EP1695038B1 - Steuerung des flusses von aus feststoffen sublimierten dämpfen - Google Patents

Steuerung des flusses von aus feststoffen sublimierten dämpfen Download PDF

Info

Publication number
EP1695038B1
EP1695038B1 EP20040813385 EP04813385A EP1695038B1 EP 1695038 B1 EP1695038 B1 EP 1695038B1 EP 20040813385 EP20040813385 EP 20040813385 EP 04813385 A EP04813385 A EP 04813385A EP 1695038 B1 EP1695038 B1 EP 1695038B1
Authority
EP
European Patent Office
Prior art keywords
vapor
throttle valve
vaporizer
temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20040813385
Other languages
English (en)
French (fr)
Other versions
EP1695038A2 (de
EP1695038A4 (de
Inventor
Thomas N. Horsky
Robert W. Milgate, Iii.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semequip Inc
Original Assignee
Semequip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semequip Inc filed Critical Semequip Inc
Publication of EP1695038A2 publication Critical patent/EP1695038A2/de
Publication of EP1695038A4 publication Critical patent/EP1695038A4/de
Application granted granted Critical
Publication of EP1695038B1 publication Critical patent/EP1695038B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • H01J27/024Extraction optics, e.g. grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2209/00Apparatus and processes for manufacture of discharge tubes
    • H01J2209/01Generalised techniques
    • H01J2209/017Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/006Details of gas supplies, e.g. in an ion source, to a beam line, to a specimen or to a workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0357For producing uniform flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow
    • Y10T137/776Control by pressures across flow line valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85954Closed circulating system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/85986Pumped fluid control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/85986Pumped fluid control
    • Y10T137/86002Fluid pressure responsive

Definitions

  • This invention relates to the controlled sublimation of solid materials under vacuum combined with accurate control of flow of the produced vapor to a vacuum chamber with little pressure drop.
  • An important application is the controlled feed of vapor into the evacuated ionization chamber of an ion source for producing an ion beam.
  • the beam may be used for ion implantation into semiconductor substrates.
  • Another important application is the controlled flow of vapor into a vacuum processing chamber for interaction with a work piece.
  • the ionization chamber of an ion source functions under vacuum and requires the material that is to be ionized to be fed in gaseous form with great accuracy and reproducibility.
  • Solids of interest typically have low vapor pressure and must first be sublimated through heating in a reduced pressure environment to produce a volume of vapor. This vapor must then be introduced into the vacuum chamber at the flow, or number of molecules per second, required by the operation to be conducted in the chamber. Since this flow requirement is similar to that required for the introduction of normal gases, standard gas handling equipment has been used for delivery of solid-derived vapor, but with mixed success.
  • the gas source is held at a pressure P 0 substantially higher than the inlet delivery pressure, P D , for the vacuum chamber.
  • P D In order to accurately control the flow of gas into the vacuum chamber, P D must be accurately controlled. This is usually accomplished by a commercially available mass flow controller (MFC) located between the gas source and vacuum chamber inlet.
  • MFC mass flow controller
  • An MFC is a digitally controlled device which varies its conductance to match the delivered mass flow (in grams per second) with the requested mass flow, in a closed-loop manner. Since MFC's are commonly used with relatively high pressure gas sources, MFC's are commonly constructed to operate in a range of correspondingly small conductances, which establish relatively large pressure drops. For vaporized solid materials such as the borohydride decaborane (B 10 H 14 ) or octadecaborane (B 18 H 22 ), this approach suffers from several serious problems.
  • the vapors are derived from a fixed solid charge.
  • the material of the charge is placed in the vaporizer in powder form.
  • the vaporizing area of the fixed charge diminishes over time as the charge is consumed, and especially when the solid materials are susceptible to molecular disassociation if temperatures become too high. Serious problems arise especially when the operation in which the vapors are to be employed requires accurate maintenance of vapor flow, which is often the case.
  • US2003/0072875 A1 discloses a vaporizer connected to a vacuum chamber via a flow monitor with a pressure sensor. The flow measurement is fed to a controller and used to regulate the temperature of the upstream vaporizer and thereby the upstream pressure.
  • SULLIVAN J J ET AL "MASS FLOW MEASUREMENT AND CONTROL OF LOW VAPOR PRESSURE SOURCES” JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART A, AVS /AIP, MELVILLE, NY.; US, vol. 7, no. 3, PART 02, 1 May 1989, pages 2387-2392, ISSN: 0734-2101 discloses a vaporizer and control of a downstream throttle valve by the use of a pressure sensor downstream of the throttle valve.
  • the present invention relates to a vapor delivery system according to claim 1 and to the use of the vapor delivery system for sublimation of solid material according to claims 13 and 14.
  • FIG. 1A is a diagram of an ion source 10.
  • the details of its construction, as well as its preferred modes of ionizing action, are disclosed in detail by Horsky et al., WO2004/003973 filed June 26, 2003 : "An ion implantation device and a method of semiconductor manufacturing by the implantation of boron hydride cluster ions", and by Horsky, U.S. Patent No. US 2004 000647 171 , "Electron impact ion source", filed June 26, 2002, U.S. Patent 6,686,595 , each herein incorporated by reference.
  • the ion source 10 is made to interface to an evacuated vacuum chamber of an ion implanter by way of a mounting flange 36.
  • the portion of the ion source 10 to the right of flange 36, shown in FIG. 1A is under a high vacuum (pressure ⁇ 1x10 -4 Torr).
  • the ion source is maintained at an elevated voltage by a high voltage power supply and is electrically isolated from remaining portions of the high vacuum housing.
  • Gaseous material is introduced into ionization chamber 44 in which the gas molecules are ionized by electron impact from electron beam 70A or 70B.
  • the electron beam exits ionization chamber 44 through the opposite aperture 71B or 71A, or may be absorbed by a beam dump or walls of the chamber acting as a beam dump.
  • a single electron gun and a beam dump shown in FIG.
  • the electron beam originates from a cathode in the electron gun 112, is bent by a magnetic field 135 produced by magnet 130 and pole pieces 125, and enters the ionization chamber 44 through electron entrance aperture 71A or 71B such that electron beam 70A or 70B moves parallel to an elongated ion extraction aperture 81.
  • the electron beam 70 is stopped by beam dump 72 located external to ionization chamber 44.
  • beam dump 72 located external to ionization chamber 44.
  • ions are created adjacent to the ion extraction aperture 81, which appears as a slot in the ion extraction aperture plate 80.
  • the ions are then extracted and formed into an energetic ion beam by an extraction electrode (not shown) located in front of the ion extraction aperture plate 80, and held at a substantially lower voltage.
  • gases may be fed into the ionization chamber 44 via a gas conduit 33.
  • Solid feed materials such as decaborane and octadecaborane can be vaporized in vaporizer 28, and the vapor fed into the ionization chamber 44 through vapor conduit 32 within the source block 35.
  • ionization chamber 44, ion extraction aperture 80, source block 35 (including vapor feed conduit 32), and vaporizer housing 30 are all fabricated of aluminum.
  • Solid feed material 29, located under a perforated separation barrier 34a, is held at a uniform temperature by closed-loop temperature control of the vaporizer housing 30.
  • Sublimated vapor 50 which accumulates in a ballast volume 31 feeds through conduit 39 and through throttling valve 100 and shutoff valve 110.
  • the nominal pressure of vapor 50 between throttling valve 100 and shutoff valve 110 is monitored by capacitance manometer gauge 60.
  • the vapor 50 feeds into the ionization chamber 44 through a vapor conduit 32, located in the source block 35.
  • both gaseous and vaporized materials may be ionized by this ion source.
  • the flow of vapor to ionization chamber 44 is determined by the vapor pressure in the region just before vapor feed conduit 32, i.e., within shutoff valve 110. This is measured by a capacitance manometer pressure gauge 60 located between throttling valve 100 and shutoff valve 110. In general, the flow rate is proportional to the vapor pressure. This allows the pressure signal to represent flow, and to be used as a set-point to select flow.
  • vaporizer housing 30 is brought to a temperature such that when throttling valve 100 is in its fully open position, the desired flow rate is exceeded. Then the throttling valve 100 is adjusted to reach the desired pressure output.
  • the particular ion source shown is an electron-impact ion source which is fully temperature-controlled. Instead of striking an arc-discharge plasma to create ions, this ion source uses a "soft" electron-impact ionization of the process gas by energetic electrons injected in the form of one or more focused electron beams. The "soft" ionization process preserves the large molecules so that ionized clusters are formed. As seen in FIG. 1A and FIG. 1B , solid boron hydride is heated in the vaporizer and flowed through the vapor conduit to a metal chamber, i.e., the ionization chamber.
  • An electron gun located external to the ionization chamber delivers a high-current stream of energetic electrons into the ionization chamber; this electron stream is directed roughly parallel and adjacent to an extended slot in the front of the chamber. Ions are extracted from this slot by an ion extraction electrode, forming an energetic ion beam.
  • an ion extraction electrode located external to the ionization chamber
  • all surfaces are held at a higher temperature than that of the vaporizer (but well below the temperature of dissociation), to prevent condensation of the vapor. Over many hours of testing, we have confirmed that the surfaces of the vapor feed and valves indeed, remain clean.
  • FIGs. 7E , F and G respectively illustrate a gate valve closed, opened a first amount and opened a second, greater amount, functioning as a high maximum conductance throttle valve.
  • a vapor delivery system for delivering a steady flow of sublimated vapor to a vacuum chamber 130.
  • the vacuum chamber may be an ionization chamber having a different ionizing action than that described above, or may be a vacuum processing chamber in which the vapor interacts with other material.
  • the vapor delivery system is comprised of a vaporizer 28, a mechanical throttling valve 100, and a pressure gauge 60.
  • the vapor flow rate is determined by both the temperature of the vaporizer 28 and the conductance of the mechanical throttle valve 100 located between the vaporizer and the inlet conduit 32 to the vacuum chamber.
  • the temperature of the vaporizer 28 is determined by closed-loop control 35 to a set-point temperature.
  • the mechanical throttle valve 100 is electrically controlled, i.e. the valve position is under closed-loop control 120 to the output of the pressure gauge.
  • the vapor flow rate may be held proportional to the pressure gauge output.
  • the vapor delivery system described meets the challenges inherent in delivering a controlled vapor flow over many hours into a vacuum system, e.g. into the ionization chamber of an ion source or more generally, to an operation performed in a vacuum chamber.
  • the system enables certain rules to be observed, which offer significant advantages over prior systems, especially when using low-temperature materials such as decaborane or octadecaborane:
  • the form of the closed loop-controlled, pressure based system intended to deliver sublimed, gas phase material into a vacuum chamber with continuous pumping obeys well-defined laws.
  • solid material 29 is vaporized to vapors 50 contained in reservoir 31.
  • the vapors exit reservoir 31 through vaporizer outlet 39, creating a vapor pressure in advance of a throttle (or "throttling") valve 100.
  • throttle valve 100 a pressure gauge (or sensor) 60 followed by a relatively flow-restricting vapor conduit 32 which represents a flow restriction leading to the vacuum chamber.
  • Throttle valve 100 and pressure sensor 60 in combination with a closed-loop controller 120, provide means to control the pressure beyond throttle valve 100 (before conduit 32) by closed-loop control of the throttle valve conductance.
  • the degree the throttle valve 100 is open (valve position) is actively set in real-time by closing the loop on the pressure sensor output, thus servoing the valve position to a downstream pressure set-point.
  • the rate of vapor flow into the vacuum chamber 130 is determined by this downstream pressure and the conductance of vapor outlet conduit 32.
  • Conduit 32 under common nomenclature is characterized as the "metering section" of the flow control system. Conduit 32 introduces vapor into vacuum chamber 130, while vacuum of desired value is maintained in vacuum chamber 130 by vacuum pump 135.
  • the basic gas dynamic requirement for flow in such a system is that the gas phase pressure of the substance to be controlled is higher in the vapor reservoir 31 than it is in the vacuum chamber 130.
  • Pressure-based mass flow control is implemented in such a system by considering the basic equations governing flow in vacuum systems.
  • the simplest case to model is the case of molecular flow, where the mean free path of the gas molecules is large with respect to the physical dimensions of the vacuum system.
  • the molecular flow regime is appropriate to describe the vapor flow into ion implantation systems, for example, using the system of the present invention where the pressure anywhere in the vapor path is ⁇ 1 Torr.
  • the mass flow rate between any two points can be calculated if the pressure P at each of the two points of interest and the conductance C between the two points is known.
  • This equation can be used to estimate the appropriate maximum conductance of the throttling valve to achieve a desired dynamic range for the delivery system.
  • a ratio of C ThrottlingValveMax to C MeteringLength of at least about 5:1 1 or even 10:1 1 or higher is advantageous to maximize vapor flow dynamic range for a given metering length conductance.
  • FIG. 3 shows, in cross section, an ion source appropriate for creating decaborane or octadecaborane ions in an ion implanter. It differs from FIGs. 1A and 1B in depicting a butterfly-type of mechanical throttle valve 100' rather than using a gate valve 100 as the throttle valve as shown in FIG. 1A .
  • the movable element is a circular flow-obstructing disc of size closely fitting a cylindrical passage, and mounted to be rotated about a diameter of the disc that lies perpendicular to the axis of the passage. It presents a vapor path of controlled conductance, see FIGs. 7A, 7B and 7C .
  • the vapor path from vaporizer to ionization chamber is clearly shown.
  • the vapor conduit 150 of FIG. 3 performs the same function as the vapor conduit (metering section) 32 of FIGs. 1 , 1A and 1B .
  • solid borohydride material 140 such as decaborane or octadecaborane, for example
  • vaporizer 145 is heated by vaporizer 145 to sublimate vapor 165 which passes through vaporizer exit port 155, through butterfly-type throttle valve 100', through isolation valve 160, through vapor conduit 150, and into ionization chamber 170 where vapors are ionized by electron beam 175.
  • An extraction electrode (not shown) at an electric potential much different from that of the ion source extracts and forms an ion beam 180 through a vertical slot 185 in the front plate 190 of the ionization chamber 170.
  • FIG. 4 illustrates, in greater detail, one embodiment designed to provide vapor flow into a vacuum chamber 260 to a point of utilization 270.
  • a vacuum process may be conducted, for example, a chemical vapor deposition (CVD) process or low-pressure CVD (LPCVD) process, or other process where thin films are deposited on a work piece, for example boron-containing thin films such as boron nitride.
  • Solid feed material 200 residing in vaporizer 205 is held at a well-defined temperature by heating vaporizer housing 210 to a temperature T above room temperature. Resistive heaters contained within vaporizer housing 210 are actively controlled by vaporizer heater control 215 within a digital vapor feed controller 220.
  • Vaporizer heater control 215 incorporates a closed-loop PID controller (such as an Omron model E5CK-AA1-500, for example), which accepts a set-point temperature from digital vapor feed controller 220 and closes the loop on the temperature readback provided by a thermocouple (TC) output 225 embedded in vaporizer housing 210, and provides variable power 248 to the resistive heaters, for example in the form of a pulse width-modulated heater voltage.
  • Vapors produced from the feed material 200 pass through vaporizer outlet 230 upstream of throttle valve 235.
  • the purpose of throttle valve 235 is to reduce the vapor flow downstream of the valve such that pressure gauge 240 reaches a particular set-point pressure value.
  • This set-point pressure value is provided by digital vapor feed controller 220 to a closed-loop throttle valve position control 245, which servos throttle valve 235 to a mechanical position (by sending a position signal 247 to a motor incorporated into the throttle valve assembly), in which the gauge output 250 equals the set-point value, i.e., the throttle valve position control 245 closes the loop on gauge output 250.
  • the two set-point values, heater set-point value and pressure set-point value are provided to digital vapor feed controller 220 either manually through a user interface, or by coded recipes which provide increased automation capability.
  • throttle valve 235 comprises a butterfly valve, such as a Nor-Cal model 040411-4
  • a throttle valve position control such as provided by Nor-Cal model APC-200-A may be used. All surfaces with which the vapors come in contact are heated at least to the vaporizer temperature, or somewhat higher. Thus, throttle valve 235 and pressure gauge 240 are heated, as well as the passage walls, including those of metering section 232.
  • a temperature of between 100C and 150C is adequate to prevent condensation of feed materials typically used in vaporizer 205.
  • Typical vaporizer temperatures when running decaborane in the configuration shown in FIG. 4 is in the range 25C to 40C, while for octadecaborane it is between 80C and 120C, for example.
  • a heated capacitance manometer such as an MKS Baratron model 628B-22597 or 631A-25845 may be used as pressure gauge 240.
  • a gauge can read pressures in the range of a few milliTorr to a few Torr, and are appropriate for this application.
  • gauges configured from the manufacturer to read a maximum pressure (full scale reading) of either 100mTorr or 500mTorr can be used.
  • Such pressure limits are selected to provide excellent signal-to-noise for control gauge readings of between 20 mTorr and about 100 mTorr (signals near the bottom of range tend to be noisy, potentially making the servo loop less stable).
  • the appropriate set-point pressure value is determined by the desired partial pressure of vapors in vacuum chamber 260, and the vapor conductance between throttle valve 235 and vacuum chamber 260.
  • FIG. 5 shows a process in which vapor flow 227 impinges on a semiconductor work piece 280, in a vacuum environment.
  • a process might be a thin film-deposition process, for example the production of polysilicon films or silicon-germanium films, in which dopant-containing vapors allow P-type or N-type doping of the semiconductor films during film growth.
  • Another important application is plasma doping (PLAD).
  • PLAD plasma doping
  • the substrate is held on a platen electrically isolated from the vacuum chamber, dopant vapors are introduced and a plasma is formed adjacent the platen.
  • One or more high voltage pulses are applied to the platen, and hence the substrate, causing energetic ions of the plasma to be attracted to dope the substrate.
  • FIG. 6 shows a system in which vapor is fed into an ion source for forming an ion beam to perform ion implantation.
  • Vapors pass through throttle valve 235, through vapor conduit 228 of ion source 285 and into the ionization chamber 287 of ion source 285.
  • the ionization chamber 287 is held at high voltage.
  • the vapor is ionized within ionization chamber 287 by an appropriate energizing means; once ions are created, they are extracted into an evacuated chamber, accelerated and formed into an energetic ion beam 295 by extraction optic 290, which is at a substantially different voltage from that of the ionization chamber.
  • the ion beam is directed into an implantation chamber to implant a semiconductor substrate 298 for doping.
  • the process can be the ion implantation into polysilicon coatings on large glass panels for making flat panel displays (FPD doping), for example.
  • the ion beams produced by such systems may be mass analyzed, but frequently have no mass analysis.
  • the ion source is typically quite large, its ionization chamber having one dimension somewhat larger than the shorter dimension of a panel being implemented, which can be a meter long or greater.
  • a stationary "ribbon" beam of ions is extracted from the ion source and focused onto the flat panel, while the panel is mechanically scanned across the beam along the longer dimension of the panel. This process is important in fabricating FPD's which have CMOS driver circuitry along the periphery of the display panels, for example in making thin film transistor-based televisions or computer monitors.
  • FIG. 7 shows a system adapted to the case of a conventional beamline ion implanter having mass analysis.
  • the beam passes into a dispersive dipole electromagnet which separates the unresolved beam 295 into beamlets separated in space according to the mass-to-charge ratio of the ions, as is known in the art.
  • the electromagnet current, and hence the bending, dispersive dipole field can be adjusted so that only ions of a particular mass-to-charge ratio (or a certain preferred range of mass-to-charge ratios, depending on the width of resolving aperture 297) are passed to the semiconductor substrate by resolving aperture 297.
  • the ionization chamber 287 For implanting ions into a semiconductor wafer (e.g. a silicon crystal) the ionization chamber 287 has a volume less than about 100 ml and the maximum flow of sublimated vapor into the chamber is of the order of 1sccm.
  • FIGs. 7A-7C illustrates, in qualitative manner, relative positions of the butterfly valve roughly corresponding as follows: in FIG. 7A : closed position; FIG. 7B : 7.5 degree rotation; FIG. 7C : 15 degree rotation.
  • the rotary positions are controlled electrically by a rotary stepper motor. Clearances between the periphery of rotatable circular plate B of the butterfly and its cylindrical housing H are indicated by C ⁇ C' ⁇ C", where C is the minimum clearance in the "closed" position, of a few thousands of an inch.
  • FIG. 7D shows calculated N 2 conductance as a function of rotation angle for a circular butterfly of 1.4 inch diameter. The points corresponding to FIGs 7A-7C are marked on the curve of FIG. 7D , and are approximately equal to ⁇ 0 l/s, 2 l/s, and 8 l/s, respectively.
  • FIGs. 7E-7G illustrate, in qualitative manner, relative positions of a sliding gate valve implemented as a throttle valve, see FIGs. 1A and 1B . Shown are: FIG. 7E : gate G in closed position; FIG. 7F : gate G 10% open; FIG. 7G : 30% open.
  • the gate valve available in a variety of diameters from about 0.5 inch to 2.5 inches, functions as both a shutoff valve (seals when closed) and a throttle valve (with a stepper motor operating the valve actuator).
  • the butterfly valve is not a sealing valve; i.e., it has a small but finite conductance when closed.
  • FIGs. 8 and 8A show two views of a preferred embodiment of a vapor delivery system for providing vapors to the ion source of an ion implanter, for example the source of FIG. 3 .
  • the overall length of the valve chain is minimized, and is designed to be close-coupled to the ion source. Shown is vaporizer 400, vaporizer isolation valve V1, 410, valve actuator 415, evacuation port 420 (connects to V3, not shown), throttle valve TV1, 430, throttle valve motorized actuator 435, ion source isolation valve V2, 440, V2 actuator 445, heated capacitance gauge G1, 450, N 2 vent valve V4, 460.
  • FIG. 9 shows a schematic of the vapor delivery system of FIG. 8 , indicating the salient control points.
  • the vapor delivery system is depicted controlled through an operator interface 700, through which the operator can provide inputs to open or close valves V1, 410 (vaporizer isolation valve), V2, 440 (ion source isolation valve), V3, 441 (roughing vacuum valve), V4, 460 (vent valve), and TV1 430 (throttle valve); all of these valves provide readbacks to the operator interface to confirm the valve states.
  • V3 is located between the two isolation valves V1 and V2, and is opened when it is necessary to evacuate the dead volume between these two valves, for example after the vaporizer 400 has been removed (with V1) for service or refill and replaced.
  • V4 is used to vent this dead volume to prepare for component removal, for example removal of the vaporizer 400.
  • Other user-accessible inputs include three temperature setpoints: PID 1 for the vaporizer 400, PID 3 for valves V1-V4 and TV1, and a temperature set-point for the ion source block containing the vapor conduit 150 of FIG. 3 .
  • PID 1 for the vaporizer 400
  • PID 3 for valves V1-V4 and TV1
  • a temperature set-point for the ion source block containing the vapor conduit 150 of FIG. 3 In general, all surfaces with which the vapor comes in contact are maintained at a temperature at least as high as that of the vaporizer. It is preferable to maintain ion source set-point temp > PID 3 > PID 1. Via the ion source block, the surfaces of conduit 150 are thus preferably maintained at temperature greater than the set-point of PID 3.
  • PID 2 is a closed-loop controller which adjusts the position of the throttle TV1, 430 to bring the pressure read by pressure gauge G1, 450 to its set-point value.
  • This pressure set-point for the heated pressure gauge G1, 450 reads back to the Operator Interface.
  • This pressure readback signal indicates the vapor pressure between throttle valve TV2 and the vapor conduit to the ion source (vapor conduit 150 in FIG. 3 ), providing the control signal for the closed-loop control of TV1 position.
  • FIG. 10 is a plot of decaborane vapor flow into the ion source of FIG. 3 using the vapor delivery system of FIG. 9 .
  • the butterfly-type throttle valve positions outlined in FIGs. 7A, 7B, 7C are shown on the curve of FIG. 9 .
  • the useful dynamic range of the vapor delivery system covers about a factor of 10, from about 0.1 sccm (standard cc's per minute) to over 1.0 sccm for a vaporizer temperature of 30C, which delivers a fixed vapor pressure upstream of the throttle valve. To obtain higher flows, a higher vaporizer temperature is used.
  • Typical gas flow rates consumed by ion sources for ion implanters are about 2 sccm or less.
  • the vapor delivery conductances and pressures are tuned to the required vapor flows, and to the conductance of the ion source inlet, as shown in FIG. 2 and accompanying text, and will be further expanded in a discussion of FIG. 12 .
  • FIG. 11 shows the response of the control pressure gauge 450 to throttle valve rotation in the system exemplified by FIGs. 3 and 8-10 .
  • the vapor pressure within ionization chamber 170 at about 40 mTorr gauge pressure i.e., pressure at the inlet to the ion source
  • the pressure upstream of the throttle valve is about 65 milliTorr.
  • the greatest pressure drop is across the vapor conduit 150 of the ion source of FIG. 3 , which for the example has an N 2 conductance of about 0.5 l/s.
  • FIG. 12 plots the effective N 2 conductance of the entire vapor delivery chain of FIGs. 3 and 8-10 as a function of rotation angle of a butterfly-type throttle valve.
  • the conductance dynamic range of the throttle valve should be matched to the smallest conductance of the system, in this case the conductance of the conduit 150 into the ion source.
  • the vapor conduit 150 of FIG. 3 for the example is a cylindrical bore about 1 cm in diameter and 25 cm long.
  • a respectively larger or smaller throttle valve (one with a respectively larger or smaller conductance over its dynamic range) should be used.
  • the vapor delivery system herein disclosed enables use of "open" valve and passage structures (high conductances) which are not easily clogged by condensed vapors.
  • all the valves and connecting elements are readily held at a temperature greater than the vaporizer temperature.
  • the vaporizer is maintained at 30C, V1-V4 and TV1 are at 50C, gauge G1 is at 100C, and the ion source is held at >50C. This "staging" of the temperatures of successive elements down the chain prevents any significant condensation of sublimed vapors.
  • the use of high-conductance elements following the vaporizer minimizes the vapor pressure and hence the vaporizer temperature required to reach and sustain the desired flow rates. This increases the useful life of the borohydride or other solid feed materials stored in the vaporizer, since they are known to dissociate or polymerize at elevated temperatures with reactions that are a strong function of temperature.
  • the maximum N 2 gas conductance of the throttle valve is at least 1 liter per second or greater, and the pressure drop across the throttling valve when the valve is fully open is less than 100mTorr, in preferred cases often less than 25mTorr.
  • FIG. 13 shows the time signature of the vapor delivery system when operated in its normal "closed-loop” mode.
  • a pressure set-point is provided by digital vapor feed controller 220 to throttle valve position control 245.
  • the position control adjusts the valve position to minimize the "error" between control gauge output 250 and the pressure set-point value. This is accomplished by a so-called PID (Proportional Integral Differential) control loop which can be programmed to have well-defined response characteristics such as speed and settling time, and degree of overshoot, for example.
  • PID Proportional Integral Differential
  • the Nor-Cal model APC-200-A incorporates such a PID controller, coupled to a stepper motor which turns the shaft to which the circular plate of the butterfly throttle valve is mounted.
  • a stepper motor which turns the shaft to which the circular plate of the butterfly throttle valve is mounted.
  • FIG. 13 shows the rapid settling time and excellent reproducibility of this system when using octadecaborane (B 18 H 22 ) feed material.
  • SP1 set-point
  • SP2 set-point
  • FIG. 14 illustrates a remote implementation of the vapor delivery system of FIGs. 4-7 , for example the vaporizer, throttle valve, and other flow control elements are located in the gas distribution box of an ion implanter, requiring a connecting tube of up to a meter long to connect to the inlet to the ion source.
  • the overall conductance of the vapor delivery chain is not significantly reduced, and remains dominated by the ion source's vapor inlet conductance in accordance with FIG. 2 .
  • FIG. 15 illustrates further important feature of the vapor delivery system. It is known that the rate at which feed material vaporizes is a function of its open surface area, particularly the available surface area at the solid-vacuum interface. As feed material in powder form within the vaporizer is consumed over time, this available surface area steadily decreases, resulting in a decrease in the vapor pressure preceding the throttle valve until the evolution rate of vapors cannot support the desired vapor flow rate. This is known as “evolution rate limited" operation.
  • a vaporizer temperature of, say, 25C might support the required vapor flow at a nominal throttle valve position at the low end of its dynamic range, for example that represented by point 7B indicated on the curve of FIG.
  • a valve position commensurate with point 7C indicated on the curve of FIG. 10 might then be necessary to maintain the same desired flow.
  • the state of the system is now such that the throttle valve is near the high displacement limit of its dynamic range.
  • this displacement is sensed by the vapor feed controller 220. It sends a new, higher heater set-point temperature as by signal 246, FIG. 14 , to vaporizer heater control (or regulator) 215.
  • the vapor feed controller possesses resident lookup table information which determines the next incremental temperature change that would produce a desired increase of vapor generation and pressure increase preceding the throttle valve. For example, for nominal 30C operation, the next increment could be 2C, a change to 32C.
  • the increment is selected to restore, once the vaporizer temperature settles to its new value, the nominal throttle valve operating point to 7B of FIG. 10 , near the low displacement end of its dynamic range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Claims (14)

  1. Dampfzuführungssystem zum Zuführen eines kontrollierten Stromes von aus einem Feststoff (29; 140; 200) sublimiertem Dampf zu einer Vakuumkammer (130; 258; 260), mit der Kombination eines bei subatmosphärischem Druck zu betreibenden beheizten Vaporisators (28; 145; 205; 400) zum Aufnehmen des Feststoffs, der einen Temperaturregler (35) zum Regeln der Temperatur des Vaporisators (28; 145; 205; 400) aufweist, und eines Dampfzuführungskanals (37; 237) von dem Vaporisator zu der Vakuumkammer, wobei der Dampfzuführungskanal ein Drosselventil (100; 100'; 235; 430) und daran anschließend eine Dampfleitung (32; 150; 228) aufweist,
    einem Druckmesser (60; 240; 450), der auf subatmosphärischen Druck anspricht und sich zwischen dem Drosselventil und der Dampfleitung befindet, und wobei ein Regelsystem (60; 120; 240, 250, 245; PID2), das den Druckmesser aufweist, so konstruiert ist, dass es die Konduktanz des Drosselventils verändert, um den subatmosphärischen Druck des Dampfes stromabwärts von dem Drosselventil in Reaktion auf den Ausgang des Druckmessers zu regeln, wobei dadurch der Strom von Dampf zu der Vakuumkammer durch den Druck des Dampfes im Bereich des Kanals zwischen dem Drosselventil und der Dampfleitung (32; 150; 228) bestimmt wird,
    dadurch gekennzeichnet, dass
    Flächen des Dampfzuführungskanals, die dem sublimierten Dampf ausgesetzt sind, einschließlich solcher Flächen des Drosselventils, des Druckmessers und der Dampfleitung, dazu ausgelegt sind, auf einer Temperatur über der Kondensationstemperatur des Feststoffs gehalten zu werden, und dass
    das Regelsystem (60; 120; 240, 250, 245; PID2) dazu ausgelegt ist, die Stellung des Drosselventils (100; 100'; 235; 42) zu überwachen und, wenn sich das Drosselventil (100; 100'; 235; 43) seiner maximal nutzbaren Konduktanz nähert, die Temperatur des Vaporisators (28; 145; 205; 400) zu erhöhen, um den Druck in dem Vaporisator anzuheben und das Drosselventil (100; 100'; 235; 43) innerhalb seiner bevorzugten Konduktanz arbeiten zu lassen.
  2. Dampfzuführungssystem nach Anspruch 1, mit einem Temperaturregelsystem (35) zum Erhitzen der Flächen des Zuführungskanals (37; 237) auf mindestens die Temperatur des Vaporisators.
  3. System nach Anspruch 1 oder 2, das dazu ausgelegt ist, die sowohl durch ein Regelsystem (35; 225, 215, 248; PID1) für die Temperatur des Vaporisators als auch das Regelsystem (60, 120; 240; 250; 245; PID2) für die Konduktanz des Drosselventils zu bestimmende Dampfströmungsgeschwindigkeit durch Regeln der Stellung des Drosselventils anzupassen.
  4. Dampfzuführungssystem nach einem der vorhergehenden Ansprüche, bei dem das Drosselventil ein Schieberventil mit variabler Stellung ist.
  5. Dampfzuführungssystem nach einem der vorhergehenden Ansprüche, bei dem das Drosselventil vom Typ Ventilklappe ist.
  6. Dampfzuführungssystem nach Anspruch 1 in Kombination mit einem drosselventilbasierten Erfassungs- und Regelsystem, das in der Lage ist, einen Vaporisatorsolltemperaturwert einem Regler einer Vaporisatorheizvorrichtung zu übermitteln, die in der Lage ist, die Vaporisatortemperatur auf dem Sollwert zu halten, wobei in dem Erfassungs- und Regelsystem mindestens ein vorbestimmter Ventilverschiebungswert gespeichert ist, der eine gewünschte Obergrenze für die Konduktanz des Drosselventils repräsentiert, wobei das Erfassungs- und Regelsystem so konstruiert ist, dass es die Stellung des Drosselventils überwacht, und das Erfassungs- und Regelsystem so konstruiert ist, dass es, wenn festgestellt wird, dass das Ventil sich jenem Verschiebungswert nähert oder diesen erreicht, den Solltemperaturwert für den Regler der Heizvorrichtung erhöht (beispielsweise durch den Eingang 246), um eine verstärkte Dampferzeugung und einen erhöhten Dampfdruck stromaufwärts von dem Drosselventil zu bewirken und dadurch zu veranlassen, dass die Regelung des Drosselventils bewirkt, dass das Ventil in eine Stellung mit wesentlich niedrigerer Konduktanz zurückkehrt.
  7. Dampfzuführungssystem nach Anspruch 6, mit einer Referenztabelle vorbestimmter Inkremente des Temperaturanstiegs, die für den Betrieb geeignet sind, wobei das Erfassungs- und Regelsystem nach Feststellung, dass das Ventil sich seinem Verschiebungswert nähert oder diesen erreicht, bewirkt, dass die Vaporisatorsolltemperatur auf die nächste Stufe in der Referenztabelle inkrementiert wird.
  8. Dampfzuführungssystem nach einem der vorhergehenden Ansprüche, das so konstruiert und angeordnet ist, dass ionisierbarer Dampf einer Ionenquelle zugeführt wird.
  9. Dampfzuführungssystem nach Anspruch 8, das so konstruiert und angeordnet ist, dass ionisierbarer Dampf der Ionenquelle eines Ionenimplantationsgeräts zugeführt wird.
  10. Dampfzuführungssystem nach einem der vorhergehenden Ansprüche, das so konstruiert und angeordnet ist, dass Dampf einer Vakuumkammer zur Bearbeitung eines Werkstücks zugeführt wird.
  11. Dampfzuführungssystem nach einem der vorhergehenden Ansprüche, das so konstruiert ist, dass es seinen Dampf zu einem Hochvakuum befördert, wobei das System so konstruiert ist, dass es auf eine Abnahme in dem subatmosphärischen Druck stromabwärts von dem Drosselventil (100; 100'; 235; 430) reagiert, um die Temperatur des Vaporisators (28; 145; 205; 400) zu erhöhen.
  12. Dampfzuführungsystem nach einem der vorhergehenden Ansprüche, bei dem das Regelsystem für das Drosselventil einen Hilfsregelkreis umfasst, der die Stellung des Drosselventils (100; 100'; 235; 430) in Reaktion auf das Ausgangssignal des Druckmessers (60; 240; 450) einstellt, um den stromabwärtigen Dampfdruck an dem Druckmesser auf einem Sollwert zu halten.
  13. Verwendung des Dampfzuführungssystems nach einem der vorhergehenden Ansprüche zum Zuführen eines kontrollierten Stromes von aus einem Feststoff sublimiertem Dampf zu einer Vakuumkammer.
  14. Verwendung des Dampfzuführungssystems nach Anspruch 9 oder 10 zum Zuführen eines kontrollierten ionisierbaren Stromes von aus einem Feststoff sublimiertem Dampf zu einer Ionisationskammer, um die Erzeugung eines lonenstrahls in einer Vakuumkammer durchzuführen.
EP20040813385 2003-12-12 2004-12-09 Steuerung des flusses von aus feststoffen sublimierten dämpfen Not-in-force EP1695038B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52934303P 2003-12-12 2003-12-12
PCT/US2004/041060 WO2005060602A2 (en) 2003-12-12 2004-12-09 Controlling the flow of vapors sublimated from solids

Publications (3)

Publication Number Publication Date
EP1695038A2 EP1695038A2 (de) 2006-08-30
EP1695038A4 EP1695038A4 (de) 2009-05-20
EP1695038B1 true EP1695038B1 (de) 2013-02-13

Family

ID=34699965

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04813789A Withdrawn EP1695369A4 (de) 2003-12-12 2004-12-09 Verfahren und vorrichtung zum erweitern der gerätelaufzeit bei der ionenimplantation
EP20040813385 Not-in-force EP1695038B1 (de) 2003-12-12 2004-12-09 Steuerung des flusses von aus feststoffen sublimierten dämpfen

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04813789A Withdrawn EP1695369A4 (de) 2003-12-12 2004-12-09 Verfahren und vorrichtung zum erweitern der gerätelaufzeit bei der ionenimplantation

Country Status (7)

Country Link
US (4) US7820981B2 (de)
EP (2) EP1695369A4 (de)
JP (5) JP4646920B2 (de)
KR (2) KR100883148B1 (de)
CN (2) CN1894763B (de)
TW (2) TWI326102B (de)
WO (2) WO2005059942A2 (de)

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995079B2 (en) * 2003-08-29 2006-02-07 Semiconductor Energy Laboratory Co., Ltd. Ion implantation method and method for manufacturing semiconductor device
US7820981B2 (en) * 2003-12-12 2010-10-26 Semequip, Inc. Method and apparatus for extending equipment uptime in ion implantation
US20080073559A1 (en) * 2003-12-12 2008-03-27 Horsky Thomas N Controlling the flow of vapors sublimated from solids
US7791047B2 (en) * 2003-12-12 2010-09-07 Semequip, Inc. Method and apparatus for extracting ions from an ion source for use in ion implantation
US20080223409A1 (en) * 2003-12-12 2008-09-18 Horsky Thomas N Method and apparatus for extending equipment uptime in ion implantation
US7425353B2 (en) * 2004-01-29 2008-09-16 International Business Machines Corporation Enhancement of magnetic media recording performance using ion irradiation to tailor exchange coupling
WO2006000846A1 (en) * 2004-06-08 2006-01-05 Epispeed S.A. System for low-energy plasma-enhanced chemical vapor deposition
ATE532203T1 (de) * 2004-08-27 2011-11-15 Fei Co Lokalisierte plasmabehandlung
US7819981B2 (en) * 2004-10-26 2010-10-26 Advanced Technology Materials, Inc. Methods for cleaning ion implanter components
GB0505856D0 (en) * 2005-03-22 2005-04-27 Applied Materials Inc Cathode and counter-cathode arrangement in an ion source
US20100112795A1 (en) * 2005-08-30 2010-05-06 Advanced Technology Materials, Inc. Method of forming ultra-shallow junctions for semiconductor devices
CN103170447B (zh) * 2005-08-30 2015-02-18 先进科技材料公司 使用替代的氟化含硼前驱体的硼离子注入和用于注入的大氢化硼的形成
JP2007073235A (ja) * 2005-09-05 2007-03-22 Osaka Univ 蒸発源および外部に蒸気を供給する方法
US7531819B2 (en) * 2005-12-20 2009-05-12 Axcelis Technologies, Inc. Fluorine based cleaning of an ion source
CN101473073B (zh) * 2006-04-26 2012-08-08 高级技术材料公司 半导体加工系统的清洁
US7435971B2 (en) * 2006-05-19 2008-10-14 Axcelis Technologies, Inc. Ion source
EP2026889A4 (de) * 2006-06-12 2011-09-07 Semequip Inc Dampfzufuhr zu vorrichtungen unter vakuum
US8835880B2 (en) * 2006-10-31 2014-09-16 Fei Company Charged particle-beam processing using a cluster source
US7622722B2 (en) 2006-11-08 2009-11-24 Varian Semiconductor Equipment Associates, Inc. Ion implantation device with a dual pumping mode and method thereof
US8013312B2 (en) * 2006-11-22 2011-09-06 Semequip, Inc. Vapor delivery system useful with ion sources and vaporizer for use in such system
US7670964B2 (en) 2007-03-22 2010-03-02 Tokyo Electron Limited Apparatus and methods of forming a gas cluster ion beam using a low-pressure source
JP5016988B2 (ja) * 2007-06-19 2012-09-05 株式会社日立ハイテクノロジーズ 荷電粒子線装置およびその真空立上げ方法
US7875125B2 (en) 2007-09-21 2011-01-25 Semequip, Inc. Method for extending equipment uptime in ion implantation
JP2009084625A (ja) * 2007-09-28 2009-04-23 Tokyo Electron Ltd 原料ガスの供給システム及び成膜装置
JP5710976B2 (ja) * 2007-11-02 2015-04-30 セメクイップ, インコーポレイテッド クラスターボロンの調製方法
JP4288297B1 (ja) 2008-01-09 2009-07-01 三菱重工業株式会社 圧力制御装置および圧力制御方法
CN101307485B (zh) * 2008-01-29 2010-08-18 南京大学 用于半导体材料气相淀积生长系统的氮源离化方法和装置
SG188150A1 (en) * 2008-02-11 2013-03-28 Advanced Tech Materials Ion source cleaning in semiconductor processing systems
WO2010093380A1 (en) * 2009-02-11 2010-08-19 Advanced Technology Materials, Inc. Ion source cleaning in semiconductor processing systems
JP5212465B2 (ja) * 2008-03-31 2013-06-19 富士通セミコンダクター株式会社 半導体装置の製造方法、イオンビームの調整方法及びイオン注入装置
US7759657B2 (en) 2008-06-19 2010-07-20 Axcelis Technologies, Inc. Methods for implanting B22Hx and its ionized lower mass byproducts
US7888662B2 (en) * 2008-06-20 2011-02-15 Varian Semiconductor Equipment Associates, Inc. Ion source cleaning method and apparatus
JP4428467B1 (ja) * 2008-08-27 2010-03-10 日新イオン機器株式会社 イオン源
JP5390330B2 (ja) * 2008-10-16 2014-01-15 キヤノンアネルバ株式会社 基板処理装置およびそのクリーニング方法
US8525419B2 (en) * 2008-11-25 2013-09-03 Oregon Physics, Llc High voltage isolation and cooling for an inductively coupled plasma ion source
US8501624B2 (en) 2008-12-04 2013-08-06 Varian Semiconductor Equipment Associates, Inc. Excited gas injection for ion implant control
JP5891341B2 (ja) * 2009-01-13 2016-03-23 ヘルスセンシング株式会社 プラズマ生成装置及び方法
US8466431B2 (en) * 2009-02-12 2013-06-18 Varian Semiconductor Equipment Associates, Inc. Techniques for improving extracted ion beam quality using high-transparency electrodes
US8536522B2 (en) * 2009-05-29 2013-09-17 Micromass Uk Limited Mass spectrometer
US8487239B2 (en) * 2009-05-29 2013-07-16 Micromass Uk Limited Mass spectrometer
US8119981B2 (en) * 2009-05-29 2012-02-21 Micromass Uk Limited Mass spectrometer
US8003959B2 (en) * 2009-06-26 2011-08-23 Varian Semiconductor Equipment Associates, Inc. Ion source cleaning end point detection
US20110021011A1 (en) 2009-07-23 2011-01-27 Advanced Technology Materials, Inc. Carbon materials for carbon implantation
KR101084275B1 (ko) * 2009-09-22 2011-11-16 삼성모바일디스플레이주식회사 소스 가스 공급 유닛, 이를 구비하는 증착 장치 및 방법
US9627180B2 (en) * 2009-10-01 2017-04-18 Praxair Technology, Inc. Method for ion source component cleaning
JP5919195B2 (ja) 2009-10-27 2016-05-18 インテグリス・インコーポレーテッド イオン注入システムおよび方法
US8598022B2 (en) 2009-10-27 2013-12-03 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
US20110108058A1 (en) * 2009-11-11 2011-05-12 Axcelis Technologies, Inc. Method and apparatus for cleaning residue from an ion source component
US20110143527A1 (en) * 2009-12-14 2011-06-16 Varian Semiconductor Equipment Associates, Inc. Techniques for generating uniform ion beam
US8987678B2 (en) 2009-12-30 2015-03-24 Fei Company Encapsulation of electrodes in solid media
US8642974B2 (en) 2009-12-30 2014-02-04 Fei Company Encapsulation of electrodes in solid media for use in conjunction with fluid high voltage isolation
EP2341525B1 (de) 2009-12-30 2013-10-23 FEI Company Plasmaquelle für ein Teilchenstrahlsystem
WO2011088061A2 (en) 2010-01-14 2011-07-21 Advanced Technology Materials, Inc. Ventilation gas management systems and processes
US8779383B2 (en) 2010-02-26 2014-07-15 Advanced Technology Materials, Inc. Enriched silicon precursor compositions and apparatus and processes for utilizing same
TWI689467B (zh) 2010-02-26 2020-04-01 美商恩特葛瑞斯股份有限公司 用以增進離子植入系統中之離子源的壽命及性能之方法與設備
US8455839B2 (en) * 2010-03-10 2013-06-04 Varian Semiconductor Equipment Associates, Inc. Cleaning of an extraction aperture of an ion source
US8071956B2 (en) * 2010-03-10 2011-12-06 Varian Semiconductor Equipment Associates, Inc. Cleaning of an extraction aperture of an ion source
KR101898597B1 (ko) * 2010-09-15 2018-09-14 프랙스에어 테크놀로지, 인코포레이티드 이온 소스의 수명 연장 방법
CN102446685A (zh) * 2010-10-13 2012-05-09 北京中科信电子装备有限公司 一种离子源坩埚控制方法
SG190729A1 (en) * 2010-11-30 2013-07-31 Advanced Tech Materials Ion implanter system including remote dopant source, and method comprising same
US8997775B2 (en) 2011-05-24 2015-04-07 Rohm And Haas Electronic Materials Llc Vapor delivery device, methods of manufacture and methods of use thereof
US8776821B2 (en) 2011-05-24 2014-07-15 Rohm And Haas Electronic Materials Llc Vapor delivery device, methods of manufacture and methods of use thereof
JP5665679B2 (ja) * 2011-07-14 2015-02-04 住友重機械工業株式会社 不純物導入層形成装置及び静電チャック保護方法
JP5687157B2 (ja) * 2011-08-22 2015-03-18 株式会社日立ハイテクノロジーズ 電子銃、電界放出電子銃、荷電粒子線装置および透過型電子顕微鏡
JP5801144B2 (ja) * 2011-08-30 2015-10-28 株式会社東芝 イオン源
US20130098871A1 (en) 2011-10-19 2013-04-25 Fei Company Internal Split Faraday Shield for an Inductively Coupled Plasma Source
US9151731B2 (en) * 2012-01-19 2015-10-06 Idexx Laboratories Inc. Fluid pressure control device for an analyzer
KR20220025123A (ko) 2012-02-14 2022-03-03 엔테그리스, 아이엔씨. 주입 빔 및 소스 수명 성능 개선을 위한 탄소 도판트 기체 및 동축류
WO2013123140A1 (en) 2012-02-14 2013-08-22 Advanced Technology Materials, Inc. Alternate materials and mixtures to minimize phosphorus buildup in implant applications
US9120111B2 (en) 2012-02-24 2015-09-01 Rain Bird Corporation Arc adjustable rotary sprinkler having full-circle operation and automatic matched precipitation
US9093372B2 (en) * 2012-03-30 2015-07-28 Varian Semiconductor Equipment Associates, Inc. Technique for processing a substrate
US9711324B2 (en) * 2012-05-31 2017-07-18 Axcelis Technologies, Inc. Inert atmospheric pressure pre-chill and post-heat
US9105438B2 (en) * 2012-05-31 2015-08-11 Fei Company Imaging and processing for plasma ion source
JP5868796B2 (ja) * 2012-07-03 2016-02-24 株式会社堀場エステック 圧力制御装置、流量制御装置、及び、圧力制御装置用プログラム、流量制御装置用プログラム
US9156043B2 (en) 2012-07-13 2015-10-13 Rain Bird Corporation Arc adjustable rotary sprinkler with automatic matched precipitation
US9243325B2 (en) 2012-07-18 2016-01-26 Rohm And Haas Electronic Materials Llc Vapor delivery device, methods of manufacture and methods of use thereof
US9530615B2 (en) 2012-08-07 2016-12-27 Varian Semiconductor Equipment Associates, Inc. Techniques for improving the performance and extending the lifetime of an ion source
US9655223B2 (en) 2012-09-14 2017-05-16 Oregon Physics, Llc RF system, magnetic filter, and high voltage isolation for an inductively coupled plasma ion source
US9062377B2 (en) * 2012-10-05 2015-06-23 Varian Semiconductor Equipment Associates, Inc. Reducing glitching in an ion implanter
JP2014137901A (ja) * 2013-01-16 2014-07-28 Nissin Ion Equipment Co Ltd イオン注入装置およびイオン注入装置の運転方法
JP2014176838A (ja) * 2013-02-14 2014-09-25 Fujifilm Corp 昇華精製装置
GB2518122B (en) * 2013-02-19 2018-08-08 Markes International Ltd An electron ionisation apparatus
US9443700B2 (en) * 2013-03-12 2016-09-13 Applied Materials, Inc. Electron beam plasma source with segmented suppression electrode for uniform plasma generation
JP5950855B2 (ja) * 2013-03-19 2016-07-13 住友重機械イオンテクノロジー株式会社 イオン注入装置およびイオン注入装置のクリーニング方法
US9142392B2 (en) * 2013-04-29 2015-09-22 Varian Semiconductor Equipment Associates, Inc. Self-cleaning radio frequency plasma source
US9187832B2 (en) * 2013-05-03 2015-11-17 Varian Semiconductor Equipment Associates, Inc. Extended lifetime ion source
US10221476B2 (en) * 2013-06-03 2019-03-05 Varian Semiconductor Equipment Associates, Inc. Coating insulating materials for improved life
KR102306410B1 (ko) 2013-08-16 2021-09-28 엔테그리스, 아이엔씨. 기재내 규소 주입 및 이를 위한 규소 전구체 조성물의 제공
CN104913805A (zh) * 2014-03-11 2015-09-16 上海华虹宏力半导体制造有限公司 一种提高离子注入机日常检点稳定性的方法
CN103925380B (zh) * 2014-03-20 2017-01-04 上海华力微电子有限公司 一种优化等离子体均匀性的压力控制阀门及方法
DE102014007522A1 (de) * 2014-05-23 2015-11-26 Manz Ag Trägeranordnung für eine Verdampferquelle
US9214318B1 (en) * 2014-07-25 2015-12-15 International Business Machines Corporation Electromagnetic electron reflector
TWI594301B (zh) * 2014-08-25 2017-08-01 漢辰科技股份有限公司 離子佈植方法與離子佈植機
CN107078009B (zh) * 2014-09-01 2019-04-12 恩特格里斯公司 利用增强源技术进行磷或砷离子植入
WO2016036739A1 (en) 2014-09-05 2016-03-10 Tel Epion Inc. Process gas enhancement for beam treatment of a substrate
TWI607492B (zh) * 2014-11-14 2017-12-01 漢辰科技股份有限公司 離子佈植過程中控制壓力的方法及其離子佈植裝置
CN105702546B (zh) * 2014-11-24 2018-06-26 上海凯世通半导体股份有限公司 采用固态掺杂剂的离子源装置
TWI559355B (zh) * 2014-12-23 2016-11-21 漢辰科技股份有限公司 離子源
US10522330B2 (en) * 2015-06-12 2019-12-31 Varian Semiconductor Equipment Associates, Inc. In-situ plasma cleaning of process chamber components
KR20170004381A (ko) * 2015-07-02 2017-01-11 삼성전자주식회사 불순물 영역을 포함하는 반도체 장치의 제조 방법
CN105155625B (zh) * 2015-08-17 2017-03-01 南方中金环境股份有限公司 一种无负压压力补偿供水设备
US10774419B2 (en) * 2016-06-21 2020-09-15 Axcelis Technologies, Inc Implantation using solid aluminum iodide (ALI3) for producing atomic aluminum ions and in situ cleaning of aluminum iodide and associated by-products
US9928983B2 (en) * 2016-06-30 2018-03-27 Varian Semiconductor Equipment Associates, Inc. Vaporizer for ion source
US10730082B2 (en) * 2016-10-26 2020-08-04 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for differential in situ cleaning
US9916966B1 (en) * 2017-01-26 2018-03-13 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for minimizing thermal distortion in electrodes used with ion sources
CN207458886U (zh) * 2017-06-16 2018-06-05 上海凯世通半导体股份有限公司 束流比例检测装置
US10597773B2 (en) * 2017-08-22 2020-03-24 Praxair Technology, Inc. Antimony-containing materials for ion implantation
TWI795448B (zh) * 2017-10-09 2023-03-11 美商艾克塞利斯科技公司 用於在角能量過濾器區域中穩定或移除射束線組件上所形成之膜的離子植入系統及方法
JP6514425B1 (ja) * 2017-10-18 2019-05-15 株式会社アルバック イオン源及びイオン注入装置
US10535499B2 (en) * 2017-11-03 2020-01-14 Varian Semiconductor Equipment Associates, Inc. Varied component density for thermal isolation
CN107941700B (zh) * 2017-11-24 2020-08-28 哈尔滨工业大学 一种用于在实验室中进行临近空间、大气层外的宽光谱定向耦合光学系统模拟仿真的红外暗室
CN108225854B (zh) * 2017-12-29 2020-03-31 江苏汇环环保科技有限公司 一种voc在线监测双泵负压进样系统
US10847339B2 (en) * 2018-01-22 2020-11-24 Axcelis Technologies, Inc. Hydrogen generator for an ion implanter
US10613006B1 (en) 2018-09-24 2020-04-07 Mustang Sampling, LLC. Liquid vaporization device and method
KR102252302B1 (ko) * 2018-11-09 2021-05-17 주식회사 레이크머티리얼즈 고순도 반도체용 승화장치
CN111192808A (zh) * 2018-11-15 2020-05-22 北京中科信电子装备有限公司 一种固态源自动引束的方法
US10573485B1 (en) * 2018-12-20 2020-02-25 Axcelis Technologies, Inc. Tetrode extraction apparatus for ion source
US11600473B2 (en) * 2019-03-13 2023-03-07 Applied Materials, Inc. Ion source with biased extraction plate
KR20240026251A (ko) * 2019-03-25 2024-02-27 아토나프 가부시키가이샤 가스 분석 장치
TWI693656B (zh) * 2019-04-25 2020-05-11 晨碩國際有限公司 離子佈植機用之供氣系統
US11788190B2 (en) * 2019-07-05 2023-10-17 Asm Ip Holding B.V. Liquid vaporizer
JP7256711B2 (ja) * 2019-07-16 2023-04-12 住友重機械イオンテクノロジー株式会社 イオン生成装置およびイオン注入装置
CN110571121B (zh) * 2019-09-17 2022-08-26 江苏鲁汶仪器有限公司 采用远程等离子体源自清洗离子束刻蚀装置及清洗方法
US11946136B2 (en) * 2019-09-20 2024-04-02 Asm Ip Holding B.V. Semiconductor processing device
US11170973B2 (en) * 2019-10-09 2021-11-09 Applied Materials, Inc. Temperature control for insertable target holder for solid dopant materials
CN111370286B (zh) * 2020-03-24 2023-02-07 中国科学院近代物理研究所 一种用于治疗装备的等离子体源及其使用方法
CN111575652A (zh) * 2020-04-02 2020-08-25 上海大学 真空镀膜设备及真空镀膜方法
JP2022084409A (ja) * 2020-11-26 2022-06-07 株式会社島津製作所 真空バルブおよび推定装置
CN114688457B (zh) * 2020-12-29 2024-05-14 中微半导体设备(上海)股份有限公司 一种等离子体处理装置气体供应系统
CN113187019A (zh) * 2021-04-30 2021-07-30 上海麦玺隆机械科技有限公司 一种立式无负压净化水稳流罐
US11664183B2 (en) 2021-05-05 2023-05-30 Applied Materials, Inc. Extended cathode and repeller life by active management of halogen cycle
US11854760B2 (en) 2021-06-21 2023-12-26 Applied Materials, Inc. Crucible design for liquid metal in an ion source
JP7317083B2 (ja) * 2021-09-01 2023-07-28 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法
US11985756B2 (en) * 2021-10-20 2024-05-14 Applied Materials, Inc. Linear accelerator coil including multiple fluid channels
US20230130079A1 (en) * 2021-10-27 2023-04-27 Entegris, Inc. High vapor pressure delivery system
WO2023094113A1 (en) * 2021-11-24 2023-06-01 Asml Netherlands B.V. Systems and structures for venting and flow conditioning operations in inspection systems
US20240145228A1 (en) * 2022-10-28 2024-05-02 Thermo Finnigan Llc Ion sources for improved robustness
CN116360531B (zh) * 2023-03-13 2024-01-23 艾氢技术(苏州)有限公司 一种基于固体氢的酸性水溶液浸泡反应装置控制系统

Family Cites Families (199)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105916A (en) * 1977-02-28 1978-08-08 Extranuclear Laboratories, Inc. Methods and apparatus for simultaneously producing and electronically separating the chemical ionization mass spectrum and the electron impact ionization mass spectrum of the same sample material
FR2412939A1 (fr) 1977-12-23 1979-07-20 Anvar Implanteur d'ions a fort courant
GB2079035A (en) 1980-06-10 1982-01-13 Philips Electronic Associated Deflection system for charged-particle beam
US4412900A (en) 1981-03-13 1983-11-01 Hitachi, Ltd. Method of manufacturing photosensors
DE3376921D1 (en) * 1982-09-10 1988-07-07 Nippon Telegraph & Telephone Ion shower apparatus
JPS59142839A (ja) 1983-02-01 1984-08-16 Canon Inc 気相法装置のクリ−ニング方法
EP0140975A4 (de) 1983-03-18 1988-01-07 Matsushita Electric Ind Co Ltd Reaktive ion-ätzanordnung.
US4697069A (en) * 1983-08-22 1987-09-29 Ingo Bleckmann Tubular heater with an overload safety means
US4512812A (en) 1983-09-22 1985-04-23 Varian Associates, Inc. Method for reducing phosphorous contamination in a vacuum processing chamber
US4619844A (en) 1985-01-22 1986-10-28 Fairchild Camera Instrument Corp. Method and apparatus for low pressure chemical vapor deposition
US4665315A (en) 1985-04-01 1987-05-12 Control Data Corporation Method and apparatus for in-situ plasma cleaning of electron beam optical systems
US4657616A (en) 1985-05-17 1987-04-14 Benzing Technologies, Inc. In-situ CVD chamber cleaner
US4640221A (en) 1985-10-30 1987-02-03 International Business Machines Corporation Vacuum deposition system with improved mass flow control
US4703183A (en) 1985-12-05 1987-10-27 Eaton Corporation Ion implantation chamber purification method and apparatus
JPH0711072B2 (ja) 1986-04-04 1995-02-08 株式会社日立製作所 イオン源装置
US4786352A (en) 1986-09-12 1988-11-22 Benzing Technologies, Inc. Apparatus for in-situ chamber cleaning
JPS63126225A (ja) * 1986-11-15 1988-05-30 Nissin Electric Co Ltd エツチング装置
US4960488A (en) 1986-12-19 1990-10-02 Applied Materials, Inc. Reactor chamber self-cleaning process
US5158644A (en) 1986-12-19 1992-10-27 Applied Materials, Inc. Reactor chamber self-cleaning process
US4723967A (en) 1987-04-27 1988-02-09 Advanced Technology Materials, Inc. Valve block and container for semiconductor source reagent dispensing and/or purification
US4738693A (en) 1987-04-27 1988-04-19 Advanced Technology Materials, Inc. Valve block and container for semiconductor source reagent dispensing and/or purification
JPH01225117A (ja) * 1988-03-04 1989-09-08 Nippon Telegr & Teleph Corp <Ntt> 半導体装置の製造方法及びその製造装置
GB2216714B (en) 1988-03-11 1992-10-14 Ulvac Corp Ion implanter system
JPH02162638A (ja) * 1988-12-16 1990-06-22 Hitachi Ltd イオン源電極の加熱
US4958078A (en) 1989-01-05 1990-09-18 The University Of Michigan Large aperture ion-optical lens system
US5028791A (en) 1989-02-16 1991-07-02 Tokyo Electron Ltd. Electron beam excitation ion source
GB2230644B (en) 1989-02-16 1994-03-23 Tokyo Electron Ltd Electron beam excitation ion source
US5186120A (en) 1989-03-22 1993-02-16 Mitsubishi Denki Kabushiki Kaisha Mixture thin film forming apparatus
JP2873693B2 (ja) 1989-05-25 1999-03-24 東京エレクトロン株式会社 イオン源
US5429070A (en) 1989-06-13 1995-07-04 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5132545A (en) 1989-08-17 1992-07-21 Mitsubishi Denki Kabushiki Kaisha Ion implantation apparatus
JPH03130368A (ja) 1989-09-22 1991-06-04 Applied Materials Inc 半導体ウェーハプロセス装置の洗浄方法
US5101110A (en) 1989-11-14 1992-03-31 Tokyo Electron Limited Ion generator
JP2819420B2 (ja) 1989-11-20 1998-10-30 東京エレクトロン株式会社 イオン源
KR0148385B1 (ko) 1990-01-30 1998-10-15 이노우에 키요시 이온 발생장치
US5362328A (en) 1990-07-06 1994-11-08 Advanced Technology Materials, Inc. Apparatus and method for delivering reagents in vapor form to a CVD reactor, incorporating a cleaning subsystem
JPH04112441A (ja) 1990-08-31 1992-04-14 Toshiba Corp イオン注入装置及びそのクリーニング方法
NL9002164A (nl) * 1990-10-05 1992-05-06 Philips Nv Werkwijze voor het voorzien van een substraat van een oppervlaktelaag vanuit een damp en een inrichting voor het toepassen van een dergelijke werkwijze.
US5832177A (en) 1990-10-05 1998-11-03 Fujitsu Limited Method for controlling apparatus for supplying steam for ashing process
DE4108462C2 (de) * 1991-03-13 1994-10-13 Bruker Franzen Analytik Gmbh Verfahren und Vorrichtung zum Erzeugen von Ionen aus thermisch instabilen, nichtflüchtigen großen Molekülen
US5206516A (en) 1991-04-29 1993-04-27 International Business Machines Corporation Low energy, steered ion beam deposition system having high current at low pressure
US5262652A (en) 1991-05-14 1993-11-16 Applied Materials, Inc. Ion implantation apparatus having increased source lifetime
JP2567099Y2 (ja) 1991-06-07 1998-03-30 山形日本電気株式会社 ガス供給装置
US5466942A (en) 1991-07-04 1995-11-14 Kabushiki Kaisha Toshiba Charged beam irradiating apparatus having a cleaning means and a method of cleaning a charged beam irradiating apparatus
JP3253675B2 (ja) 1991-07-04 2002-02-04 株式会社東芝 荷電ビーム照射装置及び方法
US5216330A (en) 1992-01-14 1993-06-01 Honeywell Inc. Ion beam gun
US5443686A (en) 1992-01-15 1995-08-22 International Business Machines Corporation Inc. Plasma CVD apparatus and processes
JPH06176724A (ja) 1992-01-23 1994-06-24 Tokyo Electron Ltd イオン源装置
DE4202158C1 (de) 1992-01-27 1993-07-22 Siemens Ag, 8000 Muenchen, De
US5466929A (en) 1992-02-21 1995-11-14 Hitachi, Ltd. Apparatus and method for suppressing electrification of sample in charged beam irradiation apparatus
US5306921A (en) 1992-03-02 1994-04-26 Tokyo Electron Limited Ion implantation system using optimum magnetic field for concentrating ions
US5369279A (en) 1992-06-04 1994-11-29 Martin; Frederick W. Chromatically compensated particle-beam column
US5368667A (en) * 1993-01-29 1994-11-29 Alliedsignal Inc. Preparation of devices that include a thin ceramic layer
US5350926A (en) 1993-03-11 1994-09-27 Diamond Semiconductor Group, Inc. Compact high current broad beam ion implanter
DE69420474T2 (de) 1993-06-30 2000-05-18 Applied Materials Inc Verfahren zum Spülen und Auspumpen einer Vakuumkammer bis Ultra-Hoch-Vakuum
US5354698A (en) 1993-07-19 1994-10-11 Micron Technology, Inc. Hydrogen reduction method for removing contaminants in a semiconductor ion implantation process
US5486235A (en) 1993-08-09 1996-01-23 Applied Materials, Inc. Plasma dry cleaning of semiconductor processing chambers
US5616208A (en) 1993-09-17 1997-04-01 Tokyo Electron Limited Vacuum processing apparatus, vacuum processing method, and method for cleaning the vacuum processing apparatus
EP0648861A1 (de) 1993-10-15 1995-04-19 Applied Materials, Inc. Anlage zur Behandlung von Halbleitern
US5451258A (en) * 1994-05-11 1995-09-19 Materials Research Corporation Apparatus and method for improved delivery of vaporized reactant gases to a reaction chamber
US5514246A (en) 1994-06-02 1996-05-07 Micron Technology, Inc. Plasma reactors and method of cleaning a plasma reactor
EP0697467A1 (de) 1994-07-21 1996-02-21 Applied Materials, Inc. Verfahren und Vorrichtung zur Reinigung einer Beschichtungskammer
US5466941A (en) * 1994-07-27 1995-11-14 Kim; Seong I. Negative ion sputtering beam source
US5489550A (en) * 1994-08-09 1996-02-06 Texas Instruments Incorporated Gas-phase doping method using germanium-containing additive
US5497006A (en) 1994-11-15 1996-03-05 Eaton Corporation Ion generating source for use in an ion implanter
JP3609131B2 (ja) * 1994-12-06 2005-01-12 株式会社半導体エネルギー研究所 イオンドーピング装置のクリーニング方法
JPH08212965A (ja) 1995-01-31 1996-08-20 Ulvac Japan Ltd イオン注入装置
US5700327A (en) 1995-03-10 1997-12-23 Polar Materials, Incorporated Method for cleaning hollow articles with plasma
JPH08290964A (ja) * 1995-04-20 1996-11-05 Sumitomo Chem Co Ltd 誘電体組成物、その製造方法およびその用途
NL1000677C2 (nl) * 1995-06-28 1996-12-31 Combis B V Inrichting geschikt voor het toevoeren van een gasvormige brandstof aan een verbrandingsmotor, alsmede verdamper, doseerinrichting, processor en drukregelinrichting geschikt voor een dergelijke inrichting.
US5714738A (en) 1995-07-10 1998-02-03 Watlow Electric Manufacturing Co. Apparatus and methods of making and using heater apparatus for heating an object having two-dimensional or three-dimensional curvature
US5554854A (en) 1995-07-17 1996-09-10 Eaton Corporation In situ removal of contaminants from the interior surfaces of an ion beam implanter
US5633506A (en) 1995-07-17 1997-05-27 Eaton Corporation Method and apparatus for in situ removal of contaminants from ion beam neutralization and implantation apparatuses
GB9515090D0 (en) * 1995-07-21 1995-09-20 Applied Materials Inc An ion beam apparatus
GB2343546B (en) 1995-11-08 2000-06-21 Applied Materials Inc An ion implanter with deceleration lens assembly
GB2307592B (en) 1995-11-23 1999-11-10 Applied Materials Inc Ion implantation apparatus withimproved post mass selection deceleration
US5691537A (en) * 1996-01-22 1997-11-25 Chen; John Method and apparatus for ion beam transport
JPH09298171A (ja) 1996-05-08 1997-11-18 Tokyo Electron Ltd 処理ガスの供給方法及びその装置
US5993766A (en) 1996-05-20 1999-11-30 Advanced Technology Materials, Inc. Gas source and dispensing system
US5674574A (en) 1996-05-20 1997-10-07 Micron Technology, Inc. Vapor delivery system for solid precursors and method regarding same
US5661308A (en) 1996-05-30 1997-08-26 Eaton Corporation Method and apparatus for ion formation in an ion implanter
GB2314202B (en) 1996-06-14 2000-08-09 Applied Materials Inc Ion implantation apparatus and a method of monitoring high energy neutral contamination in an ion implantation process
US5883364A (en) 1996-08-26 1999-03-16 Frei; Rob A. Clean room heating jacket and grounded heating element therefor
US5788778A (en) 1996-09-16 1998-08-04 Applied Komatsu Technology, Inc. Deposition chamber cleaning technique using a high power remote excitation source
JPH10106478A (ja) * 1996-10-02 1998-04-24 Tokyo Electron Ltd イオン注入装置
US5824375A (en) 1996-10-24 1998-10-20 Applied Materials, Inc. Decontamination of a plasma reactor using a plasma after a chamber clean
JP3503366B2 (ja) * 1996-10-25 2004-03-02 日新電機株式会社 イオン源装置
JP3749924B2 (ja) 1996-12-03 2006-03-01 富士通株式会社 イオン注入方法および半導体装置の製造方法
US5887117A (en) * 1997-01-02 1999-03-23 Sharp Kabushiki Kaisha Flash evaporator
US6338312B2 (en) 1998-04-15 2002-01-15 Advanced Technology Materials, Inc. Integrated ion implant scrubber system
US5883416A (en) * 1997-01-31 1999-03-16 Megamos Corporation Gate-contact structure to prevent contact metal penetration through gate layer without affecting breakdown voltage
US5843239A (en) 1997-03-03 1998-12-01 Applied Materials, Inc. Two-step process for cleaning a substrate processing chamber
US5780863A (en) 1997-04-29 1998-07-14 Eaton Corporation Accelerator-decelerator electrostatic lens for variably focusing and mass resolving an ion beam in an ion implanter
US5940724A (en) 1997-04-30 1999-08-17 International Business Machines Corporation Method for extended ion implanter source lifetime
GB2325561B (en) 1997-05-20 2001-10-17 Applied Materials Inc Apparatus for and methods of implanting desired chemical species in semiconductor substrates
US5882416A (en) 1997-06-19 1999-03-16 Advanced Technology Materials, Inc. Liquid delivery system, heater apparatus for liquid delivery system, and vaporizer
US6727102B1 (en) * 1997-06-20 2004-04-27 Leuven Research & Development Vzw Assays, antibodies, and standards for detection of oxidized and MDA-modified low density lipoproteins
US6150628A (en) 1997-06-26 2000-11-21 Applied Science And Technology, Inc. Toroidal low-field reactive gas source
JP3449198B2 (ja) 1997-10-22 2003-09-22 日新電機株式会社 イオン注入装置
JP3627206B2 (ja) 1997-11-28 2005-03-09 住友イートンノバ株式会社 イオン注入装置及びイオン注入方法
US6271529B1 (en) 1997-12-01 2001-08-07 Ebara Corporation Ion implantation with charge neutralization
US6184532B1 (en) 1997-12-01 2001-02-06 Ebara Corporation Ion source
US6143084A (en) 1998-03-19 2000-11-07 Applied Materials, Inc. Apparatus and method for generating plasma
US6135128A (en) * 1998-03-27 2000-10-24 Eaton Corporation Method for in-process cleaning of an ion source
US6161398A (en) 1998-04-09 2000-12-19 Lucent Technologies, Inc. Methods of and systems for vapor delivery control in optical preform manufacture
US6335534B1 (en) 1998-04-17 2002-01-01 Kabushiki Kaisha Toshiba Ion implantation apparatus, ion generating apparatus and semiconductor manufacturing method with ion implantation processes
US6620256B1 (en) 1998-04-28 2003-09-16 Advanced Technology Materials, Inc. Non-plasma in-situ cleaning of processing chambers using static flow methods
US6107634A (en) * 1998-04-30 2000-08-22 Eaton Corporation Decaborane vaporizer
JPH11329336A (ja) * 1998-05-11 1999-11-30 Nissin Electric Co Ltd イオン注入装置
DE69903539T2 (de) 1998-05-22 2003-06-12 Varian Semiconductor Equipment Verfahren und vorrichtung zur implantation mit ionen niedriger energie
US6130436A (en) 1998-06-02 2000-10-10 Varian Semiconductor Equipment Associates, Inc. Acceleration and analysis architecture for ion implanter
US6060034A (en) 1998-06-02 2000-05-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Abatement system for ClF3 containing exhaust gases
GB9813327D0 (en) 1998-06-19 1998-08-19 Superion Ltd Apparatus and method relating to charged particles
BR9910387A (pt) * 1998-07-02 2006-08-15 Montell Technology Company Bv processo para preparação de polìmeros alfa-olefinos substancialmente amorfos e composições contendo ele e processo para preparação de ligações em ponte, filme e artigos obtidos da composição
US6094012A (en) * 1998-11-06 2000-07-25 The Regents Of The University Of California Low energy spread ion source with a coaxial magnetic filter
US6355933B1 (en) 1999-01-13 2002-03-12 Advanced Micro Devices, Inc. Ion source and method for using same
US6464891B1 (en) 1999-03-17 2002-10-15 Veeco Instruments, Inc. Method for repetitive ion beam processing with a carbon containing ion beam
US6155289A (en) 1999-05-07 2000-12-05 International Business Machines Method of and system for sub-atmospheric gas delivery with backflow control
JP2000350970A (ja) * 1999-05-10 2000-12-19 Eaton Corp イオン注入装置における汚染された表面を洗浄するための方法および装置
US6221169B1 (en) 1999-05-10 2001-04-24 Axcelis Technologies, Inc. System and method for cleaning contaminated surfaces in an ion implanter
US6259105B1 (en) 1999-05-10 2001-07-10 Axcelis Technologies, Inc. System and method for cleaning silicon-coated surfaces in an ion implanter
JP2000323051A (ja) * 1999-05-17 2000-11-24 Nissin Electric Co Ltd イオン源装置
US6441382B1 (en) 1999-05-21 2002-08-27 Axcelis Technologies, Inc. Deceleration electrode configuration for ultra-low energy ion implanter
JP4182535B2 (ja) 1999-05-27 2008-11-19 株式会社Ihi セルフクリ−ニングイオンドーピング装置およびその方法
US6423976B1 (en) 1999-05-28 2002-07-23 Applied Materials, Inc. Ion implanter and a method of implanting ions
US6885812B2 (en) 2003-03-06 2005-04-26 Mks Instruments, Inc. System and method for heating solid or vapor source vessels and flow paths
US6178925B1 (en) 1999-09-29 2001-01-30 Advanced Technology Materials, Inc. Burst pulse cleaning method and apparatus for liquid delivery system
US6288403B1 (en) * 1999-10-11 2001-09-11 Axcelis Technologies, Inc. Decaborane ionizer
US6486069B1 (en) * 1999-12-03 2002-11-26 Tegal Corporation Cobalt silicide etch process and apparatus
TW522214B (en) 1999-12-08 2003-03-01 Usui International Industry Temperature adjusting device for thermal fluid medium
TW521295B (en) 1999-12-13 2003-02-21 Semequip Inc Ion implantation ion source, system and method
US7838842B2 (en) * 1999-12-13 2010-11-23 Semequip, Inc. Dual mode ion source for ion implantation
US6452338B1 (en) * 1999-12-13 2002-09-17 Semequip, Inc. Electron beam ion source with integral low-temperature vaporizer
US20070107841A1 (en) 2000-12-13 2007-05-17 Semequip, Inc. Ion implantation ion source, system and method
JP2001183233A (ja) * 1999-12-27 2001-07-06 Advantest Corp 分光器および分光方法
DE10008829B4 (de) 2000-02-25 2005-06-23 Steag Rtp Systems Gmbh Verfahren zum Entfernen von adsorbierten Molekülen aus einer Kammer
US6710358B1 (en) 2000-02-25 2004-03-23 Advanced Ion Beam Technology, Inc. Apparatus and method for reducing energy contamination of low energy ion beams
US6946667B2 (en) 2000-03-01 2005-09-20 Advanced Ion Beam Technology, Inc. Apparatus to decelerate and control ion beams to improve the total quality of ion implantation
US6489622B1 (en) 2000-03-01 2002-12-03 Advanced Ion Beam Technology, Inc. Apparatus for decelerating ion beams with minimal energy contamination
US6894245B2 (en) * 2000-03-17 2005-05-17 Applied Materials, Inc. Merie plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression
JP3339492B2 (ja) * 2000-05-10 2002-10-28 日新電機株式会社 イオン源の運転方法およびイオンビーム照射装置
US6885014B2 (en) 2002-05-01 2005-04-26 Axcelis Technologies, Inc. Symmetric beamline and methods for generating a mass-analyzed ribbon ion beam
US6703628B2 (en) 2000-07-25 2004-03-09 Axceliss Technologies, Inc Method and system for ion beam containment in an ion beam guide
US6583544B1 (en) 2000-08-07 2003-06-24 Axcelis Technologies, Inc. Ion source having replaceable and sputterable solid source material
US6939434B2 (en) * 2000-08-11 2005-09-06 Applied Materials, Inc. Externally excited torroidal plasma source with magnetic control of ion distribution
US6476399B1 (en) 2000-09-01 2002-11-05 Axcelis Technologies, Inc. System and method for removing contaminant particles relative to an ion beam
US6639227B1 (en) 2000-10-18 2003-10-28 Applied Materials, Inc. Apparatus and method for charged particle filtering and ion implantation
US6559462B1 (en) 2000-10-31 2003-05-06 International Business Machines Corporation Method to reduce downtime while implanting GeF4
US7064491B2 (en) 2000-11-30 2006-06-20 Semequip, Inc. Ion implantation system and control method
CN100385605C (zh) * 2000-11-30 2008-04-30 赛米奎珀公司 离子注入系统及离子源
US6617593B2 (en) 2000-12-04 2003-09-09 Intel Corporation Ion implantation system
US6479828B2 (en) 2000-12-15 2002-11-12 Axcelis Tech Inc Method and system for icosaborane implantation
TW523796B (en) 2000-12-28 2003-03-11 Axcelis Tech Inc Method and apparatus for improved ion acceleration in an ion implantation system
US6852242B2 (en) 2001-02-23 2005-02-08 Zhi-Wen Sun Cleaning of multicompositional etchant residues
US6545419B2 (en) 2001-03-07 2003-04-08 Advanced Technology Materials, Inc. Double chamber ion implantation system
US6670623B2 (en) * 2001-03-07 2003-12-30 Advanced Technology Materials, Inc. Thermal regulation of an ion implantation system
US6601397B2 (en) 2001-03-16 2003-08-05 Copeland Corporation Digital scroll condensing unit controller
US6452198B1 (en) 2001-06-28 2002-09-17 Advanced Micro Devices, Inc. Minimized contamination of semiconductor wafers within an implantation system
US20030030010A1 (en) 2001-08-07 2003-02-13 Perel Alexander S. Decaborane vaporizer having improved vapor flow
US6772776B2 (en) 2001-09-18 2004-08-10 Euv Llc Apparatus for in situ cleaning of carbon contaminated surfaces
US6701066B2 (en) * 2001-10-11 2004-03-02 Micron Technology, Inc. Delivery of solid chemical precursors
GB0128913D0 (en) * 2001-12-03 2002-01-23 Applied Materials Inc Improvements in ion sources for ion implantation apparatus
US20030111014A1 (en) 2001-12-18 2003-06-19 Donatucci Matthew B. Vaporizer/delivery vessel for volatile/thermally sensitive solid and liquid compounds
US6664547B2 (en) 2002-05-01 2003-12-16 Axcelis Technologies, Inc. Ion source providing ribbon beam with controllable density profile
GB2425399B (en) * 2002-05-31 2007-03-14 Waters Investments Ltd A high speed combination multi-mode ionization source for mass spectrometers
US6712084B2 (en) * 2002-06-24 2004-03-30 Mks Instruments, Inc. Apparatus and method for pressure fluctuation insensitive mass flow control
US6686595B2 (en) * 2002-06-26 2004-02-03 Semequip Inc. Electron impact ion source
US20040002202A1 (en) 2002-06-26 2004-01-01 Horsky Thomas Neil Method of manufacturing CMOS devices by the implantation of N- and P-type cluster ions
KR100864048B1 (ko) * 2002-06-26 2008-10-17 세미이큅, 인코포레이티드 이온 소스
US6921062B2 (en) 2002-07-23 2005-07-26 Advanced Technology Materials, Inc. Vaporizer delivery ampoule
US6797337B2 (en) * 2002-08-19 2004-09-28 Micron Technology, Inc. Method for delivering precursors
US6841141B2 (en) 2002-09-26 2005-01-11 Advanced Technology Materials, Inc. System for in-situ generation of fluorine radicals and/or fluorine-containing interhalogen (XFn) compounds for use in cleaning semiconductor processing chambers
JP2004152796A (ja) * 2002-10-28 2004-05-27 Toshiba Corp 半導体装置及びその製造方法
US6740586B1 (en) 2002-11-06 2004-05-25 Advanced Technology Materials, Inc. Vapor delivery system for solid precursors and method of using same
US7410890B2 (en) 2002-12-12 2008-08-12 Tel Epion Inc. Formation of doped regions and/or ultra-shallow junctions in semiconductor materials by gas-cluster ion irradiation
US20050242293A1 (en) * 2003-01-07 2005-11-03 Benveniste Victor M Mounting mechanism for plasma extraction aperture
US6777696B1 (en) 2003-02-21 2004-08-17 Axcelis Technologies, Inc. Deflecting acceleration/deceleration gap
US6670624B1 (en) 2003-03-07 2003-12-30 International Business Machines Corporation Ion implanter in-situ mass spectrometer
US6770888B1 (en) 2003-05-15 2004-08-03 Axcelis Technologies, Inc. High mass resolution magnet for ribbon beam ion implanters
US6909839B2 (en) * 2003-07-23 2005-06-21 Advanced Technology Materials, Inc. Delivery systems for efficient vaporization of precursor source material
US7820981B2 (en) * 2003-12-12 2010-10-26 Semequip, Inc. Method and apparatus for extending equipment uptime in ion implantation
US20080073559A1 (en) * 2003-12-12 2008-03-27 Horsky Thomas N Controlling the flow of vapors sublimated from solids
US7791047B2 (en) * 2003-12-12 2010-09-07 Semequip, Inc. Method and apparatus for extracting ions from an ion source for use in ion implantation
US20080223409A1 (en) 2003-12-12 2008-09-18 Horsky Thomas N Method and apparatus for extending equipment uptime in ion implantation
US6909102B1 (en) 2004-01-21 2005-06-21 Varian Semiconductor Equipment Associates, Inc. Ion implanter system, method and program product including particle detection
US7524477B2 (en) 2004-02-02 2009-04-28 Semequip Inc. Method of production of B10H102− ammonium salts and methods of production of B18H22
US6974957B2 (en) 2004-02-18 2005-12-13 Nanomat, Inc. Ionization device for aerosol mass spectrometer and method of ionization
US6956225B1 (en) 2004-04-01 2005-10-18 Axcelis Technologies, Inc. Method and apparatus for selective pre-dispersion of extracted ion beams in ion implantation systems
US7112789B2 (en) 2004-05-18 2006-09-26 White Nicholas R High aspect ratio, high mass resolution analyzer magnet and system for ribbon ion beams
US20060017010A1 (en) 2004-07-22 2006-01-26 Axcelis Technologies, Inc. Magnet for scanning ion beams
US20060037540A1 (en) * 2004-08-20 2006-02-23 Rohm And Haas Electronic Materials Llc Delivery system
JP2008522429A (ja) 2004-12-03 2008-06-26 エピオン コーポレーション ガスクラスタイオン照射による極浅接合部の形成
US6992311B1 (en) 2005-01-18 2006-01-31 Axcelis Technologies, Inc. In-situ cleaning of beam defining apertures in an ion implanter
US7621290B2 (en) * 2005-04-21 2009-11-24 Mks Instruments, Inc. Gas delivery method and system including a flow ratio controller using antisymmetric optimal control
US7673645B2 (en) * 2005-04-21 2010-03-09 Mks Instruments, Inc. Gas delivery method and system including a flow ratio controller using a multiple antisymmetric optimal control arrangement
US7428915B2 (en) * 2005-04-26 2008-09-30 Applied Materials, Inc. O-ringless tandem throttle valve for a plasma reactor chamber
US20070278417A1 (en) 2005-07-01 2007-12-06 Horsky Thomas N Ion implantation ion source, system and method
US7491947B2 (en) * 2005-08-17 2009-02-17 Varian Semiconductor Equipment Associates, Inc. Technique for improving performance and extending lifetime of indirectly heated cathode ion source
US7531819B2 (en) * 2005-12-20 2009-05-12 Axcelis Technologies, Inc. Fluorine based cleaning of an ion source

Also Published As

Publication number Publication date
TW200529271A (en) 2005-09-01
JP2007518221A (ja) 2007-07-05
EP1695038A2 (de) 2006-08-30
TWI326102B (en) 2010-06-11
KR101160642B1 (ko) 2012-06-28
WO2005059942A3 (en) 2005-10-13
JP2007521398A (ja) 2007-08-02
CN1964620B (zh) 2010-07-21
TWI328244B (en) 2010-08-01
EP1695038A4 (de) 2009-05-20
US20070210260A1 (en) 2007-09-13
JP4643588B2 (ja) 2011-03-02
TW200523977A (en) 2005-07-16
KR20060126995A (ko) 2006-12-11
CN1964620A (zh) 2007-05-16
JP4646920B2 (ja) 2011-03-09
CN1894763A (zh) 2007-01-10
JP2010157518A (ja) 2010-07-15
US7820981B2 (en) 2010-10-26
US20070241689A1 (en) 2007-10-18
JP2010156047A (ja) 2010-07-15
JP5457816B2 (ja) 2014-04-02
EP1695369A4 (de) 2009-11-04
US7629590B2 (en) 2009-12-08
KR100883148B1 (ko) 2009-02-10
CN1894763B (zh) 2010-12-08
US7723700B2 (en) 2010-05-25
WO2005059942A2 (en) 2005-06-30
WO2005060602A3 (en) 2007-01-04
US20080047607A1 (en) 2008-02-28
KR20060126994A (ko) 2006-12-11
US20080121811A1 (en) 2008-05-29
JP2010161072A (ja) 2010-07-22
WO2005060602A2 (en) 2005-07-07
EP1695369A2 (de) 2006-08-30

Similar Documents

Publication Publication Date Title
EP1695038B1 (de) Steuerung des flusses von aus feststoffen sublimierten dämpfen
US20080073559A1 (en) Controlling the flow of vapors sublimated from solids
JP5365954B2 (ja) ガスの導入により、イオン注入処理の間の汚染を軽減し、表面特性を改変するためのシステム及び方法
EP1934043B1 (de) Steuerung eines weiten druckbereichs unter verwendung einer turbopumpe
US6454912B1 (en) Method and apparatus for the fabrication of ferroelectric films
US5108569A (en) Process and apparatus for forming stoichiometric layer of a metal compound by closed loop voltage controlled reactive sputtering
US20080223409A1 (en) Method and apparatus for extending equipment uptime in ion implantation
US20010039921A1 (en) Method and apparatus for controlling rate of pressure change in a vacuum process chamber
JP2000030620A (ja) イオン源およびそのための蒸発器
US11299802B2 (en) Germanium tetraflouride and hydrogen mixtures for an ion implantation system
TWI685885B (zh) 利用增強源技術的磷或砷離子佈植
KR20090097207A (ko) 진공 공정에서의 기체 처리 장치
US5413684A (en) Method and apparatus for regulating a degree of reaction in a coating process
JP2005281851A (ja) 反応スパッタリング用デバイス
JP2000200780A (ja) 半導体又は液晶製造用装置並びに液体材料ガスの気化方法
US6039847A (en) Method of forming a highly pure thin film and apparatus therefor
WO2006077891A1 (ja) 成膜装置、成膜方法、製造方法、およびチタン膜
JPH088475A (ja) 物質表面への異種原子の局所的供給法
JPH0562169A (ja) 非晶質窒化ほう素膜
JPS5878419A (ja) アモルフアスシリコンの製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

DAX Request for extension of the european patent (deleted)
17P Request for examination filed

Effective date: 20070703

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 16/00 20060101ALI20070710BHEP

Ipc: A01G 13/06 20060101AFI20070710BHEP

Ipc: C23C 16/52 20060101ALI20070710BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20090420

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 16/00 20060101ALI20090414BHEP

Ipc: C23C 16/448 20060101ALI20090414BHEP

Ipc: A01G 13/06 20060101AFI20070710BHEP

Ipc: C23C 16/52 20060101ALI20090414BHEP

17Q First examination report despatched

Effective date: 20101206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602004041014

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01F0001000000

Ipc: H01J0037080000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01J 37/317 20060101ALI20120817BHEP

Ipc: H01J 37/08 20060101AFI20120817BHEP

Ipc: C23C 16/52 20060101ALI20120817BHEP

Ipc: H01J 27/00 20060101ALI20120817BHEP

Ipc: C23C 16/448 20060101ALI20120817BHEP

Ipc: H01J 27/02 20060101ALI20120817BHEP

Ipc: H01J 9/38 20060101ALI20120817BHEP

Ipc: C23C 14/48 20060101ALI20120817BHEP

Ipc: C23C 14/56 20060101ALI20120817BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 596875

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004041014

Country of ref document: DE

Effective date: 20130411

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 596875

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130213

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130213

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130524

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130513

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130613

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130514

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20131114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20131226

Year of fee payment: 10

Ref country code: DE

Payment date: 20131230

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004041014

Country of ref document: DE

Effective date: 20131114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131220

Year of fee payment: 10

Ref country code: FR

Payment date: 20131217

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130213

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004041014

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20041209

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141209

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141209