JP4308487B2 - 燃料噴射装置における燃料噴射方法 - Google Patents

燃料噴射装置における燃料噴射方法 Download PDF

Info

Publication number
JP4308487B2
JP4308487B2 JP2002203204A JP2002203204A JP4308487B2 JP 4308487 B2 JP4308487 B2 JP 4308487B2 JP 2002203204 A JP2002203204 A JP 2002203204A JP 2002203204 A JP2002203204 A JP 2002203204A JP 4308487 B2 JP4308487 B2 JP 4308487B2
Authority
JP
Japan
Prior art keywords
pressure
injection
fuel
fuel injection
intensifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002203204A
Other languages
English (en)
Other versions
JP2004044494A (ja
Inventor
義博 堀田
佳史 脇坂
清美 河村
清己 中北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2002203204A priority Critical patent/JP4308487B2/ja
Priority to ES03764177T priority patent/ES2433894T3/es
Priority to US10/485,181 priority patent/US6904893B2/en
Priority to PCT/JP2003/008855 priority patent/WO2004007946A1/ja
Priority to EP03764177.6A priority patent/EP1522719B1/en
Publication of JP2004044494A publication Critical patent/JP2004044494A/ja
Application granted granted Critical
Publication of JP4308487B2 publication Critical patent/JP4308487B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/06Pumps peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【産業上の利用分野】
本発明は加圧された燃料油を燃料噴射ノズルから噴射する燃料噴射装置における燃料噴射方法に関する。
【0002】
【従来の技術】
高圧フィードポンプにより圧送した燃料を蓄圧器(所謂、コモンレール)によって蓄圧し、この燃料を所定のタイミングで燃料噴射ノズルからエンジンのシリンダ内に噴射する蓄圧式(コモンレール式)の燃料噴射装置が知られている。
【0003】
このような蓄圧式の燃料噴射装置では、エンジンの回転数が低速になっても所定の燃料噴射圧力を維持することができ(燃料噴射圧力が低下することがなく)、 高圧による燃料噴射によって燃費の向上や高出力化に大いに寄与している。
【0004】
ところで、良好なエミッションの実現(排気ガスのクリーン化)に対しては、燃料噴射装置におけるノズル噴射口の小径化が有効であることが知られている。しかしながら、反面、従来の蓄圧式の燃料噴射装置(コモンレール噴射系)の噴射圧では、現状の噴射口径よりさらに小さなものを使用すると、高エンジン回転数、高負荷領域では噴射期間が長くなりすぎるので、高出力化に対して不利であると推測される。
【0005】
また近年、小型ディーゼルエンジンでは、高回転数化が図られる傾向にある。ここで、エンジン筒内の気流速度はエンジン回転数にほぼ比例して増加する。そのため、同じ噴射圧では、高回転数時には低回転数時と比較して噴霧が流され易くなって筒内の空気利用率が低下して、スモーク(黒煙)を排出しやすくなる。したがって、これを改善するには、噴射圧の更なる高圧化が望まれる。しかしながら、前述の如き従来の蓄圧式の燃料噴射装置(コモンレール噴射系)では、蓄圧器内に常時所定の圧力を蓄圧する構成であるので(例えば、現状のコモンレール噴射系は、最大噴射圧が130MPa程度である)、装置の強度の点から、これ以上に大幅に高圧化することに限界がある(換言すれば、従来に増して噴射圧力を超高噴射圧化することは困難である)。
【0006】
一方、このような蓄圧式の燃料噴射装置において更に増圧装置を設けた燃料噴射装置が提案されている(例えば、特開平8−21332号公報)。
【0007】
前記公報に示された燃料噴射装置では、蓄圧器(コモンレール)から送出された加圧燃料油をピストン作動用切替弁の作用によって更に加圧する増圧装置が設けられている。この増圧装置は、大径ピストン及び小径ピストンからなる増圧ピストンと、ピストン作動用切替弁に連通する複数の油路を備えており、燃料加圧ポンプから送出された燃料は蓄圧器からピストン作動用切替弁を介して増圧装置内に流入し、さらに、噴射ノズル制御用の噴射制御用油室(インジェクタ制御室)、並びに噴射ノズルに供給されるようになっている。燃料を噴射する際には、噴射制御用油室に設けられた燃料噴射制御用切替弁によって、蓄圧器からの燃料油を直接(そのまま)噴射ノズルに送って噴射する低圧噴射と、増圧装置にて更に加圧した燃料油を噴射ノズルに送って噴射する高圧噴射と、を切替制御する構成となっている。したがって、エンジンの運転状況に適した燃料噴射形態とすることができる。
【0008】
しかしながら、この燃料噴射装置では、以下のような問題を生じる欠点があった。
【0009】
すなわち、前記燃料噴射装置では、蓄圧器から増圧器の大径ピストン側への燃料入口面積、及びピストン作動用切替弁に連通する増圧器の小径ピストン側の燃料出口面積が一定の構成であることから、増圧器を作動させたときの燃料圧力の時間履歴は蓄圧器の燃料圧力によって一義的に決定される。その例を、図27(A)及び図27(B)に示す。図27(A)に示す如く、横軸を時間(秒)で表すと、増圧器下流の燃料圧力の時間履歴はエンジン回転数に依存しない。これに対して、図27(B)に示す如く、横軸をエンジンクランク角で表すと、エンジン回転数が高いほど圧力上昇が緩慢になる。そのため、特に高負荷においては、エンジン回転数が高いほどクランク角度ベースでの噴射期間を長く設定せざるを得ない。このように噴射期間が長くなり過ぎることは、高出力化に対して阻害要因であり、好ましくない。
【0010】
これを避ける一手法として、高エンジン回転数ほど蓄圧器(コモンレール)の燃料圧力を増加させて、増圧器に作用する力を増加し、増圧ピストン下流の燃料圧力の上昇率を増加させることが挙げられる。ただし、中・高負荷領域においては、メイン噴射の噴射圧力は高圧を必要とし、しかもこのとき、騒音低減、排気改善を狙ってパイロット噴射(メイン噴射の前に燃料噴射すること)、またはマルチ噴射(複数回の燃料噴射)が実施されるが、このパイロット噴射の噴射圧力の最適値はメイン噴射圧力とは異なり、一般にそれより低い圧力である。その理由は、圧縮上死点よりかなり早期に噴射するため、筒内の空気温度、密度が低いことにより、噴射圧を高く設定し過ぎると噴射の貫徹力が過度に大きくなってシリンダライナ面に燃料付着を生じさせるためである。しかしながら、提案された前記燃料噴射装置において高エンジン回転数領域で高噴射圧を発生させるには、増圧器の大径ピストンに作用させる燃料圧力(蓄圧器の燃料圧力)を高める必要があるため、蓄圧器の燃料をそのまま噴射するパイロット噴射時の噴射圧力が最適値より高くなり過ぎ、シリンダライナ面への燃料付着が避けられず、未燃HC、あるいはスモーク生成要因となることが推測される。
【0011】
一方、高エンジン回転数時に適したパイロット噴射(蓄圧器の燃料圧力)と増圧器作動時の増圧ピストン下流圧力が適切に得られるように設定すると(例えば、増圧ピストン大径側への燃料通路を拡大して流路抵抗を減少させると)、低エンジン回転数時には増圧器作動時におけるクランク角ベースでの増圧ピストン下流の燃料圧力の上昇が急峻になる。これによって初期噴射率が高くなり過ぎ、予混合燃焼割合が増加してNOxと騒音が悪化する。これを避けるために、低エンジン回転数時の蓄圧器の燃料圧力を低下させてメイン噴射の初期噴射率が適切になるようにすると、蓄圧器の燃料圧力で噴射するパイロット噴射の微粒化状態が悪化し、スモークの発生につながる。
【0012】
これに対して、例えば図28に示すように、増圧器作動時における増圧ピストン下流の燃料圧力上昇率が時間と共に増加する特性にすれば、高エンジン回転数、高負荷時においても最適なパイロット噴射の燃料圧力(蓄圧器の燃料圧力)に設定した状態で、メイン噴射は高い燃料圧力(増圧ピストン下流の燃料圧力)も確保できる。これによって、前記のような問題点を解決できるので、低NOx、低騒音、高出力なエンジンを実現することが可能となるが、従来ではこのような設定が成されていなかった。
【0013】
この他に、従来、増圧装置付コモンレール(WO0055496)や、油圧とカムの増圧式インジェクションシステム(DE4118237、DE4118236)が提案されている。しかしながら、これらは、本発明のように噴射系の挙動を動的な過渡現象としてとらえているのと異なり、圧力の変化する期間(圧力の傾斜期間)は低圧から高圧へ圧力が変化する移行期間としてとらえているため、増圧に関する各種の制御等に実用上の課題を有するものである。
【0014】
【発明が解決しようとする課題】
本発明は上記事実を考慮し、従来に比べて大幅に高い超高噴射圧によって燃料を噴射することができると共に最高噴射圧が蓄圧器の燃料圧力によって一義的に決定されることが無くて良好な燃焼、排気特性を実現でき、しかも、任意の燃料噴射パターンで燃料噴射を行うことが可能で燃料噴射パターンの自由度が拡大する(すなわち、燃料の最高噴射圧力、増圧開始時の当該噴射圧力の増加率、噴射終了時の当該噴射圧力の低下率、パイロット噴射圧力、及びアフター噴射圧力等を自由に設定できる)燃料噴射装置における燃料噴射方法を得ることが目的である。
【0015】
【課題を解決するための手段】
請求項1に係る発明の燃料噴射装置における燃料噴射方法は、燃料噴射ノズル内の燃料溜に主油路を介して連通され、燃料加圧ポンプから圧送される燃料油を所定の圧力にして蓄圧する蓄圧器と、前記燃料噴射ノズルと蓄圧器とを連通する前記主油路の途中に設けられ、前記燃料噴射ノズル側から前記蓄圧器側への燃料圧力流出を遮断する圧力遮断弁と、前記燃料噴射ノズルと蓄圧器とを連通する前記主油路の前記圧力遮断弁よりも下流側において連通する噴射制御用油室と、前記噴射制御用油室に設けられ、前記噴射制御用油室に燃料油圧を作用させることにより前記燃料噴射ノズル内のニードル弁を閉止せしめ、前記噴射制御用油室の燃料油を除去することにより前記ニードル弁を開放して燃料噴射を履行せしめる噴射制御弁と、前記燃料噴射ノズルと蓄圧器とを連通する前記主油路の前記圧力遮断弁よりも下流側において前記燃料噴射ノズルと前記噴射制御用油室に連通する増圧器と、前記増圧器を作動させることにより、前記圧力遮断弁よりも下流側の燃料圧力を増大せしめる増圧器制御手段と、を備えた燃料噴射装置における燃料噴射方法において、前記噴射制御弁と前記増圧器制御手段とをそれぞれ独立して制御し、前記増圧器の作動開始後の燃料圧力の増加期間、若しくは前記増圧器の作動終了後の燃料圧力の減少期間に、前記ニードル弁の開放、若しくは閉止を行い、前記燃料噴射ノズルからの噴射開始時の燃料圧力、若しくは噴射終了時の燃料圧力を任意に選択することで、前記燃料噴射ノズルから噴射される燃料の最高噴射圧力、増圧開始後の当該噴射圧力の増加率、噴射終了直前の当該噴射圧力の低下率、パイロット噴射圧力、及びアフター噴射圧力のうちの少なくとも何れか一つを任意に変化させて燃料噴射を履行する、ことを特徴としている。
【0016】
請求項1記載の燃料噴射率制御方法が適用される燃料噴射装置は、蓄圧器、圧力遮断弁、噴射制御用油室、噴射制御弁、増圧器、及び増圧器制御手段を備えている。増圧器には、蓄圧器からの(ベースコモンレール圧力の)燃料が供給され、これが増圧される。またここで、燃料噴射ノズルに対して、「蓄圧器、圧力遮断弁、噴射制御用油室、噴射制御弁」によって蓄圧器噴射系(コモンレール式噴射系)が構成され、しかも、この蓄圧器噴射系と並列に増圧器が配置された構成となっている。換言すれば、燃料噴射ノズルに対して、「増圧器、増圧器制御手段、噴射制御用油室、噴射制御弁」によって増圧器噴射系(ジャーク式噴射系)が構成される。
【0017】
蓄圧器噴射系(コモンレール式噴射系)によって燃料を噴射する際には、増圧器制御手段によって増圧器を不作動状態とし、さらに、蓄圧器からの燃料油が圧力遮断弁を介して燃料噴射ノズル内の燃料溜に圧送される。このとき、噴射制御弁によって噴射制御用油室の燃料油を除去することで、蓄圧器からの燃料油が直接(そのまま)燃料噴射ノズルから噴射される。
【0018】
一方、増圧器噴射系(ジャーク式噴射系)によって燃料を噴射する際には、増圧器制御手段によって増圧器を作動状態とする。すると、増圧器によって更に加圧された燃料油が燃料噴射ノズル内の燃料溜及び噴射制御用油室に圧送される。このとき、噴射制御弁によって噴射制御用油室の燃料油を除去することで、前記増圧器にて増圧された燃料油が燃料噴射ノズルから噴射される。
【0019】
このように、当該燃料噴射装置では、蓄圧器からの燃料油をそのまま燃料噴射ノズルに送って噴射する低圧噴射と、増圧器にて更に加圧した燃料油を燃料噴射ノズルに送って噴射する高圧噴射と、を切替制御して燃料噴射することができる。したがって、当該燃料噴射装置は、基本的に以下の効果を奏するものである。
【0020】
▲1▼ 増圧器には蓄圧器からの(ベースコモンレール圧力の)燃料が供給され、これを増圧して噴射するので、従来のコモンレール噴射系による噴射圧を越える超高噴射圧化を実現できる。したがって、高エンジン回転数、高負荷時においても適切な噴射期間内に燃料を噴射することができ、より高速化が図れる。また、噴口径の小径化による噴霧の微粒化改善と噴射圧の超高圧化による燃焼改善を噴射期間の大幅な延長なしに行うことが可能であり、これによって、燃焼室内の酸素を有効に活用することができるので、高回転数においてもスモーク排出が少ない良好な燃焼状態を実現できる。これによって、低エミッションで高出力なエンジンを実現できる。さらに、超高噴射圧力を常時蓄圧する必要がないため、所定の高噴射圧を常時蓄圧する従来のコモンレール噴射系と比較して、噴射系の強度の点から有利であり、低コスト化を図ることもできる。
【0021】
▲2▼ 蓄圧器噴射系(コモンレール式噴射系)と増圧器が並列配置されており、圧力遮断弁より下流の燃料圧力がコモンレール圧以下になると、蓄圧器から燃料が補給される構造であるので、メイン噴射の後にアフター噴射する場合においてもコモンレール圧よりも低圧で燃料が噴射されることがない。これによって、良好な微粒化状態の噴霧がアフター噴射されるので、アフター噴射された燃料自身がスモークの発生原因になることがなく、アフター噴射された燃料が燃焼場を撹乱することや、燃焼場の温度を上昇させることによる燃焼促進効果を最大限に引き出すことができる。
【0022】
また、中・高負荷領域においては、メイン噴射の噴射圧力は高圧を必要とし、しかもこのとき、騒音低減、排気改善を狙ってメイン噴射の前にパイロット噴射(または、マルチパイロット噴射)が実施されるが、このパイロット噴射の噴射圧力の最適値はメイン噴射圧力とは異なり、一般にそれより低い圧力である。このような場合にも、低圧噴射と高圧噴射とを切替制御して燃料噴射することができるため、パイロット噴射とメイン噴射とで各々最適な噴射圧力を設定することができる。
【0023】
さらに、噴射の初期をコモンレール圧で噴射し、中期から増圧器を作動させて高圧噴射することや、噴射初期に増圧器を作動させて高圧噴射し、中期に増圧器を停止してコモンレール圧で噴射すること等、コモンレール圧での噴射と、増圧器を作動させた噴射とを自在に組み合わせて噴射することが可能である。このように、噴射パターンの自由度が大きい。
【0024】
▲3▼ 従来では、増圧装置を作動させて噴射した後に次ぎの噴射に備える際に、キャビテーションが油路に発生してエロ−ジョンが生じる可能性が有り、燃料噴射システムの耐久性が著しく悪化する原因であった。これに対し、請求項1記載の燃料噴射装置では、蓄圧器噴射系(コモンレール式噴射系)と増圧器が並列配置されており、圧力遮断弁より下流の燃料圧力がコモンレール圧以下になると、コモンレールから燃料が補給される構造であるので、燃料圧力が燃料の蒸気圧以下になることがない。そのため、キャビテーション発生による油路のエロ−ジョンの心配がないので、耐久性が格段に向上する。
【0025】
▲4▼ 蓄圧器噴射系(コモンレール式噴射系)と増圧器が並列配置されているので、蓄圧器と増圧器との間が遮断された状態で仮に増圧器が故障してもコモンレール圧で噴射できる。このため、エンジンが突然に停止することがない。
【0026】
ここで、請求項1記載の燃料噴射方法では、燃料噴射するに際して、噴射制御弁と増圧器制御手段とがそれぞれ独立して制御され、増圧器の作動開始後の燃料圧力の増加期間、若しくは前記増圧器の作動終了後の燃料圧力の減少期間に、ニードル弁の開放、若しくは閉止が行われる。これにより、燃料噴射ノズルから噴射される燃料の最高噴射圧力、増圧開始時の当該噴射圧力の増加率、噴射終了時の当該噴射圧力の低下率、パイロット噴射圧力、及びアフター噴射圧力のうちの少なくとも何れか一つが、例えばエンジン回転数や負荷状態に応じた最適な値に制御されて燃料噴射が履行される。
【0027】
換言すれば、ニードル弁が開放されて燃料噴射が履行される際に蓄圧器による燃料圧(ベースコモンレール圧)と増圧器の作動による燃料上昇圧を高い自由度で制御することで、例えばエンジン回転数や負荷状態に応じた最適な燃料噴射パターンとなるように、ニードル弁の開放タイミング(噴射制御弁の作動)と増圧器の作動タイミング(増圧器制御手段の作動)の位相差が調整されて燃料噴射が履行される。
【0028】
すなわち、当該燃料噴射装置における燃料噴射方法によれば、増圧器の作動により噴射圧力が漸増するのに対し、噴射の時期をニードル弁の開放タイミングで選択できるため、燃料の噴射圧及び噴射率に基づいた燃料噴射パターンの制御が可能になる。したがって、非常に自由度の高い燃料噴射パターンを実現できる。
【0029】
例えば、図1に例示するように、パイロット噴射、メイン噴射、及びアフター噴射を行うマルチ噴射を実施する場合に、パイロット噴射圧力(P1)、メインブーツ噴射圧力(P2)、メイン噴射最高圧力(P3)、アフター噴射圧力(Pa)、ブーツ噴射期間終了後圧力上昇率(θ1)、最高噴射圧到達直前圧力上昇率(θ2)、メイン噴射終了時の圧力降下率(θ3)等を、自由に制御(設定し履行)することができる。
【0030】
このように、請求項1記載の燃料噴射装置における燃料噴射方法では、従来に比べて大幅に高い超高噴射圧によって燃料を噴射することができると共に最高噴射圧が蓄圧器の燃料圧力によって一義的に決定されることが無くて良好な燃焼、排気特性を実現でき、しかも、蓄圧器による燃料圧(ベースコモンレール圧)と増圧器の作動による静的最高圧力との間の圧力を積極的に利用して噴射の制御要素とするため、任意の燃料噴射パターンで燃料噴射を行うことが可能で燃料噴射パターンの自由度が拡大する(すなわち、燃料の最高噴射圧力、増圧開始時の当該噴射圧力の増加率、噴射終了時の当該噴射圧力の低下率、パイロット噴射圧力、及びアフター噴射圧力等を自由に設定できる)。
【0033】
また、請求項に係る発明の燃料噴射装置における燃料噴射方法は、請求項1に記載の燃料噴射装置における燃料噴射方法において、前記燃料噴射ノズルによる燃料噴射量が最大噴射量時に、前記燃料噴射ノズルから噴射される燃料の圧力増加期間が、全噴射期間の1/3以上を占めるように設定した、ことを特徴としている。
【0034】
これにより、前記任意の燃料噴射パターンでの燃料噴射(燃料の最高噴射圧力、増圧開始時の当該噴射圧力の増加率、噴射終了時の当該噴射圧力の低下率、パイロット噴射圧力、及びアフター噴射圧力等)の制御を適切に行うことができる。
【0035】
また、請求項に係る発明の燃料噴射装置における燃料噴射方法は、請求項1または請求項2に記載の燃料噴射装置における燃料噴射方法において、前記増圧器制御手段によって前記増圧器を作動させる際に、前記蓄圧器及び増圧器の作動によって前記増圧器の幾何学的増圧比と前記蓄圧器圧力により静的に決まる静的最高圧力に達する途中の時点で、前記噴射制御弁を作動させて前記燃料噴射ノズルからの燃料噴射を開始すると共に、前記燃料噴射ノズルから噴射される燃料の最高噴射圧力を、前記静的最高圧力以下に設定した、ことを特徴としている。
【0036】
これにより、燃料噴射ノズルから噴射される燃料の噴射圧力の増加率を任意に設定(可変)することができ、仮に蓄圧器による燃料油の所定の圧力(ベースコモンレール圧)及び増圧器による静的最高圧力(増圧比)が一定の場合であっても、任意の燃料噴射パターン(噴射圧力の増加率)で燃料噴射を履行することができる。
【0037】
また、請求項に係る発明の燃料噴射装置における燃料噴射方法は、請求項1乃至請求項の何れか1項に記載の燃料噴射装置における燃料噴射方法において、前記噴射制御弁によって前記燃料噴射ノズルからの燃料噴射を停止する際に、前記燃料噴射ノズル内のニードル弁が完全に閉止する以前に、前記増圧器制御手段の作動を停止させて前記増圧器を停止し、前記燃料噴射ノズルから噴射される燃料の噴射圧力を、所定の圧力まで低下させる、ことを特徴としている。
【0038】
これにより、燃料噴射ノズルから噴射される燃料の噴射終了時の当該噴射圧力の低下率を任意に設定(可変)することができ、噴射率設定の自由度を高めることができる。
【0041】
また、請求項に係る発明の燃料噴射装置における燃料噴射方法は、請求項1乃至請求項の何れか1項に記載の燃料噴射装置における燃料噴射方法において、前記燃料噴射ノズルから燃料のアフター噴射を履行する際に、当該アフター噴射を開始する以前に前記増圧器制御手段の作動を停止させて前記増圧器を停止し、前記蓄圧器による所定の圧力と前記蓄圧器及び増圧器の作動によって静的に決まる静的最高圧力との間の中間の圧力で前記アフター噴射を履行する、ことを特徴としている。
【0042】
ここで、例えば、単に蓄圧器による燃料油の所定の圧力(ベースコモンレール圧)と増圧器の作動による静的最高圧力の2つの圧力でのみ燃料噴射を行うとし、スート(カーボン等)を低減させるためにメイン噴射の後に狭い間隔で高い噴射圧力によるアフター噴射を行うか、あるいは、排気ガスの後処理をするために低い噴射圧力でアフター噴射することが考えられる。しかしながら、前述の如くメイン噴射の後に狭い間隔で高い噴射圧力によるアフター噴射を行う場合に、当該噴射圧力が高すぎると、NOXの増加や燃焼騒音の増加を招くことになる。すなわち、スート(煤、カーボン等)の低減のみを考慮して高い噴射圧力によるアフター噴射を行うことがよいのではなく、当該噴射圧力には最適な圧力が存在する。一方、排気ガスの後処理をするためにアフター噴射する場合においても、当該噴射圧力が低すぎると、噴霧の微粒化悪化によりスートやPM(粒子状物質)が増加するという問題が生じる。また、当該噴射圧力が高すぎると、燃料が機関の壁面に付着してピストンリングの固着やオイル希釈という問題が生じると共に、エミッションの悪化を招くことになる。すなわち、排気ガスの後処理をするためにアフター噴射する場合においても、当該噴射圧力には最適な圧力が存在する。このように、単に蓄圧器による所定の圧力(ベースコモンレール圧)と増圧器の作動による静的最高圧力の2つの圧力でのみ燃料噴射を行う場合には、全てに対応できる最適な燃料噴射を履行することができない。
【0043】
この点、請求項記載の燃料噴射装置における燃料噴射方法では、アフター噴射を履行する際に、当該アフター噴射を開始する以前に増圧器を停止し、蓄圧器による所定の圧力(ベースコモンレール圧)と増圧器の作動による静的最高圧力との間の中間の圧力でアフター噴射を履行するため、増圧器の停止時期を調整(制御)することにより、全てに対応できる最適な任意の噴射圧力でアフター噴射を履行することができる。
【0044】
また、請求項に係る発明の燃料噴射装置における燃料噴射方法は、請求項1乃至請求項の何れか1項に記載の燃料噴射装置における燃料噴射方法において、機関の1サイクルにおいて前記燃料噴射ノズルからの燃料噴射を複数回に分けて行う多段噴射を履行する場合に、前記増圧器制御手段によって少なくとも2回以上に分けて前記増圧器を作動させる、ことを特徴としている。
【0045】
これにより、噴射パターンの自由度をより一層拡大することができる。
【0046】
一方、請求項に係る発明の燃料噴射装置における燃料噴射方法は、燃料噴射ノズル内の燃料溜に主油路を介して連通され、燃料加圧ポンプから圧送される燃料油を所定の圧力にして蓄圧する蓄圧器と、前記燃料噴射ノズルと蓄圧器とを連通する前記主油路の途中に設けられ、前記燃料噴射ノズル側から前記蓄圧器側への燃料圧力流出を遮断する圧力遮断弁と、前記燃料噴射ノズルと蓄圧器とを連通する前記主油路の前記圧力遮断弁よりも下流側において連通する噴射制御用油室と、前記噴射制御用油室に設けられ、前記噴射制御用油室に燃料油圧を作用させることにより前記燃料噴射ノズル内のニードル弁を閉止せしめ、前記噴射制御用油室の燃料油を除去することにより前記ニードル弁を開放して燃料噴射を履行せしめる噴射制御弁と、シリンダ及びピストンを有し、前記燃料噴射ノズルと蓄圧器とを連通する前記主油路の前記圧力遮断弁よりも下流側において前記燃料噴射ノズルと前記噴射制御用油室に連通する増圧器と、前記蓄圧器からの燃料を前記シリンダ内へ流入させることによりまたは前記シリンダ内の燃料を流出させることにより前記増圧器のピストンを移動させて、前記圧力遮断弁よりも下流側の燃料圧力を増大せしめるピストン制御弁と、を備えた燃料噴射装置における燃料噴射方法において、前記増圧器のピストンの移動速度を制御すると共に、前記噴射制御弁と前記ピストン制御弁とをそれぞれ独立して制御し、前記増圧器の作動開始後の燃料圧力の増加期間、若しくは前記増圧器の作動終了後の燃料圧力の減少期間に、前記ニードル弁の開放、若しくは閉止を行い、前記燃料噴射ノズルからの噴射開始時の燃料圧力、若しくは噴射終了時の燃料圧力を任意に選択することで、前記燃料噴射ノズルから噴射される燃料の最高噴射圧力、増圧開始時の当該噴射圧力の増加率、噴射終了時の当該噴射圧力の低下率、パイロット噴射圧力、及びアフター噴射圧力のうちの少なくとも何れか一つを任意に変化させて燃料噴射を履行する、ことを特徴としている。
【0047】
請求項記載の燃料噴射率制御方法が適用される燃料噴射装置は、基本的に前述した請求項1記載の燃料噴射率制御方法が適用される燃料噴射装置と同様の構成であり、さらに、同様の効果を奏するものである。
【0048】
またここで、請求項記載の燃料噴射方法では、燃料噴射するに際して、増圧器のピストンの移動速度が制御されて、燃料噴射ノズルから噴射される燃料の最高噴射圧力、増圧開始時の当該噴射圧力の増加率、噴射終了時の当該噴射圧力の低下率、パイロット噴射圧力、及びアフター噴射圧力のうちの少なくとも何れか一つが、例えばエンジン回転数や負荷状態に応じた最適な値に調整されて燃料噴射が履行される。
【0049】
換言すれば、ニードル弁が開放されて燃料噴射が履行される際に蓄圧器による燃料圧(ベースコモンレール圧)と増圧器の作動による燃料上昇圧(降下圧)が、例えばエンジン回転数や負荷状態に応じた最適な燃料噴射パターンとなるように、増圧器のピストンの移動速度が制御されて燃料噴射が履行される。したがって、非常に自由度の高い燃料噴射パターンを実現でき、前述した請求項1記載の燃料噴射率制御方法と同様の効果を奏するものである。
【0050】
例えば、図1に例示するように、パイロット噴射、メイン噴射、及びアフター噴射を行うマルチ噴射を実施する場合に、パイロット噴射圧力(P1)、メインブーツ噴射圧力(P2)、メイン噴射最高圧力(P3)、アフター噴射圧力(Pa)、ブーツ噴射期間終了後圧力上昇率(θ1)、最高噴射圧到達直前圧力上昇率(θ2)、メイン噴射終了時の圧力降下率(θ3)等を、自由に制御(設定し履行)することができる。
【0051】
このように、請求項記載の燃料噴射装置における燃料噴射方法では、従来に比べて大幅に高い超高噴射圧によって燃料を噴射することができると共に最高噴射圧が蓄圧器の燃料圧力と増圧器の幾何学的寸法諸元によって一義的に決定されることが無くて良好な燃焼、排気特性を実現でき、しかも、任意の燃料噴射パターンで燃料噴射を行うことが可能で燃料噴射パターンの自由度が拡大する(すなわち、燃料の最高噴射圧力、増圧開始時の当該噴射圧力の増加率、噴射終了時の当該噴射圧力の低下率、パイロット噴射圧力、及びアフター噴射圧力等を自由に設定できる)。
【0053】
すなわち、燃料の噴射パターンを調整するために増圧器のピストンの移動速度を制御するのみならず、噴射制御弁とピストン制御弁の作動の位相差をも調整するため(請求項1記載の燃料噴射方法をも併せて構成したため)、より一層適切で任意の燃料噴射パターンで燃料噴射を行うことが可能となり燃料噴射パターンの自由度が拡大する。
【0054】
さらにここで、燃料の噴射パターンを調整するために増圧器のピストンの移動速度を制御する具体的手法としては、請求項記載のものが好適である。
【0055】
すなわち、請求項8に係る発明の燃料噴射装置における燃料噴射方法は、請求項7に記載の燃料噴射装置における燃料噴射方法において、前記増圧器のピストンの移動速度の制御は、前記ピストン制御弁による前記シリンダの燃料流路面積を変化させることにより行われる、ことを特徴としている。
【0056】
請求項8記載の燃料噴射方法では、ピストン制御弁によりシリンダの燃料流路面積が変更されて、ピストンの移動速度が制御される。すなわち、ピストン制御弁によりシリンダの燃料流路面積が変更されると、シリンダ内への燃料の流入量または流出量が変更されてピストンの移動速度が変更され、燃料噴射ノズルから噴射される燃料の噴射パターンが最適な値に制御されて燃料噴射が履行される。したがって、非常に自由度の高い燃料噴射パターンを実現できる。
【0057】
またこの場合、ピストン制御弁においてシリンダの燃料流路面積を制御(変更)するに当たっては、例えば、ピストン制御弁の移動量(リフト量)に対して当該流路の開口面積が変化するような構成にすることで実現可能である。また、ピストン制御弁の移動(リフト)を途中で(中間位置で)止めるように位置制御を行うといった方法を用いれば更に有効となる。
【0058】
また、請求項9に係る発明の燃料噴射装置における燃料噴射方法は、請求項8に記載の燃料噴射装置における燃料噴射方法において、前記燃料噴射ノズル内のニードル弁の開放期間中に、前記ピストン制御弁による前記シリンダの前記燃料流路面積を変化させる、ことを特徴としている。
【0059】
これにより、燃料噴射期間中に当該噴射圧力の増加率や低下率を任意に変更(設定)することができる。
【0060】
また、請求項10に係る発明の燃料噴射装置における燃料噴射方法は、請求項8または請求項9に記載の燃料噴射装置における燃料噴射方法において、機関の1サイクルにおいて前記燃料噴射ノズルからの燃料噴射を複数回に分けて行う多段噴射を履行する場合に、前記ピストン制御弁による前記シリンダの前記燃料流路面積を各噴射に応じてそれぞれ独自に設定した、ことを特徴としている。
【0061】
これにより、より一層好適な燃料噴射を履行することができる。
【0062】
さらにここで、前記ピストン制御弁によりシリンダの燃料流路面積を変更することで燃料の噴射率を制御する具体的手法としては、請求項11または請求項12に記載のものも適用できる。
【0063】
すなわち、請求項11に係る発明の燃料噴射装置における燃料噴射方法は、請求項乃至請求項10の何れか1項に記載の燃料噴射装置における燃料噴射方法において、前記ピストン制御弁の開閉を短時間に周期的に行うことにより、前記シリンダの前記燃料流路面積を実質的に変化させる、ことを特徴としている。
【0064】
また、請求項12に係る発明の燃料噴射装置における燃料噴射方法は、請求項11記載の燃料噴射装置における燃料噴射方法において、前記ピストン制御弁の開閉周期を変化させる、ことを特徴としている。
【0065】
さらに、請求項13に係る発明の燃料噴射装置における燃料噴射方法は、請求項12に記載の燃料噴射装置における燃料噴射方法において、機関の1サイクルにおいて前記燃料噴射ノズルからの燃料噴射を複数回に分けて行う多段噴射を履行する場合に、前記ピストン制御弁の開閉を短時間に周期的に行うことを特徴としている。
【0066】
これにより、より一層好適な燃料噴射を履行することができる。
【0067】
【発明の実施の形態】
[噴射装置の基本的構成]
(構成例1)
図2には、本発明の実施の形態に係る燃料噴射装置30の全体構成が示されている。
【0068】
燃料噴射装置30は、蓄圧器(コモンレール)32を備えている。この蓄圧器32は、燃料噴射ノズル34内の燃料溜62に主油路36を介して連通されており、燃料加圧ポンプ38から圧送される燃料油をエンジン回転数や負荷に応じて所定の圧力で蓄圧することができる。また、燃料噴射ノズル34と蓄圧器32とを連通する主油路36の途中には、圧力遮断弁40が設けられている。この圧力遮断弁40は、燃料噴射ノズル34の側から蓄圧器32の側への燃料圧力の流出を遮断するようになっている。
【0069】
さらに、燃料噴射ノズル34と蓄圧器32とを連通する主油路36の圧力遮断弁40よりも下流側には、噴射制御用油室42がオリフィス44を介して連通して設けられている。この噴射制御用油室42にはコマンドピストン46が収容されており、さらに、コマンドピストン46は燃料噴射ノズル34内のニードル弁48に連携している。これにより、噴射制御用油室42内の燃料油圧は、燃料噴射ノズル34内のニードル弁48を押し付けてノズルシート50に着座して保持するように作用している。
【0070】
またさらに、噴射制御用油室42には噴射制御弁52が設けられている。この噴射制御弁52は、通常は噴射制御用油室42に燃料油圧を作用させることにより前述の如く燃料噴射ノズル34内のニードル弁48を閉止せしめ、噴射制御用油室42内の燃料油を除去することによりニードル弁48を開放して燃料噴射を履行せしめるように構成されている。
【0071】
またさらに、燃料噴射ノズル34と蓄圧器32とを連通する主油路36の圧力遮断弁40よりも下流側には、増圧器54が噴射制御用油室42に連通して配置されている。この増圧器54は、シリンダ56及びピストン58を有しており、ピストン58が移動することにより、蓄圧器32からの燃料油を更に増圧して噴射制御用油室42及び燃料噴射ノズル34に送給することができる構成となっている。
【0072】
また、増圧器54には増圧器制御手段としてのピストン制御弁60が設けられている。このピストン制御弁60は、蓄圧器32からの油路64に設けられており、油路64を介して蓄圧器32から送給される燃料油をシリンダ56内へ流入させることによりピストン58を移動させて圧力遮断弁40よりも下流側の燃料圧力を増大せしめることができる構成であり、しかも、シリンダ56への燃料流路面積を変更することで燃料油の流入量を制御することができるようになっている。
【0073】
なお、シリンダ56は、大径側のピストン58に対応する油室が、オリフィス59を介して大気に開放している。
【0074】
さらに、噴射制御弁52及びピストン制御弁60は、電磁弁式もしくはPZT式、超磁歪式として構成される。
【0075】
(構成例2)
前述した構成例1に係る燃料噴射装置30の基本的な構成に対し、増圧器54の駆動を昇圧カムで行うようにすることもできる。
【0076】
すなわち、増圧器54に増圧器制御手段としての昇圧カムを設けた構成とする。
この昇圧カムは、増圧器54のピストン58を直接に移動させて圧力遮断弁40よりも下流側の燃料圧力を増大せしめることができる構成とする。
【0077】
なおこの場合、当該昇圧カムのカム軸にクラッチを設けたり、あるいは昇圧カムのカム軸を上方に移動させる機構を設けることによって、ピストン58を移動させない状態を設定することもできる。またさらに、昇圧カムの位相を変更できる機構を更に付加してもよい。
【0078】
このような昇圧カムを設けた構成とすれば、シリンダ56及びピストン58を有する増圧器54は、当該昇圧カムによってピストン58が直接に移動され、圧力遮断弁40よりも下流側の燃料圧力を増大せしめる。すなわち、例えば昇圧カムをエンジン回転数と同期して回転させ、コモンレール圧で噴射するときには、昇圧カムのカム軸のクラッチを離したりカム軸を上方に移動させて昇圧カムがピストン58を移動させない状態にする。一方、増圧器54を作動させる場合には、昇圧カムのカム軸のクラッチを繋いだりカム軸を下方に移動させて昇圧カムがピストン58を直接に移動させる状態にする。このように、簡単な構造により装置を構成することができる。
【0079】
またここで、常に増圧器54を作動させて増圧器54下流の燃料圧力を増圧する構成では、コモンレール圧のみで噴射することができない。これに対して、昇圧カムでピストン58を移動させない状態を得ることができるので、増圧器54下流の燃料圧力をコモンレール圧に保つことができ、コモンレール圧での噴射も可能になる。また、昇圧カムの位相を変更できる機構を設けることによって、昇圧開始時期が変更できるようになる。これによって、増圧器54を作動させて噴射する場合の噴射時期の自由度を拡大することができる。
[噴射装置の基本的作用]
上記構成の燃料噴射装置30では、蓄圧器32、圧力遮断弁40、噴射制御用油室42、噴射制御弁52、増圧器54、及びピストン制御弁60を備えている。増圧器54には、蓄圧器32からの(コモンレール圧の)燃料油が供給され、ピストン58が移動することでこれが増圧される。またここで、燃料噴射ノズル34に対して、「蓄圧器32、圧力遮断弁40、噴射制御用油室42、噴射制御弁52」によって蓄圧器噴射系(コモンレール式噴射系)が構成され、しかも、この蓄圧器噴射系と並列に増圧器54が配置された構成となっている。換言すれば、燃料噴射ノズル34に対して、「増圧器54、ピストン制御弁60、噴射制御用油室42、噴射制御弁52」によって増圧器噴射系(ジャーク式噴射系)が構成される。
【0080】
ここで、
1)蓄圧器噴射系(コモンレール式噴射系)によって燃料を噴射する場合
噴射開始前においては、噴射制御弁52を閉状態に維持して噴射制御用油室42内の圧力を蓄圧器32内の圧力(コモンレール圧)と等しくする。これにより、燃料噴射ノズル34内のニードル弁48はコマンドピストン46を介してノズルシート50に押し付けられ、ニードル弁48は閉止状態で保持される。
【0081】
燃料油を噴射する際には、ピストン制御弁60を閉状態とすることで増圧器54を不作動状態とし、さらに、蓄圧器32からの燃料油が圧力遮断弁40を介して燃料噴射ノズル34内の燃料溜62に圧送される。このとき、噴射制御弁52を開弁することによって噴射制御用油室42の燃料油を除去すると、燃料噴射ノズル34内のニードル弁48を閉止する圧力が減少し、一方、燃料噴射ノズル34内(燃料溜62)は前記コモンレール圧が保たれる。これにより、燃料噴射ノズル34内のニードル弁48が開放されて、蓄圧器32からの燃料油が直接(そのままの圧力で)燃料噴射ノズル34から噴射される。
【0082】
燃料噴射を終了する際には、再び噴射制御弁52を閉弁することで噴射制御用油室42の圧力をコモンレール圧と等しくする。これによって、燃料噴射ノズル34内のニードル弁48が再びコマンドピストン46を介して閉止方向に押し付けられてノズルシート50に着座して保持され、燃料噴射が終了する。
2)増圧器噴射系(ジャーク式噴射系)によって燃料を噴射する場合
噴射開始前においては、噴射制御弁52を閉弁状態に維持して噴射制御用油室42内の圧力を蓄圧器32内の圧力(コモンレール圧)と等しくする。これにより、燃料噴射ノズル34内のニードル弁48はコマンドピストン46を介してノズルシート50に押し付けられ、ニードル弁48は閉止状態で保持される。
【0083】
燃料油を噴射する際には、ピストン制御弁60を開放することで増圧器54(シリンダ56)内へ燃料油を流入させる。これにより、ピストン58が移動して燃料圧力が増圧される。すると、増圧器54によって加圧された燃料油は燃料噴射ノズル34内の燃料溜62及び噴射制御用油室42に圧送される。なお、この状態では、圧力遮断弁40が働き、増圧された燃料油が蓄圧器32側に流出するのを防止している。さらにこのとき、噴射制御弁52によって噴射制御用油室42の燃料油を除去することで、燃料噴射ノズル34内のニードル弁48を閉止する圧力が減少し、一方、燃料噴射ノズル34内(燃料溜62)は前記増圧器54によって加圧された燃料油の圧力が作用している。これにより、燃料噴射ノズル34内のニードル弁48が開放されて、増圧器54にて増圧された燃料油が燃料噴射ノズル34から噴射される。
【0084】
燃料噴射を終了する際には、再び噴射制御弁52によって噴射制御用油室42の圧力を燃料噴射ノズル34内(燃料溜62)の圧力と等しくする。これによって、燃料噴射ノズル34内のニードル弁48が閉止方向に押し付けられてノズルシート50に着座して保持され、燃料噴射が終了する。
【0085】
さらに、次ぎの噴射に備えて増圧器54のピストン制御弁60を閉じて増圧器54のシリンダ56(ピストン室)内の圧力をコモンレール圧よりも低下させ、ピストン58を再び元の位置に移動させる。これに伴って圧力遮断弁40よりも下流の燃料圧がコモンレール圧以下になると速やかに圧力遮断弁40が開放して、ほぼコモンレール圧と等しい燃料圧力になる。
【0086】
このように、本実施の形態に係る燃料噴射装置30では、蓄圧器32からの燃料油をそのまま燃料噴射ノズル34に送って噴射する低圧噴射と、増圧器54にて更に加圧した燃料油を燃料噴射ノズル34に送って噴射する高圧噴射と、を切替制御して燃料噴射することができる。したがって、燃料噴射装置30は、基本的に以下の効果を奏するものである。
【0087】
▲1▼ 増圧器54には蓄圧器32からの(コモンレール圧)の燃料が供給され、これを増圧して噴射するので、従来のコモンレール噴射系による噴射圧を大幅に越える超高噴射圧化(例えば、最大噴射圧300MPa)を実現できる。したがって、高エンジン回転数、高負荷時においても適切な噴射期間内に燃料を噴射することができ、より高速化が図れると共に、良好な燃焼が可能となって、低エミッションで高出力なエンジンを実現できる。
【0088】
また、燃料噴射ノズルの噴口径の小径化による噴霧貫徹力の減少を噴射圧の超高圧化によって補うことが可能であり、これによって、燃焼室内の酸素を有効に活用することができるので、高回転数においてもスモーク排出が少ない良好な燃焼状態を実現できる。
【0089】
さらに、超高噴射圧力を常時蓄圧する必要がないため、所定の高噴射圧を常時蓄圧する従来のコモンレール噴射系と比較して、噴射系の強度の点から有利であり、低コスト化を図ることもできる。
【0090】
▲2▼ 蓄圧器噴射系(コモンレール式噴射系)と増圧器54が並列配置されており、圧力遮断弁40より下流の燃料圧力がコモンレール圧以下になると、蓄圧器32から燃料が補給される構造であるので、高回転数、高負荷時にアフター噴射する場合においてもコモンレール圧以下の低圧で燃料が噴射されることがない。これによって、良好な微粒化状態の噴霧がアフター噴射されるので、アフター噴射された燃料自身がスモークの発生原因になることがなく、アフター噴射された燃料が燃焼場を撹乱することによる燃焼促進効果を最大限に引き出すことができる。
【0091】
また、低圧噴射と高圧噴射とを切替制御して燃料噴射することができるため、パイロット噴射、メイン噴射、及びアフター噴射で各々最適な噴射圧力を設定することができる。
【0092】
さらに、コモンレール圧での噴射と、増圧器54を作動させた噴射とを自在に組み合わせて噴射することが可能であり、噴射パターンの自由度が大きい。
【0093】
▲3▼ 蓄圧器噴射系(コモンレール式噴射系)と増圧器54が並列配置されており、圧力遮断弁40より下流の燃料圧力がコモンレール圧以下になると、蓄圧器32から燃料が補給される構造であるので、燃料圧力が燃料の蒸気圧以下になることがないため、キャビテーション発生による油路のエロ−ジョンの心配がなく、耐久性が格段に向上する。
【0094】
▲4▼ 蓄圧器噴射系(コモンレール式噴射系)と増圧器54が並列配置されているので、蓄圧器32と増圧器54との間が遮断された状態で仮に増圧器54が故障してもコモンレール圧で噴射できる。このため、エンジンが突然に停止することがない。
【0095】
なお、前述した構成例2に係る燃料噴射装置、すなわち、増圧器54の駆動を昇圧カムで行うようにした構成の場合であっても、前記燃料噴射装置30と同様の作用・効果を奏する。
【0096】
なお、ここでは、図2に示す如く増圧器54に燃料油を流入させることで増圧器54を作動させる例について説明したが、図3に示すように、増圧器54から燃料油を流出させることで増圧器54を作動させる形態も可能である。
【0097】
また、図2及び図3ともにピストン制御弁60は2方弁として簡単に示してあるが、図2に示す例ではオリフィス59と併せて、図3に示す例ではオリフィス61と併せて3方弁構造とすることも、インジェクタの作動のために使われる燃料量を減少させるために有効である。また、噴射制御弁52は2方弁として示してあるが、同様に3方弁構造としてもよい。さらに、燃料噴射ノズル34内のニードル弁48と噴射制御用油室42はコマンドピストン46を介して繋がっているが、コマンドピストン46を省略した形態でも同様の作動原理であり、このような形態としてもよい。
[燃料噴射方法]
A.燃料噴射における説明上の基本的な特性
先ず、前述の如く説明した燃料噴射装置30においてコモンレール圧で噴射する場合における、噴射時の基本的な特性について説明する。
【0098】
なお、本実施の形態のように、噴射制御バルブとして噴射制御弁52の如く「2方弁」を用いた蓄圧器噴射系(コモンレール式噴射系)は、一般的に、図4(A)に示す如く、燃料噴射ノズル34内のニードル弁48の移動速度(リフト速度)が開弁時及び閉弁時共に比較的遅く、シートチョーク領域(ノズルシート50部分の実質的開口面積がノズル噴孔総面積よりも少ない領域)が存在する。一方、燃料噴射ノズル34における燃料の噴射に有効な開口面積は、ニードル弁48の移動に伴って徐々に大きくなったり徐々に小さくなるのではなく、図4(B)に示す如く、大部分の期間においてノズル噴孔総面積で制限される最大面積が確保されている。しかし、噴射圧と噴射率が最大になるのは、図4(C)に示す如く、幾何学的なノズル開口面積が最大になる時期よりも実際には少し遅れる。これは、ノズルシート50部分はニードル全周に渡り開口される(ノズルシート50部分の開口面積はニードル全周に確保される)のに対し、ノズル噴孔の数は限られているため、前記ノズルシート50部分の開口面積が有効に使えないことが原因であり、燃料噴射終了時においても同様である。
【0099】
本実施の形態における説明では、説明を簡単にするため、図4(D)に示す如く、噴射圧・噴射率は幾何学的なノズルシート部開口面積(以後は、ノズル開口面積という)に依存するとして記載する。
【0100】
次に、増圧器噴射系(ジャーク式噴射系)によって燃料を噴射する場合における、ノズルシート50部分直前の圧力変化について説明する。
【0101】
図5に示す如く、燃料噴射ノズル34(ニードル弁48)が開放していると、増圧している間にも燃料が噴射によって放出されていくため、圧力の増加率が低くなる。この場合、圧力の傾き(増加率)は、ベースコモンレール圧力に対して燃料噴射ノズル34が閉鎖している場合に1つ、開放している場合に1つ決まり、さらに、ベースコモンレール圧力を変化させるとこの傾き(増加率)は変わる。
【0102】
また、増圧器54(ピストン58)の作動中に燃料噴射の開始や停止がある場合には、実際の噴射圧力の増加率は、ノズル開口面積の連続的な変化に対応して連続的に変化する。
【0103】
しかしながら、本実施の形態における説明では、説明を容易にするために、燃料噴射期間中は圧力増加率は低く、燃料噴射停止時は圧力増加率が高いとして説明する。
B.「バルブ作動の位相差制御」による方法
1.好適な条件の設定。
【0104】
噴射圧力を噴射期間中に変化させる所謂噴射率制御において、その効果を高く得るためには、図6に示す如く、燃料噴射ノズル34による燃料噴射量が機関が要求する最大噴射量時に、噴射される燃料の圧力増加期間が、全噴射期間の1/3以上を占めるように設定することが好適である。したがって、「バルブ作動の位相差制御」によって任意の燃料噴射パターンで燃料噴射を履行するにあたっても、このような設定が望ましい。
【0105】
これにより、任意の燃料噴射パターンでの燃料噴射(燃料の最高噴射圧力、増圧開始時の当該噴射圧力の増加率、噴射終了時の当該噴射圧力の低下率、パイロット噴射圧力、及びアフター噴射圧力等)の制御を適切に行うことができる。
【0106】
2.最高噴射圧力、増圧開始時の当該噴射圧力の増加率の制御。
【0107】
ニードル弁48の開放タイミング(噴射制御弁52の作動タイミング)と増圧器54の作動タイミング(ピストン制御弁60の作動タイミング)とをそれぞれ独立して制御し、各制御弁の作動の位相差を調整することにより、任意の燃料噴射パターンで燃料噴射を履行することができる。
【0108】
図7(A)乃至図7(D)には、このような噴射制御弁52とピストン制御弁60の作動の位相差を変化させることにより、最高噴射圧力と噴射圧力増加率を任意に設定した燃料噴射パターンの一例が示されている。
【0109】
この図7(A)乃至図7(D)に示す如く、噴射圧はノズル開口面積が最大となる時期(シートチョークが終わる時期)にノズルシート50部分直前の圧力と同じになるように急激に増加する。その後、燃料噴射終了時には、シートチョーク期間の間に圧力が低下する。したがって、噴射制御弁52とピストン制御弁60の作動の位相差(作動タイミング)を適切に制御することで、燃料噴射開始時のノズルシート50部分直前圧力を任意に選ぶことができ、これにより、最高噴射圧力、増圧開始時の当該噴射圧力の増加率を変化させることができる。
【0110】
特にこの場合、図7(B)または図7(C)に示す如く、ノズルシート50部分直前の圧力がベースコモンレール圧力と増圧器54の増圧比によって静的に決まる最高噴射圧力との間の任意の圧力であるときに燃料噴射を開始することで、噴射圧力の増加率を任意に選ぶことができる。またしかも、図7(C)と図7(D)の比較により示されるように、ベースコモンレール圧力と最高噴射圧力が同一であっても、噴射圧力の増加率を変化させることができる。
【0111】
なお、図7(A)乃至図7(D)においては、何れも噴射期間が同じ場合について示してある。燃料噴射量を各場合で同じにするには、図7(A)のパターンよりも図7(D)のパターンとなるほど噴射制御弁52の作動時間を短くして噴射期間を短くする必要があるが、その場合も、各制御弁の作動の位相差により噴射圧力の増加率と最高噴射圧力を上記の説明通り制御できることは言うまでもない。
【0112】
以上のように、噴射制御弁52とピストン制御弁60の作動の位相差(作動タイミング)を適切に制御・調整することで、最高噴射圧力と噴射圧力増加率を任意に設定でき、噴射の自由度を高めることができる。
【0113】
なお、前述した2つの制御弁の位相差の制御では、噴射圧力の増加率は、最高噴射圧力と互いに関連して変化する。すなわち、噴射開始時の圧力が高い場合ほど、噴射圧力の増加率が高くなる。また、以上の説明は、噴射圧力を幾何学的なノズル開口面積と対応させて単純化して示したものであり、前述の如く実際の圧力の変化点は幾何学的なシートチョーク時期とは厳密には一致しないが、本制御方法の本質の説明が変わるものではない。
【0114】
前述した図7(A)乃至図7(D)においては、燃料噴射ノズル34(ニードル弁48)の特性(ニードルリフト特性)が圧力に依存しないものとして示してある。しかしながら、例えば2方弁式の噴射制御弁とコマンドピストンを有するコモンレール噴射装置では、図8に示す如く、圧力が高いほど開弁時・閉弁時共にニードル速度が速くなる特徴を持つ。
【0115】
したがって、ニードルリフト速度が圧力に応じて速くなる特性の噴射装置(燃料噴射ノズル)では、噴射初期の圧力が高いほどニードルリフト速度が速くなってシートチョーク期間を素早く通過することになる。したがって、このニードルリフト特性を考慮して制御すれば、噴射制御弁52とピストン制御弁60の作動の位相差制御による前記最高噴射圧力及び噴射圧力増加率の制御効果を更に効果的に引き出すことができる。
【0116】
3.噴射終了時の当該噴射圧力の低下率の制御。
【0117】
図9(A)乃至図9(C)には、噴射制御弁52とピストン制御弁60の作動の位相差を変化させることにより、具体的には、燃料噴射ノズル34内のニードル弁48が完全に閉止する以前にピストン制御弁60の作動を停止させて増圧器54を停止し、最高噴射圧力と噴射圧力低下率を任意に設定した燃料噴射パターンの一例が示されている。
【0118】
この図9(A)乃至図9(C)に示す如く、増圧器54をニードル弁48が開放している間(ニードルリフト期間中)に停止することで、燃料噴射ノズル34から噴射される燃料の噴射圧力を、低くともベースコモンレール圧力まで低下させることができる。すなわち、増圧器54を最後まで作動させる場合(図9(A)の場合)に対し、図9(B)または図9(C)に示す如く噴射終了時の当該噴射圧力の低下率を低くすることができる。これにより、噴射率設定の自由度を高めることができる。
【0119】
なお、図9(A)乃至図9(C)においては、何れも噴射期間が同じ場合について示してある。図9(A)のパターンと図9(C)のパターンとは同程度の噴射量であるが、図9(B)のパターンの噴射量は少なくなっている。図9(B)のパターンの噴射量を、図9(A)や図9(C)のパターンの噴射量と同程度にするためには、噴射制御弁52の作動時間を延長して噴射期間を長くする必要があるが、その場合も、各制御弁の作動の位相差により噴射圧力の低下率を上記の説明通り制御できることは言うまでもない。
【0120】
以上のように、噴射制御弁52とピストン制御弁60の作動の位相差(作動タイミング)を適切に制御・調整することで、噴射終了時の当該噴射圧力の低下率を任意に設定でき、噴射の自由度を高めることができる。
【0121】
なお、前述した2つの制御弁の位相差の制御(増圧器54をニードル弁48のニードルリフト期間中に停止すること)では、噴射圧力の低下率を最高噴射圧力と独立して制御することができる。また、前述した「1.最高噴射圧力、増圧開始時の当該噴射圧力の増加率の制御」と組み合わせて(併用して)制御することで、例えば図9(A)や図9(C)のパターンのように同等の噴射量で最高噴射圧力も同じであるが、圧力の低下率を変更する(異ならせて設定する)ことも可能である。
【0122】
また、以上の説明は、噴射圧力を幾何学的なノズル開口面積と対応させて単純化して示したものであり、前述の如く実際の圧力の変化点は幾何学的なシートチョーク時期とは厳密には一致しないが、本制御方法の本質の説明が変わるものではない。
【0123】
前述した図9(A)乃至図9(C)においては、燃料噴射ノズル34(ニードル弁48)の特性(ニードルリフト特性)が圧力に依存しないものとして示してある。しかしながら、例えば2方弁式の噴射制御弁とコマンドピストンを有するコモンレール噴射装置では、前述した図8に示す如く、圧力が高いほど開弁時・閉弁時共にニードル速度が速くなる特徴を持つ。
【0124】
したがって、ニードルリフト速度が圧力に応じて速くなる特性の噴射装置(燃料噴射ノズル)では、噴射初期の圧力が高いほどニードルリフト速度が速くなってシートチョーク期間を素早く通過することになる。したがって、このニードルリフト特性を考慮して制御すれば、噴射制御弁52とピストン制御弁60の作動の位相差制御による前記噴射終了時の当該噴射圧力の低下率の制御効果を更に効果的に引き出すことができる。またしかも、燃料圧力が低いほどニードル弁48の開放速度及び閉止速度が遅くなって燃料噴射期間が長くなるため、増圧器54の作動を停止する時期が幾らか変動しても、噴射量が実質的に均一になるように作用し、噴射量のバラツキを低減することができる効果も奏する。
【0125】
4.アフター噴射圧力(パイロット噴射圧力)の制御。
【0126】
図10(A)乃至図10(D)には、噴射制御弁52とピストン制御弁60の作動の位相差を変化させることにより、具体的には、アフター噴射を開始する以前にピストン制御弁60を作動させて増圧器54を停止し、アフター噴射圧力を任意に設定した燃料噴射パターンの一例が示されている。
【0127】
この図10(A)乃至図10(D)に示す如く、アフター噴射を履行する際に、当該アフター噴射を開始する以前にピストン制御弁60を作動させて増圧器54を停止し、ベースコモンレール圧力と、増圧器54の作動(増圧比)によって幾何学的に決まる最高噴射圧力との間の任意の中間の圧力でアフター噴射を履行することができる。
【0128】
ここで、例えば、単に蓄圧器32によるベースコモンレール圧力と増圧器54の作動による静的最高圧力の2つの圧力でのみ燃料噴射を行うとし、スート(カーボン等)を低減させるためにメイン噴射の後に狭い間隔で高い噴射圧力によるアフター噴射を行うか、あるいは、排気ガスの後処理をするために低い噴射圧力でアフター噴射することが考えられる。しかしながら、前述の如くメイン噴射の後に狭い間隔で高い噴射圧力によるアフター噴射を行う場合に、当該噴射圧力が高すぎると、NOXの増加や燃焼騒音の増加を招くことになる。すなわち、スート(煤、カーボン等)の低減のみを考慮して高い噴射圧力によるアフター噴射を行うことがよいのではなく、当該噴射圧力には最適な圧力が存在する。一方、排気ガスの後処理をするためにアフター噴射する場合においても、当該噴射圧力が低すぎると、噴霧の微粒化悪化によりスートやPM(粒子状物質)が増加するという問題が生じる。また、当該噴射圧力が高すぎると、燃料が機関の壁面に付着してピストンリングの固着やオイル希釈という問題や、エミッションの悪化を招くことになる。すなわち、排気ガスの後処理をするためにアフター噴射する場合においても、当該噴射圧力には最適な圧力が存在する。このように、単にベースコモンレール圧力と静的最高圧力の2つの圧力でのみ燃料噴射を行う場合には、全てに対応できる最適な燃料噴射を履行することができない。
【0129】
この点、本「3.アフター噴射圧力の制御」では、アフター噴射を履行する際に、当該アフター噴射を開始する以前に増圧器54を停止し、ベースコモンレール圧力と静的最高圧力との間の中間の圧力でアフター噴射を履行するため、増圧器54の停止時期を調整(制御)することにより、全てに対応できる最適な任意の噴射圧力でアフター噴射を履行することができる。
【0130】
また、機関の1サイクルにおいて燃料噴射ノズル34からの燃料噴射を複数回に分けて行う多段噴射を履行する場合に、少なくとも2回以上に分けて増圧器54を作動させることにより、噴射パターンの自由度をより一層拡大することができる。
【0131】
5.「バルブ作動の位相差制御」による方法のまとめ。
【0132】
前述の如く説明した「バルブ作動の位相差制御」による燃料噴射方法では、ニードル弁48の開放タイミング(噴射制御弁52の作動タイミング)と増圧器54の作動タイミング(ピストン制御弁60の作動タイミング)とをそれぞれ独立して制御することで(各制御弁の作動の位相差を制御することで)、任意の燃料噴射パターンで燃料噴射を履行することができる。
【0133】
すなわち、燃料噴射するに際しては、燃料噴射ノズル34から噴射される燃料の噴射圧及び噴射率に基づいた燃料噴射パターン(例えば、エンジン回転数や負荷状態に応じた最適なパイロット噴射の燃料圧力やメイン噴射の燃料圧力、あるいはその噴射率)を予め設定し、ニードル弁48が開放されて燃料噴射が履行される際に蓄圧器32による燃料圧と増圧器54の作動による燃料上昇圧を制御することで前記設定した燃料噴射パターンとなるように、ニードル弁48の開放タイミングと増圧器54の作動タイミングを決定する(作動位相差を調整する)。しかる後に、前記決定した各タイミングで噴射制御弁52の作動とピストン制御弁60の作動とをそれぞれ独立して制御することで、前記設定した燃料噴射パターンで燃料噴射が履行される。
【0134】
したがって、本燃料噴射方法によれば、図1に示す燃料噴射パターンの如く、パイロット噴射、メイン噴射、及びアフター噴射を行うマルチ噴射を実施する場合に、パイロット噴射圧力(P1)、メインブーツ噴射圧力(P2)、メイン噴射最高圧力(P3)、アフター噴射圧力(Pa)、ブーツ噴射期間終了後圧力上昇率(θ1)、最高噴射圧到達直前圧力上昇率(θ2)、メイン噴射終了時の圧力降下率(θ3)等を、自由に制御(設定あるいは選択し履行)することができる。
【0135】
これにより、本燃料噴射方法によれば、以下の効果を奏するものである。
▲1▼ 一般的に、ディーゼル燃焼では、図11(A)に示す如く、燃料噴射が開始されてから着火までに幾らかの時間(着火遅れ期間)を有する。燃料噴射パターンが蓄圧器噴射系(コモンレール式噴射系)による矩形噴射率の場合には、前記着火遅れ期間中に多量の燃料が噴射され、この着火遅れ期間中に噴射された多量の燃料が一度に燃焼するため、NOx及び騒音の増加を招くことになる。
【0136】
これに対し、前記燃料噴射方法によって初期噴射率を制御することにより、図11(B)に示す如く、初期噴射率を抑制した燃料噴射パターンとすれば、NOx及び騒音が低い良好な燃焼とすることができる。
▲2▼ 機関の全負荷条件では、燃料噴射時期と噴射量は機関の強度を確保するために最大筒内圧によって制限される。ここで、燃料噴射パターンが蓄圧器噴射系(コモンレール式噴射系)による矩形噴射率の場合には、図12(A)に示す如く、初期の燃焼量が多く、噴射時期を進めることができない。
【0137】
これに対し、前記燃料噴射方法によって初期噴射率を制御することにより、図12(B)に示す如く、初期噴射率を抑制した燃料噴射パターンとすれば、噴射時期を進めることができ、多量の燃料を噴射できるので、高トルクを得ることができる。しかも、このときNOx及び騒音を低減することもできる。
▲3▼ 通常の蓄圧器噴射系(コモンレール式噴射系)によってマルチ噴射を行う場合には、各噴射(パイロット噴射、メイン噴射、アフター噴射、ポスト噴射等)は全て同じ圧力で行われる。しかし、実際にはそれぞれの噴射に最適な圧力がある。本燃料噴射方法による燃料噴射では、マルチ噴射を行う場合に各噴射をそれぞれに最適とできるので、排気特性が向上し騒音が低減する。
【0138】
例えば、パイロット噴射の圧力が高すぎると、燃料の壁面付着による未燃HCの増加、オイル希釈などの問題を生じる。また、微少量噴射時の制御性が悪く、近接パイロット噴射時にはパイロット燃焼が激しくて騒音低減効果が充分に得られない、等の問題がある。逆に、パイロット噴射の圧力が低すぎると、微粒化の悪化による騒音低減効果の減少や、スモークの増加が問題となる。
【0139】
これに対し、本燃料噴射方法による燃料噴射では、パイロット噴射の圧力をメイン噴射とは別に独自に設定できるので、パイロット噴射の効果が向上する。
C.「増圧器のピストンの移動速度制御」による方法
1.増圧開始時の当該噴射圧力の増加率、及び、噴射終了時の当該噴射圧力の低下率の制御。
【0140】
前述の如く説明した燃料噴射装置30では、低圧から高圧まで任意の圧力で噴射することができるため、パイロット噴射、メイン噴射、及びアフター噴射で各々最適な噴射圧力を設定することができ、しかも、コモンレール圧での噴射と増圧器54を作動させた噴射とを自在に組み合わせて噴射することが可能であり、任意の噴射パターンで燃料噴射することができるが、さらに、ピストン制御弁60について、シリンダ56への燃料流路面積(流路の実質的な開口面積)を変更することで燃料油の流入量を制御することにより、燃料噴射ノズル34から噴射される燃料の噴射率を任意に設定(変更)することができる。
【0141】
ここで、このような任意の噴射率の噴射パターンで燃料噴射するためには、燃料噴射ノズル34から噴射される燃料の噴射率に基づいた燃料噴射パターン(例えば、エンジン回転数や負荷状態に応じた最適なパイロット噴射やメイン噴射の燃料噴射率)を予め設定し、ニードル弁48が開放されて燃料噴射が履行される際に前記設定した噴射率となるように、ピストン制御弁60によるシリンダ56への燃料流路面積を決定する。しかる後に、前記決定した燃料流路面積に基づいてピストン制御弁60の作動を制御することで(移動量及び移動時期を調整することで)、前記設定した噴射率で燃料噴射を履行する。
【0142】
この燃料噴射方法によれば、ピストン制御弁60によりシリンダ56の燃料流路面積が変更されると、シリンダ56内への燃料の流入量が変更されてピストン58の移動速度(変位速度)が変更され、燃料噴射ノズル34に送る燃料の増圧速度、すなわち燃料噴射ノズル34から噴射される燃料の噴射率を任意に設定することが可能になる。
【0143】
例えば、増圧器54下流の燃料を急峻に増圧する場合には、ピストン制御弁60のリフト量を大きくして燃料流路面積を大きくする。これによって、シリンダ56内の圧力が急速に増加するので、ピストン58の変位速度が速くなり、急峻な圧力上昇を得ることができる。一方、増圧器54下流の燃料を緩やかに増圧する場合には、ピストン制御弁60のリフト量を小さくして燃料流路面積を小さくする。これによって、シリンダ56内の圧力が緩やかに増加するので、ピストン58の変位速度が遅くなり、緩やかな圧力上昇を得ることができる。
【0144】
すなわち、噴射圧力の傾き(特に、前述した図1に示す燃料噴射パターンの最高噴射圧到達直前圧力上昇率(θ2)、メイン噴射終了時の圧力降下率(θ3)について)これを変更する場合に、噴射圧力が上がるか、定常か、下がるかは、ピストン58より送り出される燃料量と燃料噴射ノズル34より噴出される燃料量の兼ね合いで決まる。ピストン58から送り出される燃料量が噴出される燃料量より多ければ、噴射圧力が上がっていく。ピストン58から送り出される量と燃料噴射ノズル34から噴出される燃料量が同じであれば、噴射圧力は定常になる。一方、ピストン58から送り出される燃料量が噴出される燃料量より少なければ、噴射圧力は下がっていく。
【0145】
このように、ピストン制御弁60によってシリンダ56への燃料流路面積(流路の実質的な開口面積)を変更することで行う開口面積制御では、噴射圧力の増加率と低下率を直接的に変化させる。最高噴射圧力は、噴射圧力の増加率に伴って変化する。
【0146】
これにより、前述した図1に示す燃料噴射パターンの如く、パイロット噴射、メイン噴射、及びアフター噴射を行うマルチ噴射を実施する場合に、ブーツ噴射期間終了後圧力増加率(θ1)、最高噴射圧到達直前圧力増加率(θ2)、メイン噴射終了時の圧力低下率(θ3)等を、自由に制御(設定あるいは変更して履行)することができる。
【0147】
ここで、図13乃至図15には、前述した図1に示す燃料噴射パターンでマルチ噴射を実施する場合に、ピストン制御弁60によりシリンダ56の燃料流路面積を変更することで、噴射率を設定する方法が概略的な線図にて示されている。この場合、図13は、ブーツ噴射期間終了後圧力上昇率(θ1)を変更するパターンが示されており、図14は、最高噴射圧到達直前圧力上昇率(θ2)を変更するパターンが示されており、図15は、メイン噴射終了時の圧力降下率(θ3)を変更するパターンが示されている。
【0148】
このように、本実施例に係る燃料噴射方法によれば、ピストン制御弁60によってシリンダ56への燃料流路面積(流路の実質的な開口面積)を変更することで燃料油の流入量を制御することにより(ピストン制御弁60の移動量及び移動時期を調整することで)、燃料噴射ノズル34から噴射される燃料の噴射率を任意に設定(変更)することができる(燃料の噴射率に基づいた燃料噴射パターンの自由度が拡大する)。
【0149】
また特に、この燃料噴射方法によれば、ピストン制御弁60によりシリンダ56の燃料流路面積を変更してシリンダ56内への燃料の流入量を変更してピストン58の移動速度(変位速度)を変更する構成であるため、仮に最高噴射圧力が低い場合でも噴射圧力増加率を高く設定することができる。
【0150】
またさらに、以上の説明において「メイン噴射」について記載したが、「アフター噴射」についても同様にピストン制御弁60によってシリンダ56の燃料流路面積を変更・制御することで、噴射圧力の増加率、低下率の制御、圧力の制御が可能である。
【0151】
なおこの場合、通常はアフター噴射の量はメイン噴射の量に比べて非常に少ない。例えば、1回当たりの噴射量が1〜2立方ミリメートルということもある。その場合には、燃料噴射ノズル34のニードル弁48のリフトがシートチョーク期間ということもあり、明確に噴射圧力の増加率、低下率を変更できているかの判別は難しい。しかしながら、このような極小噴射量の場合でも、前記開口面積制御によってアフター噴射の圧力を制御することが可能である。このことはすなわち、噴射圧力の増加率もしくは低下率の制御が成されていることに他ならない。また、アフター噴射の量がメイン噴射量の5%以上あるならば、この場合は一般にスプリット噴射と呼ばれる。このスプリット噴射の場合にも、メイン噴射の時と同様に、前記開口面積制御によって噴射圧力の増加率、低下率、最高噴射圧力の制御が可能である。
D.燃料噴射パターンの例
(実施例1)
図16には、ニードル弁48の開放タイミング(噴射制御弁52の作動タイミング)と増圧器54の作動タイミング(ピストン制御弁60の作動タイミング)とをそれぞれ独立して制御することで(作動の位相差を制御することで)、噴射量及び噴射圧を設定する方法が概略的な線図にて示されている。
【0152】
ここで、図16においては、「ノズル先端圧力」として示す如く、ピストン制御弁60を「A1〜B」の間において作動させた場合に、噴射制御弁52を「A0〜B」、「A1〜B」、「A2〜B」、「A3〜B」までの間でそれぞれ作動させた場合の、「噴射圧力・噴射量」の変化パターンがそれぞれ線図にて示されている。なお、図16に示す例においては、燃料噴射が終了するまで増圧器54の作動により噴射圧力を増圧させる場合である。
【0153】
このように、本実施例に係る燃料噴射方法によれば、増圧器54の作動により噴射圧力が漸増するのに対し、噴射の時期をニードル弁48の開放タイミングで選択できるため、燃料の噴射圧及び噴射量に基づいた燃料噴射パターンの制御が可能になる。
【0154】
したがって、従来に比べて大幅に高い超高噴射圧によって燃料を噴射することができると共に最高噴射圧が蓄圧器32の幾何学的増圧比との燃料圧力によって一義的に決定されることが無くて良好な燃焼、排気特性を実現でき、しかも、任意の燃料噴射パターンで燃料噴射を行うことが可能となる(燃料の噴射圧及び噴射量に基づいた燃料噴射パターンの自由度が拡大する)。
【0155】
(実施例2)
図17には、ニードル弁48の開放タイミング(噴射制御弁52の作動タイミング)と増圧器54の作動タイミング(ピストン制御弁60の作動タイミング)とをそれぞれ独立して制御することで(作動の位相差を制御することで)、噴射量及び噴射圧を設定する方法が概略的な線図にて示されている。
【0156】
ここで、図17においては、「ノズル先端圧力」として示す如く、ピストン制御弁60を「A1〜A3」あるいは「A1〜A4」の間において作動させた場合に、噴射制御弁52を「A0〜B」、「A1〜B」、「A2〜B」、「A3〜B」、「A4〜B」までの間でそれぞれ作動させた場合の、「噴射圧力・噴射量」の変化パターンがそれぞれ線図にて示されている。なお、図17に示す例においては、燃料噴射の途中で増圧器54による噴射圧力の増圧を中止する場合である。
【0157】
このように、本実施例に係る燃料噴射方法によれば、増圧器54の作動により噴射圧力が漸増するのに対し、噴射の時期をニードル弁48の開放タイミングで選択できるため、燃料の噴射圧及び噴射量に基づいた燃料噴射パターンの制御が可能になる。
【0158】
したがって、従来に比べて大幅に高い超高噴射圧によって燃料を噴射することができると共に最高噴射圧が蓄圧器32の燃料圧力によって一義的に決定されることが無くて良好な燃焼、排気特性を実現でき、しかも、任意の燃料噴射パターンで燃料噴射を行うことが可能となる(燃料の噴射圧及び噴射量に基づいた燃料噴射パターンの自由度が拡大する)。
【0159】
(実施例3)
図18及び図19には、増圧器54を作動させず、蓄圧器32によるコモンレール圧で噴射量及び噴射圧を設定する方法が概略的な線図にて示されている。
【0160】
この図18及び図19で解るように、蓄圧器32によるコモンレール圧の設定、及びニードル弁48の開放タイミング(噴射制御弁52の作動タイミング)を制御することで噴射量及び噴射圧を任意に設定することができる。
【0161】
(実施例4)
図20乃至図23には、ニードル弁48の開放タイミング(噴射制御弁52の作動タイミング)と増圧器54の作動タイミング(ピストン制御弁60の作動タイミング)とをそれぞれ独立して制御することで(作動の位相差を制御することで)、アフター噴射する場合の噴射圧を設定する方法が概略的な線図にて示されている。
【0162】
ここで、図20はブーツ型メイン噴射及び高圧アフター噴射する例であり、図21はブーツ型メイン噴射及び低圧アフター噴射する例であり、図22はブーツ型メイン噴射及び中圧アフター噴射する例であり、図23はブーツ型メイン噴射及びブーツ型アフター噴射する例である。
【0163】
これらの各図で解るように、ニードル弁48の開放タイミング(噴射制御弁52の作動タイミング)及び増圧器54の作動タイミング(ピストン制御弁60の作動タイミング)をそれぞれ制御することで、アフター噴射する場合の噴射圧を任意に設定することができる。
【0164】
なお、前記各図においては、メイン噴射率形状がブーツ型であるものについて例示したが、これに限るものではなく、また、アフター噴射についても種々のパターンを設定することができる。
【0165】
(実施例5)
前述した実施例1乃至実施例4においては、各燃料噴射方法を構成例1に係る燃料噴射装置30に適用して説明したが、これに限らず、前述した構成例2に係る燃料噴射装置、すなわち増圧器54の駆動を昇圧カムで行うようにした構成の場合であっても、前記実施例1乃至実施例4と同様の種々の燃料噴射パターンを設定することができ、同様の作用・効果を奏する。
【0166】
(実施例6)
前述の如くピストン制御弁60によりシリンダ56の燃料流路面積を変更することでブーツ噴射期間終了後圧力上昇率(θ1)、最高噴射圧到達直前圧力上昇率(θ2)、メイン噴射終了時の圧力降下率(θ3)を変更することができるが、これに限らず、ブーツ型噴射パターンにおけるメインブーツ噴射圧力(P2)やメイン噴射最高圧力(P3)を変更したり、ブーツ型噴射パターン自体を2段型にすることもできる。
【0167】
例えば、図24には、ブーツ型噴射パターンにおけるブーツ噴射圧力を変更する場合の噴射パターンが概略的な線図にて示されている。また、図25には、2段のブーツ型噴射を行う場合の噴射パターンが概略的な線図にて示されている。
【0168】
このように、本実施例に係る燃料噴射方法によれば、ピストン制御弁60によってシリンダ56への燃料流路面積を変更することで燃料油の流入量を制御することにより、燃料噴射ノズル34から噴射される燃料の噴射率を任意に設定(変更)することができる(燃料の噴射率に基づいた燃料噴射パターンの自由度が拡大する)。
【0169】
(実施例7)
前述した実施例6においては、ピストン制御弁60について、シリンダ56への燃料流路面積(流路の実質的な開口面積)を変更することで燃料油の流入量を制御することにより、燃料噴射ノズル34から噴射される燃料の噴射率を任意に設定(変更)する構成としたが、これに限らず、ピストン制御弁60の開閉を短時間に周期的に行うことで、シリンダ56への燃料流路面積(流路の見かけ上の開口面積)を変更するように構成することもできる。
【0170】
すなわち、図26に示す如く、ピストン制御弁60の開閉を短時間に周期的に行うことは、ピストン制御弁60によって流路の開口面積自体を変更する場合と等価であり、ピストン制御弁60の開閉を短時間に周期的に行うことによって流路の見かけ上の開口面積を変更して燃料油の流入量を制御することができる。
【0171】
(実施例8)
前述した実施例6及び実施例7においては、ピストン制御弁60について、シリンダ56への燃料流路面積(流路の実質的な開口面積)を変更することで燃料油の「流入量」を制御することにより、燃料噴射ノズル34から噴射される燃料の噴射率を任意に設定(変更)する構成としたが、これに限らず、ピストン制御弁60について、シリンダ56への燃料流路面積を変更することで燃料油のシリンダ56からの「流出量」を制御するように構成し、これにより、燃料噴射ノズル34から噴射される燃料の噴射率を任意に設定(変更)することもできる。
【0172】
この場合であっても、前記実施例6及び実施例7と同様の種々の燃料噴射パターンを設定することができ、同様の作用・効果を奏する。
【0173】
【発明の効果】
以上説明した如く本発明に係る燃料噴射装置における燃料噴射方法は、従来に比べて大幅に高い超高噴射圧によって燃料を噴射することができると共に最高噴射圧が蓄圧器の燃料圧力によって一義的に決定されることが無くて良好な燃焼、排気特性を実現でき、しかも、任意の燃料噴射パターンで燃料噴射を行うことが可能で燃料噴射パターンの自由度が拡大する(すなわち、燃料の最高噴射圧力、増圧開始時の当該噴射圧力の増加率、噴射終了時の当該噴射圧力の低下率、パイロット噴射圧力、及びアフター噴射圧力等を自由に設定できる)という優れた効果を有している。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法によって履行することができる任意の燃料噴射パターンの代表例を示す線図である。
【図2】本発明の実施の形態に係る一例としての燃料噴射装置の全体構成図である。
【図3】本発明の実施の形態に係る一例としての燃料噴射装置の全体構成図である。
【図4】本発明の実施の形態に係る燃料噴射装置においてコモンレール圧で燃料噴射する場合における噴射時の基本的な特性について説明するための線図である。
【図5】本発明の実施の形態に係る燃料噴射装置において増圧器噴射系(ジャーク式噴射系)によって燃料噴射する場合におけるノズルシート部分直前の圧力変化について説明するための線図である。
【図6】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち「バルブ作動の位相差制御」による方法で燃料噴射する場合に好適な条件の設定について説明するための線図である。
【図7】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち「バルブ作動の位相差制御」による方法で最高噴射圧力と噴射圧力増加率を任意に設定した燃料噴射パターンの一例を示す線図である。
【図8】燃料噴射ノズルのニードル弁のニードルリフト特性が圧力に依存する特性である場合について説明するための線図である。
【図9】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち「バルブ作動の位相差制御」による方法で最高噴射圧力と噴射圧力低下率を任意に設定した燃料噴射パターンの一例を示す線図である。
【図10】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち「バルブ作動の位相差制御」による方法でアフター噴射圧力を任意に設定した燃料噴射パターンの一例を示す線図である。
【図11】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法によって生じる排気・燃焼騒音への効果を従来と比較して示す線図である。
【図12】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法によって生じる出力への効果を従来と比較して示す線図である。
【図13】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち「増圧器のピストンの移動速度制御(燃料流路面積の変更)」による方法で燃料噴射率を設定する一例を示す線図である。
【図14】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち「増圧器のピストンの移動速度制御(燃料流路面積の変更)」による方法で燃料噴射率を設定する一例を示す線図である。
【図15】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち「増圧器のピストンの移動速度制御(燃料流路面積の変更)」による方法で燃料噴射率を設定する一例を示す線図である。
【図16】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち「バルブ作動の位相差制御」による方法で噴射量及び噴射圧を設定する方法の一例を示す概略的な線図である。
【図17】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち「バルブ作動の位相差制御」による方法で噴射量及び噴射圧を設定する方法の一例を示す概略的な線図である。
【図18】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち噴射量及び噴射圧を設定する方法の一例を示す概略的な線図である。
【図19】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち噴射量及び噴射圧を設定する方法の一例を示す概略的な線図である。
【図20】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち噴射圧(アフター噴射の圧力)を設定する方法の一例を示す概略的な線図である。
【図21】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち噴射圧(アフター噴射の圧力)を設定する方法の一例を示す概略的な線図である。
【図22】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち噴射圧(アフター噴射の圧力)を設定する方法の一例を示す概略的な線図である。
【図23】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち噴射圧(アフター噴射の圧力)を設定する方法の一例を示す概略的な線図である。
【図24】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうちブーツ噴射圧力を変更する方法の一例を示す概略的な線図である。
【図25】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち2段のブーツ型噴射を行う方法の一例を示す概略的な線図である。
【図26】本発明の実施の形態に係る燃料噴射装置における燃料噴射方法のうち燃料流路面積を変更する方法の他の例を示す概略的な線図である。
【図27】従来の燃料噴射装置における燃料噴射方法によって燃料噴射が履行された場合の増圧器下流側の圧力の変化状態を示す線図である。
【図28】燃料噴射が履行された場合の増圧器下流側の好ましい圧力の変化状態を示す図27(B)に対応する線図である。
【符号の説明】
30 燃料噴射装置
32 蓄圧器
34 燃料噴射ノズル
36 主油路
38 燃料加圧ポンプ
40 圧力遮断弁
42 噴射制御用油室
46 コマンドピストン
48 ニードル弁
52 噴射制御弁
54 増圧器
56 シリンダ
58 ピストン
60 ピストン制御弁(増圧器制御手段)

Claims (13)

  1. 燃料噴射ノズル内の燃料溜に主油路を介して連通され、燃料加圧ポンプから圧送される燃料油を所定の圧力にして蓄圧する蓄圧器と、
    前記燃料噴射ノズルと蓄圧器とを連通する前記主油路の途中に設けられ、前記燃料噴射ノズル側から前記蓄圧器側への燃料圧力流出を遮断する圧力遮断弁と、
    前記燃料噴射ノズルと蓄圧器とを連通する前記主油路の前記圧力遮断弁よりも下流側において連通する噴射制御用油室と、
    前記噴射制御用油室に設けられ、前記噴射制御用油室に燃料油圧を作用させることにより前記燃料噴射ノズル内のニードル弁を閉止せしめ、前記噴射制御用油室の燃料油を除去することにより前記ニードル弁を開放して燃料噴射を履行せしめる噴射制御弁と、
    前記燃料噴射ノズルと蓄圧器とを連通する前記主油路の前記圧力遮断弁よりも下流側において前記燃料噴射ノズルと前記噴射制御用油室に連通する増圧器と、
    前記増圧器を作動させることにより、前記圧力遮断弁よりも下流側の燃料圧力を増大せしめる増圧器制御手段と、
    を備えた燃料噴射装置における燃料噴射方法において、
    前記噴射制御弁と前記増圧器制御手段とをそれぞれ独立して制御し、
    前記増圧器の作動開始後の燃料圧力の増加期間、若しくは前記増圧器の作動終了後の燃料圧力の減少期間に、前記ニードル弁の開放、若しくは閉止を行い、前記燃料噴射ノズルからの噴射開始時の燃料圧力、若しくは噴射終了時の燃料圧力を任意に選択することで、
    前記燃料噴射ノズルから噴射される燃料の最高噴射圧力、増圧開始後の当該噴射圧力の増加率、噴射終了直前の当該噴射圧力の低下率、パイロット噴射圧力、及びアフター噴射圧力のうちの少なくとも何れか一つを任意に変化させて燃料噴射を履行する、
    ことを特徴とする燃料噴射装置における燃料噴射方法。
  2. 前記燃料噴射ノズルによる燃料噴射量が最大噴射量時に、前記燃料噴射ノズルから噴射される燃料の圧力増加期間が、全噴射期間の1/3以上を占めるように設定した、ことを特徴とする請求項1に記載の燃料噴射装置における燃料噴射方法。
  3. 前記増圧器制御手段によって前記増圧器を作動させる際に、前記蓄圧器及び増圧器の作動によって前記増圧器の幾何学的増圧比と前記蓄圧器圧力により静的に決まる静的最高圧力に達する途中の時点で、前記噴射制御弁を作動させて前記燃料噴射ノズルからの燃料噴射を開始すると共に、前記燃料噴射ノズルから噴射される燃料の最高噴射圧力を、前記静的最高圧力以下に設定した、ことを特徴とする請求項1または請求項2に記載の燃料噴射装置における燃料噴射方法。
  4. 前記噴射制御弁によって前記燃料噴射ノズルからの燃料噴射を停止する際に、前記燃料噴射ノズル内のニードル弁が完全に閉止する以前に、前記増圧器制御手段の作動を停止させて前記増圧器を停止し、前記燃料噴射ノズルから噴射される燃料の噴射圧力を、所定の圧力まで低下させる、ことを特徴とする請求項1乃至請求項3の何れか1項に記載の燃料噴射装置における燃料噴射方法。
  5. 前記燃料噴射ノズルから燃料のアフター噴射を履行する際に、当該アフター噴射を開始する以前に前記増圧器制御手段の作動を停止させて前記増圧器を停止し、前記蓄圧器による所定の圧力と前記蓄圧器及び増圧器の作動によって静的に決まる静的最高圧力との間の中間の圧力で前記アフター噴射を履行する、ことを特徴とする請求項1乃至請求項4の何れか1項に記載の燃料噴射装置における燃料噴射方法。
  6. 機関の1サイクルにおいて前記燃料噴射ノズルからの燃料噴射を複数回に分けて行う多段噴射を履行する場合に、前記増圧器制御手段によって少なくとも2回以上に分けて前記増圧器を作動させる、ことを特徴とする請求項1乃至請求項5の何れか1項に記載の燃料噴射装置における燃料噴射方法。
  7. 燃料噴射ノズル内の燃料溜に主油路を介して連通され、燃料加圧ポンプから圧送される燃料油を所定の圧力にして蓄圧する蓄圧器と、
    前記燃料噴射ノズルと蓄圧器とを連通する前記主油路の途中に設けられ、前記燃料噴射ノズル側から前記蓄圧器側への燃料圧力流出を遮断する圧力遮断弁と、
    前記燃料噴射ノズルと蓄圧器とを連通する前記主油路の前記圧力遮断弁よりも下流側において連通する噴射制御用油室と、
    前記噴射制御用油室に設けられ、前記噴射制御用油室に燃料油圧を作用させることにより前記燃料噴射ノズル内のニードル弁を閉止せしめ、前記噴射制御用油室の燃料油を除去することにより前記ニードル弁を開放して燃料噴射を履行せしめる噴射制御弁と、
    シリンダ及びピストンを有し、前記燃料噴射ノズルと蓄圧器とを連通する前記主油路の前記圧力遮断弁よりも下流側において前記燃料噴射ノズルと前記噴射制御用油室に連通する増圧器と、
    前記蓄圧器からの燃料を前記シリンダ内へ流入させることによりまたは前記シリンダ内の燃料を流出させることにより前記増圧器のピストンを移動させて、前記圧力遮断弁よりも下流側の燃料圧力を増大せしめるピストン制御弁と、
    を備えた燃料噴射装置における燃料噴射方法において、
    前記増圧器のピストンの移動速度を制御すると共に、前記噴射制御弁と前記ピストン制御弁とをそれぞれ独立して制御し、
    前記増圧器の作動開始後の燃料圧力の増加期間、若しくは前記増圧器の作動終了後の燃料圧力の減少期間に、前記ニードル弁の開放、若しくは閉止を行い、前記燃料噴射ノズルからの噴射開始時の燃料圧力、若しくは噴射終了時の燃料圧力を任意に選択することで、
    前記燃料噴射ノズルから噴射される燃料の最高噴射圧力、増圧開始時の当該噴射圧力の増加率、噴射終了時の当該噴射圧力の低下率、パイロット噴射圧力、及びアフター噴射圧力のうちの少なくとも何れか一つを任意に変化させて燃料噴射を履行する、
    ことを特徴とする燃料噴射装置における燃料噴射方法。
  8. 前記増圧器のピストンの移動速度の制御は、前記ピストン制御弁による前記シリンダの燃料流路面積を変化させることにより行われる、ことを特徴とする請求項7に記載の燃料噴射装置における燃料噴射方法。
  9. 前記燃料噴射ノズル内のニードル弁の開放期間中に、前記ピストン制御弁による前記シリンダの前記燃料流路面積を変化させる、ことを特徴とする請求項8に記載の燃料噴射装置における燃料噴射方法。
  10. 機関の1サイクルにおいて前記燃料噴射ノズルからの燃料噴射を複数回に分けて行う多段噴射を履行する場合に、前記ピストン制御弁による前記シリンダの前記燃料流路面積を各噴射に応じてそれぞれ独自に設定した、ことを特徴とする請求項8または請求項9に記載の燃料噴射装置における燃料噴射方法。
  11. 前記ピストン制御弁の開閉を短時間に周期的に行うことにより、前記シリンダの前記燃料流路面積を実質的に変化させる、ことを特徴とする請求項8乃至請求項10の何れか1項に記載の燃料噴射装置における燃料噴射方法。
  12. 前記ピストン制御弁の開閉周期を変化させる、ことを特徴とする請求項11記載の燃料噴射装置における燃料噴射方法。
  13. 機関の1サイクルにおいて前記燃料噴射ノズルからの燃料噴射を複数回に分けて行う多段噴射を履行する場合に、前記ピストン制御弁の開閉を短時間に周期的に行うことを特徴とする請求項12に記載の燃料噴射装置における燃料噴射方法。
JP2002203204A 2002-07-11 2002-07-11 燃料噴射装置における燃料噴射方法 Expired - Fee Related JP4308487B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002203204A JP4308487B2 (ja) 2002-07-11 2002-07-11 燃料噴射装置における燃料噴射方法
ES03764177T ES2433894T3 (es) 2002-07-11 2003-07-11 Procedimiento para la inyección de combustible en un inyector de combustible
US10/485,181 US6904893B2 (en) 2002-07-11 2003-07-11 Fuel injection method in fuel injector
PCT/JP2003/008855 WO2004007946A1 (ja) 2002-07-11 2003-07-11 燃料噴射装置における燃料噴射方法
EP03764177.6A EP1522719B1 (en) 2002-07-11 2003-07-11 Fuel injection method in fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203204A JP4308487B2 (ja) 2002-07-11 2002-07-11 燃料噴射装置における燃料噴射方法

Publications (2)

Publication Number Publication Date
JP2004044494A JP2004044494A (ja) 2004-02-12
JP4308487B2 true JP4308487B2 (ja) 2009-08-05

Family

ID=30112667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203204A Expired - Fee Related JP4308487B2 (ja) 2002-07-11 2002-07-11 燃料噴射装置における燃料噴射方法

Country Status (5)

Country Link
US (1) US6904893B2 (ja)
EP (1) EP1522719B1 (ja)
JP (1) JP4308487B2 (ja)
ES (1) ES2433894T3 (ja)
WO (1) WO2004007946A1 (ja)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7281523B2 (en) * 2003-02-12 2007-10-16 Robert Bosch Gmbh Fuel injector pump system with high pressure post injection
JP4088600B2 (ja) 2004-03-01 2008-05-21 トヨタ自動車株式会社 増圧式燃料噴射装置の補正方法
JP2005315195A (ja) 2004-04-30 2005-11-10 Toyota Motor Corp 増圧コモンレール式燃料噴射装置の燃料噴射制御方法
JP4196895B2 (ja) * 2004-07-12 2008-12-17 株式会社デンソー 燃料噴射装置
JP3994990B2 (ja) 2004-07-21 2007-10-24 株式会社豊田中央研究所 燃料噴射装置
JP4003770B2 (ja) 2004-10-01 2007-11-07 トヨタ自動車株式会社 燃料噴射装置
JP2006132467A (ja) * 2004-11-08 2006-05-25 Mitsubishi Fuso Truck & Bus Corp コモンレール式燃料噴射装置
US7398763B2 (en) * 2005-11-09 2008-07-15 Caterpillar Inc. Multi-source fuel system for variable pressure injection
US7658229B2 (en) 2006-03-31 2010-02-09 BST Lift Systems, LLC Gas lift chamber purge and vent valve and pump systems
DE112007001288T5 (de) * 2006-05-24 2009-04-23 Caterpillar Inc., Peoria Brennstoffsystem mit mehreren Quellen für Einspritzung mit variablem Druck
US7431017B2 (en) 2006-05-24 2008-10-07 Caterpillar Inc. Multi-source fuel system having closed loop pressure control
US7353800B2 (en) 2006-05-24 2008-04-08 Caterpillar Inc. Multi-source fuel system having grouped injector pressure control
US7392791B2 (en) 2006-05-31 2008-07-01 Caterpillar Inc. Multi-source fuel system for variable pressure injection
US20080047527A1 (en) * 2006-08-25 2008-02-28 Jinhui Sun Intensified common rail fuel injection system and method of operating an engine using same
JP4306722B2 (ja) * 2006-11-24 2009-08-05 トヨタ自動車株式会社 燃料噴射装置
US8387599B2 (en) 2008-01-07 2013-03-05 Mcalister Technologies, Llc Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines
US8225768B2 (en) 2008-01-07 2012-07-24 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8413634B2 (en) 2008-01-07 2013-04-09 Mcalister Technologies, Llc Integrated fuel injector igniters with conductive cable assemblies
US8074625B2 (en) 2008-01-07 2011-12-13 Mcalister Technologies, Llc Fuel injector actuator assemblies and associated methods of use and manufacture
US7628137B1 (en) 2008-01-07 2009-12-08 Mcalister Roy E Multifuel storage, metering and ignition system
US8635985B2 (en) 2008-01-07 2014-01-28 Mcalister Technologies, Llc Integrated fuel injectors and igniters and associated methods of use and manufacture
US8365700B2 (en) 2008-01-07 2013-02-05 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
US8561598B2 (en) 2008-01-07 2013-10-22 Mcalister Technologies, Llc Method and system of thermochemical regeneration to provide oxygenated fuel, for example, with fuel-cooled fuel injectors
WO2010109654A1 (ja) * 2009-03-27 2010-09-30 トヨタ自動車株式会社 無段変速機の媒体圧力制御装置及び無段変速機
US8307632B2 (en) * 2009-08-25 2012-11-13 International Engine Intellectual Property Company, Llc Post injection bucketing strategy to avoid hardware cavitation
CN102713244A (zh) 2009-08-27 2012-10-03 麦卡利斯特技术有限责任公司 在具有多个驱动器和/或电离控制的燃烧室中成形供应燃料
CN102712540B (zh) 2009-08-27 2014-12-17 麦卡利斯特技术有限责任公司 陶瓷绝缘体及其使用和制造方法
CA2783185C (en) 2009-12-07 2014-09-23 Mcalister Technologies, Llc Adaptive control system for fuel injectors and igniters
CN102859176B (zh) 2009-12-07 2016-01-20 麦卡利斯特技术有限责任公司 适于大型发动机应用的集成式燃料喷射器点火器以及使用和制造的相关方法
US20110297753A1 (en) 2010-12-06 2011-12-08 Mcalister Roy E Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
WO2011100717A2 (en) 2010-02-13 2011-08-18 Mcalister Roy E Methods and systems for adaptively cooling combustion chambers in engines
AU2011216246B2 (en) 2010-02-13 2013-01-17 Mcalister Technologies, Llc Fuel injector assemblies having acoustical force modifiers and associated methods of use and manufacture
US20130186373A1 (en) * 2010-04-15 2013-07-25 International Engine Intellectual Property Company, Llc. Mitigation of fuel pressure spikes in a fuel injector having independently controlled pressure intensification and injection
US8528519B2 (en) 2010-10-27 2013-09-10 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8091528B2 (en) 2010-12-06 2012-01-10 Mcalister Technologies, Llc Integrated fuel injector igniters having force generating assemblies for injecting and igniting fuel and associated methods of use and manufacture
WO2012112615A1 (en) 2011-02-14 2012-08-23 Mcalister Technologies, Llc Torque multiplier engines
CN103597182B (zh) * 2011-04-29 2017-03-15 万国引擎知识产权有限责任公司 运行压燃式发动机的方法及压燃式发动机
JP5745934B2 (ja) * 2011-05-23 2015-07-08 株式会社日本自動車部品総合研究所 燃料噴射制御装置
EP2742218A4 (en) 2011-08-12 2015-03-25 Mcalister Technologies Llc SYSTEMS AND METHOD FOR IMPROVED MOTOR COOLING AND ENERGY GENERATION
WO2013025626A1 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Acoustically actuated flow valve assembly including a plurality of reed valves
US8851047B2 (en) 2012-08-13 2014-10-07 Mcallister Technologies, Llc Injector-igniters with variable gap electrode
US8752524B2 (en) 2012-11-02 2014-06-17 Mcalister Technologies, Llc Fuel injection systems with enhanced thrust
US9169821B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Fuel injection systems with enhanced corona burst
US9169814B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Systems, methods, and devices with enhanced lorentz thrust
US20140131466A1 (en) 2012-11-12 2014-05-15 Advanced Green Innovations, LLC Hydraulic displacement amplifiers for fuel injectors
US9309846B2 (en) 2012-11-12 2016-04-12 Mcalister Technologies, Llc Motion modifiers for fuel injection systems
US9200561B2 (en) 2012-11-12 2015-12-01 Mcalister Technologies, Llc Chemical fuel conditioning and activation
US9115325B2 (en) 2012-11-12 2015-08-25 Mcalister Technologies, Llc Systems and methods for utilizing alcohol fuels
US8800527B2 (en) 2012-11-19 2014-08-12 Mcalister Technologies, Llc Method and apparatus for providing adaptive swirl injection and ignition
US9194337B2 (en) 2013-03-14 2015-11-24 Advanced Green Innovations, LLC High pressure direct injected gaseous fuel system and retrofit kit incorporating the same
US9562500B2 (en) 2013-03-15 2017-02-07 Mcalister Technologies, Llc Injector-igniter with fuel characterization
US8820293B1 (en) 2013-03-15 2014-09-02 Mcalister Technologies, Llc Injector-igniter with thermochemical regeneration
WO2015022445A1 (en) * 2013-08-15 2015-02-19 Wärtsilä Finland Oy Method for injecting liquid fuel and fuel injection system
JP6098613B2 (ja) * 2014-10-30 2017-03-22 トヨタ自動車株式会社 内燃機関
JP6269442B2 (ja) 2014-10-30 2018-01-31 トヨタ自動車株式会社 内燃機関
JP6156397B2 (ja) * 2015-01-14 2017-07-05 トヨタ自動車株式会社 内燃機関
JP6172189B2 (ja) 2015-03-23 2017-08-02 マツダ株式会社 直噴エンジンの燃料噴射制御装置
DE102016105625B4 (de) 2015-03-30 2020-10-08 Toyota Jidosha Kabushiki Kaisha Kraftstoffeinspritzvorrichtung für Brennkraftmaschine
JP6358271B2 (ja) * 2015-03-30 2018-07-18 トヨタ自動車株式会社 内燃機関の燃料噴射装置
DE102016110112B9 (de) * 2015-06-11 2021-04-01 Denso Corporation Kraftstoffeinspritzvorrichtung
JP7285795B2 (ja) * 2020-01-31 2023-06-02 三菱重工業株式会社 エンジン

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039489Y2 (ja) * 1981-05-28 1985-11-26 ヤンマーディーゼル株式会社 内燃機関用ポンプノズル
DE3118365A1 (de) 1981-05-08 1982-11-25 Siemens AG, 1000 Berlin und 8000 München Thyristor mit in den emitter eingefuegten steuerbaren emitter-kurzschlusspfaden
JPS61149770U (ja) * 1985-03-07 1986-09-16
US5172660A (en) 1992-02-24 1992-12-22 Eaton Corporation Camshaft phase change device
US5172658A (en) 1992-02-24 1992-12-22 Eaton Corporation Camshaft phase change device
US5172662A (en) 1992-02-24 1992-12-22 Eaton Corporation Camshaft phase change device
DE19910970A1 (de) * 1999-03-12 2000-09-28 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE19939423A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE19939429A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
DE19939421A1 (de) * 1999-08-20 2001-03-01 Bosch Gmbh Robert Kombiniertes hub-/druckgesteuertes Kraftstoffeinspritzverfahren und -system für eine Brennkraftmaschine
DE10063545C1 (de) * 2000-12-20 2002-08-01 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung
JP2002364484A (ja) 2001-06-04 2002-12-18 Toyota Central Res & Dev Lab Inc 燃料噴射装置
JP3826771B2 (ja) * 2001-11-16 2006-09-27 三菱ふそうトラック・バス株式会社 燃料噴射装置

Also Published As

Publication number Publication date
US20040194756A1 (en) 2004-10-07
EP1522719A4 (en) 2008-12-31
ES2433894T3 (es) 2013-12-12
JP2004044494A (ja) 2004-02-12
US6904893B2 (en) 2005-06-14
WO2004007946A1 (ja) 2004-01-22
EP1522719A1 (en) 2005-04-13
EP1522719B1 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP4308487B2 (ja) 燃料噴射装置における燃料噴射方法
JP4007103B2 (ja) 燃料噴射装置
US8100345B2 (en) Fuel injection device
EP1738064B1 (en) Fuel supply apparatus for internal combustion engine
JP2003161220A (ja) 二重モード能力を有する燃料噴射器およびそれを用いたエンジン
US20070089707A1 (en) Air and fuel supply system for combustion engine
WO2007021336A1 (en) Engine system and method of operating same over multiple engine load ranges
JP3932688B2 (ja) 内燃機関用燃料噴射装置
JP3598775B2 (ja) ディーゼルエンジンの制御装置
JP2018105209A (ja) 燃料噴射装置
JP2002364484A (ja) 燃料噴射装置
JP2012241663A (ja) 燃料噴射制御装置
JP2005536681A (ja) 燃料噴射装置
JP3063610B2 (ja) 内燃機関用燃料供給装置
JP4256771B2 (ja) ディーゼル機関の燃料制御方法及びその装置
JP2000054929A (ja) ディーゼルエンジンの燃料噴射装置および制御装置
JP4508411B2 (ja) 燃料・水噴射内燃機関
US10378495B2 (en) Fuel system having purging capability for reduced fuel dribble
JP2008064073A (ja) 燃料噴射装置
JP2000240524A (ja) 蓄圧式燃料噴射制御装置
JP3924156B2 (ja) 燃料噴射装置
JP3356087B2 (ja) 蓄圧式燃料噴射装置
JP3812620B2 (ja) 蓄圧式燃料噴射装置
JP3377033B2 (ja) 蓄圧式燃料噴射装置
JPH0712003A (ja) 直噴式ディーゼルエンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees