KR101015507B1 - 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자 - Google Patents

탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자 Download PDF

Info

Publication number
KR101015507B1
KR101015507B1 KR1020100006502A KR20100006502A KR101015507B1 KR 101015507 B1 KR101015507 B1 KR 101015507B1 KR 1020100006502 A KR1020100006502 A KR 1020100006502A KR 20100006502 A KR20100006502 A KR 20100006502A KR 101015507 B1 KR101015507 B1 KR 101015507B1
Authority
KR
South Korea
Prior art keywords
electrode
semiconductor device
wiring
forming
catalyst metal
Prior art date
Application number
KR1020100006502A
Other languages
English (en)
Other versions
KR20100012894A (ko
Inventor
최원봉
배은주
히데끼 호리이
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020100006502A priority Critical patent/KR101015507B1/ko
Publication of KR20100012894A publication Critical patent/KR20100012894A/ko
Application granted granted Critical
Publication of KR101015507B1 publication Critical patent/KR101015507B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02606Nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자가 개시된다. 개시된 반도체 소자의 배선 형성 방법은, 반도체 소자의 전극의 표면을 전처리하여 활성화시키는 단계와, 전극 위에 절연층을 형성한 뒤 절연층에 전극의 활성화된 표면의 일부를 노출시키는 컨택홀을 형성하는 단계와, 컨택홀을 통해 전극의 활성화된 표면에 탄소가 함유된 가스를 주입하여 전극의 활성화된 표면으로부터 탄소나노튜브를 성장시켜 배선을 형성하는 단계를 구비한다. 한편, 전극의 표면을 활성화시키는 단계는 전극의 표면에 촉매금속층을 형성하는 단계로 대체될 수 있다. 이와 같은 배선 형성 방법에 의하면, 높은 전류밀도를 가지는 탄소나노튜브를 사용하여 반도체 소자의 배선을 형성할 수 있게 되어, 초고집적의 반도체 소자를 제조할 수 있게 된다.

Description

탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자{Method of forming conductive line of semiconductor device using carbon nanotube and semiconductor device manufactured by the method}
본 발명은 반도체 소자의 배선 형성 방법에 관한 것으로, 보다 상세하게는 탄소나노튜브를 이용하여 반도체 소자의 배선을 형성하는 방법과 이 방법에 의해 제조된 반도체 소자에 관한 것이다.
반도체 소자, 특히 반도체 메모리 소자에는 DRAM(Dynamic RAM), SRAM(Static RAM), PRAM(Phase-change RAM) 및 MRAM(Magnetic RAM) 등의 다양한 종류가 있다. 이러한 메모리 소자에는 스위칭 소자로서, 일반적으로 MOS(Metal Oxide Semiconductor) 트랜지스터가 사용되고 있다. 그리고, 메모리 소자에는 컨택트(contact) 및 인터컨넥트(interconnect)와 같은 전자 이동 통로인 배선이 마련된다.
최근, 반도체 메모리 소자의 고집적화에 따라 배선의 선폭은 좁아지고 단위 면적당 전류의 양, 즉 전류밀도는 높아지고 있다. 이에 따라, 반도체 소자의 배선의 전류밀도는 대략 2010년 경에 106 A/㎠ 에 이를 것으로 예상된다.
그런데, 종래에 반도체 소자에는 주로 금속 배선이 사용되고 있는데, 이러한 금속 배선의 선폭은 70nm가 한계인 것으로 알려져 있으며, 금속 배선의 최대 전류밀도는 대략 106 A/㎠ 가 한계인 것으로 알려져 있다. 반도체 소자의 고집적화를 위해서는 배선의 선폭을 줄이고 전류밀도를 높이는 것이 필수적이나, 상기한 바와 같은 이유로 인해 금속 배선을 사용하는 반도체 소자는 가까운 장래에 그 집적화가 한계에 도달할 것으로 예상된다.
따라서, 반도체 소자의 고집적화가 계속적으로 이루어지려면 금속 배선에 비해 작은 선폭으로도 높은 전류밀도를 가질 수 있는 새로운 배선 물질이 필요하게 되었다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 창출된 것으로서, 특히 반도체 소자의 고집적화가 가능하도록 전극의 표면에 탄소나노튜브를 성장시켜 배선을 형성하는 반도체 소자의 배선 형성 방법을 제공하는데 그 일 목적이 있다.
또한, 상기 방법에 의해 탄소나노튜브로 이루어진 배선을 가짐으로써 고집적화가 가능한 반도체 소자를 제공하는데 그 다른 목적이 있다.
상기의 기술적 과제를 달성하기 위한 본 발명의 일 특징에 따른 반도체 소자의 배선 형성 방법은,
(가) 반도체 소자의 전극의 표면을 전처리하여 활성화시키는 단계;
(나) 상기 전극 위에 절연층을 형성한 뒤, 상기 절연층에 상기 전극의 활성화된 표면의 일부를 노출시키는 컨택홀을 형성하는 단계; 및
(다) 상기 컨택홀을 통해 상기 전극의 활성화된 표면에 탄소가 함유된 가스를 주입하여 상기 전극의 활성화된 표면으로부터 탄소나노튜브를 성장시켜 배선을 형성하는 단계;를 구비한다.
여기에서, 상기 (가) 단계는, 300 ~ 700℃의 온도에서, 상기 전극의 표면에 질소 가스(N2), 아르곤 가스(Ar) 및 암모니아 가스(NH3)로 이루어진 군 중에서 선택된 적어도 하나의 전처리 가스를 흘려줌으로써 상기 전극의 표면을 다공질 상태로 활성화시키는 것이 바람직하다.
한편, 상기 (가) 단계는, 아르곤 가스(Ar)나 질소 가스(N2)를 이온화시켜 그 이온을 상기 전극의 표면에 충돌시킴으로써 상기 전극의 표면을 다공질 상태로 활성화시키는 것도 바람직하다. 이 경우, 상기 (가) 단계는 상온 상태에서 수행될 수 있다.
그리고, 본 발명의 다른 특징에 따른 반도체 소자의 배선 형성 방법은,
(가) 반도체 소자의 전극의 표면에 촉매금속층을 형성하는 단계;
(나) 상기 촉매금속층 위에 절연층을 형성한 뒤, 상기 촉매금속층의 일부를 노출시키는 컨택홀을 형성하는 단계; 및
(다) 상기 컨택홀을 통해 상기 촉매금속층에 탄소가 함유된 가스를 주입하여 상기 촉매금속층으로부터 탄소나노튜브를 성장시켜 배선을 형성하는 단계;를 구비한다.
여기에서, 상기 (가) 단계는 RF 마그네트론 스퍼터 또는 전자빔 증착기에 의해 촉매금속을 상기 전극의 표면에 소정 두께로 증착하는 것이 바람직하다.
한편, 상기 (가) 단계는 촉매금속을 분발의 상태로 상기 전극의 표면에 스프레이함으로써 소정 두께로 도포하는 것도 바람직하다.
그리고, 상기 (가) 단계에서, 상기 촉매금속층은 W, Ni, Fe, Co, Y, Pd, Pt 및 Au 로 이루어진 군 중에서 선택된 적어도 하나의 전이금속으로 이루어질 수 있다.
본 발명의 일 특징과 다른 특징에 따른 반도체 소자의 배선 형성 방법에 있어서, 상기 (나) 단계에서, 상기 절연층은 산화물로 이루어질 수 있으며, 상기 컨택홀은 수 nm ~ 수십 nm의 직경을 가지도록 형성될 수 있다.
그리고. 상기 (다) 단계는 500 ~ 900℃의 온도에서 열화학기상증착 방법 또는 플라즈마 화학기상증착 방법에 의해 수행될 수 있다.
또한, 상기 (다) 단계에서, 상기 탄소를 함유한 가스는 CH4, C2H2, C2H4, C2H6, CO 및 CO2로 이루어진 군 중에서 선택된 적어도 하나의 가스인 것이 바람직하며, 상기 탄소를 함유한 가스는 수소 가스(H2), 질소 가스(N2)및 아르곤 가스(Ar)으로 이루어진 군 중에서 선택된 적어도 하나의 가스와 함께 주입되는 것이 바람직하다.
그리고, 상기의 기술적 과제를 달성하기 위한 본 발명의 일 특징에 따른 반도체 소자는,
기판과; 상기 기판에 형성된 전극과; 상기 전극의 표면에 형성된 다공질의 활성층과; 상기 활성층 위에 형성되며, 상기 활성층의 일부를 노출시키는 컨택홀을 가지는 절연층과; 상기 컨택홀 내부에서, 상기 활성층으로부터 성장되어 전자 이동의 통로가 되는 배선을 이루는 탄소나노튜브와; 상기 절연층의 상부에 형성되어 상기 탄소나노튜브와 전기적으로 연결되는 메모리 박막;을 구비한다.
여기에서, 상기 활성층은 상기한 본 발명의 일 특징에 따른 배선 형성 방법에 의해 형성될 수 있다.
또한, 본 발명의 다른 특징에 따른 반도체 소자는,
기판과; 상기 기판에 형성된 전극과; 상기 전극의 표면에 형성된 촉매금속층과; 상기 촉매금속층 위에 형성되며, 상기 촉매금속층의 일부를 노출시키는 컨택홀을 가지는 절연층과; 상기 컨택홀 내부에서, 상기 촉매금속층으로부터 성장되어 전자 이동의 통로가 되는 배선을 이루는 탄소나노튜브와; 상기 절연층의 상부에 형성되어 상기 탄소나노튜브와 전기적으로 연결되는 메모리 박막;을 구비한다.
여기에서, 상기 촉매금속층은 상기한 본 발명의 디른 특징에 따른 배선 형성 방법에 의해 형성될 수 있다.
본 발명의 일 특징과 다른 특징에 따른 반도체 소자에 있어서, 상기 기판은 실리콘 또는 산화물로 이루어질 수 있으며, 상기 전극은 MOSFET의 소스 전극일 수 있고, 상기 메모리 박막은 상변화 물질로 이루어질 수 있다.
본 발명에 따른 반도체 소자의 배선 형성 방법에 의하면, 탄소나노튜브를 사용하여 두 개의 전극 또는 전극과 메모리 박막을 연결하는 컨택트 또는 인터컨넥트와 같은 배선을 형성할 수 있다. 이러한 탄소나노튜브의 전류밀도는 1010 A/㎠ 정도로서 종래의 금속 배선에 비해 대략 10,000배 정도의 전류밀도를 가진다. 따라서, 상기 배선을 수 nm ~ 수십 nm 정도의 직경으로 형성할 수 있게 되어 초고집적의 반도체 소자를 제조할 수 있게 된다.
도 1a 내지 도 1d는 본 발명의 제1 실시예에 따른 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법을 단계적으로 보여주는 수직 단면도들이다.
도 2a와 도 2b는 본 발명의 제2 실시예에 따른 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법을 개략적으로 보여주는 수직 단면도들이다.
도 3은 도 1c에 도시된 단계를 거친 후에, 전극 위에 활성층과 컨택홀이 형성된 상태를 보여주는 사진이다.
도 4와 도 5는 전극의 표면으로부터 성장된 탄소나노튜브를 보여주는 사진이다.
도 6은 본 발명의 반도체 소자의 배선 형성 방법에 의해 컨택홀 내부에 형성된 탄소나노튜브가 규칙적으로 배열된 상태를 보여주는 사진들이다.
도 7은 본 발명의 배선 형성 방법에 따라 탄소나노튜브로 이루어진 배선을 가진 반도체 소자의 일 례를 개략적으로 보여주는 수직 단면도이다.
이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예들을 상세히 설명한다. 이하의 도면들에서 동일한 참조부호는 동일한 구성요소를 가리킨다.
도 1a 내지 도 1d는 본 발명의 제1 실시예에 따른 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법을 단계적으로 보여주는 수직 단면도들이다.
도 1a에는 반도체 소자의 기판(110) 상에 형성된 전극(120)이 도시되어 있다. 도 1a를 참조하면, 상기 기판(110)으로는 실리콘 웨이퍼 또는 유리 등이 사용될 수 있다. 한편, 상기 전극(120)은 기판(110) 대신에 소정의 물질층, 예컨대 절연층 위에 형성될 수도 있다. 상기 전극(120)은 도전성이 양호한 금속이나 도핑된 실리콘으로 이루어질 수 있다. 예컨대, 상기 전극(120)이 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)의 소스 전극과 같이 실리콘 기판(110) 상에 형성될 경우에는 도핑된 실리콘으로 이루어질 수 있으며, 상기 전극(120)이 절연층 위에 형성될 경우에는 도전성이 양호한 금속으로 이루어질 수 있다.
도 1b는 전극의 표면을 전처리하여 활성화시키는 단계를 보여주는 단면도이다. 도 1b를 참조하면, 상기 기판(110)과 전극(120)을 대략 300 ~ 700℃의 온도로 가열한 상태에서, 상기 전극(110)의 표면에 전처리 가스를 흘려줌으로써 전극(120)의 표면을 다공질 상태로 활성화시킨다. 그러면, 도시된 바와 같이 전극(120)의 표면에 탄소나노튜브가 성장할 수 있는 활성층(122)이 형성된다. 이 때, 전처리 가스로는 질소 가스(N2), 아르곤 가스(Ar) 또는 암모니아 가스(NH3)가 사용될 수 있다. 그리고, 상기 활성층(122)의 두께가 대략 수 nm ~ 수십 nm 정도가 되도록 전처리 가스를 흘려주는 시간과 유량을 조절한다.
한편, 아르곤 가스(Ar)나 질소 가스(N2)를 이온화시켜 그 이온을 상기 전극(120)의 표면에 충돌시킴으로써, 상기 전극(120)의 표면을 다공질 상태로 활성화시키는 방법도 사용 가능하다. 이와 같은 방법에 의해서도 상기 전극(120)의 표면에 탄소나노튜브가 성장할 수 있는 다공질의 활성층(122)이 형성될 수 있다. 그리고, 이 방법은 반응성 이온 식각(RIE: Reactive Ion Etching) 장치를 사용하여 수행될 수 있다. 또한, 이 방법은 기판(110)과 전극(120)을 가열할 필요없이 상온 상태에서도 수행될 수 있는 장점이 있다.
도 1c는 전극 위에 절연층과 컨택홀을 형성한 상태를 도시한 단면도이다. 도 1c를 참조하면, 먼저 전술한 단계에서 표면에 활성층(122)이 형성된 전극(120) 위에 절연층(130)을 형성한다. 이 때, 상기 절연층(130)은 산화물, 예컨대 실리콘 산화물(SiO2)로 이루어질 수 있다.
다음으로, 상기 절연층(130)에 활성층(122)의 표면 일부를 노출시키는 컨택홀(132)을 형성한다. 구체적으로, 상기 절연층(130) 위에 포토레지스트를 도포한 후 이를 소정 패턴으로 패터닝한다. 이어서, 패터닝된 포토레지스트를 식각 마스크로 하여 상기 절연층(130)을 이방성 식각함으로써 상기 컨택홀(132)을 형성한다. 이 때, 상기 컨택홀(132)은 수 nm ~ 수십 nm의 직경을 가지도록 형성될 수 있다.
도 1c의 단계를 거치게 되면, 도 3의 사진에 도시된 바와 같이 전극(120)의 표면에 활성층(122)이 형성되고, 활성층(122) 위에 컨택홀(132)이 된다.
도 1d는 컨택홀의 내부에서 전극의 활성층으로부터 탄소나노튜브를 성장시킨 상태를 도시한 단면도이다. 도 1d의 단계에서, 탄소나노튜브의 성장은 열화학기상증착 방법 또는 플라즈마 화학기상증착 방법에 의해 수행될 수 있으며, 또한 알려진 다른 방법들에 의해서도 수행될 수 있다.
도 1d를 참조하면, 전술한 단계를 거친 결과물을 반응로 내에 장입한 다음, 상기 반응로 내부의 온도를 대략 500 ~ 900℃의 온도로 조절한다. 이어서, 상기 반응로 내에 CH4, C2H2, C2H4, C2H6, CO 또는 CO2와 같은 탄소를 함유한 가스를 주입한다. 이 때, 상기 탄소함유가스를 주입할 때, 수소 가스(H2), 질소 가스(N2) 또는 아르곤 가스(Ar) 등을 함께 흘려주게 된다. 이와 같이 반응로 내에 주입된 탄소함유가스는 컨택홀(132)을 통해 전극(120)의 표면에 형성된 활성층(122)에 접촉하게 되고, 이에 따라 활성층(140)으로부터 수직 방향으로 탄소나노튜브(140)가 성장하게 된다.
다음으로, 도시되지는 않았지만 절연층(130)의 상부에 탄소나노튜브(140)와 연결되는 다른 전극 또는 메모리 박막을 형성하면, 상기 탄소나노튜브(140)는 두 개의 전극 또는 전극과 메모리 박막을 연결하는 컨택트(contact) 또는 인터컨넥트(interconnect)와 같은 배선을 이루게 된다.
도 2a와 도 2b는 본 발명의 제2 실시예에 따른 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법을 개략적으로 보여주는 수직 단면도들이다. 본 실시예는 전극 위에 촉매금속층을 형성하는 단계를 제외하고는 전술한 제1 실시예와 동일하다. 따라서, 본 실시예는 전술한 제1 실시예와의 차이점을 중심으로 간략하게 설명된다.
도 2a는 기판 상에 형성된 전극의 표면에 촉매금속층을 형성한 상태를 도시한 단면도이다. 도 2a를 참조하면, F 마그네트론 스퍼터(magnetron sputter) 또는 전자빔 증착기(e-beam evaporator)를 사용하여 기판(110) 상에 형성된 전극(120)의 표면에 촉매금속을 소정 두께로 증착하여 탄소나노튜브가 성장할 수 있는 촉매금속층(124)을 형성한다. 이 때, 상기 촉매금속으로는 W, Ni, Fe, Co, Y, Pd, Pt 또는 Au 와 같은 전이금속이 사용될 수 있다. 그리고, 촉매금속층(124)은 수 nm ~ 수십 nm의 두께로 형성될 수 있다.
한편, 상기 촉매금속층(124)은 상기 전이금속들을 분말의 상태로 전극(120)의 표면에 소정 두께로 도포함으로써 형성될 수도 있다. 이 때, 전이금속 분말의 도포는 스프레이 방법에 의해 수 nm ~ 수십 nm의 두께로 이루어질 수 있다. 이 방법에 의하면, 촉매금속층(124)이 치밀하지 않은 다공질의 상태로 보다 용이하게 형성될 수 있는 장점이 있다.
이와 같이, 본 발명의 제2 실시예에서는 전극(120)의 표면에 탄소나노튜브를 성장시키기 위한 별도의 촉매금속층(124)을 형성하게 되므로, 전극(120) 자체의 표면을 탄소나노튜브가 성장할 수 있도록 활성화시키는 전술한 제1 실시예와 차이가 있다. 그러나, 본 발명의 제2 실시예에서 전극(120)의 표면에 촉매금속층(124)을 형성한 이후의 단계는 전술한 제1 실시예와 동일하다. 따라서, 이후의 단계들은 도 2b를 참조하며 간략하게 설명한다.
도 2에 도시된 바와 같이, 전극(120)의 표면에 형성된 촉매금속층(124) 위에 예컨대 산화물로 이루어진 절연층(130)을 형성한다. 이어서, 패터닝된 포토레지스트를 식각 마스크로 하여 상기 절연층(130)을 이방성 식각함으로써 식각하여 수 nm ~ 수십 nm의 직경을 가지는 컨택홀(132)을 형성한다. 이로써, 상기 컨택홀(132)을 통해 촉매금속층(124)의 표면 일부가 노출된다.
다음으로, 대략 500 ~ 900℃의 온도를 유지하는 반응로 내에 CH4, C2H2, C2H4, C2H6, CO 또는 CO2와 같은 탄소 함유 가스와 H2, N2 또는 Ar 가스를 함께 주입하면서, 촉매금속층(124)의 표면으로부터 수직 방향으로 탄소나노튜브(140)를 성장시킨다.
도 4와 도 5의 사진에서는, 전극의 활성화된 표면으로부터 탄소나노튜브가 성장되어 있음을 볼 수 있으며, 도 6의 사진에서는, 본 발명의 반도체 소자의 배선 형성 방법에 의해 컨택홀 내부에 형성된 탄소나노튜브가 규칙적으로 배열된 상태를 볼 수 있다.
상기한 바와 같이, 본 발명의 제1 실시예 및 제2 실시예에 따른 반도체 소자의 배선 형성 방법에 의하면, 탄소나노튜브를 사용하여 두 개의 전극 또는 전극과 메모리 박막을 연결하는 컨택트 또는 인터컨넥트와 같은 배선을 형성할 수 있다. 이러한 탄소나노튜브의 전류밀도는 1010 A/㎠ 정도로서 종래의 금속 배선에 비해 대략 10,000배 정도의 전류밀도를 가진다. 따라서, 상기 배선을 수 nm ~ 수십 nm 정도의 직경으로 형성할 수 있게 되어 초고집적의 반도체 소자를 제조할 수 있게 된다.
도 7은 본 발명의 배선 형성 방법에 따라 탄소나노튜브로 이루어진 배선을 가진 반도체 소자의 일 례를 개략적으로 보여주는 수직 단면도이다.
도 7에 도시된 적용예는 본 발명에 따른 배선 형성 방법을 스위칭 소자로서 MOSFET이 마련된 상변화 메모리(PRAM: Phase-change RAM) 소자에 적용한 예이다. 상변화 메모리(PRAM) 소자는 결정 상태에 따라 전기적 저항이 변하는 상변화 물질을 이용하는 메모리 소자이다. 상변화 물질막으로 인가되는 전류의 양의 차이에 의하여 상변화 물질막 일부의 결정 상태가 변화된다.
도 7을 참조하면, 잘 알려져 있는 바와 같이, MOSFET은 기판(210)의 소정 영역에 형성된 소스 전극(221) 및 드레인 전극(223)과, 절연층(230)에 의해 상기 소스 전극(211) 및 드레인 전극(223) 각각과 이격되는 게이트 전극(224)으로 구성된다. 상기 소스 전극(221)과 드레인 전극(223)은 도핑된 실리콘이나 금속으로 이루어질 수 있으며, 상기 게이트 전극(224)은 주로 금속으로 이루어진다.
상기 소스 전극(221)의 표면에는 상기한 배선 형성 방법에 의해 다공질의 활성층(222)이 형성된다. 한편, 상기 활성층(222) 대신에 촉매금속층이 형성될 수도 있다. 상기 활성층(222) 위에는 제1 절연층(230)이 형성되고, 제1 절연층(230)에는 제1 컨택홀(232)이 형성된다. 상기 제1 컨택홀(232) 내부에서, 상기 활성층(222)으로부터 탄소나노튜브(240)가 수직으로 성장한다. 이 때, 상기 탄소나노튜브(240)는 제1 컨택홀(232)의 직경에 따라 수 nm ~ 수십 nm 의 직경을 가지게 된다.
그리고, 상기 제1 절연층(230)의 상부에 탄소나노튜브(240)와 연결되는 중간 전극(250)이 형성된다. 이에 따라, 상기 탄소나노튜브(240)는 MOSFET의 소스 전극(221)과 중간 전극(250)을 전기적으로 연결하는 배선을 이루게 된다.
상기 중간 전극(250)의 표면에도 본 발명에 따른 배선 형성 방법에 의해 다공질의 활성층(252) 또는 촉매금속층이 형성된다. 상기 활성층(252) 위에는 제2 절연층(260)이 형성되고, 제2 절연층(260)에는 제2 컨택홀(262)이 형성된다. 상기 제2 컨택홀(262) 내부에서, 상기 활성층(252)으로부터 탄소나노튜브(270)가 수직으로 성장한다.
그리고, 상기 제2 절연층(260)의 상부에 탄소나노튜브(270)와 연결되는 메모리 박막(280)이 형성된다. 상기 메모리 박막(280)은 상변화 물질로 이루어진다. 이에 따라, 상기 탄소나노튜브(270)는 중간 전극(250)과 메모리 박막(280)을 전기적으로 연결하는 배선을 이루게 된다.
한편, 상기 중간 전극(250)과 그 위에 형성되는 탄소나노튜브(270) 없이 소스 전극(221)으로부터 성장된 탄소나노튜브(240) 위에 상기 메모리 박막(280)이 직접 형성될 수도 있다.
상기 메모리 박막(280) 위에는 제3 절연층(290)이 형성되고, 제3 절연층(290)에는 제3 컨택홀(292)이 형성된다. 상기 제3 컨택홀(292)을 통해 메모리 박막(280)과 상부 전극(295)이 연결된다.
위에서, 본 발명에 따른 배선 형성 방법은 상변화 메모리(PRAM) 소자에 적용된 것으로 도시되고 설명되었다. 그러나, 본 발명에 따른 배선 형성 방법은 상기 PRAM 뿐만 아니라 다양한 반도체 메모리 소자, 즉 DRAM, SRAM 및 MRAM 등에도 적용될 수 있다. 그리고, 상기 반도체 메모리 소자에는 상기 스위칭 소자로서 MOSFET 뿐만 아니라 다양한 트랜지스터가 마련될 수 있다.
본 발명은 개시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 분야에서 통상적 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위에 의해서 정해져야 할 것이다.
110,210...기판 120...전극
122,222,252...활성층 124...촉매금속층
130,230,260,290...절연층 132,232,262,292...컨택홀
140,240,270...탄소나노튜브 221...소스 전극
223...드레인 전극 224...게이트 전극
250...중간 전극 280...메모리 박막
295...상부 전극

Claims (16)

  1. (가) 반도체 소자의 전극의 표면에 촉매금속층을 형성하는 단계;
    (나) 상기 촉매금속층 위에 절연층을 형성한 뒤, 상기 촉매금속층의 일부를 노출시키는 컨택홀을 형성하는 단계; 및
    (다) 상기 컨택홀을 통해 상기 촉매금속층에 탄소가 함유된 가스를 주입하여 상기 촉매금속층으로부터 탄소나노튜브를 성장시켜 배선을 형성하는 단계;를 구비하며,
    상기 (가) 단계는 촉매금속을 분말의 상태로 상기 전극의 표면에 스프레이함으로써 소정 두께로 도포하는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  2. 제 1항에 있어서,
    상기 (가) 단계는 RF 마그네트론 스퍼터 또는 전자빔 증착기에 의해 촉매금속을 상기 전극의 표면에 소정 두께로 증착하는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  3. 삭제
  4. 제 1항에 있어서,
    상기 (가) 단계에서, 상기 촉매금속층은 W, Ni, Fe, Co, Y, Pd, Pt 및 Au 로 이루어진 군 중에서 선택된 적어도 하나의 전이금속으로 이루어지는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  5. 제 1항에 있어서,
    상기 (나) 단계에서, 상기 절연층은 산화물로 이루어진 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  6. 제 1항에 있어서,
    상기 (나) 단계에서, 패터닝된 포토레지스트를 식각 마스크로 하여 상기 절연층을 이방성 식각함으로써 상기 컨택홀을 형성하는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  7. 제 1항에 있어서,
    상기 (다) 단계는 500 ~ 900℃의 온도에서 수행되는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  8. 제 1항에 있어서,
    상기 (다) 단계에서, 상기 탄소를 함유한 가스는 CH4, C2H2, C2H4, C2H6, CO 및 CO2로 이루어진 군 중에서 선택된 적어도 하나의 가스인 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  9. 제 1항에 있어서,
    상기 (다) 단계에서, 상기 탄소를 함유한 가스는 수소 가스(H2), 질소 가스(N2)및 아르곤 가스(Ar)으로 이루어진 군 중에서 선택된 적어도 하나의 가스와 함께 주입되는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  10. 제 1항에 있어서,
    상기 (다) 단계는 열화학기상증착 방법 또는 플라즈마 화학기상증착 방법에 의해 수행되는 것을 특징으로 하는 반도체 소자의 배선 형성 방법.
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
KR1020100006502A 2010-01-25 2010-01-25 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자 KR101015507B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100006502A KR101015507B1 (ko) 2010-01-25 2010-01-25 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100006502A KR101015507B1 (ko) 2010-01-25 2010-01-25 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020030028000A Division KR100982419B1 (ko) 2003-05-01 2003-05-01 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및이 방법에 의해 제조된 반도체 소자

Publications (2)

Publication Number Publication Date
KR20100012894A KR20100012894A (ko) 2010-02-08
KR101015507B1 true KR101015507B1 (ko) 2011-02-22

Family

ID=42087001

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100006502A KR101015507B1 (ko) 2010-01-25 2010-01-25 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자

Country Status (1)

Country Link
KR (1) KR101015507B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020079854A (ko) * 2000-02-16 2002-10-19 인피네온 테크놀로지스 아게 카본 나노튜브를 포함하는 전기적 전도 커넥션을 갖는전기 소자 및 그 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020079854A (ko) * 2000-02-16 2002-10-19 인피네온 테크놀로지스 아게 카본 나노튜브를 포함하는 전기적 전도 커넥션을 갖는전기 소자 및 그 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLIED PHYSICS LETTERS, Vol.75, No.14, pp.2047-2049, OCT. 1999*

Also Published As

Publication number Publication date
KR20100012894A (ko) 2010-02-08

Similar Documents

Publication Publication Date Title
KR100982419B1 (ko) 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및이 방법에 의해 제조된 반도체 소자
US8951444B2 (en) Gas-phase functionalization of carbon nanotubes
JP4229648B2 (ja) 電子デバイスの製造方法
US6566704B2 (en) Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof
US7553472B2 (en) Nanotube forming methods
JP2008016849A (ja) カーボンナノチューブを用いた半導体素子の層間配線およびその製造方法
US7989286B2 (en) Electronic devices using carbon nanotubes having vertical structure and the manufacturing method thereof
KR100738060B1 (ko) 탄소나노튜브의 형성방법 및 이를 이용한 반도체 소자의배선 형성 방법
Belete et al. Nonvolatile resistive switching in nanocrystalline molybdenum disulfide with ion‐based plasticity
KR20060023064A (ko) 탄소나노튜브를 가진 반도체 메모리 장치 및 이의 제조 방법
JP2007180546A (ja) カーボンナノチューブの形成方法、及びそれを利用した半導体素子の配線形成方法
US20100230817A1 (en) Using Unstable Nitrides to Form Semiconductor Structures
Hu et al. Ultra‐Confined Catalytic Growth Integration of Sub‐10 nm 3D Stacked Silicon Nanowires Via a Self‐Delimited Droplet Formation Strategy
KR101015507B1 (ko) 탄소나노튜브를 이용한 반도체 소자의 배선 형성 방법 및 이 방법에 의해 제조된 반도체 소자
Yang et al. Wafer‐Scale Memristor Array Based on Aligned Grain Boundaries of 2D Molybdenum Ditelluride for Application to Artificial Synapses
JP5246938B2 (ja) カーボンナノチューブ成長用基板、トランジスタ及びカーボンナノチューブ成長用基板の製造方法
JP2008218615A (ja) 集積回路の修正配線形成方法
JP5573669B2 (ja) 半導体装置およびその製造方法
JP2003165713A (ja) 炭素元素円筒型構造体の製造方法
WO2008069485A1 (en) The electronic devices using carbon nanotubes having vertical structure and the manufacturing method thereof
Xiao et al. Synthesis of Carbon Nanotube in Sub-100nm Vias on Ni Silicide
CN118284064A (zh) 基于无序单壁碳纳米管条带自旋场效应晶体管及制备方法
CN118284312A (zh) 基于顺排多壁碳纳米管阵列膜的自旋场效应晶体管及制备
CN104979397A (zh) 半导体器件及其形成方法
JP2000174255A (ja) 微細構造素子とその製造方法

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140124

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150116

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160119

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170119

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180119

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20200120

Year of fee payment: 10