EP1374233A1 - Optischer datenträger enthaltend in der informationsschicht einen triazacyaninfarbstoff als lichtabsorbierende verbindung - Google Patents

Optischer datenträger enthaltend in der informationsschicht einen triazacyaninfarbstoff als lichtabsorbierende verbindung

Info

Publication number
EP1374233A1
EP1374233A1 EP02735147A EP02735147A EP1374233A1 EP 1374233 A1 EP1374233 A1 EP 1374233A1 EP 02735147 A EP02735147 A EP 02735147A EP 02735147 A EP02735147 A EP 02735147A EP 1374233 A1 EP1374233 A1 EP 1374233A1
Authority
EP
European Patent Office
Prior art keywords
ylidene
light
alkyl
optionally
optical data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02735147A
Other languages
German (de)
English (en)
French (fr)
Inventor
Horst Berneth
Friedrich-Karl Bruder
Wilfried Haese
Rainer Hagen
Karin HASSENRÜCK
Serguei Kostromine
Peter Landenberger
Rafael Oser
Thomas Sommermann
Josef-Walter Stawitz
Thomas Bieringer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxess Deutschland GmbH
Original Assignee
Bayer Chemicals AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10115227A external-priority patent/DE10115227A1/de
Priority claimed from DE10117463A external-priority patent/DE10117463A1/de
Application filed by Bayer Chemicals AG filed Critical Bayer Chemicals AG
Publication of EP1374233A1 publication Critical patent/EP1374233A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/04Ortho- or peri-condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/12Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring
    • C07D217/14Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring other than aralkyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/12Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 3 and unsubstituted in position 7
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D455/00Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
    • C07D455/03Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing quinolizine ring systems directly condensed with at least one six-membered carbocyclic ring, e.g. protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
    • C07D455/04Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing quinolizine ring systems directly condensed with at least one six-membered carbocyclic ring, e.g. protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine containing a quinolizine ring system condensed with only one six-membered carbocyclic ring, e.g. julolidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0091Methine or polymethine dyes, e.g. cyanine dyes having only one heterocyclic ring at one end of the methine chain, e.g. hemicyamines, hemioxonol
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/04Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups one >CH- group, e.g. cyanines, isocyanines, pseudocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B29/00Monoazo dyes prepared by diazotising and coupling
    • C09B29/0025Monoazo dyes prepared by diazotising and coupling from diazotized amino heterocyclic compounds
    • C09B29/0029Monoazo dyes prepared by diazotising and coupling from diazotized amino heterocyclic compounds the heterocyclic ring containing only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B29/00Monoazo dyes prepared by diazotising and coupling
    • C09B29/0025Monoazo dyes prepared by diazotising and coupling from diazotized amino heterocyclic compounds
    • C09B29/0074Monoazo dyes prepared by diazotising and coupling from diazotized amino heterocyclic compounds the heterocyclic ring containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B29/00Monoazo dyes prepared by diazotising and coupling
    • C09B29/34Monoazo dyes prepared by diazotising and coupling from other coupling components
    • C09B29/36Monoazo dyes prepared by diazotising and coupling from other coupling components from heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B44/00Azo dyes containing onium groups
    • C09B44/10Azo dyes containing onium groups containing cyclammonium groups attached to an azo group by a carbon atom of the ring system
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/045Special non-pigmentary uses, e.g. catalyst, photosensitisers of phthalocyanine dyes or pigments
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/085Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex substituting the central metal atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/08Preparation from other phthalocyanine compounds, e.g. cobaltphthalocyanineamine complex
    • C09B47/24Obtaining compounds having —COOH or —SO3H radicals, or derivatives thereof, directly bound to the phthalocyanine radical
    • C09B47/26Amide radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00455Recording involving reflectivity, absorption or colour changes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/254Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of protective topcoat layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Definitions

  • Optical data carrier containing a triazacyanine dye in the information layer as a light-absorbing compound
  • the invention relates to a write-once optical data carrier, which in the
  • Information layer contains a triazacyanine dye as a light-absorbing compound, and a process for its preparation.
  • the write-once optical data carriers using special light-absorbing substances or their mixtures are particularly suitable for use with high-density writable optical data storage devices that work with blue laser diodes, in particular GaN or SHG laser diodes (360 - 460 nm) and / or for use with DVD-R or CD-R discs that work with red (635 - 660 nm) or infrared (780 - 830 nm) laser diodes, as well as the application of the above-mentioned dyes to a polymer substrate, in particular polycarbonate
  • the next generation of optical data storage media - the DVD - is currently being launched on the market.
  • the storage density can be increased by using shorter-wave laser radiation (635 to 660 nm) and a higher numerical aperture NA.
  • the recordable format in this case is the DVD-R.
  • the spot size scales with the laser wavelength ⁇ / NA is the numerical aperture of the objective lens used.
  • the aim should be to use the smallest possible wavelength ⁇ . 390 nm are currently possible on the basis of semiconductor laser diodes.
  • the 780 nm wavelength of the CD-R lies at the foot of the long-wave flank of the absorption peak of the dye
  • the red wavelength 635 nm and 650 nm of the DVD-R lies at the foot of the short-wave flank of the absorption peak of the dye.
  • This concept is described in JP-A 02 557 335, JP-A 10 058 828, JP-A 06 336 086, JP-A 02 865 955, WO-A 09 917 284 and US-A 5 266 699 to the 450 nm range Working wavelength extended on the short-wave flank and the red and IR range on the long-wave flank of the absorption peak.
  • the recordable information layer made of light-absorbing organic substances must be as amorphous as possible
  • the amorphous layer of light-absorbing substances should preferably have a high heat resistance, since otherwise further layers of organic or inorganic material, which are applied to the light-absorbing information layer by sputtering or vapor deposition, are diffuse by diffusion Form interfaces and thus adversely affect reflectivity.
  • a light-absorbing substance with too low heat resistance at the interface to a polymer carrier can diffuse in it and in turn adversely affect the reflectivity.
  • the vapor pressure of a light-absorbing substance is too high, it can subhm in the above-mentioned sputtering or vapor deposition of further layers in a high vacuum and thus reduce the desired layer thickness. This in turn leads to a negative influence on the reflectivity.
  • the object of the invention is accordingly to provide suitable connections which meet the high requirements (such as light stability, favorable signal-to-noise ratio, damage-free application to the substrate material, etc.) for use in the information layer in a write-once optical data carrier, in particular for high density writable optical data storage formats in one
  • the invention therefore relates to an optical data carrier, comprising a preferably transparent substrate, optionally already coated with one or more reflection layers, on the surface of which an information layer which can be written on with light, optionally one or more reflection layers and optionally a protective layer or a further substrate or a covering layer are applied, which can be written and read with blue or red light, preferably laser light, the information layer containing a light-absorbing compound and optionally a binder, characterized in that at least one triazacyanine dye is used as the light-absorbing compound.
  • the light-absorbing compound should preferably be thermally changeable.
  • the thermal change preferably takes place at a temperature ⁇ 600 ° C., particularly preferably at a temperature ⁇ 400 ° C., very particularly preferably at a temperature ⁇ 300 ° C., in particular ⁇ 200 ° C.
  • a change can be, for example, a decomposition or chemical change in the chromophoric center of the light-absorbing compound.
  • a triazacyanin of the formula I is preferred
  • X 1 and X 3 represent nitrogen or
  • X 2 and X 4 independently of one another represent O, S, CH or NR 3 ,
  • R, R and R independently of one another for C 6 -C 6 alkyl, C 3 - to C 6 alkenyl,
  • the rings A and B together with X ⁇ , X ⁇ or X ⁇ , ⁇ 4 and the C atom bonded between them each independently represent a five- or six-membered aromatic or quasi-aromatic heterocyclic ring which contain 1 to 4 heteroatoms and / or benzyl or naphthane fused and / or substituted by nonionic radicals, and An "stands for an anion,
  • nonionic radicals are C1 to C4 alkyl, C1 to C4 alkoxy, halogen, cyano, nitro, C1 to C4 alkoxycarbonyl, C1 to C4 alkylthio, C1 to C4 alkanoylamino, benzoylamino , Mono- or Di-C ⁇ - to C4-alkylamino in question.
  • Alkyl, alkoxy, aryl and heterocyclic radicals can optionally carry further radicals such as alkyl, halogen, nitro, cyano, CO-NH2, alkoxy, trialkylsilyl, trialkylsiloxy or phenyl, the alkyl and alkoxy radicals can be straight-chain or branched, the alkyl radicals can be partially or perhalogenated, the alkyl and alkoxy radicals can be ethoxylated or propoxylated or silylated, neighboring ones
  • Alkyl and / or alkoxy residues on aryl or heterocych residues can jointly form a three- or four-membered bridge and the heterocych residues can be fused to benzene and / or quaternized.
  • Ring A of the formula is particularly preferably
  • benzthiazol-2-yl benzoxazol-2-yl, benzimidazol-2-yl, thiazol-2-yl, isothiazol-3-yl, imidazol-2-yl, pyrazol-5-yl, l, 3,4-thiadiazole -2-yl, l, 2,4-thiadiazol-5-yl, 1,2,3-
  • said rings may each by Ci to C6 alkyl, Ci to C 6 alkoxy, fluorine, chlorine, bromine, iodine, cyano, nitro, C to C 6 alkoxycarbonyl, Ci to C 6 alkylthio, Ci to C ⁇ acylamino, C 6 to Cio aryl, C 6 - to Cio-aryloxy, C 6 - to C10- Arylcarbonylamino, mono- or di-C to C 6 -alkylamino, Nd- to C 6 -alkyl-N- C 6 - to Cio-arylamino, pyrrohdino, morpholino or piperazino, and
  • rings may each by Ci- to C 6 - alkyl, Ci to C 6 alkoxy, fluorine, chlorine, bromine, iodine, cyano, nitro, Ci to C6 - alkoxycarbonyl, CJ to C 6 alkylthio, C ⁇ - to C 6 acyla
  • the triazacyanines are those of the formula
  • R and R 2 independently of one another are Cp to C 6 alkyl, C 3 to C 6 alkenyl, C 5 to C 7 cycloalkyl or C 7 to C 6 aralkyl,
  • X 5 represents N or CR 6 .
  • X 6 represents N or CR 7 ,
  • R 4 to R 7 independently of one another are hydrogen, Cp to C alkyl, Ci to C 4 -
  • Ci 5 -aralkylamino N-Cp to C 4 -alkyl-NC 5 - to C ⁇ 7 -cyclo- alkylamino, N-Cp to C -alkyl-NC 6 - to Cio-arylamino, C 6 - to Ciö- Arylamino, Pyrrohdino, Piperidino, Piperazino or Morpholino stand or
  • C 4 alkoxy substituted Cp to Cio alkanoate optionally substituted by nitro, cyano, hydroxy, Cp to C 25 alkyl, perfluoro Cp to C alkyl, Cp to C alkoxycarbonyl or chlorine, benzene or naphthalene or biphenyl sulfonate , benzene or naphthalene or biphenyl disulfonate, optionally substituted by nitro, cyano, hydroxy, Cp to C alkyl, Cp to C 4 alkoxy, Cp to C 4 alkoxycarbonyl or chlorine, optionally by nitro, cyano, Cp to C 4- alkyl, Cp to C -alkoxy, Cp to C 4 -alkoxy- carbonyl, benzoyl, chlorobenzoyl or toluoyl substituted benzoate, the anion of naphthalenedicarboxylic acid, diphenyl ether disulfonate, the
  • Bromide, iodide, tetrafluoroborate, perchlorate, methanesulfonate, benzenesulfonate, toluenesulfonate, dodecylbenzenesulfonate, tetradecanesulfonate are preferred.
  • the triazacyanines used are those of the formula (IV)
  • R 1 and R 2 independently of one another are methyl, ethyl, propyl, butyl, pentyl, hexyl, benzyl, cyclohexyl, chloroethyl, cyanomethyl, cyanoethyl, hydroxyethyl, 2-hydroxypropyl, methoxyethyl, ethoxyethyl or a radical of the formula
  • X 5 represents N or CR 6 .
  • X 6 represents N or CR 7
  • R 4 and R 5 independently of one another are hydrogen, methyl, ethyl, methoxy, cyano, methoxycarbonyl, dimethylamino, diethylamino, dipropylamino, dibutylamino, N-methyl-N-cyanoethylamino, N-methyl-N-methoxyethylamino, N-methyl- N-hydroxyethylamino, bis (cyanoethyl) amino, bis (methoxyethyl) amino, bis (hydroxyethyl) amino, N-methyl-N-benzylamino, N-methyl-N-phenylamino, phenylamino, methoxyphenylamino, pyrrohdino, piperidino , N-methyl-, N-ethyl-, N-hydroxyethyl- or N-cyanoethylpiperazino or morpholino,
  • R 6 and R 7 independently of one another represent hydrogen, methyl, ethyl, methoxy or cyano or
  • the triazacyanines used are those of the formula (IV)
  • R 1 and R 2 are the same and represent methyl, ethyl, propyl, butyl, pentyl, hexyl, benzyl, cyclohexyl, chloroethyl, cyanomethyl, cyanoethyl, hydroxyethyl, 2-hydroxypropyl, methoxyethyl, ethoxyethyl or a radical of the formula
  • the triazacyanines used are those of the formula (IV)
  • R 1 and R 2 are the same and represent methyl, ethyl, propyl, butyl, pentyl, hexyl,
  • X 5 represents N
  • X 6 represents N
  • R 4 and R 5 are the same and represent dimethylamino, diethylamino, dipropylamino, dibutylamino, N-methyl-N-cyanoethylamino, N-methyl-N-methoxyethylamino, N-methyl-N-hydroxyethylamino, bis- (cyanoethyl) amino, Bis (methoxyethyl) amino, bis (hydroxyethyl) amino, N-methyl-N-benzylamino, N-methyl-N-phenylamino, phenylamino, methoxyphenylamino, pyrrohdino, piperidino, N-methyl, N-ethyl, N-hydroxyethyl- or N-cyanoethylpiperazino or morpholino, and
  • the triazacyanines used are those of the formula (IV)
  • R 1 and R 2 are the same and represent methyl, ethyl, propyl, butyl, pentyl, hexyl, benzyl, cyclohexyl, chloroethyl, cyanomethyl, cyanoethyl, hydroxyethyl, 2-hydroxypropyl, methoxyethyl, ethoxyethyl or a radical of the formula
  • X b CR 7 stands, R 4 for dimethylamino, diethylamino, dipropylamino, dibutylamino, N-
  • Methyl-N-hydroxyethylamino bis- (cyanoethyl) amino, bis- (methoxyethyl) amino, bis- (hydroxyethyl) amino, N-methyl-N-benzylamino, N- methyl-N-phenylamino, phenylamino, methoxyphenylamino,
  • those triazacyanine dyes are preferred whose absorption maximum ⁇ max2 is in the range 420 to 550 nm, the wavelength ⁇ / at which the extinction in the short-wave Flank of the absorption maximum of the wavelength ⁇ max is half the extinction value at ⁇ maX2 , and the wavelength ⁇ ⁇ 0 , at which the absorbance in the short-wave flank of the absorption maximum of the wavelength ⁇ max2
  • Tenths of the extinction value at ⁇ max2 is preferably not more than 50 nm apart.
  • Such a triazacyanine dye preferably does not have a shorter-wave maximum ⁇ max ⁇ up to a wavelength of 350 nm, particularly preferably up to 320 nm, very particularly preferably up to 290 nm.
  • Triazacyanin dyes with an absorption maximum ⁇ max2 of 410 to 530 nm are preferred.
  • Triazacyanine dyes with an absorption maximum ⁇ max2 of 420 to 510 nm are particularly preferred.
  • Triazacyanine dyes with an absorption maximum ⁇ max of 430 to 500 nm are very particularly preferred.
  • triazacyanine dyes ⁇ / 2 and ⁇ / ⁇ 0 are preferably not more than 40 nm apart, more preferably not more than 30 nm apart, very particularly preferably not more than 20 nm apart.
  • those triazacyanine dyes are preferred whose absorption maximum ⁇ maX 2 is in the range from 500 to 650 nm, the wavelength ⁇ / 2 at which the absorbance in the long-wave flank of the absorption maximum of the wavelength ⁇ max2 is half the extinction value at ⁇ maX2 , and the wavelength in which the extinction in the long-wave flank of the absorption maximum of the wavelength ⁇ max2 is one-tenth of the extinction value at ⁇ max2 , preferably not further than
  • Such a triazacyanine dye preferably has no longer-wave maximum ⁇ max3 up to a wavelength of 750 nm, particularly preferably up to 800 nm, very particularly preferably up to 850 nm.
  • Triazacyanin dyes with an absorption maximum ⁇ max2 of are preferred
  • Triazacyanine dyes with an absorption maximum ⁇ maX 2 of 550 to 620 nm are particularly preferred.
  • Triazacyanine dyes with an absorption maximum ⁇ max2 of 580 to 610 nm are very particularly preferred.
  • triazacyanine dyes ⁇ / 2 and ⁇ ⁇ 0 are preferably not more than 40 nm apart, more preferably not more than 30 nm apart, very particularly preferably not more than 20 nm apart.
  • the triazcyanine dyes have a molar extinction coefficient ⁇ > 20,000 l / mol cm, preferably> 30,000 l / mol cm, particularly preferably> 40,000 l / mol cm, very particularly preferably> 60,000 l / mol cm.
  • the absorption spectra are measured, for example, in solution.
  • Triazacyanins of formula (I) are known, for. B. from EP-A 0 567 846.
  • the light-absorbing substances described guarantee a sufficiently high reflectivity (> 10%) of the optical data carrier in the blank state as well as a sufficiently high absorption for the thermal degradation of the information layer in the case of selective illumination with focused light if the light wavelength is in the range from 360 to 460 nm and 600 to 680 nm.
  • the contrast between written and unwritten points on the data carrier is realized by the change in reflectivity of the amplitude as well as the phase of the incident light by the optical properties of the information layer which have changed after thermal degradation.
  • the triazacyanine dyes according to the invention in particular guarantee a particularly high change in the refractive index during the transition from the unwritten to the described state.
  • the triazacyanine dyes are preferably applied to the optical data carrier by spin coating.
  • the triazacyanines can be mixed with one another or with other dyes with similar spectral properties.
  • the information layer can contain additives such as binders, wetting agents, stabilizers, thinners and sensitizers and other constituents.
  • the optical data storage device can carry further layers such as metal layers, dielectric layers and protective layers. Metals and dielectric layers are used, among other things, to adjust the reflectivity and the heat balance. Depending on the laser wavelength, metals can be gold, silver, aluminum and others. Dielectric layers are, for example, silicon dioxide and silicon nitride.
  • Protective layers are, for example, photocurable lacquers, (pressure-sensitive) adhesive layers and protective films.
  • Preferred pressure-sensitive adhesive layers consist mainly of acrylic adhesives.
  • the optical data carrier has, for example, the following layer structure (cf. FIG. 1): a transparent substrate (1), optionally a protective layer (2), an information layer (3), optionally a protective layer (4), optionally one
  • Adhesive layer (5) Adhesive layer (5), a cover layer (6).
  • the structure of the optical data carrier can preferably:
  • a transparent substrate (1) on the surface of which at least one information layer (3) which can be written on with light and which can be written on with light, preferably laser light, optionally a protective layer (4), optionally an adhesive layer (5), and a transparent one Cover layer (6) are applied.
  • a preferably transparent substrate (1) on the surface of which a protective layer (2), at least one information layer (3) which can be written on with light, preferably laser light, optionally an adhesive layer (5), and a transparent cover layer (6) are applied.
  • a preferably transparent substrate (1) on the surface of which there is optionally a protective layer (2), at least one information layer (3) that can be written on with light, preferably laser light, optionally a protective layer (4), optionally an adhesive layer (5), and a trans Parente cover layer (6) are applied.
  • a preferably transparent substrate (1) on the surface of which at least one information layer (3) which can be written on with light, preferably laser light, optionally an adhesive layer (5) and a transparent cover layer (6) are applied.
  • the optical data carrier has, for example, the following layer structure (cf. FIG. 2): a preferably transparent substrate (11), an information layer (12), optionally a reflection layer (13), optionally an adhesive layer (14), another preferably transparent substrate (15).
  • the invention further relates to optical data carriers according to the invention described with blue or red light, in particular laser light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Manufacturing Optical Record Carriers (AREA)
EP02735147A 2001-03-28 2002-03-20 Optischer datenträger enthaltend in der informationsschicht einen triazacyaninfarbstoff als lichtabsorbierende verbindung Withdrawn EP1374233A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10115227A DE10115227A1 (de) 2001-03-28 2001-03-28 Optischer Datenträger enthaltend in der Informationsschicht eine lichtabsorbierende Verbindung mit mehreren chromophoren Zentren
DE10115227 2001-03-28
DE10117463A DE10117463A1 (de) 2001-04-06 2001-04-06 Optischer Datenträger enthaltend in der Informationsschicht einen Triazacyaninfarbstoff als lichtabsorbierende Verbindung
DE10117463 2001-04-06
PCT/EP2002/003081 WO2002084656A1 (de) 2001-03-28 2002-03-20 Optischer datenträger enthaltend in der informationsschicht einen triazacyaninfarbstoff als lichtabsorbierende verbindung

Publications (1)

Publication Number Publication Date
EP1374233A1 true EP1374233A1 (de) 2004-01-02

Family

ID=26008933

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02735147A Withdrawn EP1374233A1 (de) 2001-03-28 2002-03-20 Optischer datenträger enthaltend in der informationsschicht einen triazacyaninfarbstoff als lichtabsorbierende verbindung

Country Status (6)

Country Link
US (1) US6641889B2 (enExample)
EP (1) EP1374233A1 (enExample)
JP (1) JP2004524195A (enExample)
CN (1) CN1513176A (enExample)
TW (1) TWI237257B (enExample)
WO (1) WO2002084656A1 (enExample)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1813034A (zh) * 2003-06-27 2006-08-02 西巴特殊化学品控股有限公司 具有高储存密度的光学记录材料
EP1656664A2 (en) * 2003-08-13 2006-05-17 Koninklijke Philips Electronics N.V. Recordable optical record carrier for multilevel and method for writing thereon
WO2005119671A1 (en) * 2004-06-03 2005-12-15 Clariant International Ltd Use of squaric acid dyes in optical layers for optical data recording
US20070212511A1 (en) * 2006-03-13 2007-09-13 Wellen Sham Read-once record medium and a system with read protecting function
US20070248781A1 (en) * 2006-04-25 2007-10-25 Gore Makarand P Photochemical and photothermal rearrangements for optical data and image recording
WO2007136513A1 (en) * 2006-05-17 2007-11-29 Nova Chemicals Inc. Multilayered structures and their use as optical storage media
JP4660453B2 (ja) * 2006-11-13 2011-03-30 昭和電工株式会社 窒化ガリウム系化合物半導体発光素子
FR2909094A1 (fr) * 2006-11-28 2008-05-30 Arkema France Memoire optique 3d comprenant des particules multicouches comprenant un monomere photoactif porteur d'un groupement photoisomerisable.
FR2909093B1 (fr) * 2006-11-28 2012-07-13 Arkema France Memoire optique 3d comprenant un copolymere a blocs contenant un monomere photoactif porteur d'un groupement photoisomerisable.
FR2931827A1 (fr) * 2008-05-27 2009-12-04 Arkema France Copolymere a blocs contenant un monomere photoactif porteur d'un groupement photoisomerisable, son utilisation dans une memoire optique 3d.
TW201311679A (zh) 2011-08-04 2013-03-16 Takeda Pharmaceutical 含氮雜環化合物
US10125105B2 (en) 2014-06-11 2018-11-13 Arizona Board Of Regents On Behalf Of The University Of Arizona Triazabutadienes as cleavable cross-linkers
US9593080B1 (en) 2014-06-11 2017-03-14 The Arizona Board Of Regents On Behalf Of The University Of Arizona Triazabutadienes as cleavable cross-linkers
US10047061B2 (en) 2014-06-11 2018-08-14 Arizona Board Of Regents On Behalf Of The University Of Arizona Water-soluble triazabutadienes
US10954195B2 (en) 2015-08-11 2021-03-23 Arizona Board Of Regents On Behalf Of The University Of Arizona Substituted triazenes protected from degradation by carboxylation of N1
WO2018023130A1 (en) 2016-07-29 2018-02-01 The Arizona Board Of Regents On Behalf Of The University Of Arizona Triazabutadienes as cleavable cross-linkers

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3166606A (en) 1960-12-28 1965-01-19 Union Carbide Corp Polycarbonate resins having improved flow properties
DE3821340A1 (de) 1988-06-24 1989-12-28 Bayer Ag Polycarbonate mit mesogenen verbindungen als endgruppen, ihre herstellung und verwendung
DE59207620D1 (de) 1991-10-30 1997-01-16 Ciba Geigy Ag NIR-Farbstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung
DE4141718A1 (de) 1991-12-18 1993-07-01 Bayer Ag Polycarbonate mit reaktiven endgruppen
JP2865955B2 (ja) 1992-09-09 1999-03-08 日本コロムビア株式会社 光記録媒体
US5356857A (en) * 1993-05-17 1994-10-18 Agfa-Gevaert, N.V. Triazene dyes for use in thermal transfer printing
JP3523700B2 (ja) 1995-01-12 2004-04-26 日亜化学工業株式会社 窒化物半導体レーザ素子
JP3558747B2 (ja) 1995-08-03 2004-08-25 松下電器産業株式会社 記録再生装置
JPH1058828A (ja) 1996-08-16 1998-03-03 Mitsui Petrochem Ind Ltd 光記録媒体
JPH10181206A (ja) 1996-12-26 1998-07-07 Ricoh Co Ltd 光記録媒体
JPH1143481A (ja) 1997-07-25 1999-02-16 Ricoh Co Ltd アゾ化合物、アゾ金属キレート化合物及び光記録媒体
CN1108304C (zh) 1997-09-26 2003-05-14 复旦大学 蓝光dvd-r用光信息存贮材料
DE19805544C2 (de) * 1998-02-11 2001-02-01 Acmari Chemie Gmbh Mono- und Bisazofarbstoffe unter Verwendung von grünlichtempfindlichen Diazoniumsalzen und Triazoliumkupplern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02084656A1 *

Also Published As

Publication number Publication date
WO2002084656A1 (de) 2002-10-24
US20020197439A1 (en) 2002-12-26
CN1513176A (zh) 2004-07-14
TWI237257B (en) 2005-08-01
JP2004524195A (ja) 2004-08-12
US6641889B2 (en) 2003-11-04

Similar Documents

Publication Publication Date Title
EP1374233A1 (de) Optischer datenträger enthaltend in der informationsschicht einen triazacyaninfarbstoff als lichtabsorbierende verbindung
EP1377976A2 (de) Optischer datenträger enthaltend in der informationsschicht einen merocyaninfarbstoff als lichtabsorbierende verbindung
EP1377974A1 (de) Optischer datenträger enthaltend in der informationsschicht einen xanthenfarbstoff als lichtabsorbierende verbindung
EP1273006B1 (de) Verwendung von lichtabsorbierenden verbindungen in der informationsschicht von optischen datenträgern sowie optische datenträger
EP1386317A1 (de) Optischer datenträger enthaltend in der informationsschicht einen cyaninfarbstoff als lichtabsorbierende verbindung
EP1377971A1 (de) Optischer datenträger enthaltend in der informationsschicht einen kationischen aminoheterocyclischen farbstoff als lichtabsorbierende verbindung
EP1377968A2 (de) Optischer datenträger enthaltend in der informationsschicht einen heterocyclischen azofarbstoff als lichtabsorbierende verbindung
DE10305925A1 (de) Optischer Datenträger enthaltend in der Infromationsschicht einen Azometallfarbstoff als lichtabsorbierende Verbindung
EP1709039A1 (de) Metallkomplexe als lichtabsorbierende verbindungen in der informationsschicht von optischen datentr gern
EP1374234A1 (de) Optischer datenträger enthaltend in der informationsschicht einen hemicyaninfarbstoff als lichtabsorbierende verbindung
US6726972B2 (en) Optical data storage medium containing a diaza hemicyanine dye as the light-absorbing compound in the information layer
DE10117463A1 (de) Optischer Datenträger enthaltend in der Informationsschicht einen Triazacyaninfarbstoff als lichtabsorbierende Verbindung
DE10117462A1 (de) Optischer Datenträger enthaltend in der Informationsschicht einen Hemicyaninfarbstoff als lichtabsorbierende Verbindung
EP1377970A1 (de) Optischer datenträger enthaltend in der informationsschicht eine cyclisierbare verbindung
DE10117461A1 (de) Optischer Datenträger enthaltend in der Informationsschicht einen heterocyclischen Azofarbstoff als lichtabsorbierende Verbindung
DE10117464A1 (de) Optischer Datenträger enthaltend in der Informationsschicht einen Merocyaninfarbstoff als lichtabsorbierende Verbindung
DE102004033794A1 (de) Kationische Metallkomplexe als lichtabsorbierende Verbindungen in der Informationsschicht von optischen Datenträgern
DE102004034866A1 (de) Mischungen von Azometallkomplexen als lichtabsorbierende Verbindungen in der Informationsschicht von optischen Datenträgern
EP1597322A2 (de) Metallkomplexe als lichtabsorbierende verbindungen in der informationsschicht von optischen datenträgern
DE10136063A1 (de) Optischer Datenträger enthaltend in der Informationsschicht einen kationischen aminoheterocyclischen Farbstoff als lichtabsorbierende Verbindung
DE102006022756A1 (de) Optischer Datenträger enthaltend in der Informationsschicht einen Indolcyaninfarbstoff als lichtabsorbierende Verbindung
DE10202571A1 (de) Optischer Datenträger enthaltend in der Informationsschicht einen Cyaninfarbstoff als lichtabsorbierende Verbindung
DE10136064A1 (de) Optischer Datenträger enthaltend in der Informationsschicht einen Xanthenfarbstoff als lichtabsorbierende Verbindung
DE10305924A1 (de) Metallkomplexe als lichtabsorbierende Verbindungen in der Informationsschicht von optischen Datenträgern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031028

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LANXESS DEUTSCHLAND GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20071002