxyalkylene triols with a degree of unsaturation less than 0.02 mEq / g (determined according to the specification in ASTM D4671-16) and with a number average molecular weight (determined by GPC) in the range from 2,000 to 30,000 g / mol
  • Polyoxyethylene diols, polyoxyethylene triols, polyoxypropylene diols and polyoxypropylene triols with an average molecular weight of 400 to 22000 g / mol So-called ethylene oxide-terminated (“ethylene-endcapped”) polyoxypropylene polyols are also particularly suitable. The latter are obtained if propylene oxide is first used as a monomer in the preparation for the polymerization and then ethylene oxide is used as a monomer instead of propylene oxide before termination of the polymerization.
  • hydroxyl group-terminated polybutadiene polyols such as, for example, those which are prepared by polymerizing 1,3-butadiene and allyl alcohol or by oxidation of polybutadiene, and their hydrogenation products.
  • styrene-acrylonitrile grafted polyether polyols such as are commercially available for example under the trade name Lupranol ® by the company Elastogran GmbH, Germany.
  • polyester polyols are polyesters which carry at least two hydroxyl groups and are prepared by known processes, in particular the polycondensation of hydroxycarboxylic acids or the polycondensation of aliphatic and / or aromatic polycarboxylic acids with dihydric or polyhydric alcohols.
  • Suitable polycarbonate polyols are, in particular, those which are obtainable by reacting, for example, the above-mentioned alcohols used to construct the polyester polyols with dialkyl carbonates such as dimethyl carbonate, diaryl carbonates such as diphenyl carbonate or phosgene.
  • dialkyl carbonates such as dimethyl carbonate, diaryl carbonates such as diphenyl carbonate or phosgene.
  • Polycarbonate diols in particular amorphous polycarbonate diols, are particularly suitable.
  • Further suitable polycarbonate polyols are those which, in addition to polycarbonate groups, also contain polyether groups contain and arise for example by polymerization of propylene and / or ethylene oxide and carbon dioxide in the presence of suitable catalysts.
  • polystyrene resins are poly (meth) acrylate polyols.
  • polymer polyols for example polyether polyols containing polymers and / or copolymers of vinyl monomers such as, in particular, acrylonitrile, styrene, alphamethylstyrene, methyl (meth) acrylate or hydroxyethyl (meth) acrylate, and also polyureas or polyhydrazodicarbonamides ( PHD) or polyurethanes, the two phases forming a stable, storable dispersion and the polymer being partially grafted onto the polyether polyol or being covalently bound to the polyether polyol.
  • PHD polyhydrazodicarbonamide
  • Polymer polyols in which the solid polymer is a copolymer of acrylonitrile and styrene (SAN ) or a polyurea or polyhydrazodicarbonamide (PHD) or a polyurethane.
  • the polyether polyol of the polymer Polyol is preferably a polyoxyalkylene polyol, which by ring-opening polymerization of oxiranes, in particular ethylene oxide and / or 1,2-propylene oxide, with the aid of a starter molecule having two or more active hydrogen atoms, in particular water, glycols such as 1,2-ethanediol, 1,2 and 1,3-propanediol, Neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycols, dipropylene glycol, tripropylene glycol or polypropylene glycols, or triols, in particular glycerol or 1, 1, 1 - trimethylolpropane, or sugar alcohols, in particular sorbitol (D-glucitol), or diphenols, especially bisphenols Amines,
  • polymer polyol are preferably commercially available types which are mainly used for the production of polyurethane foams, and in particular the SAN polyols Lupranol ® 4003/1, Lupranol ® 4006/1 / SC10, Lupranor ® 4006/1 / SC15 , Lupranol ® 4006/1 / SC25, Lupranol ® 4010/1 / SC10, Lupranol ® 4010/1 / SC15, Lupranol ® 4010/1 / SC25, Lupranol ® 4010/1 / SC30 or Lupranol ® 4010/1 / SC40 (all from BASF), Desmophen ® 5027 GT or Desmophen ® 5029 GT (both from Covestro Deutschland AG), Voralux ® HL106, Voralux ® HL108, Voralux ® HL109, Voralux ® HL120, Voralux ® HL400, Voralux ® HN360, Voralux ® HN360
  • polyhydroxy-functional fats and oils for example natural fats and oils, in particular castor oil, or oleochemical polyols obtained by chemical modification of natural fats and oils, which are obtained, for example, by epoxidation of unsaturated oils and subsequent ring opening with carboxylic acids or alcohols Epoxy polyester or epoxy polyether, or polyols obtained by hydroformylation and hydrogenation of unsaturated oils.
  • polyols which are obtained from natural fats and oils by degradation processes such as alcoholysis or ozonolysis and subsequent chemical linkage, for example by transesterification or dimerization, of the degradation products or derivatives thereof obtained in this way.
  • Suitable breakdown products of natural fats and oils are in particular fatty acids and fatty alcohols and fatty acid esters, in particular the methyl esters (FAME), which can be derivatized, for example by hydroformylation and hydrogenation, to give hydroxy fatty acid esters.
  • FAME methyl esters
  • polycarbonate polyols also called oligohydrocarbonols
  • polyhydroxy-functional ethylene-propylene, ethylene-butylene or ethylene-propylene-diene copolymers as are produced, for example, by Kraton Polymers, USA, or polyhydroxy-functional copolymers from dienes, such as 1,3-butanediene or diene mixtures and vinyl monomers such as styrene, acrylonitrile or isobutylene, or polyhydroxy-functional polybutadiene polyols, for example those which are prepared by copolymerization of 1,3-butadiene and allyl alcohol and can also be hydrogenated.
  • dienes such as 1,3-butanediene or diene mixtures and vinyl monomers such as styrene, acrylonitrile or isobutylene
  • polyhydroxy-functional polybutadiene polyols for example those which are prepared by copolymerization of 1,3-butadiene and allyl alcohol and can
  • polyhydroxy-functional acrylonitrile / butadiene copolymers as they can be manufactured under the name Hypro ® CTBN from the company Emerald Performance Materials, LLC, USA, for example, from epoxides or aminoalcohols and carboxyl-terminated acrylonitrile / butadiene copolymers, which are commercially available.
  • Diisocyanates are preferably used, particularly preferably monomeric diisocyanates with a molecular weight in the range from 140 to 400 g / mol with aliphatic, cycloaliphatic, araliphatic and / or aromatically bound isocyanate groups.
  • Suitable monomeric diisocyanates are in particular those from a group of polyisocyanates comprising 1,4-diisocyanatobutane (BDI), 1,5-diisocyanatopentane (PDI), 1,6-hexamethylene diisocyanate (HDI), 2-methyl-l, 5-diisocyanatopentane, l, 5-diisocyanato-2,2-dimethylpentane, 2,2,4- or 2,4,4-trimethyl-l, 6-diisocyanatohexane, 1,10-diisocyanatodecane, 1,3- and 1,4-diisocyanatocyclohexane, 1 , 4-diisocyanato-3,3,5-trimethylcyclohexane, 1,3-diisocyanato-2-methylcyclohexane, 1,3-diisocyanato-4-methylcyclohexane, l-isocyanato-3,3,5-tri
  • the polyisocyanate is selected from the group consisting of 1- isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane (IPDI), 1,6-hexamethylene diisocyanate (HDI), 2,4- and / or 2 , 6-tolylene diisocyanate (TDI), 2,4'- and 4,4'-diisocyanatodiphenylmethane (MDI), H12MDI and mixtures thereof.
  • IPDI 1- isocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexane
  • HDI 1,6-hexamethylene diisocyanate
  • TDI 6-tolylene diisocyanate
  • MDI 2,4'- and 4,4'-diisocyanatodiphenylmethane
  • H12MDI and mixtures thereof.
  • the polyisocyanate is a mixture comprising 4,4'-diisocyanatodiphenylmethane and homologous multinuclear compounds (PMDI), produced, for example, by phosgenation of reaction products of aniline and formaldehyde, the preparation of which is described, for example, under WO / 2017/125302.
  • PMDI homologous multinuclear compounds
  • the polyisocyanate composition A contains isocyanate-terminated prepolymers which, in addition to the isocyanate group, contain further nonfunctional groups which do not react with isocyanate groups. These are preferably silane groups.
  • the prepolymers are then prepolymers containing isocyanate and silane groups.
  • silane groups are also known to the person skilled in the art as organoalkoxysilane or organoacyloxysilane.
  • Silanes have the property of hydrolyzing to organ silanols on contact with moisture, that is to say forming groups with at least one silanol group (Si-OH group), and polymerizing to organosiloxanes by subsequent condensation.
  • Silane or silanol groups can also react with polar groups on the substrate surface to form covalent bonds, which can improve the adhesion of adhesives to substrates.
  • Isocyanate-terminated prepolymers which contain silane groups in addition to the isocyanate group can be prepared in ways known to those skilled in the art.
  • polymers which contain isocyanate groups and isocyanate-reactive groups in one molecule can be produced by reacting polymers which contain isocyanate groups and isocyanate-reactive groups in one molecule with isocyanatosilanes such as 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 1-isocyanato-methyltrimethoxysilane, 1-isocyanatomethylethylethylmietoxysilane, 1-isocyanatomethylethylethylmietoxysilane, 1-isocyanatomethylethylethylmietoxysilane.
  • isocyanatosilanes such as 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 1-isocyanato-methyltrimethoxysilane, 1-isocyanatomethylethylethylmiet
  • Another exemplary production method comprises the reaction of the above-described isocyanate-terminated prepolymers with hydroxyl, thio or aminosilanes, the hydroxyl, amino and thio groups being in a stoichiometric deficit the isocyanate groups are implemented.
  • Aminosilanes are preferably used, particularly preferably secondary aminosilanes, such as, for example, N-butyl-N-propyltrimethoxysilane or N-cyclohexal-N-methylmethyldimethoxysilane. All silanes can also be present in the form of their siloxane group-containing oligomers.
  • the polyisocyanate composition A contains isocyanate-terminated prepolymers which, in addition to the isocyanate group, contain epoxy groups, and the compounds are then prepolymers containing isocyanate and epoxy groups.
  • Any catalyst which catalyzes the crosslinking of isocyanate groups to isocyanurate groups and / or uretdione groups at 23 ° C. is suitable as catalyst B.
  • a test procedure for determining the suitability of the catalyst involves filling 20 g of a mixture of the polyisocyanate composition A and the catalyst to be tested into a glass vessel with a volume of 25 ml, which was then covered with dry nitrogen, sealed and stored at 23 ° C.
  • polyisocyanates with aromatically bound isocyanate groups are represented by an isocyanate-polypropylene oxide polyether prepolymer, build-up component methylene diphenyl diisocyanate, NCO content approx. 15.4 percent by weight, NCO functionality approx.
  • Suitable catalysts in a concentration of at most 5% by weight lead to a hardening of the reaction mixture within 24 hours, which is defined by the fact that the mass solidifies and when the bottle is held with the opening facing downwards within 30 minutes at 23 ° C. less than 10% by weight of the contents flow out of the bottle. It is preferred here that at least 20%, more preferably at least 30%, particularly preferably at least 50% of the free isocyanate groups present in the polyisocyanate composition A react to form isocyanurate groups in the period of 24 hours after mixing with the polyisocyanate.
  • a “catalyst” is also understood to mean a mixture of different compounds, provided that this mixture has the desired catalytic activity.
  • Suitable catalysts B for the process according to the invention are in principle all compounds which accelerate the trimerization of isocyanate groups to give isocyanurate structures at temperatures of at most 50 ° C., preferably at most 40 ° C. and very preferably at most 30 ° C. and very particularly preferably at most 23 ° C. This property of a potential catalyst can be determined by performing the test described above at the temperature in question.
  • trimerization is also intended to be synonymous in the context of the present invention for these additional oligomerization reactions are in which preferably isocyanate groups react with at least one other isocyanate group.
  • the compounds described below are particularly suitable as candidates for the test method described above. It is expected that a relevant proportion of them will meet the criteria. These include, for example, simple tertiary amines, e.g. Triethylamine, tributylamine, N, N-dimethylaniline, N-ethylpiperidine or N, N'-dimethylpiperazine. Suitable catalysts are also the tertiary hydroxyalkylamines described in GB 2 221 465, e.g.
  • Triethanolamine N-methyl-diethanolamine, dimethylethanolamine, N-isopropyldiethanolamine and l- (2-hydroxyethyl) pyrrolidine, or those known from GB 2 222 161, from mixtures of tertiary bicyclic amines, e.g. DBU, existing catalyst systems with simple low molecular weight aliphatic alcohols.
  • a large number of different metal compounds are also suitable as candidates. Suitable are, for example, the octoates and naphthenates of manganese, iron, cobalt, nickel, copper, zinc, zirconium, cerium or lead described in DE-A 3 240 613 as catalysts or mixtures thereof with acetates of lithium, sodium, potassium, calcium or Barium, the sodium and potassium salts of linear or branched alkane carboxylic acids with up to 10 C atoms known from DE-A 3 219 608, such as, for example, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, pelargonic acid, capric acid and undecylic acid ,
  • the alkali metal or alkaline earth metal salts known from EP-A 0 100 129 of aliphatic, cycloaliphatic or aromatic mono- and polycarboxylic acids with 2 to 20 carbon atoms, such as sodium or potassium benzoate, which are known
  • zirconium tetra-n-butylate zirconium tetra-2-ethylhexanoate and zirconium tetra-2-ethylhexylate, and tin compounds of the type described in European Polymer Journal, Vol. 16, 147-148 (1979), such as dibutyltin dichloride, diphenyltin dichloride, triphenylstannanol, tributyltin acetate, Tributyltin oxide, tin octoate, dibutyl (dimethoxy) stannane and tributyltin imidazolate.
  • quaternary ammonium hydroxides known from DE-A 1 667 309, EP-A 0013 880 and EP-A 0 047 452, such as, for example, tetraethylammonium hydroxide, trimethylbenzylammonium hydroxide, N, N-dimethyl-N-dodecyl-N- ( 2-hydroxyethyl) ammonium hydroxide, N- (2-hydroxyethyl) -N, N-dimethylN- (2,2'-dihydroxymethylbutyl) ammonium hydroxide and 1- (2-hydroxyethyl) -l, 4-diazabicyclo- [2.2.
  • octane hydroxide (monoadduct of ethylene oxide and water with 1,4-diazabicyclo [2.2.2] octane), the cyclic ammonium salts known from WO 2017/029266, the spirocyclic ammonium salts known from WO 2015/124504, the EP- A 37 65 or EP-A 10 589 known quaternary hydroxyalkylammonium hydroxides, such as N, N, N-trimethyl-N- (2-hydroxyethyl) ammonium hydroxide, which are known from DE-A 2631733, EP-A 0 671 426, EP -A 1,599,526 and US 4,789,705 known trialkylhydroxylalkylammonium carboxylates, such as N, N, N-trimethyl-N-2-hydroxypropylammonium p-tert-butylbenzoate and N, N, N-trimethyl-N-2-hydroxyprop ylammonium-2-ethy
  • carboxylates and alcoholates preferably carboxylates and alcoholates with alkali metal or alkaline earth metal counterions.
  • the catalysts are optionally added by adding additives that complex the metallic counterions, e.g. Crown ether, ether, amine, acetonate etc. activated.
  • the alcoholates and carboxylates of the alkaline earth metals are particularly preferred, and potassium neodecanoate and potassium octoate are very particularly preferred.
  • Quaternary ammonium and phosphonium fluorides or difluorides are also potentially suitable.
  • Tetrabutylphosphonium fluoride (C16H37F2P, CAS No. 121240) and potassium acetate have been proven to be suitable.
  • carboxylates and alcoholates preferably carboxylates and alcoholates with alkali metal or alkaline earth metal counterions.
  • the catalysts are optionally added by adding additives that complex the metallic counterions, e.g. Crown ether, ether, amine, acetonate etc. activated.
  • the alcoholates and carboxylates of the alkaline earth metals are particularly preferred. Potassium acetate, potassium neodecanoate and tetrabutylphosphonium fluoride have been proven to be suitable.
  • the coating composition according to the invention additionally contains a compound C which contains groups reactive with isocyanate groups.
  • Groups reactive with isocyanate groups are hydroxyl, thiol and amino groups.
  • the isocyanate-reactive compound C preferably contains on average at least 1.0, more preferably at least 1.5 and even more preferably at least 2.1 groups reactive with isocyanate groups per molecule.
  • the average functionality per molecule is preferably at most 3.0. It is essential to the invention that, even in the presence of an isocyanate-reactive compound C, the isocyanate group content of the coating composition is at least 5% by weight. It is further preferred that the molar ratios of isocyanate groups to isocyanate-reactive groups defined above in this application are observed.
  • Preferred isocyanate-reactive compounds C are low molecular weight polyols with a functionality of at least two flydroxyl groups per molecule and a molecular weight of at most 500 g / mol.
  • Particularly preferred compounds C are ethanol, 1-propanol, 1-butanol, ethanediol, glycol, 1,2,10-decanetriol, 1,2,8-octanetriol, 1,2,3-trihydroxybenzene, glycerin, 1,1,1 Trimethylolpropane, 1,1,1- trimethylolethane, pentaerythritol and sugar alcohols 1,3 propanol, 1,2 propanol, 1,4 butanediol, 1,3 butanediol, 1,5 pentanediol, 1,6-flexanediol, 1,4 pentanediol, Diethylene glycol, triethylene glycol, neopentyl glycol, amino alcohols, polyethylene
  • polymeric polyols described as structural components of the isocyanate-terminated prepolymers described earlier in this application can also be used, provided that they have average functionality of isocyanate-reactive groups between 1.0 and 4.0.
  • the coating composition may contain an isocyanate-reactive compound C with an average functionality between 1.0 and 3.0.
  • This isocyanate-reactive compound C can be combined with at least one further isocyanate-reactive compound C, which has an average functionality of at least 1.0.
  • primary amines and / or amino alcohols can be suitable as the isocyanate-reactive compound C, in particular in order to obtain a structurally viscous, less draining or slipping material immediately when components C and A are mixed.
  • Suitable primary amines are, in particular, 1,5-diamino-2-methylpentane, 2,2 (4), 4-trimethylhexamethylene diamine, 1,8-octane diamine, 1,10-decane diamine, 1,12-dodecane diamine, l-amino -3-amino-methyl-3,5,5-trimethylcyclohexane, 2- and 4-methyl-1,3-diaminocyclohexane and mixtures thereof, 1,3-bis- (aminomethyl) cyclohexane, 1,4-bis- (aminomethyl ) cyclohexane, 4,4'-methylene-bis (cyclohexylamine), bis (2-aminoethyl) ether, 3,6
  • Suitable fillers are, for example, chalk, lime powder, precipitated and / or pyrogenic silica, zeolites, bentonites, magnesium carbonate, diatomaceous earth, clay, clay, tallow, titanium oxide, iron oxide, zinc oxide, sand, quartz, flint, mica, glass powder and other ground minerals.
  • Organic fillers can also be used, in particular carbon black, graphite, wood fiber, wood flour, sawdust, pulp, cotton, pulp, wood chips, chaff, chaff, ground walnut shells and other fiber short cuts as well as other organic or inorganic pigments. Short fibers such as glass fiber, glass filament, polyacrylonitrile, carbon fiber, kevlar fiber or polyethylene fibers can also be added.
  • Aluminum powder is also suitable as a filler.
  • hollow spheres with a mineral shell or a plastic shell are suitable as fillers. This may for example be hollow glass beads, which are commercially available under the trade names Glass Bubbles ®. Hollow spheres based on plastics are commercially available, for example, under the names Expancel ® or Dualite ® . These are composed of inorganic or organic substances, each with a diameter of 1 mm or less, preferably 500 ⁇ m or less.
  • a highly disperse silica with a BET surface area of 10 to 500 m 2 / g is used as the filler.
  • a silica does not substantially increase the viscosity of the composition according to the invention, but does contribute to strengthening the hardened preparation.
  • This reinforcement improves, for example, the initial strengths, tensile shear strengths and the adhesion of the adhesives, sealants or coating materials in which the composition according to the invention is used.
  • Uncoated silicas with a BET surface area of less than 100 m 2 / g, more preferably less than 65 m 2 / g, and / or coated silicas with a BET surface area of 100 to 400 m 2 / g, are more preferred from 100 to 300 m 2 / g, in particular from 150 to 300 m 2 / g and very particularly preferably from 200 to 300 m 2 / g.
  • the pore opening of the zeolite used is or the zeolites used are just big enough to hold water molecules. Accordingly, an effective pore opening of the zeolites of less than 0.4 nm is preferred.
  • the effective pore opening is particularly preferably 0.3 nm ⁇ 0.02 nm.
  • the zeolite (s) is / are preferably used in the form of a powder.
  • the filler comprises naturally occurring silicates (for example clay, clay, talc, mica, kaolin), carbonates (for example chalk, dolomite), sulfates (for example barite), quartz sand, silica (in particular precipitated pyrogenic silica), metal hydroxides (for example Aluminum hydroxide, magnesium hydroxide), metal oxides (for example zinc oxide, calcium oxide, aluminum oxide) and / or carbon black.
  • silicates for example clay, clay, talc, mica, kaolin
  • carbonates for example chalk, dolomite
  • sulfates for example barite
  • quartz sand silica (in particular precipitated pyrogenic silica)
  • metal hydroxides for example Aluminum hydroxide, magnesium hydroxide
  • metal oxides for example zinc oxide, calcium oxide, aluminum oxide
  • Chalk is preferably used as the filler. Cubic, non-cubic, amorphous and other modifications of magnesium and / or calcium carbonate can be used as chalk.
  • the chalks used are preferably surface-treated or coated. Fatty acids, fatty acid soaps and fatty acid esters are preferably used as coating agents for this, for example lauric acid, palmitic acid or stearic acid, sodium or potassium salts of such acids or their alkyl esters.
  • other surface-active substances such as sulfate esters of long-chain alcohols or alkylbenzenesulfonic acids or their sodium or potassium salts or coupling reagents based on silanes or titanates are also suitable.
  • the surface treatment of the chalks is often associated with an improvement in the workability and the adhesive strength and also the weather resistance of the compositions.
  • the coating agent for this is usually used in a proportion of 0.1 to 20% by weight, preferably 1 to 5% by weight, based on the total weight of the raw chalk.
  • ground chalks can be made from natural lime, limestone or marble by mechanical grinding, for example, using dry or moist methods. Depending on the grinding process, fractions with different average particle sizes are obtained.
  • Advantageous specific surface values (BET) are between 1.5 m 2 / g and 50 m 2 / g.
  • the fillers used to prepare the composition usually have a certain proportion of water, which can possibly lead to undesired formation of fluorine and elimination of carbon dioxide.
  • the filler preferably comprises water in an amount of up to 1% by weight, preferably 0.005 to 0.5% by weight, particularly preferably 0.01 to 0.3% by weight, based on the mass of the filler according to the regulation in / DIN EN ISO 15512: 2017-03, procedure B2.
  • the coating composition can optionally contain additional components (additives).
  • compounds which increase the flow of the coating composition according to the invention on special substrates can be used as additives.
  • These can be, for example, purely physically active compounds (for example so-called tackifiers), or compounds that are able to react with reactive groups on the substrate surface.
  • connections can be used which produce a uniform joint thickness, for example wires, balls, etc. made of metal or glass or ceramic.
  • additives which can be used are: non-reactive thermoplastic polymers, such as flomo- or copolymers of unsaturated monomers, in particular from the group comprising ethylene, propylene, butylene, isobutylene, isoprene, vinyl acetate and alkyl (meth) acrylates, in particular polyethylenes (PE), polypropylenes (PP), polyisobutylenes, ethylene vinyl acetate copolymers (EVA) and atactic poly-a- Olefins (APAO).
  • non-reactive thermoplastic polymers such as flomo- or copolymers of unsaturated monomers, in particular from the group comprising ethylene, propylene, butylene, isobutylene, isoprene, vinyl acetate and alkyl (meth) acrylates
  • PE polyethylenes
  • PP polypropylenes
  • EVA ethylene vinyl acetate copolymers
  • APAO atactic poly-a- Olefins
  • additives which can be used are: plasticizers, in particular phthalates, trimellitates, adipates, sebacates, azelates, citrates, benzoates, diesters of ortho-cyclohexanedicarboxylic acid, acetylated glycerol or monoglycerides, or hydrocarbon resins;
  • additives which can be used are: rheology modifiers, in particular thickeners or thixotropic agents, for example layered silicates such as bentonites, derivatives of castor oil, hydrogenated castor oil, polyamides, polyamide waxes, polyurethanes, urea compounds, pyrogenic silicas, cellulose ethers and hydrophobically modified polyoxyethylenes.
  • rheology modifiers in particular thickeners or thixotropic agents
  • layered silicates such as bentonites, derivatives of castor oil, hydrogenated castor oil, polyamides, polyamide waxes, polyurethanes, urea compounds, pyrogenic silicas, cellulose ethers and hydrophobically modified polyoxyethylenes.
  • additives which can be used are: drying agents, such as molecular sieves, calcium oxide, highly reactive isocyanates such as p-tosyl isocyanate, monomeric diisocyanates, monooxazolidines such as Incozol ® 2 (from Incorez), orthoformic acid esters, alkoxysilanes such as tetraethoxysilane, organoalkoxysilanes such as vinyltrimiloxanes; - Adhesion promoters, for example organoalkoxysilanes such as aminosilanes, mercaptosilanes, epoxysilanes, vinylsilanes, (meth) acrylsilanes, isocyanatosilanes, carbamatosilanes, alkylsilanes, S- (alkylcarbonyl) mercaptosilanes and aldiminosilanes, and also oligomeric forms of these silanes.
  • drying agents such as molecular
  • additives which can be used are: stabilizers against oxidation, heat, light and UV radiation.
  • additives which can be used are: flame-retardant substances, in particular the fillers already mentioned aluminum hydroxide and magnesium hydroxide, and in particular organic phosphoric acid esters such as, in particular, triethyl phosphate, tricresyl phosphate, triphenyl phosphate, diphenylcresyl phosphate, isodecyldiphenyl phosphate, tris (1,3-dichloro-2-propyl (phosphate, tris (2-chloroethyl (phosphate, tris (2-ethylhexyl (phosphate, tris (chloroisopropyl) phosphate, tris (chloropropyl) phosphate, isopropylated triphenyl phosphate, mono-, bis- and tris (isopropylphenyl) phosphates of different degrees of isopropylation, resorcinol bis (diphenyl phosphate), bisphenol A bis (diphenyl)
  • additives which can be used are: surface-active substances, in particular wetting agents, leveling agents, deaerating agents or defoamers.
  • additives which can be used are: biocides such as algicides, fungicides or substances which inhibit fungal growth.
  • Preferred additives are rheology modifiers, adhesion promoters, drying agents or stabilizers against UV light and / or oxidation.
  • the coating composition according to the invention also contains at least one
  • a large number of catalysts which contain no transition metals are available for the coating composition according to the invention. This is advantageous for environmental and occupational safety reasons.
  • the coating composition according to the invention does not require moisture to harden.
  • adhesive joints can cure in the absence of air, since no access to air humidity is required.
  • the reaction of water with isocyanate groups also produces carbon dioxide. This can lead to the formation of air bubbles in the adhesive joint and is unfavorable for the mechanical properties, since the air bubbles are weak points. This can be acceptable for thin layers of adhesive that lead to thin adhesive joints, since little carbon dioxide is formed here. With thicker adhesive joints, however, more carbon dioxide is produced, which leads to larger bubbles and thus to more pronounced weak points.
  • the coating compositions according to the invention are comparatively insensitive to mixing errors.
  • a slightly different mixing ratio of catalyst and polyisocyanate composition may lead to slightly faster or slower curing.
  • it has only a minor influence on the final strength of the adhesive joint.
  • the coating compositions according to the invention are also particularly well suited for the connection of components which are coated with cathode dip lacquers.
  • the bonding of such components required a trade-off between two disadvantages: two-component polyurethane adhesives adhere very well to the components. However, they intrinsically have a comparatively low tensile shear strength and / or generally only have a short pot life. Adhesive failure is linked to the intrinsic strength of the adhesive (cohesion) and to the adhesive strength (adhesion). If cohesion and adhesion are greater than the substrate strength, the substrate is destroyed during the adhesive test. This is generally the preferred mode of failure of an adhesive.
  • the present invention relates to the use of the adhesive composition according to the invention defined above in this patent application for producing an adhesive joint.
  • the adhesive joint can be produced in any way known to the person skilled in the art.
  • the coating composition is preferably applied to at least one of the two substrates to be connected before the two substrates are contacted with the surfaces to be connected. If necessary, this can be done under pressure. Subsequently, until the coating composition has hardened, the substrates are incubated at at least 10 ° C., preferably at least 15 ° C., more preferably at least 20 ° C. and most preferably at least 23 ° C., without moving them against one another.
  • the upper limit of the temperature during curing is given by the decomposition temperature of the coating composition or of the workpieces to be bonded. It is preferably 250 ° C.
  • a cured coating composition contains at most 20%, preferably at most 10%, of the free isocyanate groups originally contained in polyisocyanate composition A. This condition is preferably reached after curing at temperatures between 10 ° C and 60 ° C for 24 hours. After curing at temperatures between 10.degree. C. and 40.degree. C. for 24 hours, a state is particularly preferably reached in which at most 20% of the free isocyanate groups originally contained in the polyisocyanate composition A remain.
  • the content of isocyanate groups can be determined by IR spectroscopy as described elsewhere in this application.
  • a coating composition having a water content of at most 1.5% by weight is preferably used.
  • the hardening can also take place in the absence of air, since neither an entry of air humidity nor the escape of carbon dioxide is necessary.
  • the water content is calculated by adding the free water contained in the coating composition and the water bound to the substrate. In principle, the latter is also accessible for the reaction to urea groups, albeit with a delay, since the binding to the substrate is reversible.
  • Substrates which are impermeable or partially impermeable to air and moisture are particularly preferably bonded. These are preferably metal, plastic and dry wood, more preferably metal and plastic. "Dry wood” is wood with a residual moisture determined according to EN 13183-1 (Darr method) of at most 10% by weight, more preferably at most 5% by weight.
  • the substrates can be precoated, for example with lacquers It is preferred that the coating composition is applied to a surface which has an extent of at least 5 mm in both dimensions.
  • the adhesive joint has an average thickness of at least 0.001 mm, preferably 0.05 mm, particularly preferably 0.1 mm and very particularly preferably at least 1 mm.
  • the method according to the invention is suitable for bonding all surfaces.
  • Surfaces made of glass, ceramic, glass ceramic, concrete, mortar, brick, brick, plaster, natural stone, metal, plastic, leather, paper, wood, resin-bound wood materials, textiles, resin-textile composites and polymer composites are preferred.
  • Metals are preferably copper, iron, steel, non-ferrous metals and alloys which contain the aforementioned metals.
  • the metal can be surface-coated, in particular by chrome plating or galvanizing.
  • Preferred plastics are polyvinyl chloride, polycarbonate, acrylonitrile-butadiene-styrene copolymer, polymethyl methacrylate, polyethylene, polypropylene, ethylene-propylene copolymers, polyamide, polyester, epoxy resins, polyoxmethylene, ethylene-propylene-diene rubber and styrene-acrylonitrile copoly- merisat.
  • the coating composition according to the invention also cures in the absence of moisture, it is particularly well suited for the bonding of surfaces which are made of metal, plastic or dry wood, particularly preferably made of plastic or metal.
  • the use for bonding metal surfaces which are precoated with cathode dip lacquer is furthermore preferably suitable. It is very particularly preferred here that both surfaces consist of metal, in particular metal coated with cathode dip lacquer, or plastic.
  • the coating compositions according to the invention are particularly well suited for bonding metal parts which have been precoated with a cathode dip lacquer.
  • at least one of the substrates to be connected by the adhesive joint consists of metal which is coated with a cathode dip coating at the point where the coating composition is applied.
  • a cathode dip varnish is an immersion primer which is separated electrophoretically from an aqueous phase.
  • Binders used for this purpose comprise compounds containing blocked isocyanate groups, which undergo crosslinking reactions under the conditions in the stoving oven in automotive OEM painting with the release of a blocking agent, described in Meier-Westhues, Polyurethane coatings, adhesives and sealants, Vincenz Network, 2007, Hanover, page 144 -145.
  • the present invention relates to a method for producing an adhesive joint comprising the steps a) applying the coating composition according to the invention to a surface;
  • the coating composition can be applied by all methods known to the person skilled in the art and suitable for compositions of the viscosity in question.
  • contacting denotes a process in which the surface coated with the coating composition is physically brought together with the further surface, so that no air gap remains between the two surfaces.
  • the cured coating composition at least 5%, preferably at least 20%, more preferably at least 35% and very particularly preferably at least 50% of the isocyanate groups present in the coating composition at the beginning of process step b) have been converted to isocyanurate groups.
  • the proportion of the isocyanate groups converted to urea groups is at most 30%, preferably at most 20% and very particularly preferably at most 10% of the isocyanate groups present in the coating composition at the beginning of process step b).
  • the curing step c) is furthermore possible for the curing step c) to be carried out at a variable, preferably increasing, temperature.
  • Process step c) is preferably carried out at a temperature of at most 40 ° C. until a tensile shear strength of at least 0.5 N / mm 2 , preferably at least 2 N / mm 2 and very particularly preferably at least 4 N / mm 2 is achieved is.
  • the process step is then continued at a temperature of at least 40 ° C. until a higher strength of preferably at least 2 N / mm 2 , preferably at least 4 N / mm 2 , particularly preferably at least 6 N / mm 2 and very particularly preferably at least 8 N / mm 2 is reached.
  • the curing continues at at least 50 ° C. In order to avoid decomposition of the adhesive, curing takes place at a maximum of 300 ° C.
  • the tensile shear strength is preferably determined in accordance with DIN EN 1465, adhesives, determination of the tensile shear strength of overlap bonds.
  • the coating compositions according to the invention should be prepared sufficiently shortly before application.
  • the period of time in which an adhesive composition provided by mixing its components can still be processed is referred to as the "pot life".
  • the end of processing Workability is preferably defined by doubling the viscosity of the coating composition, or more preferably by thread tearing when a stir bar is withdrawn from the coating composition.
  • the production of an adhesive joint with a coating composition that has exceeded its pot life can lead to faults such as, for example, a slower or incomplete build-up of the adhesion to the substrate.
  • the process according to the invention contains a further process step, in the course of which the components of the coating composition according to the invention are mixed as described below. This process step takes place before process step a). It is preferred that the period between the provision of the coating composition according to the invention by mixing its components and the end of process step b) is not greater than the pot life of the coating composition used. It is particularly preferred that the period between the provision of the coating composition according to the invention and the end of process step b) is at least 5 minutes, preferably at least 10 minutes and particularly preferably at least 30 minutes.
  • Components A, B, C and E of the coating compositions according to the invention suitably have such a consistency that they can be mixed well with one another and with the fillers D using simple processes.
  • Liquid and paste-like components A, B, C and E are particularly suitable for this purpose, the viscosity of the liquid or paste-like components being comparatively low at room temperature. Dosing and mixing can thus be carried out easily by hand or with commercially available dosing systems and dynamic or static mixers. Alternatively, dispersing devices can be used if e.g. solid fillers must be incorporated.
  • all of the components A to E used in the coating compositions according to the invention are premixed in such a way that components XI and X2 are present separately from one another and these can be mixed immediately before application.
  • XI contains the polyisocyanate components A and X2 the catalyst according to the invention.
  • Additives and fillers can be present in component XI and / or X2.
  • Substances reactive with isocyanate groups are preferably a component of component X2. It may be useful to dry certain components chemically or physically before mixing them into the respective component, preferably to a low water content of at most 1.5 percent by weight.
  • XI and X2 are therefore manufactured separately from one another.
  • the constituents of the respective component XI and / or X2 are preferably mixed with one another with the exclusion of moisture, so that a macroscopically homogeneous mass is formed.
  • Each component is preferably stored in a separate moisture-tight container.
  • a suitable container is in particular a barrel, a container, a flobbock, a bucket, a canister, a can, a bag, a hose bag, a cartridge or a tube.
  • the components XI and X2 are preferably stable in storage, that is to say that they can be stored in the respective container for several months to a year and longer before their use without their properties changing to an extent relevant to their use.
  • the two components are mixed with one another shortly before or during the application.
  • the mixing ratio between the XI and X2 is, for example, in the range from about 1: 5 to 200: 1, in particular 1: 1 to 20: 1.
  • XI and X2 are typically mixed using a static mixer or with the help of dynamic mixers. Mixing can take place continuously or in batches. When mixing, make sure that the two components XI and X2 are mixed as homogeneously as possible. If the mixing is inadequate, local deviations from the advantageous mixing ratio occur, which can result in a deterioration in the mechanical properties.
  • X2 is first applied to at least one of the substrates to be bonded, while XI is subsequently applied to the substrate pretreated in this way or at any time to the other substrate which has not been pretreated.
  • the procedure can be reversed.
  • the components of the coating composition according to the invention are then only contacted or mixed in the joining process. This method has the advantage that, for example, pre-coated substrates can be glued with a 1-component adhesive.
  • the result of the method according to the invention is an adhesive joint which integrally connects the two surfaces and consists of the hardened coating composition.
  • the present invention relates to an adhesive joint which can be obtained by the process described above.
  • the NCO contents are determined titrimetrically according to DIN EN ISO 11909.
  • the residual monomer contents of isocyanates are measured gas-graphically according to DIN EN ISO 10283 with an internal standard.
  • the pot life of the systems was determined as follows: The required quantities of the individual components are weighed in a PE beaker on a balance. The total weight of the mixture should be at least 50 g. Immediately after the last component has been weighed in, a stopwatch is started and the mixture is stirred intensively for about 1 minute with a stirring rod. The stirring rod is pulled out of the mixture every 30 minutes and the flow behavior of the mixture is observed. The pot life has been reached and can be read from the stopwatch when the thread breaks and the mixture no longer flows off the stir bar.
  • test specimens which consist of two overlapping glued substrate parts. After specified times, these are then stretched to break in a tearing machine and the required forces are measured (tensile shear strength test).
  • the substrates for the preparation of the test specimens were obtained from Rochholl and prior to use at least 1 week at 23 ° C / 50% rel. Humidity stored
  • test specimens consisting of 2 overlapping glued substrate parts are required for each measurement.
  • a part of the substrate is coated in the longitudinal direction to 20 mm with the adhesive to be tested.
  • the second substrate part is placed in such a way that the width overlap completely.
  • the length overlap is 10 mm.
  • 10 test specimens each are stacked in a press in such a way that the overlapping surfaces lie one above the other.
  • the test specimens are pressed at a pressure of 0.7 N / mm2 for a specified time at 23 ° C / 50% rel. Humidity stored and removed immediately before the test.
  • the specified times (pressing times) can be found in the following tables (in h).
  • the tensile shear strength was measured in each case on a tensile testing machine universal testing machine Zwick 1475 analogous to DIN EN 1465 at a feed rate of 50 mm / min.
  • the test specimens were stretched to break and the maximum force value was determined. The results given correspond to the arithmetic mean of 5 experiments.
  • the amounts of the starting polyisocyanates given in the following tables were weighed into a polypropylene beaker together with the amounts of the catalyst component given in the following tables and, if appropriate, the amounts of the other additives (plasticizers, fillers, “compounds C”) and with the aid a speed mixer DAC 150 FVZ (Hauschild, DE) homogenized at 2750 rpm for 1 min.
  • the method according to the invention is used both for producing adhesive compositions according to the invention and not according to the invention.
  • the calculated NCO content of the mixture given in the following tables is calculated from the mass fraction of the various starting polyisocyanates and their NCO contents, and the mass fractions of the other components
  • the bottle is opened and held with the opening down for 10 min over a beaker with a known weight, so that all material that has flowed through the opening is collected. Possibly. outflown material is transferred into the beaker with a card sheet. It is determined whether more or less than 10% of the amount of material has flowed out of the bottle.
  • the pouring test can be dispensed with, since it is assumed that more than 10% of the material will flow out.
  • polyisocyanates with aromatically bonded isocyanate groups are available from Covestro Germany through Desmodur ® E 23, (isocyanate-polyether prepolymer, build-up component MDI, NCO content approx. 15.4 percent by weight, NCO functionality approx. 2.1, viscosity approx. 1,800 mPas) AG represented as a model connection.
  • Polyisocyanates with aliphatically bound isocyanate groups are represented by Desmodur N ® 3300 (polyisocyanurate, HDI structural component, NCO content approx. 21.8 percent by weight, NCO functionality approx. 3.4, viscosity approx. 3,000) available from Covestro Deutschland AG as a model compound.
  • the specialist can use analog replacement products with a comparable composition.
  • the same diisocyanate as the build-up component it is important to ensure that the NCO functionality and NCO content are as similar as possible.
  • the production methods are known to the person skilled in the art or are described in the literature.
  • An isocyanate prepolymer with an NCO content of 27% based on a polypropylene polyether with nominal OH functionality 2, hydroxyl number 112 mg KOH / g and isophorone diisocyanate is suitable as a model compound for compounds with cycloaliphatically bound isocyanate groups.
  • This model substance can be produced by reacting 226 g Desmophen 1110 BD (Covestro, linear polypropylene polyether polyol, hydroxyl number 112 mg KOH / g, acidity at most 0.1 mg KOH / g, viscosity at 25 ° C approx.
  • Desmodur I Covestro, isophorone diisocyanate (IPDI), purity (GC) at least> 95% of hydrolyzable chlorine not more than 160 mg / kg, NCO_Gehalt ca. 37.5%) at 100 Q C.
  • Polyether A according to the invention used as a structural component for producing isocyanate prepolymers according to the invention
  • the polyether PI a difunctional polypropylene glycol polyether started on propylene glycol and having a hydroxyl number of 500 mg KOH / g, viscosity 55 mPas, water content 0.01%, prepared with potassium hydroxide as a catalyst, then worked up with sulfuric acid, distilled and filtered, was used .
  • Desmophen ® 2061 BD linear polypropylene ether polyol with the hydroxyl number 56 mg KOH / g available from Covestro Deutschland AG.
  • Desmodur ® E XP 2599 available from Covestro Deutschland AG, polyether allophanate based on 1,6-hexamethylene diisocyanate
  • Example la was prepared analogously to Example la from EP 1775313, except that in this case 221.2 g of polyether PI and 900 g of 1,6-hexane diisocyanate were used and neither isophthalic acid dichloride nor zinc (II) bis (2-ethylhexanoate) were added. The excess 1,6-hexamethylene diisocyanate was removed immediately after an NCO content of 31.4% had been reached. NCO content: 12.5%
  • Catalyst K2 - potassium acetate (60% by weight in diethylene glycol)
  • Catalyst K3 potassium neodecanoate 60% by weight
  • the catalysts K 1, K 2 and K 3 are sufficiently active in the model system for systems with predominantly aromatically bound isocyanate groups, since hardening can be observed (after 168 hours solid, no liquid runs out). It also shows that the content of NCO groups decreases and the content of dimers (uretdione groups) and trimers (isocyanurate groups) increases compared to the product without addition of catalyst, which is due to the lower ratio the signal intensity between NCO and trimer can be read. Apparently, Kl, K2 and K3 acted as trimerization catalysts.
  • the model compound without catalyst can be stored for weeks without a measurable change in the NCO content and viscosity, so only the starting value was given.
  • the catalyst Kl is particularly active in the model system for systems with predominantly aliphatically bound isocyanate groups, since hardening can be observed (after 168 solid, no liquid runs out).
  • the catalyst K2 is also sufficiently active and leads to curing. It also shows that the content of NCO groups decreases and the content of trimers (isocyanurate groups) increases compared to the storage-stable storage-stable model compound without addition of catalyst, which can be seen from the lower ratio of the signal intensity between NCO and trimer. Apparently, Kl and K2 acted as trimerization catalysts, with the decrease in the NCO groups using Kl being significantly faster than with K2.
  • Comparative experiment 5 * has an unfavorable ratio of strength and pot life achieved compared to the systems according to the invention based on aliphatic and aromatic polyisocyanates. Comparative experiment 5 * has a lower strength with a shorter pot life than experiment 4 according to the invention. High tensile strengths are achieved on many typical substrates. The adhesive bonds on KTL show that after just a few hours, the strength is so high that the substrates can be handled safely. Short pressing times can be achieved in this way.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die vorliegende Erfindung betrifft Klebstoffe, die dadurch gekennzeichnet sind, dass sie ohne Anwesenheit von Wasser und bei Raumtemperatur unter Ausbildung von Isocyanuratgruppen aushärten.

Description

Wasserfrei härtende Klebstoffe auf Polvisocvanatbasis
Die vorliegende Erfindung betrifft Klebstoffe und Beschichtungen mit einem hohen Verhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen und ihre Verwendung. Diese Klebstoffe sind dadurch gekennzeichnet, dass sie ohne Anwesenheit von Wasser und bei Raumtemperatur unter Ausbildung von Isocyanuratgruppen aushärten.
Im Stand der Technik sind Klebstoffe auf Basis von Polyisocyanaten bekannt, die bei Raumtemperatur aushärten (Leimenstoll, Stepanski, Polyurethanklebstoffe, Springer Fachmedien, Wiesbaden, 2016; EP 1 343 832 Bl; EP 2 566 906 Al). Diese Aushärtung wird durch die Bildung von Polyharnstoffen vermittelt. Dieser Vorgang erfordert Wasser, welches mit Isocyanatgruppen unter Freisetzung von Kohlendioxid zu Aminen reagiert, welche nachfolgend mit Isocyanatgruppen zu Flarnstoffgruppen reagieren.
Deswegen sind derartige Klebstoffzusammensetzungen nicht für Anwendungen geeignet, bei denen trockene Substrate miteinander verklebt werden, ohne dass feuchte Raumluft Zutritt zur Klebefuge hat. Weiterhin ist die Bildung von Kohlendioxid während der Ausbildung nachteilig, weil hierdurch Blasen in der Klebefuge entstehen, welche die Stabilität der Verbindung schwächen. Dieses Problem wird mit steigender Dicke der Klebefuge immer gravierender, da bei größeren Mengen an Klebstoff auch entsprechend mehr Kohlendioxid entsteht. Mit der Verwendung von Oxazolidinen als chemisch blockierten Kettenverlängerern kann die Bildung von Kohlendioxid zwar reduziert werden, es muss dafür aber eine beträchtliche Geruchsbelastung und VOC-Emission durch das aus dem Oxazolidin freigesetzte leichtflüchtige Blockierungsmittel in Kauf genommen werden.
Auch sind Zweikomponentensysteme aus Polyolen und Isocyanaten als Klebstoffe bekannt (Leimenstoll, Stepanski, Polyurethanklebstoffe, Springer Fachmedien Wiesbaden 2016; EP 1 343 832; CN 107652939; Z. Zaggias, R. Karrer, L. Thiele, Adhäsion Kleben und Dichten, 40, 7, 1996 Seite 26). Die mechanischen Eigenschaften dieser Klebstoffe hängen sehr stark vom korrekten Mischungsverhältnis beider Komponenten ab, da hierdurch der Vernetzungsgrad des Polymers unmittelbar beeinflusst wird.
Für die oben genannten Klebstoffe werden vielfach Verbindungen, welche Übergangsmetalle, insbesondere Zinn, enthalten als Katalysatoren verwendet, da sie besonders gut dosierbar sind und eine hohe Reaktivität zeigen. Der Verbleib dieser Übergangsmetallverbindungen in der Klebung ist aber in der Tendenz unerwünscht, da hiermit auch die Rückreaktion, d.h. die Spaltung der Urethanbindung katalysiert wird und der Gebrauch von Übergangsmetallverbindungen unter Umständen eine entsprechende Kennzeichnung der Klebstoffformulierung notwendig macht. US 5,556,934 beschreibt polymerisierbare Zusammensetzungen, die zum Verkleben von Borsten einer Bürste eingesetzt werden. Das molare Verhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen darf nicht höher als 4 : 1 liegen, um Schaumbildung zu verhindern.
US 2002/0091222 beschreibt polymerisierbare Zusammensetzungen zur Verklebung von Gummi, die bei Zimmertemperatur aushärten. Der primäre Vernetzungsmechanismus ist die Bildung von Polyharnstoffen. Einer Vernetzung von Isocyanatgruppen miteinander durch Bildung von Isocyanuratgruppen ist nur zum Abbau überschüssiger Isocyanatgruppen vorgesehen. Deswegen liegt das molare Verhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen höchstens bei 2,2 : 1,0.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, eine Beschichtungszusammensetzung bereitzustellen, die bei Raumtemperatur ohne Zusatz von Wasser oder Luftfeuchtigkeit aushärtet und unter diesen Bedingungen insbesondere zur Herstellung von dicken Klebefugen geeignet ist.
In einer ersten Ausführungsform betrifft die vorliegende Erfindung eine Beschichtungszusammensetzung enthaltend a) Eine Polyisocyanatzusammensetzung A mit einer durchschnittlichen Isocyanat- funktionalität von wenigstens 1,5; und
b) Wenigstens einen Katalysator B, der bei 23 °C die Reaktion von NCO-Gruppen zu Iso cyanuratgruppen und/oder Uretdiongruppen katalysiert; wobei der Isocyanatgehalt der Beschichtungszusammensetzung bezogen auf das Gesamtgewicht der Beschichtungszusammensetzung wenigstens 5 Gew.-% beträgt.
In einer bevorzugten Ausführungsform enthält die erfindungsgemäße Beschichtungszusammensetzung wenigstens eine Verbindung C, die im Durchschnitt pro Molekül wenigstens 1,0 mit Isocyanatgruppen reaktive Gruppe enthält.
In einer weiteren Ausführungsform enthält die erfindungsgemäße Beschichtungszusammensetzung Füllstoffe D.
In noch einer weiteren Ausführungsform enthält die erfindungsgemäße Beschichtungszusammensetzung Additive E.
Eine„Beschichtungszusammensetzung" ist ein Gemisch der oben genannten Komponenten, welches zur Beschichtung einer Oberfläche mit einem aushärtenden Film geeignet ist. Besonders bevorzugt dient die Beschichtungszusammensetzung als Klebstoff zur stoffschlüssigen Verbindung zweier Werkstücke. Hierbei wird die Beschichtungszusammensetzung wenigstens auf eine der beiden Oberflächen aufgetragen, bevor die beiden Oberflächen miteinander in Kontakt gebracht werden. Die Beschichtungszusammensetzung kann optional zusätzliche Komponenten enthalten, wie sie weiter unten in dieser Anmeldung definiert werden.
Die erfindungsgemäße Beschichtungszusammensetzung weist einen Gehalt an Isocyanatgruppen von 5,0 bis 60,0 Gew.-%, bevorzugt von 7,0 bis 45,0 Gew.-%, stärker bevorzugt von 10,0 bis 30,0 Gew.-% und am stärksten bevorzugt von 12,0 bis 25 Gew.-% auf.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung weist die organische Phase der erfindungsgemäßen Beschichtungszusammensetzung einen Gehalt an Isocyanatgruppen von 5,0 bis 60,0 Gew.-%, bevorzugt von 7,0 bis 45,0 Gew.-%, stärker bevorzugt von 10,0 bis 30,0 Gew.-% und am stärksten bevorzugt von 12,0 bis 25 Gew.-% auf. Unter "organischer Phase" wird hier die Gesamtheit aller Bestandteile der Beschichtungszusammensetzung verstanden, die mit der Polyisocyanatzusammensetzung A homogen mischbar sind.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält die Beschichtungszusammensetzung weniger als 0,1 Gew.-%, bevorzugt weniger als 0,05 Gew.-%, besonders bevorzugt weniger als 0,01 Gew.-% und ganz besonders bevorzugt weniger als 0,005 Gew.-% Übergangsmetalle.„Übergangsmetall" im Sinne der vorliegenden Anmeldung sind Zinn, Zink, Zirconium, Titan, Eisen. Cobalt, Nickel, Scandium, Ytrium, Niob, Molybdän. In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist die erfindungsgemäße Beschichtungszusammensetzung frei Zinn, Zink, Zirconium und Titan.
Die erfindungsgemäße Beschichtungszusammensetzung ist vorzugweise durch einen Wassergehalt von höchstens 1,5 Gew.-%, stärker bevorzugt höchstens 0,5 Gew.-%, noch stärker bevorzugt höchstens 0,3 Gew.-% und ganz besonders bevorzugt höchstens 0,1 Gew.-% gekennzeichnet (bestimmt gemäß DIN EN ISO 15512:2017-03, Verfahren B2).
In einer bevorzugten Ausführungsform der vorliegenden Erfindung liegt das molare Verhältnis von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen in der erfindungsgemäßen Beschichtungszusammensetzung wenigstens bei 2 : 1 und stärker bevorzugt wenigstens bei 3 : 1 und noch stärker bevorzugt wenigstens bei 5 : 1. „Mit Isocyanat reaktive Gruppen" im Sinne der vorliegenden Patentanmeldung sind Hydroxyl-, Amino- und Thiolgruppen.
Polyisocyanatzusammensetzung A
Der Begriff „Polyisocyanatzusammensetzung A" bezeichnet die Gesamtheit aller in der Beschichtungszusammensetzung vorliegenden Verbindungen mit wenigstens einer Isocyanatgruppe. Bevorzugt enthält die Polyisocyanatzusammensetzung A wenigstens eine Verbindung ausgewählt aus der Gruppe bestehend aus monomeren Polyisocyanaten, oligomeren Polyisocyanaten und isocyanat- terminierten Präpolymeren.
Der Begriff„Polyisocyanat", wie hier verwendet, ist eine Sammelbezeichnung für Verbindungen, die im Molekül zwei oder mehrere Isocyanatgruppen (hierunter versteht der Fachmann freie Isocyanat- Gruppen der allgemeinen Struktur -N=C=0) enthalten. Einfachste und wichtigste Vertreter dieser Polyisocyanate sind die Diisocyanate. Diese haben die allgemeinen Struktur 0=C=N-R-N=C=0, wobei R üblicherweise für aliphatische, cycloaliphatische, und/oder aromatische Reste steht.
Die Gesamtheit aller in der Polyisocyanatzusammensetzung A enthaltenen Moleküle mit wenigstens einer Isocyanatgruppe weist bevorzugt eine durchschnittliche NCO-Funktionalität pro Molekül von 1,5 bis 6,5, stärker bevorzugt von 1,8 bis 5,0 und besonders bevorzugt von 2,0 bis 4,5 auf.
Als Bestandteile der Polyisocyanatzusammensetzung A sind grundsätzlich Polyisocyanate mit aliphatisch, cycloaliphatisch, araliphatisch und aromatisch gebundenen Isocyanatgruppen gleicher maßen geeignet.
Besonders bevorzugt handelt es sich aus Gründen der Verfügbarkeit und der Kosten um Polyisocyanate mit aliphatisch und aromatisch gebundenen Isocyanatgruppen. Besonders bevorzugt zu nennen sind Polyisocyanate oder Polyisocyanatgemische basierend H Dl, PDI, BDI, TDI, MDI und Mehrkern-MDI-homologen (PMDI).
Aus Polyisocyanaten lassen sich wegen der Mehrfachfunktionalität (> 2 Isocyanat-Gruppen) eine Vielzahl von Polymeren (z. B. Polyurethane, Polyharnstoffe und Polyisocyanurate) und nieder molekularen Verbindungen (z.B. solche mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxa- diazindion- und/oder Oxadiazintrionstruktur) hersteilen.
Der Begriff „Polyisocyanate" bezeichnet in dieser Anmeldung monomere und oligomere Polyisocyanate gleichermaßen. Zum Verständnis vieler Aspekte der Erfindung ist es jedoch wichtig, zwischen monomeren Polyisocyanaten und oligomeren Polyisocyanaten zu unterscheiden. Wenn in dieser Anmeldung von„oligomeren Polyisocyanaten" die Rede ist, dann sind damit Polyisocyanate gemeint, die aus mindestens zwei monomeren Polyisocyanatmolekülen aufgebaut sind, d.h. es sind Verbindungen, die ein Reaktionsprodukt aus mindestens zwei monomeren Polyisocyanatmolekülen darstellen oder enthalten. Bevorzugt sind besagte monomere Polyisocyanate Diisocyanate, d.h. monomere Isocyanate mit zwei Isocyanatgruppen pro Molekül. In Abgrenzung von den weiter unten in dieser Anmeldung definierten isocyanatterminierten Präpolymeren sind oligomere Polyisocyanate durch ein Molekulargewicht von höchstens 900 g/Mol, bevorzugt höchstens 800 g/Mol und besonders bevorzugt höchstens 700 g/Mol charakterisiert. Die Herstellung oligomerer Polyisocyanate aus monomeren Diisocyanaten wird hier auch als Modifizierung monomerer Diisocyanate bezeichnet. Diese „Modifizierung", wie hier verwendet, bedeutet dabei die Reaktion monomerer Diisocyanate zu oligomeren Polyisocyanaten mit Urethan-, Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur.
So ist z.B. Hexamethylendiisocyanat (HDI) ein „monomeres Diisocyanat", da es zwei Isocyanat- Gruppen enthält und kein Reaktionsprodukt aus mindestens zwei Polyisocyanatmolekülen darstellt:
HDI
Reaktionsprodukte aus mindestens zwei HDI-Molekülen, die immer noch über mindestens zwei Isocyanat-Gruppen verfügen, sind demgegenüber „oligomere Polyisocyanate" im Sinne der Erfindung. Vertreter solcher„oligomerer Polyisocyanate" sind ausgehend von dem monomeren HDI z.B. das HDI-Isocyanurat und das HDI-Biuret, die jeweils aus drei monomeren HDI Bausteinen aufgebaut sind:
HDI- Isocyanurat HDI-Biuret
(idealisierte Strukturformeln)
Erfindungsgemäß beträgt der Gewichtsanteil an Isocyanatgruppen bezogen auf die Gesamtmenge der Isocyanatkomponente A wenigstens 5,0 Gew.-%.
Grundsätzlich sind monomere und oligomere Polyisocyanate zur Verwendung in der erfindungs gemäßen Isocyanatkomponente A gleichermaßen geeignet. Folglich kann die Isocyanatkomponente A im Wesentlichen aus monomeren Polyisocyanaten oder im Wesentlichen aus oligomeren Polyisocyanaten bestehen. Sie kann aber auch oligomere und monomere Polyisocyanate in beliebigen Mischungsverhältnissen enthalten. Monomere und oligomere Polyisocyanate können in der Polyisocyanatzusamensetzung A in jedem beliebigen Mischungsverhältnis mit einem oder mehreren isocyanatterminierten Präpolymeren vorliegen.
In einer bevorzugten Ausführungsform der Erfindung ist die bei der Trimerisierung als Edukt eingesetzte Polyisocyanatzusammensetzung A monomerarm (d.h. arm an monomeren Polyiso- cyanaten) und enthält bereits oligomere Polyisocyanate. Die Begriffe„monomerarm" und„arm an monomeren Polyisocyanaten" werden hier in Bezug auf die Polyisocyanatzusammensetzung A synonym verwendet.
Eine „monomerarme" Polyisocyanatzusammensetzung A hat einen Anteil an monomeren Diisocyanaten von höchstens 20 Gew.-%, bevorzugt höchstens 15 Gew.-%, stärker bevorzugt höchstens 10 Gew.-%, noch stärker bevorzugt höchstens 5 Gew.-% und besonders bevorzugt höchstens 2 Gew.-%, jeweils bezogen auf das Gewicht der Isocyanatkomponente A. In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist die Polyisocyanatzu sammensetzung A im Wesentlichen frei von monomeren Polyisocyanaten. In dieser Ausführungsform liegt der Anteil an monomeren Polyisocyanaten am Gesamtgewicht der Polyisocyanatzusammen setzung A bevorzugt bei höchstens 1,0 Gew.-%, besonders bevorzugt bei höchstens 0,5 Gew.-% und ganz besonders bevorzugt unter 0,1 Gew.-%.
Polyisocyanatzusammensetzungen, die monomerarm oder im Wesentlichen frei von monomeren Isocyanaten sind, lassen sich erhalten, indem nach der eigentlichen Modifizierungsreaktion in jedem Fall mindestens ein weiterer Verfahrensschritt zur Abtrennung der nicht umgesetzten über schüssigen monomeren Diisocyanate durchgeführt wird. Diese Monomerenabtrennung kann besonders praxisgerecht nach an sich bekannten Verfahren, vorzugsweise durch Dünnschicht destillation im Hochvakuum oder durch Extraktion mit geeigneten gegenüber Isocyanatgruppen inerten Lösungsmitteln, beispielsweise aliphatischen oder cycloaliphatischen Kohlenwasserstoffen wie Pentan, Hexan, Heptan, Cyclopentan oder Cyclohexan, erfolgen. Weitere Möglichkeiten zur Reduktion des Monomerengehaltes umfassen eine Umsetzung mit Verbindungen die isocyanat- reaktive Gruppen enthalten, welche selektiv (bevorzugt) mit Isocyanatmonomeren reagieren, wie beispielsweise in EP1201695A1 beschrieben.
Gemäß einer weiteren besonderen Ausführungsform der vorliegenden Erfindung enthält die Polyiso cyanatzusammensetzung A monomere Monoisocyanate oder monomere Isocyanate mit einer Iso- cyanatfunktionalität größer zwei, d.h. mit mehr als zwei Isocyanatgruppen pro Molekül. Die Zugabe von monomeren Monoisocyanaten oder monomeren Isocyanaten mit einer Isocyanatfunktionalität größer zwei hat sich als vorteilhaft erwiesen, um die Netzwerkdichte der Klebstoffe zu beeinflussen. Besonders praxisgerechte Ergebnisse stellen sich ein, wenn die Isocyanatkomponente A einen Anteil an monomeren Monoisocyanaten oder monomeren Isocyanaten mit einer Isocyanatfunktionalität größer zwei in der Isocyanatkomponente A von wenigstens 2 Gew.-% und höchstens 20 Gew.-%, bevorzugt höchstens 10 Gew.-% und stärker bevorzugt höchstens 5 Gew.-%, jeweils bezogen auf das Gewicht der Isocyanatkomponente A, aufweist. Besonders bevorzugte monomere Isocyanate sind in diesem Zusammenhang Trisiocyanatononan und Stearylisocyanat.
Die oligomeren Polyisocyanate können erfindungsgemäß insbesondere Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur aufweisen. Gemäß einer Ausführungsform der Erfindung weisen die oligomeren Polyisocyanate mindestens eine der folgenden oligomeren Strukturtypen oder deren Gemische auf:
Uretdion Isocyanurat Allophanat Biuret Iminooxadiazindion Oxadiazintrion
Gemäß einer bevorzugten Ausführungsform der Erfindung besteht die Polyisocyanatzusam- mensetzung A zu wenigstens 80 Gew.-% aus einem oligomeren Polyisocyanat, dessen Isocyanurat- strukturanteil mindestens 50 mol-%, vorzugsweise mindestens 60 mol-%, stärker bevorzugt mindestens 70 mol-%, noch stärker bevorzugt mindestens 80 mol-%, noch stärker bevorzugt mindestens 90 mol-% und besonders bevorzugt mindestens 95 mol-% bezogen auf die Summe des in besagtem oligomeren Polyisocyanates vorliegenden oligomeren Strukturen aus der Gruppe, bestehend aus Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und Oxadiazin- trionstruktur, beträgt.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist in der Polyisocyanatzu- sammensetzung A ein oligomeres Polyisocyanat enthalten, das neben der Isocyanuratstruktur mindestens ein weiteres oligomeres Polyisocyanat mit Uretdion-, Biuret-, Allophanat-, Iminooxa diazindion- und Oxadiazintrionstruktur und Mischungen davon enthält.
Die Anteile an Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazin trionstruktur in in einem Polyisocyanat können z.B. durch NMR-Spektroskopie bestimmt werden. Bevorzugt lässt sich hierbei die 13C-NMR-Spektroskopie, vorzugsweise protonenentkoppelt, er setzen, da die genannten oligomeren Strukturen charakteristische Signale liefern.
Unabhängig von der zugrunde liegenden oligomeren Struktur (Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur) weist eine beim erfindungsgemäßen Verfahren einzusetzende oligomere Polyisocyanatzusammensetzung A vorzugsweise eine (mittlere) NCO-Funktionalität von 1,5 bis 5,0, vorzugsweise von 2,3 bis 4,5 auf. Besonders praxisgerechte Ergebnisse stellen sich ein, wenn die erfindungsgemäß einzusetzende Polyisocyanatzusammensetzung A einen Gehalt an Isocyanatgruppen von 9,0 bis 60,0 Gew.-%, vorzugsweise von 12,0 bis 30,0 Gew.-%, jeweils bezogen auf das Gewicht der Isocyanatkomponente A, aufweist.
Herstellverfahren für die erfindungsgemäß einzusetzenden oligomeren Polyisocyanate mit Uretdion-, Isocyanurat-, Allophanat-, Biuret-, Iminooxadiazindion- und/oder Oxadiazintrionstruktur sind beispielsweise in J. Prakt. Chem. 336 (1994) 185 - 200, in DE-A 1 670 666, DE-A 1 954 093, DE-A 2 414 413, DE-A 2 452 532, DE-A 2 641 380, DE-A 3 700 209, DE-A 3 900 053 und DE-A 3 928 503 oder in EP- A 0 336 205, EP A 0 339 396 und EP-A 0 798 299 beschrieben.
Geeignete Polyisocyanate zur Herstellung der beim erfindungsgemäßen Verfahren einzusetzenden Polyisocyanatzusammensetzung A und der darin enthaltenen monomeren und/oder oligomeren Polyisocyanate sind beliebige, auf verschiedene Weise, beispielsweise durch Phosgenierung in der Flüssig- oder Gasphase oder auf phosgenfreien Weg, wie z.B. durch thermische Urethanspaltung, zugängliche Polyisocyanate. Besonders geeignet sind die nachfolgend aufgezählten monomeren Polyisocyanate.
Besagte monomere Polyisocyanate als solche- d.h. ohne vorherige Umsetzung zu oligomeren Polyisocyanaten - sind ebenfalls bevorzugte Bestandteile der Polyisocyanatzusammensetzung A.
Bei einem Isocyanat mit aliphatisch gebundenen Isocyanatgruppen sind alle Isocyanatgruppen an ein sp3-hybridisiertes Kohlenstoffatom gebunden. Bevorzugte Polyisocyanate mit aliphatisch gebundenen Isocyanatgruppen sind n-Butylisocyanat und alle Isomeren davon, n-Pentylisocyanat und alle Isomeren davon, n-Hexylisocyanat und alle Isomeren davon, 1,4-Butyldiisocyanat, 1,5- Diisocyanatopentan (PDI), 1,6-Diisocyanatohexan (HDI), 2-Methyl-l,5-diisocyanatopentan, 1,5- Diisocyanato-2,2-dimethylpentan, 2,2,4- bzw. 2,4,4-Trimethyl-l,6-diisocyanatohexan 1,10-Di- isocyanatodecan, und Triisocyantononan.
Bei einem Isocyanat mit cycloaliphatisch gebundenen Isocyanatgruppen sind alle Isocyanatgruppen an Kohlenstoffatome gebunden, die Teil eines geschlossenen Rings aus Kohlenstoffatomen sind. Dieser Ring kann an einer oder mehreren Stellen ungesättigt sein, solange er durch das Vorliegen von Doppelbindungen keinen aromatischen Charakter erhält. Bevorzugte Polyisocyanate mit cycloaliphatisch gebundenen Isocyanatgruppen sind Cyclohexylisocyanat, 1,3- und 1,4- Diisocyanatocyclohexan, l,4-Diisocyanato-3,3,5-trimethylcyclohexan, l,3-Diisocyanato-2- methylcyclohexan, l,3-Diisocyanato-4-methylcyclohexan, l-lsocyanato-3,3,5-trimethyl-5-isocyanato- methyl-cyclohexan Isophorondiisocyanat; (IPDI), l-lsocyanato-l-methyl-4(3)-isocyanatomethylcyclo- hexan, 2,4'- und 4,4'-Diisocyanatodicyclohexylmethan(H12MDI), 1,3-und l,4-Bis(isocyanatomethyl)- cyclohexan, Bis-(isocyanatomethyl)-norbornan (NBDI), 4,4'-Diisocyanato-3,3'-dimethyldicyclohexyl- methan, 4,4'-Diisocyanato-3,3',5,5'-tetramethyl-dicyclohexylmethan, 4,4'-Diisocyanato-l, -bi(cyclo- hexyl), 4,4'-Diisocyanato-3,3'-dimethyl-l, -bi(cyclohexyl), 4,4'-Diisocyanato-2,2',5,5'-tetra-methyl- l,l'-bi(cyclohexyl), 1,8-Diisocyanato-p-menthan, 1,3-Diisocyanato-adamantan und l,3-Dimethyl-5,7- diisocyanatoadamantan.
Bei einem Isocyanat mit araliphatisch gebundenen Isocyanatgruppen sind alle Isocyanatgruppen an Alkylenreste gebunden, der ihrerseits an einen aromatischen Ring gebunden sind. Bevorzugte Polyisocyanate mit araliphatisch gebundenen Isocyanatgruppen sind 1,3- und l,4-Bis-(isocyanato- methyl)benzol (Xylendiisocyanat; XDI), 1,3- und l,4-Bis(l-isocyanato-l-methyhethyl)-benzol (TMXDI) und Bis(4-(l-isocyanato-l-methylethyl)phenyl)-carbonat.
Bei einem Isocyanat mit aromatisch gebundener Isocyanatgruppe sind alle Isocyanatgruppen direkt an Kohlenstoffatome gebunden, die Teil eines aromatischen Ringes sind. Bevorzugte Isocyanate mit aromatisch gebundenen Isocyanatgruppen sind 2,4- und 2,6-Diisocyanatotoluol (TDI), 2,4'- und 4,4'- Diisocyanatodiphenylmethan (MDI), 1,5-Diisocyanatonaphthalin, Tris-(p-isocyanatophenyl)-thiophos- phat und Triphenylmethan-4,4',4"-Triisocyanat.
In einer weiteren Ausführungsform enthält die Polyisocyanatzusammensetzung A Verbindungen, die neben der Isocyanatgruppe weitere nicht isocyanatreaktive Gruppen enthalten. Beispielsweise sind dies Silangruppen, die Verbindungen sind dann Isocyanatosilane. Als Silangruppe wird dabei eine siliziumorganische Gruppe bezeichnet, die mindestens einen über eine Si-O-Bindung gebundenen organischen Rest aufweist, beispielsweise eine Alkoxy- oder Acyloxygruppe. Derartige Silangruppen sind dem Fachmann auch als Organoalkoxysilan bzw. Organoacyloxysilan bekannt. Silane haben die Eigenschaft, bei Kontakt mit Feuchtigkeit zu Organsilanolen zu hydrolysieren, also Gruppen mit mindestens einer Silanolgruppe (Si-OH Gruppe) zu bilden, und durch nachfolgende Kondensation zu Organosiloxanen zu polymerisieren. Ebenfalls können Silan- oder Silanolgruppen mit polaren Gruppen auf der Substratoberfläche unter Ausbildung kovalenter Bindungen reagieren, was die Flaftung von Klebstoffen zu Substraten verbessern kann. Bevorzugt handelt es sich bei den erfindungsgemäßen Isocyanatosilanen um Isocyanatomethylsilane oder Isocyanatopropylsilane, die am besten kommerziell verfügbar sind, sowie um silan- und isocyanatgruppenhaltige Umsetzungs produkte von Flydroxy- und/oder Amino- und/oder Thiosilanen mit Polyisocyanaten, wobei nicht alle Isocyanatgruppen abreagiert wurden, weil beispielsweise die Flydroxy- und/oder Amino- und/oder Thiogruppen im stöchiometrischen Unterschuss mit den Isocyanatgruppen umgesetzt werden. Ganz besonders bevorzugt ist das Isocyanatosilan ausgewählt aus der Gruppe bestehend aus 3- Isocyanatopropyltrimethoxysilan, 3-lsocyanatopropyltriethoxysilan, 1-lsocyanatomethyltrimethoxy- silan, 1-lsocyanatomethyltriethoxysilan, 1-lsocyanatomethylmethyldimethoxysilan und 1-lsocyanato- methylmethyldiethoxysilan. Dabei können alle Silane auch in Form ihrer siloxangruppenhaltigen Oligomere vorliegen. In einer bevorzugten Ausführungsform der vorliegenden Erfindung besteht die Polyisocyanatzusammensetzung A zu wenigstens 80 Gew.-%, stärker bevorzugt zu wenigstens 90 Gew.-%, noch stärker bevorzugt zu wenigstens 95 Gew.-% und am stärksten bevorzugt zu wenigstens 98 Gew.-% aus Polyisocyanaten mit aliphatisch gebundenen Isocyanatgruppen.
Isocyanatterminierte Präpolymere
Als Bestandteil der Polyisocyanatzusammensetzung A sind isocyanatterminierte Präpolymere mit einem zahlenmittleren Molekulargewicht von wenigstens 400 g/Mol, bevorzugt wenigstens 500 g/Mol, stärker bevorzugt wenigstens 600 g/Mol und noch stärker bevorzugt wenigstens 700 g/Mol. Das Molekulargewicht geeigneter Präpolymere liegt hierbei bevorzugt bei höchstens bei 22.000 g/Mol bevorzugt bei höchstens 15.000 g/Mol, stärker bevorzugt bei höchstens 9.000g/Mol und besonders bevorzugt bei höchstens 5.000 g/Mol. Besonders bevorzugte isocyanatterminierte Präpolymere haben ein zahlenmittleres Molekulargewicht zwischen 500 g/Mol und 5.000 g/Mol.
Die Polyisocyanatzusammensetzung A kann neben dem isocyanatterminierten Präpolymer auch monomere und/oder oligomere Polyisocyanate enthalten. Dies ist insbesondere für solche Präpolymere bevorzugt, deren Isocyanatgehalt zu gering ist, um die oben definierten erforderlichen Isocyanatgehalte der Polyisocyanatzusammensetzung A zu erreichen. Soweit der Isocyanatgehalt des eingesetzten Präpolymers oder einer Mischung von wenigstens zwei Präpolymeren hoch genug ist, kann die Polyisocyanatzusammensetzung A auch ausschließlich aus isocyanatterminierten Präpolymeren bestehen.
Isocyanatterminierte Präpolymere werden durch Umsetzung von monomeren oder oligomeren Polyisocyanaten mit Verbindungen erhalten, die im Durchschnitt mehr als eine isocyanatreaktive Gruppe pro Molekül enthalten, wobei im Reaktionsgemisch ein molarer Überschuss an Isocyanatgruppen gegenüber den isocyanatreaktiven Gruppen vorliegt. Bevorzugt handelt es sich bei den Verbindungen, die im Durchschnitt mehr als eine isocyanatreaktive Gruppe pro Molekül enthalten um Polyole und/oder Polyamine, wobei im Reaktionsgemisch ein molarer Überschuss an Isocyanatgruppen gegenüber Amino- und Hydroxylgruppen vorliegt. Entsprechende Herstellungs verfahren sind dem Fachmann gut bekannt.
Als Polyole zum Aufbau der erfindungsgemäß einsetzbaren isocyanatterminierten Präpolymere können bevorzugt Polyacrylate, Polycarbonate, Polyester, Polyurethane oder Polyether eingesetzt werden, die mit mindestens zwei NCO-reaktiven Gruppen, vorzugsweise Hydroxylgruppen, funktionalisiert sind. Auch Mischungen von wenigstens zwei der vorgenannten Komponenten sind einsetzbar. Polyether sind als Polyole besonders bevorzugt, da sie eine flexible und elastische Struktur aufweisen, mit der man Zusammensetzungen hersteilen kann, die hervorragende elastische Eigenschaften aufweisen. Dabei sind Polyether nicht nur in ihrem Grundgerüst flexibel, sondern gleichzeitig beständig. So werden Polyether beispielsweise von Wasser und Bakterien, im Gegensatz zu beispielsweise Polyestern, nicht angegriffen oder zersetzt. Besonders geeignet sind Polytetramethylenpolyole, Polyoxyethylenpolyole und Polyoxypropylenpolyole, insbesondere Polyoxyethylendiole, Polyoxypropylendiole, Polyoxyethylentriole und Polyoxypropylentriole.
Die erfindungsgemäß einzusetzenden Polyole weisen vorzugsweise ein zahlenmittleres Molekular gewicht von 400 bis 22.000 g/Mol auf. Insbesondere weisen die erfindungsgemäß einzusetzenden NCO-reaktiven Polymere ein zahlenmittleres Molekulargewicht von 500 bis 15.000 g/Mol, bevorzugt 600 bis 9.000 g/Mol, besonders bevorzugt 700 bis 5.000 g/Mol auf. Diese Molekulargewichte sind besonders vorteilhaft, da die entsprechenden Präpolymere ein ausgewogenes Verhältnis von Viskosität (leichte Verarbeitbarkeit), Festigkeit und Elastizität aufweisen.
Besonders vorteilhafte viskoelastische Eigenschaften lassen sich erreichen, wenn man NCO-reaktive Polymere mit einer engen Molmassenverteilung und damit einer niedrigen Polydispersität einsetzt. Die Polydispersität gibt das Verhältnis von gewichtsgemitteltem zu zahlengemitteltem Molekular gewicht Mw/Mn wieder. Vorzugsweise weist das NCO-reaktive Polymer eine Polydispersität von höchstens 5, bevorzugt höchstens 2,5, besonders bevorzugt höchstens 1,5 auf.
In einer weiteren vorteilhaften Ausführungsform werden NCO-reaktive Polymere mit einer bimodalen oder multimodalen Molmassenverteilung eingesetzt. Bimodalität sei hier definiert als Produkt aus einer Abmischung von mehr als einem NCO reaktiven Polymeren mit einer Poly dispersität von höchstens 5, bevorzugt höchstens 2,5, besonders bevorzugt höchstens 1,5. In einer besonders bevorzugten Ausführungsform kann diese Abmischung auch über die Herstellung des Isocyanatprepolymeren unter Einsatz verschiedener Polyole mit unterschiedlicher Molekular gewichtsverteilung und Zusammensetzung bei der Herstellung der erfinderischen Isocyanat- zusammensetzung erfolgen.
Soweit nicht anders angegeben wird das zahlen- und/oder gewichtsmittlere Molekulargewicht durch Gelpermeationschromatographie (GPC) nach der Vorschrift der DIN 55672-1:2016-03 mit THF als Eluent gegen einen Polystyrolstandard ermittelt.
Besonders bevorzugt sind Polyetherpolyole, die durch die so genannte Doppel-Metall-Cyanid- Katalyse (DMC-Katalyse) herstellbar sind. Dies ist z.B. in US 5,158,922 (z.B. Beispiel 30) und EP 0 654 302 (S. 5, Z. 26 bis S. 6, Z. 32) beschrieben. Auf diese Art hergestellte Polyetherpolyole zeichnen sich durch eine besonders niedrige Polydispersität, durch ein hohes mittleres Molekulargewicht und durch einen sehr niedrigen Ungesättigtheitsgrad aus. Entsprechende Produkte sind beispielsweise bei Covestro Deutschland AG unter der Bezeichnung, Acclaim® erhältlich.
Die erfindungsgemäß einzusetzenden Polyole weisen vorzugsweise eine mittlere OH-Funktionalität von 1,2 bis 3, besonders bevorzugt von 1,5 bis 2,1, auf. Unter der OH-Funktionalität einer Verbindung ist die mittlere OH-Funktionalität zu verstehen. Sie gibt die mittlere Anzahl an Hydroxylgruppen pro Molekül an. Die mittlere OH-Funktionalität einer Verbindung kann auf Basis des zahlenmittleren Molekulargewichts und der Hydroxylzahl berechnet werden. Die Hydroxylzahl einer Verbindung wird, wenn nicht anders angegeben, nach der Norm DIN 53240-1 (2012) bestimmt.
Insbesondere geeignet sind Polyoxyalkylendiole oder Polyoxyalkylentriole mit einem Ungesättigt heitsgrad kleiner als 0,02 mEq/g (bestimmt nach der Vorschrift in ASTM D4671-16) und mit einem zahlenmittleren Molekulargewicht (bestimmt durch GPC) im Bereich von 2.000 bis 30.000 g/Mol, sowie Polyoxyethylendiole, Polyoxyethylentriole, Polyoxypropylendiole und Polyoxypropylentriole mit einem mittleren Molekulargewicht von 400 bis 22000 g/Mol. Ebenfalls besonders geeignet sind so genannte Ethylenoxid-terminierte ("EOendcapped", ethylene oxide-endcapped) Polyoxypropylen- polyole. Letztere werden erhalten, wenn bei der Herstellung zur Polymerisation zunächst Propylen oxid als Monomer eingesetzt wird und dann vor Abbruch der Polymerisation anstelle von Propylen oxid Ethylenoxid als Monomer verwendet wird.
Weiterhin geeignet sind Hydroxylgruppen-terminierte Polybutadienpolyole, wie beispielsweise solche, die durch Polymerisation von 1,3-Butadien und Allylalkohol oder durch Oxidation von Poly butadien hergestellt werden, sowie deren Hydrierungsprodukte.
Weiterhin geeignet sind Styrol-Acrylnitril gepfropfte Polyetherpolyole, wie sie beispielsweise unter dem Handelsnamen Lupranol® von der Firma Elastogran GmbH, Deutschland kommerziell erhältlich sind.
Als Polyesterpolyole sind insbesondere Polyester geeignet, welche mindestens zwei Hydroxylgruppen tragen und nach bekannten Verfahren, insbesondere der Polykondensation von Hydroxycarbon- säuren oder der Polykondensation von aliphatischen und/oder aromatischen Polycarbonsäuren mit zwei- oder mehrwertigen Alkoholen, hergestellt werden.
Als Polycarbonatpolyole sind insbesondere jene geeignet, wie sie durch Umsetzung beispielsweise der oben genannten, zum Aufbau der Polyesterpolyole eingesetzten, Alkohole mit Dialkylcarbonaten wie Dimethylcarbonat, Diarylcarbonaten wie Diphenylcarbonat oder Phosgen zugänglich sind. Besonders geeignet sind Polycarbonatdiole, insbesondere amorphe Polycarbonatdiole. Weiterhin geeignete Polycarbonatpolyole sind solche, die neben Polycarbonatgruppen auch Polyethergruppen enthalten und beispielsweise durch Polymerisation von Propylen- und/oder Ethylenoxid und Kohlendioxid in Gegenwart geeigneter Katalysatoren entstehen.
Weitere geeignete Polyole sind Poly(meth)acrylatpolyole.
Weitere geeignete Polyole sind „Polymer-Polyole", beispielsweise Polyetherpolyole enthaltend Polymere und/oder Copolymere vinylischer Monomere wie insbesondere Acrylnitril, Styrol, alpha- Methylstyrol, Methyl(meth)acrylat oder Hydroxyethyl(meth)acrylat, sowie Polyharnstoffe bzw. Poly- hydrazodicarbonamide (PHD) oder Polyurethane, wobei die beiden Phasen eine stabile, lagerfähige Dispersion bilden und das Polymer partiell auf das Polyetherpolyol gepfropft beziehungsweise kovalent ans Polyetherpolyol gebunden sein kann. Bevorzugt sind Polymer-Polyole, bei welchen das feste Polymer ein Copolymer von Acrylnitril und Styrol (SAN) oder ein Polyharnstoff bzw. Poly- hydrazodicarbonamid (PHD) oder ein Polyurethan ist. Diese Polymer-Polyole sind besonders gut herstellbar und lagerfähig. Ganz besonders bevorzugt ist SAN. Dieses ist besonders hydrophob und somit vorteilhaft in Kombination mit Isocyanaten. Das Polyetherpolyol des Polymer-Polyols ist bevorzugt ein Polyoxyalkylenpoly- ol, welches durch ringöffnende Polymerisation von Oxiranen, insbesondere Ethylenoxid und/oder 1 ,2-Propylenoxid, mit Hilfe eines Startermoleküls mit zwei oder mehreren aktiven Wasserstoffatomen, insbesondere Wasser, Glykole wie 1 ,2-Ethandiol, 1 ,2- und 1 ,3-Propandiol, Neopentylglykol, Diethylenglykol, Triethylenglykol, Polyethylenglykole, Dipropylen- glykol, Tripropylenglykol oder Polypropylenglykole, oder Triole, insbesondere Glycerin oder 1 ,1 ,1 - Trimethylolpropan, oder Zuckeralkohole, insbesondere Sorbit (D-Glucitol), oder Diphenole, insbe sondere Bisphenol A, oder Amine, insbesondere Ammoniak, Ethylen- diamin oder Anilin, oder einer Mischung davon, hergestellt ist. Als Polymer-Polyol bevorzugt sind kommerziell erhältliche Typen, welche vor allem für die Herstellung von Polyurethan-Weichschäumen verwendet werden, ins besondere die SAN-Polyole Lupranol® 4003/1 , Lupranol® 4006/1/SC10, Lupranor® 4006/1 /SC15, Lupranol® 4006/1 /SC25, Lupranol® 4010/1/SC10, Lupranol® 4010/1 /SC15, Lupranol® 4010/1 /SC25, Lupranol® 4010/1 /SC30 oder Lupranol® 4010/1/SC40 (alle von BASF), Desmophen® 5027 GT oder Desmophen® 5029 GT (beide von Covestro Deutschland AG), Voralux® HL106, Voralux® HL108, Voralux® HL109, Voralux® HL120, Voralux® HL400, Voralux® HN360, Voralux® HN370, Voralux® HN380 oder Specflex® NC 700 (alle von Dow), Carador® SP27-25, Caradol® SP30-15, Caradol® SP30- 45, Caradol® SP37-25, Caradol® SP42-15, Caradol® SP44-10 oder Caradol® MD22-40 (alle von Shell), sowie das PHD-Polyol Desmophen® 5028 GT (von Covestro). Davon besonders bevorzugt sind die SAN-Polyole, insbesondere die genannten kommerziell erhältlichen Typen.
Weiterhin geeignet sind polyhydroxyfunktionelle Fette und Öle, beispielsweise natürliche Fette und Öle, insbesondere Ricinusöl, oder durch chemische Modifizierung von natürlichen Fetten und Ölen gewonnene, so genannte oleochemische, Polyole, die beispielsweise durch Epoxidierung unge sättigter Öle und anschliessender Ringöffnung mit Carbonsäuren bzw. Alkoholen erhaltenen Epoxy- polyester bzw. Epoxypolyether, oder durch Hydroformylierung und Hydrierung ungesättigter Öle erhaltene Polyole.
Weiterhin geeignet sind Polyole, welche aus natürlichen Fetten und Ölen durch Abbauprozesse wie Alkoholyse oder Ozonolyse und anschließender chemischer Verknüpfung, beispielsweise durch Umesterung oder Dimerisierung, der so gewonnenen Abbauprodukte oder Derivate davon, erhalten werden. Geeignete Abbauprodukte von natürlichen Fetten und Ölen sind insbesondere Fettsäuren und Fettalkohole sowie Fettsäureester, insbesondere die Methylester (FAME), welche beispielsweise durch Hydroformylierung und Hydrierung zu Hydroxyfettsäureestern derivatisiert werden können.
Ebenfalls geeignet sind weiterhin Polykohlenwasserstoffpolyole, auch Oligohydrocarbonole genannt, beispielsweise polyhydroxyfunktionelle Ethylen-Propylen-, Ethylen-Butylen- oder Ethylen-Propylen- Dien-Copolymere, wie sie beispielsweise von der Firma Kraton Polymers, USA, hergestellt werden, oder polyhydroxyfunktionelle Copolymere aus Dienen wie 1,3-Butandien oder Diengemischen und Vinylmonomeren wie Styrol, Acrylnitril oder Isobutylen, oder polyhydroxyfunktionelle Polybutadien polyole, beispielsweise solche, die durch Copolymerisation von 1,3-Butadien und Allylalkohol hergestellt werden und auch hydriert sein können.
Weiterhin geeignet sind polyhydroxyfunktionelle Acrylnitril/Butadien-Copolymere, wie sie beispielsweise aus Epoxiden oder Aminoalkoholen und carboxylterminierten Acrylnitril/Butadien- Copolymeren, welche kommerziell erhältlich sind unter dem Namen Hypro® CTBN von der Firma Emerald Performance Materials, LLC, USA, hergestellt werden können.
Als Polyisocyanate für die Herstellung des Präpolymers können handelsübliche Polyisocyanate verwendet werden. Vorzugsweise werden Diisocyanate eingesetzt, besonders bevorzugt monomere Diisocyanate mit einem Molekulargewicht im Bereich von 140 bis 400 g/mol mit aliphatisch, cycloaliphatisch, araliphatisch und/oder aromatisch gebundenen Isocyanatgruppen.
Geeignete monomere Diisocyanate sind insbesondere solche einer Gruppe von Polyisocyanaten umfassend 1,4-Diisocyanatobutan (BDI), 1,5-Diisocyanatopentan (PDI), 1,6-Hexamethylendiisocyanat (HDI), 2-Methyl-l,5-diisocyanatopentan, l,5-Diisocyanato-2,2-dimethylpentan, 2,2,4- bzw. 2,4,4- Trimethyl-l,6-diisocyanatohexan, 1,10-Diisocyanatodecan, 1,3- und 1,4-Diisocyanatocyclohexan, 1,4- Diisocyanato-3,3,5-trimethylcyclohexan, l,3-Diisocyanato-2-methylcyclohexan, l,3-Diisocyanato-4- methylcyclohexan, l-lsocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (Isophorondiiso- cyanat; I PDI), l-lsocyanato-l-methyl-4(3)-isocyanatomethylcyclohexan, 2,4'- und 4,4'-Diisocyanato- dicyclohexylmethan (H12MDI), 1,3- und l,4-Bis(isocyanatomethyl)cyclohexan, Bis-(isocyanato- methyl)-norbornan (NBDI), 4,4'-Diisocyanato-3,3'-dimethyldicyclohexylmethan, 4,4'-Diisocyanato- 3,3',5,5'-tetramethyldicyclohexylmethan, 4,4'-Diisocyanato-l,l'-bis(cyclohexyl), 4,4'-Diisocyanato- 3,3'-dimethyl-l,l'-bi(cyclohexyl), 4,4'-Diisocyanato-2,2',5,5'-tetra-methyl-l,l'-bi(cyclohexyl), 1,8- Diisocyanato-p-menthan, 1,3-Diisocyanatoadamantan, l,3-Dimethyl-5,7-diisocyanatoadamantan, 1,3- und l,4-Bis-(isocyanatomethyl)benzol (Xylylendiisocyanat; XDI), 1,3- und l,4-Bis(l-isocyanato-l- methylethyl)-benzol (TMXDI), Bis(4-(l-isocyanato-l-methylethyl)phenyl)-carbonat, 2,4- und 2,6-Di- isocyanatotoluol (TDI), 2,4'- und 4,4'-Diisocyanatodiphenylmethan (MDI), 1,5-Diisocyanatonaphthalin und Mischungen davon.
Weitere ebenfalls geeignete Diisocyanate finden sich darüber hinaus beispielsweise in Justus Liebigs Annalen der Chemie Band 562 (1949) S. 75 - 136.
In einer bevorzugten Ausführungsform ist das Polyisocyanat aus der Gruppe bestehend aus 1- lsocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (IPDI), 1,6-Hexamethylendiisocyanat (HDI), 2,4- und/oder 2,6-Toluylendiisocyanat (TDI), 2,4'- und 4,4'-Diisocyanatodiphenylmethan (MDI), H12MDI und Mischungen davon ausgewählt.
In einer weiteren bevorzugten Ausführungsform ist das Polyisocyanat eine Mischung umfassend 4,4'- Diisocyanatodiphenylmethan und homologen mehrkernige Verbindungen (PMDI), hergestellt beispielsweise durch Phosgenierung von Umsetzungsprodukten von Anilin und Formaldehyd, deren Herstellung beispielsweise unter WO/2017/125302 beschrieben wird.
In einer weiteren Ausführungsform enthält die Polyisocyanatzusammensetzung A isocyanat- terminierte Präpolymere, die neben der Isocyanatgruppe weitere nicht funktionelle Gruppen enthalten, die nicht mit Isocyanatgruppen reagieren. Dies sind bevorzugt Silangruppen. Die Prä polymere sind dann isocyanat-und silangruppenhaltige Präpolymere. Als Silangruppe wird dabei eine siliziumorganische Gruppe bezeichnet, die mindestens einen über eine Si-O-Bindung gebundenen organischen Rest aufweist, beispielsweise eine Alkoxy- oder Acyloxygruppe. Derartige Silangruppen sind dem Fachmann auch als Organoalkoxysilan bzw. Organoacyloxysilan bekannt. Silane haben die Eigenschaft, bei Kontakt mit Feuchtigkeit zu Organsilanolen zu hydrolysieren, also Gruppen mit mindestens einer Silanolgruppe (Si-OH Gruppe) zu bilden, und durch nachfolgende Kondensation zu Organosiloxanen zu polymerisieren. Ebenfalls können Silan- oder Silanolgruppen mit polaren Gruppen auf der Substratoberfläche unter Ausbildung kovalenter Bindungen reagieren, was die Haftung von Klebstoffen zu Substraten verbessern kann. Isocyanatterminierte Präpolymere, die neben der Isocyanatgruppe Silangruppen enthalten lassen sich auf dem Fachmann bekannten Wegen hersteilen. Beispielsweise sind sie herstellbar durch Umsetzung von Polymeren, die Isocyanat gruppen und isocyanatreaktive Gruppen in einem Molekül enthalten mit Isocyanatosilanen wie beispielsweise 3-lsocyanatopropyltrimethoxysilan, 3-lsocyanatopropyltriethoxysilan, 1-lsocyanato- methyltrimethoxysilan, 1-lsocyanatomethyltriethoxysilan, 1-lsocyanatomethylmethyldimethoxysilan, 1-lsocyanatomethylmethyldiethoxysilan. Eine weitere beispielhafte Herstellmethode umfasst die Umsetzung der oben beschriebenen Isocyanatterminierte Präpolymere mit Hydroxy-, Thio- oder Aminosilanen wobei die Hydroxy-, Amino- und Thiogruppen im stöchiometrischen Unterschuss mit den Isocyanatgruppen umgesetzt werden. Bevorzugt werden Aminosilane eingesetzt, besonders bevorzugt sekundäre Aminosilane, wie beispielsweise N-Butyl-N-propyltrimethoxysilan oder N- Cyclohexal-N-methylmethyldimethoxysilan. Dabei können alle Silane auch in Form ihrer siloxan gruppenhaltigen Oligomere vorliegen.
In einer weiteren Ausführungsform enthält die Polyisocyanatzusammensetzung A isocyanat- terminierte Präpolymere, die neben der Isocyanatgruppe Epoxidgruppen enthalten, die Verbin dungen sind dann isocyanat-und epoxidgruppenhaltige Präpolymere.
Katalysator B
Als Katalysator B ist jeder Katalysator geeignet, der die Vernetzung von Isocyanatgruppen zu Iso- cyanuratgruppen und/oder Uretdiongruppen bei 23 °C katalysiert. Ein Testverfahren zur Bestimmung der Eignung des Katalysators beinhaltet das Abfüllen von 20 g eines Gemisches der Polyisocyanat zusammensetzung A und des zu testenden Katalysators in ein Glasgefäß mit 25 ml Volumen, welches anschließend mit trockenem Stickstoff überschleiert, verschlossen und bei 23 °C gelagert wird. Hierbei werden Polyisocyanate mit aromatisch gebundenen Isocyanatgruppen durch ein Isocyanat- Polypropylenoxidpolyether-Präpolymer, Aufbaukomponente Methylendiphenyldiisocyanat, NCO- Gehalt ca. 15,4 Gewichtsprozent, NCO-Funktionalität ca. 2.1, Viskosität ca. 1.800 mPas als Modellverbindung repräsentiert. Polyisocyanate mit aliphatisch und/oder cycloaliphatisch gebundenen Isocyanatgruppen werden durch ein Polyisocyanurat, Aufbaukomponente HDI, NCO- Gehalt ca. 21,8 Gewichtsprozent, NCO-Funktionalität ca. 3,4, Viskosität ca. 3.000, Restmonomeren gehalt höchstens 0,15%, als Modellverbindung repräsentiert.
Sollte sich bei diesem Test keine Aushärtung zeigen, wird die Menge des Katalysators in weiteren Versuchen jeweils verdoppelt bis zu einem Katalysator-Gehalt von maximal 5 Gew.-% (bezogen auf den katalytisch wirksamen Anteil, ohne Lösungsmittel).
Geeignete Katalysatoren führen in einer Konzentration von höchstens 5 Gew.-% innerhalb von 24 Stunden zu einer Aushärtung des Reaktionsgemisches, die dadurch definiert ist dass die Masse sich verfestigt und beim Halten der Flasche mit der Öffnung nach unten innerhalb von 30 Minuten bei 23 °C weniger als 10 Gew.-% des Inhaltes aus der Flasche fließt. Hierbei ist es bevorzugt, dass im Zeitraum von 24h nach Mischung mit dem Polyisocyanat wenigstens 20 %, stärker bevorzugt wenigstens 30 %, besonders bevorzugt wenigstens 50% der in der Polyisocyanatzusammensetzung A vorliegenden freien Isocyanatgruppen zu Isocyanuratgruppen reagieren.
Als„Katalysator" wird in der vorliegenden Anmeldung auch ein Gemisch verschiedener Verbin dungen verstanden, soweit dieses Gemisch die gewünschte katalytische Aktivität aufweist. Geeignete Katalysatoren B für das erfindungsgemäße Verfahren sind prinzipiell alle Verbindungen, die die Trimerisierung von Isocyanatgruppen zu Isocyanuratstrukturen bei Temperaturen von höchstens 50°C, bevorzugt höchstens 40°C und ganz bevorzugt höchstens 30°C und ganz besonders bevorzugt höchstens 23°C beschleunigen. Diese Eigenschaft eines potentiellen Katalysators kann ermittelt werden, indem der oben beschriebene Test bei der betreffenden Temperatur durchgeführt wird. Da die Isocyanuratbildung in Abhängigkeit vom verwendeten Katalysator häufig von Nebenreaktionen, beispielsweise der Dimerisierung zu Uretdionstrukturen oder der Trimerisierung unter Bildung von Iminoxadiazindionen (sogenannten asymmetrischen Trimerisaten) begleitet wird, soll im Rahmen der vorliegenden Erfindung der Begriff „Trimerisierung" synonym auch für diese zusätzlich ablaufenden Oligomerisierungsreaktionen stehen, bei denen bevorzugt Isocyanatgruppen mit mindestens einer anderen Isocyanatgruppe reagieren.
Als Kandidaten für das oben beschriebene Testverfahren sind insbesondere die unten beschriebenen Verbindungen geeignet. Es ist zu erwarten, dass ein relevanter Anteil davon die Kriterien erfüllt. Hierzu gehören beispielsweise einfache tertiäre Amine, wie z.B. Triethylamin, Tributylamin, N,N- Dimethylanilin, N-Ethylpiperidin oder N, N'-Dimethylpiperazin. Geeignete Katalysatoren sind auch die in der GB 2 221 465 beschriebenen tertiären Hydroxyalkylamine, wie z.B. Triethanolamin, N-Methyl- diethanolamin, Dimethylethanolamin, N-Isopropyldiethanolamin und l-(2-Hydroxyethyl)pyrrolidin, oder die aus der GB 2 222 161 bekannten, aus Gemischen tertiärer bicyclischer Amine, wie z.B. DBU, mit einfachen niedermolekularen aliphatischen Alkoholen bestehenden Katalysatorsysteme.
Ebenfalls als Kandidaten in Frage kommt eine Vielzahl unterschiedlicher Metallverbindungen. Geeignet sind beispielsweise die in der DE-A 3 240 613 als Katalysatoren beschriebenen Oktoate und Naphthenate von Mangan, Eisen, Cobalt, Nickel, Kupfer, Zink, Zirkonium, Cer oder Blei oder deren Gemische mit Acetaten von Lithium, Natrium, Kalium, Calcium oder Barium, die aus DE-A 3 219 608 bekannten Natrium- und Kalium-Salze von linearen oder verzweigten Alkancarbonsäuren mit bis zu 10 C-Atomen, wie z.B. von Propionsäure, Buttersäure, Valeriansäure, Capronsäure, Heptansäure, Caprylsäure, Pelargonsäure, Caprinsäure und Undecylsäure, die aus der EP-A 0 100 129 bekannten Alkali- oder Erdalkalimetallsalze von aliphatischen, cycloaliphatischen oder aromatischen Mono- und Polycarbonsäuren mit 2 bis 20 C-Atomen, wie z.B. Natrium- oder Kaliumbenzoat, die aus der GB-PS 1 391 066 und GB-PS 1 386 399 bekannten Alkaliphenolate, wie z.B. Natrium- oder Kaliumphenolat, die aus der GB 809 809 bekannten Alkali- und Erdalkalioxide, -hydroxide, -carbonate, -alkoholate und - phenolate, Alkalimetallsalze von enolisierbaren Verbindungen sowie Metallsalze schwacher aliphatischer bzw. cycloaliphatischer Carbonsäuren, wie z.B. Natriummethoxid, Natriumacetat, Kaliumacetat, Natriumacetoessigester, Blei-2-ethylhexanoat und Bleinaphthenat, die aus der EP-A 0 056 158 und EP-A 0 056 159 bekannten, mit Kronenethern oder Polyetheralkoholen komplexierten basischen Alkalimetallverbindungen, wie z.B. komplexierte Natrium- oder Kaliumcarboxylate, das aus der EP-A 0 033 581 bekannte Pyrrolidinon-Kaliumsalz, die aus der Anmeldung EP 13196508.9 bekannten ein- oder mehrkernigen Komplexverbindung von Titan, Zirkonium und/oder Hafnium, wie z.B. Zirkoniumtetra-n-butylat, Zirkoniumtetra-2-ethylhexanoat und Zirkoniumtetra-2-ethylhexylat, sowie Zinnverbindungen der in European Polymer Journal, Vol. 16, 147 - 148 (1979) beschriebenen Art, wie z.B. Dibutylzinndichlorid, Diphenylzinndichlorid, Triphenylstannanol, Tributylzinnacetat, Tributylzinnoxid, Zinnoctoat, Dibutyl(dimethoxy)stannan und Tributylzinnimidazolat.
Weitere potentiell geeignete Verbindungen sind die aus der DE-A 1 667 309, EP-A 0013 880 und EP-A 0 047 452 bekannten quaternären Ammoniumhydroxyde, wie z.B. Tetraethylammoniumhydroxid, Trimethylbenzylammoniumhydroxid, N,N-Dimethyl-N-dodecyl-N-(2-hydroxyäthyl)ammonium- hydroxid, N-(2-Hydroxyethyl)-N,N-dimethylN-(2,2'-dihydroxymethylbutyl)-ammoniumhydroxid und 1- (2-Hydroxyethyl)-l,4-diazabicyclo-[2.2.2]-octanhydroxid (Monoaddukt von Äthylenoxid und Wasser an l,4-Diazabicyclo-[2.2.2]-octan), die aus WO 2017/029266 bekannten cyclischen Ammoniumsalze, die aus WO 2015/124504 bekannten spirocyclischen Ammoniumsalze, die aus EP-A 37 65 oder EP-A 10 589 bekannten quaternären Hydroxyalkylammoniumhydroxide, wie z.B. N,N,N-Trimethyl-N-(2- hydroxyethyl)-ammonium-hydroxid, die aus DE-A 2631733, EP-A 0 671 426, EP-A 1 599 526 und US 4,789,705 bekannten Trialkylhydroxylalkylammoniumcarboxylate, wie z.B. N,N,N-Trimethyl-N-2- hydroxypropylammonium-p-tert.-butylbenzoat und N,N,N-Trimethyl-N-2-hydroxypropylammonium- 2-ethylhexanoat, die aus der EP-A 1 229 016 bekannten quartären Benzylammoniumcarboxylate, wie z.B. N-Benzyl-N,N-dimethyl-N-ethylammoniumpivalat, N-Benzyl-N,N-dimethyl-N-ethylammonium-2- ethylhexanoat, N-Benzyl-N,N,N-tributylammonium-2-ethylhexanoat, N,N-Dimethyl-N-ethyl-N-(4- methoxy-benzyl)ammonium-2-ethylhexanoat oder N,N,N-Tributyl-N-(4-methoxybenzyl)ammonium- pivalat, die aus der WO 2005/087828 bekannten tetrasubstituierten Ammonium-ß-hydroxy- carboxylate, wie z.B. Tetramethylammoniumlactat, die aus der EP-A 0 339 396, EP-A 0 379 914 und EP-A 0 443 167 bekannten quartären Ammonium- oder Phosphoniumfluoride, wie z.B. N-Methyl- N,N,N-trialkylammoniumfluoride mit C8-C10-Alkylresten, N,N,N,N-Tetra-n-butylammoniumfluorid, N,N,N-Trimethyl-N-benzylammonium-fluorid, Tetramethylphosphoniumfluorid, Tetraethyl- phosphoniumfluorid oder Tetra-n-butylphosphoniumfluorid, die aus der EP-A 0 798 299, EP-A 0 896 009 und EP-A 0 962 455 bekannten quaternären Ammonium- und Phosphoniumpolyfluoride, wie z.B. Benzyltrimethylammoniumhydrogenpolyfluorid, die aus der EP-A 0 668 271 bekannten Tetraalkyl- ammoniumalkylcarbonate, die durch Umsetzung tertiärer Amine mit Dialkylcarbonaten erhältlich sind, oder betainstrukturierte Quartär-Ammonioalkylcarbonate, die aus der WO 1999/023128 bekannten quaternären Ammoniumhydrogencarbonate, wie z.B. Cholinbicarbonat, die aus der EP 0 102 482 bekannten, aus tertiären Aminen und alkylierend wirkenden Estern von Säuren des Phosphors erhältlichen quartären Ammoniumsalze, wie z.B. Umsetzungsprodukte von Triethylamin, DABCO oder N-Methylmorpholin mit Methanphosphonsäuredimethylester, oder die aus WO 2013/167404 bekannten tetrasubstituierten Ammoniumsalze von Lactamen, wie z.B. Trioctyl- ammoniumcaprolactamat oder Dodecyltrimethylammoniumcaprolactamat. Eine Liste weiterer potentiell geeigneter Trimerisierungskatalysatoren finden sich beispielsweise in J. H. Saunders und K. C. Frisch, Polyurethanes Chemistry and Technology, S. 94 ff (1962) und der dort zitierten Literatur.
Für aliphatische und cyloaliphatische Isocyanate sind mit hoher Wahrscheinlichkeit geeignet: Carboxylate und Alkoholate, bevorzugt Carboxylate und Alkoholate mit Alkali- oder Erdalkali- metallgegenionen. Dabei werden die Katalystoren gegebenenfalls durch Zugabe von die metallischen Gegenionen komplexierenden Additiven wie z.B. Kronenether, Ether, Amine, Acetonate etc. aktiviert. Besonders bevorzugt sind die Alkoholate und Carboxylate der Erdalkalimetalle, ganz besonders bevorzugt sind Kaliumneodecanoat und Kaliumoctoat.
Des Weiteren potentiell geeignet sind quartäre Ammonium- und Phosphoniumfluoride bzw. Difluoride.
Als geeignet bewiesen sind Tetrabutylphosphoniumfluorid (C16H37F2P, CAS-Nr. 121240) und Kaliumacetat.
Für aromatische und araliphatische Isocyanate sind mit hoher Wahrscheinlichkeit geeignet: Carboxylate und Alkoholate, bevorzugt Carboxylate und Alkoholate mit Alkali- oder Erdalkalimetall- gegenionen. Dabei werden die Katalystoren gegebenenfalls durch Zugabe von die metallischen Gegenionen komplexierenden Additiven wie z.B. Kronenether, Ether, Amine, Acetonate etc. aktiviert. Besonders bevorzugt sind die Alkoholate und Carboxylate der Erdalkalimetalle. Als geeignet bewiesen sind Kaliumacetat, Kaliumneodecanoat und Tetrabutylphosphoniumfluorid.
Isocyanatreaktive Verbindung C
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält die erfindungsgemäße Beschichtungszusammensetzung zusätzlich eine Verbindung C, die mit Isocyanatgruppen reaktive Gruppen enthält. Mit Isocyanatgruppen reaktive Gruppen sind Hydroxyl-, Thiol- und Aminogruppen. Die isocyanatreaktive Verbindung C enthält vorzugsweise im Durchschnitt wenigstens 1,0, stärker bevorzugt wenigstens 1,5 und noch stärker bevorzugt wenigstens 2,1 mit Isocyanatgruppen reaktive Gruppen pro Molekül. Vorzugsweise liegt die durchschnittliche Funktionalität pro Molekül bei höchstens 3,0. Es ist erfindungswesentlich, dass auch in Anwesenheit einer isocyanatreaktiven Verbindung C der Isocyanatgruppengehalt der Beschichtungszusammensetzung wenigstens 5 Gew.-% beträgt. Weiterhin ist es bevorzugt, dass die weiter oben in dieser Anmeldung dfinierten molaren Verhältnisse von Isocyanatgruppen zu mit Isocyanat reaktiven Gruppen eingehalten werden.
Es ist auch möglich, eine deutlich geringer Kennzahl zu verwenden, wenn die Reaktion der Isocyanatgruppen miteinander unter Trimerisierung so deutlich höher als die Reaktion mit den isocyanatreaktiven Gruppen, dass als Resultat die meisten Gruppen unter Trimerisierung reagieren. Es kann also sein, dass die Verbindung C keine Reaktion eingeht, sondern ggf. auch als Weichmacher oder Ähnliches fungiert.
Bevorzugte isocyanatreaktive Verbindungen C sind niedermolekulare Polyole mit einer Funktionalität von wenigstens zwei Flydroxylgruppen pro Molekül und einem Molekulargewicht von höchstens 500 g/mol. Besonders bevorzugte Verbindungen C sind Ethanol, 1-Propanol, 1-Butanol, Ethandiol, Glykol, 1,2,10-Decantriol, 1,2,8-Octantriol, 1,2,3-Trihydroxybenzol, Glycerin, 1,1,1-Trimethylolpropan, 1,1,1- Trimethylolethan, Pentaerythrit und Zuckeralkohole 1,3 Propanol, 1,2 Propanol, 1,4 Butandiol, 1,3 Butandiol, 1,5 Pentandiol, 1,6-Flexandiol, 1,4 Pentandiol, Diethylenglycol, Triethylenglycol, Neopentylglykol, Aminoalkohole, Polyethylenglykol (PEG) 200, PEG 300, PEG 400, PEG 600, Diethanolamin und Triethanolamin.
Es können auch die als Aufbaukomponenten der isocyanatterminierten Präpolymere weiter oben in dieser Anmeldung beschriebenen polymeren Polyole eingesetzt werden, soweit sie eine durch schnittliche Funktionalität isocyanatreaktiver Gruppen zwischen 1,0 und 4,0 aufweisen.
Zur Verbesserung der Flaftung kann die Beschichtungszusammensetzung eine isocyanatreaktive Verbindung C mit einer durchschnittlichen Funktionalität zwischen 1,0 und 3,0 enthalten. Diese iso cyanatreaktive Verbindung C kann mit wenigstens einer weiteren isocyanatreaktiven Verbindung C, die eine durchschnittliche Funktionalität von wenigstens 1,0 aufweist, kombiniert werden.
Insbesondere können als isocyanatreaktive Verbindung C primäre Amine und/ oder Aminoalkohole geeignet sein, insbesondere um mit dem Vermischen der Komponenten C und A unmittelbar ein strukturviskoses, weniger stark abfließendes oder abrutschendes Material zu erhalten. Dafür geeignete primäre Amine sind insbesondere l,5-Diamino-2-methylpentan, 2,2(4),4-Trimethyl- hexamethylendiamin, 1,8- Octandiamin, 1,10-Decandiamin, 1,12-Dodecandiamin, l-Amino-3-amino- methyl-3,5,5-trimethylcyclohexan, 2- und 4-Methyl-l ,3-diaminocyclohexan und Mischungen davon, l,3-Bis-(aminomethyl)cyclohexan, l,4-Bis-(aminomethyl)cyclohexan, 4,4'-Methylen-bis(cyclohexyl- amin), Bis-(2-aminoethyl)ether, 3,6-Dioxaoctan-l,8-diamin, 4,7-Dioxadecan-l,10-diamin, 4,7- Dioxadecan-2,9-di-amin, 4,9-Dioxadodecan-l ,12-diamin, 5,8-Dioxadodecan-3,10-diamin, 1 ,3-Bis- (aminomethyl)benzol oder ein Polyetheramin wie insbesondere Jeffamine® D- 230, D-400 oder T-403 (von Fluntsman), Ethanolamin, Diethanolamin und andere.
Füllstoff D
Als Füllstoffe eignen sich beispielsweise Kreide, Kalkmehl, gefällte und/oder pyrogene Kieselsäure, Zeolithe, Bentonite, Magnesiumcarbonat, Kieselgur, Tonerde, Ton, Talg, Titanoxid, Eisenoxid, Zinkoxid, Sand, Quarz, Flint, Glimmer, Glaspulver und andere gemahlene Mineralstoffe. Weiterhin können auch organische Füllstoffe eingesetzt werden, insbesondere Ruß, Graphit, Flolzfasern, Holz- mehl, Sägespäne, Zellstoff, Baumwolle, Pulpe, Hackschnitzel, Häcksel, Spreu, gemahlene Walnuss schalen und andere Faserkurzschnitte sowie weitere organische oder anorganische Pigmente. Ferner können auch Kurzfasern wie Glasfaser, Glasfilament, Polyacrylnitril, Kohlefaser, Kevlarfaser oder auch Polyethylenfasern zugesetzt werden. Aluminiumpulver ist ebenfalls als Füllstoff geeignet. Darüber hinaus eignen sich als Füllstoffe Hohlkugeln mit einer mineralischen Hülle oder einer Kunststoffhülle. Dies können beispielsweise Glashohlkugeln sein, die unter den Handelsbezeichnungen Glass Bubbles® kommerziell erhältlich sind. Hohlkugeln auf Kunststoffbasis sind beispielsweise unter den Bezeichnungen Expancel® oder Dualite® kommerziell erhältlich. Diese sind aus anorganischen oder organischen Stoffen zusammengesetzt, jede mit einem Durchmesser von 1 mm oder weniger, bevorzugt von 500 pm oder weniger.
Beispielsweise wird als Füllstoff eine hochdisperse Kieselsäure mit einer BET-Oberfläche von 10 bis 500 m2/g eingesetzt. Bei ihrer Verwendung bewirkt eine derartige Kieselsäure keine wesentliche Erhöhung der Viskosität der erfindungsgemäßen Zusammensetzung, trägt aber zu einer Verstärkung der gehärteten Zubereitung bei. Über diese Verstärkung werden zum Beispiel die Anfangsfestig keiten, Zugscherfestigkeiten und die Adhäsion der Kleb-, Dicht- oder Beschichtungsstoffe, in denen die erfindungsgemäße Zusammensetzung verwendet wird, verbessert. Bevorzugt werden unbe schichtete Kieselsäuren mit einer BET-Oberfläche von kleiner als 100 m2/g, stärker bevorzugt von kleiner als 65 m2/g, und/oder beschichtete Kieselsäuren mit einer BET-Oberfläche 100 bis 400 m2/g, stärker bevorzugt von 100 bis 300 m2/g, insbesondere von 150 bis 300 m2/g und ganz besonders bevorzugt von 200 bis 300 m2/g eingesetzt.
Als Zeolithe werden bevorzugt Alkali-Alumosilikate eingesetzt, beispielsweise Natrium-Kalium- Alumosilikate der allgemeinen Summenformel aK20*bNa20*AI203*2Si0*nH20 mit 0 < a, b < 1 und a + b = 1. Vorzugsweise ist die Porenöffnung des eingesetzten Zeoliths beziehungsweise der einge setzten Zeolithe gerade groß genug, um Wassermoleküle aufzunehmen. Dementsprechend ist eine effektive Porenöffnung der Zeolithe von weniger als 0,4 nm bevorzugt. Besonders bevorzugt beträgt die effektive Porenöffnung 0,3 nm ± 0,02 nm. Der/die Zeolith(e) wird/werden vorzugsweise in Form eines Pulvers eingesetzt.
In einer Ausführungsform umfasst der Füllstoff natürlich vorkommende Silikate (beispielsweise Ton, Lehm, Talk, Glimmer, Kaolin), Carbonate (beispielsweise Kreide, Dolomit), Sulfate (beispielsweise Baryt), Quarzsand, Kieselsäure (insbesondere gefällte der pyrogene Kieselsäure), Metallhydroxide (beispielsweise Aluminiumhydroxid, Magnesiumhydroxid), Metalloxide (beispielsweise Zinkoxid, Calciumoxid, Aluminiumoxid) und/oder Ruß.
Bevorzugt wird Kreide als Füllstoff verwendet. Als Kreide können dabei kubische, nicht kubische, amorphe und andere Modifikationen von Magnesium- und/oder Calciumcarbonat eingesetzt werden. Vorzugsweise sind die eingesetzten Kreiden oberflächenbehandelt beziehungsweise beschichtet. Als Beschichtungsmittel hierfür werden bevorzugt Fettsäuren, Fettsäureseifen und Fettsäureester eingesetzt, beispielsweise Laurinsäure, Palmitinsäure oder Stearinsäure, Natrium oder Kaliumsalze solcher Säuren oder ihre Alkylester. Darüber hinaus kommen aber auch andere oberflächenaktive Substanzen wie Sulfatester langkettiger Alkohole oder Alkylbenzolsulfonsäuren beziehungsweise deren Natrium- oder Kaliumsalze oder auch Kopplungsreagenzien auf der Basis von Silanen oder Titanaten in Frage. Mit der Oberflächenbehandlung der Kreiden ist häufig eine Verbesserung der Verarbeitbarkeit sowie der Klebkraft und auch der Wetterresistenz der Zusammen setzungen verbunden. Das Beschichtungsmittel hierfür wird üblicherweise in einem Anteil von 0,1 bis 20 Gew.-%, bevorzugt 1 bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Rohkreide, eingesetzt.
Je nach angestrebtem Eigenschaftsprofil können gefällte oder gemahlene Kreiden oder Gemische davon verwendet werden. Gemahlene Kreiden können zum Beispiel aus natürlichem Kalk, Kalkstein oder Marmor durch mechanisches Zermahlen hergestellt werden, wobei trockene oder feuchte Methoden zur Anwendung gelangen können. Je nach Mahlverfahren werden Fraktionen mit unter schiedlicher durchschnittlicher Teilchengröße erhalten. Vorteilhafte spezifische Oberflächenwerte (BET) liegen zwischen 1,5 m2/g und 50 m2/g.
Die zur Fierstellung der Zusammensetzung eingesetzten Füllstoffe weisen üblicherweise einen gewissen Anteil an Wasser auf, welches gegebenenfalls zu einer ungewünschten Flarnstoffbildung und Abspaltung von Kohlendioxid führen kann. Vorzugsweise umfasst der Füllstoff Wasser in einer Menge von bis zu 1 Gew.-%, bevorzugt 0,005 bis 0,5 Gew.-%, besonders bevorzugt 0,01 bis 0,3 Gew.- %, bezogen auf die Masse des Füllstoffes, gemessen nach der Vorschrift in/der DIN EN ISO 15512:2017-03, Verfahren B2.
Additive E
Die Beschichtungszusammensetzung kann neben den Komponenten A, B, sowie optional C und D optional zusätzliche Komponenten (Zusatzmittel) enthalten.
Als Zusatzmittel können beispielsweise Verbindungen eingesetzt werden, die die Flaftung der erfindungsgemäßen Beschichtungszusammensetzung auf speziellen Substraten erhöhen. Das können Beispielsweise rein physikalisch wirkende Verbindungen sein (beispielsweise sogenannte Tackifier), oder Verbindungen, die fähig sind, mit reaktiven Gruppen auf der Substratoberfläche zu reagieren.
Als Zusatzmittel können beispielsweise Verbindungen eingesetzt werden, die eine gleichmäßige Fugendicke bewirken, beispielsweise Drähte, Kugeln, etc. aus Metall oder Glas oder Keramik.
Als Zusatzmittel können beispielsweise eingesetzt werden: nicht-reaktive thermoplastische Polymere, wie beispielsweise Flomo- oder Copolymere von ungesättigten Monomeren, insbesondere aus der Gruppe umfassend Ethylen, Propylen, Butylen, Isobutylen, Isopren, Vinylacetat und Alkyl- (meth)acrylate, insbesondere Polyethylene (PE), Polypropylene (PP), Polyisobutylene, Ethylenvinyl- acetat-Copolymere (EVA) und ataktische Poly- a-Olefine (APAO).
Als Zusatzmittel können beispielsweise eingesetzt werden: Weichmacher, insbesondere Phthalate, Trimellitate, Adipate, Sebacate, Azelate, Citrate, Benzoate, Diester von ortho-Cyclohexandi- carbonsäure, acetyliertes Glycerin oder Monoglyceride, oder Kohlenwasserstoffharze;
Als Zusatzmittel können beispielsweise eingesetzt werden: Rheologie-Modifizierer, insbesondere Verdickungsmittel oder Thixotropiermittel, zum Beispiel Schichtsilikate wie Bentonite, Derivate von Rizinusöl, hydriertes Rizinusöl, Polyamide, Polyamidwachse, Polyurethane, Harnstoffverbindungen, pyrogene Kieselsäuren, Celluloseether und hydrophob modifizierte Polyoxyethylene.
Als Zusatzmittel können beispielsweise eingesetzt werden: Trocknungsmittel, wie beispielsweise Molekularsiebe, Calciumoxid, hochreaktive Isocyanate wie p-Tosylisocyanat, monomere Diiso- cyanate, Monooxazolidine wie Incozol® 2 (von Incorez), Orthoameisensäureester, Alkoxy- silane wie Tetraethoxysilan, Organoalkoxysilane wie Vinyltrimethoxysilan; - Haftvermittler, beispielsweise Organoalkoxysilane wie Aminosilane, Mer- captosilane, Epoxysilane, Vinylsilane, (Meth)acrylsilane, Isocyanatosilane, Carbamatosilane, Alkylsilane, S-(Alkylcarbonyl)mercaptosilane und Aldiminosilane, sowie oligomere Formen dieser Silane.
Als Zusatzmittel können beispielsweise eingesetzt werden: Stabilisatoren gegen Oxidation, Wärme, Licht- und UV-Strahlung.
Als Zusatzmittel können beispielsweise eingesetzt werden: flammhemmende Substanzen, insbesondere die bereits genannten Füllstoffe Aluminiumhydroxid und Magnesiumhydroxid, sowie insbesondere organische Phosphorsäureester wie insbesondere Triethylphosphat, Trikresyl- phosphat, Triphenylphosphat, Diphenylkresylphosphat, Isodecyldiphenyl- phosphat, Tris(l ,3-dichlor- 2-propyl (phosphat, Tris(2-chlorethyl (phosphat, Tris(2-ethylhexyl (phosphat, Tris(chlorisopropyl)- phosphat, Tris(chlorpropyl)-phosphat, isopropyliertes Triphenylphosphat, Mono-, Bis- und Tris(iso- propyl-phenyl)phosphate unterschiedlichen Isopropylierungsgrades, Resorcinol- bis(diphenyl- phosphat), Bisphenol-A-bis(diphenylphosphat) oder Ammoniumpolyphosphate, Melamin und Melaminderivate wie Phosphate oder Isocyanurate, expandierende Graphite, Zinkborate oder Antimontrioxid.
Als Zusatzmittel können beispielsweise eingesetzt werden: oberflächenaktive Substanzen, ins besondere Netzmittel, Verlaufsmittel, Entlüftungsmittel oder Entschäumer. Als Zusatzmittel können beispielsweise eingesetzt werden: Biozide wie beispielsweise Algizide, Fungizide oder das Pilzwachstum hemmende Substanzen.
Bevorzugte Zusatzmittel sind Rheologie-Modifizierer, Haftvermittler, Trocknungsmittel oder Stabilisatoren gegen UV-Licht und/oder Oxidation.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung enthält die erfindungsgemäße Beschichtungszusammensetzung auch wenigstens einen
Urethanisierungskatalysator. Dies ist insbesondere dann bevorzugt, wenn die Zusammensetzung Verbindungen C enthält.
Vorteile
Für die erfindungsgemäße Beschichtungszusammensetzung steht eine Vielzahl von Katalysatoren bereit, die keine Übergangsmetalle enthalten. Dies ist aus Gründen des Umwelt- und Arbeitsschutzes vorteilhaft.
Anders als Klebstoffe, die durch Bildung von Harnstoffgruppen aushärten, erfordert die erfindungs gemäße Beschichtungszusammensetzung keine Feuchtigkeit zur Aushärtung. Dies bedeutet insbesondere, dass Klebefugen unter Luftabschluss aushärten können, da kein Zutritt von Luftfeuchtigkeit erforderlich ist. Auch entsteht durch Reaktion von Wasser mit Isocyanatgruppen Kohlendioxid. Dies kann zur Bildung von Luftblasen in der Klebefuge führen und ist für die mechanischen Eigenschaften ungünstig, da die Luftblasen Schwachstellen sind. Dies kann bei dünnen Klebstoffschichten, die zu dünnen Klebefugen führen, akzeptabel sein, da hier wenig Kohlendioxid gebildet wird. Bei dickeren Klebefugen entsteht aber entsprechend mehr Kohlendioxid, das zu größeren Blasen und damit zu stärker ausgeprägten Schwachstellen führt.
Anders als die bekannten zweikomponentigen Polyurethansysteme sind die erfindungsgemäßen Beschichtungszusammensetzungen vergleichsweise unempfindlich gegenüber Mischfehlern. Ein leicht abweichendes Mischungsverhältnis von Katalysator und Polyisocyanatzusammensetzung führt möglicherweise zu geringfügig schnellerer oder langsamerer Aushärtung. Es hat aber nur geringen Einfluss auf die finale Festigkeit der Klebefuge.
Auch sind die erfindungsgemäßen Beschichtungszusammensetzungen besonders gut für die Verbindung von Bauteilen geeignet, die mit Kathodentauchlacken beschichtet sind. Bisher erforderte die Verklebung solcher Bauteile eine Abwägung zwischen zwei Nachteilen: Zweikomponentige Poly urethanklebstoffe haften sehr gut auf den Bauteilen. Allerdings haben sie intrinsisch eine vergleichs weise geringe Zugscherfestigkeit und/oder haben im Allgemeinen nur eine geringe Topfzeit. Das Klebstoffversagen ist ursächlich an die intrinsische Festigkeit des Klebstoffes (Kohäsion) und an die Haftfestigkeit gekoppelt (Adhäsion). Sind Kohäsion und Adhäsion größer als die Substratfestigkeit, dann wird das Substrat bei der Klebstoffprüfung zerstört. Dies ist im Allgemeinen die bevorzugte Versagensart eines Klebstoffes.
Die dieser Erfindung zugrundeliegende Studie hat gezeigt, dass die erfindungsgemäßen Beschichtungszusammensetzungen eine sehr gute Haftung auf der Kathodentauchlackbeschichtung aufweisen und gleichzeitig eine hohe intrinsische Festigkeit aufweisen. Vielfach versagen die ent sprechenden Klebefugen dadurch, dass die Kathodentauchlackbeschichtung vom Substrat abreißt, d.h. Haftung und intrinsische Zugscherfestigkeit der erfindungsgemäßen Beschichtungszusammensetzung sind gar nicht mehr die Eigenschaften, welche die Belastbarkeit der Klebefuge begrenzen.
Verwendung
In der der vorliegenden Patentanmeldung zugrundeliegenden Studie wurde überraschend heraus gefunden, dass die oben beschriebenen Beschichtungszusammensetzungen ohne Einwirkung von Luftfeuchtigkeit und bei Raumtemperatur aushärten und sogar bei Temperaturen deutlich oberhalb der Raumtemperatur noch sehr gute Festigkeiten zeigen. Deswegen betrifft die vorliegende Erfindung in einer weiteren Ausführungsform die Verwendung der weiter oben in dieser Patentanmeldung definierten erfindungsgemäßen Klebstoffzusammensetzung zum Herstellen einer Klebefuge.
Die Klebefuge kann auf jede dem Fachmann bekannte Weise hergestellt werden. Bevorzugt wird die Beschichtungszusammensetzung auf wenigstens eines der beiden zu verbindenden Substrate aufgetragen, bevor die beiden Substrate mit den zu verbindenden Flächen miteinander kontaktiert werden. Dies kann, falls erforderlich, unter Druck geschehen. Anschließend werden die Substrate bis zur Aushärtung der Beschichtungszusammensetzung bei wenigstens 10 °C, bevorzugt wenigstens 15 °C, stärker bevorzugt wenigstens 20 °C und am stärksten bevorzugt wenigstens 23 °C inkubiert, ohne sie gegeneinander zu bewegen. Die Obergrenze der Temperatur während des Aushärtens ist durch die Zersetzungstemperatur der Beschichtungszusammensetzung bzw. der zu verklebenden Werkstücke gegeben. Sie liegt vorzugsweise bei 250 °C.
Da die erfindungsgemäß einsetzbaren Katalysatoren bevorzugt bereits eine Härtung bei 23 °C ermöglichen, erfolgt das Aushärten im Rahmen der erfindungsgemäßen Verwendung vorzugsweise bei Temperaturen zwischen 10 °C und 60 °C, stärker bevorzugt zwischen 15 °C und 50 °C, besonders bevorzugt zwischen 15 °C und 40 °C. In einer ausgehärteten Beschichtungszusammensetzung liegen höchstens 20 %, bevorzugt höchstens 10 % der in der Polyisocyanatzusammensetzung A ursprünglich enthaltenen freien Isocyanatgruppen vor. Dieser Zustand wird vorzugsweise nach einer Härtung bei Temperaturen zwischen 10 °C und 60 °C für 24 Stunden erreicht. Besonders bevorzugt wird nach einer Härtung bei Temperaturen zwischen 10 °C und 40 °C für 24 Stunden ein Zustand erreicht, bei dem höchstens 20 % der in der Polyisocyanatzusammensetzung A ursprünglich enthaltenen freien Isocyanatgruppen verbleiben. Der Gehalt an Isocyanatgruppen kann durch IR-Spektroskopie bestimmt werden wie an anderer Stelle in dieser Anmeldung beschrieben.
Da die Aushärtung der erfindungsgemäßen Beschichtungszusammensetzung nicht von der Bildung von Harnstoffgruppen abhängt, ist keine Feuchtigkeit erforderlich. Deswegen wird vorzugsweise eine Beschichtungszusammensetzung mit einem Wassergehalt von höchstens 1,5 Gew.-% verwendet. Die Härtung kann auch unter Luftabschluss erfolgen, da weder ein Eintrag von Luftfeuchtigkeit, noch der Austritt von Kohlendioxid erforderlich ist. Der Wassergehalt errechnet sich durch Addition des in freier Form in der Beschichtungszusammensetzung enthaltenen Wassers und des an das Substrat gebundenen Wassers. Auch letzteres ist für die Reaktion zu Harnstoffgruppen im Prinzip, wenn auch verzögert, zugänglich, da die Bindung an das Substrat reversibel ist.
Besonders bevorzugt werden Substrate verklebt, die für Luft und Feuchtigkeit undurchlässig oder teilweise undurchlässig sind. Dies sind bevorzugt Metall, Kunststoff und trockenes Holz, stärker bevorzugt Metall und Kunststoff.„Trockenes Holz" ist Holz mit einer Restfeuchte bestimmt nach EN 13183-1 (Darrverfahren) von höchstens 10 Gew.-%, stärker bevorzugt höchstens 5 Gew.-%. Die Substrate können vorbeschichtet sein, z.B. mit Lacken. Es ist bevorzugt, dass die Beschichtungszusammensetzung auf eine Fläche aufgetragen wird, die in beiden Dimensionen eine Ausdehnung von wenigstens 5 mm hat.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung hat die Klebefuge eine durch schnittliche Dicke von wenigstens 0,001 mm, bevorzugt 0,05 mm, besonders bevorzugt 0,1 mm und ganz besonders bevorzugt wenigstens 1 mm.
Grundsätzlich ist das erfindungsgemäße Verfahren zur Verklebung aller Oberflächen geeignet. Bevorzugt sind Oberflächen aus Glas, Keramik, Glaskeramik, Beton, Mörtel, Backstein, Ziegel, Gips, Naturstein, Metall, Kunststoff, Leder, Papier, Holz, mit Harzen gebundene Holzwerkstoffe, Textilien, Harz-Textil-Verbundwerkstoffe und Polymer-Verbundwerkstoffe.
Metalle sind bevorzugt Kupfer, Eisen, Stahl, Buntmetalle und Legierungen, welche die vorgenannten Metalle enthalten. Das Metall kann oberflächenveredelt sein, insbesondere durch Verchromung oder Verzinkung. Bevorzugte Kunststoffe sind Polyvinylchlorid, Polycarbonat, Acrylnitril-Butadien-Styrol-Copolymer, Polymethylmethacrylat, Polyethylen, Polypropylen, Ethylen-Propylen-Copolymere, Polyamid, Poly ester, Epoxidharze, Polyoxmethylen, Ethylen-Propylen-Dien-Kautschuk und Styrol-Acrylnitril-Copoly- merisat.
Da die erfindungsgemäße Beschichtungszusammensetzung auch in Abwesenheit von Feuchtigkeit aushärtet, ist sie aber besonders gut zur Verklebung von Oberflächen, welche aus Metall, Kunststoff oder trockenem Holz bestehen, besonders bevorzugt aus Kunststoff oder Metall, geeignet. Weiterhin bevorzugt ist die Verwendung zur Verklebung von Metalloberflächen, die mit Kathodentauchlack vorbeschichtet sind, geeignet. Hierbei ist es ganz besonders bevorzugt, dass beide Oberflächen aus Metall, insbesondere mit Kathodentauchlack beschichtetem Metall, oder Kunststoff bestehen.
Die der vorliegenden Studie zugrundeliegende Studie hat gezeigt, dass die erfindungsgemäßen Beschichtungszusammensetzungen besonders gut zum Verkleben von Metallteilen geeignet sind, die mit einem Kathodentauchlack vorbeschichtet wurden. Deswegen besteht in einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wenigstens eines der durch die Klebefuge zu verbindenden Substrate aus Metall, das an der Stelle, wo die Beschichtungszusammensetzung aufgetragen wird, mit einem Kathodentauchlack beschichtet ist.
Bei einem Kathodentauchlack handelt es sich um eine elektrophoretisch aus wässriger Phase abgeschiedene Tauchgrundierung. Dazu eingesetzte Bindemittel umfassen Verbindungen enthaltend blockierte Isocyanatgruppen, welche unter den Bedingungen im Einbrennofen bei der Automobil serienlackierung unter Abspaltung eines Blockierungsmittel Vernetzungsreaktionen eingehen, be schrieben in Meier-Westhues, Polyurethane Lacke, Kleb- und Dichtstoffe, Vincenz Network, 2007, Hannover, Seite 144-145.
Verfahren
In noch einer weiteren Ausführungsform betrifft die vorliegende Erfindung ein Verfahren zur Herstellung einer Klebefuge enthaltend die Schritte a) Aufträgen der erfindungsgemäßen Beschichtungszusammensetzung auf eine Oberfläche;
b) Kontaktieren der beschichteten Oberfläche mit einer weiteren Oberfläche; und c) Aushärten der Beschichtungszusammensetzung bei einer Temperatur von wenigstens 10 °C und höchstens 60 °C.
Alle weiter oben zur Beschichtungszusammensetzung und ihrer Verwendung gegebenen Definitionen gelten auch für diese Ausführungsform. Das Aufträgen der Beschichtungszusammensetzung kann nach allen dem Fachmann bekannten und für Zusammensetzungen der betreffenden Viskosität geeigneten Verfahren erfolgen.
Der Begriff „Kontaktieren" bezeichnet einen Vorgang, bei dem die mit der Beschichtungszusammensetzung beschichtete Oberfläche mit der weiteren Oberfläche physisch zusammengeführt wird, so dass kein Luftspalt zwischen beiden Oberflächen verbleibt.
Es ist erfindungsgemäß möglich, auch die weitere Oberfläche mit einer erfindungsgemäßen Beschichtungszusammensetzung zu beschichten, bevor beide Oberflächen kontaktiert werden.
In der ausgehärteten Beschichtungszusammensetzung sind wenigstens 5 %, bevorzugt wenigstens 20 %, stärker bevorzugt wenigstens 35 % und ganz besonders bevorzugt wenigstens 50 % der zu Beginn des Verfahrensschrittes b) in der Beschichtungszusammensetzung vorliegenden Isocyanatgruppen zu Isocyanuratgruppen umgesetzt. Gleichzeitig liegt der Anteil der zu Harnstoffgruppen umgesetzten Isocyanatgruppen bei höchstens 30 % bevorzugt höchstens 20% und ganz besonders bevorzugt höchstens 10% der zu Beginn des Verfahrensschrittes b) in der Beschichtungszusammensetzung vor liegenden Isocyanatgruppen.
In einer Ausführungsform der vorliegenden Erfindung ist es weiterhin möglich, dass der Aushärtungsschritt c) bei variabler, bevorzugt ansteigender, Temperatur durchgeführt wird. Hierbei wird der Verfahrensschritt c) bevorzugt bei einer Temperatur bei Temperatur von höchstens 40 °C durchgeführt, bis eine Zugscherfestigkeit von wenigstens 0,5 N/mm2, bevorzugt wenigstens 2 N/mm2 und ganz besonders bevorzugt wenigstens 4 N/mm2 erreicht ist. Anschließend wird der Verfahrensschritt bei einer Temperatur von wenigstens 40 °C fortgesetzt bis eine höhere Festigkeit von bevorzugt wenigstens 2 N/mm2, bevorzugt wenigstens 4 N/mm2, besonders bevorzugt wenigstens 6 N/mm2 und ganz besonders bevorzugt wenigstens 8 N/mm2 erreicht ist. Stärker bevorzugt erfolgt die Fortsetzung der Härtung bei wenigstens 50 °C. Um eine Zersetzung des Klebstoffs zu vermeiden, erfolgt die Härtung bei höchstens 300 °C. Die Zugscherfestigkeit wird vorzugsweise nach DIN EN 1465, Klebstoffe, Bestimmung der Zugscherfestigkeit von Überlappungsklebungen bestimmt.
Da die Polyisocyanatkomponente A in Gegenwart von Katalysatoren B bei erfindungsgemäßen Beschichtungszusammensetzungen innerhalb weniger Stunden aushärtet und dabei fest wird oder einen Viskositätsanstieg erfährt, der eine Kontaktierung der Substratoberflächen erschweren würde, sollte die Herstellung der erfindungsgemäßen Beschichtungszusammensetzungen hinreichend kurz vor Applikation erfolgen.
Der Zeitraum, in dem eine durch Vermischen ihrer Komponenten bereitgestellte Klebstoffzusam mensetzung noch verarbeitet werden kann, wird als„Topfzeit" bezeichnet. Das Ende der Verar- beitbarkeit wird vorzugsweise durch eine Verdoppelung der Viskosität der Beschichtungszusammensetzung oder stärker bevorzugt durch einen Fadenabriss beim Herausziehen eines Rührstabes aus der Beschichtungszusammensetzung definiert. Die Herstellung einer Klebefuge mit einer Beschichtungszusammensetzung, die ihre Topfzeit überschritten hat, kann zu Störungen wie beispielsweise einem verlangsamten oder unvollständigen Aufbau der Haftung zum Substrat führen.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält das erfindungsgemäße Verfahren einen weiteren Verfahrensschritt, in dessen Verlauf die Komponenten der erfindungs gemäßen Beschichtungszusammensetzung vermischt werden wie unten beschrieben. Dieser Verfahrensschritt erfolgt vor dem Verfahrensschritt a). Es ist bevorzugt, dass der Zeitraum zwischen der Bereitstellung der erfindungsgemäßen Beschichtungszusammensetzung durch Vermischung ihrer Komponenten und dem Ende des Verfahrensschrittes b) nicht größer ist als die Topfzeit der eingesetzten Beschichtungszusammensetzung. Es ist besonders bevorzugt, dass der Zeitraum zwischen der Bereitstellung der erfindungsgemäßen Beschichtungszusammensetzung und dem Ende des Verfahrensschrittes b) wenigstens 5 Minuten, bevorzugt wenigstens 10 Minuten und besonders bevorzugt wenigstens 30 Minuten beträgt.
Die Komponenten A, B, C und E der erfindungsgemäßen Beschichtungszusammensetzungen weisen geeigneter Weise eine solche Konsistenz auf, dass sie mit einfachen Verfahren gut miteinander und mit den Füllstoffen D vermischt werden können. Dazu sind besonders flüssige als auch pastöse Komponenten A, B, C und E geeignet, wobei die Viskosität der flüssigen oder pastösen Komponenten bei Raumtemperatur vergleichsweise niedrig ist. Somit kann die Dosierung und Vermischung von Hand oder mit handelsüblichen Dosiersystemen und dynamischen oder statischen Mischern auf einfache Weise erfolgen. Alternativ können Dispergiergeräte verwendet werde, wenn z.B. feste Füllstoffe eingearbeitet werden müssen.
In einem bevorzugten Verfahren werden alle verwendeten Komponenten A bis E der erfindungsgemäßen Beschichtungszusammensetzungen so vorgemischt, dass jeweils eine Komponente XI und X2 getrennt voneinander vorliegen, und diese unmittelbar vor Applikation gemischt werden können. XI enthält dabei die Polyisocyanatkomponente A und X2 den erfindungsgemäßen Katalysator. Zusatzmittel und Füllstoffe können in Komponente XI und/oder X2 vorliegen.
Mit Isocyanatgruppen reaktive Substanzen sind bevorzugt ein Bestandteil der Komponente X2. Es kann sinnvoll sein, gewisse Bestandteile vor dem Einmischen in die jeweilige Komponente chemisch oder physikalisch zu trocknen, bevorzugt auf einen geringen Wassergehalt von höchstens 1,5 Gewichtsprozent. XI und X2 werden also getrennt voneinander hergestellt. Dabei werden die Bestandteile der jeweiligen Komponente XI und/oder X2 bevorzugt unter Ausschluss von Feuchtigkeit miteinander vermischt, so dass eine makroskopisch homogene Masse entsteht. Jede Komponente wird bevorzugt in einem separaten feuchtigkeitsdichten Gebinde gelagert. Ein geeignetes Gebinde ist insbesondere ein Fass, ein Container, ein Flobbock, ein Eimer, ein Kanister, eine Büchse, ein Beutel, ein Schlauch beutel, eine Kartusche oder eine Tube. Die Komponenten XI und X2 sind bevorzugt lagerstabil, das heißt, dass sie vor ihrer Anwendung während mehreren Monaten bis zu einem Jahr und länger im jeweiligen Gebinde aufbewahrt werden können, ohne dass sich ihre Eigenschaften in einem für ihren Gebrauch relevanten Ausmaß verändern.
Zur Anwendung der Zusammensetzung werden die beiden Komponenten kurz vor oder während der Applikation miteinander vermischt. In Gewichtsteilen liegt das Mischungsverhältnis zwischen der XI und X2 beispielsweise im Bereich von etwa 1 : 5 bis 200 : 1 , insbesondere 1 : 1 bis 20 : 1.
Das Vermischen von XI und X2 erfolgt typischerweise über einen statischen Mischer oder mit hülfe von dynamischen Mischern. Das Vermischen kann kontinuierlich oder batchweise erfolgen. Beim Mischen ist darauf zu achten, dass die zwei Komponenten XI und X2 möglichst homogen vermischt werden. Bei einer unzureichenden Vermischung treten lokale Abweichungen vom vorteilhaften Mischungsverhältnis auf, was sich in einer Verschlechterung der mechanischen Eigenschaften auswirken kann.
In einer noch weiteren Ausführungsform wird zunächst X2 auf mindestens eine der zu verklebenden Substrate aufgetragen, während XI anschließend auf das so vorbehandelte Substrat oder zu einem beliebigen Zeitpunkt auf das andere, nicht vorbehandelte Substrat aufgetragen wird. Alternativ kann auch umgekehrt vorgegangen werden. Die Komponenten der erfindungsgemäßen Beschichtungszusammensetzung werden dann erst im Fügeprozess kontaktiert, bzw. vermischt. Dieses Verfahren hat den Vorteil, dass beispielsweise vorbeschichtete Substrate mit einem 1-kom- ponentigen Klebstoff verklebt werden können.
Das Ergebnis des erfindungsgemäßen Verfahrens ist eine Klebefuge, welche die beiden Oberflächen stoffschlüssig verbindet und aus der ausgehärteten Beschichtungszusammensetzung besteht.
In einer weiteren Ausführungsform betrifft die vorliegende Erfindung eine Klebefuge, die nach dem oben beschriebenen Verfahren erhältlich ist.
Die nachfolgenden Ausführungsbeispiele dienen nur dazu, die Erfindung zu Illustrieren. Sie sollen den Schutzbereich der Patentansprüche in keiner Weise beschränken. Beispiele
Alle Prozentangaben beziehen sich, soweit nichts Anderslautendes vermerkt, auf das Gewicht.
Die nachstehend aufgeführten Methoden zur Bestimmung der entsprechenden Parameter werden zur Durchführung bzw. Auswertung der Beispiele angewendet und sind auch die Methoden zur Bestimmung der erfindungsgemäß relevanten Parameter im Allgemeinen.
Die Bestimmung der NCO-Gehalte erfolgt titrimetrisch nach DIN EN ISO 11909.
Die Bestimmung des Wassergehaltes erfolgte, falls nicht anders angegeben gemäß DIN EN ISO 15512:2017-03, Verfahren B2.
Die Rest-Monomeren Gehalte von Isocyanaten werden nach DIN EN ISO 10283 gaschroma tographisch mit internem Standard gemessen.
Die Topfzeit der Systeme wurde wie folgt ermittelt: Auf einer Waage werden die benötigten Mengen der Einzelkomponenten in einem PE-Becher eingewogen. Dabei sollte die Gesamt-einwaage des Gemisches mindestens 50 g betragen. Direkt nach dem Einwiegen der letzten Komponente wird eine Stoppuhr gestartet und das Gemisch ca. 1 Minute intensiv mit einem Rührstab gerührt. Alle 30 Minuten wird der Rührstab aus dem Gemisch gezogen und das Fließverhalten des Gemisches beobachtet. Die Topfzeit ist erreicht und wird von der Stoppuhr abgelesen, wenn es zum Fadenabriss kommt und die Mischung nicht mehr vom Rührstab abfließt.
Sämtliche Viskositätsmessungen erfolgen mit einem Physica MCR 51 Rheometer der Fa. Anton Paar Germany GmbFI (DE) nach DIN EN ISO 3219/A3. Soweit nicht anders angegeben werden die gennannten Viskosität bei 23°C ermittelt.
Um das Flärtungsverhalten von katalysierten Kleb- und Dichtstoffen zeitlich beobachten zu können, wird die Entwicklung der Bruchkraft gegen die Zeit beobachtet. Dazu werden Probekörper hergestellt, die aus zwei überlappend geklebten Substratteilen bestehen. Diese werden nach festgelegten Zeiten anschließend in einer Zerreißmaschine bis zum Bruch ge-dehnt und die benötigten Kräfte gemessen (Prüfung der Zugscherfestigkeiten).
Die Substrate für die Fierstellung der Prüfkörper wurden von der Firma Rochholl bezogen und vor Verwendung mindestens 1 Woche bei Tage bei 23 °C/50 % rel. Luftfeuchte gelagert
Pro Messung werden fünf Prüfkörper bestehend aus 2 überlappend verklebten Substratteilen benötigt. Ein Substratteil wird in Längsrichtung auf 20 mm mit dem zu prüfenden Klebstoff bestrichen. Das zweite Substratteil wird so aufgelegt, dass sich in der Breite komplett überlappen. Die Überlappung in der Länge beträgt jeweils 10 mm. Nach dem Zusammen-pressen mit den Händen wird an den Seiten heraustretendes Material mit einem Spachtel entfernt. Jeweils 10 Prüfkörper werden in einer Presse so gestapelt, dass die überlappenden Flächen Übereinanderliegen. Die Prüfkörper werden mit einem Pressdruck von 0,7 N/mm2 für eine festgelegte Zeit bei 23 °C/50 % rel. Luftfeuchte gelagert und unmittelbar vor der Prüfung entnommen. Die jeweils festgelegten Zeiten (Presszeiten) sind den folgenden Tabellen zu entnehmen (Angabe in h).
Die Messung der Zugscherfestigkeit erfolgte jeweils an eine Zugprüfmaschine Universal- prüfmaschine Zwick 1475 analog DIN EN 1465 bei einer Vorschubgeschwindigkeit von 50 mm/min. Dabei wurden die Prüfkörper bis zum Bruch gedehnt und der maximale Kraftwert ermittelt. Die angegebenen Ergebnisse entsprechen dem arithmetischen Mittelwert aus 5 Versuchen.
Erfindungsgemäßes Verfahren zur Herstellung der Klebstoffzusammensetzungen
Die in den folgenden Tabellen angegebenen Mengen der Ausgangspolyisocyanate wurden gemeinsam mit den in den folgenden Tabellen angegebenen Mengen der Katalysatorkomponente und ggf. den in den folgenden Tabellen angegebenen Mengen der weiteren Zusätze (Weichmacher, Füllstoffe,„Verbindungen C" in einen Polypropylenbecher eingewogen und mit Hilfe eines Speed- Mixers DAC 150 FVZ (Firma Hauschild, DE) 1 min bei 2750 U/min homogenisiert.
Das erfindungsgemäße Verfahren wird sowohl zur Herstellung von erfindungsgemäßen als auch nicht erfindungsgemäßen Klebstoffzusammensetzungen angewendet.
Der in den folgenden Tabellen angegebenen berechnete NCO-Gehalt der Mischung wird errechnet aus dem Massenanteil der verschiedenen Ausgangspolyisocyanate und deren NCO-Gehalten, sowie den Massenanteilen der weiteren Komponenten
Erfindungsgemäßes Verfahren zur Auswahl des Katalysators Zur Auswahl der erfindungsgemäßen Katalysatoren werden ca. 20 g der Modellsubstanz für das Ausgangspolyisocyanat A gemeinsam mit 0,6 g (bezogen auf die aktive Komponente) der Katalysatorkomponente in einen Becher aus Polypropylen eingewogen und mit Hilfe eines Speed- Mixers DAC 150 FVZ (Firma Hauschild, DE) für 1 min bei 2750 U/min homogenisiert. 20 g der Mischung werden unter trockenem Stickstoff in eine Glasflasche (Volumen 25 ml, Öffnungsdurchmesser 1,7 cm) abgefüllt und diese dicht verschlossen bei 23°C für 168 Stunden gelagert. Anschließend wird der Zustand der Mischung beurteilt. Dazu wird die Flasche geöffnet und mit der Öffnung nach unten für 10 min über einem Becherglas mit bekanntem Gewicht gehalten, sodass alles Material welches durch die Öffnung geflossen ist aufgefangen wird. Ggf. wird ausgeflossenes Material mit einem Kartenblatt in das Becherglas überführt. Es wird ermittelt ob mehr oder weniger als 10% der Menge an Material aus der Flasche ausgeflossen ist.
Bei offensichtlich flüssigem Material (Viskosität bei 23°C höchstens 5 Pas) kann auf den Ausgießtest verzichtet werden, da davon ausgegangen wird, dass mehr als 10% des Materials ausfließen.
Hierbei werden Polyisocyanate mit aromatisch gebundenen Isocyanatgruppen durch Desmodur® E 23, (Isocyanat-Polyether-Präpolymer, Aufbaukomponente MDI, NCO-Gehalt ca. 15,4 Gewichtsprozent, NCO-Funktionalität ca. 2.1, Viskosität ca. 1.800 mPas) erhältlich von Covestro Deutschland AG als Modellverbindung repräsentiert. Polyisocyanate mit aliphatisch gebundenen Isocyanatgruppen werden durch Desmodur N® 3300 (Polyisocyanurat, Aufbaukomponente HDI, NCO- Gehalt ca. 21,8 Gewichtsprozent, NCO-Funktionalität ca. 3,4, Viskosität ca. 3.000) erhältlich von Covestro Deutschland AG als Modellverbindung repräsentiert. Sollten diese Produkte nicht zugänglich sein, kann der Fachmann analoge Ersatz-produkte mit vergleichbarer Zusammensetzung verwenden. Hierbei ist bei jeweils gleichem Diisocyanat als Aufbaukomponente auf möglichst ähnliche NCO-Funktionalität und NCO-Gehalt zu achten. Die Herstellmethoden sind dem Fachmann bekannt oder in der Literatur beschrieben.
Als Modellverbindung für Verbindungen mit cycloaliphatisch gebundenen Isocyanatgruppen Verbindungen eignet sich ein Isocyanatprepolymer mit einem NCO-Gehalt von 27% basierend auf einem Polypropylenpolyether der nominalen OH-Funktionalität 2, Hydroxylzahl 112 mg KOH/g und Isophorondiisocyanat. Herstellbar ist diese Modellsubstanz durch Umsetzung von 226 g Desmophen 1110 BD (Covestro, linearer Polypropylenpolyetherpolyol, Hydroxylzahl 112 mg KOH/g, Acidität höchstens 0.1 mg KOH/g, Viskosität bei 25 QC ca. 140 mPas, Wassergehalt 0,05%) und 744 g Desmodur I (Covestro, Isophorondiisocyanat (IPDI), Reinheit (GC) wenigstens >95%, Hydrolysierbares Chlor höchstens 160 mg/kg, NCO_Gehalt ca. 37,5%) bei 100 QC.
Der restliche Teil der Mischung wird auf eine Polyethylenfolie ausgegossen und diese mit einer weiteren Polyethylenfolie abgedeckt. Nach 168h wird die obere Polyethylenfolie abgenommen und der Zustand der Mischung visuell begutachtet. Im Falle von ganz bzw. teil-weise ausgehärteten Proben (d.h. wenn sich ein mechanisch belastbarer Film gebildet hat) wird dieser IR-spektrometrisch analysiert. Dazu wird ein IR-Spektrometer der Firma Perkin-Elmer (Perkin Eimer Spectrum Two) mit ATR-Einheit verwendet (UATR two). Ausgehärtete Proben wurden mit optimalem Anpressdruck (über das Gerät einstellbar) gemessen. Messungen von Flüssigkeiten erfolgen direkt auf der ATR-Einheit.
Anhand von Vergleichsmessungen der flüssigen Mischungen vor der Lagerung wird unter-sucht, ob sich die NCO Gruppen reduziert haben und ob sich zusätzliche Uretdion-, Isocyanurat-, Iminooxadiazindion Gruppen gebildet haben. Die Lage charakteristischer Banden kann der Fachmann der Literatur entnehmen oder falls dies nicht möglich ist durch Messung von Vergleichsspektren von Modellsubstanzen, welche durch in der Literatur bekannten Methoden zugänglich sind, ermitteln.
Ausgangsverbindungen
Füllstoff Omyacarb 5 GU, Calciumcarbonat, Omya, Deutschland Weichmacher Jayflex DINP, Diisononylphtalat, Exxon Mobile 1,2-Ethandiol, Aldrich
Alle eingesetzten Polyisocyanate sind entweder kommerziell von der Firma Covestro Deutschland AG verfügbar oder können nach in der Patentliteratur beschriebenen Verfahren auf Basis gut verfügbarer Monomere und Katalysatoren hergestellt werden.
Erfindungsgemäßer Polyether A, eingesetzt als Aufbaukomponente zur Herstellung erfindungsgemäßer Isocyanatpräpolymere
Zum Einsatz kam der Polyether PI, ein auf Propylenglykol gestarteter, difunktioneller Polyp- ropylenglykol-Polyether der Hydroxylzahl 500 mg KOH/g, Viskosität 55 mPas, Wassergehalt 0,01%, hergestellt mit Kaliumhydroxid als Katalysator, anschließend aufgearbeitet mit Schwefelsäure, destilliert und filtriert.
Erfindungsgemäßer Polyether B, eingesetzt als Komponente C
Desmophen® 2061 BD, lineares Polypropylenetherpolyol mit der Hydroxylzahl 56 mg KOH/g erhältlich von Covestro Deutschland AG.
Ausgangsisocyanat A, Desmodur ® N3300
Isocyanuratgruppen enthaltendes HDI-Polyisocyanat erhältlich von Covestro Deutschland AG. NCO-Gehalt: 21,8 %
NCO-Funktionalität: 3,4
Monomeres HDI: 0,1 %
Viskosität (23°C): 3.000 mPas
Ausgangsisocyanat B
Desmodur® E XP 2599, erhältlich von Covestro Deutschland AG, Polyether-Allophanat auf Basis 1,6- Hexamethylendiisocyanat
NCO-Gehalt: 6,0 %
NCO-Funktionalität: 4
Monomeres HDI: 0,1 %
Viskosität (23°C): 2.500 mPas
Ausgangsisocyanat C
Polyether-Allophanat-Präpolymer auf Basis 1,6-Hexamethylendiisocyanat
Wurde analog Beispiel la aus EP 1775313 hergestellt, nur dass in diesem Fall 221,2 g Po-lyether PI eingesetzt wurden. Vor Zugabe des Zink(ll)bis(2-ethyhhexanoates) wurde ein NCO-Gehalt von 42,9 Gew.-% und vor Entfernen des überschüssige 1,6-Hexandiisocyanates ein NCO-Gehalt von 39,9% erreicht.
NCO-Gehalt: 17,0 %
NCO-Funktionalität: 4
Monomeres HDI: 0,1 %
Viskosität (23°C): 2.550 mPas
Ausgangsisocyanat D
Polyetherurethanpräpolymer auf Basis 1,6-Hexamethylendiisocyanat
Wurde analog Beispiel la aus EP 1775313 hergestellt, nur dass in diesem Fall 221,2 g Polyether PI und 900g 1,6-Hexandiisocyanat eingesetzt wurden und weder Isophtalsäuredichlorid noch Zink(ll)bis(2-ethylhexanoat) zugesetzt wurden. Die Entfernung des überschüssigen 1,6- Hexamethylendiisocyanates erfolgte unmittelbar nach Erreichen eines NCO-Gehaltes von 31,4%. NCO-Gehalt: 12,5 %
NCO-Funktionalität: 2 Monomeres HDI: 0,1 %
Viskosität (23°C): 4.200 mPas
Ausgangsisocyanat E
Desmodur® E23
Aromatisches Polyisocyanat-Prepolymer auf Basis Diphenylmethandiisocyanat (MDI) enthaltend Polyethergruppen, erhältlich von Covestro Deutschland AG
NCO-Gehalt: 15.4 %
NCO-Funktionalität: 2.1
Viskosität (23°C): 1.800 mPas
Ausgangsisocyanat F
Desmodur® E 15
Aromatisches Polyisocyanat-Prepolymer auf Basis Toluylendiisocyanat enthaltend Polyethergruppen erhältlich von Covestro Deutschland AG
NCO-Gehalt: 4,4 %
NCO-Funktionalität: 2
Monomeres TDI: 0,2 %
Viskosität (23°C): 7.000 mPas
Ausgangsisocyanat G
Desmodur® L75 (75% in Ethylacetat), 13,3% NCO
Aromatisches Polyisocyanat auf Basis Toluylendiisocyanat, .ca. 75 Gew.-% in Ethylacetat erhältlich von Covestro Deutschland AG
NCO-Gehalt: 13.3 %
NCO-Funktionalität: 2.7
Monomeres TDI: 0,2 %
Viskosität (23°C): 1.600 mPas Ausgangsisocyanat H
Zu 922 g Ausgangsisocyanat A wurden in einem Planschliffgefäß unter trockenem Stickstoff vorgelegt und auf 60°C erwärmt. Nun wurden über eine Stunde 78 g Polyether 1 unter Rühren zugegeben. Die Reaktionsmischung wurde danach solange auf 60°C erwärmt und gerührt, bis ein NCO-Gehalt von 17,0 % erreicht war.
NCO-Gehalt: 17,0 %
Viskosität (23°C): 1.600 mPas
Katalysator Kl - Tetrabutylphosphoniumfluorid*nHF,
(70 Gew.-% gelöst in Isopropanol, hergestellt gemäß Beispiel la aus EP 0 962 454 Bl, Fluoridgehalt (ionenselektive Elektrode) 2,5%)
Aktive Komponente 70 Gewichts-%
Katalysator K2 - Kaliumacetat (60 Gew.-% in Diethylenglykol)
Kaliumacetat und Diethylenglycol sind erhältlich von Aldrich.
Aktive Komponente 60 Gewichts-%
Katalysator K3 -Kaliumneodecanoat, 60 Gew.-%
31,7 g Kaliumneodecanoat, 60 Gew.-% in di-Propylenglycol-Methylether (unter dem Namen Baerostab K 10 erhältlich von Baerlocher Italia) werden mit 44,4 g Methoxypropylacetat, 23,9 g Kronenether 18-Crown-6 vermischt.
Aktive Komponente 19,0 Gewichts-%
Katalysator K4 - Dibutylzinndilaurat, 95%, erhältlich von Aldrich
Aktive Komponente 95%
Katalysator K5 - 2,2' -Dimorpholinodieethylether (DMDEE), 97%, erhältlich von Aldrich
Aktive Komponente 97%
Vergleichsversuche sind im Folgenden mit einem * gekennzeichnet. Beispiele zur Auswahl geeigneter Katalysatoren
Katalysatorauswahl für Systeme mit überwiegend aromatisch, araliphatisch gebundenen Isocyanatgruppen
Gemäß oben angegebener Anweisung wurden Tests zur Katalysatorauswahl mit Ausgangs- polyisocyanat E und verschiedenen Katalysatoren durchgeführt. Das erhaltene Material wurde infrarotspektroskopisch (ATR-IR-Spektroskopie) wie oben beschrieben untersucht. Die IR Spektren wurden wie gemessen auf DIN A4 Papier ausgedruckt. Es wird mit einem Bleistift eine waagerechte Linie (O-Linie) in Höhe der Transmission 100%, parallel zur x-Achse (Wellenzahlen) gezogen. Für charakteristische Banden wird bei der Wellenzahl, bei der die Transmission minimal ist, eine dazu senkrechte Linie (Signallinie) bis zur x-Achse (Wellenzahlen) gezogen. Nun wird der Abstand des Schnittpunktes dieser Linie mit der Kurve der Transmissionswerte und der 0-Linie durch Abmessen mit einem Lineal ermittelt und in mm angegeben.
Niedrige Transmissionswerte ergeben größere Abstandswerte in mm und höhere Abstandswerte in mm weisen auf einen höheren Anteil dieser Gruppen in der untersuchten Probe hin. Alternativ kann der Fachmann auch direkt über einen Vergleich der Transmissionswerte charakteristischer Banden eine analoge Auswertung durchführen.
Die Lage charakteristischer Banden kann der Fachmann der Literatur entnehmen oder - falls dies nicht möglich ist - durch Messung von Vergleichsspektren von Modellsubstanzen, welche durch in der Literatur bekannten Methoden zugänglich sind - ermitteln.
Die Katalysatoren Kl, K2 und K3 sind in dem Modellsystem für Systeme mit vorwiegend aromatisch gebundenen Isocyanatgruppen ausreichend aktiv, da eine Aushärtung zu beobachten ist (nach 168 Stunden fest, es läuft keine Flüssigkeit aus). Es zeigt sich weiterhin, dass im Vergleich zum Produkt ohne Katalysatorzugabe der Gehalt an NCO-Gruppen abnimmt und der Gehalt an Dimeren (Uretdiongruppen) und Trimeren (Isocyanuratgruppen) zunimmt, was an dem gesunkenen Verhältnis der Signalintensität zwischen NCO und Trimer abzulesen ist. Offensichtlich haben Kl, K2 und K3 als Trimerisierungskatalysatoren gewirkt.
Katalysatorauswahl für Systeme mit aliphatisch gebundenen Isocyanatgruppen
Gemäß oben angegebener Anweisung wurden Tests zur Katalysatorauswahl mit Ausgangspoly- isocyanat A und verschiedenen Katalysatoren durchgeführt. Das erhaltene Material wurde infrarotspektroskopisch (ATR-IR-Spektroskopie) untersucht.
Prozentwerte oben beziehen sich auf den Gewichtsanteil von ausgelaufenem Material.
Die Modellverbindung ohne Katalysator lässt sich über Wochen ohne messbare Veränderung des NCO-Gehaltes und der Viskosität lagern, daher wurde nur der Startwert angegeben. Der Katalysator Kl ist in dem Modellsystem für Systeme mit vorwiegend aliphatisch gebundenen Isocyanatgruppen besonders aktiv, da eine Aushärtung zu beobachten ist (nach 168 fest, es läuft keine Flüssigkeit aus). Der Katalysator K2 ist ebenfalls ausreichend aktiv und führt zur Aushärtung. Es zeigt sich weiterhin, dass im Vergleich zur lagerstabilen lagerstabilen Modellverbindung ohne Katalysatorzugabe der Gehalt an NCO-Gruppen abnimmt und der Gehalt an Trimeren (Isocyanuratgruppen) zunimmt, was an dem gesunkenen Verhältnis der Signalintensität zwischen NCO und Trimer abzulesen ist. Offensichtlich haben Kl und K2 als Trimerisierungskatalysatoren gewirkt, wobei die Abnahme der NCO-Gruppen bei Verwendung von Kl deutlich schneller verläuft als bei K2.
Beispiele 1-3
Es zeigt sich in Versuch 1*, dass eine Mischung von der Ausgangspolyisocyanate G und F mit hochreaktiven aromatisch angebundenen Isocyanatgruppen (NCO-Gehalt 11%) ohne Zugabe eines Katalysators und ohne Zutritt ausreichender Mengen an Feuchtigkeit auch nach 24h zu keiner Zugscherfestigkeit der verklebten Substrate führt, da offenbar keine ausreichende Aushärtung erfolgt. Im Gegensatz dazu führt in Versuchen 2 und 3 eine Zugabe von erfindungsgemäßen Katalysatoren K2 und Kl ohne Zutritt von Feuchtigkeit und in Abwesenheit weiterer Verbindungen mit isocyanatreaktiven Gruppen zu einer hohen Zugscherfestigkeit bei Substratversagen (Ablösung KTL-Lackierung vom Blech).
Beispiele 4-11
1) Substratversagen
n.b. = nicht bestimmt
Man sieht, dass das zweikomponentige Polyurethansystem mit DBTL als Urethanisierungskatalysator (Vergleichsversuch 5*) gegenüber den erfindungsgemäßen Systemen auf Basis aliphatischer und aromatischer Polyisocyanate ein ungünstigeres Verhältnis von erreichter Festigkeit und Topfzeit hat. Vergleichsversuch 5* hat bei geringerer Topfzeit eine geringere Festigkeit als erfindungsgemäßer Versuch 4. Auf vielen typischen Substraten werden hohe Zugfestigkeiten erzielt. Die Verklebungen auf KTL zeigen, dass bereits nach wenigen Stunden so hohe Festigkeiten erzielt werden, dass die Substrate sicher gehandhabt werden können. Flierdurch sind kurze Presszeiten realisierbar.
Beispiel 12-16
In Versuch 12* wird ein nichterfindungsgemäßes Ausgangspolyisocyanat mit einem NCO-Gehalt von ca. 4% in Kombination mit dem Katalysator K3 verwendet. Diese Klebstoffzusammensetzung führt nicht zu einer ausreichenden Zugscherfestigkeit, da nach 24 h offenbar keine ausreichende Aushärtung erfolgt. Die erfindungsgemäßen Beispiele 13 bis 16 zeigen, dass bei abnehmendem NCO- Gehalt geringere Zugscherfestigkeiten ermittelt werden.
Beispiele 17-22
Analog dazu zeigen weitere Beispiele 17-22 mit dem Katalysator Kl, dass auch bei Zugabe von Füllstoffen und/oder Weichmachern Klebstoffzusammensetzungen hohe Zugscherfestigkeiten erreicht werden und diese somit eingesetzt werden können. Allerdings werden mit abnehmendem NCO-Gehalt der Mischung auch hier geringere Zugscherfestigkeiten erhalten.

Claims

Patentansprüche
1. Verwendung einer Beschichtungszusammensetzung enthaltend a) Eine Polyisocyanatzusammensetzung A mit einer durchschnittlichen Isocyanat- funktionalität von wenigstens 1,5; und
b) Wenigstens einen Katalysator B, der bei 23 °C die Reaktion von NCO-Gruppen zu Iso- cyanuratgruppen und/oder Uretdiongruppen katalysiert; wobei der Isocyanatgehalt der Beschichtungszusammensetzung 5 Gew.-% bis 60 Gew.-% beträgt und das molare Verhältnis von Isocyanatgruppen zu gegebenenfalls vorhandenen mit Isocyanat reaktiven Gruppen in der Beschichtungszusammensetzung wenigstens 5 : 1 beträgt, zum Herstellen einer Klebefuge oder einer Beschichtung.
2. Die Verwendung nach Anspruch 1, wobei die Beschichtungszusammensetzung zusätzlich wenigstens eine Verbindung C enthält, die im Durchschnitt pro Molekül wenigstens 1,0 mit Isocyanatgruppen reaktive Gruppe enthält.
3. Die Verwendung nach Anspruch 2, wobei die wenigstens eine Verbindung C ausgewählt ist aus der Gruppe bestehend aus Ethanol, 1-Propanol, 1-Butanol, Ethandiol, Glykol, 1,2,10- Decantriol, 1,2,8-Octantriol, 1,2,3-Trihydroxybenzol, Glycerin, 1,1,1-Trimethylolpropan, 1,1,1- Trimethylolethan, Pentaerythrit, Zuckeralkoholen, Polyethylenglykol (PEG) 200, PEG 300, PEG 400, PEG 600, Diethanolamin und Triethanolamin
4. Die Verwendung nach Anspruch 1, wobei die Polyisocyanatzusammensetzung A isocyanatterminierte Präpolymere enthält.
5. Die Verwendung nach einem der Ansprüche 1 bis 4, wobei die
Beschichtungszusammensetzung wenigstens 5 Gew.-% Isocyanatgruppen bezogen auf die organische Phase der Beschichtungszusammensetzung enthält.
6. Die Verwendung nach einem der Ansprüche 1 bis 5, wobei die
Beschichtungszusammensetzung weniger als 0,1 Gew.-% Übergangsmetalle bezogen auf das Gesamtgewicht der Beschichtungszusammensetzung enthält.
7. Die Verwendung nach einem der Ansprüche 1 bis 6, wobei die
Beschichtungszusammensetzung zusätzlich wenigstens einen Füllstoff D enthält.
8. Die Verwendung nach einem der Ansprüche 1 bis 7, wobei die Polyisocyanatkomponente A zu wenigstens 80 Gew.-% aus Polyisocyanaten mit aliphatisch gebundenen Isocyanatgruppen besteht.
9. Die Verwendung nach einem der Ansprüche 1 bis 8, wobei Oberflächen ausgewählt aus der Gruppe bestehend aus Glas, Keramik, Glaskeramik, Beton, Mörtel, Backstein, Ziegel, Gips, Naturstein, Metall, mit Kathodentauchlack lackiertes Metall, Kunststoff, Leder, Papier, Holz, mit Harzen gebundene Holzwerkstoffe, Textilien, Harz-Textil-Verbundwerkstoffe und Polymer-Verbundwerkstoffen verklebt werden.
10. Die Verwendung nach einem der Ansprüche 1 bis 9, wobei die Klebefuge eine Dicke von wenigstens 1 mm aufweist.
11. Die Verwendung nach einem der Ansprüche 1 bis 10, wobei die Aushärtung bei einer Temperatur zwischen 10 °C und 60 °C stattfindet und nach höchstens 24 Stunden abgeschlossen ist.
12. Verfahren zur Herstellung einer Klebefuge enthaltend die Schritte a) Aufträgen der Beschichtungszusammensetzung wie in Anspruch 1 definiert auf eine Oberfläche;
b) Kontaktieren der beschichteten Oberfläche mit einer weiteren Oberfläche; und c) Aushärten der Beschichtungszusammensetzung bei einer Temperatur von wenigstens 10 °C und höchstens 60 °C.
13. Das Verfahren nach Anspruch 12, zusätzlich enthaltend einen dem Verfahrensschritt a) vorgeschalteten Verfahrensschritt der Bereitstellung der Beschichtungszusammensetzung durch Vermischen ihrer Komponenten, dadurch gekennzeichnet, dass zwischen der Bereitstellung der Beschichtungszusammensetzung und dem Ende des Verfahrensschrittes b) ein Zeitraum von wenigstens 30 Minuten vergeht.
14. Das Verfahren nach Anspruch 12 oder 13, wobei in Verfahrensschritt c) zunächst eine Temperatur zwischen 10 °C und 40°C gehalten wird, bis die Klebefuge eine Zugscherfestigkeit nach DIN EN 1465 für Klebstoffe von wenigstens 0,5 N/mm2 erreicht und anschließend eine Temperatur von wenigstens 50 °C gehalten wird, bis die Klebefuge eine Festigkeit von wenigstens 2 N/mm2 erreicht.
15. Das Verfahren nach einem der Ansprüche 1 bis 14, wobei in Verfahrensschritt b) wenigstens 20 % der zu Beginn des Verfahrensschrittes b) in der Beschichtungszusammensetzung vorliegenden Isocyanatgruppen zu Isocyanuratgruppen umgesetzt werden und höchstens 30 % der zu Beginn des Verfahrensschrittes b) in der Beschichtungszusammensetzung vor liegenden Isocyanatgruppen zu Harnstoffgruppen umgesetzt werden.
EP19786802.9A 2018-10-19 2019-10-17 Wasserfrei härtende klebstoffe auf polyisocyanatbasis Pending EP3867293A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18201522 2018-10-19
PCT/EP2019/078234 WO2020079160A1 (de) 2018-10-19 2019-10-17 Wasserfrei härtende klebstoffe auf polyisocyanatbasis

Publications (1)

Publication Number Publication Date
EP3867293A1 true EP3867293A1 (de) 2021-08-25

Family

ID=64023946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19786802.9A Pending EP3867293A1 (de) 2018-10-19 2019-10-17 Wasserfrei härtende klebstoffe auf polyisocyanatbasis

Country Status (4)

Country Link
US (1) US20220145149A1 (de)
EP (1) EP3867293A1 (de)
CN (1) CN112888722A (de)
WO (1) WO2020079160A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024052537A1 (en) 2022-09-09 2024-03-14 Sika Technology Ag Polyisocyanurate plastics with rubber-like properties
CN117400598B (zh) * 2023-10-16 2024-05-24 惠州市晶辉科技有限公司 灯具用高性能覆膜板及其制备方法

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB809809A (en) 1956-11-16 1959-03-04 Ici Ltd Polymeric isocyanates and their manufacture
GB1200542A (en) 1967-01-19 1970-07-29 Takeda Chemical Industries Ltd A method for producing isocyanate trimers
DE1954093C3 (de) 1968-11-15 1978-12-21 Mobay Chemical Corp., Pittsburgh, Pa. (V.St.A.) Verfahren zur Herstellung von polymeren organischen Isocyanaten
GB1391066A (en) 1971-07-16 1975-04-16 Ici Ltd Urethane oils
GB1386399A (en) 1971-07-16 1975-03-05 Ici Ltd Isocyanurate polymers
DE2414413C3 (de) 1974-03-26 1978-08-24 Bayer Ag, 5090 Leverkusen Verwendung von Lösungen von Polyisocyanaten mit Isocyanuratstruktur in Zweikomponenten-Polyurethan-Lacken
DE2452532C3 (de) 1974-11-06 1978-08-24 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Polyisocyanaten mit Isocyanurat-Struktur
US4040992A (en) 1975-07-29 1977-08-09 Air Products And Chemicals, Inc. Catalysis of organic isocyanate reactions
DE2641380C2 (de) 1976-09-15 1989-11-23 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von Polyisocyanaten mit Isocyanuratstruktur
DE2806731A1 (de) 1978-02-17 1979-08-23 Bayer Ag Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten
CA1112243A (en) 1978-09-08 1981-11-10 Manfred Bock Process for the preparation of polyisocyanates containing isocyanurate groups and the use thereof
DE2901479A1 (de) 1979-01-16 1980-07-24 Bayer Ag Neue isocyanato-isocyanurate, ein verfahren zu ihrer herstellung, sowie ihre verwendung als isocyanatkomponente in polyurethan-lacken
CA1127644A (en) 1980-01-28 1982-07-13 Anupama Mishra Isocyanurate products and polyurethanes therefrom
DE3033860A1 (de) 1980-09-09 1982-04-15 Bayer Ag, 5090 Leverkusen Neue isocyanato-isocyanurate, ein verfahren zu ihrer herstellung, sowie ihre verwendung als isocyanatkomponente in polyurethanlacken
DE3100263A1 (de) 1981-01-08 1982-08-12 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten und ihre verwendung bei der herstellung von polyurethanen
DE3100262A1 (de) 1981-01-08 1982-08-05 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten, als katalysator-komponente fuer dieses verfahren geeignete loesungen, sowie die verwendung der verfahrensprodukte als isocyanat-komponente bei der herstellung von polyurethanen
JPS58162581A (ja) 1982-03-19 1983-09-27 Nippon Polyurethan Kogyo Kk ポリウレタン塗料用組成物
DE3227489A1 (de) 1982-07-23 1984-01-26 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten und ihre verwendung als isocyanatkomponente zur herstellung von polyurethanen
PT77070B (en) 1982-07-29 1986-01-27 Dsm Resins Bv Oligomerisation of polyisocyanates
AT375652B (de) 1982-10-29 1984-08-27 Valentina Alexandro Postnikova Verfahren zur herstellung von arylaliphatischen polyisozyanuraten
JPH0678418B2 (ja) 1986-03-10 1994-10-05 大日本インキ化学工業株式会社 樹脂組成物
DE3700209A1 (de) 1987-01-07 1988-07-21 Bayer Ag Verfahren zur herstellung von polyisocyanaten mit biuretstruktur
DE3811350A1 (de) 1988-04-02 1989-10-19 Bayer Ag Verfahren zur herstellung von isocyanuratpolyisocyanaten, die nach diesem verfahren erhaltenen verbindungen und ihre verwendung
DE3814167A1 (de) 1988-04-27 1989-11-09 Bayer Ag Verfahren zur herstellung von isocyanuratgruppen aufweisenden polyisocyanaten und ihre verwendung
CA1334848C (en) 1988-08-05 1995-03-21 William E. Slack Process for the production of polyisocyanates which contain isocyanurate groups
CA1334849C (en) 1988-08-24 1995-03-21 Bayer Corporation Process for the production of polyisocyanates which contain isocyanurate groups
DE3900053A1 (de) 1989-01-03 1990-07-12 Bayer Ag Verfahren zur herstellung von uretdion- und isocyanuratgruppen aufweisenden polyisocyanaten, die nach diesem verfahren erhaeltlichen polyisocyanate und ihre verwendung in zweikomponenten-polyurethanlacken
DE3902078A1 (de) 1989-01-25 1990-07-26 Bayer Ag Verfahren zur herstellung von modifizierten, isocyanuratgruppen aufweisenden polyisocyanaten und ihre verwendung
DE3928503A1 (de) 1989-08-29 1991-03-07 Bayer Ag Verfahren zur herstellung von loesungen von isocyanuratgruppen aufweisenden polyisocyanaten in lackloesungsmitteln und ihre verwendung
DE4005762A1 (de) 1990-02-23 1991-08-29 Bayer Ag Trimerisierungskatalysatoren, ein verfahren zu ihrer herstellung und ihre verwendung bei der herstellung von isocyanuratgruppen aufweisenden polyisocyanaten
US5158922A (en) 1992-02-04 1992-10-27 Arco Chemical Technology, L.P. Process for preparing metal cyanide complex catalyst
US5556934A (en) 1993-09-03 1996-09-17 H. B. Fuller Licensing & Financing Inc. Isocyanurate embedment compound
US5470813A (en) 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
DE4405055A1 (de) 1994-02-17 1995-08-24 Basf Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten und ihre Verwendung
DE4405054A1 (de) 1994-02-17 1995-08-24 Basf Ag Modifizierte (cyclo)aliphatische Polyisocyanatmischungen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19611849A1 (de) 1996-03-26 1997-10-02 Bayer Ag Neue Isocyanattrimerisate und Isocyanattrimerisatmischungen, deren Herstellung und Verwendung
DE19734048A1 (de) 1997-08-06 1999-02-11 Bayer Ag Verfahren zur Herstellung von Polyisocyanaten, damit hergestellte Polyisocyanate und deren Verwendung
ZA9810038B (en) 1997-11-04 2000-05-03 Rhodia Chimie Sa A catalyst and a method for the trimerization of isocyanates.
DE59903289D1 (de) 1998-06-02 2002-12-12 Bayer Ag Verfahren zur Herstellung Iminooxadiazindiongruppen enthaltender Polyisocyanate
FR2812653A1 (fr) 2000-08-03 2002-02-08 Michelin Soc Tech Colle pour compositions de caoutchouc, son procede de preparation et articles comportant cette colle
EP1201695A1 (de) 2000-10-23 2002-05-02 Huntsman International Llc Verwendung von Polyisocyanatzusammensetzungen als Bindemittel für Verbundstoffe aus Lignocellulosematerial
DE10062415A1 (de) 2000-12-14 2002-06-20 Bayer Ag Holzklebstoffe
DE10065176A1 (de) 2000-12-23 2002-06-27 Degussa Katalysator und Verfahren zur Herstellung von niedrigviskosen und farbreduzierten isocyanuratgruppenhaltigen Polyisocyanaten
EP1599526B1 (de) 2003-02-28 2012-06-13 Dow Global Technologies LLC Herstellung von isocyanuratgruppenhaltigen polyisocyanatmischungen
DE102004012571A1 (de) 2004-03-12 2005-09-29 Basf Ag Verfahren zur Herstellung von Isocyanuratgruppen aufweisenden Polyisocyanaten und ihre Verwendung
DE102005047560A1 (de) 2005-10-04 2007-04-05 Bayer Materialscience Ag Zusammensetzung zur Herstellung von Polyharnstoffbeschichtungen
EP1970420A1 (de) * 2007-03-15 2008-09-17 Huntsman International Llc Klebstoffzusammensetzung auf Polyisocyanatbasis
DE102010019504A1 (de) 2010-05-06 2011-11-10 Bayer Materialscience Ag Polyisocyanatprepolymere und deren Verwendung
WO2013167404A1 (en) 2012-05-08 2013-11-14 Basf Se Preparation of polyisocyanates having isocyanurate groups and their use
US9850338B2 (en) 2014-02-18 2017-12-26 Covestro Deutschland Ag Process for isocyanate modification using spirocyclic ammonium salts as catalyst
ES2848298T3 (es) * 2014-11-14 2021-08-06 3M Innovative Properties Co Composición adhesiva de poliuretano de dos componentes
CN107922563B (zh) 2015-08-17 2020-12-08 科思创德国股份有限公司 使用环状铵盐作为催化剂改性异氰酸酯的方法
WO2017125302A1 (de) 2016-01-20 2017-07-27 Basf Se Verfahren zur herstellung eines aromatischen polyamingemisches
CA3019617C (en) * 2016-05-04 2024-06-25 Covestro Deutschland Ag Method for producing a polyisocyanurate composite material
EP3450520B1 (de) * 2017-09-05 2022-01-19 Sika Technology Ag Klebstoffzusammensetzung und verwendung davon zur bereitstellung eines selbstheilenden geklebten dachsystems
CN107652939B (zh) 2017-10-31 2020-11-24 山东一诺威聚氨酯股份有限公司 卷材用高粘性聚氨酯低硬度胶及其制备方法

Also Published As

Publication number Publication date
CN112888722A (zh) 2021-06-01
US20220145149A1 (en) 2022-05-12
WO2020079160A1 (de) 2020-04-23

Similar Documents

Publication Publication Date Title
EP1093482B1 (de) Polyurethan und polyurethanhaltige zubereitung
EP2220034B1 (de) Aromatische aldimine und aldimin enthaltende polyurethanzusammensetzungen
EP3263618A1 (de) Alkoxysilan-funktionalisierte allophanate
EP3642252B1 (de) Latenter härter und härtbare polyurethanzusammensetzung
DE102005026085A1 (de) Silan-modifizierte Harnstoff-Derivate, Verfahren zu ihrer Herstellung und deren Verwendung als Rheologiehilfsmittel
EP2892936A1 (de) Silanfunktionelle bindemittel mit thiourethanstruktur
WO2017182109A1 (de) Hydrophob modifizierter polyisocyanuratkunststoff und verfahren zu dessen herstellung
WO2013087682A1 (de) Bismuthaltiger katalysator für polyurethan-zusammensetzungen
EP3830203B1 (de) Polyurethanzusammensetzung mit langer verarbeitungszeit und hoher festigkeit
DE10350481A1 (de) Festigkeitsoptimierte Polymere mit gemischten Oxyalkyleneinheiten
DE2632513B2 (de) Mit Wasser härtbare in Abwesenheit von Wasser lagerfähige Gemische auf Polyurethanbasis
WO2020030608A1 (de) Isocyanatgruppen-haltiges polymer mit niedrigem gehalt an monomeren diisocyanaten
WO2020030607A1 (de) Polyurethan-zusammensetzung mit niedrigem gehalt an monomeren diisocyanaten
EP3298058A1 (de) Polyurethan-beschichtungszusammensetzungen
EP3867293A1 (de) Wasserfrei härtende klebstoffe auf polyisocyanatbasis
DE10353663A1 (de) Polyurethanzusammensetzungen mit NCO- und Silylreaktivität
WO2013087680A1 (de) Zink(ii)-komplexverbindungen als katalysatoren für polyurethan-zusammensetzungen
EP2450386B1 (de) Harz für Kleb- und Beschichtungsstoffe auf Basis silanterminierter Harze mit mindestens zwei Edukten
EP3415544A1 (de) Zweikomponentige polyurethanzusammensetzung
EP3027628A1 (de) Hydroxymethylcarboxamido-substituiertes silanol fur hartbare, silanterminierte polymere.
EP2791155B1 (de) Eisen(iii)-komplexverbindungen als katalysatoren für polyurethan-zusammensetzungen
EP2861642B1 (de) Silangruppen-haltiges polymer
EP3613785A1 (de) Trocknungsmittel für feuchtigkeitshärtende zusammensetzungen
EP3613786A1 (de) Trocknungsmittel für feuchtigkeitshärtende zusammensetzungen
WO2017162811A1 (de) Härtbare zusammensetzungen auf basis von alkoxysilangruppen-haltigen prepolymeren

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230616

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COVESTRO DEUTSCHLAND AG