EP1078160A1 - Kraftstoffeinspritzeinrichtung - Google Patents

Kraftstoffeinspritzeinrichtung

Info

Publication number
EP1078160A1
EP1078160A1 EP00910561A EP00910561A EP1078160A1 EP 1078160 A1 EP1078160 A1 EP 1078160A1 EP 00910561 A EP00910561 A EP 00910561A EP 00910561 A EP00910561 A EP 00910561A EP 1078160 A1 EP1078160 A1 EP 1078160A1
Authority
EP
European Patent Office
Prior art keywords
pressure
injection
fuel injection
chamber
injection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00910561A
Other languages
English (en)
French (fr)
Other versions
EP1078160B1 (de
Inventor
Bernd Mahr
Martin Kropp
Hans-Christoph Magel
Wolfgang Otterbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1078160A1 publication Critical patent/EP1078160A1/de
Application granted granted Critical
Publication of EP1078160B1 publication Critical patent/EP1078160B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/21Fuel-injection apparatus with piezoelectric or magnetostrictive elements

Definitions

  • the invention relates to a fuel injection device according to the preamble of patent claim 1.
  • the fuel injection device according to the invention can be designed both stroke-controlled and pressure-controlled.
  • a stroke-controlled fuel injection device is understood to mean that the opening and closing of the injection opening takes place with the aid of a displaceable valve member, due to the hydraulic interaction of the fuel pressures in a nozzle chamber and in a control chamber. A pressure drop within the control chamber causes the valve member to lift.
  • the valve member can be deflected by an actuator (actuator, actuator).
  • a pressure-controlled fuel injection device In a pressure-controlled fuel injection device according to the invention, the pressure prevailing in the nozzle chamber of an injector moves the valve member against the action of a closing force (spring), so that the Injection opening for an injection of the fuel from the nozzle chamber into the cylinder is released.
  • the pressure at which fuel exits the nozzle chamber into a cylinder of an internal combustion engine is referred to as the injection pressure, while a system pressure is understood to mean the pressure at which fuel is available or is stored within the fuel injection device.
  • a stroke-controlled injection has become known, for example, from DE 196 19 523 A1.
  • the achievable injection pressure is limited to approx. 1600 to 1800 bar by the pressure storage space (rail) and the high pressure pump.
  • a pressure booster unit is possible, as is known, for example, from US Pat. No. 5,143,291 or US Pat. No. 5,522,545.
  • the disadvantage of these pressure-boosted systems lies in the lack of flexibility in the injection and poor quantity tolerance when metering small amounts of fuel.
  • a pressure booster unit arranged in the injector is known from EP 0 691 471 A1.
  • a bypass line for a pressure injection and a pressure chamber of the pressure translation unit are in series, so that the bypass line is only continuous as long as a displaceable piston of the pressure translation unit is not moved and is completely retracted.
  • a fuel injection device is proposed.
  • a hydraulic pressure booster unit is assigned to each injector of a common rail system, which both increases the maximum injection pressure to high pressures, e.g. greater than 1800 bar, as well as the provision of a second injection pressure.
  • the bypass line leads at the end of the pressure chamber of the pressure translation unit into the supply line to the nozzle space or into the supply line from the pressure translation unit to the nozzle space.
  • Fuel of lower pressure can be injected independently of the position of the pressure medium of the pressure booster unit. Due to the pressure translation unit, the pressure storage space and the injector are subjected to a lower static pressure (rail pressure) and thus have a longer service life.
  • the high pressure pump is also less stressed. There is the possibility of a meterable pre-injection with low tolerances due to low (untranslated) injection pressure. By switching between the injection pressures, flexible post-injection or multiple post-injections can be implemented at high or low injection pressures.
  • a quantity-controlled fuel pump 2 delivers fuel 3 from a storage tank 4 via a delivery line 5 into a central pressure storage chamber 6 (common rail), of which several pressure lines correspond to the number of individual cylinders 7 to the individual injectors 8 (injection device) projecting into the combustion chamber of the internal combustion engine to be supplied. 1 only one of the injectors 8 is shown.
  • a first system pressure is generated and stored in the pressure storage space 6. This first system pressure is used for pre-injection and if necessary and post-injection (HC enrichment for exhaust gas aftertreatment or soot reduction) as well as for displaying an injection course with a plateau (boat injection).
  • each injector 8 is assigned a local pressure translation unit 9, which is located within an injector 8.
  • the pressure ratio unit 9 comprises a valve unit for pressure ratio control (3/2-way valve) 10, a check valve 11 and a pressure medium 12 in the form of a displaceable piston element.
  • the pressure medium 12 can be connected at one end to the pressure line 7 with the aid of the valve unit 10, so that the pressure medium 12 can be pressurized at one end.
  • a differential space 12 ' is relieved of pressure by means of a leakage line 13, so that the pressure medium 12 can be displaced to reduce the volume of a pressure chamber 14.
  • the pressure medium 12 is moved in the compression direction, so that the fuel located in the pressure chamber 14 compresses and is supplied to a control chamber 15 and a nozzle chamber 16.
  • the check valve 11 prevents the backflow of compressed fuel into the pressure storage space 6.
  • a suitable area ratio in a primary chamber 14 ' and the pressure chamber 14 By means of a suitable area ratio in a primary chamber 14 ' and the pressure chamber 14, a second higher pressure can be generated. If the primary chamber 14 'is connected to the leakage line 13 with the aid of the valve unit 10, the pressure medium 12 is reset and the pressure chamber 14 is refilled. Due to the pressure conditions in the pressure chamber 14 and the primary chamber 14', the check valve 11 opens, so that the Pressure chamber 14 is under rail pressure (pressure of the pressure storage chamber 6) and the pressure medium 12 is hydraulically returned to its starting position.
  • one or more springs can be arranged in rooms 12, 14 and 14 ' .
  • a second system pressure can thus be generated by means of the pressure translation.
  • the injection takes place via a fuel metering with the aid of a piston-shaped valve member 18, which is axially displaceable in a guide bore and has a conical valve sealing surface 19 at one end, with which it cooperates with a valve seat surface on the injector housing of the injector unit 8.
  • Injection openings are provided on the valve seat surface of the injector housing.
  • a pressure surface pointing in the opening direction of the valve member 18 is exposed to the pressure prevailing there, which is supplied to the nozzle space 16 via a pressure line 20.
  • a pressure piece 22 also acts on the valve member 18, which delimits the control chamber 15 with its end face 23 facing away from the valve sealing surface 19.
  • the control chamber 15 has an inlet with a first throttle 24 and an outlet to a pressure relief line 25 with a second throttle 26, which is controlled by a 2/2-way valve 27.
  • the nozzle chamber 16 continues through an annular gap between the valve member 18 and the guide bore up to the valve seat surface of the injector housing.
  • the pressure piece 22 is pressurized in the closing direction by the pressure in the control chamber 15.
  • Fuel under the first or second system pressure constantly fills the nozzle chamber 16 and the control chamber 15.
  • the pressure in the control chamber 15 can be reduced, so that the opening direction is subsequently increased the valve member 18 pressure force acting in the nozzle chamber 16 exceeds the pressure force acting on the valve member 18 in the closing direction.
  • the valve sealing surface 19 lifts off the valve seat surface and fuel is injected.
  • the pressure relief process of the control chamber 15 and thus the stroke control of the valve member 18 can be influenced via the dimensioning of the throttle 24 and the throttle 26.
  • the end of the injection is initiated by renewed actuation (closing) of the 2/2-way valve 27, which decouples the control chamber 15 from the leakage line 13 again, so that a pressure builds up again in the control chamber 15, which pushes the pressure piece 22 in the closing direction can move.
  • the valve units are operated by electromagnets for opening or closing or switching.
  • the electromagnets are controlled by a control unit, which can monitor and process various operating parameters (engine speed, ...) of the internal combustion engine to be supplied.
  • a control unit which can monitor and process various operating parameters (engine speed, %) of the internal combustion engine to be supplied.
  • piezo position elements actuator, actuator
  • actuator can also be used, which have a necessary temperature compensation and possibly a required force or displacement translation.
  • the fuel injection device 1 has the pressure translation unit 9 arranged between the pressure storage space 6 and the nozzle space 16, the pressure chamber 14 of which is connected to the nozzle space 16 via the pressure line 20. Furthermore, the bypass line 28 connected to the pressure storage space 6 is provided. The bypass line 28 is connected directly to the pressure line 20. The bypass line 28 can be used for an injection with rail pressure and is arranged parallel to the pressure chamber 14, so that the bypass line 28 is continuous regardless of the movement and position of the displaceable pressure medium 12 of the pressure translation unit 9. The flexibility of the injection is increased.
  • the pressure transmission unit 9 is arranged outside the injector 8 when the fuel injection device 1 is modified. This can be anywhere between the pressure storage space 6 and the injector 8. The size of the injector 8 is reduced. It is possible to integrate the pressure translation unit 9 with the associated valve arrangement and the pressure storage space 6 in one component.
  • the valve arrangement can also be arranged outside the pressure booster unit 9.
  • a fuel injection device 50 according to FIG. 3 has a pressure storage space 51 for fuel with a first system pressure.
  • a higher system pressure is made possible by a pressure translation unit 52, which can be switched on with the aid of a valve unit 59.
  • the pressure-controlled fuel metering takes place via a valve unit 55, e.g. a 3/2-way valve.
  • a valve member 56 can be moved against the force of a valve spring 57 if the pressure applied to pressure surfaces 58 exceeds the spring force of the valve spring 57.
  • the 3/2-way valves 55 and 59 are located within an injector 60.
  • FIG. 4 shows a fuel injection device 61 similar to FIG. 3, the valve units for fuel metering 62 (3/2-way valve) and for pressure ratio control 63 (3/2-way valve) are arranged outside the injector 64.
  • the Fuel injection device 61 it is also possible to arrange the two valves separately from one another.
  • a simplified and loss-optimized control of a pressure transmission unit 70 results from FIG. 5.
  • the pressure in the differential space 71 formed by a transition from a larger to a smaller piston cross section is used.
  • This differential space becomes a pressure translation unit with a supply pressure
  • This type of control can be used to reset the pressure transmission unit 70 and to refill a pressure chamber
  • a throttle 75 and a simple 2/2-way valve 76 can be used to control the pressure booster unit 70 instead of a complex 3/2-way valve.
  • the throttle 75 connects the differential space 71 with fuel under supply pressure from a pressure storage space 77.
  • the 2/2-way valve connects the differential space 71 to a leakage line 78.
  • the throttle 75 should be designed as small as possible, but still so large that the piston 72 returns to its starting position between the injection cycles.
  • a guide leakage of the piston 72 can also be used as a throttle.
  • the throttle can also be integrated in the piston.
  • the injector is under the pressure of the pressure storage space 77.
  • the pressure translation unit is in the starting position. Injection with rail pressure can now take place through valve 79. If an injection with a higher pressure is desired, the 2/2-way valve 76 is activated (opened) and thus a pressure increase is achieved.
  • a 3/2-way valve can also be used to control the pressure in the differential chamber.
  • Fig. 6 shows the control via a 3/2-way valve in a stroke-controlled Injection system.
  • 7 shows the control via a 3/2-way valve in a pressure-controlled injection system.
  • an injection pressure curve according to FIG. 8 results from the idle state (pressure translation unit deactivated and in the starting position).
  • a pre-injection with low (rail) pressure is initiated via the bypass at the beginning of the injection cycle.
  • the pilot injection is ended by closing valve 27 (see FIG. 1).
  • Multiple pre-injections are also possible due to multiple peeling.
  • the valve unit 10 arranged upstream of the pressure booster unit can be energized, so that an increased pressure in the nozzle chamber and control chamber corresponding to the gear ratio results in the injector.
  • a main injection is now initiated by opening the valve 27 (dash-dotted line).
  • the main injection is then ended again by closing the 2/2-way valve 27. If the pressure booster unit is activated at the same time as the valve 27, the result is an injection starting at the rail pressure level with a ramp-like rising edge up to the translated pressure (in the Figure 8 not shown). If the connection of the pressure translation unit is further delayed, injection is first carried out with rail pressure and, by switching on the pressure translation unit, a boot-shaped injection process results when the pressure translation unit is activated. The length of the high pressure component depends on the activation time of the pressure booster.
  • the main injection is ended by closing the valve 27. If the pressure transmission unit is deactivated before the valve 27 is closed, the injection pressure ramps down to the rail pressure level, as is known from pressure-controlled systems. With post-injection, you can choose between a high and a low injection pressure level. A post-injection at high pressure to reduce soot or a post-injection at low injection pressure for exhaust gas aftertreatment can take place at a close distance after the main injection.
  • an injection pressure curve according to FIG. 9 results from the idle state (pressure translation unit deactivated and in the starting position).
  • a pre-injection with low rail pressure is initiated via the bypass at the beginning of the injection cycle.
  • Multiple pre-injections are also possible due to multiple peeling.
  • the rise in pressure in the nozzle chamber results in a ramp-shaped injection pressure curve in all subregions of the injection.
  • the valve unit 59 arranged in front of the pressure booster unit to be energized simultaneously with the valve 55, so that there is a ramp-shaped course of the injection pressure up to the translated maximum pressure (dash-dotted line).
  • the main injection is then ended again by closing the valve 55.
  • connection of the pressure transmission unit is delayed, injection is first carried out with rail pressure, and a boot-shaped injection curve results from the connection of the pressure transmission unit.
  • the length of the high pressure component depends on the activation time of the pressure booster.
  • the main injection is ended by closing the valve 55, as a result of which the injection pressure in turn decays in a ramp-like manner by relieving the nozzle space to the leakage pressure level, and the injection is ended.
  • post-injection you can choose between a high and a low injection pressure level.
  • a post-injection at high pressure to reduce soot or a post-injection at low injection pressure for exhaust gas aftertreatment can take place at a close distance after the main injection.
  • Valve element Valve spring Pressure surface Valve unit Injector Fuel injection device Valve unit for fuel metering Valve unit for pressure ratio control Injector Pressure ratio unit ' Primary chamber Differential chamber Piston Spring Pressure chamber Throttle 2/2-way valve Pressure accumulator Leakage line 2/2-way valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Eine Kraftstoffeinspritzeinrichtung (1) weist eine zwischen einem Druckspeicherraum (6) und einem Düsenraum (16) angeordnete Druckübersetzungseinheit (9) auf, deren Druckkammer (14) über eine Druckleitung (20) mit dem Düsenraum (16) verbunden ist. Weiterhin ist eine an den Druckspeicherraum (6) angeschlossene Bypass-Leitung (28) vorgesehen. Die Bypass-Leitung (28) ist direkt mit der Druckleitung verbunden. Die Bypass-Leitung (28) ist für eine Druckeinspritzung verwendbar und ist parallel zur Druckkammer (14) angeordnet, so dass die Bypass-Leitung (28) unabhängig von der Bewegung und Stellung eines verschieblichen Druckmittels (12) der Druckübersetzungseinheit (9) durchgängig ist. Die Flexibilität der Einspritzung wird erhöht.

Description

Bezeichnung: Kraftstoffeinspritzeinrichtung
B E S C H R E I B U N G
Stand der Technik
Die Erfindung betrifft eine Kraftstoffeiπspritzeinrichtung gemäß dem Oberbegriff des Patentanspruchs 1.
Zum besseren Verständnis der Beschreibung und der Patentansprüche werden nachfolgend einige Begriffe erläutert: Die Kraftstoffeinspritzeinrichtung gemäß der Erfindung kann sowohl hubgesteuert als auch druckgesteuert ausgebildet sein. Im Rahmen der Erfindung wird unter einer hubqesteuerten Kraftstoffeinspritzeinrichtunq verstanden, daß das Öffnen und Schließen der Einspritzöffnung mit Hilfe eines verschieblichen Ventilglieds aufgrund des hydraulischen Zusammenwirkens der Kraftstoff drücke in einem Düsenraum und in einem Steuerraum erfolgt. Eine Druckabsenkung innerhalb des Steuerraums bewirkt einen Hub des Ventilglieds. Alternativ kann das Auslenken des Ventilglieds durch ein Stellglied (Aktor, Aktuator) erfolgen. Bei einer druckgesteuerten Kraftstoffeinspritzeinrichtunq gemäß der Erfindung wird durch den im Düsenraum eines Injektors herrschenden Kraftstoff druck das Ventilglied gegen die Wirkung einer Schließkraft (Feder) bewegt, so daß die Einspritzöffnung für eine Einspritzung des Kraftstoffs aus dem Düsenraum in den Zylinder freigegeben wird. Der Druck, mit dem Kraftstoff aus dem Düsenraum in einen Zylinder einer Brennkraftmaschine austritt, wird als Einspritzdruck bezeichnet, während unter einem Systemdruck der Druck verstanden wird, unter dem Kraftstoff innerhalb der Kraftstoffeinspritzeinrichtung zur Verfügung steht bzw. bevorratet ist. Kraftstoffzumessunq bedeutet, eine definierte Kraftstoffmenge zur Einspritzung bereitzustellen. Unter Leckage ist eine Menge an Kraftstoff zu verstehen, die beim Betrieb der Kraftstoffeinspritzeinrichtung entsteht (z.B. eine Führungsleckage), nicht zur Einspritzung verwendet und zum Kraftstofftank zurückgefördert wird. Das Druckniveau dieser Leckage kann einen Standdruck aufweisen, wobei der Kraftstoff anschließend auf das Druckniveau des Kraftstofftanks entspannt wird.
Eine hubgesteuerte Einspritzung ist beispielsweise durch die DE 196 19 523 A1 bekanntgeworden. Der erreichbare Einspritzdruck ist hier durch den Druckspeicherraum (rail) und die Hochdruckpumpe auf ca. 1600 bis 1800 bar begrenzt.
Zur Erhöhung des Einspritzdruckes ist eine Druckübersetzungseinheit möglich, wie sie beispielsweise aus der US 5,143,291 oder der US 5,522,545 bekannt ist. Der Nachteil dieser druckübersetzten Systeme liegt in einer mangelnden Flexibilität der Einspritzung und einer schlechten Mengentoleranz bei der Zumessung kleiner Kraftstoffmengen.
Bei einer in der JP 08277762 A beschriebenen Kraftstoffeinspritzeinrichtung sind zur Erhöhung der Flexibilität der Einspritzung und der Zumeßgenauigkeit der Voreinspritzung zwei Druckspeicherräume mit unterschiedlichen Drücken vorgesehen. Diese beiden Druckspeicherräume erfordern einen hohen Fertigungsaufwand und hohe Herstellungskosten, wobei der maximale Einspritzdruck weiterhin durch die Kraftstoffpumpe und den Druckspeicherraum begrenzt ist.
Eine im Injektor angeordnete Druckübersetzungseinheit ist aus der EP 0 691 471 A1 bekannt. Eine Bypass-Leitung für eine Druckeinspritzung und eine Druckkammer der Druckübersetzungseinheit liegen in Reihe, so daß die Bypass-Leitung nur durchgängig ist, solange ein verschieblicher Kolben der Druckübersetzungseinheit nicht bewegt wird und vollständig zurückgezogen ist. Vorteile der Erfindung
Zur Erhöhung der Flexibilität und des maximalen Einspritzdruckes wird eine Kraftstoffeinspritzeinrichtung gemäß Patentanspruch 1 vorgeschlagen. Jedem injektor eines Common Rail Systems wird eine hydraulische Druckübersetzungseinheit zugeordnet, die sowohl eine Erhöhung des maximalen Eiπspritzdruckes auf hohe Drücke, wie z.B. größer 1800 bar, als auch die Bereitstellung eines zweiten Einspritzdruckes ermöglicht. Die Bypass- Leitung führt am Ende der Druckkammer der Druckübersetzungseinheit in die Zuleitung zum Düsenraum oder in die Zuleitung von der Druckübersetzungseinheit zum Düsenraum. Eine Einspritzung von Kraftstoff geringeren Druckes kann unabhängig von der Stellung des Druckmittels der Druckübersetzungseinheit erfolgen. Durch die Druckübersetzungseinheit sind der Druckspeicherraum und der Injektor mit einem geringeren Standdruck (Raildruck) beaufschlagt und besitzen somit eine größere Lebensdauer. Ebenso ist die Hochdruckpumpe weniger beansprucht. Es besteht die Möglichkeit einer dosierbaren Voreinspritzung mit geringen Toleranzen durch geringen (nichtübersetzten) Einspritzdruck. Durch ein Umschalten zwischen den Einspritzdrücken läßt sich eine flexible Nacheinspritzung oder mehrere Nacheinspritzungen bei hohem bzw. geringem Einspritzdruck realisieren.
Zeichnung
Sieben Ausführungsbeispiele der erfindungsgemäßen Kraftstoffeinspritzeinrichtung sind in der schematischen Zeichnung dargestellt und werden in der nachfolgenden Beschreibung erläutert. Es zeigen:
Fign. 1 und 2 hubgesteuerte Kraftstoffeinspritzeinrichtungen;
Fign. 5 und 6
Fign. 3 und 4 druckgesteuerte Kraftstoffeinspritzeinrichtungen; Fig. 7
Fig. 8 und 9 Beispiele möglicher schematischer Kraftstoffeinspritzdruckveriäufe. Beschreibung der Ausführungsbeispiele
Bei dem in der Fig. 1 dargestellten ersten Ausführungsbeispiel einer hubgesteuerten Kraftstoffeinspritzeinrichtung 1 fördert eine mengengeregelte Kraftstoffpumpe 2 Kraftstoff 3 aus einem Vorratstank 4 über eine Förderleitung 5 in einen zentralen Druckspeicherraum 6 (Common-Rail), von dem mehrere, der Anzahl einzelner Zylinder entsprechende Druckleitungen 7 zu den einzelnen, in den Brennraum der zu versorgenden Brennkraftmaschine ragenden Injektoren 8 (Einspritzvorrichtung) abführen. In der Fig. 1 ist lediglich einer der Injektoren 8 eingezeichnet. Mit Hilfe der Kraftstoffpumpe 2 wird ein erster Systemdruck erzeugt und im Druckspeicherraum 6 gelagert. Dieser erste Systemdruck wird zur Voreinspritzung und bei Bedarf und Nacheinspritzung (HC-Anreicherung zur Abgasnachbehandlung oder Rußreduktion) sowie zur Darstellung eines Einspritzverlaufs mit Plateau (Bootinjektion) verwendet. Zur Einspritzung von Kraftstoff mit einem zweiten höheren Systemdruck ist jedem Injektor 8 jeweils eine lokale Druckübersetzungseinheit 9 zugeordnet, die sich innerhalb eines Injektors 8 befindet. Die Druckübersetzungseinheit 9 umfaßt eine Ventileinheit zur Druckübersetzungsansteuerung (3/2-Wege-Ventil) 10, ein Rückschlagventil 11 und ein Druckmittel 12 in Gestalt eines verschieblichen Kolbenelements. Das Druckmittel 12 kann einenends mit Hilfe der Ventileinheit 10 an die Druckleitung 7 angeschlossen werden, so daß das Druckmittel 12 einenends druckbeaufschlagt werden kann. Ein Differenzraum 12' ist mittels einer Leckageleitung 13 druckentlastet, so daß das Druckmittel 12 zur Verringerung des Volumens einer Druckkammer 14 verschoben werden kann. Das Druckmittel 12 wird in Kompressionsrichtung bewegt, so daß der in der Druckkammer 14 befindliche Kraftstoff verdichtet und einem Steuerraum 15 und einem Düsenraum 16 zugeführt wird. Das Rückschlagventil 1 1 verhindert den Rückfluß von komprimierten Kraftstoffs in den Druckspeicherraum 6. Mittels eines geeigneten Flächenverhältnisses in einer Primärkammer 14' und der Druckkammer 14 kann ein zweiter höherer Druck erzeugt werden. Wird die Primärkammer 14' mit Hilfe der Ventileinheit 10 an die Leckageleitung 13 angeschlossen, so erfolgt die Rückstellung des Druckmittels 12 und die Wiederbefüllung der Druckkammer 14. Aufgrund der Druckverhältnisse in der Druckkammer 14 und der Primärkammer 14' öffnet das Rückschlagventil 11 , so daß die Druckkammer 14 unter Raildruck (Druck des Druckspeicherraums 6) steht und das Druckmittel 12 hydraulisch in seine Ausgangsstellung zurückgefahren wird. Zur Verbesserung des Rückstellverhaltens können eine oder mehrere Federn in den Räumen 12, 14 und 14' angeordnet sein. Mittels der Druckübersetzung kann somit ein zweiter Systemdruck erzeugt werden. Die Einspritzung erfolgt über eine Kraftstoff-Zumessung mit Hilfe eines in einer Führungsbohrung axial verschiebbaren kolbenförmigen Ventilglieds 18 mit einer konischen Ventiidichtfläche 19 an seinem einen Ende, mit der es mit einer Ventilsitzfläche am Injektorgehäuse der Injektoreinheit 8 zusammenwirkt. An der Ventilsitzfläche des Injektorgehäuses sind Einspritzöffnungen vorgesehen. Innerhalb des Düsenraums 16 ist eine in Öffnungsrichtung des Ventilglieds 18 weisende Druckfläche dem dort herrschenden Druck ausgesetzt, der über eine Druckleitung 20 dem Düseπraum 16 zugeführt wird. Koaxial zu einer Ventilfeder 21 greift ferner an dem Ventilglied 18 ein Druckstück 22 an, das mit seiner der Ventildichtfläche 19 abgewandten Stirnseite 23 den Steuerraum 15 begrenzt. Der Steuerraum 15 hat vom Kraftstoffdruckanschluß her einen Zulauf mit einer ersten Drossel 24 und einen Ablauf zu einer Druckentlastungsleitung 25 mit einer zweiten Drossel 26, die durch ein 2/2-Wege-Ventil 27 gesteuert wird.
Der Düsenraum 16 setzt sich über einen Ringspalt zwischen dem Ventilgiied 18 und der Führungsbohrung bis an die Ventilsitzfläche des Injektorgehäuses fort. Über den Druck im Steuerraum 15 wird das Druckstück 22 in Schließrichtung druckbeaufschlagt.
Unter dem ersten oder zweiten Systemdruck stehender Kraftstoff füllt ständig den Düsenraum 16 und den Steuerraum 15. Bei Betätigung (Öffnen) des 2/2-Wege-Ventils 27 kann der Druck im Steuerraum 15 abgebaut werden, so daß in der Folge die in Öffnungsrichtung auf das Ventilgiied 18 wirkende Druckkraft im Düsenraum 16 den in Schließrichtung auf das Ventilglied 18 wirkende Druckkraft übersteigt. Die Ventildichtfläche 19 hebt von der Ventilsitzfiäche ab und Kraftstoff wird eingespritzt. Dabei läßt sich der Druckentlastungsvorgang des Steuerraums 15 und somit die Hubsteuerung des Ventilglieds 18 über die Dimensionierung der Drossel 24 und der Drossel 26 beeinflussen.
Das Ende der Einspritzung wird durch erneutes Betätigen (Schließen) des 2/2-Wege-Ventils 27 eingeleitet, das den Steuerraum 15 wieder von der Leckageleitung 13 abkoppelt, so daß sich im Steuerraum 15 wieder ein Druck aufbaut, der das Druckstück 22 in Schließrichtung bewegen kann.
Die Ventiieinheiten werden von Elektromagneten zum Öffnen oder Schließen bzw. Umschalten betätigt. Die Elektromagnete werden von einem Steuergerät angesteuert, das verschiedene Betriebsparameter (Motordrehzahl, ....) der zu versorgenden Brennkraftmaschine überwachen und verarbeiten kann. An Stelle der magnetgesteuerten Ventileinheiten können auch Piezostellelemeπte (Aktuator, Aktor) verwendet werden, die einen notwendigen Temperaturausgieich und evtl. eine erforderliche Kraft- bzw. Weg Übersetzung besitzen.
Die Kraftstoffeinspritzeinrichtung 1 weist die zwischen dem Druckspeicherraum 6 und dem Düsenraum 16 angeordnete Druckübersetzuπgseinheit 9 auf, deren Druckkammer 14 über die Druckleitung 20 mit dem Düsenraum 16 verbunden ist, Weiterhin ist die an den Druckspeicherraum 6 angeschlossene Bypass-Leitung 28 vorgesehen. Die Bypass-Leitung 28 ist direkt mit der Druckleitung 20 verbunden. Die Bypass-Leitung 28 ist für eine Einspritzung mit Raildruck verwendbar und ist parallel zur Druckkammer 14 angeordnet, so daß die Bypass-Leitung 28 unabhängig von der Bewegung und Stellung des verschieblichen Druckmittels 12 der Druckübersetzungseinheit 9 durchgängig ist. Die Flexibilität der Einspritzung wird erhöht.
Nachfolgend werden in der Beschreibung zu den Figuren 2 bis 9 lediglich Unterschiede zur Kraftstoffeinspritzeinrichtung nach Figur 1 behandelt, identische Bauteile werden nicht näher erläutert.
Aus der Figur 2 ist ersichtlich, daß die Druckübersetzungseinheit 9 bei einer Abänderung der Kraftstoffeinspritzeinrichtung 1 außerhalb des Injektors 8 angeordnet ist. Dies kann eine beliebige Stelle zwischen Druckspeicherraum 6 und Injektor 8 sein. Die Baugröße des Injektors 8 verringert sich. Dabei ist eine Integration der Druckübersetzungseinheit 9 mit zugehöriger Ventilanordnung und des Druckspeicherraums 6 in einem Bauteil möglich. Die Ventilanordnung kann auch außerhalb der Druckübersetzungseinheit 9 angeordnet sein.
Eine Kraftstoffeinspritzeinrichtung 50 nach Fig. 3 besitzt einen Druckspeicherraum 51 für Kraftstoff mit einem ersten Systemdruck. Ein höherer Systemdruck wird durch eine Druckübersetzungseinheit 52 ermöglicht, die mit Hilfe der einer Ventileinheit 59 zugeschaltet werden kann. Die druckgesteuerte Kraftstoffzumessung erfolgt über eine Ventileinheit 55, z.B. ein 3/2-Wege-Ventil. Ein Ventilgiied 56 kann gegen die Kraft einer Ventilfeder 57 bewegt werden, wenn der an Druckflächen 58 anliegende Druck die Federkraft der Ventilfeder 57 übersteigt. Die 3/2-Wege-Ventile 55 und 59 befinden sich innerhalb eines Injektors 60.
Fig. 4 zeigt ein zu Fig. 3 ähnliche Kraftstoffeinspritzeinrichtung 61 , deren Ventileinheiten zur Kraftstoffzumessung 62 (3/2-Wege-Veπtil) und zur Druckübersetzungsansteuerung 63 (3/2- Wege-Ventil) außerhalb des Injektors 64 angeordnet sind. Bei der Kraftstoffeinspritzeinrichtung 61 ist es ebenso möglich, beide Ventile getrennt voneinander anzuordnen.
Eine vereinfachte und verlustoptimierte Ansteuerung einer Druckübersetzungseinheit 70 ergibt sich aus Fig. 5. Zur Steuerung der Druckübersetzungseinheit 70 wird der Druck im durch einen Übergang von einem größeren zu einem kleineren Kolbenquerschnitt ausgebildeten Differenzraum 71 verwendet. Zur Wiederbefüllung und Deaktivierung der
Druckübersetzungseiπheit wird dieser Differenzraum mit einem Versorgungsdruck
(Raildruck) beaufschlagt. Dann herrschen an allen Druckflächen eines Kolbens 72 die gleichen Druckverhältnisse (Raildruck). Der Kolben 72 ist druckausgeglichen. Durch eine zusätzliche Feder 73 wird der Kolben 72 in seine Ausgangsstellung gedrückt. Zur
Aktivierung der Druckübersetzungseinheit 70 wird dieser Differenzraum 71 druckentlastet und die Druckübersetzungseinheit erzeugt eine Druckverstärkung gemäß dem
Flächenverhältnis. Durch diese Art der Steuerung kann erreicht werden, daß zur Rückstellung der Druckübersetzungseinheit 70 und zum Wiederbefüllen einer Druckkammer
74 eine große Primärkammer 70' nicht druckentiastet werden muß. Bei einer kleinen hydraulischen Übersetzung können damit die Entspannungsverluste stark reduziert werden.
Zur Steuerung der Druckübersetzungseinheit 70 kann anstelle eines aufwendigen 3/2- Wege-Ventils eine Drossel 75 und ein einfaches 2/2-Wege-Ventil 76 verwendet werden. Die Drossel 75 verbindet den Differenzraum 71 mit unter Versorgungsdruck stehendem Kraftstoff aus einem Druckspeicherraum 77. Das 2/2-Wege-Ventil schließt den Differenzraum 71 an eine Leckageleitung 78 an. Die Drossel 75 sollte möglichst klein ausgelegt werden, aber dennoch so groß, daß der Kolben 72 zwischen den Einspritzzyklen in seine Ausgangslage zurückkehrt. Als Drossel kann auch eine Führungsleckage des Kolbens 72 verwendet werden. Bei geschlossenem 2/2-Wege-Ventil 76 entsteht keine Leckage in den Führungen des Kolbens 72, da der Differenzraum 71 druckbeaufschlagt ist. Die Drossel kann auch im Kolben integriert sein.
Sind die 2/2-Wege-Ventile 76 und 79 geschlossen, so steht der Injektor unter dem Druck des Druckspeicherraums 77. Die Druckübersetzungseinheit befindet sich in der Ausgangsstellung. Nun kann durch das Ventil 79 eine Einspritzung mit Raildruck erfolgen. Wird eine Einspritzung mit höherem Druck gewünscht, so wird das 2/2-Wege-Ventil 76 angesteuert (geöffnet) und damit eine Druckverstärkung erreicht.
Zur Steuerung des Drucks im Differenzraum kann auch ein 3/2-Wege-Ventil eingesetzt werden. Fig. 6 zeigt die Steuerung über ein 3/2-Wege-Ventil bei einem hubgesteuerten Einspritzsystem. Fig. 7 zeigt die Steuerung über ein 3/2-Wege-Ventil bei einem druckgesteuerten Einspritzsystem.
Für die hubgesteuerten Systeme ergibt sich ein Einspritzdruckverlauf gemäß Fig. 8 ausgehend vom Ruhezustand (Druckübersetzungseinheit deaktiviert und in Ausgangsstellung). Durch Beschälten der Ventileinheit 27 und deaktiviertem Schaltventil 10 der Druckübersetzungseinheit wird zu Beginn des Einspritzzyklusses eine Voreinspritzung mit geringem (Rail-) Druck über den Bypass eingeleitet. Durch Schließen von Ventil 27 (siehe Fig. 1) wird die Voreinspritzung beendet. Durch mehrfaches Beschälten sind auch mehrfache Voreinspritzungen möglich. Für die Haupteinspritzung kann die vor der Druckübersetzungseinheit angeordnete Ventileinheit 10 bestromt werden, so daß sich im Injektor ein dem Übersetzungsverhältnis entsprechender erhöhter Druck im Düsenraum und Steuerraum ergibt. Durch Öffnen des Ventils 27 wird nun eine Haupteinspritzung eingeleitet (strichpunktierte Linie). Die Beendigung der Haupteinspritzung erfolgt dann wiederum durch Schließen des 2/2-Wege-Ventils 27. Wird die Druckübersetzungseinheit gleichzeitig mit dem Ventil 27 aktiviert, so ergibt sich eine Einspritzung beginnend auf Raildruckniveau mit einer rampenförmig ansteigenden Flanke bis auf den übersetzten Druck (in der Figur 8 nicht gezeigt). Wird die Zuschaltung der Druckübersetzungseinheit noch weiter verzögert, so wird zunächst mit Raildruck eingespritzt und durch Zuschalten der Druckübersetzungseinheit ergibt sich ein bootförmiger Einspritzverlauf bei Aktivieren der Druckübersetzungseinheit. Die Länge des Hochdruckanteils ist abhängig von der Aktivierung szeit der Druckübersetzungseinheit. Die Haupteinspritzung wird durch Schließen des Ventils 27 beendet. Wird die Druckübersetzungseinheit vor dem Schließen des Ventils 27 deaktiviert, so ergibt sich ein rampenförmiger Abfall des Einspritzdruck bis auf Raildruckniveau, wie er von druckgesteuerten Systemen bekannt ist. Bei Nacheinspritzung kann zwischen einem hohen und einem geringen Einspritzdruckniveau gewählt werden. So kann in einem engen Abstand nach der Haupteinspritzung eine Nacheinspritzung mit hohem Druck zur Rußreduktion oder eine abgesetzte Nacheinspritzung bei geringem Einspritzdruck zur Abgasnachbehandlung erfolgen.
Für die druckgesteuerten Systeme ergibt sich ein Einspritzdruckverlauf gemäß Fig. 9 ausgehend vom Ruhezustand (Druckübersetzungseinheit deaktiviert und in Ausgangsstellung). Durch Beschälten der Ventileinheit 55 und deaktiviertem Schaltventil der Druckübersetzungseinheit wird zu Beginn des Einspritzzyklusses eine Voreinspritzung mit geringem Raildruck über den Bypass eingeleitet. Durch mehrfaches Beschälten sind auch mehrfache Voreinspritzungen möglich. Es ergibt sich durch den Druckanstieg im Düsenraum ein rampenförmiger Einspritzdruckverlauf in allen Teilbereichen der Einspritzung. Für die Haupteinspritzung kann die vor der Druckübersetzungseinheit angeordnete Ventileinheit 59 gleichzeitig mit dem Ventil 55 bestromt werden, so daß sich ein rampenförmiger Verlauf des Einspritzdrucks bis zum übersetzten Maximaldruck ergibt (strichpunktierte Linie). Die Beendigung der Haupteinspritzung erfolgt dann wiederum durch Schließen des Ventils 55. Wird die Zuschaltung der Druckübersetzuπgseinheit verzögert, so wird zunächst mit Raildruck eingespritzt und durch Zuschalten der Druckübersetzungseinheit ergibt sich ein bootförmiger Einspritzverlauf. Die Länge des Hochdruckanteils ist abhängig von der Aktivierungszeit der Druckübersetzungseinheit. Die Haupteinspritzung wird durch Schließen des Ventils 55 beendet, wodurch der Einspritzdruck wiederum durch das Entlasten des Düsenraums auf Leckagedruckniveau rampenförmig abklingt und die Einspritzung beendet wird. Bei Nacheinspritzung kann zwischen einem hohen und einem geringen Einspritzdruckniveau gewählt werden. So kann in einem engen Abstand nach der Haupteinspritzung eine Nacheinspritzung mit hohem Druck zur Rußreduktion oder eine abgesetzte Nacheinspritzung bei geringem Einspritzdruck zur Abgasnachbehandlung erfolgen.
Zusätzlich zu den vorgenannten Bootinjektionen für beide Systeme ist es denkbar, durch eine geeignete Form des Ventiiglieds (Düsennadel) und der Gestalt des Düsenraums eine sog. rate-shaping-nozzle zu realisieren. Diese ermöglicht es, im Niederdruckteil der Bootinjektion bzw. bei allen Einspritzungen ein weiteres Druckplateau zu realisieren. Ebenso ist es wiederum denkbar, im Hochdruckteil der Einspritzung (bei Betrieb der Druckübersetzungseinheit) durch Entlastungsbohrungen am Kolben der Druckübersetzungseinheit eine weitere Formung des Einspritzverlaufs zu realisieren.
B EZU G SZE I C H EN L I S TE
Kraftstoffeinspritzeinrichtung
Kraftstoffpumpe
Kraftstoff
Kraftstofftank
Förderleitung
Druckspeicherraum
Druckleitung
Injektor
Druckübersetzungseinheit
Ventileinheit
Rückschlagventil
Druckmittel ' Differenzraum
Leckageleitung
Druckkammer ' Primärkammer
Steuerraum
Düsenraum
Ventilglied
Ventildichtfiäche
Druckleitung
Ventilfeder
Druckstück
Stirnseite
Drossel
Druckentlastungsleituπg
Drossel
2/2-Wege-Ventil
Bypass-Leitung
Kraftstoffeinspritzeinrichtung
Druckspeicherraum
Druckübersetzungseinheit
Rückschlagventil
Bypass-Leitung
3/2-Wege-Ventil Ventilglied Ventilfeder Druckfläche Ventileinheit Injektor Kraftstoffeinspritzeinrichtung Ventileinheit zur Kraftstoffzumessung Ventileinheit zur Druckübersetzungsansteuerung Injektor Druckübersetzungseinheit ' Primärkammer Differenzraum Kolben Feder Druckkammer Drossel 2/2-Wege-Ventil Druckspeicherraum Leckageleitung 2/2-Wege-Ventil

Claims

P AT E N TA N S P R Ü C H E
1. Kraftstoffeinspritzeinrichtung (1 ; 50; 61 ) mit einer zwischen einem Druckspeicherraum (6; 31 ; 51 ; 77) und einem Düsenraum (16) angeordneten Druckübersetzungseinheit (9; 32; 52; 70), deren Druckkammer (14; 37; 74) über eine Druckleitung (20) mit dem
Düsenraum (16) verbunden ist, und mit einer an den Druckspeicherraum (6; 31 ; 51 ; 77) angeschlossenen Bypass-Leitung (28; 54), gekennzeichnet, daß die Bypass-Leitung (28; 54) direkt mit der Druckleitung (20) verbunden ist.
2. Kraftstoffeinspritzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Bypass-Leitung (28; 54) ein Rückschlagventil (11 ; 53) enthält.
3. Kraftstoffeinspritzeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Druckübersetzungseinheit (9) innerhalb des Injektors (8) angeordnet ist.
4. Kraftstoffeinspritzeinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Druckübersetzungseinheit (9) außerhalb des Injektors (8) angeordnet ist.
5. Kraftstoffeinspritzeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Kraftstoffeinspritzeinrichtung (50; 61) Mittel zum druckgesteuerten Einspritzen von Kraftstoff umfaßt.
6. Kraftstoffeinspritzeinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Kraftstoffeinspritzeinrichtung (1) Mittel zum hubgesteuerten Einspritzen von Kraftstoff umfaßt.
7. Kraftstoffeinspritzeinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Steuerung der Druckübersetzungseinheit (9) hydraulisch durch Druckbeaufschlagung eines Differenzraumes (12') erfolgt.
8. Kraftstoffeinspritzeinrichtung nach Anspruch 7, dadurch gekennzeichnet, daß der Differenzraum (12') über ein 2/2-Wege-Ventil mit einer Leckageleitung verbindbar ist und eine Verbindung vom Differenzraum zum Druckspeicherraum besteht.
9. Kraftstoffeinspritzeinrichtung mit einer zwischen einem Druckspeicherraum (6) und einem Düsenraum (16) angeordneten Druckübersetzungseinheit (9), dadurch gekennzeichnet, daß die Druckübersetzungseinheit (9) und eine Ventilanordnung zur Steuerung der Druckübersetzungseinheit (9) und der Druckspeicherraum (16) in eine einzige Bauteileinheit integriert sind.
10. Kraftstoffeinspritzeinrichtung mit einer zwischen einem Druckspeicherraum (6) und einem Düsenraum (16) angeordneten Druckübersetzungseinheit (9), dadurch gekennzeichnet, daß die Druckübersetzungseinheit (9) und eine Ventilanordnung zur Steuerung der Druckübersetzungseinheit (9) außerhalb eines Injektors (8) an einer beliebigen Stelle zwischen dem Druckspeicherraum (6) und dem Injektor (8) angeordnet sind.
1 1. Kraftstoffeinspritzeinrichtung mit einer zwischen einem Druckspeicherraum (6) und einem Düsenraum (16) angeordneten Druckübersetzungseinheit (9), dadurch gekennzeichnet, daß eine Ventilanordnung (10; 59; 63; 76) außerhalb der Druckübersetzungseinheit (9) angeordnet ist.
EP00910561A 1999-03-12 2000-02-29 Kraftstoffeinspritzeinrichtung Expired - Lifetime EP1078160B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19910970 1999-03-12
DE19910970A DE19910970A1 (de) 1999-03-12 1999-03-12 Kraftstoffeinspritzeinrichtung
PCT/DE2000/000580 WO2000055496A1 (de) 1999-03-12 2000-02-29 Kraftstoffeinspritzeinrichtung

Publications (2)

Publication Number Publication Date
EP1078160A1 true EP1078160A1 (de) 2001-02-28
EP1078160B1 EP1078160B1 (de) 2005-05-18

Family

ID=7900676

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00910561A Expired - Lifetime EP1078160B1 (de) 1999-03-12 2000-02-29 Kraftstoffeinspritzeinrichtung

Country Status (6)

Country Link
US (1) US6453875B1 (de)
EP (1) EP1078160B1 (de)
JP (1) JP4638604B2 (de)
KR (1) KR100676642B1 (de)
DE (2) DE19910970A1 (de)
WO (1) WO2000055496A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854445B2 (en) 2002-07-10 2005-02-15 Bosch Automotive Systems Corporation Common rail fuel injection apparatus
KR100853894B1 (ko) * 2001-05-17 2008-08-25 로베르트 보쉬 게엠베하 연료 분사 장치

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6868831B2 (en) * 1998-10-16 2005-03-22 International Engine Intellectual Property Company, Llc Fuel injector with controlled high pressure fuel passage
DE19939423A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE19939429A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE19939428A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Verfahren und Vorrichtung zur Durchführung einer Kraftstoffeinspritzung
JP2001323858A (ja) 2000-05-17 2001-11-22 Bosch Automotive Systems Corp 燃料噴射装置
DE10040526A1 (de) 2000-08-18 2002-03-14 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE10050238A1 (de) * 2000-10-11 2002-04-25 Bosch Gmbh Robert Magnetventilbetätigtes Steuermodul zur Fluidkontrolle bei Einspritzsystemen
DE10050599B4 (de) * 2000-10-12 2006-11-02 Siemens Ag Einspritzventil mit einem Pumpkolben
DE10054992A1 (de) * 2000-11-07 2002-06-06 Bosch Gmbh Robert Druckgesteuerter Injektor mit Kraftausgleich
DE10055268A1 (de) * 2000-11-08 2002-05-23 Bosch Gmbh Robert Druckgesteuerter Injektor eines Hochdruckspeichereinspritzsystems
DE10055269B4 (de) * 2000-11-08 2005-10-27 Robert Bosch Gmbh Druckgesteuerter Injektor mit Druckübersetzung
DE10056166A1 (de) * 2000-11-13 2002-05-23 Bosch Gmbh Robert Hochdrucksammelraum mit integriertem Druckübersetzungselement
DE10059124B4 (de) * 2000-11-29 2005-09-15 Robert Bosch Gmbh Druckgesteuerter Injektor für Einspritzsysteme mit Hochdrucksammelraum
DE10060089A1 (de) * 2000-12-02 2002-06-20 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE10063545C1 (de) * 2000-12-20 2002-08-01 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE10065103C1 (de) * 2000-12-28 2002-06-20 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
WO2002055869A1 (de) 2001-01-12 2002-07-18 Robert Bosch Gmbh Hubgesteuerte kraftstoffeinspritzeinrichtung
DE10112154A1 (de) * 2001-03-14 2002-09-26 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
SE522624C2 (sv) * 2001-03-29 2004-02-24 Volvo Teknisk Utveckling Ab Förfarande för att styra insprutningen av en fluid i en förbränningsmotor
DE10124207A1 (de) 2001-05-11 2002-11-21 Bosch Gmbh Robert Druckverstärker einer Kraftstoffeinspritzeinrichtung
DE10123917A1 (de) * 2001-05-17 2002-11-28 Bosch Gmbh Robert Kraftstoffeinspritzsystem
DE10123911A1 (de) * 2001-05-17 2002-11-28 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung mit Druckübersetzungseinrichtung und Druckübersetzungseinrichtung
DE10123914B4 (de) * 2001-05-17 2005-10-20 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung mit Druckübersetzungseinrichtung und Druckübersetzungseinrichtung
DE50208012D1 (de) * 2001-05-17 2006-10-12 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE10126686A1 (de) 2001-06-01 2002-12-19 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung mit Druckverstärker
DE10126685A1 (de) * 2001-06-01 2002-12-19 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung mit Druckverstärker
DE10132732A1 (de) * 2001-07-05 2003-01-23 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE10141110A1 (de) 2001-08-22 2003-03-20 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE10141111B4 (de) * 2001-08-22 2005-10-13 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
JP4345096B2 (ja) * 2001-09-28 2009-10-14 株式会社デンソー 燃料噴射装置
DE10148995A1 (de) * 2001-10-04 2003-04-24 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE10149004C1 (de) * 2001-10-04 2003-02-27 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE10158951A1 (de) * 2001-12-03 2003-06-12 Daimler Chrysler Ag Mit Druckübersetzung arbeitendes Einspritzsystem
GB2394001B (en) * 2001-12-03 2004-06-16 Daimler Chrysler Ag Injection system operating with pressure intensification
FR2834001B1 (fr) 2001-12-20 2004-06-04 Renault Piston pour moteur a combustion interne et moteur associe
DE10213025B4 (de) * 2002-03-22 2014-02-27 Daimler Ag Selbstzündende Brennkraftmaschine
DE10213011B4 (de) * 2002-03-22 2014-02-27 Daimler Ag Selbstzündende Brennkraftmaschine
EP1826397A3 (de) * 2002-05-03 2009-08-05 Delphi Technologies, Inc. Kraftstoffeinspritzsystem
DE10225148B4 (de) * 2002-06-06 2014-02-20 Robert Bosch Gmbh Einspritzeinrichtung und Verfahren zu deren Betrieb
DE10229417A1 (de) * 2002-06-29 2004-01-15 Robert Bosch Gmbh Speichereinspritzsystem mit Variodüse und Druckübersetzungseinrichtung
DE10229415A1 (de) * 2002-06-29 2004-01-29 Robert Bosch Gmbh Einrichtung zur Nadelhubdämpfung an druckgesteuerten Kraftstoffinjektoren
DE10229413A1 (de) * 2002-06-29 2004-01-29 Robert Bosch Gmbh Druckübersetzersteuerung durch Bewegung eines Einspritzventilgliedes
GB0215488D0 (en) 2002-07-04 2002-08-14 Delphi Tech Inc Fuel injection system
JP4308487B2 (ja) 2002-07-11 2009-08-05 株式会社豊田中央研究所 燃料噴射装置における燃料噴射方法
JP4007103B2 (ja) * 2002-07-11 2007-11-14 株式会社豊田中央研究所 燃料噴射装置
DE10257641B4 (de) * 2002-07-29 2009-08-20 Robert Bosch Gmbh Kraftstoffinjektor mit und ohne Druckverstärkung mit steuerbarer Nadelgeschwindigkeit und Verfahren zu dessen Steuerung
DE10242894A1 (de) 2002-09-16 2004-03-25 Robert Bosch Gmbh Kraftstoff-Einspritzsystem und Zylinderkopf mit einem zentralen Kraftstoffspeicher
DE10246208A1 (de) * 2002-10-04 2004-04-15 Robert Bosch Gmbh Einrichtung zur Unterdrückung von Druckwellen an Speichereinspritzsystemen
DE10247210A1 (de) 2002-10-10 2004-04-22 Robert Bosch Gmbh Filteranordnung für Kraftstoffeinspritzsysteme
DE10247903A1 (de) 2002-10-14 2004-04-22 Robert Bosch Gmbh Druckverstärkte Kraftstoffeinspritzeinrichtung mit innenliegender Steuerleitung
DE10248467A1 (de) 2002-10-17 2004-05-06 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung mit Druckübersetzer und fördermengenreduziertem Niederdruckkreis
DE10251679A1 (de) * 2002-11-07 2004-05-19 Robert Bosch Gmbh Druckverstärker mit hubabhängiger Bedämpfung
DE10251932B4 (de) * 2002-11-08 2007-07-12 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung mit integriertem Druckverstärker
US7059301B2 (en) * 2003-02-20 2006-06-13 Caterpillar Inc. End of injection rate shaping
US7219655B2 (en) * 2003-02-28 2007-05-22 Caterpillar Inc Fuel injection system including two common rails for injecting fuel at two independently controlled pressures
DE10315015B4 (de) * 2003-04-02 2005-12-15 Robert Bosch Gmbh Kraftstoffinjektor mit Druckverstärker und Servoventil mit optimierter Steuermenge
DE10315016A1 (de) * 2003-04-02 2004-10-28 Robert Bosch Gmbh Kraftstoffinjektor mit leckagefreiem Servoventil
DE10335059A1 (de) * 2003-07-31 2005-02-17 Robert Bosch Gmbh Schaltventil für einen Kraftstoffinjektor mit Druckübersetzer
US6951204B2 (en) * 2003-08-08 2005-10-04 Caterpillar Inc Hydraulic fuel injection system with independently operable direct control needle valve
JP4088600B2 (ja) 2004-03-01 2008-05-21 トヨタ自動車株式会社 増圧式燃料噴射装置の補正方法
DE102004010760A1 (de) * 2004-03-05 2005-09-22 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit Nadelhubdämpfung
JP4196870B2 (ja) 2004-03-31 2008-12-17 三菱ふそうトラック・バス株式会社 燃料噴射装置
JP4196869B2 (ja) * 2004-03-31 2008-12-17 三菱ふそうトラック・バス株式会社 燃料噴射装置
JP4196868B2 (ja) * 2004-03-31 2008-12-17 三菱ふそうトラック・バス株式会社 燃料噴射装置
DE102004017305A1 (de) * 2004-04-08 2005-10-27 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit direkt ansteuerbaren Düsennadeln
JP2005315195A (ja) 2004-04-30 2005-11-10 Toyota Motor Corp 増圧コモンレール式燃料噴射装置の燃料噴射制御方法
DE102004022270A1 (de) * 2004-05-06 2005-12-01 Robert Bosch Gmbh Kraftstoffinjektor für Verbrennungskraftmaschinen mit mehrstufigem Steuerventil
JP3994990B2 (ja) * 2004-07-21 2007-10-24 株式会社豊田中央研究所 燃料噴射装置
JP4107277B2 (ja) * 2004-09-27 2008-06-25 株式会社デンソー 内燃機関用燃料噴射装置
DE102004053421A1 (de) * 2004-11-05 2006-05-11 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung
JP4134979B2 (ja) * 2004-11-22 2008-08-20 株式会社デンソー 内燃機関用燃料噴射装置
DE102004057610A1 (de) * 2004-11-29 2006-06-01 Fev Motorentechnik Gmbh Kraftstoff-Injektor
JP4286770B2 (ja) * 2004-12-02 2009-07-01 株式会社日本自動車部品総合研究所 制御弁およびそれを備えた燃料噴射弁
DE102006003484A1 (de) * 2005-03-16 2006-09-21 Robert Bosch Gmbh Vorrichtung zum Einspritzen von Kraftstoff
JP4305416B2 (ja) * 2005-06-09 2009-07-29 株式会社デンソー 内燃機関用燃料噴射装置
DE102005030220A1 (de) 2005-06-29 2007-01-04 Robert Bosch Gmbh Injektor mit zuschaltbarem Druckübersetzer
JP4695453B2 (ja) * 2005-07-29 2011-06-08 株式会社豊田中央研究所 方向制御弁
JP4400528B2 (ja) * 2005-08-02 2010-01-20 株式会社デンソー 内燃機関用燃料噴射装置
CN1786457B (zh) * 2005-09-19 2011-06-22 童维友 预置高压分配式燃油喷射泵
US7293547B2 (en) * 2005-10-03 2007-11-13 Caterpillar Inc. Fuel injection system including a flow control valve separate from a fuel injector
US8100110B2 (en) * 2005-12-22 2012-01-24 Caterpillar Inc. Fuel injector with selectable intensification
KR100845624B1 (ko) * 2006-03-24 2008-07-10 엠에이엔 디젤 에이/에스 커먼 레일 유압시스템
SE529810C2 (sv) * 2006-04-10 2007-11-27 Scania Cv Ab Insprutningsorgan för en förbränningsmotor
DE102006039263A1 (de) * 2006-08-22 2008-03-06 Volkswagen Ag Kraftstoffeinspritzvorrichtung
DE102006039264A1 (de) * 2006-08-22 2008-02-28 Volkswagen Ag Kraftstoffeinspritzvorrichtung mit Druckverstärker
US20080047527A1 (en) * 2006-08-25 2008-02-28 Jinhui Sun Intensified common rail fuel injection system and method of operating an engine using same
DE102007006083B4 (de) * 2006-12-18 2009-04-30 Continental Automotive Gmbh Kraftstoffinjektor
DE102007002760A1 (de) * 2007-01-18 2008-07-24 Robert Bosch Gmbh Kraftstoffinjektor mit integriertem Druckverstärker
DE102007004745A1 (de) 2007-01-31 2008-08-14 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Kraftstoffeinspritzsystem für eine Verbrennungskraftmaschine
JP2008215101A (ja) 2007-02-28 2008-09-18 Denso Corp 燃料噴射装置
DE102007021326A1 (de) * 2007-05-07 2008-11-13 Robert Bosch Gmbh Druckverstärkungssystem für mindestens einen Kraftstoffinjektor
US8082902B2 (en) 2007-10-19 2011-12-27 Caterpillar Inc. Piezo intensifier fuel injector and engine using same
US7970526B2 (en) * 2009-01-05 2011-06-28 Caterpillar Inc. Intensifier quill for fuel injector and fuel system using same
DE102011008484A1 (de) 2011-01-13 2012-07-19 Hydac Filtertechnik Gmbh Versorgungsvorrichtung mit einer Kraftstofffördereinrichtung und Verwendung einer dahingehenden Versorgungsvorrichtung
DE102011009035A1 (de) 2011-01-21 2012-07-26 Hydac Filtertechnik Gmbh Kraftstofffördervorrichtung für eine Verbrennungskraftmaschine
DE102011000872A1 (de) 2011-02-22 2012-08-23 Jochen Mertens Verfahren zur Einspritzung eines Kraftstoffs sowie zugehörige Vorrichtung
DE102012005319A1 (de) * 2012-03-19 2013-09-19 L'orange Gmbh Injektorbaugruppe
US10550808B2 (en) * 2014-12-19 2020-02-04 Volvo Truck Corporation Injection system of an internal combustion engine and automotive vehicle including such an injection system
DE102020212697B4 (de) 2020-10-08 2022-08-25 Ford Global Technologies, Llc Injektor, Dieselmotor und Kraftfahrzeug

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE554051A (de) * 1956-01-31
DE2003265A1 (de) * 1969-05-07 1970-11-19 Univ Magdeburg Tech Einspritzvorrichtung fuer hohe Einspritzdruecke,insbesondere fuer Dieselmotoren
JPS51101628A (de) * 1975-01-24 1976-09-08 Diesel Kiki Co
DE2806788A1 (de) * 1978-02-17 1979-08-23 Bosch Gmbh Robert Pumpe-duese fuer brennkraftmaschinen
JPS54155319A (en) * 1978-05-29 1979-12-07 Komatsu Ltd Fuel injection controller for internal combustion engine
FR2449795B1 (fr) * 1979-02-24 1986-11-28 Huber Motorenbau Inst Systeme d'injection pour moteur a combustion interne
FR2497876B1 (fr) * 1981-01-15 1986-02-07 Renault Dispositif et procede d'injection de carburant pour moteur a combustion interne
JPS57124073A (en) * 1981-01-24 1982-08-02 Diesel Kiki Co Ltd Fuel injection device
JPS597768A (ja) * 1982-07-05 1984-01-14 Nissan Motor Co Ltd 燃料噴射装置
JPS59141764A (ja) * 1983-02-03 1984-08-14 Nissan Motor Co Ltd 燃料噴射装置
FR2541379B1 (fr) * 1983-02-21 1987-06-12 Renault Perfectionnement aux systemes d'injection a commande electromagnetique pour moteur diesel de type pression-temps ou l'aiguille de l'injecteur est pilotee par la decharge puis la charge d'une capacite
JPS6036771A (ja) * 1983-08-09 1985-02-25 Daihatsu Diesel Kk デイ−ゼル機関の燃料噴射装置
DE3345971A1 (de) * 1983-12-20 1985-06-27 Volkswagenwerk Ag, 3180 Wolfsburg Kraftstoff-einspritzeinrichtung
JP2512899B2 (ja) * 1986-05-21 1996-07-03 株式会社豊田自動織機製作所 内燃機関の燃料噴射装置
DE3634962A1 (de) * 1986-10-14 1988-04-21 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung fuer brennkraftmaschinen, insbesondere fuer dieselmotoren
DE4015557A1 (de) * 1989-05-26 1990-11-29 Volkswagen Ag Kraftstoff-einspritzvorrichtung fuer eine brennkraftmaschine
AT408133B (de) * 1990-06-08 2001-09-25 Avl Verbrennungskraft Messtech Einspritzsystem für brennkraftmaschinen
US5143291A (en) * 1992-03-16 1992-09-01 Navistar International Transportation Corp. Two-stage hydraulic electrically-controlled unit injector
DE4341543A1 (de) * 1993-12-07 1995-06-08 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
JP2885076B2 (ja) * 1994-07-08 1999-04-19 三菱自動車工業株式会社 蓄圧式燃料噴射装置
US5803028A (en) * 1994-10-13 1998-09-08 Rose; Nigel Eric Fluid actuated engines and engine mechanisms
US5522545A (en) * 1995-01-25 1996-06-04 Caterpillar Inc. Hydraulically actuated fuel injector
JP3079933B2 (ja) * 1995-02-14 2000-08-21 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2882358B2 (ja) 1996-04-10 1999-04-12 三菱自動車工業株式会社 蓄圧式燃料噴射装置
JPH09296767A (ja) * 1996-04-30 1997-11-18 Isuzu Motors Ltd 内燃機関の燃料噴射装置
DE19619523A1 (de) * 1996-05-15 1997-11-20 Bosch Gmbh Robert Kraftstoffeinspritzventil für Hochdruckeinspritzung
JP3845917B2 (ja) * 1996-11-08 2006-11-15 株式会社デンソー 蓄圧式燃料噴射装置
DE19716221B4 (de) * 1997-04-18 2007-06-21 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung mit Vor- und Haupteinspritzung bei Brennkraftmaschinen, insbesondere für schwer zündbare Kraftstoffe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0055496A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853894B1 (ko) * 2001-05-17 2008-08-25 로베르트 보쉬 게엠베하 연료 분사 장치
US6854445B2 (en) 2002-07-10 2005-02-15 Bosch Automotive Systems Corporation Common rail fuel injection apparatus

Also Published As

Publication number Publication date
US6453875B1 (en) 2002-09-24
JP4638604B2 (ja) 2011-02-23
DE50010339D1 (de) 2005-06-23
KR100676642B1 (ko) 2007-02-01
KR20010043493A (ko) 2001-05-25
JP2002539372A (ja) 2002-11-19
EP1078160B1 (de) 2005-05-18
WO2000055496A1 (de) 2000-09-21
DE19910970A1 (de) 2000-09-28

Similar Documents

Publication Publication Date Title
EP1078160B1 (de) Kraftstoffeinspritzeinrichtung
EP1520096B1 (de) Speichereinspritzsystem mit variodüse und druckübersetzungseinrichtung
EP1125049B1 (de) Kombiniertes hub-/druckgesteuertes kraftstoffeinspritz verfahren und -system für eine brennkraftmaschine
DE19939429A1 (de) Kraftstoffeinspritzeinrichtung
EP1520099B1 (de) Druckübersetzer kraftstoffinjektor mit schnellem druckabbau bei einspritzende
EP1125054B1 (de) Verfahren und vorrichtung zur durchführung einer kraftstoffeinspritzung
EP1273797B1 (de) Kraftstoffeinspritzeinrichtung
EP1552137B1 (de) Einrichtung zur unterdrückung von druckwellen an speichereinspritzsystemen
WO2004003378A1 (de) Kraftstoffinjektor mit druckübersetzer für mehrfacheinspritzung
WO2001014710A1 (de) Kraftstoffeinspritzsystem für eine brennkraftmaschine
EP1520095B1 (de) Druckübersetzersteuerung durch bewegung eines einspritzventilgliedes
EP1397593B1 (de) Kraftstoffeinspritzeinrichtung mit druckverstärker
EP1354133B1 (de) Kraftstoffeinspritzvorrichtung
EP1392965B1 (de) Druckverstärker einer kraftstoffeinspritzeinrichtung
EP1534950A1 (de) Kraftstoffeinspritzeinrichtung
EP1397591B1 (de) Kraftstoffeinspritzeinrichtung mit druckverstärker
WO2002055869A1 (de) Hubgesteuerte kraftstoffeinspritzeinrichtung
DE10133490A1 (de) Kraftstoffeinspritzeinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20010321

17Q First examination report despatched

Effective date: 20031001

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50010339

Country of ref document: DE

Date of ref document: 20050623

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050908

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170220

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170221

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170217

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190423

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50010339

Country of ref document: DE