EP1483625A1 - Projektionsobjektiv höchster apertur - Google Patents
Projektionsobjektiv höchster aperturInfo
- Publication number
- EP1483625A1 EP1483625A1 EP02738025A EP02738025A EP1483625A1 EP 1483625 A1 EP1483625 A1 EP 1483625A1 EP 02738025 A EP02738025 A EP 02738025A EP 02738025 A EP02738025 A EP 02738025A EP 1483625 A1 EP1483625 A1 EP 1483625A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lens
- meniscus
- projection
- group
- projection lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 54
- 238000003384 imaging method Methods 0.000 claims abstract description 12
- 230000005499 meniscus Effects 0.000 claims description 72
- 210000001015 abdomen Anatomy 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 230000002349 favourable effect Effects 0.000 description 16
- 230000004075 alteration Effects 0.000 description 10
- 238000012937 correction Methods 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 238000013461 design Methods 0.000 description 7
- 238000007654 immersion Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 3
- 229910001634 calcium fluoride Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000000671 immersion lithography Methods 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 239000006117 anti-reflective coating Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001393 microlithography Methods 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 206010010071 Coma Diseases 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/24—Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/14—Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
- G02B13/143—Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/60—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70241—Optical aspects of refractive lens systems, i.e. comprising only refractive elements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70341—Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
Definitions
- the invention relates to a projection lens for imaging a pattern arranged in the object plane of the projection lens into the image plane of the projection lens with ultraviolet light of a predetermined working wavelength.
- Photolithographic projection lenses have been used for the manufacture of semiconductor devices and other finely structured components for several decades. They serve to project patterns of photomasks or graticules, which are also referred to below as masks or reticles, onto an object coated with a light-sensitive layer with the highest resolution on a reduced scale.
- phase-shifting masks require obscuration-free systems, ie systems without shadowing in the image field. Systems without shadowing in the image field are in the Microlithography generally to be preferred, even if systems with obscuration with otherwise excellent optical properties are available (for example DE 196 39 586 corresponding to US 6,169,627 B1).
- NA 0.85
- limits are placed on the angular capacity, especially of the near-image lenses.
- the object of the invention is to create a projection objective which has a very high numerical aperture on the image side, an image field which is sufficiently large for practical use in wafer steppers or wafer scanners, and a good correction state.
- a projection lens for imaging a pattern arranged in the object plane of the projection lens into the image plane of the projection lens with ultraviolet light of a predetermined working wavelength has a multiplicity of optical elements which are arranged along an optical axis and one which is arranged at a distance in front of the image plane System cover with a cover diameter.
- the closest optical group with refractive power to the image plane is a plano-convex group with an essentially spherical entrance surface and an im substantially flat exit surface.
- the exit surface is the last optical surface of the system and should be arranged in the vicinity of a substrate to be exposed, but without touching it. If necessary, an optical contact can be imparted via an immersion medium, for example a liquid.
- the plano-convex group has a diameter that is at least 50% of the diaphragm diameter.
- the diameter of the plano-convex group can preferably even be more than 60% or more than 70% of the diaphragm diameter.
- the system aperture in the sense of this application is the area near the image plane in which the main beam of the image intersects the optical axis.
- a diaphragm for limiting and possibly adjusting the aperture used can be arranged in the area of the system diaphragm.
- the plano-convex group is formed by a single, one-piece plano-convex lens. It is also possible to design the plano-convex group in the form of a divided plano-convex lens, the parts of which are preferably pressed against one another. The division can take place along a flat or curved division surface. A division in particular makes it possible to produce the part of the plano-convex group close to the image field, in which particularly high radiation energy densities occur, from a particularly radiation-resistant material, for example as calcium fluoride, while less radiation-exposed areas can be made from another material, for example synthetic quartz glass. A plane-parallel end plate can optionally be provided as the next element of the plano-convex group.
- the plano-convex group is preferably blown onto the preceding optical element.
- the radii to the air gap should be curved this way be that there is no total reflection.
- the angular load preferably remains smaller than sin u ' from 0.85 to 0.95.
- the system diaphragm it is particularly advantageous if only lenses with a positive refractive power are arranged between the system diaphragm and the image plane, if appropriate plus one or more plane-parallel, transparent plates.
- at least one biconvex positive lens can be arranged between the system diaphragm and the plano-convex group. At least two, in particular exactly two, biconvex positive lenses are more favorable.
- a plano-convex meniscus is preceded by two positive lenses, which provide the essential part of the system power. Because they sit close to the system panel and can work in large diameters, a very small relative field load can also be achieved here.
- the last lens group arranged between the system diaphragm and the image plane has a maximum of four optical elements with refractive power, ideally only three lenses, which are preferably positive lenses in each case.
- Lenses with a negative refractive power can be provided as long as their refractive power is low compared to the total refractive power of the lens group arranged between the system aperture and the image plane.
- Plane-parallel plates can also be provided.
- a refractive power distribution that is favorable for a high numerical aperture on the image side is characterized in that the last lens group arranged between the system aperture and the image plane advantageously has a focal length that is less than 20% or 17%, in particular less than 15%, of the overall length of the projection lens is.
- the axial distance between the object plane and the optically conjugate image plane is referred to as the overall length.
- the distance between the system diaphragm and the image plane is preferably less than 25%, in particular less than 22% of the overall length and / or less than approximately 95%, 90% or 86% of the diaphragm diameter. Overall, a very close-to-image position of the system cover is favorable.
- the aperture can be real or equivalent to the conjugate location of the real aperture in the presence of an intermediate image.
- Projection lenses according to the invention can be catadioptric or dioptric and should depict without obscuration. Purely refractive, ie dioptric projection lenses are preferred, in which all optical components with refractive power consist of transparent material.
- One example is a one-waist system with a stomach close to the object, a stomach close to the image and an intermediate waist, in the area of which the beam diameter is preferably less than approximately 50% of the maximum beam diameter in the area of one of the bellies.
- the systems can be set up so that all transparent optical elements are made of the same material.
- synthetic quartz glass is used for all lenses.
- the synthetic quartz glass can be replaced by a crystal material, eg calcium fluoride.
- high-aperture projection objectives in particular also purely refractive projection objectives, are possible, in which the numerical aperture NA> 0.85 on the image side.
- the projection objectives are also suitable for immersion lithography, in which the space between the exit surface of the objective and the substrate is filled with an immersion fluid with a suitable refractive index and sufficient transmission for the wavelength used.
- Suitable immersion liquids can, for example, mainly contain the elements H, F, C or S. Deionized water can also be used.
- the invention makes it possible to use lenses with a very large image field diameter that is sufficient for practical lithography, which in preferred embodiments is larger than approx. 10 mm, in particular larger than approx. 20 mm and / or more than 1 %, in particular more than 1.5% of the overall length of the projection lens and / or more than 1%, in particular more than 5% of the largest lens diameter.
- Preferred projection objectives are distinguished by a number of favorable constructive and optical features which, alone or in combination with one another, are conducive to the suitability of the objective for high-resolution microlithography, in particular in the optical near field and for immersion lithography.
- At least one aspherical surface is preferably arranged in the area of the system cover.
- several surfaces with aspheres come closely behind the diaphragm.
- at least one double-aspherical lens which is preferably a biconvex lens, can be provided between the system aperture and the image plane.
- the last optical surface before the system diaphragm and the first optical surface after the system diaphragm are aspherical.
- opposite aspherical surfaces with curvature pointing away from the diaphragm can be provided here.
- the high number of aspherical surfaces in the area of the system diaphragm is favorable for the correction of the spherical aberration and has a favorable effect on the setting of the isoplanasia.
- At least one meniscus lens with a concave surface on the object is preferably provided in the area immediately in front of the system diaphragm.
- at least two such menisci, which follow one another can be favorable, which can have positive or negative refractive power.
- a group of two menisci of this type is preferred, in which a meniscus with a negative refractive power and a meniscus with a positive one Refractive power follows.
- the negative refractive power is preferably so great that a slight cross-sectional narrowing (auxiliary waist) can occur in the beam.
- a meniscus group with a positive meniscus and a negative meniscus behind it, in which the centers of curvature of all optical surfaces are on the object or reticle side, can also be advantageous for other projection lenses, in particular directly in front of a diaphragm in the area, regardless of the other features of the invention
- the aperture can be a physical aperture for changing the bundle cross-section or a conjugated aperture.
- At least one meniscus lens with a negative refractive power and a concave surface directed toward the image is arranged between the waist and the system diaphragm.
- at least two consecutive meniscus lenses of this type, whose centers of curvature lie on the image side are often particularly favorable.
- the refractive power of the first meniscus on the object side is at least 30% stronger than that of the subsequent meniscus on the image side of the meniscus group.
- At least one positive meniscus lens with a concave surface on the object side is arranged between the waist and the system diaphragm in the vicinity of the waist.
- several, for example two, successive lenses of this type can be provided instead of such a meniscus lens.
- Embodiments are particularly advantageous in which at least one meniscus lens with a concave surface on the object side and behind at least one between the waist and the system diaphragm in this order a meniscus lens with a concave surface on the image side is arranged.
- Two consecutive menisci of the respective curvatures are preferably provided.
- the meniscus lenses facing the waist preferably have positive refractive powers, the menisci facing the image plane preferably have negative refractive powers. In the area between these lenses or lens groups, there is therefore a change in the position of the center of curvature of menisci.
- a plurality of negative lenses are preferably arranged one after the other in the region of the waist, in preferred embodiments there are at least two, preferably three negative lenses. These bear the main burden of the Petzval correction.
- a lens group with a strong positive refractive power which represents the first belly of the beam guidance, preferably follows behind this input group.
- at least one meniscus lens with positive refractive power and concave surfaces on the image side can be favorable in the area of large beam heights in the vicinity of the object plane.
- the center of curvature of which lies on the image side, the exit side facing the image preferably has a relatively strong curvature, the radius of which can be, for example, less than 50% of the overall length of the projection objective.
- 1 is a lens section through an embodiment of a refractive projection objective which is designed for a 193 nm working wavelength.
- optical axis denotes a straight line through the centers of curvature of the spherical optical components or through the axes of symmetry of aspherical elements.
- Directions and distances are described as image-side, wafer-side or image-wise when they are in the direction of the If the image plane or the substrate to be exposed there is directed and as the object side, reticle side or object side, if they are directed towards the object in relation to the optical axis, the object is a mask (reticle) with the pattern of an integrated circuit in the examples
- the image is formed in the examples on a wafer serving as a substrate and serving with a photoresist layer, but other substrates are also possible, for example elements for liquid crystal displays or substrates for optical he grating
- the focal lengths given are focal lengths with respect to air.
- FIG. 1 shows a characteristic structure of a purely refractive reduction objective 1 according to the invention. It serves to insert a pattern of a reticle or the like into an object plane 2 image an image plane 3 conjugated to the object plane on a reduced scale without obscurations or shadowing in the image field, for example on a 5: 1 scale. It is a rotationally symmetrical one-waist system, the lenses of which are arranged along an optical axis 4 which is perpendicular to the object and image plane and form an abdomen 6 on the object side, an abdomen 8 on the image side and an intermediate waist 7. A small auxiliary waist 9 is formed within the second belly 8 close to the system cover 5.
- the system diaphragm 5 is in the near-image area of large beam diameters.
- the lenses can be divided into several successive lens groups with specific properties and functions.
- a first lens group LG1 following the object plane 2 at the input of the projection lens has negative refractive power overall and serves to expand the beam coming from the object field.
- a subsequent second lens group LG2 with an overall positive refractive power forms the first belly 6 and brings the beam together again in front of the subsequent waist 7.
- a third lens group LG3 with negative refractive power is followed by a lens group 4 consisting of positive meniscus lenses with positive refractive power, followed by a fifth lens group LG5 consisting of negative meniscus lenses with negative refractive power.
- the subsequent lens group LG6 with positive refractive power leads the radiation to the system aperture 5.
- the first lens group LG1 opens with three negative lenses 11, 12, 13 which, in this order, have a biconcave negative lens 11 with an aspherical entry side, a negative meniscus lens 12 with an image-side center of curvature and an aspherical entry side and a negative meniscus lens 13 with an object side
- Center of curvature and aspherical exit side includes.
- at least one aspherical surface should be provided on at least one of the first two lenses 11, 12 in order to limit the generation of aberrations in this area.
- an aspherical surface is provided on each of the three negative lenses.
- the second lens group LG2 with a small air gap behind the last lens 13 of the first lens group LG1, has a positive meniscus lens 14 with a center of curvature on the object side, a further positive meniscus lens 15 with an object side
- the only slightly curved entry side of the lens 15, the likewise only slightly curved exit side of the lens 17 and the exit side of the last meniscus lens 20 are aspherical.
- This second lens group LG2 represents the first belly 6 of the objective.
- a special feature is the positive meniscus lens 16 arranged at the largest diameter, the centers of curvature of which lie on the image side.
- the radius of the exit surface of this lens 16 has a value that is less than half the object image distance.
- This lens group is used primarily for Petzval correction, distortion telecentricity correction and image field correction outside of the main sections.
- the first negative lens 20 of the third group is preferably a strongly biconcave lens, so that the main waist 7 opens with strongly curved surfaces.
- the fourth lens group LG4 following the waist 7 consists of two positive meniscus lenses 23, 24 with concave surfaces on the image side, the exit side of the meniscus lens 23 on the input side being aspherical, the other surfaces being spherical. In other embodiments, only a single positive meniscus of corresponding curvature can be provided at this point.
- the subsequent fifth lens group LG5 also has two meniscus lenses 25, 26, but these each have negative refractive power and the concave surfaces are directed toward the image field 3. If necessary, only a negative meniscus can be provided at this point, the center of curvature of which lies on the wafer side. It has turned out to be favorable if the negative refractive power of the negative meniscus 25 on the object side is at least 30% stronger than that of the subsequent meniscus 26.
- Such a group with at least one negative meniscus is a central correction element for the function of the one-waist system, to elegantly correct off-axis image errors. In particular, this enables a compact design with relatively small lens diameters.
- the sixth lens group LG6 begins with a sequence of positive lenses 27, 28, 29, 30, it having turned out to be advantageous if at least two of these lenses are biconvex lenses, such as the lenses 27, 28 which follow one another immediately at the input of the sixth lens group each spherical lens surfaces.
- the biconvex lenses 27, 28 are followed by a weakly positive meniscus lens 29 with a concave surface on the image side.
- the sixth lens group LG6 immediately in front of the system diaphragm 5 there is a meniscus group with two meniscus lenses 30, 31, the centers of curvature of which are all on the reticle or object side.
- a corresponding meniscus lens with positive or negative refractive power could also be provided, in particular in the case of lenses with lower apertures.
- the group of two 30, 31 shown is preferred, the meniscus lens 30 on the input side preferably having positive refractive power and the subsequent meniscus lens 31 preferably having negative refractive power.
- their negative refractive power is so great that a slight constriction in the form of an auxiliary waist 9 occurs in the beam path. In this way it can be achieved that oblique spherical tangential to oblique spherical sagital can be balanced out favorably.
- the seventh lens group LG7 arranged between system aperture 5 and image plane 3 represents a further special feature of the invention Projection lenses. Particularly in this area, special measures are required to master the surface loading of the optical surfaces overall in such a way that low-aberration imaging can be achieved with sufficient transmission of the overall lens. For this purpose, it should be ensured between the aperture 5 and the wafer 3 that no apertures are formed in the component that reach an aperture close to 1 as a component against air. A significant contribution to achieving this goal is made here in that a plano-convex lens 34 with a spherical entrance surface and a flat exit surface is arranged as the last optical element directly in front of the image plane 3.
- the aim should therefore be the longest possible radius with a high opening of this, preferably spherical, entry surface. This long radius is desirable because it reduces the field load on the entry surface. The longer the radius, the smaller the relative field and thus the induced field aberrations.
- the entrance surface can also be aspherical.
- the near-image plano-convex group which is formed here by a single, one-piece lens element 34, has a refractive effect. This can be seen from the fact that the entrance surface is not arranged concentrically to the center of the image field because the radius differs from the lens thickness. Axially elongated lenses of this type are preferred, in which the center of curvature of the entrance surface lies within the lens. Plano-convex groups or plano-convex lenses of this type therefore differ significantly from hemispherical plano-convex lenses in which the radius corresponds essentially to their thickness and which are used, for example, in microscopy to improve the coupling of the light into the microscope objective and themselves may not have any refractive properties.
- the plano-convex meniscus 34 is preceded by two very large positive lenses 32, 33, which provide the essential contribution to the system power.
- the fact that they sit close behind the diaphragm in the area of large beam diameters also minimizes the relative field load here.
- the example thus shows a very simple and efficient design of a lithographic lens suitable for the highest apertures with regard to the area behind the system aperture.
- the plano-convex meniscus 34 picks up the convergent tufts coming from the positive lenses 32, 33 in air or another suitable gaseous medium within the projection lens with a low refractive power in order to pass them on to the light-sensitive layer of the substrate.
- Embodiments are therefore favorable in which there are only positive lenses between the aperture 5 and the wafer, it also being possible for one or more plane-parallel plates to be provided in addition.
- the lowest possible number of optical surfaces in this area is also advantageous, since each surface causes reflection losses even with good anti-reflective coating.
- the number of lenses should be four or fewer here, and again plane-parallel plates can optionally be provided.
- surfaces with aspheres should be provided in the area of the diaphragm, particularly close behind it. These can face each other in a lens, as is the case with the biconvex, double-aspherical positive lens 32. It is also advantageous if an aspherical surface is provided both directly in front of the diaphragm plane and immediately behind it. In the example, these are the exit surface of the negative meniscus 31 and the entry surface of the biconvex positive lens 32.
- the high number of aspheres in the area around the system aperture 5 serves in the example above all to correct the spherical aberration (Zemike coefficients Z9, Z16, Z25, Z26, Z36, Z49) and the setting of the isoplanasia, i.e. the correction of the aperture-related imaging scale.
- Table 1 summarizes the specification of the design in a known manner in tabular form.
- Column 1 gives the number of a refractive or otherwise distinguished surface
- column 2 the radius r of the surface (in mm)
- column 3 the distance d of the surface from the following surface (in mm), which is referred to as thickness
- column 4 the material of the optical components
- column 5 the refractive index or the refractive index of the material of the component, which follows the entry surface.
- Column 6 shows the usable free radii or half the free diameter of the lenses (in mm).
- p (h) [((1 / r) h 2 ) / (1 + SQRT (1 - (1-fK) (1 / r) 2 h 2 )] + C1 * h 4 + C2 * h 6 +. ...
- the numerical aperture on the image side is 1.1.
- the lens has an overall length (distance between image plane and Object level) of 1297mm. With an image size of 22mm, a light guide value (product of numerical aperture and image size) of 24.1 mm is achieved.
- the image-side working distance, ie the distance between the flat exit surface of the last optical element 34 and the image plane 3 is not listed separately. For example, it can be 20 to 50nm. This makes the projection lens suitable for near-field lithography.
- the immersion medium has essentially the same refractive index as the last optical element of the objective (which consists, for example, of glass or crystal), the solid is shortened to achieve a greater distance from the image plane and the resulting larger space is created by the immersion medium, e.g. deionized water filled. If the refractive index of the immersion medium deviates from that of the last optical component, both thicknesses are matched to one another as best as possible.
- a spherical post-correction is advantageous, which can be carried out, for example, with the aid of suitable manipulators on one or more lens elements, for example by adjusting the air gaps. It may also be favorable to easily modify the design shown here as an example.
- the example presented offers further development possibilities in the direction of a higher aperture and / or a smaller number of interfaces.
- some lenses that are adjacent in pairs can be combined to form a single lens in order to reduce the number of interfaces by two.
- the lenses 23 and 24, the lenses 18 and 19, the lenses 13 and 14, the lenses 26 and 27 and / or the lenses 11 and 12 can each be combined to form a lens.
- aspherical surfaces must be installed or modified.
- a combination of lenses is especially useful for shorter wavelengths, e.g. 157nm cheap, where anti-reflective coating and surface roughness of lens surfaces can be problematic.
- a further positive lens behind the diaphragm can be favorable at the highest apertures in order to introduce new aberrations with as few apertures as possible when the apertures are increased.
- the advantages of the invention can be used not only with purely refractive projection lenses, but also with catadioptric projection lenses, in particular those that work with geometric or physical (polarization-selective) beam splitting. Special features are in the structure and function in the area of the near-system screen and between this and the picture plane.
- the upstream lens parts which in the case of catadioptric projection lenses comprise at least one imaging mirror, should at least provide an overcorrection of the longitudinal color error in order to correct the corresponding undercorrection of the last lens group compensate.
- a Petzval overcorrection should preferably be provided in order to provide a lead for the Petzval undercorrection of the last lens group.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Lenses (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE10210899A DE10210899A1 (de) | 2002-03-08 | 2002-03-08 | Refraktives Projektionsobjektiv für Immersions-Lithographie |
| DE10210899 | 2002-03-08 | ||
| PCT/EP2002/004846 WO2003077036A1 (de) | 2002-03-08 | 2002-05-03 | Projektionsobjektiv höchster apertur |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP1483625A1 true EP1483625A1 (de) | 2004-12-08 |
Family
ID=27762884
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP02738025A Withdrawn EP1483625A1 (de) | 2002-03-08 | 2002-05-03 | Projektionsobjektiv höchster apertur |
| EP03717197A Withdrawn EP1485760A1 (en) | 2002-03-08 | 2003-02-26 | Refractive projection objective for immersion lithography |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP03717197A Withdrawn EP1485760A1 (en) | 2002-03-08 | 2003-02-26 | Refractive projection objective for immersion lithography |
Country Status (8)
| Country | Link |
|---|---|
| US (4) | US6891596B2 (enExample) |
| EP (2) | EP1483625A1 (enExample) |
| JP (2) | JP2005519347A (enExample) |
| KR (1) | KR100991590B1 (enExample) |
| CN (1) | CN100573222C (enExample) |
| AU (2) | AU2002312872A1 (enExample) |
| DE (1) | DE10210899A1 (enExample) |
| WO (2) | WO2003077036A1 (enExample) |
Families Citing this family (263)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7187503B2 (en) | 1999-12-29 | 2007-03-06 | Carl Zeiss Smt Ag | Refractive projection objective for immersion lithography |
| US7203007B2 (en) * | 2000-05-04 | 2007-04-10 | Carl Zeiss Smt Ag | Projection exposure machine comprising a projection lens |
| KR100866818B1 (ko) * | 2000-12-11 | 2008-11-04 | 가부시키가이샤 니콘 | 투영광학계 및 이 투영광학계를 구비한 노광장치 |
| US7190527B2 (en) | 2002-03-01 | 2007-03-13 | Carl Zeiss Smt Ag | Refractive projection objective |
| DE10229249A1 (de) | 2002-03-01 | 2003-09-04 | Zeiss Carl Semiconductor Mfg | Refraktives Projektionsobjektiv mit einer Taille |
| DE10210899A1 (de) | 2002-03-08 | 2003-09-18 | Zeiss Carl Smt Ag | Refraktives Projektionsobjektiv für Immersions-Lithographie |
| TWI249082B (en) | 2002-08-23 | 2006-02-11 | Nikon Corp | Projection optical system and method for photolithography and exposure apparatus and method using same |
| US7110081B2 (en) | 2002-11-12 | 2006-09-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| CN101424881B (zh) | 2002-11-12 | 2011-11-30 | Asml荷兰有限公司 | 光刻投射装置 |
| US9482966B2 (en) | 2002-11-12 | 2016-11-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7372541B2 (en) | 2002-11-12 | 2008-05-13 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| SG121818A1 (en) | 2002-11-12 | 2006-05-26 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
| KR100588124B1 (ko) | 2002-11-12 | 2006-06-09 | 에이에스엠엘 네델란즈 비.브이. | 리소그래피장치 및 디바이스제조방법 |
| DE60335595D1 (de) | 2002-11-12 | 2011-02-17 | Asml Netherlands Bv | Lithographischer Apparat mit Immersion und Verfahren zur Herstellung einer Vorrichtung |
| US10503084B2 (en) | 2002-11-12 | 2019-12-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| SG121822A1 (en) | 2002-11-12 | 2006-05-26 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
| SG131766A1 (en) | 2002-11-18 | 2007-05-28 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
| DE60319658T2 (de) | 2002-11-29 | 2009-04-02 | Asml Netherlands B.V. | Lithographischer Apparat und Verfahren zur Herstellung einer Vorrichtung |
| DE10258718A1 (de) | 2002-12-09 | 2004-06-24 | Carl Zeiss Smt Ag | Projektionsobjektiv, insbesondere für die Mikrolithographie, sowie Verfahren zur Abstimmung eines Projektionsobjektives |
| JP4352874B2 (ja) | 2002-12-10 | 2009-10-28 | 株式会社ニコン | 露光装置及びデバイス製造方法 |
| EP1571697A4 (en) | 2002-12-10 | 2007-07-04 | Nikon Corp | EXPOSURE SYSTEM AND DEVICE PRODUCTION METHOD |
| US7242455B2 (en) * | 2002-12-10 | 2007-07-10 | Nikon Corporation | Exposure apparatus and method for producing device |
| WO2004053952A1 (ja) | 2002-12-10 | 2004-06-24 | Nikon Corporation | 露光装置及びデバイス製造方法 |
| KR101036114B1 (ko) | 2002-12-10 | 2011-05-23 | 가부시키가이샤 니콘 | 노광장치 및 노광방법, 디바이스 제조방법 |
| SG158745A1 (en) | 2002-12-10 | 2010-02-26 | Nikon Corp | Exposure apparatus and method for producing device |
| US7948604B2 (en) * | 2002-12-10 | 2011-05-24 | Nikon Corporation | Exposure apparatus and method for producing device |
| DE10261775A1 (de) | 2002-12-20 | 2004-07-01 | Carl Zeiss Smt Ag | Vorrichtung zur optischen Vermessung eines Abbildungssystems |
| EP1598855B1 (en) | 2003-02-26 | 2015-04-22 | Nikon Corporation | Exposure apparatus and method, and method of producing apparatus |
| DE10308610B4 (de) * | 2003-02-27 | 2006-04-13 | Carl Zeiss | Immersionsflüssigkeit für die Mikroskopie bei Wasserimmersion |
| KR101345474B1 (ko) | 2003-03-25 | 2013-12-27 | 가부시키가이샤 니콘 | 노광 장치 및 디바이스 제조 방법 |
| WO2004090956A1 (ja) | 2003-04-07 | 2004-10-21 | Nikon Corporation | 露光装置及びデバイス製造方法 |
| KR101547077B1 (ko) | 2003-04-09 | 2015-08-25 | 가부시키가이샤 니콘 | 노광 방법 및 장치, 그리고 디바이스 제조 방법 |
| JP4488004B2 (ja) | 2003-04-09 | 2010-06-23 | 株式会社ニコン | 液浸リソグラフィ流体制御システム |
| JP4656057B2 (ja) * | 2003-04-10 | 2011-03-23 | 株式会社ニコン | 液浸リソグラフィ装置用電気浸透素子 |
| CN101061429B (zh) | 2003-04-10 | 2015-02-04 | 株式会社尼康 | 包括用于沉浸光刻装置的真空清除的环境系统 |
| KR101323993B1 (ko) | 2003-04-10 | 2013-10-30 | 가부시키가이샤 니콘 | 액침 리소그래피 장치용 운반 영역을 포함하는 환경 시스템 |
| CN1771463A (zh) | 2003-04-10 | 2006-05-10 | 株式会社尼康 | 用于沉浸光刻装置收集液体的溢出通道 |
| EP2161621B1 (en) | 2003-04-11 | 2018-10-24 | Nikon Corporation | Cleanup method for optics in an immersion lithography apparatus, and corresponding immersion lithography apparatus |
| SG139733A1 (en) | 2003-04-11 | 2008-02-29 | Nikon Corp | Apparatus having an immersion fluid system configured to maintain immersion fluid in a gap adjacent an optical assembly |
| WO2004092830A2 (en) | 2003-04-11 | 2004-10-28 | Nikon Corporation | Liquid jet and recovery system for immersion lithography |
| KR101369582B1 (ko) | 2003-04-17 | 2014-03-04 | 가부시키가이샤 니콘 | 액침 리소그래피에서 이용하기 위한 오토포커스 소자의 광학적 배열 |
| US7348575B2 (en) | 2003-05-06 | 2008-03-25 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
| SG10201405231YA (en) | 2003-05-06 | 2014-09-26 | Nippon Kogaku Kk | Projection optical system, exposure apparatus, and exposure method |
| TWI295414B (en) | 2003-05-13 | 2008-04-01 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
| WO2004102646A1 (ja) | 2003-05-15 | 2004-11-25 | Nikon Corporation | 露光装置及びデバイス製造方法 |
| TWI614794B (zh) | 2003-05-23 | 2018-02-11 | Nikon Corp | 曝光方法及曝光裝置以及元件製造方法 |
| TWI424470B (zh) | 2003-05-23 | 2014-01-21 | 尼康股份有限公司 | A method of manufacturing an exposure apparatus and an element |
| EP2453465A3 (en) | 2003-05-28 | 2018-01-03 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing a device |
| TWI347741B (en) | 2003-05-30 | 2011-08-21 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
| US7213963B2 (en) | 2003-06-09 | 2007-05-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| EP1486827B1 (en) | 2003-06-11 | 2011-11-02 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7317504B2 (en) | 2004-04-08 | 2008-01-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| KR101520591B1 (ko) | 2003-06-13 | 2015-05-14 | 가부시키가이샤 니콘 | 노광 방법, 기판 스테이지, 노광 장치, 및 디바이스 제조 방법 |
| US6867844B2 (en) | 2003-06-19 | 2005-03-15 | Asml Holding N.V. | Immersion photolithography system and method using microchannel nozzles |
| TWI543235B (zh) | 2003-06-19 | 2016-07-21 | 尼康股份有限公司 | A method of manufacturing an exposure apparatus and an element |
| US6809794B1 (en) | 2003-06-27 | 2004-10-26 | Asml Holding N.V. | Immersion photolithography system and method using inverted wafer-projection optics interface |
| EP1498778A1 (en) | 2003-06-27 | 2005-01-19 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| DE60308161T2 (de) | 2003-06-27 | 2007-08-09 | Asml Netherlands B.V. | Lithographischer Apparat und Verfahren zur Herstellung eines Artikels |
| EP1494074A1 (en) | 2003-06-30 | 2005-01-05 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| EP1975721A1 (en) * | 2003-06-30 | 2008-10-01 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7236232B2 (en) | 2003-07-01 | 2007-06-26 | Nikon Corporation | Using isotopically specified fluids as optical elements |
| JP4697138B2 (ja) | 2003-07-08 | 2011-06-08 | 株式会社ニコン | 液浸リソグラフィ装置、液浸リソグラフィ方法、デバイス製造方法 |
| EP1643543B1 (en) * | 2003-07-09 | 2010-11-24 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
| EP2264531B1 (en) | 2003-07-09 | 2013-01-16 | Nikon Corporation | Exposure apparatus and device manufacturing method |
| KR101296501B1 (ko) | 2003-07-09 | 2013-08-13 | 가부시키가이샤 니콘 | 노광 장치 및 디바이스 제조 방법 |
| SG109000A1 (en) | 2003-07-16 | 2005-02-28 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
| EP1500982A1 (en) | 2003-07-24 | 2005-01-26 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| EP1650787A4 (en) | 2003-07-25 | 2007-09-19 | Nikon Corp | INVESTIGATION METHOD AND INVESTIGATION DEVICE FOR AN OPTICAL PROJECTION SYSTEM AND METHOD OF MANUFACTURING AN OPTICAL PROJECTION SYSTEM |
| EP1503244A1 (en) * | 2003-07-28 | 2005-02-02 | ASML Netherlands B.V. | Lithographic projection apparatus and device manufacturing method |
| US7175968B2 (en) * | 2003-07-28 | 2007-02-13 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and a substrate |
| CN104122760B (zh) | 2003-07-28 | 2017-04-19 | 株式会社尼康 | 曝光装置、器件制造方法 |
| US7326522B2 (en) | 2004-02-11 | 2008-02-05 | Asml Netherlands B.V. | Device manufacturing method and a substrate |
| US7779781B2 (en) | 2003-07-31 | 2010-08-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7579135B2 (en) * | 2003-08-11 | 2009-08-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lithography apparatus for manufacture of integrated circuits |
| US7700267B2 (en) * | 2003-08-11 | 2010-04-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Immersion fluid for immersion lithography, and method of performing immersion lithography |
| US6844206B1 (en) | 2003-08-21 | 2005-01-18 | Advanced Micro Devices, Llp | Refractive index system monitor and control for immersion lithography |
| TWI471705B (zh) | 2003-08-26 | 2015-02-01 | 尼康股份有限公司 | Optical components and exposure devices |
| US8149381B2 (en) | 2003-08-26 | 2012-04-03 | Nikon Corporation | Optical element and exposure apparatus |
| EP2261740B1 (en) | 2003-08-29 | 2014-07-09 | ASML Netherlands BV | Lithographic apparatus |
| TWI263859B (en) * | 2003-08-29 | 2006-10-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
| SG145780A1 (en) | 2003-08-29 | 2008-09-29 | Nikon Corp | Exposure apparatus and device fabricating method |
| US6954256B2 (en) * | 2003-08-29 | 2005-10-11 | Asml Netherlands B.V. | Gradient immersion lithography |
| TWI245163B (en) | 2003-08-29 | 2005-12-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
| KR20170070264A (ko) | 2003-09-03 | 2017-06-21 | 가부시키가이샤 니콘 | 액침 리소그래피용 유체를 제공하기 위한 장치 및 방법 |
| US7551361B2 (en) | 2003-09-09 | 2009-06-23 | Carl Zeiss Smt Ag | Lithography lens system and projection exposure system provided with at least one lithography lens system of this type |
| JP4444920B2 (ja) | 2003-09-19 | 2010-03-31 | 株式会社ニコン | 露光装置及びデバイス製造方法 |
| US8208198B2 (en) | 2004-01-14 | 2012-06-26 | Carl Zeiss Smt Gmbh | Catadioptric projection objective |
| US7158211B2 (en) | 2003-09-29 | 2007-01-02 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| EP1519230A1 (en) | 2003-09-29 | 2005-03-30 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| EP1519231B1 (en) * | 2003-09-29 | 2005-12-21 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| EP1670043B1 (en) * | 2003-09-29 | 2013-02-27 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
| JP4492539B2 (ja) * | 2003-09-29 | 2010-06-30 | 株式会社ニコン | 液浸型光学系及び投影露光装置、並びにデバイス製造方法 |
| US7056646B1 (en) | 2003-10-01 | 2006-06-06 | Advanced Micro Devices, Inc. | Use of base developers as immersion lithography fluid |
| ITMI20031914A1 (it) * | 2003-10-03 | 2005-04-04 | Solvay Solexis Spa | Perfluoropolieteri. |
| WO2005036623A1 (ja) | 2003-10-08 | 2005-04-21 | Zao Nikon Co., Ltd. | 基板搬送装置及び基板搬送方法、露光装置及び露光方法、デバイス製造方法 |
| KR101111364B1 (ko) | 2003-10-08 | 2012-02-27 | 가부시키가이샤 자오 니콘 | 기판 반송 장치 및 기판 반송 방법, 노광 장치 및 노광방법, 디바이스 제조 방법 |
| JP2005136364A (ja) | 2003-10-08 | 2005-05-26 | Zao Nikon Co Ltd | 基板搬送装置、露光装置、並びにデバイス製造方法 |
| TW201738932A (zh) | 2003-10-09 | 2017-11-01 | Nippon Kogaku Kk | 曝光裝置及曝光方法、元件製造方法 |
| EP1524558A1 (en) | 2003-10-15 | 2005-04-20 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| EP1524557A1 (en) | 2003-10-15 | 2005-04-20 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| AU2003304557A1 (en) * | 2003-10-22 | 2005-06-08 | Carl Zeiss Smt Ag | Refractive projection objective for immersion lithography |
| TWI569308B (zh) | 2003-10-28 | 2017-02-01 | 尼康股份有限公司 | 照明光學裝置、曝光裝置、曝光方法以及元件製造 方法 |
| US7411653B2 (en) | 2003-10-28 | 2008-08-12 | Asml Netherlands B.V. | Lithographic apparatus |
| US7352433B2 (en) | 2003-10-28 | 2008-04-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7113259B2 (en) * | 2003-10-31 | 2006-09-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| JP4295712B2 (ja) | 2003-11-14 | 2009-07-15 | エーエスエムエル ネザーランズ ビー.ブイ. | リソグラフィ装置及び装置製造方法 |
| TWI385414B (zh) | 2003-11-20 | 2013-02-11 | 尼康股份有限公司 | 光學照明裝置、照明方法、曝光裝置、曝光方法以及元件製造方法 |
| US7545481B2 (en) | 2003-11-24 | 2009-06-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| EP1690139B1 (en) * | 2003-12-02 | 2009-01-14 | Carl Zeiss SMT AG | Projection optical system |
| EP3139214B1 (en) | 2003-12-03 | 2019-01-30 | Nikon Corporation | Exposure apparatus, exposure method, and device manufacturing method |
| US20070081133A1 (en) * | 2004-12-14 | 2007-04-12 | Niikon Corporation | Projection exposure apparatus and stage unit, and exposure method |
| KR101111363B1 (ko) * | 2003-12-15 | 2012-04-12 | 가부시키가이샤 니콘 | 투영노광장치 및 스테이지 장치, 그리고 노광방법 |
| US7385764B2 (en) * | 2003-12-15 | 2008-06-10 | Carl Zeiss Smt Ag | Objectives as a microlithography projection objective with at least one liquid lens |
| JP2005189850A (ja) * | 2003-12-15 | 2005-07-14 | Carl Zeiss Smt Ag | 液浸リソグラフィー用屈折性投影対物レンズ |
| EP1697798A2 (en) * | 2003-12-15 | 2006-09-06 | Carl Zeiss SMT AG | Projection objective having a high aperture and a planar end surface |
| DE602004030481D1 (de) | 2003-12-15 | 2011-01-20 | Nippon Kogaku Kk | Bühnensystem, belichtungsvorrichtung und belichtungsverfahren |
| US7466489B2 (en) * | 2003-12-15 | 2008-12-16 | Susanne Beder | Projection objective having a high aperture and a planar end surface |
| WO2005059645A2 (en) * | 2003-12-19 | 2005-06-30 | Carl Zeiss Smt Ag | Microlithography projection objective with crystal elements |
| US7460206B2 (en) * | 2003-12-19 | 2008-12-02 | Carl Zeiss Smt Ag | Projection objective for immersion lithography |
| US7394521B2 (en) | 2003-12-23 | 2008-07-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7589818B2 (en) | 2003-12-23 | 2009-09-15 | Asml Netherlands B.V. | Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus |
| JP4429023B2 (ja) * | 2004-01-07 | 2010-03-10 | キヤノン株式会社 | 露光装置及びデバイス製造方法 |
| US20080151364A1 (en) | 2004-01-14 | 2008-06-26 | Carl Zeiss Smt Ag | Catadioptric projection objective |
| EP1706793B1 (en) | 2004-01-20 | 2010-03-03 | Carl Zeiss SMT AG | Exposure apparatus and measuring device for a projection lens |
| US20050161644A1 (en) | 2004-01-23 | 2005-07-28 | Peng Zhang | Immersion lithography fluids |
| TWI259319B (en) | 2004-01-23 | 2006-08-01 | Air Prod & Chem | Immersion lithography fluids |
| US7589822B2 (en) | 2004-02-02 | 2009-09-15 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
| JP2007520893A (ja) * | 2004-02-03 | 2007-07-26 | ロチェスター インスティテュート オブ テクノロジー | 流体を使用したフォトリソグラフィ法及びそのシステム |
| WO2005076321A1 (ja) | 2004-02-03 | 2005-08-18 | Nikon Corporation | 露光装置及びデバイス製造方法 |
| TWI379344B (en) | 2004-02-06 | 2012-12-11 | Nikon Corp | Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method |
| US7050146B2 (en) | 2004-02-09 | 2006-05-23 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| CN100592210C (zh) * | 2004-02-13 | 2010-02-24 | 卡尔蔡司Smt股份公司 | 微平版印刷投影曝光装置的投影物镜 |
| CN101727021A (zh) * | 2004-02-13 | 2010-06-09 | 卡尔蔡司Smt股份公司 | 微平版印刷投影曝光装置的投影物镜 |
| US7741012B1 (en) | 2004-03-01 | 2010-06-22 | Advanced Micro Devices, Inc. | Method for removal of immersion lithography medium in immersion lithography processes |
| US7215431B2 (en) * | 2004-03-04 | 2007-05-08 | Therma-Wave, Inc. | Systems and methods for immersion metrology |
| US8488102B2 (en) * | 2004-03-18 | 2013-07-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Immersion fluid for immersion lithography, and method of performing immersion lithography |
| JP4525676B2 (ja) | 2004-03-25 | 2010-08-18 | 株式会社ニコン | 露光装置、露光方法、及びデバイス製造方法 |
| JP4510494B2 (ja) * | 2004-03-29 | 2010-07-21 | キヤノン株式会社 | 露光装置 |
| US7034917B2 (en) * | 2004-04-01 | 2006-04-25 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and device manufactured thereby |
| US7227619B2 (en) | 2004-04-01 | 2007-06-05 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7295283B2 (en) | 2004-04-02 | 2007-11-13 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7712905B2 (en) | 2004-04-08 | 2010-05-11 | Carl Zeiss Smt Ag | Imaging system with mirror group |
| US7898642B2 (en) | 2004-04-14 | 2011-03-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| WO2005103788A1 (de) * | 2004-04-26 | 2005-11-03 | Carl Zeiss Smt Ag | Verfahren zum verbinden eines optischen elements mit einer haltestruktur |
| US7379159B2 (en) | 2004-05-03 | 2008-05-27 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US8054448B2 (en) | 2004-05-04 | 2011-11-08 | Nikon Corporation | Apparatus and method for providing fluid for immersion lithography |
| US20060244938A1 (en) * | 2004-05-04 | 2006-11-02 | Karl-Heinz Schuster | Microlitographic projection exposure apparatus and immersion liquid therefore |
| KR20170129271A (ko) | 2004-05-17 | 2017-11-24 | 칼 짜이스 에스엠티 게엠베하 | 중간이미지를 갖는 카타디옵트릭 투사 대물렌즈 |
| US7616383B2 (en) | 2004-05-18 | 2009-11-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7486381B2 (en) * | 2004-05-21 | 2009-02-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US20050260528A1 (en) * | 2004-05-22 | 2005-11-24 | Hynix Semiconductor Inc. | Liquid composition for immersion lithography and lithography method using the same |
| JP4913041B2 (ja) * | 2004-06-04 | 2012-04-11 | カール・ツァイス・エスエムティー・ゲーエムベーハー | 強度変化の補償を伴う投影系及びそのための補償素子 |
| WO2005119368A2 (en) | 2004-06-04 | 2005-12-15 | Carl Zeiss Smt Ag | System for measuring the image quality of an optical imaging system |
| WO2005122218A1 (ja) | 2004-06-09 | 2005-12-22 | Nikon Corporation | 露光装置及びデバイス製造方法 |
| KR101700546B1 (ko) * | 2004-06-10 | 2017-01-26 | 가부시키가이샤 니콘 | 노광 장치, 노광 방법, 및 디바이스 제조 방법 |
| US7481867B2 (en) | 2004-06-16 | 2009-01-27 | Edwards Limited | Vacuum system for immersion photolithography |
| DE102004031688B4 (de) * | 2004-06-30 | 2006-06-14 | Infineon Technologies Ag | Verfahren zur Anpassung von Strukturabmessungen bei der photolithographischen Projektion eines Musters von Strukturelementen auf einen Halbleiterwafer |
| US7463330B2 (en) | 2004-07-07 | 2008-12-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| KR101342330B1 (ko) | 2004-07-12 | 2013-12-16 | 가부시키가이샤 니콘 | 노광 장치 및 디바이스 제조 방법 |
| US7161663B2 (en) | 2004-07-22 | 2007-01-09 | Asml Netherlands B.V. | Lithographic apparatus |
| US7304715B2 (en) | 2004-08-13 | 2007-12-04 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| EP1626571A1 (en) * | 2004-08-13 | 2006-02-15 | STMicroelectronics Limited | Imaging assembly |
| JP4983257B2 (ja) | 2004-08-18 | 2012-07-25 | 株式会社ニコン | 露光装置、デバイス製造方法、計測部材、及び計測方法 |
| US7701550B2 (en) | 2004-08-19 | 2010-04-20 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US20060044533A1 (en) * | 2004-08-27 | 2006-03-02 | Asmlholding N.V. | System and method for reducing disturbances caused by movement in an immersion lithography system |
| US7301707B2 (en) * | 2004-09-03 | 2007-11-27 | Carl Zeiss Smt Ag | Projection optical system and method |
| US7529030B2 (en) * | 2004-09-06 | 2009-05-05 | Olympus Corporation | Optical apparatus with optical element made of a medium exhibiting negative refraction |
| US7133114B2 (en) | 2004-09-20 | 2006-11-07 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US20060060653A1 (en) * | 2004-09-23 | 2006-03-23 | Carl Wittenberg | Scanner system and method for simultaneously acquiring data images from multiple object planes |
| US7522261B2 (en) | 2004-09-24 | 2009-04-21 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7355674B2 (en) | 2004-09-28 | 2008-04-08 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and computer program product |
| US7894040B2 (en) | 2004-10-05 | 2011-02-22 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| WO2006037444A2 (en) * | 2004-10-05 | 2006-04-13 | Carl-Zeiss Smt Ag | Microlithographic projection exposure apparatus |
| US7209213B2 (en) | 2004-10-07 | 2007-04-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7508488B2 (en) | 2004-10-13 | 2009-03-24 | Carl Zeiss Smt Ag | Projection exposure system and method of manufacturing a miniaturized device |
| US7379155B2 (en) | 2004-10-18 | 2008-05-27 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7119876B2 (en) | 2004-10-18 | 2006-10-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7128427B2 (en) * | 2004-11-05 | 2006-10-31 | Sematech, Inc. | Method and apparatus for fluid handling in immersion lithography |
| US20080123074A1 (en) * | 2004-11-10 | 2008-05-29 | Nikon Corporation | Projection Optical System, Exposure Equipment and Exposure Method |
| JP4868209B2 (ja) * | 2004-11-10 | 2012-02-01 | 株式会社ニコン | 投影光学系、露光装置、および露光方法 |
| US7414699B2 (en) * | 2004-11-12 | 2008-08-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7423720B2 (en) | 2004-11-12 | 2008-09-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7251013B2 (en) | 2004-11-12 | 2007-07-31 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7583357B2 (en) | 2004-11-12 | 2009-09-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7145630B2 (en) | 2004-11-23 | 2006-12-05 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7161654B2 (en) | 2004-12-02 | 2007-01-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7248334B2 (en) | 2004-12-07 | 2007-07-24 | Asml Netherlands B.V. | Sensor shield |
| US7397533B2 (en) | 2004-12-07 | 2008-07-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7365827B2 (en) | 2004-12-08 | 2008-04-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7508489B2 (en) | 2004-12-13 | 2009-03-24 | Carl Zeiss Smt Ag | Method of manufacturing a miniaturized device |
| US7403261B2 (en) | 2004-12-15 | 2008-07-22 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7880860B2 (en) | 2004-12-20 | 2011-02-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| CN101107570B (zh) * | 2004-12-30 | 2011-02-09 | 卡尔蔡司Smt股份公司 | 投影光学系统 |
| SG124359A1 (en) | 2005-01-14 | 2006-08-30 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
| SG124351A1 (en) | 2005-01-14 | 2006-08-30 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
| US20060158615A1 (en) * | 2005-01-18 | 2006-07-20 | Williamson David M | Catadioptric 1x projection system and method |
| US8692973B2 (en) | 2005-01-31 | 2014-04-08 | Nikon Corporation | Exposure apparatus and method for producing device |
| KR20160135859A (ko) * | 2005-01-31 | 2016-11-28 | 가부시키가이샤 니콘 | 노광 장치 및 디바이스 제조 방법 |
| US7282701B2 (en) | 2005-02-28 | 2007-10-16 | Asml Netherlands B.V. | Sensor for use in a lithographic apparatus |
| US7324185B2 (en) | 2005-03-04 | 2008-01-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| EP1720069A2 (en) | 2005-04-07 | 2006-11-08 | Carl Zeiss SMT AG | Method of manufacturing a projection-optical system |
| USRE43576E1 (en) | 2005-04-08 | 2012-08-14 | Asml Netherlands B.V. | Dual stage lithographic apparatus and device manufacturing method |
| DE102005017752B4 (de) | 2005-04-15 | 2016-08-04 | Heraeus Quarzglas Gmbh & Co. Kg | Optisches Bauteil aus Quarzglas, Verfahren zur Herstellung des Bauteils und Verwendung desselben |
| US20060232753A1 (en) | 2005-04-19 | 2006-10-19 | Asml Holding N.V. | Liquid immersion lithography system with tilted liquid flow |
| DE102006013560A1 (de) * | 2005-04-19 | 2006-10-26 | Carl Zeiss Smt Ag | Projektionsobjektiv einer mikrolithographischen Projektionsbelichtungsanlage sowie Verfahren zu dessen Herstellung |
| US8248577B2 (en) | 2005-05-03 | 2012-08-21 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| KR101762083B1 (ko) | 2005-05-12 | 2017-07-26 | 가부시키가이샤 니콘 | 투영 광학계, 노광 장치 및 노광 방법 |
| TWI454731B (zh) | 2005-05-27 | 2014-10-01 | Zeiss Carl Smt Gmbh | 用於改進投影物鏡的成像性質之方法以及該投影物鏡 |
| US20070013882A1 (en) * | 2005-06-07 | 2007-01-18 | Carl Zeiss Smt Ag | Method of manufacturing projection objectives and set of projection objectives manufactured by that method |
| US7385673B2 (en) * | 2005-06-10 | 2008-06-10 | International Business Machines Corporation | Immersion lithography with equalized pressure on at least projection optics component and wafer |
| WO2006133800A1 (en) | 2005-06-14 | 2006-12-21 | Carl Zeiss Smt Ag | Lithography projection objective, and a method for correcting image defects of the same |
| US7262422B2 (en) * | 2005-07-01 | 2007-08-28 | Spansion Llc | Use of supercritical fluid to dry wafer and clean lens in immersion lithography |
| US7535644B2 (en) | 2005-08-12 | 2009-05-19 | Asml Netherlands B.V. | Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby |
| WO2007020004A1 (de) | 2005-08-17 | 2007-02-22 | Carl Zeiss Smt Ag | Projektionsobjektiv und verfahren zur optimierung einer systemblende eines projektionsobjektivs |
| US8202460B2 (en) * | 2005-09-22 | 2012-06-19 | International Business Machines Corporation | Microelectronic substrate having removable edge extension element |
| US7357768B2 (en) * | 2005-09-22 | 2008-04-15 | William Marshall | Recliner exerciser |
| US7773195B2 (en) | 2005-11-29 | 2010-08-10 | Asml Holding N.V. | System and method to increase surface tension and contact angle in immersion lithography |
| US20070124987A1 (en) * | 2005-12-05 | 2007-06-07 | Brown Jeffrey K | Electronic pest control apparatus |
| KR100768849B1 (ko) * | 2005-12-06 | 2007-10-22 | 엘지전자 주식회사 | 계통 연계형 연료전지 시스템의 전원공급장치 및 방법 |
| WO2007071569A1 (en) * | 2005-12-23 | 2007-06-28 | Carl Zeiss Smt Ag | Projection objective of a microlithographic projection exposure apparatus |
| US7649611B2 (en) | 2005-12-30 | 2010-01-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
| US7893047B2 (en) * | 2006-03-03 | 2011-02-22 | Arch Chemicals, Inc. | Biocide composition comprising pyrithione and pyrrole derivatives |
| DE102006021797A1 (de) | 2006-05-09 | 2007-11-15 | Carl Zeiss Smt Ag | Optische Abbildungseinrichtung mit thermischer Dämpfung |
| US8072577B2 (en) * | 2006-06-05 | 2011-12-06 | Macronix International Co., Ltd. | Lithography systems and processes |
| EP1906251A1 (en) * | 2006-09-26 | 2008-04-02 | Carl Zeiss SMT AG | Projection exposure method and projection exposure system |
| US20080084549A1 (en) * | 2006-10-09 | 2008-04-10 | Rottmayer Robert E | High refractive index media for immersion lithography and method of immersion lithography using same |
| US8817226B2 (en) | 2007-02-15 | 2014-08-26 | Asml Holding N.V. | Systems and methods for insitu lens cleaning using ozone in immersion lithography |
| US8654305B2 (en) | 2007-02-15 | 2014-02-18 | Asml Holding N.V. | Systems and methods for insitu lens cleaning in immersion lithography |
| US8237911B2 (en) | 2007-03-15 | 2012-08-07 | Nikon Corporation | Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine |
| US20080259308A1 (en) * | 2007-04-18 | 2008-10-23 | Carl Zeiss Smt Ag | Projection objective for microlithography |
| WO2008138560A1 (de) * | 2007-05-14 | 2008-11-20 | Carl Zeiss Smt Ag | Projektionsobjektiv und projektionsbelichtungsanlage für die mikrolithographie |
| US7760425B2 (en) * | 2007-09-05 | 2010-07-20 | Carl Zeiss Smt Ag | Chromatically corrected catadioptric objective and projection exposure apparatus including the same |
| US8451427B2 (en) | 2007-09-14 | 2013-05-28 | Nikon Corporation | Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method |
| JP5013119B2 (ja) * | 2007-09-20 | 2012-08-29 | 信越化学工業株式会社 | パターン形成方法並びにこれに用いるレジスト材料 |
| JP5267029B2 (ja) | 2007-10-12 | 2013-08-21 | 株式会社ニコン | 照明光学装置、露光装置及びデバイスの製造方法 |
| SG185313A1 (en) | 2007-10-16 | 2012-11-29 | Nikon Corp | Illumination optical system, exposure apparatus, and device manufacturing method |
| CN101681123B (zh) | 2007-10-16 | 2013-06-12 | 株式会社尼康 | 照明光学系统、曝光装置以及元件制造方法 |
| US8379187B2 (en) | 2007-10-24 | 2013-02-19 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
| US9116346B2 (en) | 2007-11-06 | 2015-08-25 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
| JP5228995B2 (ja) * | 2008-03-05 | 2013-07-03 | 信越化学工業株式会社 | 重合性モノマー化合物、パターン形成方法並びにこれに用いるレジスト材料 |
| KR101448152B1 (ko) * | 2008-03-26 | 2014-10-07 | 삼성전자주식회사 | 수직 포토게이트를 구비한 거리측정 센서 및 그를 구비한입체 컬러 이미지 센서 |
| CN105606344B (zh) | 2008-05-28 | 2019-07-30 | 株式会社尼康 | 照明光学系统、照明方法、曝光装置以及曝光方法 |
| US9176393B2 (en) | 2008-05-28 | 2015-11-03 | Asml Netherlands B.V. | Lithographic apparatus and a method of operating the apparatus |
| JP5253081B2 (ja) * | 2008-10-14 | 2013-07-31 | キヤノン株式会社 | 投影光学系、露光装置及びデバイスの製造方法 |
| JP5218227B2 (ja) * | 2008-12-12 | 2013-06-26 | 信越化学工業株式会社 | パターン形成方法 |
| MX2012007581A (es) * | 2009-12-28 | 2012-07-30 | Pioneer Hi Bred Int | Genotipos restauradores de la fertilidad de sorgo y metodos de seleccion asistida por marcadores. |
| EP2381310B1 (en) | 2010-04-22 | 2015-05-06 | ASML Netherlands BV | Fluid handling structure and lithographic apparatus |
| CN102298198B (zh) * | 2010-06-22 | 2013-05-22 | 上海微电子装备有限公司 | 一种大视场光刻投影物镜 |
| US8476004B2 (en) | 2011-06-27 | 2013-07-02 | United Microelectronics Corp. | Method for forming photoresist patterns |
| DE102012006244A1 (de) * | 2012-03-21 | 2013-09-26 | Jenoptik Optical Systems Gmbh | Farbkorrigiertes F-Theta-Objektiv für die Lasermaterialbearbeitung |
| KR101407076B1 (ko) * | 2012-05-24 | 2014-06-13 | 주식회사 비엘시스템 | 근적외선을 이용한 인쇄판 프린터용 고해상도 노광장치 |
| US8701052B1 (en) | 2013-01-23 | 2014-04-15 | United Microelectronics Corp. | Method of optical proximity correction in combination with double patterning technique |
| US8627242B1 (en) | 2013-01-30 | 2014-01-07 | United Microelectronics Corp. | Method for making photomask layout |
| JP5664697B2 (ja) * | 2013-05-13 | 2015-02-04 | 株式会社ニコン | 反射屈折型の投影光学系、露光装置、および露光方法 |
| US9230812B2 (en) | 2013-05-22 | 2016-01-05 | United Microelectronics Corp. | Method for forming semiconductor structure having opening |
| CN103499876B (zh) * | 2013-10-10 | 2015-07-29 | 中国科学院光电技术研究所 | 一种大数值孔径的纯折射式投影光学系统 |
| DE102017106837B4 (de) * | 2017-03-30 | 2023-02-23 | Carl Zeiss Jena Gmbh | Linsensystem für ein Makroobjektiv für den industriellen Einsatz bei der Qualitätssicherung im Produktionsprozess, Makroobjektiv sowie System |
| DE102017207582A1 (de) * | 2017-05-05 | 2018-11-08 | Carl Zeiss Smt Gmbh | Projektionsobjektiv, Projektionsbelichtungsanlage und Projektionsbelichtungsverfahren |
| CN109581622B (zh) * | 2017-09-29 | 2020-12-04 | 上海微电子装备(集团)股份有限公司 | 一种投影物镜 |
| CN113900227B (zh) * | 2021-10-09 | 2022-07-05 | 中国科学院苏州生物医学工程技术研究所 | 一种大视场高分辨宽波段的物镜 |
| CN114563866B (zh) * | 2022-03-14 | 2024-02-20 | 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) | 投影物镜系统 |
| DE102023204235A1 (de) * | 2023-05-08 | 2024-11-14 | Carl Zeiss Smt Gmbh | Lithographiesystem mit abspaltbaren Linsen |
| CN120065480B (zh) * | 2025-04-30 | 2025-08-05 | 长春智冉光电科技有限公司 | 一种深紫外干湿两用投影物镜及方法 |
Family Cites Families (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2963537D1 (en) * | 1979-07-27 | 1982-10-07 | Tabarelli Werner W | Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer |
| US4509852A (en) * | 1980-10-06 | 1985-04-09 | Werner Tabarelli | Apparatus for the photolithographic manufacture of integrated circuit elements |
| JPS57153433A (en) * | 1981-03-18 | 1982-09-22 | Hitachi Ltd | Manufacturing device for semiconductor |
| US5121256A (en) * | 1991-03-14 | 1992-06-09 | The Board Of Trustees Of The Leland Stanford Junior University | Lithography system employing a solid immersion lens |
| JP2753930B2 (ja) | 1992-11-27 | 1998-05-20 | キヤノン株式会社 | 液浸式投影露光装置 |
| JP3747951B2 (ja) | 1994-11-07 | 2006-02-22 | 株式会社ニコン | 反射屈折光学系 |
| DE4417489A1 (de) | 1994-05-19 | 1995-11-23 | Zeiss Carl Fa | Höchstaperturiges katadioptrisches Reduktionsobjektiv für die Miktrolithographie |
| US6631036B2 (en) | 1996-09-26 | 2003-10-07 | Carl-Zeiss-Stiftung | Catadioptric objective |
| US6169627B1 (en) | 1996-09-26 | 2001-01-02 | Carl-Zeiss-Stiftung | Catadioptric microlithographic reduction objective |
| US5825043A (en) | 1996-10-07 | 1998-10-20 | Nikon Precision Inc. | Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus |
| JP3747566B2 (ja) * | 1997-04-23 | 2006-02-22 | 株式会社ニコン | 液浸型露光装置 |
| JPH116957A (ja) * | 1997-04-25 | 1999-01-12 | Nikon Corp | 投影光学系および投影露光装置並びに投影露光方法 |
| US5900354A (en) | 1997-07-03 | 1999-05-04 | Batchelder; John Samuel | Method for optical inspection and lithography |
| US6700645B1 (en) | 1998-01-22 | 2004-03-02 | Nikon Corporation | Projection optical system and exposure apparatus and method |
| AU2747999A (en) * | 1998-03-26 | 1999-10-18 | Nikon Corporation | Projection exposure method and system |
| US6097537A (en) | 1998-04-07 | 2000-08-01 | Nikon Corporation | Catadioptric optical system |
| US5986824A (en) * | 1998-06-04 | 1999-11-16 | Nikon Corporation | Large NA projection lens system with aplanatic lens element for excimer laser lithography |
| EP0989434B1 (en) | 1998-07-29 | 2006-11-15 | Carl Zeiss SMT AG | Catadioptric optical system and exposure apparatus having the same |
| DE19855108A1 (de) | 1998-11-30 | 2000-05-31 | Zeiss Carl Fa | Mikrolithographisches Reduktionsobjektiv, Projektionsbelichtungsanlage und -Verfahren |
| EP1006388A3 (de) | 1998-11-30 | 2002-05-02 | Carl Zeiss | Reduktions-Projektionsobjektiv der Mikrolithographie |
| JP3423644B2 (ja) | 1999-06-14 | 2003-07-07 | キヤノン株式会社 | 投影光学系及びそれを用いた投影露光装置 |
| US6867922B1 (en) * | 1999-06-14 | 2005-03-15 | Canon Kabushiki Kaisha | Projection optical system and projection exposure apparatus using the same |
| JP2001023887A (ja) | 1999-07-09 | 2001-01-26 | Nikon Corp | 投影光学系、該光学系を備える投影露光装置及び露光方法 |
| WO2001023935A1 (en) | 1999-09-29 | 2001-04-05 | Nikon Corporation | Projection exposure method and apparatus and projection optical system |
| WO2001023933A1 (en) * | 1999-09-29 | 2001-04-05 | Nikon Corporation | Projection optical system |
| EP1094350A3 (en) | 1999-10-21 | 2001-08-16 | Carl Zeiss | Optical projection lens system |
| TW448307B (en) | 1999-12-21 | 2001-08-01 | Zeiss Stiftung | Optical projection system |
| US6995930B2 (en) * | 1999-12-29 | 2006-02-07 | Carl Zeiss Smt Ag | Catadioptric projection objective with geometric beam splitting |
| TW538256B (en) * | 2000-01-14 | 2003-06-21 | Zeiss Stiftung | Microlithographic reduction projection catadioptric objective |
| JP2001228401A (ja) * | 2000-02-16 | 2001-08-24 | Canon Inc | 投影光学系、および該投影光学系による投影露光装置、デバイス製造方法 |
| US7301605B2 (en) * | 2000-03-03 | 2007-11-27 | Nikon Corporation | Projection exposure apparatus and method, catadioptric optical system and manufacturing method of devices |
| JP2001343582A (ja) | 2000-05-30 | 2001-12-14 | Nikon Corp | 投影光学系、当該投影光学系を備えた露光装置、及び当該露光装置を用いたマイクロデバイスの製造方法 |
| US6486940B1 (en) | 2000-07-21 | 2002-11-26 | Svg Lithography Systems, Inc. | High numerical aperture catadioptric lens |
| JP4245286B2 (ja) | 2000-10-23 | 2009-03-25 | 株式会社ニコン | 反射屈折光学系および該光学系を備えた露光装置 |
| KR100866818B1 (ko) | 2000-12-11 | 2008-11-04 | 가부시키가이샤 니콘 | 투영광학계 및 이 투영광학계를 구비한 노광장치 |
| JP2002244035A (ja) | 2000-12-11 | 2002-08-28 | Nikon Corp | 投影光学系および該投影光学系を備えた露光装置 |
| JP2002323653A (ja) | 2001-02-23 | 2002-11-08 | Nikon Corp | 投影光学系,投影露光装置および投影露光方法 |
| WO2002091078A1 (en) * | 2001-05-07 | 2002-11-14 | Massachusetts Institute Of Technology | Methods and apparatus employing an index matching medium |
| JP2003185920A (ja) | 2001-12-18 | 2003-07-03 | Nikon Corp | 結像光学系及び投影露光装置 |
| JP4016179B2 (ja) | 2002-02-28 | 2007-12-05 | ソニー株式会社 | 露光装置及び収束レンズの制御方法 |
| EP1481286A2 (de) | 2002-03-01 | 2004-12-01 | Carl Zeiss SMT AG | Refraktives projektionsobjektiv mit einer taille |
| DE10210899A1 (de) * | 2002-03-08 | 2003-09-18 | Zeiss Carl Smt Ag | Refraktives Projektionsobjektiv für Immersions-Lithographie |
| TWI249082B (en) | 2002-08-23 | 2006-02-11 | Nikon Corp | Projection optical system and method for photolithography and exposure apparatus and method using same |
| JP3982362B2 (ja) | 2002-08-23 | 2007-09-26 | 住友電気工業株式会社 | 光データリンク |
-
2002
- 2002-03-08 DE DE10210899A patent/DE10210899A1/de not_active Withdrawn
- 2002-05-03 EP EP02738025A patent/EP1483625A1/de not_active Withdrawn
- 2002-05-03 WO PCT/EP2002/004846 patent/WO2003077036A1/de not_active Ceased
- 2002-05-03 JP JP2003575189A patent/JP2005519347A/ja active Pending
- 2002-05-03 AU AU2002312872A patent/AU2002312872A1/en not_active Abandoned
-
2003
- 2003-02-26 EP EP03717197A patent/EP1485760A1/en not_active Withdrawn
- 2003-02-26 KR KR1020047014023A patent/KR100991590B1/ko not_active Expired - Fee Related
- 2003-02-26 JP JP2003575190A patent/JP2005519348A/ja active Pending
- 2003-02-26 WO PCT/EP2003/001954 patent/WO2003077037A1/en not_active Ceased
- 2003-02-26 CN CNB038055759A patent/CN100573222C/zh not_active Expired - Fee Related
- 2003-02-26 AU AU2003221490A patent/AU2003221490A1/en not_active Abandoned
- 2003-03-06 US US10/379,809 patent/US6891596B2/en not_active Expired - Fee Related
-
2004
- 2004-09-08 US US10/935,321 patent/US7203008B2/en not_active Expired - Lifetime
-
2005
- 2005-03-22 US US11/085,602 patent/US7312847B2/en not_active Expired - Fee Related
-
2007
- 2007-03-20 US US11/723,441 patent/US7495840B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
| Title |
|---|
| See references of WO03077036A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| US7495840B2 (en) | 2009-02-24 |
| AU2003221490A1 (en) | 2003-09-22 |
| KR20040099307A (ko) | 2004-11-26 |
| US7203008B2 (en) | 2007-04-10 |
| DE10210899A1 (de) | 2003-09-18 |
| WO2003077037A1 (en) | 2003-09-18 |
| CN1639644A (zh) | 2005-07-13 |
| US20050141098A1 (en) | 2005-06-30 |
| AU2002312872A1 (en) | 2003-09-22 |
| WO2003077036A1 (de) | 2003-09-18 |
| US20030174408A1 (en) | 2003-09-18 |
| US20050231814A1 (en) | 2005-10-20 |
| JP2005519348A (ja) | 2005-06-30 |
| US6891596B2 (en) | 2005-05-10 |
| EP1485760A1 (en) | 2004-12-15 |
| KR100991590B1 (ko) | 2010-11-04 |
| US20070188880A1 (en) | 2007-08-16 |
| CN100573222C (zh) | 2009-12-23 |
| US7312847B2 (en) | 2007-12-25 |
| JP2005519347A (ja) | 2005-06-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1483625A1 (de) | Projektionsobjektiv höchster apertur | |
| DE69531153T2 (de) | Optisches Projektionssystem mit Belichtungsgerät | |
| EP1242843B1 (de) | Projektionsobjektiv mit benachbart angeordneten asphärischen linsenoberflächen | |
| DE69125328T2 (de) | Feldkompensierte Linse | |
| US6349005B1 (en) | Microlithographic reduction objective, projection exposure equipment and process | |
| EP1544676A2 (de) | Refraktives Projektionsobjektiv für Immersions-Lithographie | |
| EP1483626A2 (de) | Refraktives projektionsobjektiv | |
| EP1855160B1 (de) | Projektionsbelichtungsanlage, Projektionsbelichtungsverfahren und Verwendung eines Projektionsobjektivs | |
| DE60206908T2 (de) | Projektionssystem für die extrem-ultraviolettlithographie | |
| EP1097404A1 (de) | Projektionsobjektiv für die mikrolithographie | |
| EP1260845A2 (de) | Katadioptrisches Reduktionsobjektiv | |
| EP1327172A1 (de) | 8-spiegel-mikrolithographie-projektionsobjektiv | |
| EP1122608A2 (de) | Projektionsbelichtungsanlage mit reflektivem Retikel | |
| DE10258718A1 (de) | Projektionsobjektiv, insbesondere für die Mikrolithographie, sowie Verfahren zur Abstimmung eines Projektionsobjektives | |
| WO2005050321A1 (de) | Refraktives projektionsobjektiv für die immersions-lithographie | |
| EP1102100A2 (de) | Katadioptrisches Objektiv mit physikalischem Strahlteiler | |
| DE102005045862A1 (de) | Optisches System für Ultraviolettlicht | |
| EP1235112B1 (de) | Teilobjektiv für Beleuchtungssystem | |
| WO2003093904A1 (de) | Projektionsobjektiv höchster apertur | |
| WO2018184720A2 (de) | Projektionsobjektiv, projektionsbelichtungsanlage und projektionsbelichtungsverfahren | |
| EP1344112A2 (de) | Projektionsobjektiv | |
| WO2006125790A2 (de) | Abbildungssystem, insbesondere für eine mikrolithographische projektionsbelichtungsanlage | |
| DE102008015775A1 (de) | Chromatisch korrigiertes Lithographieobjektiv | |
| DE102006038454A1 (de) | Projektionsobjektiv einer mikrolithographischen Projektionsbelichtungsanlage | |
| DE102016205618A1 (de) | Projektionsobjektiv mit Wellenfrontmanipulator, Projektionsbelichtungsverfahren und Projektionsbelichtungsanlage |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20040820 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
| AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CARL ZEISS SMT AG |
|
| 17Q | First examination report despatched |
Effective date: 20080226 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20080708 |