CN1964620B - 对从固体升华的蒸气流的控制 - Google Patents

对从固体升华的蒸气流的控制 Download PDF

Info

Publication number
CN1964620B
CN1964620B CN2004800370624A CN200480037062A CN1964620B CN 1964620 B CN1964620 B CN 1964620B CN 2004800370624 A CN2004800370624 A CN 2004800370624A CN 200480037062 A CN200480037062 A CN 200480037062A CN 1964620 B CN1964620 B CN 1964620B
Authority
CN
China
Prior art keywords
steam
choke valve
delivery system
gasifier
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800370624A
Other languages
English (en)
Other versions
CN1964620A (zh
Inventor
托马斯·N·霍尔斯基
罗伯特·W·米尔加特三世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semequip Inc
Original Assignee
Semequip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semequip Inc filed Critical Semequip Inc
Publication of CN1964620A publication Critical patent/CN1964620A/zh
Application granted granted Critical
Publication of CN1964620B publication Critical patent/CN1964620B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • H01J27/024Extraction optics, e.g. grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/38Exhausting, degassing, filling, or cleaning vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2209/00Apparatus and processes for manufacture of discharge tubes
    • H01J2209/01Generalised techniques
    • H01J2209/017Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/006Details of gas supplies, e.g. in an ion source, to a beam line, to a specimen or to a workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0357For producing uniform flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7759Responsive to change in rate of fluid flow
    • Y10T137/776Control by pressures across flow line valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/7722Line condition change responsive valves
    • Y10T137/7758Pilot or servo controlled
    • Y10T137/7761Electrically actuated valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85954Closed circulating system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/85986Pumped fluid control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/85986Pumped fluid control
    • Y10T137/86002Fluid pressure responsive

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

一种用于向一真空室输送一稳定的升华蒸气流的蒸气输送系统,其包括一固体材料气化器、一机械节流阀及一压力表、随后是一通往所述真空室的蒸气导管。所述蒸气流速取决于所述气化器的温度及位于所述气化器与所述真空室之间的机械节流阀的流导的设定值二者。所述气化器的温度取决于根据一设定点温度进行的闭环控制。所述机械节流阀受到电控制,例如阀门位置受到根据所述压力表的输出进行的闭环控制。通过此种方式,所述蒸气流速可大体与压力表输出成正比。所有暴露至自所述气化器至所述真空室的蒸气的表面均受到加热来防止冷凝。图中显示一闸阀及一旋转的蝶阀用作上游节流阀。在使用一固定的固体材料充填量时,可使所述气化器的温度在一很长的时间段内保持稳定,在所述时间段内,随着所述充填量的升华,所述节流阀从其工作范围中的一较低的流导缓慢开启。当达到一更大的阀门排放量时,升高温度,以使所述阀门重新调节至其较低的流导设定值,以使其可重新随着所述充填量的进一步消耗而缓慢开启。

Description

对从固体升华的蒸气流的控制
技术领域
本发明涉及使固体材料在真空中受控升华与对所产生蒸气流入一真空室的流量进行精确控制而几乎不存在压降的结合。其一重要应用是将蒸气以受控方式馈入一离子源的被抽成真空的离子化室内以产生一离子束。所述离子束可用于对半导体衬底进行离子植入。另一重要应用是使蒸气以受控方式流入一真空处理室内以便与一工件相互作用。
背景技术
离子源的离子化室是在真空下工作并要求以非常高的精确度及可再现性以气态形式馈送要被离子化的材料。
许多制造工艺也是在真空中实施。那些包含与工件进行化学反应的制造工艺通常要求以气态形式引入反应剂,通过特定的化学作用使所述反应剂相互反应及/或与工件反应。这些工艺可造成工件成分发生改变、在工件上沉积上薄膜、或者蚀刻或移除掉工件上的材料。例如,在半导体制造中,必须以非常高的精确度及可再现性来执行这些工艺。
因此,对于离子源以及工件处理室而言,需要向真空室内引入一精确且稳定的气体流。尽管有许多进料可从高压气瓶中以气态形式获得,然而其他进料却只能以固体形式获得。固体材料需要采用不同于对气态源所用的特殊处理步骤。所涉及的固体材料有十硼烷、十八硼烷、三氯化铟、三甲基铟及三乙基锑。
所涉及的固体通常具有低的蒸气压力且必须首先通过在一减压环境中升华来产生一定量的蒸气。然后,必须以要在真空室中所实施的作业所要求的流量或分子数/秒将该蒸气引入真空室内。由于该流量要求类似于在引入常态气体时所要求的流量,因而,一直使用标准的气体运送设备来输送从固体产生的蒸气,但有时成功有时不成功。在通常的气体运送中,使气体源保持处于一明显高于真空室入口输送压力PD的压力PO。为精确地控制流入真空室内的气体流量,必须精确地控制PD。这通常是由一位于气体源与真空室入口之间的市售质量流量控制器(MFC)来实现。MFC是一种数控器件,其会以闭环方式改变其流导来使所输送的质量流量(以克/秒计)与所要求的质量流量相一致。由于MFC通常与压力相对高的气体源一起使用,因而MFC通常构造成在一相应较小的流导范围内运行,此会形成相对大的压降。对于例如氢化硼十硼烷(B10H14)或十八硼烷(B18H22)等气化的固体材料而言,此种方法存在几个严重的问题。
这些固体氢化硼的蒸气压力较低,因而必须将材料加热至接近其热点(对于十硼烷而言为100℃),以形成一足够高的蒸气压力以便能够使用MFC。此会带来使作为热敏材料的氢化硼分子分解的风险。
由于氢化硼蒸气易于在表面上冷凝,尤其是在低于材料气化温度的表面上冷凝,因而相对小的MFC流导(小的通道)出现堵塞会导致运行不稳定且组件提前失效。
这些问题已在很大程度上阻碍了人们构建一种在商业上可行的用于将此种氢化硼蒸气以受控方式输送至离子源-其中在离子植入机中使用所产生的离子束来掺杂半导体-的蒸气流量控制系统。
当蒸气是从一固定的固体充填量得到时,会随之发生进一步的问题。通常,为提供一大的表面积,将充填的材料以粉末形式置于气化器中。随着充填量的消耗,所述固定充填量的气化面积会随时间逐渐减少,且当如果温度变得过高所述固体材料分子会分解时尤其如此。当其中要使用蒸气的作业需要精确地保持蒸气流量(通常为此种情形)时,尤其会出现严重的问题。
对固体材料蒸气流量的控制尚未如人们所期望的一样精确,且需要频繁地对设备进行维护,例如将流量控制设备解体来移除会影响其运行的冷凝材料沉积物。当力图使用十硼烷、十八硼烷及其他在受热时不稳定或者以其他方式呈热敏性的化合物等所需掺杂材料时,所有这些不利条件均会防碍对半导体衬底的离子植入。
发明内容
一种用于向一真空室输送一稳定的升华蒸气流的蒸气输送系统,其包括一固体材料气化器、一机械节流阀及一压力表、随后是一通往所述真空室的蒸气导管。所述蒸气流速取决于所述气化器的温度及所述机械节流阀的流导的设定值二者。各较佳实施例具有一个或多个如下特征。所述气化器的温度取决于根据一设定点温度进行的闭环控制。所述机械节流阀受到电控制,例如阀门位置受到根据所述压力表的输出进行的闭环控制。通过此种方式,所述蒸气流速可大体与压力表输出成正比。所有暴露至自所述气化器至所述真空室的蒸气的表面均受到加热来防止冷凝。一闸阀用作上游节流阀。一旋转的蝶阀用作上游节流阀。在使用一固定的固体材料充填量时,可使所述气化器的温度在一很长的时间段内保持稳定,在所述时间段内,随着所述充填量的升华,所述节流阀从其工作范围中的一较低的流导缓慢开启。当达到一更大的阀门排放量时,会升高温度来使所述阀门重新调节至其较低的流导设定值,以使其可重新从所述较低的流导设定值开始缓慢开启。
一个特定特征是一种用于将一从一固体材料升华而成的受控蒸气流输送至一真空室的蒸气输送系统,其包括一可在负压下运行的受加热的固体材料气化器与一从所述气化器至所述真空室的蒸气输送通道的组合,所述蒸气输送通道包括一节流阀后随一蒸气导管、一位于所述节流阀与所述蒸气导管之间的可对负压作出响应的压力表,所述蒸气输送通道的暴露至所述升华的蒸气的表面,包括所述节流阀、所述压力表及所述蒸气导管的此种表面,均适于保持在一高于所述固体材料的冷凝温度的温度,且一包含所述压力表的闭环控制系统构造成响应于所述压力表的输出而改变所述节流阀的流导以控制所述节流阀下游所述蒸气的负压,流至所述真空室的蒸气流量取决于所述节流阀与所述蒸气导管之间所述通道区域中的蒸气压力。
具备此种特征的实施例具有一种或多种如下特征。
所述蒸气输送系统包括一适于使所述输送通道的表面的温度保持高于所述气化器的温度的温度控制系统。
所述蒸气输送系统具有所述蒸气输送通道的多个段,所述多个段适于距所述气化器越远而保持在逐渐越高的温度。
所述系统的所述蒸气流量适于通过所述气化器的一温度控制系统及所述节流阀的一流导控制系统二者来确定。
所述气化器的温度是根据一设定点温度通过闭环控制来确定。
所述节流阀的最大N2流导至少为1升/秒。
当所述节流阀完全开启时所述节流阀两端的压降小于100毫乇。
所述节流阀的最大流导至少为所述蒸气导管的流导的5倍或10倍。
所述节流阀是一可变位置闸阀或为蝶型阀。
所述气化器构造成以一所述固体材料的可重新充填的固定充填量运行,所述固体材料以一种使所述固体材料的蒸气发出区域减小的方式逐渐消耗,且所述控制系统构造成响应于所述阀门以外的流量或压力的降低而将所述节流阀的位置复位以恢复所需流量,且还不时地在所述节流阀接近其最大可用流导时升高所述气化器的温度以升高所述气化器中的压力并使所述阀门能够在其较佳流导动态范围内运行。
在较佳形式中,所述气化器输送系统包括一基于节流阀的传感及控制系统,所述传感及控制系统能够为一能够使所述气化器温度维持在一气化器设定点温度值的气化器加热器的一调节器提供一气化器设定点温度值,所述传感及控制系统存储至少一个表示所述节流阀的一所需流导上限的预确定阀门排放量值,且一旦检测到所述阀门接近或达到该排放量值,所述传感及控制系统就构造成升高所述调节器加热器的所述设定点温度值以使所述节流阀上游的蒸气产生增强、蒸气压力升高,从而使所述节流阀的所述闭环控制使所述阀门返回至一流导明显变低的位置。在此种特征的一较佳实施例中,所述气化器输送包括一适用于运行的预确定温升增量参照表,且一旦检测到所述阀门接近或达到所述排放量值,所述传感及控制系统即有效地使所述气化器温度设定点递增至所述参照表中的下一位阶。
所述蒸气输送系统构造及设置成向一离子源输送可离子化的蒸气。
所述蒸气输送系统构造及设置成向一离子植入机的一离子源输送离子化的蒸气。
所述蒸气输送系统构造及设置成向一用于对半导体进行剂量测定的工件处理真空室或一处理室输送可离子化蒸气。
所述蒸气输送系统构造成将其蒸气传送至一高真空,所述系统构造成响应于所述节流阀下游负压的降低而升高所述气化器的温度。
所述蒸气输送系统的控制系统包括一伺服回路,所述伺服回路响应于所述压力表的输出信号来调节所述节流阀位置,以使所述表处的蒸气压力保持一设定点值。
所述蒸气输送系统构造成容纳并使十硼烷(B10H14)或十八硼烷(B18H22)蒸发。
所述蒸气输送系统构造成容纳并使三氯化铟(InCl3)、三甲基铟[In(CH3)3]或其他固体低温掺杂剂进料蒸发。
另一种特征是一种使用所述蒸气输送系统实施的在一真空室中产生一离子束的方法,其适于将一从一固体材料升华的受控的可离子化蒸气流输送至一离子化室。
另一种特征是一种使用具有一种或多种上述特征的蒸气输送系统实施的将一从一固体材料升华的受控蒸气流输送至一真空室的方法。
在附图及下文说明中将阐述本发明的一个或多个实施例的细节。根据本说明及附图以及根据权利要求书,将易知本发明的其他特征、目的及优点。
附图说明
图1显示一本发明蒸气输送系统的简化的示意图。
图1A显示一具有一蒸气输送系统的离子源,而图1B显示所述离子源的一个实施例的详图。
图2绘示所计算的从气化器出口至真空室的有效流导随最大节流阀流导的变化。
图3显示一具有另一蒸气输送系统的离子源。
图4以方块图形式显示一使用控制设定点来产生一流入一真空室内的从固体进料升华而成的精确受控的蒸气流量。
图5、6、7在形式上均类似于图4,其显示用于产生精确受控的升华蒸气流量的系统。图5显示流至一真空掺杂过程的半导体掺杂剂流量;图6显示流入一离子源以产生一用于对半导体衬底表面进行高真空离子植入的离子束的流量;而图7显示流入一高真空离子植入室的离子源内以向半导体衬底内植入经质量分辨的植入掺杂剂离子的此种流量。
图7A、7B及7C以示意图形式显示一蝶型节流阀在关闭时、及在处于一适用范围的下限区域及上限区域中时的间隙。
图7D显示用于形成图10、11及12的1.4英寸节流阀的所计算的N2流导。
图7E、7F及7G显示一闸型节流阀在关闭时、在开启10%时及在开启30%时的间隙。
图8及8A为用于向一离子植入机的离子源输入馈给蒸气的本发明蒸气输送系统的一较佳实施例的俯视图及侧视图。
图9显示图8所示蒸气输送系统的示意图,其指示本发明一实施方案的突出控制点。
图10显示在开环条件下及在固定的气化器温度下使用半导体掺杂剂固体进料十硼烷时通过图8及9所示实施例中的节流阀从一气化器流入一离子源内的蒸气流量的曲线图。
图11显示在图8及9所示的构造中,紧位于节流阀下游的控制压力表压力随蝶阀转动角度的变化。
图12显示图8及9所示蒸气输送系统的有效N2流导(以升/秒计)。
图13显示当设定点压力变化时图8-12所示蒸气输送系统的阶跃响应。
图14显示蒸气输送系统的一远程实施方案。
图15显示在周期性地更新气化器温度来适应节流阀的动态范围的情形中,随着固体进料的消耗,阀门位置随时间的变化。
各附图中相同的参考符号代表相同的要件。
具体实施方式
图1A为一离子源10的图式。其详细构造以及其较佳的离子化工作模式详细地揭示于由Horsky等人在2003年6月26日提出申请且名称为“一种离子植入装置及一种通过植入氢化硼簇离子来制造半导体的方法(An ion implantation device and a method ofsemiconductor manufacturing by the implantation of boron hydride cluster ions)”的第PCT/US03/20197号国际申请案中以及由Horsky在2002年6月26日提出申请且名称为“电子碰撞式离子源(Electron impact ion source)”的第10/183,768号美国专利申请案中,这两个申请案均以引用方式并入本文中。离子源10制作成通过一安装法兰36介接至一离子植入机的已抽空的真空室。因此,图1A中所示离子源10的处于法兰36右侧的部分处于高真空状态(压力<1×10-4乇)。所述离子源通过一高电压电源而保持处于一高电压并与所述高真空室的其余部分电绝缘。向离子化室44内引入气态材料,在离子化室44中通过来自电子束70A或70B的电子碰撞将气体分子离子化。所述电子束通过对置的孔71B或71A射出离子化室44,或者可被一个束流收集器或所述室的用作一个束流收集器的壁所吸收。在图1B所示的包含单个电子枪及一束流收集器的实施例中,电子束自电子枪112中的一阴极发出,通过由磁铁130及磁极件125所产生的磁场135变弯曲,并通过电子入口孔71A或71B进入离子化室44,以使电子束70A或70B平行于一伸长的离子提取孔81移动。在离开离子化室44后,电子束70被位于离子化室44外部的束流收集器72终止。由此,毗邻于离子提取孔81(其看上去为离子提取孔板80中的一个槽)形成离子。然后,由一位于离子提取孔板80前面并保持处于明显变低的电压的提取电极(未图示)提取所述离子并使其形成一高能离子束。
重新参见图1A,气体可通过一气体导管33馈送入离子化室44内。而例如十硼烷及十八硼烷等固体进料则可在气化器28中气化,并将蒸气通过源块35内的蒸气导管32馈送入离子化室44内。通常,离子化室44、离子提取板80、源块35(包括蒸气导管32)及气化器室30均由铝制成。通过气化器室30的闭环温度控制使位于一穿孔的隔离障蔽34a下面的固体进料29保持均一的温度。在镇气空间31中积聚的升华的蒸气50通过导管39及节流阀100和截止阀110馈送。节流阀100与截止阀110之间的蒸气50的标称压力是由电容式压力计60来监测。蒸气50通过一位于源块35中的蒸气导管32馈送入离子化室44内。因此,该离子源可将气态的及气化的两种材料离子化。流至离子化室44的蒸气流量取决于紧位于蒸气馈送导管32前面的区域(即截止阀110内)的蒸气压力。这通过一位于节流阀100与截止阀110之间的电容式压力计压力表60来测量。一般而言,流速与蒸气压力成正比。这使压力信号能够代表流量,并用作一设定点来对流量进行选择。为产生一流入离子源内的所需蒸气流量,使气化器室30到达一当节流阀100处于其完全开启位置时会超过所需流速的温度。然后,调节节流阀100以达到所需的压力输出。为形成一随时间的稳定的流量,使用双PID控制器(例如Omron E5CK数字控制器)来分别构建对气化器温度及蒸气压力的闭环控制。控制(反馈)变量对于温度而言为热电偶的输出、对于压力而言为压力表的输出。
所示的特定离子源为一种完全受到温度控制的电子碰撞式离子源。所述离子源并非轰击一电弧放电等离子体来形成离子,而是借助以一个或多个聚焦电子束形式注入的高能电子对工艺气体使用“软”的电子碰撞离子化。此种“软”的离子化方法会保持这些大的分子从而形成离子化的簇。如在图1A及图1B中所示,固体氢化硼在气化器中受到加热并通过蒸气导管流至一金属室,及离子化室。一位于所述离子化室外部的电子枪将一高能电子的高电流流输送至离子化室内,该电子流大体平行于所述室正面中的一伸长槽定向并与其毗邻。通过一离子提取电极从该槽提取出离子从而形成一高能离子束。在将升华的氢化硼蒸气转运至离子化室期间,使所有表面保持于一高于气化器温度(但远低于离解温度)的温度,以防止蒸气冷凝。在许多个小时的测试中,我们已经证实了蒸气馈送口及阀门确实仍保持很干净。
所述节流阀提供一流导可变的蒸气路径。图7E、F及G分别显示一关闭的、呈第一开启度的及呈一第二更大开启度的用作一最大高流导节流阀的闸阀。
如在图1中所示意性地大体显示,提供一蒸气输送系统来向一真空室130输送一稳定的升华蒸气流。所述真空室可为一具有不同于上文所述的离子化作用的离子化室,或者可为一其中所述蒸气与其他材料相互作用的真空处理室。所述蒸气输送系统由一气化器28、一机械节流阀100及一压力表60构成。蒸气流速取决于气化器28的温度和位于所述气化器与所述真空室的入口导管32之间的机械节流阀100的流导二者。气化器28的温度取决于根据设定点温度进行的闭环控制35。机械节流阀100受到电控制,即阀门位置受到根据压力表输出进行的闭环控制120。可使蒸气流速保持与压力表输出成正比。
所述蒸气输送系统满足了许多个小时地向真空系统内(例如向一离子源的离子化室内或更一般而言,向在一真空室中执行的作业)输送一受控蒸气流量时所固有的要求。所述系统使得能够遵守某些规则,这些规则提供了明显优于现有技术系统的优点,尤其当使用例如十硼烷或十八硼烷等低温材料时:
·使气化器中的温度、因而使气化压力最低;
·使输送链的蒸气流导最大;
·使用高导通的可加热的阀门;
·使最高组件温度保持较低,例如对于氢化硼而言低于150℃;
·对所有存在与蒸气相接触的表面的表面进行温度控制来防止冷凝;
·根据节流阀下游的压力使回路闭合而非力图直接测量质量流量,从而无需使用传统的MFC;
·允许随着进料的耗尽而随时间调高气化器温度,从而使气化器材料能够完全耗尽,并通过使节流阀能够在其流导动态范围的“最佳点”上运行来使压力伺服回路稳定。
当然,这些规则并非全不相关,而是各个变量彼此相关,然而,每一规则均解决或改善一在现有技术系统中所见到的不同的问题,因而应明确地加以指明。
旨在向真空室输送升华的气相材料的基于压力的闭环控制系统的形式遵循明确规定的定律。重新参见图1,固体材料29被气化成容纳于储存室31中的蒸气50。蒸气通过气化器出口39流出储存室31,从而在一节流阀100前面形成一蒸气压力。在节流阀100后面是一压力表(或传感器)60,随后是一引至所述真空室的流量相对有限的蒸气导管32(其属于一流量限制部位)。节流阀100及压力传感器60与一闭环控制器120相结合地提供通过对节流阀流导的闭环控制来控制节流阀100之后(导管32之前)的压力的途径。因此,通过根据压力传感器的输出使所述回路闭环、从而根据一下游压力设定点修正阀门位置,来对节流阀100的开启程度(阀门位置)有效地进行实时设定。流入真空室130内的蒸气流速取决于该下游压力及蒸气出口导管32的流导。按照常用的命名法,将导管32表征为流量控制系统的“计量段”。导管32将蒸气引入真空室130内,同时通过真空泵135在真空室130中维持所需的真空值。
在此一系统中对流量的基本的气体动力学要求是,蒸气储存室31中要被控制的物质的气相压力要高于真空室130中所述物质的气相压力。在此种系统中,通过考虑决定真空系统中的流量的基本方程式来实施基于压力的质量流量控制。最简单的建模情形是分子流情形,其中气体分子的平均自由行程相对于真空系统的实体尺寸而言较大。分子流动状态适合于描述流入例如使用本发明系统一其中蒸气路径中任一处的压力均<<1乇一的离子植入系统内的蒸气流。对于任一此种系统而言,如果已知所涉及的任两个点中每一点处的压力P及这两个点之间的流导C,就可计算出这两个点之间的质量流速。
计量段32的质量流量方程式为:
(1)Q计量段=(P压力传感器-P真空室)(C计量段)。
(Q表示质量流量或通量,单位为例如克/秒)。
注意,如果P真空室<<P压力传感器(如果C计量段<<S真空室[即真空室130中的抽吸速度S],则甚至在极低的质量流速下也为此种情形),则方程式(1)简化成
(2)Q计量段~(P压力传感器)(C计量段)。
根据气体动力学的连续性要求,在稳态流量及所规定的流动路径情况下,蒸气储存室31下游的输送链中任一点处的Q均必须等于输送链中任一其他点处的Q。因而,
(3)Q流过节流阀=Q计量段
我们注意到,从蒸气储存室31至节流阀100的流导与C计量段相比较大。如果将P上游定义为气化器的气化器出口39处的压力,则:
(4)Q流过节流阀=(P上游-P压力传感器)(C节流阀)。
还显而易见,由于Q在整个链中得到保持,因而
(5)Q流过节流阀=Q计量段=(P上游-P真空室)(C上游-真空室)。
对于分子流、无集束效应的串联流导及无离散的射出损耗这一简单情形而言,总的流导为:
(6)1/C=1/C1+1/C2+1/C3...1/Cn
在本情形中,可计算出气化器的蒸气出口与真空室130之间的有效流导:
(7)1/C上游-真空室=1/C节流阀+1/C计量段
重新排列各项:
(8)C上游-真空室=((C节流阀)(C计量段))/(C节流阀+C计量段)
描绘于图2中的该方程式可用于估计节流阀的适宜的最大流导以获得所述输送系统的所需动态范围。例如,图2显示,如果C节流阀最大=C计量段,则可获得的最大总流导仅为计量段流导(即蒸气导管32的流导)的1/2。当以气化材料运行时-其中较佳应降低蒸气工作压力,(且如在本发明中一样因此降低气化器温度),则使C节流阀最大对C计量段之比至少约为5∶1或甚至10∶1或以上会有利地使在一既定计量段流导情况下的蒸气流量动态范围最大化。
图3以剖面图形式显示一适用于在一离子植入机中形成十硼烷或十八硼烷离子的离子源。其不同于图1A及1B之处在于,其绘示一蝶型机械节流阀100’而非使用一闸阀100作为图1A中所示的节流阀。
在该图中所示的蝶型节流阀100’的实例中,可移动元件是一圆形阻流盘,其尺寸与一圆柱形通道紧密配合且安装成以所述盘的垂直于通道轴线的直径为中心旋转。其提供一流导受控的蒸气路径,参见图7A、7B及7C。
图中清晰地显示出从气化器至离子化室的蒸气路径。图3所示的蒸气导管150执行与图1、1A及1B所示的蒸气导管(计量段)32相同的功能。在该源中,由气化器145加热固体氢化硼材料140(例如,举例而言,十硼烷或十八硼烷)来升华出蒸气165,蒸气165穿过气化器出口155、蝶型节流阀100’、隔离阀160、蒸气导管150并进入离子化室170内,在离子化室170中通过电子束175将蒸气离子化。一其电位明显不同于离子源电位的提取电极(未图示)通过离子化室170前面板190中的一垂直槽185提取并形成一离子束180。
图4更详细地显示设计成将蒸气流提供至一真空室260内一利用点270处的本发明的一实施例。可实施一真空工艺,例如一化学蒸气沉积(CVD)工艺或低压CVD(LPCVD)工艺、或者其他其中在工件上沉积薄膜的工艺,例如诸如氮化硼等含硼的薄膜。通过将气化器室210加热至一高于室温的温度T,使置放于气化器205中的固体进料200保持一明确规定的温度。由位于一数字蒸气馈给控制器220内的气化器加热器控制器件215有效地控制包含于气化器室210内的电阻式加热器。气化器加热器控制器件215包含一闭环PID控制器(例如,举例而言,一Omron型E5CK-AA1-500),所述闭环PID控制器从数字蒸气馈给控制器220接受一设定点温度并根据由一嵌入于气化器室210中的热电偶(TC)输出225所提供的温度反馈来使所述回路闭合,并以例如一脉宽调制加热器电压的形式向所述电阻式加热器提供可变功率248。自进料200产生的蒸气穿过节流阀235上游的气化器出口230。节流阀235的用途是减小阀门下游的蒸气流量,以使压力表240达到一特定的设定点压力值。该设定点压力值是由数字蒸气馈给控制器220提供至一闭环节流阀位置控制器件245,由该闭环统计法位置控制器件245将节流阀235调节至一机械位置(通过向一包含于节流阀总成内的电动机发送一位置信号247),在该机械位置上,表输出250等于所述设定点值,即节流阀位置控制器件245根据表的输出250使所述回路闭合。这两个设定点值-加热器设定点值及压力设定点值-或者通过一用户接口以手动方式或者通过会提供增加的自动功能的编码配方提供至数字蒸气馈给控制器220。在节流阀235包含一蝶阀(例如一Nor-Cal040411-4型)的情形中,可使用由Nor-Cal APC-200-A型所提供的节流阀位置控制。将所有与蒸气接触的表面加热至气化器温度或略微更高的温度。因此,节流阀235及压力表240受到加热,通道壁(包括计量段232的通道壁)也受到加热。介于100℃与150℃之间的温度即足以防止在气化器205中通常所用的进料发生冷凝。当在图4所示构造中运行十硼烷时的典型气化器温度介于25℃至40℃范围内,而在运行十八硼烷时,则介于80℃与120℃之间(举例而言)。因此,可使用一受热的电容式压力计(例如MKS Baratron 628B-22597或631A-25845型)作为压力表240。此种压力表可读取介于数毫乇至数乇范围内的压力,并适合于此种应用。在一特定情形中,可使用由制造商配置成读取100毫乇或500毫乇最大压力(满刻度读数)的压力表。选择这些压力限值来为介于20毫乇与约100毫乇之间的控制表读数提供优异的信杂比(靠近该范围下端的信号往往会带有噪声,从而潜在地使伺服回路不太稳定)。
适合的设定点压力值取决于在真空室260中所需的蒸气分压、及节流阀235与真空室260之间的蒸气流导。
图5显示一其中蒸气流227在一真空环境中撞击于一半导体工件280上的工艺。此一工艺可以是一薄膜沉积工艺,例如制造多晶硅薄膜或硅-锗薄膜,其中含掺杂剂的蒸气使得能够在薄膜生长过程中对半导体薄膜进行P型或N型掺杂。另一种重要应用是等离子体掺杂(PLAD)。在PLAD中,将衬底固定于一与真空室电绝缘的压盘上,引入掺杂剂蒸气并毗邻所述压盘形成一等离子体。对所述压盘并因而对所述衬底施加一个或多个高电压脉冲,从而吸引等离子体的高能离子来掺杂所述衬底。
图6显示一系统,其中将蒸气馈送入一离子源内以便形成一离子束来实施离子植入。蒸气穿过节流阀235、离子源285的蒸气导管228并进入离子源285的离子化室287内。离子化室287保持处于高电压。通过一种适当的激励途径在离子化室287内将所述蒸气离子化;一旦形成离子,处于一与所述离子化室具有明显不同的电压的提取光学器件290即会将离子吸引入一被抽成真空的室内、使其加速并形成一高能离子束295。离子束被导向一植入室来植入一半导体衬底298中以便进行掺杂。所述过程可以是对大的玻璃面板上的多晶硅涂层进行离子植入来制作例如平板显示器(FPD掺杂)。对这些系统所产生的离子束进行质量分析,但经常不进行质量分析。离子源通常非常大,其离子化室的一个尺寸略微大于所制作面板的较短尺寸-其可为1米长或更大。在通常的系统中,从离子源提取出一静止的“条带”状离子束并将其聚焦至所述平板上,同时使所述板以机械方式沿所述板的较长尺寸扫描过所述光束。在制作沿显示面板的周边具有CMOS驱动电路的FPD时,例如在制作基于薄膜晶体管的电视或计算机监视器时,该过程颇为重要。
图7显示一适合于一存在质量分析的传统束线离子植入机情形的系统。在离子源295由提取光学器件290从离子源285提取出之后,所述束进入一发散双极电磁铁内,由所述电磁铁根据离子的质量对电荷比将未经分辨的束295分离成在空间上相分离的若干个细束,此在所属技术领域中众所周知。可对电磁铁电流及因而对引起弯曲的发散的双极场进行调节,以使仅有一特定质量对电荷比(或某一较佳范围的质量对电荷比,此视分辨孔297的宽度而定)的离子通过分辨孔297传送至半导体衬底。
在将离子植入于一半导体晶圆(例如一硅晶体)内时,离子化室287的容积小于约100ml且流入所述室中的升华蒸气的最大流量处于1sccm数量级。
图7A-7C以定性方式显示蝶阀的大体对应于如下的相对位置:在图7A中处于关闭位置;在图7B中处于7.5度旋转度数;在图7C中则处于15度旋转度数。旋转位置是由一旋转步进电动机以电方式加以控制。蝶阀的可旋转的圆盘B的圆周与其圆柱形室H之间的间隙由C<C′<C″表示,其中C是在“关闭”位置上的最小间隙,为千分之几英寸。
图7D显示一直径为1.4英寸的圆形蝶阀的所计算的N2流导随旋转角度的变化。与图7A-7C相对应的点标记于图7D中的曲线上,且分别近似等于~0l/s、2l/s及8l/s。
图7E-7G以定性方式显示一构建为节流阀(参见图1A及1B)的滑动闸阀的相对位置。图中显示:在图7E中闸阀G处于关闭位置;在图7F中闸阀G处于10%开启位置;在图7G中则处于30%开启位置。所述闸阀-其可具有从约0.5英寸至2.5英寸的各种直径-既用作一截止阀(当关闭时进行密封)又用作一节流阀(由一步进电动机操作阀门致动器)。所述蝶阀则不是密封阀,即其在关闭时具有小的但有限的流导。
图8及8A显示一用于向一离子植入机的离子源(例如图3所示的离子源)提供蒸气的蒸气输送系统的一较佳实施例的两个视图。阀链的总长度得到最小化,且设计成紧密耦合至离子源。图中显示气化器400、气化器隔离阀V1 410、阀门致动器415、蒸发端口420(连接至V3-未图示)、节流阀TV1 430、节流阀的电动致动器435、离子源隔离阀V2 440、V2致动器445、受加热的电容式压力表G1 450、N2排气阀V4 460。
图9显示图8中蒸气输送系统的一示意图,其指示突出的控制点。图中显示通过一操作员接口700来控制蒸气输送系统,操作员可通过所述操作员接口700来提供输入以开启或关闭阀门V1 410(气化器隔离阀)、V2 440(离子源隔离阀)、V3 441(低真空阀)、V4 460(排气阀)、及TV1 430(节流阀);所有这些阀门均向所述操作员接口提供反馈来确认阀门状态。V3位于这两个隔离阀V1与V2之间,且在需要将这两个阀门之间的死空间抽空时开启,例如在气化器400(用V1)已被拆除以进行维护或重新装满及更换之后。通过相同的方式,使用V4来排空该死空间以准备移出组件,例如移出气化器400。其他用户可访问的输入包括三个温度设定点:气化器400的温度设定点PID 1,阀门V1-V4及TV1的温度设定点PID 3,及包含图3所示蒸气导管150的离子源块的温度设定点。
一般而言,使蒸气所接触到的所有表面均保持处于一至少与气化器一样高的温度。较佳使离子源设定点温度>PID3>PED1。通过所述离子源块,由此使导管150的表面的温度较佳保持高于PID 3的设定点。PED 2为一闭环控制器,其调节节流阀TV1 430的位置以使压力表G1 450所读取的压力达到其设定点值。受加热压力表G1 450的该压力设定点回读至所述操作员接口。该压力回读信号指示节流阀TV2与接至离子源的蒸气导管(图3中的蒸气导管150)之间的蒸气压力,从而提供控制信号来对TV1的位置进行闭环控制。由于通过蒸气导管150流入离子源的离子化室170内的蒸气流速近似与该入口压力成正比,因而借助PID 2提供一稳定且可再现的入口压力就能在离子化室170内实现一稳定且界定分明的压力,此又使得能从离子源中提取出一非常稳定的离子电流。
图10为使用图9所示蒸气输送系统流入图3所示离子源内的十硼烷蒸气流的曲线图。在图7A、7B、7C中所概略显示的蝶型节流阀位置显示于图9中的曲线上。所述蒸气输送系统的适用的动态范围覆盖约10倍的范围:在气化器温度为30℃时从约0.1sccm(标准cc/分钟)至1.0sccm以上,此会在节流阀上游输送出一固定的蒸气压力。为获得更高的流量,可使用一更高的气化器温度。通常,离子植入机的离子源所消耗的气体流速约为2sccm或以下。因此,蒸气输送流导及压力是根据所需的蒸气流量及离子源入口的流导(如在图2及相伴随的文字说明中所示)来微调,并将在对图12的论述中进一步展开。
图11显示在图3及8-10所例示的系统中控制压力表450对节流阀旋转的响应。在约40毫乇表压(即离子源入口处的压力)下,离子化室170内的蒸气压力约为1毫乇,而节流阀上游(气化器出口)的压力约为65毫乇。因此,最大压降是图3所示离子源的蒸气导管150两端的压降,例如其对N2的流导约为0.5l/s。
图12绘示图3及8-10中的整个蒸气输送链的有效N2流导随蝶型节流阀的旋转角度的变化。当所述节流阀开启时,系统的总流导接近等于离子源的蒸气导管150的流导。节流阀的流导动态范围应与系统的最小流导(在该实例中为接入离子源的导管150的流导)一致。图3中的蒸气导管150例如为一直径约为1cm、长度为25cm的圆柱孔。在离子源入口导管的流导更大或更小时,应使用一相应地更大或更小的节流阀(一个在其动态范围内具有相应地更大或更小流导的节流阀)。本文所揭示的蒸气输送系统使得能够使用不易被冷凝蒸气阻塞的“开放式”阀门及通道结构(高的流导)。此外,所有阀门及连接元件均易于保持在一高于气化器温度的温度。例如,现在参见图9,在以十硼烷运行时,气化器保持在30℃,V1-V4及TV1保持在50℃,表G1保持在100℃,且离子源保持在>50℃。各顺序性元件的温度沿所述链的这种“分级”会防止升华的蒸气出现任何显著的冷凝。重要的是,在气化器后面使用高流导元件会使为达到及维持所需流速而需要的蒸气压力最低并因而使气化器温度最低。此会延长在气化器中所存储的氢化硼或其他固体进料的可使用的寿命,因为已知其会因随温度显著变化的反应而在高温下离解或聚和。
在一系列较佳的实施方案中,节流阀的最大N2气体流导为至少1升/分钟或以上,且在节流阀完全开启时节流阀两端的压降小于100毫乇,在较佳情形中通常小于25毫乇。
出于解释目的,前面的所有图式10-12均显示节流阀的所谓的“开环”运行,即其中将阀门位置设定为一独立的变量。图13显示所述蒸气输送系统在以其正常的“闭环”模式运行时的时间标记图。现在参见图7,在此种模式中,由数字蒸气馈给控制器220向节流阀位置控制器件245提供一压力设定点。所述位置控制器件调节阀门位置来使控制表输出250与压力设定点值之间的“误差”最小化。这由一所谓的PID(比例积分微分)控制回路来实现,所述PID控制回路可编程为具有明确界定的响应特性,例如(举例而言)速度及稳定时间、以及过调节度。Nor-Cal APC-200-A型即包含一耦接至一步进电动机的这种PID控制器,所述步进电动机用于使上面安装有蝶型节流阀的圆盘的轴转动。(此时应指出,在本实例中所用的蝶型节流阀被其制造商设计成用于一从根本上不同的应用-即下游压力控制应用,用于调节真空室处的抽吸速度,而本发明则将该硬件用于“上游”控制,用于将气体引入一真空室内。同样地,使用一受到电动控制的密封的闸阀来实现上游节流控制也认为是一种新颖的作法。)为产生图13所示的时间标记图,以约十秒的间隔通过一图形用户接口向数字蒸气馈给控制器220内随机地输入三个不同的压力设定点(20毫乇,30毫乇及40毫乇)来产生所述数据。图13显示当使用十八硼烷(B18H22)进料时该系统具有快的稳定时间及优异的可再现性。详细地参见图13,在时间=0时,控制压力读数为20毫乇;在T=10秒时,操作员向控制器220内输入一为30毫乇的设定点(SP1);在T=25秒时输入一为20毫乇的设定点(SP2),依此类推,一直到SP7。在图13中所记录的“阶跃响应”特性表明压力的稳定时间通常仅为数秒钟、稳定性极佳且过调量微乎其微。
图14显示图4-7中蒸气输送系统的一远程构建方案,例如使气化器、节流阀及其他流量控制元件位于一离子植入机的气体分配箱中,从而要求使用一最长达1米的连接管来连接至离子源的入口。通过使用大直径的管(直径至少为1英寸),蒸气输送链的总的流导不会明显减小,且根据图2,仍取决于离子源的蒸气入口流导。
图15显示所述蒸气输送系统的又一重要特征。已知进料的气化速率随其开口表面积、且尤其随固体-真空界面处的可用表面积而变化。随着气化器内的粉末形式的进料随时间被消耗,该可用表面积会稳定地减小,从而造成节流阀之前的蒸气压力降低直至蒸气的散发速率不能支持所需的蒸气流速为止。这称作“散发速率有限”运行。因此,通过在气化器中新充填一既定的进料量,比如25℃的气化器温度就可能会在标称节流阀位置处于其动态范围的下端(例如图10中曲线上所示的点7B所表示)时支持所需的蒸气流量。在经过一定时间之后(例如在消耗掉20%的进料之后),就可能需要阀门处于一与图10中曲线上所示的点7C相当的位置以维持相同的所需流量。此时,系统的状态使节流阀接近其动态范围的高排放量极限。通过适当的构造,由蒸气馈给控制器220来感测该排放量。其例如通过图14中的信号246向气化器加热器控制器件(或调节器)215发送一新的更高的设定点温度。所述蒸气馈给控制器处理常驻查找表信息,所述常驻查找表信息决定将会产生一所需的蒸气产生增加量及节流阀之前的压力增加量的下一温度变化增量。例如,在标称30℃运行情况下,下一增量可为2℃,从而变化至32℃。该增量被选择成一旦气化器温度稳定至其新的值,即使标称节流阀工作点重新变至图10中的7B-接近其动态范围的低排放量端。因此,数字控制器220既能适应设定点蒸气压力的短时间变化又能适应气化器温度的长时间变化的能力使在所充填进料的寿命内对蒸气流量的控制非常鲁棒。
以上阐述了本发明的多个实施例。然而应了解,可对这些实施例作出各种修改,此并不背离本发明的精神及范畴。
因此,其他实施例也归属于下文权利要求书的范围内。

Claims (31)

1.一种用于向一真空室(130;258;260)输送一从一固体材料(29;140;200)升华的受控蒸气流的蒸气输送系统,其包括一可在负压下运作的用于所述固体材料的受加热气化器(28;145;205;400)及一从所述气化器至所述真空室的蒸气输送通道(37;237),所述蒸气输送通道包括一节流阀(100;100’;235;430)后随一蒸气导管(32;150;228),一可响应于负压的压力表(60;240;450)位于所述节流阀与所述蒸气导管之间,所述蒸气输送通道的暴露至所述升华的蒸气的表面,包括所述节流阀、所述压力表及所述蒸气导管的此种表面,均适于保持在一高于所述固体材料的冷凝温度的温度,且一包含所述压力表的闭环控制系统(60;120;240,250,245;PID2)构造成响应于所述压力表的输出而改变所述节流阀的流导以控制所述节流阀下游所述蒸气的所述负压,流至所述真空室的蒸气流量取决于所述节流阀与所述蒸气导管(32;150;228)之间所述通道区域中所述蒸气的压力。
2.如权利要求1所述的蒸气输送系统,其包括一适于使所述输送通道(37;237)的所述表面的温度保持高于所述气化器的温度的温度控制系统(35)。
3.如权利要求2所述的蒸气输送系统,其具有所述蒸气输送通道的多个段,所述多个段适于距所述气化器越远而保持在逐渐越高的温度。
4.如权利要求1,2或3所述的蒸气输送系统,其中所述蒸气流速适于通过所述气化器的一温度控制系统(35;225,215,248;PID 1)及所述节流阀的所述闭环控制系统(60,120;240;250;245;PID 2)二者来确定。
5.如权利要求1所述的蒸气输送系统,其中所述气化器的温度是根据一设定点温度通过闭环控制来确定。
6.如权利要求1所述的蒸气输送系统,其中所述节流阀的最大N2流导至少为1升/秒。
7.如权利要求1所述的蒸气输送系统,其中当所述节流阀以工作方式完全开启时所述阀两端的压降小于100毫乇。
8.如权利要求1所述的蒸气输送系统,其中所述节流阀(100;100’;235;430)的最大流导至少为所述蒸气导管(32;150;228)的流导的5倍。
9.如权利要求1所述的蒸气输送系统,其中所述节流阀的最大流导至少为所述蒸气导管的所述流导的10倍。
10.如权利要求1所述的蒸气输送系统,其中所述节流阀是一可变位置闸阀。
11.如权利要求1所述的蒸气输送系统,其中所述节流阀是一蝶型阀。
12.如权利要求11所述的蒸气输送系统,其中所述蝶型阀适用的动态范围在最低流导与最高流导之间为一因数10。
13.如权利要求1所述的蒸气输送系统,其构造成以一可重新充填的固定固体材料(29;140;200)充填量运行,所述固体材料(29;140;200)充填量以一种使所述固体材料的蒸气发出区域减小的方式逐渐消耗,且构造成响应于所述阀门(100;100’;235;430)以外的压力的一降低而将所述节流阀的位置复位以恢复所需流量,且还不时地在所述节流阀接近其最大可用流导时升高所述气化器(28;145;205;400)的温度以升高所述气化器中的压力并使所述节流阀能够在其较佳流导动态范围内运行。
14.如权利要求13所述的蒸气输送系统,其与一基于节流阀的传感及控制系统相结合,所述基于节流阀的传感及控制系统能够为一气化器加热器的一调节器提供一气化器设定点温度值,所述调节器能够使所述气化器温度维持在所述设定点,所述传感及控制系统存储至少一个表示所述节流阀的一所需流导上限的预确定阀门排放量值,所述传感及控制系统构造成监测所述节流阀的所述位置,且一旦检测到所述阀门接近或达到所述排放量值,所述传感及控制系统就构造成升高所述调节器加热器的所述设定点温度值以使蒸气产生增强、所述节流阀上游的蒸气压力升高,从而使所述节流阀的所述闭环控制能使所述阀门返回至一流导明显变低的位置。
15.如权利要求14所述的蒸气输送系统,其包括一适用于运行的预确定温升增量的参照表,且一旦检测到所述阀门接近或达到所述排放量值,所述传感及控制系统即有效地使所述气化器温度设定点递增至所述参照表中的下一位阶。
16.如权利要求1所述的蒸气输送系统,其构造及设置成向一离子源输送可离子化的蒸气。
17.如权利要求16所述的蒸气输送系统,其构造及设置成向一离子植入机的所述离子源输送可离子化的蒸气。
18.如权利要求1所述的蒸气输送系统,其构造及设置成向一工件处理真空室输送蒸气。
19.如权利要求18所述的蒸气输送系统,其构造及设置成向一用于对半导体进行剂量测定的处理室输送可离子化蒸气。
20.如权利要求1所述的蒸气输送系统,其构造成将其蒸气传送至一高真空,所述系统构造成响应于所述节流阀(100;100’;235;430)下游负压的降低而升高所述气化器(28;145;205;400)的温度。
21.如权利要求1所述的蒸气输送系统,其中所述节流阀的所述控制系统包括一伺服回路,所述伺服回路响应于所述压力表(60;240;450)的所述输出信号来调节所述节流阀(100;100’;235;430)的位置,以使所述表处的所述下游蒸气压力保持至一设定点值。
22.如权利要求1所述的蒸气输送系统,其中所述气化器构造成容纳并使十硼烷(B10H14)蒸发。
23.如权利要求1所述的蒸气输送系统,其中所述气化器构造成容纳并使十八硼烷(B18H22)蒸发。
24.如权利要求1所述的蒸气输送系统,其中所述气化器构造成容纳并使三氯化铟(InCl3)蒸发。
25.如权利要求1所述的蒸气输送系统,其中所述气化器构造成容纳并使三甲基铟In(CH3)3蒸发。
26.如权利要求1所述的蒸气输送系统,其中所述气化器构造成容纳并使三乙基锑Sb(C2H5)3蒸发。
27.一种将一从一固体材料升华的受控蒸气流输送至一真空室的方法,其借助如前述权利要求中任一项所述的蒸气输送系统来实施。
28.一种在一真空室中产生一离子束的方法,其借助如权利要求17或18所述的蒸气输送系统来实施,以将一从一固体材料升华的受控的可离子化蒸气流输送至一离子化室。
29.一种控制系统,其用于控制如权利要求1所述的蒸气输送系统,所述蒸气输送系统构造成以一可重新充填的固定固体材料(29;140;200)充填量运行,所述固体材料(29;140;200)充填量以一种使所述固体材料的蒸气发出区域减小的方式逐渐消耗,且构造成响应于所述节流阀(100;100’;235;430)以外的压力的一降低而将所述节流阀的位置复位以恢复所需流量,且还不时地在所述节流阀接近其最大可用流导时升高所述气化器(28;145;205;400)的温度以升高所述气化器中的压力并使所述节流阀能够在其较佳流导动态范围内运行。
30.如权利要求29所述的控制系统,其与一基于节流阀的传感及控制系统相结合,所述基于节流阀的传感及控制系统能够为一气化器加热器的一调节器提供一气化器设定点温度值,所述调节器能够使所述气化器温度维持在所述设定点,所述传感及控制系统存储至少一个表示所述节流阀的一所需流导上限的预确定阀门排放量值,所述传感及控制系统构造成监测所述节流阀的所述位置,且一旦检测到所述阀门接近或达到所述排放量值,所述传感及控制系统就构造成升高所述调节器加热器的所述设定点温度值以使蒸气产生增强、所述节流阀上游的蒸气压力升高,从而使所述节流阀的所述闭环控制能使所述阀门返回至一流导明显变低的位置。
31.如权利要求30所述的控制系统,其包括一适用于运行的预确定温升增量的参照表,且一旦检测到所述阀门接近或达到所述排放量值,所述传感及控制系统即有效地使所述气化器温度设定点递增至所述参照表中的下一位阶。
CN2004800370624A 2003-12-12 2004-12-09 对从固体升华的蒸气流的控制 Expired - Fee Related CN1964620B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US52934303P 2003-12-12 2003-12-12
US60/529,343 2003-12-12
PCT/US2004/041060 WO2005060602A2 (en) 2003-12-12 2004-12-09 Controlling the flow of vapors sublimated from solids

Publications (2)

Publication Number Publication Date
CN1964620A CN1964620A (zh) 2007-05-16
CN1964620B true CN1964620B (zh) 2010-07-21

Family

ID=34699965

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2004800371171A Expired - Fee Related CN1894763B (zh) 2003-12-12 2004-12-09 用于在离子植入中延长设备正常运行时间的方法及装置
CN2004800370624A Expired - Fee Related CN1964620B (zh) 2003-12-12 2004-12-09 对从固体升华的蒸气流的控制

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2004800371171A Expired - Fee Related CN1894763B (zh) 2003-12-12 2004-12-09 用于在离子植入中延长设备正常运行时间的方法及装置

Country Status (7)

Country Link
US (4) US7820981B2 (zh)
EP (2) EP1695038B1 (zh)
JP (5) JP4646920B2 (zh)
KR (2) KR100883148B1 (zh)
CN (2) CN1894763B (zh)
TW (2) TWI328244B (zh)
WO (2) WO2005059942A2 (zh)

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995079B2 (en) * 2003-08-29 2006-02-07 Semiconductor Energy Laboratory Co., Ltd. Ion implantation method and method for manufacturing semiconductor device
US7791047B2 (en) * 2003-12-12 2010-09-07 Semequip, Inc. Method and apparatus for extracting ions from an ion source for use in ion implantation
US20080073559A1 (en) * 2003-12-12 2008-03-27 Horsky Thomas N Controlling the flow of vapors sublimated from solids
KR100883148B1 (ko) * 2003-12-12 2009-02-10 세미이큅, 인코포레이티드 이온 주입시 설비의 가동 시간을 늘리기 위한 방법과 장치
US20080223409A1 (en) * 2003-12-12 2008-09-18 Horsky Thomas N Method and apparatus for extending equipment uptime in ion implantation
US7425353B2 (en) * 2004-01-29 2008-09-16 International Business Machines Corporation Enhancement of magnetic media recording performance using ion irradiation to tailor exchange coupling
ATE546824T1 (de) * 2004-06-08 2012-03-15 Dichroic Cell S R L System zur plasmaunterstützten chemischen aufdampfung bei niedrigen energien
ATE532203T1 (de) * 2004-08-27 2011-11-15 Fei Co Lokalisierte plasmabehandlung
US7819981B2 (en) * 2004-10-26 2010-10-26 Advanced Technology Materials, Inc. Methods for cleaning ion implanter components
GB0505856D0 (en) * 2005-03-22 2005-04-27 Applied Materials Inc Cathode and counter-cathode arrangement in an ion source
US20100112795A1 (en) * 2005-08-30 2010-05-06 Advanced Technology Materials, Inc. Method of forming ultra-shallow junctions for semiconductor devices
CN103170447B (zh) 2005-08-30 2015-02-18 先进科技材料公司 使用替代的氟化含硼前驱体的硼离子注入和用于注入的大氢化硼的形成
JP2007073235A (ja) * 2005-09-05 2007-03-22 Osaka Univ 蒸発源および外部に蒸気を供給する方法
US7531819B2 (en) * 2005-12-20 2009-05-12 Axcelis Technologies, Inc. Fluorine based cleaning of an ion source
SG171606A1 (en) * 2006-04-26 2011-06-29 Advanced Tech Materials Cleaning of semiconductor processing systems
US7435971B2 (en) * 2006-05-19 2008-10-14 Axcelis Technologies, Inc. Ion source
US8110815B2 (en) * 2006-06-12 2012-02-07 Semequip, Inc. Vapor delivery to devices under vacuum
US8835880B2 (en) 2006-10-31 2014-09-16 Fei Company Charged particle-beam processing using a cluster source
US7622722B2 (en) 2006-11-08 2009-11-24 Varian Semiconductor Equipment Associates, Inc. Ion implantation device with a dual pumping mode and method thereof
US8013312B2 (en) * 2006-11-22 2011-09-06 Semequip, Inc. Vapor delivery system useful with ion sources and vaporizer for use in such system
US7670964B2 (en) 2007-03-22 2010-03-02 Tokyo Electron Limited Apparatus and methods of forming a gas cluster ion beam using a low-pressure source
JP5016988B2 (ja) * 2007-06-19 2012-09-05 株式会社日立ハイテクノロジーズ 荷電粒子線装置およびその真空立上げ方法
WO2009039382A1 (en) * 2007-09-21 2009-03-26 Semequip. Inc. Method for extending equipment uptime in ion implantation
JP2009084625A (ja) * 2007-09-28 2009-04-23 Tokyo Electron Ltd 原料ガスの供給システム及び成膜装置
EP2205524B1 (en) * 2007-11-02 2017-06-14 Semequip, Inc. Methods of preparing clusterboron
JP4288297B1 (ja) 2008-01-09 2009-07-01 三菱重工業株式会社 圧力制御装置および圧力制御方法
CN101307485B (zh) * 2008-01-29 2010-08-18 南京大学 用于半导体材料气相淀积生长系统的氮源离化方法和装置
SG188150A1 (en) 2008-02-11 2013-03-28 Advanced Tech Materials Ion source cleaning in semiconductor processing systems
WO2009122555A1 (ja) * 2008-03-31 2009-10-08 富士通マイクロエレクトロニクス株式会社 半導体装置の製造方法、イオンビームの調整方法及びイオン注入装置
US7759657B2 (en) 2008-06-19 2010-07-20 Axcelis Technologies, Inc. Methods for implanting B22Hx and its ionized lower mass byproducts
US7888662B2 (en) * 2008-06-20 2011-02-15 Varian Semiconductor Equipment Associates, Inc. Ion source cleaning method and apparatus
JP4428467B1 (ja) * 2008-08-27 2010-03-10 日新イオン機器株式会社 イオン源
JP5390330B2 (ja) * 2008-10-16 2014-01-15 キヤノンアネルバ株式会社 基板処理装置およびそのクリーニング方法
US8525419B2 (en) * 2008-11-25 2013-09-03 Oregon Physics, Llc High voltage isolation and cooling for an inductively coupled plasma ion source
US8501624B2 (en) * 2008-12-04 2013-08-06 Varian Semiconductor Equipment Associates, Inc. Excited gas injection for ion implant control
CN102282916A (zh) * 2009-01-13 2011-12-14 里巴贝鲁株式会社 等离子体生成装置及方法
SG173621A1 (en) * 2009-02-11 2011-09-29 Advanced Tech Materials Ion source cleaning in semiconductor processing systems
US8466431B2 (en) * 2009-02-12 2013-06-18 Varian Semiconductor Equipment Associates, Inc. Techniques for improving extracted ion beam quality using high-transparency electrodes
US8487239B2 (en) * 2009-05-29 2013-07-16 Micromass Uk Limited Mass spectrometer
US8536522B2 (en) * 2009-05-29 2013-09-17 Micromass Uk Limited Mass spectrometer
US8119981B2 (en) * 2009-05-29 2012-02-21 Micromass Uk Limited Mass spectrometer
US8003959B2 (en) * 2009-06-26 2011-08-23 Varian Semiconductor Equipment Associates, Inc. Ion source cleaning end point detection
US20110021011A1 (en) * 2009-07-23 2011-01-27 Advanced Technology Materials, Inc. Carbon materials for carbon implantation
KR101084275B1 (ko) * 2009-09-22 2011-11-16 삼성모바일디스플레이주식회사 소스 가스 공급 유닛, 이를 구비하는 증착 장치 및 방법
US9627180B2 (en) * 2009-10-01 2017-04-18 Praxair Technology, Inc. Method for ion source component cleaning
US8598022B2 (en) 2009-10-27 2013-12-03 Advanced Technology Materials, Inc. Isotopically-enriched boron-containing compounds, and methods of making and using same
CN102668016B (zh) 2009-10-27 2016-02-24 安格斯公司 离子注入系统及方法
US20110108058A1 (en) * 2009-11-11 2011-05-12 Axcelis Technologies, Inc. Method and apparatus for cleaning residue from an ion source component
US20110143527A1 (en) * 2009-12-14 2011-06-16 Varian Semiconductor Equipment Associates, Inc. Techniques for generating uniform ion beam
US8642974B2 (en) 2009-12-30 2014-02-04 Fei Company Encapsulation of electrodes in solid media for use in conjunction with fluid high voltage isolation
EP2341525B1 (en) 2009-12-30 2013-10-23 FEI Company Plasma source for charged particle beam system
US8987678B2 (en) 2009-12-30 2015-03-24 Fei Company Encapsulation of electrodes in solid media
JP5886760B2 (ja) 2010-01-14 2016-03-16 インテグリス・インコーポレーテッド 換気ガス管理システムおよびプロセス
TWI582836B (zh) 2010-02-26 2017-05-11 恩特葛瑞斯股份有限公司 用以增進離子植入系統中之離子源的壽命及性能之方法與設備
US8779383B2 (en) 2010-02-26 2014-07-15 Advanced Technology Materials, Inc. Enriched silicon precursor compositions and apparatus and processes for utilizing same
US8455839B2 (en) * 2010-03-10 2013-06-04 Varian Semiconductor Equipment Associates, Inc. Cleaning of an extraction aperture of an ion source
US8071956B2 (en) * 2010-03-10 2011-12-06 Varian Semiconductor Equipment Associates, Inc. Cleaning of an extraction aperture of an ion source
SG10201507319XA (en) * 2010-09-15 2015-10-29 Praxair Technology Inc Method for extending lifetime of an ion source
CN102446685A (zh) * 2010-10-13 2012-05-09 北京中科信电子装备有限公司 一种离子源坩埚控制方法
JP6355336B2 (ja) * 2010-11-30 2018-07-11 インテグリス・インコーポレーテッド 遠隔ドーパント源を含むイオン注入機システム及び当該イオン注入機システムを備える方法
US8997775B2 (en) 2011-05-24 2015-04-07 Rohm And Haas Electronic Materials Llc Vapor delivery device, methods of manufacture and methods of use thereof
US8776821B2 (en) 2011-05-24 2014-07-15 Rohm And Haas Electronic Materials Llc Vapor delivery device, methods of manufacture and methods of use thereof
JP5665679B2 (ja) * 2011-07-14 2015-02-04 住友重機械工業株式会社 不純物導入層形成装置及び静電チャック保護方法
JP5687157B2 (ja) * 2011-08-22 2015-03-18 株式会社日立ハイテクノロジーズ 電子銃、電界放出電子銃、荷電粒子線装置および透過型電子顕微鏡
JP5801144B2 (ja) * 2011-08-30 2015-10-28 株式会社東芝 イオン源
US20130098871A1 (en) 2011-10-19 2013-04-25 Fei Company Internal Split Faraday Shield for an Inductively Coupled Plasma Source
EP2618143B1 (en) * 2012-01-19 2015-05-27 Idexx Laboratories, Inc. Analyzer with fluid pressure control device
KR101982903B1 (ko) 2012-02-14 2019-05-27 엔테그리스, 아이엔씨. 주입 용품에서 인 축적을 최소화하기 위한 대체 물질 및 혼합물
CN104272433B (zh) * 2012-02-14 2018-06-05 恩特格里斯公司 用于改善注入束和源寿命性能的碳掺杂剂气体和协流
US9120111B2 (en) 2012-02-24 2015-09-01 Rain Bird Corporation Arc adjustable rotary sprinkler having full-circle operation and automatic matched precipitation
US9064795B2 (en) * 2012-03-30 2015-06-23 Varian Semiconductor Equipment Associates, Inc. Technique for processing a substrate
US9105438B2 (en) * 2012-05-31 2015-08-11 Fei Company Imaging and processing for plasma ion source
US9711324B2 (en) * 2012-05-31 2017-07-18 Axcelis Technologies, Inc. Inert atmospheric pressure pre-chill and post-heat
JP5868796B2 (ja) * 2012-07-03 2016-02-24 株式会社堀場エステック 圧力制御装置、流量制御装置、及び、圧力制御装置用プログラム、流量制御装置用プログラム
US9156043B2 (en) 2012-07-13 2015-10-13 Rain Bird Corporation Arc adjustable rotary sprinkler with automatic matched precipitation
US9243325B2 (en) 2012-07-18 2016-01-26 Rohm And Haas Electronic Materials Llc Vapor delivery device, methods of manufacture and methods of use thereof
US9530615B2 (en) 2012-08-07 2016-12-27 Varian Semiconductor Equipment Associates, Inc. Techniques for improving the performance and extending the lifetime of an ion source
US9655223B2 (en) 2012-09-14 2017-05-16 Oregon Physics, Llc RF system, magnetic filter, and high voltage isolation for an inductively coupled plasma ion source
US9062377B2 (en) * 2012-10-05 2015-06-23 Varian Semiconductor Equipment Associates, Inc. Reducing glitching in an ion implanter
JP2014137901A (ja) * 2013-01-16 2014-07-28 Nissin Ion Equipment Co Ltd イオン注入装置およびイオン注入装置の運転方法
JP2014176838A (ja) * 2013-02-14 2014-09-25 Fujifilm Corp 昇華精製装置
GB2518122B (en) * 2013-02-19 2018-08-08 Markes International Ltd An electron ionisation apparatus
US9443700B2 (en) * 2013-03-12 2016-09-13 Applied Materials, Inc. Electron beam plasma source with segmented suppression electrode for uniform plasma generation
JP5950855B2 (ja) * 2013-03-19 2016-07-13 住友重機械イオンテクノロジー株式会社 イオン注入装置およびイオン注入装置のクリーニング方法
US9142392B2 (en) * 2013-04-29 2015-09-22 Varian Semiconductor Equipment Associates, Inc. Self-cleaning radio frequency plasma source
US9187832B2 (en) * 2013-05-03 2015-11-17 Varian Semiconductor Equipment Associates, Inc. Extended lifetime ion source
US10221476B2 (en) * 2013-06-03 2019-03-05 Varian Semiconductor Equipment Associates, Inc. Coating insulating materials for improved life
JP2016534560A (ja) 2013-08-16 2016-11-04 インテグリス・インコーポレーテッド 基板へのシリコン注入およびそのためのシリコン前駆体組成物の提供
CN104913805A (zh) * 2014-03-11 2015-09-16 上海华虹宏力半导体制造有限公司 一种提高离子注入机日常检点稳定性的方法
CN103925380B (zh) * 2014-03-20 2017-01-04 上海华力微电子有限公司 一种优化等离子体均匀性的压力控制阀门及方法
DE102014007522A1 (de) * 2014-05-23 2015-11-26 Manz Ag Trägeranordnung für eine Verdampferquelle
US9214318B1 (en) * 2014-07-25 2015-12-15 International Business Machines Corporation Electromagnetic electron reflector
TWI594301B (zh) * 2014-08-25 2017-08-01 漢辰科技股份有限公司 離子佈植方法與離子佈植機
CN107078009B (zh) * 2014-09-01 2019-04-12 恩特格里斯公司 利用增强源技术进行磷或砷离子植入
US9735019B2 (en) 2014-09-05 2017-08-15 Tel Epion Inc. Process gas enhancement for beam treatment of a substrate
TWI607492B (zh) * 2014-11-14 2017-12-01 漢辰科技股份有限公司 離子佈植過程中控制壓力的方法及其離子佈植裝置
CN105702546B (zh) * 2014-11-24 2018-06-26 上海凯世通半导体股份有限公司 采用固态掺杂剂的离子源装置
TWI559355B (zh) * 2014-12-23 2016-11-21 漢辰科技股份有限公司 離子源
US10522330B2 (en) 2015-06-12 2019-12-31 Varian Semiconductor Equipment Associates, Inc. In-situ plasma cleaning of process chamber components
KR20170004381A (ko) * 2015-07-02 2017-01-11 삼성전자주식회사 불순물 영역을 포함하는 반도체 장치의 제조 방법
CN105155625B (zh) * 2015-08-17 2017-03-01 南方中金环境股份有限公司 一种无负压压力补偿供水设备
US10774419B2 (en) * 2016-06-21 2020-09-15 Axcelis Technologies, Inc Implantation using solid aluminum iodide (ALI3) for producing atomic aluminum ions and in situ cleaning of aluminum iodide and associated by-products
US9928983B2 (en) * 2016-06-30 2018-03-27 Varian Semiconductor Equipment Associates, Inc. Vaporizer for ion source
US10730082B2 (en) * 2016-10-26 2020-08-04 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for differential in situ cleaning
US9916966B1 (en) * 2017-01-26 2018-03-13 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for minimizing thermal distortion in electrodes used with ion sources
CN207458886U (zh) * 2017-06-16 2018-06-05 上海凯世通半导体股份有限公司 束流比例检测装置
US10597773B2 (en) * 2017-08-22 2020-03-24 Praxair Technology, Inc. Antimony-containing materials for ion implantation
TWI795448B (zh) * 2017-10-09 2023-03-11 美商艾克塞利斯科技公司 用於在角能量過濾器區域中穩定或移除射束線組件上所形成之膜的離子植入系統及方法
CN110100296B (zh) * 2017-10-18 2021-05-07 株式会社爱发科 离子源和离子注入装置
US10535499B2 (en) * 2017-11-03 2020-01-14 Varian Semiconductor Equipment Associates, Inc. Varied component density for thermal isolation
CN107941700B (zh) * 2017-11-24 2020-08-28 哈尔滨工业大学 一种用于在实验室中进行临近空间、大气层外的宽光谱定向耦合光学系统模拟仿真的红外暗室
CN108225854B (zh) * 2017-12-29 2020-03-31 江苏汇环环保科技有限公司 一种voc在线监测双泵负压进样系统
US10847339B2 (en) * 2018-01-22 2020-11-24 Axcelis Technologies, Inc. Hydrogen generator for an ion implanter
US10613006B1 (en) 2018-09-24 2020-04-07 Mustang Sampling, LLC. Liquid vaporization device and method
KR102252302B1 (ko) * 2018-11-09 2021-05-17 주식회사 레이크머티리얼즈 고순도 반도체용 승화장치
CN111192808A (zh) * 2018-11-15 2020-05-22 北京中科信电子装备有限公司 一种固态源自动引束的方法
US10573485B1 (en) * 2018-12-20 2020-02-25 Axcelis Technologies, Inc. Tetrode extraction apparatus for ion source
US11600473B2 (en) * 2019-03-13 2023-03-07 Applied Materials, Inc. Ion source with biased extraction plate
TWI838493B (zh) * 2019-03-25 2024-04-11 日商亞多納富有限公司 氣體分析裝置
TWI693656B (zh) * 2019-04-25 2020-05-11 晨碩國際有限公司 離子佈植機用之供氣系統
US11788190B2 (en) * 2019-07-05 2023-10-17 Asm Ip Holding B.V. Liquid vaporizer
JP7256711B2 (ja) * 2019-07-16 2023-04-12 住友重機械イオンテクノロジー株式会社 イオン生成装置およびイオン注入装置
CN110571121B (zh) * 2019-09-17 2022-08-26 江苏鲁汶仪器有限公司 采用远程等离子体源自清洗离子束刻蚀装置及清洗方法
US11946136B2 (en) * 2019-09-20 2024-04-02 Asm Ip Holding B.V. Semiconductor processing device
US11170973B2 (en) 2019-10-09 2021-11-09 Applied Materials, Inc. Temperature control for insertable target holder for solid dopant materials
CN111370286B (zh) * 2020-03-24 2023-02-07 中国科学院近代物理研究所 一种用于治疗装备的等离子体源及其使用方法
CN111575652A (zh) * 2020-04-02 2020-08-25 上海大学 真空镀膜设备及真空镀膜方法
JP7517109B2 (ja) * 2020-11-26 2024-07-17 株式会社島津製作所 真空バルブおよび推定装置
CN114688457B (zh) * 2020-12-29 2024-05-14 中微半导体设备(上海)股份有限公司 一种等离子体处理装置气体供应系统
CN113187019A (zh) * 2021-04-30 2021-07-30 上海麦玺隆机械科技有限公司 一种立式无负压净化水稳流罐
US11664183B2 (en) 2021-05-05 2023-05-30 Applied Materials, Inc. Extended cathode and repeller life by active management of halogen cycle
US11854760B2 (en) 2021-06-21 2023-12-26 Applied Materials, Inc. Crucible design for liquid metal in an ion source
JP7317083B2 (ja) * 2021-09-01 2023-07-28 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、プログラム及び基板処理方法
US11985756B2 (en) * 2021-10-20 2024-05-14 Applied Materials, Inc. Linear accelerator coil including multiple fluid channels
US20230130079A1 (en) * 2021-10-27 2023-04-27 Entegris, Inc. High vapor pressure delivery system
CN118284794A (zh) * 2021-11-24 2024-07-02 Asml荷兰有限公司 用于检查系统中的排气和流调节操作的系统和结构
US20240145228A1 (en) * 2022-10-28 2024-05-02 Thermo Finnigan Llc Ion sources for improved robustness
CN116360531B (zh) * 2023-03-13 2024-01-23 艾氢技术(苏州)有限公司 一种基于固体氢的酸性水溶液浸泡反应装置控制系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1236181A (zh) * 1998-04-30 1999-11-24 易通公司 用于离子源的十硼烷蒸发器
CN1324093A (zh) * 2000-05-10 2001-11-28 日新电机株式会社 离子源的操作方法和离子束辐射装置

Family Cites Families (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4105916A (en) * 1977-02-28 1978-08-08 Extranuclear Laboratories, Inc. Methods and apparatus for simultaneously producing and electronically separating the chemical ionization mass spectrum and the electron impact ionization mass spectrum of the same sample material
FR2412939A1 (fr) 1977-12-23 1979-07-20 Anvar Implanteur d'ions a fort courant
GB2079035A (en) 1980-06-10 1982-01-13 Philips Electronic Associated Deflection system for charged-particle beam
US4412900A (en) 1981-03-13 1983-11-01 Hitachi, Ltd. Method of manufacturing photosensors
DE3376921D1 (en) * 1982-09-10 1988-07-07 Nippon Telegraph & Telephone Ion shower apparatus
JPS59142839A (ja) 1983-02-01 1984-08-16 Canon Inc 気相法装置のクリ−ニング方法
EP0140975A4 (en) 1983-03-18 1988-01-07 Matsushita Electric Ind Co Ltd REACTIVE ION ETCHING APPARATUS.
US4697069A (en) * 1983-08-22 1987-09-29 Ingo Bleckmann Tubular heater with an overload safety means
US4512812A (en) 1983-09-22 1985-04-23 Varian Associates, Inc. Method for reducing phosphorous contamination in a vacuum processing chamber
US4619844A (en) 1985-01-22 1986-10-28 Fairchild Camera Instrument Corp. Method and apparatus for low pressure chemical vapor deposition
US4665315A (en) 1985-04-01 1987-05-12 Control Data Corporation Method and apparatus for in-situ plasma cleaning of electron beam optical systems
US4657616A (en) 1985-05-17 1987-04-14 Benzing Technologies, Inc. In-situ CVD chamber cleaner
US4640221A (en) 1985-10-30 1987-02-03 International Business Machines Corporation Vacuum deposition system with improved mass flow control
US4703183A (en) 1985-12-05 1987-10-27 Eaton Corporation Ion implantation chamber purification method and apparatus
JPH0711072B2 (ja) * 1986-04-04 1995-02-08 株式会社日立製作所 イオン源装置
US4786352A (en) 1986-09-12 1988-11-22 Benzing Technologies, Inc. Apparatus for in-situ chamber cleaning
JPS63126225A (ja) * 1986-11-15 1988-05-30 Nissin Electric Co Ltd エツチング装置
US4960488A (en) 1986-12-19 1990-10-02 Applied Materials, Inc. Reactor chamber self-cleaning process
US5158644A (en) 1986-12-19 1992-10-27 Applied Materials, Inc. Reactor chamber self-cleaning process
US4738693A (en) 1987-04-27 1988-04-19 Advanced Technology Materials, Inc. Valve block and container for semiconductor source reagent dispensing and/or purification
US4723967A (en) 1987-04-27 1988-02-09 Advanced Technology Materials, Inc. Valve block and container for semiconductor source reagent dispensing and/or purification
JPH01225117A (ja) * 1988-03-04 1989-09-08 Nippon Telegr & Teleph Corp <Ntt> 半導体装置の製造方法及びその製造装置
GB2216714B (en) 1988-03-11 1992-10-14 Ulvac Corp Ion implanter system
JPH02162638A (ja) * 1988-12-16 1990-06-22 Hitachi Ltd イオン源電極の加熱
US4958078A (en) 1989-01-05 1990-09-18 The University Of Michigan Large aperture ion-optical lens system
GB2230644B (en) 1989-02-16 1994-03-23 Tokyo Electron Ltd Electron beam excitation ion source
US5028791A (en) 1989-02-16 1991-07-02 Tokyo Electron Ltd. Electron beam excitation ion source
US5186120A (en) 1989-03-22 1993-02-16 Mitsubishi Denki Kabushiki Kaisha Mixture thin film forming apparatus
JP2873693B2 (ja) 1989-05-25 1999-03-24 東京エレクトロン株式会社 イオン源
US5429070A (en) * 1989-06-13 1995-07-04 Plasma & Materials Technologies, Inc. High density plasma deposition and etching apparatus
US5132545A (en) 1989-08-17 1992-07-21 Mitsubishi Denki Kabushiki Kaisha Ion implantation apparatus
JPH03130368A (ja) * 1989-09-22 1991-06-04 Applied Materials Inc 半導体ウェーハプロセス装置の洗浄方法
US5101110A (en) * 1989-11-14 1992-03-31 Tokyo Electron Limited Ion generator
JP2819420B2 (ja) 1989-11-20 1998-10-30 東京エレクトロン株式会社 イオン源
KR0148385B1 (ko) 1990-01-30 1998-10-15 이노우에 키요시 이온 발생장치
US5362328A (en) 1990-07-06 1994-11-08 Advanced Technology Materials, Inc. Apparatus and method for delivering reagents in vapor form to a CVD reactor, incorporating a cleaning subsystem
JPH04112441A (ja) 1990-08-31 1992-04-14 Toshiba Corp イオン注入装置及びそのクリーニング方法
US5832177A (en) 1990-10-05 1998-11-03 Fujitsu Limited Method for controlling apparatus for supplying steam for ashing process
NL9002164A (nl) * 1990-10-05 1992-05-06 Philips Nv Werkwijze voor het voorzien van een substraat van een oppervlaktelaag vanuit een damp en een inrichting voor het toepassen van een dergelijke werkwijze.
DE4108462C2 (de) * 1991-03-13 1994-10-13 Bruker Franzen Analytik Gmbh Verfahren und Vorrichtung zum Erzeugen von Ionen aus thermisch instabilen, nichtflüchtigen großen Molekülen
US5206516A (en) * 1991-04-29 1993-04-27 International Business Machines Corporation Low energy, steered ion beam deposition system having high current at low pressure
US5262652A (en) 1991-05-14 1993-11-16 Applied Materials, Inc. Ion implantation apparatus having increased source lifetime
JP2567099Y2 (ja) * 1991-06-07 1998-03-30 山形日本電気株式会社 ガス供給装置
JP3253675B2 (ja) * 1991-07-04 2002-02-04 株式会社東芝 荷電ビーム照射装置及び方法
US5466942A (en) 1991-07-04 1995-11-14 Kabushiki Kaisha Toshiba Charged beam irradiating apparatus having a cleaning means and a method of cleaning a charged beam irradiating apparatus
US5216330A (en) * 1992-01-14 1993-06-01 Honeywell Inc. Ion beam gun
US5443686A (en) 1992-01-15 1995-08-22 International Business Machines Corporation Inc. Plasma CVD apparatus and processes
JPH06176724A (ja) * 1992-01-23 1994-06-24 Tokyo Electron Ltd イオン源装置
DE4202158C1 (zh) * 1992-01-27 1993-07-22 Siemens Ag, 8000 Muenchen, De
US5466929A (en) 1992-02-21 1995-11-14 Hitachi, Ltd. Apparatus and method for suppressing electrification of sample in charged beam irradiation apparatus
KR0158234B1 (ko) 1992-03-02 1999-02-18 이노우에 아키라 이온 주입 시스템
US5369279A (en) 1992-06-04 1994-11-29 Martin; Frederick W. Chromatically compensated particle-beam column
US5368667A (en) * 1993-01-29 1994-11-29 Alliedsignal Inc. Preparation of devices that include a thin ceramic layer
US5350926A (en) 1993-03-11 1994-09-27 Diamond Semiconductor Group, Inc. Compact high current broad beam ion implanter
EP0632144B1 (en) 1993-06-30 1999-09-08 Applied Materials, Inc. Method of purging and pumping vacuum chamber to ultra-high vacuum
US5354698A (en) 1993-07-19 1994-10-11 Micron Technology, Inc. Hydrogen reduction method for removing contaminants in a semiconductor ion implantation process
US5486235A (en) 1993-08-09 1996-01-23 Applied Materials, Inc. Plasma dry cleaning of semiconductor processing chambers
US5616208A (en) 1993-09-17 1997-04-01 Tokyo Electron Limited Vacuum processing apparatus, vacuum processing method, and method for cleaning the vacuum processing apparatus
EP0648861A1 (en) 1993-10-15 1995-04-19 Applied Materials, Inc. Semiconductor processing apparatus
US5451258A (en) * 1994-05-11 1995-09-19 Materials Research Corporation Apparatus and method for improved delivery of vaporized reactant gases to a reaction chamber
US5514246A (en) 1994-06-02 1996-05-07 Micron Technology, Inc. Plasma reactors and method of cleaning a plasma reactor
EP0697467A1 (en) 1994-07-21 1996-02-21 Applied Materials, Inc. Method and apparatus for cleaning a deposition chamber
US5466941A (en) * 1994-07-27 1995-11-14 Kim; Seong I. Negative ion sputtering beam source
US5489550A (en) * 1994-08-09 1996-02-06 Texas Instruments Incorporated Gas-phase doping method using germanium-containing additive
US5497006A (en) * 1994-11-15 1996-03-05 Eaton Corporation Ion generating source for use in an ion implanter
JP3609131B2 (ja) * 1994-12-06 2005-01-12 株式会社半導体エネルギー研究所 イオンドーピング装置のクリーニング方法
JPH08212965A (ja) 1995-01-31 1996-08-20 Ulvac Japan Ltd イオン注入装置
US5700327A (en) 1995-03-10 1997-12-23 Polar Materials, Incorporated Method for cleaning hollow articles with plasma
JPH08290964A (ja) * 1995-04-20 1996-11-05 Sumitomo Chem Co Ltd 誘電体組成物、その製造方法およびその用途
NL1000677C2 (nl) 1995-06-28 1996-12-31 Combis B V Inrichting geschikt voor het toevoeren van een gasvormige brandstof aan een verbrandingsmotor, alsmede verdamper, doseerinrichting, processor en drukregelinrichting geschikt voor een dergelijke inrichting.
US5714738A (en) 1995-07-10 1998-02-03 Watlow Electric Manufacturing Co. Apparatus and methods of making and using heater apparatus for heating an object having two-dimensional or three-dimensional curvature
US5554854A (en) 1995-07-17 1996-09-10 Eaton Corporation In situ removal of contaminants from the interior surfaces of an ion beam implanter
US5633506A (en) 1995-07-17 1997-05-27 Eaton Corporation Method and apparatus for in situ removal of contaminants from ion beam neutralization and implantation apparatuses
GB9515090D0 (en) 1995-07-21 1995-09-20 Applied Materials Inc An ion beam apparatus
GB2343545B (en) 1995-11-08 2000-06-21 Applied Materials Inc An ion implanter with three electrode deceleration structure and upstream mass selection
GB2307592B (en) 1995-11-23 1999-11-10 Applied Materials Inc Ion implantation apparatus withimproved post mass selection deceleration
US5691537A (en) * 1996-01-22 1997-11-25 Chen; John Method and apparatus for ion beam transport
JPH09298171A (ja) 1996-05-08 1997-11-18 Tokyo Electron Ltd 処理ガスの供給方法及びその装置
US5993766A (en) 1996-05-20 1999-11-30 Advanced Technology Materials, Inc. Gas source and dispensing system
US5674574A (en) 1996-05-20 1997-10-07 Micron Technology, Inc. Vapor delivery system for solid precursors and method regarding same
US5661308A (en) * 1996-05-30 1997-08-26 Eaton Corporation Method and apparatus for ion formation in an ion implanter
GB2314202B (en) * 1996-06-14 2000-08-09 Applied Materials Inc Ion implantation apparatus and a method of monitoring high energy neutral contamination in an ion implantation process
US5883364A (en) * 1996-08-26 1999-03-16 Frei; Rob A. Clean room heating jacket and grounded heating element therefor
US5788778A (en) * 1996-09-16 1998-08-04 Applied Komatsu Technology, Inc. Deposition chamber cleaning technique using a high power remote excitation source
JPH10106478A (ja) * 1996-10-02 1998-04-24 Tokyo Electron Ltd イオン注入装置
US5824375A (en) 1996-10-24 1998-10-20 Applied Materials, Inc. Decontamination of a plasma reactor using a plasma after a chamber clean
JP3503366B2 (ja) * 1996-10-25 2004-03-02 日新電機株式会社 イオン源装置
JP3749924B2 (ja) * 1996-12-03 2006-03-01 富士通株式会社 イオン注入方法および半導体装置の製造方法
US5887117A (en) * 1997-01-02 1999-03-23 Sharp Kabushiki Kaisha Flash evaporator
US6338312B2 (en) 1998-04-15 2002-01-15 Advanced Technology Materials, Inc. Integrated ion implant scrubber system
US5883416A (en) * 1997-01-31 1999-03-16 Megamos Corporation Gate-contact structure to prevent contact metal penetration through gate layer without affecting breakdown voltage
US5843239A (en) 1997-03-03 1998-12-01 Applied Materials, Inc. Two-step process for cleaning a substrate processing chamber
US5780863A (en) * 1997-04-29 1998-07-14 Eaton Corporation Accelerator-decelerator electrostatic lens for variably focusing and mass resolving an ion beam in an ion implanter
US5940724A (en) * 1997-04-30 1999-08-17 International Business Machines Corporation Method for extended ion implanter source lifetime
GB2325561B (en) 1997-05-20 2001-10-17 Applied Materials Inc Apparatus for and methods of implanting desired chemical species in semiconductor substrates
US5882416A (en) 1997-06-19 1999-03-16 Advanced Technology Materials, Inc. Liquid delivery system, heater apparatus for liquid delivery system, and vaporizer
US6727102B1 (en) * 1997-06-20 2004-04-27 Leuven Research & Development Vzw Assays, antibodies, and standards for detection of oxidized and MDA-modified low density lipoproteins
US6150628A (en) 1997-06-26 2000-11-21 Applied Science And Technology, Inc. Toroidal low-field reactive gas source
JP3449198B2 (ja) 1997-10-22 2003-09-22 日新電機株式会社 イオン注入装置
JP3627206B2 (ja) 1997-11-28 2005-03-09 住友イートンノバ株式会社 イオン注入装置及びイオン注入方法
US6271529B1 (en) 1997-12-01 2001-08-07 Ebara Corporation Ion implantation with charge neutralization
US6184532B1 (en) * 1997-12-01 2001-02-06 Ebara Corporation Ion source
US6143084A (en) 1998-03-19 2000-11-07 Applied Materials, Inc. Apparatus and method for generating plasma
US6135128A (en) * 1998-03-27 2000-10-24 Eaton Corporation Method for in-process cleaning of an ion source
US6161398A (en) 1998-04-09 2000-12-19 Lucent Technologies, Inc. Methods of and systems for vapor delivery control in optical preform manufacture
US6335534B1 (en) * 1998-04-17 2002-01-01 Kabushiki Kaisha Toshiba Ion implantation apparatus, ion generating apparatus and semiconductor manufacturing method with ion implantation processes
US6620256B1 (en) 1998-04-28 2003-09-16 Advanced Technology Materials, Inc. Non-plasma in-situ cleaning of processing chambers using static flow methods
JPH11329336A (ja) * 1998-05-11 1999-11-30 Nissin Electric Co Ltd イオン注入装置
KR20010043738A (ko) * 1998-05-22 2001-05-25 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 저 에너지 이온 주입을 위한 방법 및 장치
US6060034A (en) * 1998-06-02 2000-05-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Abatement system for ClF3 containing exhaust gases
US6130436A (en) 1998-06-02 2000-10-10 Varian Semiconductor Equipment Associates, Inc. Acceleration and analysis architecture for ion implanter
GB9813327D0 (en) 1998-06-19 1998-08-19 Superion Ltd Apparatus and method relating to charged particles
BR9910387A (pt) * 1998-07-02 2006-08-15 Montell Technology Company Bv processo para preparação de polìmeros alfa-olefinos substancialmente amorfos e composições contendo ele e processo para preparação de ligações em ponte, filme e artigos obtidos da composição
US6094012A (en) * 1998-11-06 2000-07-25 The Regents Of The University Of California Low energy spread ion source with a coaxial magnetic filter
US6355933B1 (en) 1999-01-13 2002-03-12 Advanced Micro Devices, Inc. Ion source and method for using same
US6464891B1 (en) 1999-03-17 2002-10-15 Veeco Instruments, Inc. Method for repetitive ion beam processing with a carbon containing ion beam
US6155289A (en) * 1999-05-07 2000-12-05 International Business Machines Method of and system for sub-atmospheric gas delivery with backflow control
US6259105B1 (en) * 1999-05-10 2001-07-10 Axcelis Technologies, Inc. System and method for cleaning silicon-coated surfaces in an ion implanter
US6221169B1 (en) 1999-05-10 2001-04-24 Axcelis Technologies, Inc. System and method for cleaning contaminated surfaces in an ion implanter
JP2000350970A (ja) 1999-05-10 2000-12-19 Eaton Corp イオン注入装置における汚染された表面を洗浄するための方法および装置
JP2000323051A (ja) 1999-05-17 2000-11-24 Nissin Electric Co Ltd イオン源装置
US6441382B1 (en) 1999-05-21 2002-08-27 Axcelis Technologies, Inc. Deceleration electrode configuration for ultra-low energy ion implanter
JP4182535B2 (ja) 1999-05-27 2008-11-19 株式会社Ihi セルフクリ−ニングイオンドーピング装置およびその方法
US6423976B1 (en) * 1999-05-28 2002-07-23 Applied Materials, Inc. Ion implanter and a method of implanting ions
US6885812B2 (en) * 2003-03-06 2005-04-26 Mks Instruments, Inc. System and method for heating solid or vapor source vessels and flow paths
US6178925B1 (en) * 1999-09-29 2001-01-30 Advanced Technology Materials, Inc. Burst pulse cleaning method and apparatus for liquid delivery system
US6288403B1 (en) * 1999-10-11 2001-09-11 Axcelis Technologies, Inc. Decaborane ionizer
US6486069B1 (en) * 1999-12-03 2002-11-26 Tegal Corporation Cobalt silicide etch process and apparatus
TW522214B (en) 1999-12-08 2003-03-01 Usui International Industry Temperature adjusting device for thermal fluid medium
US20070107841A1 (en) * 2000-12-13 2007-05-17 Semequip, Inc. Ion implantation ion source, system and method
US6452338B1 (en) * 1999-12-13 2002-09-17 Semequip, Inc. Electron beam ion source with integral low-temperature vaporizer
US7838842B2 (en) * 1999-12-13 2010-11-23 Semequip, Inc. Dual mode ion source for ion implantation
WO2001043157A1 (en) * 1999-12-13 2001-06-14 Semequip, Inc. Ion implantation ion source, system and method
JP2001183233A (ja) * 1999-12-27 2001-07-06 Advantest Corp 分光器および分光方法
DE10008829B4 (de) 2000-02-25 2005-06-23 Steag Rtp Systems Gmbh Verfahren zum Entfernen von adsorbierten Molekülen aus einer Kammer
US6710358B1 (en) * 2000-02-25 2004-03-23 Advanced Ion Beam Technology, Inc. Apparatus and method for reducing energy contamination of low energy ion beams
US6489622B1 (en) 2000-03-01 2002-12-03 Advanced Ion Beam Technology, Inc. Apparatus for decelerating ion beams with minimal energy contamination
US6946667B2 (en) 2000-03-01 2005-09-20 Advanced Ion Beam Technology, Inc. Apparatus to decelerate and control ion beams to improve the total quality of ion implantation
US6894245B2 (en) * 2000-03-17 2005-05-17 Applied Materials, Inc. Merie plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression
US6885014B2 (en) 2002-05-01 2005-04-26 Axcelis Technologies, Inc. Symmetric beamline and methods for generating a mass-analyzed ribbon ion beam
US6703628B2 (en) * 2000-07-25 2004-03-09 Axceliss Technologies, Inc Method and system for ion beam containment in an ion beam guide
US6583544B1 (en) * 2000-08-07 2003-06-24 Axcelis Technologies, Inc. Ion source having replaceable and sputterable solid source material
US6939434B2 (en) * 2000-08-11 2005-09-06 Applied Materials, Inc. Externally excited torroidal plasma source with magnetic control of ion distribution
US6476399B1 (en) 2000-09-01 2002-11-05 Axcelis Technologies, Inc. System and method for removing contaminant particles relative to an ion beam
US6639227B1 (en) 2000-10-18 2003-10-28 Applied Materials, Inc. Apparatus and method for charged particle filtering and ion implantation
US6559462B1 (en) * 2000-10-31 2003-05-06 International Business Machines Corporation Method to reduce downtime while implanting GeF4
EP1347804A4 (en) * 2000-11-30 2009-04-22 Semequip Inc ION IMPLANTATION SYSTEM AND CONTROL METHOD
US7064491B2 (en) * 2000-11-30 2006-06-20 Semequip, Inc. Ion implantation system and control method
US6617593B2 (en) 2000-12-04 2003-09-09 Intel Corporation Ion implantation system
US6479828B2 (en) 2000-12-15 2002-11-12 Axcelis Tech Inc Method and system for icosaborane implantation
TW523796B (en) 2000-12-28 2003-03-11 Axcelis Tech Inc Method and apparatus for improved ion acceleration in an ion implantation system
US6852242B2 (en) * 2001-02-23 2005-02-08 Zhi-Wen Sun Cleaning of multicompositional etchant residues
US6545419B2 (en) * 2001-03-07 2003-04-08 Advanced Technology Materials, Inc. Double chamber ion implantation system
US6670623B2 (en) * 2001-03-07 2003-12-30 Advanced Technology Materials, Inc. Thermal regulation of an ion implantation system
US6601397B2 (en) 2001-03-16 2003-08-05 Copeland Corporation Digital scroll condensing unit controller
US6452198B1 (en) 2001-06-28 2002-09-17 Advanced Micro Devices, Inc. Minimized contamination of semiconductor wafers within an implantation system
US20030030010A1 (en) * 2001-08-07 2003-02-13 Perel Alexander S. Decaborane vaporizer having improved vapor flow
US6772776B2 (en) 2001-09-18 2004-08-10 Euv Llc Apparatus for in situ cleaning of carbon contaminated surfaces
US6701066B2 (en) * 2001-10-11 2004-03-02 Micron Technology, Inc. Delivery of solid chemical precursors
GB0128913D0 (en) 2001-12-03 2002-01-23 Applied Materials Inc Improvements in ion sources for ion implantation apparatus
US20030111014A1 (en) * 2001-12-18 2003-06-19 Donatucci Matthew B. Vaporizer/delivery vessel for volatile/thermally sensitive solid and liquid compounds
US6664547B2 (en) 2002-05-01 2003-12-16 Axcelis Technologies, Inc. Ion source providing ribbon beam with controllable density profile
WO2003102537A2 (en) * 2002-05-31 2003-12-11 Waters Investments Limited A high speed combination multi-mode ionization source for mass spectrometers
US6712084B2 (en) * 2002-06-24 2004-03-30 Mks Instruments, Inc. Apparatus and method for pressure fluctuation insensitive mass flow control
US20040002202A1 (en) * 2002-06-26 2004-01-01 Horsky Thomas Neil Method of manufacturing CMOS devices by the implantation of N- and P-type cluster ions
US7960709B2 (en) * 2002-06-26 2011-06-14 Semequip, Inc. Ion implantation device and a method of semiconductor manufacturing by the implantation of boron hydride cluster ions
US6686595B2 (en) * 2002-06-26 2004-02-03 Semequip Inc. Electron impact ion source
US6921062B2 (en) * 2002-07-23 2005-07-26 Advanced Technology Materials, Inc. Vaporizer delivery ampoule
US6797337B2 (en) * 2002-08-19 2004-09-28 Micron Technology, Inc. Method for delivering precursors
US6841141B2 (en) * 2002-09-26 2005-01-11 Advanced Technology Materials, Inc. System for in-situ generation of fluorine radicals and/or fluorine-containing interhalogen (XFn) compounds for use in cleaning semiconductor processing chambers
JP2004152796A (ja) * 2002-10-28 2004-05-27 Toshiba Corp 半導体装置及びその製造方法
US6740586B1 (en) * 2002-11-06 2004-05-25 Advanced Technology Materials, Inc. Vapor delivery system for solid precursors and method of using same
US7410890B2 (en) 2002-12-12 2008-08-12 Tel Epion Inc. Formation of doped regions and/or ultra-shallow junctions in semiconductor materials by gas-cluster ion irradiation
WO2006062536A2 (en) 2004-12-03 2006-06-15 Epion Corporation Formation of ultra-shallow junctions by gas-cluster ion irridation
US20050242293A1 (en) * 2003-01-07 2005-11-03 Benveniste Victor M Mounting mechanism for plasma extraction aperture
US6777696B1 (en) 2003-02-21 2004-08-17 Axcelis Technologies, Inc. Deflecting acceleration/deceleration gap
US6670624B1 (en) 2003-03-07 2003-12-30 International Business Machines Corporation Ion implanter in-situ mass spectrometer
US6770888B1 (en) 2003-05-15 2004-08-03 Axcelis Technologies, Inc. High mass resolution magnet for ribbon beam ion implanters
US6909839B2 (en) * 2003-07-23 2005-06-21 Advanced Technology Materials, Inc. Delivery systems for efficient vaporization of precursor source material
US20080073559A1 (en) * 2003-12-12 2008-03-27 Horsky Thomas N Controlling the flow of vapors sublimated from solids
KR100883148B1 (ko) * 2003-12-12 2009-02-10 세미이큅, 인코포레이티드 이온 주입시 설비의 가동 시간을 늘리기 위한 방법과 장치
US20080223409A1 (en) 2003-12-12 2008-09-18 Horsky Thomas N Method and apparatus for extending equipment uptime in ion implantation
US7791047B2 (en) * 2003-12-12 2010-09-07 Semequip, Inc. Method and apparatus for extracting ions from an ion source for use in ion implantation
US6909102B1 (en) * 2004-01-21 2005-06-21 Varian Semiconductor Equipment Associates, Inc. Ion implanter system, method and program product including particle detection
KR101196068B1 (ko) 2004-02-02 2012-11-01 세미이큅, 인코포레이티드 B10h10 2- 암모늄염의 생산 방법 및 b18h22의 생산방법
US6974957B2 (en) 2004-02-18 2005-12-13 Nanomat, Inc. Ionization device for aerosol mass spectrometer and method of ionization
US6956225B1 (en) 2004-04-01 2005-10-18 Axcelis Technologies, Inc. Method and apparatus for selective pre-dispersion of extracted ion beams in ion implantation systems
US7112789B2 (en) 2004-05-18 2006-09-26 White Nicholas R High aspect ratio, high mass resolution analyzer magnet and system for ribbon ion beams
US20060017010A1 (en) * 2004-07-22 2006-01-26 Axcelis Technologies, Inc. Magnet for scanning ion beams
US20060037540A1 (en) 2004-08-20 2006-02-23 Rohm And Haas Electronic Materials Llc Delivery system
US6992311B1 (en) * 2005-01-18 2006-01-31 Axcelis Technologies, Inc. In-situ cleaning of beam defining apertures in an ion implanter
US7621290B2 (en) * 2005-04-21 2009-11-24 Mks Instruments, Inc. Gas delivery method and system including a flow ratio controller using antisymmetric optimal control
US7673645B2 (en) * 2005-04-21 2010-03-09 Mks Instruments, Inc. Gas delivery method and system including a flow ratio controller using a multiple antisymmetric optimal control arrangement
US7428915B2 (en) * 2005-04-26 2008-09-30 Applied Materials, Inc. O-ringless tandem throttle valve for a plasma reactor chamber
US20070278417A1 (en) 2005-07-01 2007-12-06 Horsky Thomas N Ion implantation ion source, system and method
US7491947B2 (en) * 2005-08-17 2009-02-17 Varian Semiconductor Equipment Associates, Inc. Technique for improving performance and extending lifetime of indirectly heated cathode ion source
US7531819B2 (en) * 2005-12-20 2009-05-12 Axcelis Technologies, Inc. Fluorine based cleaning of an ion source

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1236181A (zh) * 1998-04-30 1999-11-24 易通公司 用于离子源的十硼烷蒸发器
CN1324093A (zh) * 2000-05-10 2001-11-28 日新电机株式会社 离子源的操作方法和离子束辐射装置

Also Published As

Publication number Publication date
TWI326102B (en) 2010-06-11
KR20060126994A (ko) 2006-12-11
JP2007521398A (ja) 2007-08-02
JP2010156047A (ja) 2010-07-15
US20080121811A1 (en) 2008-05-29
US20070210260A1 (en) 2007-09-13
CN1894763A (zh) 2007-01-10
WO2005060602A3 (en) 2007-01-04
KR101160642B1 (ko) 2012-06-28
JP2010161072A (ja) 2010-07-22
JP4643588B2 (ja) 2011-03-02
JP4646920B2 (ja) 2011-03-09
WO2005060602A2 (en) 2005-07-07
US20070241689A1 (en) 2007-10-18
TW200523977A (en) 2005-07-16
JP2007518221A (ja) 2007-07-05
TWI328244B (en) 2010-08-01
WO2005059942A3 (en) 2005-10-13
JP2010157518A (ja) 2010-07-15
KR100883148B1 (ko) 2009-02-10
US20080047607A1 (en) 2008-02-28
WO2005059942A2 (en) 2005-06-30
US7723700B2 (en) 2010-05-25
CN1964620A (zh) 2007-05-16
JP5457816B2 (ja) 2014-04-02
US7629590B2 (en) 2009-12-08
KR20060126995A (ko) 2006-12-11
EP1695038A2 (en) 2006-08-30
US7820981B2 (en) 2010-10-26
TW200529271A (en) 2005-09-01
EP1695369A2 (en) 2006-08-30
CN1894763B (zh) 2010-12-08
EP1695369A4 (en) 2009-11-04
EP1695038A4 (en) 2009-05-20
EP1695038B1 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
CN1964620B (zh) 对从固体升华的蒸气流的控制
US7846499B2 (en) Method of pulsing vapor precursors in an ALD reactor
CN102308356B (zh) 多喷嘴气体团簇离子束系统和方法
CN101573469B (zh) 利用电子回旋共振沉积非晶硅薄膜
US20060144338A1 (en) High accuracy vapor generation and delivery for thin film deposition
JP3356531B2 (ja) ボロン含有ポリシリコン膜の形成方法
CN102782811A (zh) 用于提高离子注入系统中的离子源的寿命和性能的方法和设备
US7829158B2 (en) Method for depositing a barrier layer on a low dielectric constant material
CN103038854A (zh) 具有快速气体切换装置的气体离化团束系统
US7727912B2 (en) Method of light enhanced atomic layer deposition
WO2013081647A1 (en) Automatic control system for selection and optimization of co-gas flow levels
US20220186358A1 (en) Germanium tetraflouride and hydrogen mixtures for an ion implantation system
CN105018880A (zh) 用于溅镀张力氮化硅膜的系统和方法
US20080073559A1 (en) Controlling the flow of vapors sublimated from solids
JP2004204339A (ja) 処理装置及び処理方法
WO2013071227A1 (en) Gas flow system, device and method
KR100649957B1 (ko) 전구체 용액 및 pcmo가 증착된 mocvd 조성의제어방법
KR20070037503A (ko) 실리콘 및 게르마늄을 포함하는 층들의 증착 방법
Lu et al. Process sensing and metrology in gate oxide growth by rapid thermal chemical vapor deposition from SiH 4 and N 2 O
Waafi et al. A Programmable Gas Injection System for 3D Ice Lithography
JPS6148567A (ja) ガス流量制御方法
EP1047113A2 (en) Method and apparatus for generating controlled mixture of organic vapor and inert gas
Ferguson Adsorption kinetics and dynamics in Si (100) epitaxial growth and oxidation
JPS5878419A (ja) アモルフアスシリコンの製造方法
JPH11251246A (ja) ドープしたシリコン薄膜の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100721

Termination date: 20141209

EXPY Termination of patent right or utility model