EP1264344A1 - Elektronisches bauelement mit einer elektrisch leitenden verbindung aus carbon-nanoröhren und verfahren zu seiner herstellung - Google Patents

Elektronisches bauelement mit einer elektrisch leitenden verbindung aus carbon-nanoröhren und verfahren zu seiner herstellung

Info

Publication number
EP1264344A1
EP1264344A1 EP01909557A EP01909557A EP1264344A1 EP 1264344 A1 EP1264344 A1 EP 1264344A1 EP 01909557 A EP01909557 A EP 01909557A EP 01909557 A EP01909557 A EP 01909557A EP 1264344 A1 EP1264344 A1 EP 1264344A1
Authority
EP
European Patent Office
Prior art keywords
conductive layer
electronic component
hole
layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01909557A
Other languages
English (en)
French (fr)
Inventor
Manfred Engelhardt
Wolfgang HÖNLEIN
Franz Kreupl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1264344A1 publication Critical patent/EP1264344A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4076Through-connections; Vertical interconnect access [VIA] connections by thin-film techniques

Definitions

  • the invention relates to an electronic component, a method for producing a conductive connection in an electronic component and a method for producing an electronic component.
  • a disadvantage of this procedure is that especially with decreasing lateral dimensions, i.e. with a decreasing diameter of a contact hole due to the non-conductive layer and with increasing vertical expansion or at least with an increasing aspect ratio, the complete filling of the contact hole with metal is problematic and prone to errors.
  • the deposited metal frequently clogs the upper region of the contact hole, thereby preventing the entire contact hole from being filled with metal. It is therefore often not possible to produce an electrically conductive connection between the two conductive layers.
  • an incompletely filled contact hole leads to reliability problems.
  • Another disadvantage of the known procedure is that in the case of a contact hole with a very low aspect ratio, the conductivity of the metallic through-contact Clocking decreases sharply, that is, the metallic through-contact represents a considerably limiting element for the scaling of a metallization system and thus an integrated circuit, which requires that several conductive layers are interconnected in the vertical direction of an electronic component by means of non-conductive layers to be electrically connected therethrough.
  • a method is known from [2] for growing carbon nanotubes in a self-aligned manner in a perforated dialuminium trioxide matrix (Al2O 3 matrix).
  • the invention is therefore based on the problem of creating a conductive connection in an electronic component and an electronic component with a conductive connection between two conductive layers which are insulated from one another by a non-conductive layer, in which the creation of a conductive connection itself Holes with a very large aspect ratio becomes possible.
  • An electronic component has a first conductive layer, a non-conductive layer on the first conductive layer and a second conductive layer on the non-conductive layer. At least one hole is provided in the non-conductive layer which completely passes through the non-conductive layer. There is at least in the hole contain a nanotube through which the first conductive layer is conductively connected to the second conductive layer.
  • a non-conductive layer is deposited over a first conductive layer.
  • a hole is made through the non-conductive layer and at least one nanotube is grown in the hole.
  • a second conductive layer is then deposited such that the first conductive layer is conductively connected to the second conductive layer through the nanotubes.
  • a first conductive layer is provided in a first step.
  • a non-conductive layer is deposited over the first conductive layer and a hole is made, for example etched, through the non-conductive layer.
  • a nano-tubes is grown up and at least there is deposited a second conducting layer such that the first conductive layer is conductively connected through 'the nanotubes with the second conductive layer.
  • the invention makes it possible to create a reliable electrically conductive connection between two conductive layers, even with contact holes with a very small diameter and large aspect ratio, which are electrically decoupled by a non-conductive layer.
  • the conductive layers can be, for example, any metallically conductive material, such as copper, aluminum, silver, etc., the conductive layers usually being an adhesive, diffusion and anti-reflection layer, for example comprising Ti, TiN, Ta, TaN, and / or a combination of these materials.
  • the electrically non-conductive layer can be an intermetallic dielectric such as silicon oxide or silicon nitride or another insulating layer made of organic material such as wise polyimide or any combination thereof.
  • the electrically conductive connection by means of at least one nanotube is only limited by the diameter of such a nanotube, which in a so-called carbon nanotube is approximately 1.5 nm in diameter.
  • the manufacturing process is characterized by its simplicity and robustness, i.e. low susceptibility to errors and the fact that an electrically conductive connection is reliably established.
  • the nanotube is a carbon nanotube.
  • Such a carbon nanotube can be produced very easily and reliably, even in a contact hole with a small diameter, in a self-adjusted manner.
  • the carbon nanotube has a very high conductivity, which significantly exceeds the conductivity of even the best metallic conductors, such as copper or silver, with the same dimensions.
  • Such a contact hole can contain a plurality of nanotubes, in principle any number of nanotubes, in order to connect the two conductive layers to one another in an electrically conductive manner.
  • Mung layer which preferably has catalytically active metal particles for a growing nanotube, for example with metal particles made of nickel and / or iron, and / or yttrium, and / or cobalt and / or platinum.
  • the hole can be etched through the non-conductive layer.
  • the invention is in no way limited to a semiconductor element, but can be used in any electronic component in which it is important to conduct two conductive layers that are electrically decoupled by a non-conductive layer interconnect, regardless of whether a layer is a semiconductor layer or not.
  • the invention is particularly suitable for use in the context of an integrated circuit.
  • Figure 1 shows a cross section through a semiconductor element according to a first embodiment
  • FIGS. 2a to 2d cross sections through a semiconductor element, on the basis of which the individual method steps for producing the semiconductor element shown in FIG. 1 are explained;
  • FIG. 3 shows a cross section through a semiconductor element according to a second exemplary embodiment of the invention
  • FIG. 4a to 4c cross sections through a semiconductor element, using which the individual process steps for Production of the semiconductor element shown in FIG. 3 is explained;
  • FIG. 5 shows a cross section through a semiconductor element according to a third exemplary embodiment of the invention.
  • FIGS. 6a to 6e cross sections through a semiconductor element, on the basis of which individual method steps for producing the semiconductor element shown in FIG. 5 are explained.
  • Fig.l shows a first semiconductor element 100 according to a first embodiment.
  • the first semiconductor element 100 has a first conductive layer 101 made of copper or aluminum with an adhesive, diffusion and anti-reflection layer, for example comprising Ti, TiN, Ta, TaN, and / or a combination of these materials.
  • a contact hole 103 is etched into the non-conductive layer 102 and at the bottom of the contact hole, i.e. A nucleation layer 104 is deposited on the first conductive layer 101.
  • the nucleation layer 104 is a layer of catalytically active metal particles, for example of nickel, iron, yttrium, cobalt and / or platinum.
  • the germination layer 104 has a catalytic effect for the growth of a carbon nanotube.
  • Ü he b of the non-conductive layer 102 is a second conductive layer 106 of a sequence of Ti, TiN, Ta, TaN, and / or copper and / or aluminum is deposited such that the
  • Carbon nanotubes 105 are electrically conductively connected to the second conductive layer 106.
  • the non-conductive layer 102 is e.g. by means of a separation process from the gas phase (Chemical Vapor
  • the hole (contact hole) 103 is etched through the non-conductive layer 102 up to the surface of the first conductive layer 101 by means of suitable masking of the non-conductive layer 102 and wet etching or dry etching of the non-conductive layer 102 (cf. FIG. 2b).
  • the germination layer 104 is deposited in the hole 103 by means of a suitable method (see FIG. 2c), for example in accordance with a CVD method.
  • the germination layer 104 has a thickness of 0.1 nm to 50 nm.
  • the germination layer 104 according to the first
  • the exemplary embodiment is formed from nickel metal particles.
  • carbon nanotubes 105 are grown on the nucleation layer 104 in the hole 103 in accordance with the method described in [2] (cf. FIG. 2D).
  • the length of the carbon nanotubes 105 depends on the length of time in which the carbon nanotubes are grown on the nucleation layer 104.
  • the carbon nanotubes 105 are grown until they protrude beyond the upper end of the non-conductive layer 102.
  • the second conductive layer 106 is deposited on the non-conductive layer 102 by means of a CVD process or sputtering process or vapor deposition process.
  • CMP method Mechanical polishing (CMP method) or ion beam etching removes the second conductive layer 106 to a desired thickness.
  • the carbon nanotubes 105 create an electrically conductive connection between the first conductive layer 101 and the second conductive layer 106 via the germination layer 104, which itself also contains conductive metal particles.
  • FIG 3 shows a cross section of a second semiconductor element 300 according to a second exemplary embodiment.
  • the same elements in the figures are identified in the second embodiment with the same reference numerals as the elements in the first embodiment.
  • the second semiconductor element 300 has the fundamentally the same structure as the first semiconductor element 100, with the difference that the nucleation layer 301 according to the second exemplary embodiment not only extends over the bottom of the hole 103, but that the nucleation layer 301 over the entire first conductive layer 101 is provided .
  • the individual layers according to the second embodiment are made of the same materials as the corresponding layers according to the first embodiment.
  • a nucleation layer 301 made of metal particles (nickel, iron, yttrium, and / or cobalt) is deposited on the first conductive layer 101.
  • the nucleation layer 301 is deposited over the entire surface of the first conductive layer 101 by means of a suitable CVD process, sputtering process or vapor deposition process.
  • the germination layer 301 has a thickness of 0.1 nm to 50 nm.
  • the non-conductive layer 102 is e.g. deposited by means of a CVD process (see Fig.4a).
  • the carbon nanotubes 105 are on the
  • Germination layer 301 grew according to the method described in [2].
  • the growth is carried out until the length of the carbon nanotubes 105 is sufficient for them to extend over the O Surface Terminal b of the non-conductive layer 102 extend (see 4c).
  • the second conductive layer 106 is deposited on the non-conductive layer 102 by means of a CVD method.
  • the result is a semiconductor element with an electrically conductive connection using carbon nanotubes between two conductive layers through a contact hole.
  • FIG 5 shows a third semiconductor element 500 according to a third exemplary embodiment.
  • the third semiconductor element 500 differs from the second semiconductor element 300 essentially only in that a trench 501 is etched into the non-conductive layer 102 and the carbon nanotubes 105 thus do not protrude beyond the surface of the non-conductive layer 102, but rather only across the bottom of the trench 501 into the non-conductive layer 102.
  • the individual layers of the third semiconductor element 500 are made of the same materials as the first
  • the method for producing the third semiconductor element 500 is explained in detail with reference to FIGS. 6a to 6e.
  • the first is conductive S chicht 101, the nucleation layer 301 with a thickness of 0, 1 nm to 50 nm deposited by a suitable CVD method, sputtering method or vapor deposition method.
  • the non-conductive layer 102 is deposited on the seeding layer 301 by means of a CVD method.
  • the hole 103 is etched into the non-conductive layer 102 up to the surface of the nucleation layer 301 (cf. FIG. 6b).
  • a trench 501 is etched into the non-conductive layer 102 by means of dry etching or wet etching (cf. FIG. 6c).
  • the carbon nanotubes 102 are grown on the nucleation layer 301 to a length such that the carbon nanotubes 102 protrude beyond the lower surface of the trench 501, but not beyond the entire non-conductive layer 102 (see FIG. .DELTA.D).
  • the second conductive layer 106 is deposited in the trench 501 and on the non-conductive layer 102 by means of a CVD method.
  • the second conductive layer 106 is reduced to a desired thickness by means of a suitable etching method, a chemical mechanical polishing method or by means of ion beam etching, so that the surface of the second conductive layer 106 is flat with the surface of the non-conductive layer 102.
  • a CVD process using carbon monoxide CO, methane CH4, or also acetylene C2H2 or a so-called plasma enhanced can be used as the CVD process CVD process.
  • the carbon nanotubes 105 can be brought to the required length by chemical mechanical polishing or ion beam etching at an oblique angle (so that the ions cannot penetrate significantly into the contact hole during ion beam etching), i.e. to a length such that the carbon nanotubes 105 contact at least the second conductive layer 106.
  • the carbon nanotubes can also be produced using an anisotropic plasma etching process, e.g. used for structuring organic materials, brought to the required length.
  • the invention is not limited to a three-layer structure.
  • the semiconductor element can be used in any semiconductor structure, i.e. it can represent a partial semiconductor element of a very multilayer semiconductor element for contacting two conductive layers in the semiconductor element.
  • the invention can be clearly seen in the fact that two electrically conductive layers, which are electrically decoupled from one another in a semiconductor element by a non-conductive layer, are electrically conductively connected to one another by means of a contact hole by means of carbon nanotubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Ein elektronisches Bauelement weist eine erste leitende Schicht, eine nicht-leitende Schicht sowie eine zweite leitende Schicht auf. Durch die nicht-leitende Schicht ist ein Loch geätzt. In dem Loch ist eine Nanoröhre vorgesehen, durch die die erste leitende Schicht mit der zweiten leitenden Schicht leitend verbunden ist.

Description

Beschreibung
ELEKTRONISCHES BAUELEMENT MIT EINER ELEKTRISCH LEITENDEN VERBINDUNG AUS CARBON-NANORÖHREN UND VERFAHREN ZU SEINER HERSTELLUNG
Die Erfindung betrifft ein elektronisches Bauelement, ein Verfahren zum Herstellen einer leitenden Verbindung in einem elektronischen Bauelement und ein Verfahren zum Herstellen eines elektronischen Bauelements.
Es ist üblich, in einem elektronischen Bauelement, welches in integrierter Bauweise ausgestaltet ist, zwei leitende Schichten, die durch eine nicht-leitende Schicht elektrisch iso- liert sind, miteinander elektrisch leitend zu verbinden, indem durch die nicht-leitende Schicht ein Loch geätzt wird. Das Loch wird mit Metall aufgefüllt, wodurch eine metallische Durchkontaktierung erzeugt wird, die die beiden leitenden Schichten miteinander elektrisch leitend verbindet.
Ein Nachteil dieser Vorgehensweise ist darin zu sehen, dass insbesondere bei abnehmenden lateralen Abmessungen, d.h. bei abnehmendem Durchmesser eines Kontaktlochs durch die nichtleitende Schicht und bei zunehmender vertikaler Ausdehnung bzw. zumindest bei zunehmendem Aspektverhältnis, das vollständige Auffüllen des Kontaktlochs mit Metall problematisch und fehlerbehaftet ist . Insbesondere kommt es häufig zu einer Verstopfung im oberen Bereich des Kontaktlochs durch das abgeschiedene Metall, wodurch verhindert wird, dass das gesamte Kontaktloch mit Metall gefüllt wird. Somit kann häufig keine elektrisch leitende Verbindung zwischen den beiden leitenden Schichten erzeugt werden. Zudem führt ein unvollständig gefülltes Kontaktloch zu Zuverlässigkeitsproblemen.
Ein weiterer Nachteil der bekannten Vorgehensweise ist darin zu sehen, dass bei einem Kontaktloch mit einem sehr geringen Aspektverhältnis die Leitfähigkeit der metallischen Durchkon- taktierung stark abnimmt, d.h. die metallische Durchkontak- tierung stellt ein in erheblicher Weise begrenzendes Element für die Skalierung eines Metallisierungssystems und damit einer integrierten Schaltung dar, bei denen es erforderlich ist, in vertikaler Richtung eines elektronischen Bauelements mehrere leitende Schichten miteinander durch nicht-leitende Schichten hindurch elektrisch leitend zu verbinden.
Weiterhin sind aus [1] Grundlagen über sogenannte Carbon- Nanoröhren als ein sehr leitfahiges Material, deren Leitfähigkeit die Leitfähigkeit von Metall gleicher Abmessung stark übersteigt, bekannt.
Aus [2] ist ein Verfahren bekannt, um Carbon-Nanoröhren in einer perforierten Dialuminiumtrioxid-Matrix (AI2O3-Matrix) selbstjustiert aufzuwachsen.
Somit liegt der Erfindung das Problem zugrunde, eine leitende Verbindung in einem elektronischen Bauelement zu schaffen so- wie ein elektronisches Bauelement mit einer leitenden Verbindung zwischen zwei leitenden Schichten, die durch eine nichtleitende Schicht voneinander isoliert sind, bei dem das Erzeugen einer leitenden Verbindung selbst bei Löchern mit einem sehr großen Aspektverhältnis möglich wird.
Das Problem wird durch ein elektronisches Bauelement, durch ein Verfahren zum Herstellen einer leitenden Verbindung in einem elektronischen Bauelement und durch ein Verfahren zum Herstellen eines elektronischen Bauelements mit den Merkmalen gemäß den unabhängigen Patentansprüchen gelöst.
Ein elektronisches Bauelement weist eine erste leitende Schicht, eine nicht-leitende Schicht auf der ersten leitenden Schicht sowie eine zweite leitende Schicht auf der nicht- leitenden Schicht auf. In der nicht-leitenden Schicht ist mindestens ein Loch vorgesehen, das durch die nicht-leitende Schicht vollständig hindurchtritt. In dem Loch ist mindestens eine Nanorohre enthalten, durch die die erste leitende Schicht mit der zweiten leitenden Schicht leitend verbunden is .
Bei einem Verfahren zum Herstellen einer leitenden Verbindung in einem elektronischen Bauelement wird über einer ersten leitenden Schicht eine nicht-leitende Schicht abgeschieden. Durch die nicht-leitende Schicht wird ein Loch gefertigt und in dem Loch wird mindestens eine Nanorohre aufgewachsen. Eine zweite leitende Schicht wird anschließend abgeschieden derart, dass die erste leitende Schicht durch die Nanorohre mit der zweiten leitenden Schicht leitend verbunden ist.
Bei einem Verfahren zum Herstellen eines elektronischen Bau- elementε wird in einem ersten Schritt eine erste leitende Schicht bereitgestellt. Über der ersten leitenden Schicht wird eine nicht-leitende Schicht abgeschieden und durch die nicht-leitende Schicht wird ein Loch gefertigt, beispielsweise geätzt. In dem Loch wird mindestens eine Nanorohre aufge- wachsen und es wird eine zweite leitende Schicht derart abgeschieden, dass die erste leitende Schicht durch' die Nanorohre mit der zweiten leitenden Schicht leitend verbunden ist.
Durch die Erfindung wird es möglich, selbst bei Kontaktlö- ehern mit sehr geringem Durchmesser und großem AspektVerhältnis eine zuverlässige elektrisch leitende Verbindung zwischen zwei leitenden Schichten zu schaffen, die durch eine nichtleitende Schicht an sich elektrisch entkoppelt sind. Die leitenden Schichten können beispielsweise jedes metallisch lei- tende Material sein, wie z.B. Kupfer, Aluminium, Silber, etc., wobei die leitfähigen Schichten üblicherweise eine Haft-, Diffusions- und Antireflexionsschicht, aufweisend beispielsweise Ti, TiN, Ta, TaN, und/oder eine Kombination dieser Materialien, aufweisen kann. Die elektrisch nicht- leitende Schicht kann ein Intermetalldielektrikum wie beispielsweise Siliziumoxid oder Siliziumnitrid oder eine andere isolierende Schicht aus organischem Matrerial wie beispiels- weise Polyimid oder eine beliebige Kombination davon, sein. Die elektrisch leitende Verbindung mittels mindestens einer Nanorohre ist lediglich durch den Durchmesser einer solchen Nanorohre, die bei einer sogenannten Carbon-Nanoröhre bei un- gefähr 1,5 nm Durchmesser liegt, begrenzt.
Das Herstellungsverfahren zeichnet sich durch seine Einfachheit und Robustheit, d.h. durch eine geringe Fehleranfälligkeit aus und dadurch, dass zuverlässig eine elektrisch lei- tende Verbindung hergestellt wird.
Somit werden die elektronischen Bauelemente selbst bei sehr feinen Strukturen, d.h. bei geringem Durchmesser eines Kon- taktlochs, einfach und kostengünstig herstellbar.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.
Die Nanorohre ist gemäß einer bevorzugten Ausgestaltung der Erfindung eine Carbon-Nanoröhre.
Eine solche Carbon-Nanoröhre ist sehr einfach und zuverlässig selbst in einem Kontaktloch mit geringem Durchmesser selbst- justiert herstellbar.
Weiterhin weist die Carbon-Nanoröhre eine sehr hohe Leitfähigkeit auf, die die Leitfähigkeit selbst der besten metallischen Leiter, wie beispielsweise Kupfer oder Silber, bei gleichen Abmessungen erheblich übertrifft.
In einem solchen Kontaktloch können mehrere Nanoröhren, grundsätzlich eine beliebige Anzahl Nanoröhren, enthalten sein, um die beiden leitenden Schichten miteinander elektrisch leitend zu verbinden.
Zur Beschleunigung des Wachstums der Nanorohre ist in dem Kontaktloch über der ersten leitenden Schicht eine Bεkei- mungsschicht gemäß einer Ausgestaltung der Erfindung vorgesehen, welche vorzugsweise für eine aufwachsende Nanorohre ka- talytisch wirkende Metallpartikel aufweist, beispielsweise mit Metallpartikeln aus Nickel und/oder Eisen, und/oder Yt- trium, und/oder Kobalt und/oder Platin.
Das Loch kann durch die nicht-leitende Schicht geätzt werden.
Auch wenn die im weiteren beschriebenen Ausfuhrungsbeispiele jeweils ein Halbleiterelement beschreiben ist anzumerken, dass die Erfindung keineswegs auf ein Halbleiterelement beschränkt ist, sondern in jedem elektronischen Bauelement eingesetzt werden kann, bei dem es gilt, zwei durch eine nichtleitende Schicht an sich elektrisch entkoppelte leitende Schichten leitend miteinander zu verbinden, unabhängig davon , ob es sich bei einer Schicht um eine Halbleiterschicht handelt oder nicht. Insbesondere eignet sich die Erfindung zum Einsatz im Rahmen einer integrierten Schaltung.
Ausführungsbeispiele der Erfindung sind in den Figuren dargestellt und werden im weiteren näher erläutert.
Es zeigen
Figur 1 einen Querschnitt durch ein Halbleiterelement gemäß einem ersten Ausführungsbeispiel;
Figuren 2a bis 2d Querschnitte durch ein Halbleiterelement, anhand denen die einzelnen Verfahrensschritte zur Herstellung des m Figur 1 dargestellten Halbleiterelements erläutert wird;
Figur 3 einen Querschnitt durch ein Halbleiterelement gemäß einem zweiten Ausführungsbeispiel der Erfindung;
Figuren 4a bis 4c Querschnitte durch ein Halbleiterelement, anhand denen die einzelnen Verfahrensschritte zur Herstellung des m Figur 3 dargestellten Halblei- terelements erläutert wird;
Figur 5 einen Querschnitt durch ein Halbleiterelement gemäß einem dritten Ausführungsbeispiel der Erfindung;
Figuren 6a bis 6e Querschnitte durch ein Halbleiterelement, anhand denen einzelne Verfahrensschritte zur Herstellung des m Figur 5 dargestellten Halbleiterelements erläutert wird.
Ausführungsbeispiel 1
Fig.l zeigt ein erstes Halbleiterelement 100 gemäß einem ersten Ausführungsbeispiel.
Das erste Halbleiterelement 100 weist eine erste leitende Schicht 101 aus Kupfer oder Aluminium auf mit einer Haft-, Diffusions- und Antireflexionsschicht , aufweisend beispielsweise Ti, TiN, Ta, TaN, und/oder eine Kombination dieser Materialien. Auf der ersten leitenden Schicht 101 ist eine nicht-leitende Schicht 102 aus einem Intermetalldielektrikum, gemäß dem ersten Ausführungsbeispiel aus Siliziumdioxid, abgeschieden.
In die nicht-leitende Schicht 102 ist ein Kontaktloch 103 geätzt, und am Boden des Kontaktlochs, d.h. auf der ersten leitenden Schicht 101 ist eine Bekeimungsschicht 104 abgeschieden.
Die Bekeimungsschicht 104 ist eine Schicht aus katalytisch wirkenden Metallpartikeln beispielsweise aus Nickel, Eisen, Yttrium, Kobalt und/oder Platin. Die Bekeimungsschicht 104 wirkt für das Aufwachsen einer Carbon-Nanoröhre katalytisch.
Auf der Bekeimungsschicht 104 ist eine grundsätzlich beliebige Anzahl Carbon-Nanoröhren 105 aufgewachsen.
Über der nicht-leitenden Schicht 102 ist eine zweite leitende Schicht 106 aus einer Abfolge von TI, TiN, Ta, TaN, und/oder Kupfer und/oder Aluminium abgeschieden derart, dass die
Carbon-Nanoröhren 105 mit der zweiten leitenden Schicht 106 elektrisch leitend verbunden sind.
Unter Bezugnahme auf die Fig.2a bis Fig.2d werden die einzelnen Verfahrensschritte zur Herstellung des ersten Halbleiterelements 100 näher erläutert.
In einem ersten Schritt wird auf der ersten leitenden Schicht 101 die nicht-leitende Schicht 102 z.B. mittels eines Abscheideverfahrens aus der Gasphase (Chemical Vapour
Deposition- Verfahren, CVD-Verfahren) abgeschieden (vgl. Fig.2a) .
Mittels einer geeigneten Maskierung der nicht-leitenden Schicht 102 und Nassätzens oder Trockenätzens der nichtleitenden Schicht 102 wird das Loch (Kontaktloch) 103 durch die nicht-leitende Schicht 102 bis zu der Oberfläche der ersten leitenden Schicht 101 geätzt (vgl. Fig.2b) .
In dem Loch 103 wird die Bekeimungsschicht 104 abgeschieden mittels eines geeigneten Verfahrens (vgl. Fig.2c) , z.B gemäß einem CVD-Verfahren. Die Bekeimungsschicht 104 weist eine Dicke von 0,1 nm bis 50 nm auf.
Die Bekeimungsschicht 104 gemäß dem ersten
Ausführungsbeispiel ist aus Nickel -Metallpartikeln gebildet.
In einem weiteren Schritt werden gemäß dem in [2] beschriebenen Verfahren auf der Bekeimungsschicht 104 in dem Loch 103 Carbon-Nanoröhren 105 aufgewachsen (vgl. Fig.2d)
Die Länge der Carbon-Nanoröhren 105 hänαt von der Zeitdauer ab, in der die Carbon-Nanoröhren auf der Bekeimungsschicht 104 aufgewachsen werden.
Die Carbon-Nanoröhren 105 werden so lange aufgewachsen, bis sie über das obere Ende der nicht-leitenden Schicht 102 hinausragen.
Ist dies der Fall, so wird in einem weiteren Schritt, die zweite leitende Schicht 106 auf der nicht-leitenden Schicht 102 abgeschieden mittels eines CVD-Verfahrens oder Sputter- Verfahrens oder AufdampfVerfahrens .
Da die Carbon-Nanoröhren 105 über die nicht-leitende Schicht 102 hinausragen, ragen sie unmittelbar in die zweite nicht- leitende 106 hinein. Durch ein abschließendes Chemisch
Mechanisches Polieren (CMP-Verfahren) oder Ionenstrahlätzen wird die zweite leitende Schicht 106 bis zu einer gewünschten Dicke abgetragen.
Auf diese Weise ist durch die Carbon-Nanoröhren 105 eine elektrisch leitende Verbindung zwischen der ersten leitenden Schicht 101 und der zweiten leitenden Schicht 106 über die Bekeimungsschicht 104, die selbst auch leitende Metallpartikel enthält, geschaffen.
Ausführungsbeispiel 2
Fig.3 zeigt einen Querschnitt eines zweiten Halbleiterelements 300 gemäß einem zweiten Ausführungsbeispiel .
Gleiche Elemente in den Figuren werden in dem zweiten Ausführungsbeispiel mit den gleichen Bezugszeichen gekennzeichnet wie die Elemente gemäß dem ersten Ausführungsbeispiel . Das zweite Halbleiterelement 300 weist den grundsätzlich gleichen Aufbau auf wie das erste Halbleiterelement 100 mit dem Unterschied, dass die Bekeimungsschicht 301 gemäß dem zweiten Ausführungsbeispiel sich nicht nur über den Boden des Lochs 103 erstreckt, sondern dass die Bekeimungsschicht 301 über der gesamten ersten leitenden Schicht 101 vorgesehen ist .
Die einzelnen Schichten gemäß dem zweiten Ausführungsbeispiel sind aus denselben Materialien wie die entsprechenden Schichten gemäß dem ersten Ausführungsbeispiel.
Bezugnehmend auf die Fig.4a bis Fig.4c werden im weiteren die einzelnen Verfahrensschritte zur Herstellung des zweiten Halbleiterelements 300 näher erläutert.
Zunächst wird auf der ersten leitenden Schicht 101 eine Bekeimungsschicht 301 aus Metallpartikeln (Nickel, Eisen, Yttrium, und/oder Kobalt) abgeschieden. Die Bekeimungsschicht 301 wird über die gesamte Oberfläche der ersten leitenden Schicht 101 abgeschieden mittels eines geeigneten CVD- Verfahrens, Sputter-Verfahrens, oder Aufdampf-Verfahrens . Die Bekeimungsschicht 301 weist eine Dicke von 0,1 nm bis 50 nm auf .
Auf der Bekeimungsschicht 301 wird die nicht-leitende Schicht 102 z.B. mittels eines CVD-Verfahrens abgeschieden (vgl . Fig.4a) .
Nach Ätzen des Lochs 103 in die nicht-leitende Schicht 102 bis auf die Oberfläche der Bekeimungsschicht 301, wie in Fig.4b gezeigt ist, werden die Carbon-Nanoröhren 105 auf der
Bekeimungsschicht 301 gemäß dem in [2] beschriebenen Verfahren aufgewachsen.
Das Aufwachsen wird so lange durchgeführt, bis die Länge der Carbon-Nanoröhren 105 ausreicht, so dass sie über die Oberfläche der nicht-leitenden Schicht 102 hinausragen (vgl Fig.4c) .
In einem weiteren Schritt wird die zweite leitende Schicht 106 mittels eines CVD-Verfahrens auf der nicht-leitenden Schicht 102 abgeschieden.
Wiederum ist das Ergebnis ein Halbleiterelement mit einer elektrisch leitenden Verbindung mittels Carbon-Nanoröhren zwischen zwei leitenden Schichten durch ein Kontaktloch.
Ausführungsbeispiel 3
Fig.5 zeigt ein drittes Halbleiterelement 500 gemäß einem dritten Ausführungsbeispiel.
Gleiche Elemente des Halbleiterelements werden wiederum mit gleichem Bezugszeichen gekennzeichnet.
Das dritte Halbleiterelement 500 unterscheidet sich von dem zweiten Halbleiterelement 300 im wesentlichen nur dadurch, dass ein Graben 501 in die nicht-leitende Schicht 102 geätzt wird, und die Carbon-Nanoröhren 105 somit nicht über die Oberfläche der nicht-leitenden Schicht 102 hinausragt, sondern nur über den Boden des Grabens 501 in die nichtleitende Schicht 102.
Die einzelnen Schichten des dritten Halbleiterelements 500 sind aus den gleichen Materialien wie das erste
Halbleiterelement 100 und das zweite Halbleiterelement 300.
Unter Bezugnahme auf die Fig.6a bis Fig.βe wird das Verfahren zur Herstellung des dritten Halbleiterelements 500 im Detail erläutert.
Wie in Fig.6a dargestellt ist, wird über der ersten leitenden Schicht 101 die Bekeimungsschicht 301 mit einer Dicke von 0 , 1 nm bis 50 nm abgeschieden mittels eines geeigneten CVD- Verfahrens, Sputter-Verfahrens, oder Aufdampf-Verfahrens . Auf der Bekeimungsschicht 301 wird die nicht-leitende Schicht 102 mittels eines CVD-Verfahrens abgeschieden.
In die nicht-leitende Schicht 102 wird das Loch 103 bis zur Oberfläche der Bekeimungsschicht 301 geätzt (vgl. Fig.6b).
Weiterhin wird in die nicht-leitende Schicht 102 ein Graben 501 mittels Trockenätzens oder Nassätzens geätzt (vgl . Fig.6c) .
In einem weiteren Schritt werden die Carbon-Nanoröhren 102 auf der Bekeimungsschicht 301 aufgewachsen bis zu einer Länge, dass die Carbon-Nanoröhren 102 über die untere Oberfläche des Grabens 501 hinausragen, nicht jedoch über die gesamte nicht-leitende Schicht 102 (vgl. Fig.δd).
Wie in Fig.βe dargestellt, wird in einem weiteren
Verfahrensschritt die zweite leitende Schicht 1Ö6 in dem Graben 501 und auf der nicht-leitenden Schicht 102 mittels eines CVD-Verfahrens abgeschieden.
Die zweite leitende Schicht 106 wird mittels eines geeigneten Ätzverfahrens, eines Chemisch Mechanischen Polier-Verfahrens oder mittels Ionenstrahlätzens auf eine gewünschte Dicke reduziert, so dass die Oberfläche der zweiten leitenden Schicht 106 plan ist mit der Oberfläche der nicht-leitenden Schicht 102.
Im weiteren werden einige Alternativen zu dem oben dargestellten Ausführungsbeispiel erläutert:
Als CVD-Verfahren kann ein CVD-Verfahren unter Verwendung von Kohlenmonoxid CO, Methan CH4 , oder auch Azethylen C2H2 eingesetzt werden oder auch ein sogenanntes Plasma Enhanced CVD-Verfahren .
Weiterhin ist es nicht erforderlich, dass die Carbon- Nanoröhren 105 über die Oberfläche der nicht-leitenden Schicht beziehungsweise über die Oberfläche der unteren
Oberfläche des Grabens 501 hinausragen. Alternativ können die Carbon-Nanoröhren 105 auf die benötigte Länge durch Chemisch Mechanisches Polieren oder Ionenstrahlätzen unter schrägem Winkel (so dass die Ionen beim Ionenstrahlätzen nicht wesentlich in das Kontaktloch eindringen können) gebracht werden, d.h. auf eine Länge, dass die Carbon-Nanoröhren 105 zumindest die zweite leitende Schicht 106 kontaktieren.
Stehen Abschnitte der Carbon-Nanoröhren 105 über die zweite leitende Schicht hinaus, so können diese mittels eines
Veraschungsprozesses, der bei Verwenden einer Lackmaske für die Metallätzung ohnehin erforderlich ist, entfernt werden. Die Carbon-Nanoröhren können auch mittels eines anisotropen Plasmaätzprozesses , wie z.B. zur Strukturierung organischer Materialien eingesetzt, auf die erforderliche Länge gebracht werden.
Die Erfindung ist nicht auf eine dreischichtige Struktur beschränkt. Das Halbleiterelement kann in jeder beliebigen Halbleiterstruktur eingesetzt werden, d.h. es kann ein Teil- Halbleiterelement eines sehr vielschichtigen Halbleiterelements darstellen zum Kontaktieren zweier leitender Schichten in dem Halbleiterelement.
Die Erfindung ist anschaulich darin zu sehen, dass zwei elektrisch leitende Schichten, die voneinander in einem Halbleiterelement durch eine nicht-leitende Schicht elektrisch entkoppelt sind, durch ein Kontaktloch mittels Carbon-Nanoröhren elektrisch miteinander leitend verbunden werden.
Auf diese Weise wird bei minimaler Abweichung bisher bekannter üblicher Fertigungsprozesse eines Halbleiterelements eine große Stabilität des Halbleiterelements erreicht.
Außerdem sind hohe Aspektverhaltnisse bei der Kontaktierung durch Kontaktlöcher möglich, bis zu einem Wert von ungefähr 1000.
Im Rahmen der Erfindung ist es alternativ ohne weiteres möglich anstelle der CVD-Verfahren auch ein Sputter-Verfahren oder ein Aufdampfverfahren einzusetzen.
In diesem Dokument sind folgende Veröffentlichungen zitiert
[1] C.Dekker, Carbon Nanotubes as Molecular Quantum Wires, Physics Today, S. 22 - 28, Mai 1999
[2] Jung Sang Suh und Jin Seung Lee, Highly Ordered Two- Dimensional Carbon Nanotubes Areas, Applied Physics Letters, Vol. 75, Nr. 14, S. 2047 - 2049, Oktober 1999

Claims

Patentanspr che
1. Elektronisches Bauelement mit
• einer ersten leitenden Schicht, • einer nicht-leitenden Schicht auf der ersten leitenden Schicht,
• einer zweiten leitenden Schicht auf der nicht-leitenden Schicht,
• mindestens einem Loch durch die nicht-leitende Schicht, • mindestens einer Nanorohre m αe Loch, durch die die erste leitende Schicht mit der zweiten leitenden Schicht leitend verbunden ist.
2. Elektronisches Bauelement nach Anspruch 1, bei dem die Nanorohre eine Carbon-Nanoröhre ist.
3. Elektronisches Bauelement nach Anspruch 1 oder 2, bei dem mehrere Nanoröhren m dem Loch enthalten sind, durch die jeweils die erste leitende Schicht mit der zweiten lei- tenden Schicht leitend verbunden ist.
4. Elektronisches Bauelement nach einem der Ansprüche 1 bis 3, mit einer Bekeimungsschicht über αer ersten leitenden Schicht, auf der die Nanorohre aufwachsbar ist.
5. Elektronisches Bauelement nach einem der Ansprüche 1 bis 4, bei dem αie Bekeimungsschicht für ein Aufwachsen der Nanoroh- re katalytisch wirkende Metallpartikel aufweist.
6. Elektronisches Bauelement nach Anspruch 5, bei dem d e Metallpartikel mindestens eines der folgenden Metalle aufweisen: • Nickel, und/oder
• Eisen, und/oder
• Yttrium, und/oαer • Kobalt, und/oder
• Platin.
7. Elektronisches Bauelement nach einem der Ansprüche 1 b s 6, bei dem die nicht-leitende Schicht ein Intermetalldielektrikum aufweist.
8. Elektronisches Bauelement nach einem der Ansprüche 1
bei dem die erste und/oder die zweite leitende Schicht Metall oder eine Kombination verschiedener Metalle aufweist.
9. Elektronisches Bauelement nach Anspruch 8, be dem die erste leitende Schicht und/oder die zweite leitende Schicht Kupfer und/oder Aluminium und/oder eine Kombination von Ta, TaN, Ti, TiN aufweist.
10. Elektronisches Bauelement nach einem der Ansprüche 1 bis 9, be dem das elektronische Bauelement ein Halbleiterelement
11. Verfahren zum Herstellen einer leitenden Verbindung in einem elektronischen Bauelement,
• bei dem über einer ersten leitenden Schicht eine nichtleitende Schicht abgeschieden wird,
• bei dem durch die nicht-leitende Schicht ein Loch gefertigt wird, • bei dem in dem Loch mindestens eine Nanorohre aufgewachsen wird,
• bei dem eine zweite leitende Schicht abgeschieden wird derart, dass die erste leitende Schicht durch die Nanorohre mit der zweiten leitenden Schicht leitend verbunden
12. Verfahren zum Herstellen eines elektronischen Bauelements,
• bei dem eine erste leitende Schicht bereitgestellt wird,
• bei dem über der ersten leitenden Schicht eine nicht- leitende Schicht abgeschieden wird,
• bei dem durch die nicht-leitende Schicht ein Loch gefertigt wird,
• bei dem m dem Loch mindestens eine Nanorohre aufgewachsen wird, • bei dem eine zweite leitende Schicht abgeschieden wird derart, dass die erste leitende Schicht durch die Nanorohre mit der zweiten leitenden Schicht leitend verounden
13. Verfahren nach Anspruch 11 oder 12, be. dem das Loch durch die nicht-leitende Schicht geatzt wird.
14. Verfahren nach einem der Ansprucne 11 oder 13, oei dem als Nanorohre eine Carbon-Nanoröhre verwendet wird.
15. Verfahren nach einem der Ansprüche 11 bis 14, be dem mehrere Nanoröhren in dem Loch aufgewachsen werden, durch die jeweils die erste leitende Schicht mit der zweiten leitenden Schicht leitend verbunden ist.
16. Verfahren nach einem der Ansprüche 11 bis 15,
• bei dem zumindest m der Flache des Lochs auf der ersten leitenden Schicht eine Bekeimungsschicht aufgebracht wird, • bei dem auf der Bekeimungsschicht m dem Loch die Nanorohre aufgewachsen wird,
17. Verfahren nach einem der Ansprüche 11 ois 16, bei dem für die Bekeimungsschicht für ein Aufwachsen der Nanorohre katalytisch wirkende Metallpartikel verwendet werden.
18. Verfahren nach Anspruch 17, bei dem als Metallpartikel mindestens eines der folgenden Metalle verwendet wird:
• Nickel, und/oder • Eisen, und/oder
• Yttrium, und/oder
• Kobalt, und/oder
• Platin.
19. Verfahren nach einem der Ansprüche 11 bis 18, bei dem für die nicht-leitende Schicht ein Intermetalldielektrikum verwendet wird.
20. Verfahren nach einem der Ansprüche 11 bis 19, bei dem für die erste und/oder die zweite leitende Schicht Metall verwendet wird.
21. Verfahren nach Anspruch 20, bei dem für die erste leitende Schicht und/oder die zweite leitende Schicht Kupfer und/oder Aluminium und/oder eine Kombination von Ta, TaN, Ti, TiN verwendet wird/werden.
EP01909557A 2000-02-16 2001-02-02 Elektronisches bauelement mit einer elektrisch leitenden verbindung aus carbon-nanoröhren und verfahren zu seiner herstellung Ceased EP1264344A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10006964 2000-02-16
DE10006964A DE10006964C2 (de) 2000-02-16 2000-02-16 Elektronisches Bauelement mit einer leitenden Verbindung zwischen zwei leitenden Schichten und Verfahren zum Herstellen eines elektronischen Bauelements
PCT/DE2001/000419 WO2001061753A1 (de) 2000-02-16 2001-02-02 Elektronisches bauelement mit einer elektrisch leitenden verbindung aus carbon-nanoröhren und verfahren zu seiner herstellung

Publications (1)

Publication Number Publication Date
EP1264344A1 true EP1264344A1 (de) 2002-12-11

Family

ID=7631134

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01909557A Ceased EP1264344A1 (de) 2000-02-16 2001-02-02 Elektronisches bauelement mit einer elektrisch leitenden verbindung aus carbon-nanoröhren und verfahren zu seiner herstellung

Country Status (7)

Country Link
US (1) US7321097B2 (de)
EP (1) EP1264344A1 (de)
JP (1) JP4549002B2 (de)
KR (1) KR100494248B1 (de)
DE (1) DE10006964C2 (de)
TW (1) TW503482B (de)
WO (1) WO2001061753A1 (de)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084507B2 (en) * 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
JP2002341060A (ja) * 2001-05-11 2002-11-27 Seiko Instruments Inc 複合電気部品、地板構造体及びこれを用いた電子時計
US6919592B2 (en) 2001-07-25 2005-07-19 Nantero, Inc. Electromechanical memory array using nanotube ribbons and method for making same
DE10144704B4 (de) * 2001-09-11 2007-10-04 Infineon Technologies Ag Verfahren zum Verbinden eines Bauelements mit einem Träger
EP1456124A4 (de) 2001-11-20 2009-01-28 Univ Wm Marsh Rice Beschichtete fullrene und daraus hergestellte verbundwerkstoffe und dielektrika
US6921462B2 (en) * 2001-12-17 2005-07-26 Intel Corporation Method and apparatus for producing aligned carbon nanotube thermal interface structure
SE0200868D0 (sv) * 2002-03-20 2002-03-20 Chalmers Technology Licensing Theoretical model för a nanorelay and same relay
DE10220194A1 (de) * 2002-05-06 2003-11-27 Infineon Technologies Ag Kontaktierung von Nanoröhren
US20030211724A1 (en) * 2002-05-10 2003-11-13 Texas Instruments Incorporated Providing electrical conductivity between an active region and a conductive layer in a semiconductor device using carbon nanotubes
US6891724B2 (en) * 2002-06-12 2005-05-10 Intel Corporation Increasing thermal conductivity of thermal interface using carbon nanotubes and CVD
WO2004033370A1 (en) * 2002-10-11 2004-04-22 Massachusetts Institute Of Technology Nanopellets and method of making nanopellets
DE10250868B8 (de) * 2002-10-31 2008-06-26 Qimonda Ag Vertikal integrierter Feldeffekttransistor, Feldeffekttransistor-Anordnung und Verfahren zum Herstellen eines vertikal integrierten Feldeffekttransistors
AU2003295721A1 (en) * 2002-11-19 2004-06-15 William Marsh Rice University Fabrication of light emitting film coated fullerenes and their application for in-vivo light emission
DE60334723D1 (de) 2002-11-19 2010-12-09 Univ Rice William M Feldeffektransistor mit funktionalisierter Kohlenstoffnanoröhre und dessen Herstellungsfervahren
US7518247B2 (en) * 2002-11-29 2009-04-14 Nec Corporation Semiconductor device and its manufacturing method
US7656027B2 (en) * 2003-01-24 2010-02-02 Nanoconduction, Inc. In-chip structures and methods for removing heat from integrated circuits
US7316061B2 (en) 2003-02-03 2008-01-08 Intel Corporation Packaging of integrated circuits with carbon nano-tube arrays to enhance heat dissipation through a thermal interface
EP1593164B1 (de) * 2003-02-12 2010-06-30 Nantero, Inc. Einrichtungen mit vertikal angeordneten nanofabric-artikeln und verfahren zu ihrer herstellung
DE10307815B3 (de) * 2003-02-24 2004-11-11 Infineon Technologies Ag Integriertes elektronisches Bauelement mit gezielt erzeugten Nanoröhren in vertikalen Strukturen und dessen Herstellungsverfahren
JP4454242B2 (ja) * 2003-03-25 2010-04-21 株式会社ルネサステクノロジ 半導体装置およびその製造方法
KR100982419B1 (ko) * 2003-05-01 2010-09-15 삼성전자주식회사 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및이 방법에 의해 제조된 반도체 소자
DE10324377A1 (de) * 2003-05-28 2005-01-05 Infineon Technologies Ag Wärmeableiteinrichtung, deren Verwendung und Halbleiterbauelementeanordnung
US7168484B2 (en) * 2003-06-30 2007-01-30 Intel Corporation Thermal interface apparatus, systems, and methods
JP2005041835A (ja) * 2003-07-24 2005-02-17 Fuji Xerox Co Ltd カーボンナノチューブ構造体、その製造方法、カーボンナノチューブ転写体および溶液
JP4689218B2 (ja) * 2003-09-12 2011-05-25 株式会社半導体エネルギー研究所 半導体装置の作製方法
DE10351230B3 (de) * 2003-11-03 2005-03-10 Infineon Technologies Ag Verfahren zur Abscheidung eines Katalysators
DE10359424B4 (de) * 2003-12-17 2007-08-02 Infineon Technologies Ag Umverdrahtungsplatte für Halbleiterbauteile mit engem Anschlussraster und Verfahren zur Herstellung derselben
WO2005069372A1 (en) * 2003-12-18 2005-07-28 International Business Machines Corporation Carbon nanotube conductor for trench capacitors
US7180174B2 (en) * 2003-12-30 2007-02-20 Intel Corporation Nanotube modified solder thermal intermediate structure, systems, and methods
US7456052B2 (en) * 2003-12-30 2008-11-25 Intel Corporation Thermal intermediate apparatus, systems, and methods
US7135773B2 (en) * 2004-02-26 2006-11-14 International Business Machines Corporation Integrated circuit chip utilizing carbon nanotube composite interconnection vias
US20060086994A1 (en) 2004-05-14 2006-04-27 Susanne Viefers Nanoelectromechanical components
DE102004031128A1 (de) * 2004-06-28 2006-01-19 Infineon Technologies Ag Elektrischer Schaltkreis mit einer Kohlenstoff-Leiterstruktur und Verfahren zum Herstellen einer Kohlenstoff-Leiterstruktur eines elektrischen Schaltkreises
DE102004035368B4 (de) * 2004-07-21 2007-10-18 Infineon Technologies Ag Substrat mit Leiterbahnen und Herstellung der Leiterbahnen auf Substraten für Halbleiterbauteile
KR100689813B1 (ko) 2004-09-08 2007-03-08 삼성전자주식회사 탄소나노튜브를 가진 반도체 메모리 장치 및 이의 제조 방법
US20080020499A1 (en) * 2004-09-10 2008-01-24 Dong-Wook Kim Nanotube assembly including protective layer and method for making the same
US7345296B2 (en) * 2004-09-16 2008-03-18 Atomate Corporation Nanotube transistor and rectifying devices
US7776307B2 (en) * 2004-09-16 2010-08-17 Etamota Corporation Concentric gate nanotube transistor devices
US7462890B1 (en) 2004-09-16 2008-12-09 Atomate Corporation Nanotube transistor integrated circuit layout
US7943418B2 (en) * 2004-09-16 2011-05-17 Etamota Corporation Removing undesirable nanotubes during nanotube device fabrication
JP2006108210A (ja) * 2004-10-01 2006-04-20 Fujitsu Ltd 配線接続構造およびその形成方法
JP4167212B2 (ja) * 2004-10-05 2008-10-15 富士通株式会社 カーボンナノチューブ構造体、半導体装置、および半導体パッケージ
JP2006120730A (ja) * 2004-10-19 2006-05-11 Fujitsu Ltd 層間配線に多層カーボンナノチューブを用いる配線構造及びその製造方法
JP2006148063A (ja) * 2004-10-22 2006-06-08 Renesas Technology Corp 配線構造、半導体装置、mramおよび半導体装置の製造方法
US20100065820A1 (en) * 2005-02-14 2010-03-18 Atomate Corporation Nanotube Device Having Nanotubes with Multiple Characteristics
US7271079B2 (en) * 2005-04-06 2007-09-18 International Business Machines Corporation Method of doping a gate electrode of a field effect transistor
KR100707190B1 (ko) * 2005-05-07 2007-04-13 삼성전자주식회사 나노 와이어를 포함하는 상변환 메모리 소자 및 그 제조방법
KR100645064B1 (ko) * 2005-05-23 2006-11-10 삼성전자주식회사 금속 산화물 저항 기억소자 및 그 제조방법
JP5009511B2 (ja) * 2005-06-06 2012-08-22 富士通株式会社 電気的接続構造、その製造方法および半導体集積回路装置
US20060281306A1 (en) * 2005-06-08 2006-12-14 Florian Gstrein Carbon nanotube interconnect contacts
WO2007002297A2 (en) 2005-06-24 2007-01-04 Crafts Douglas E Temporary planar electrical contact device and method using vertically-compressible nanotube contact structures
US20070105356A1 (en) * 2005-11-10 2007-05-10 Wei Wu Method of controlling nanowire growth and device with controlled-growth nanowire
CN1964028B (zh) * 2005-11-11 2010-08-18 鸿富锦精密工业(深圳)有限公司 散热器
US7990037B2 (en) * 2005-11-28 2011-08-02 Megica Corporation Carbon nanotube circuit component structure
US7625817B2 (en) * 2005-12-30 2009-12-01 Intel Corporation Method of fabricating a carbon nanotube interconnect structures
KR100721020B1 (ko) 2006-01-20 2007-05-23 삼성전자주식회사 콘택 구조체를 포함하는 반도체 소자 및 그 형성 방법
JP2007268692A (ja) * 2006-03-31 2007-10-18 Fujitsu Ltd カーボンナノチューブ連結体及びその製造方法、並びに、標的検出素子及び標的検出方法
KR100822799B1 (ko) 2006-04-25 2008-04-17 삼성전자주식회사 나노크기의 도전성 구조물을 위한 선택적인 촉매 형성 방법및 선택적인 나노크기의 도전성 구조물 형성 방법
KR101322310B1 (ko) * 2006-06-30 2013-10-25 엘지디스플레이 주식회사 유기전기발광소자 및 그 제조방법
US8130007B2 (en) 2006-10-16 2012-03-06 Formfactor, Inc. Probe card assembly with carbon nanotube probes having a spring mechanism therein
US8354855B2 (en) * 2006-10-16 2013-01-15 Formfactor, Inc. Carbon nanotube columns and methods of making and using carbon nanotube columns as probes
WO2008049015A2 (en) * 2006-10-17 2008-04-24 Purdue Research Foundation Electrothermal interface material enhancer
KR100874912B1 (ko) * 2006-12-06 2008-12-19 삼성전자주식회사 반도체 소자 및 그 제조방법
FR2910706B1 (fr) 2006-12-21 2009-03-20 Commissariat Energie Atomique Element d'interconnexion a base de nanotubes de carbone
US8168495B1 (en) 2006-12-29 2012-05-01 Etamota Corporation Carbon nanotube high frequency transistor technology
DE102007006175A1 (de) 2007-02-07 2008-08-14 Osram Opto Semiconductors Gmbh Wärmeleitfähige Schicht und Verfahren zur Herstellung einer wärmeleitfähigen Schicht
KR100827524B1 (ko) * 2007-04-06 2008-05-06 주식회사 하이닉스반도체 반도체 소자의 제조 방법
US20080272361A1 (en) * 2007-05-02 2008-11-06 Atomate Corporation High Density Nanotube Devices
FR2917893B1 (fr) * 2007-06-22 2009-08-28 Commissariat Energie Atomique Procede de fabrication d'une connexion electrique a base de nanotubes de carbone
FR2919111B1 (fr) * 2007-07-17 2009-10-09 Commissariat Energie Atomique Procede de fabrication d'une connexion electrique a base de nanotubes et ayant des cavites d'air
US8149007B2 (en) * 2007-10-13 2012-04-03 Formfactor, Inc. Carbon nanotube spring contact structures with mechanical and electrical components
US8919428B2 (en) * 2007-10-17 2014-12-30 Purdue Research Foundation Methods for attaching carbon nanotubes to a carbon substrate
US8283786B2 (en) * 2007-12-21 2012-10-09 Advanced Micro Devices, Inc. Integrated circuit system with contact integration
JP2011522394A (ja) * 2007-12-31 2011-07-28 エータモタ・コーポレイション 端部接触型縦型カーボンナノチューブトランジスタ
US8110476B2 (en) 2008-04-11 2012-02-07 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
WO2009151397A1 (en) * 2008-06-13 2009-12-17 Qunano Ab Nanostructured mos capacitor
US7858506B2 (en) 2008-06-18 2010-12-28 Micron Technology, Inc. Diodes, and methods of forming diodes
FR2933106B1 (fr) * 2008-06-27 2010-12-24 Commissariat Energie Atomique Procede d'obtention de tapis de nanotubes de carbone sur substat conducteur ou semi-conducteur
US8039380B2 (en) * 2008-06-27 2011-10-18 Commissariat A L'energie Atomique Procedure for obtaining nanotube layers of carbon with conductor or semiconductor substrate
KR100997788B1 (ko) * 2008-06-30 2010-12-02 주식회사 하이닉스반도체 반도체 패키지
US8557685B2 (en) 2008-08-07 2013-10-15 Sandisk 3D Llc Memory cell that includes a carbon-based memory element and methods of forming the same
US9494615B2 (en) * 2008-11-24 2016-11-15 Massachusetts Institute Of Technology Method of making and assembling capsulated nanostructures
US9508805B2 (en) 2008-12-31 2016-11-29 Alpha And Omega Semiconductor Incorporated Termination design for nanotube MOSFET
US7943989B2 (en) * 2008-12-31 2011-05-17 Alpha And Omega Semiconductor Incorporated Nano-tube MOSFET technology and devices
JP5423029B2 (ja) * 2009-02-12 2014-02-19 富士通セミコンダクター株式会社 半導体装置の製造方法
US8541058B2 (en) * 2009-03-06 2013-09-24 Timothy S. Fisher Palladium thiolate bonding of carbon nanotubes
US20100252317A1 (en) * 2009-04-03 2010-10-07 Formfactor, Inc. Carbon nanotube contact structures for use with semiconductor dies and other electronic devices
US8272124B2 (en) * 2009-04-03 2012-09-25 Formfactor, Inc. Anchoring carbon nanotube columns
US7910486B2 (en) * 2009-06-12 2011-03-22 Alpha & Omega Semiconductor, Inc. Method for forming nanotube semiconductor devices
US8299494B2 (en) 2009-06-12 2012-10-30 Alpha & Omega Semiconductor, Inc. Nanotube semiconductor devices
US7892924B1 (en) * 2009-12-02 2011-02-22 Alpha And Omega Semiconductor, Inc. Method for making a charge balanced multi-nano shell drift region for superjunction semiconductor device
KR101015507B1 (ko) * 2010-01-25 2011-02-22 삼성전자주식회사 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자
US8946903B2 (en) 2010-07-09 2015-02-03 Micron Technology, Inc. Electrically conductive laminate structure containing graphene region
US8872176B2 (en) 2010-10-06 2014-10-28 Formfactor, Inc. Elastic encapsulated carbon nanotube based electrical contacts
CN102468220B (zh) * 2010-11-08 2013-12-25 中国科学院微电子研究所 一种金属互连结构及其形成方法
JP5813682B2 (ja) * 2013-03-08 2015-11-17 株式会社東芝 半導体装置及びその製造方法
US9406888B2 (en) * 2013-08-07 2016-08-02 GlobalFoundries, Inc. Carbon nanotube device
US9391023B2 (en) * 2014-02-14 2016-07-12 Taiwan Semiconductor Manufacturing Company Limited Method for producing salicide and a carbon nanotube metal contact
US10002826B2 (en) * 2014-10-27 2018-06-19 Taiwan Semiconductor Manufacturing Company Semiconductor device structure with conductive pillar and conductive line and method for forming the same
KR101728986B1 (ko) 2016-07-18 2017-04-20 박달수 간에 이로운 한약재 추출물을 이용한 식품 제조방법 및 그 식품

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192835A (en) * 1990-10-09 1993-03-09 Eastman Kodak Company Bonding of solid state device to terminal board
US5698496A (en) 1995-02-10 1997-12-16 Lucent Technologies Inc. Method for making an anisotropically conductive composite medium
US5712607A (en) * 1996-04-12 1998-01-27 Dittmer; Timothy W. Air-dielectric stripline
US5818700A (en) * 1996-09-24 1998-10-06 Texas Instruments Incorporated Microelectronic assemblies including Z-axis conductive films
JP3740295B2 (ja) * 1997-10-30 2006-02-01 キヤノン株式会社 カーボンナノチューブデバイス、その製造方法及び電子放出素子
JP3363759B2 (ja) 1997-11-07 2003-01-08 キヤノン株式会社 カーボンナノチューブデバイスおよびその製造方法
US6730541B2 (en) * 1997-11-20 2004-05-04 Texas Instruments Incorporated Wafer-scale assembly of chip-size packages
KR19990043770A (ko) * 1997-11-29 1999-06-15 정선종 탄소 나노튜브를 이용한 전계 방출 소자의 제조 방법
US6870263B1 (en) 1998-03-31 2005-03-22 Infineon Technologies Ag Device interconnection
JP3955386B2 (ja) * 1998-04-09 2007-08-08 富士通株式会社 半導体装置及びその製造方法
US6297063B1 (en) * 1999-10-25 2001-10-02 Agere Systems Guardian Corp. In-situ nano-interconnected circuit devices and method for making the same
US7335603B2 (en) * 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0161753A1 *

Also Published As

Publication number Publication date
DE10006964C2 (de) 2002-01-31
JP2003523608A (ja) 2003-08-05
US7321097B2 (en) 2008-01-22
DE10006964A1 (de) 2001-09-13
KR100494248B1 (ko) 2005-06-13
US20030179559A1 (en) 2003-09-25
KR20020079854A (ko) 2002-10-19
TW503482B (en) 2002-09-21
JP4549002B2 (ja) 2010-09-22
WO2001061753A1 (de) 2001-08-23

Similar Documents

Publication Publication Date Title
DE10006964C2 (de) Elektronisches Bauelement mit einer leitenden Verbindung zwischen zwei leitenden Schichten und Verfahren zum Herstellen eines elektronischen Bauelements
DE69333604T2 (de) Durch PVD und DVD gebildete, mit hochschmelzendem Metall abgedeckte Metallleiterbahnen und Durchgangslöcher mit niedrigem spezifischen Widerstand
EP0002185B1 (de) Verfahren zum Herstellen einer Verbindung zwischen zwei sich kreuzenden, auf der Oberfläche eines Substrats verlaufenden Leiterzügen
EP0600063B1 (de) Verfahren zur herstellung von halbleiterbauelementen in cmos-technik mit 'local interconnects'
DE2430692C2 (de) Verfahren zum Herstellen von Verbindungslöchern in Isolierschichten
DE102013103976B4 (de) Halbleiterbauelement mit selbstausgerichteten Verbindungen und Sperrabschnitten
EP1305834A1 (de) Feldeffekttransistor, schaltungsanordnung und verfahren zum herstellen eines feldeffekttransistors
DE112005001489T5 (de) Atomlagenabgeschiedene Tantal enthaltende Haftschicht
DE2723944A1 (de) Anordnung aus einer strukturierten schicht und einem muster festgelegter dicke und verfahren zu ihrer herstellung
DE19614584C2 (de) Verbesserter Luftbrückenverdrahtungsaufbau für integrierte monolithische Mikrowellenschaltung (MMIC)
WO2012031845A1 (de) Verfahren zur herstellung eines halbleiterbauelementes mit einer durchkontaktierung und halbleiterbauelement mit durchkontaktierung
WO2002059392A1 (de) Verfahren zum wachsen von kohlenstoff-nanoröhren oberhalb einer elektrisch zu kontaktierenden unterlage sowie bauelement
DE102019203224A1 (de) Selbstausgerichtete Mehrfachstrukturierungsprozesse mit geschichteten Dornen
DE102007050843A1 (de) Integrierte Schaltung mit Kohlenstoffnanoröhren und Verfahren zu deren Herstellung unter Verwendung von geschützten Katalysatorschichten
DE69930027T2 (de) Metallisierungsverfahren für Halbleiter
DE102004033825A1 (de) Verfahren zur Herstellung einer Kondensatoranordnung sowie zugehörige Kondensatoranordnung
EP1118122B1 (de) Integrierte schaltungsanordnung und verfahren zu deren herstellung
EP1597760B1 (de) Integriertes elektronisches bauelement mit gezielt erzeugten nanoröhren in vertikalen strukturen
DE102006036963A1 (de) Halbleiterbauelement mit Kontaktstelle und Herstellungsverfahren
DE102019100014B4 (de) Verfahren zum Strukturieren von dielektrischen Schichten für eine Metallisierung und entsprechende Strukturen
DE102015006465B4 (de) Nanoröhrenstruktur-basierter metall-damaszener-prozess
DE10107666C1 (de) Herstellungsverfahren für eine integrierte Schaltung, insbesondere eine Antifuse
DE4200284C2 (de) Halbleitereinrichtung und Verfahren zu deren Herstellung
DE19723096B4 (de) Verfahren zum Bilden einer Verbindungsleitung
DE3218974C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ENGELHARDT, MANFRED

Inventor name: HOENLEIN, WOLFGANG

Inventor name: KREUPL, FRANZ

RBV Designated contracting states (corrected)

Designated state(s): FR GB IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17Q First examination report despatched

Effective date: 20070221

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20090526