EP0553447B1 - Système de refroidissement de plaques d'impression pour une machine à imprimer - Google Patents

Système de refroidissement de plaques d'impression pour une machine à imprimer Download PDF

Info

Publication number
EP0553447B1
EP0553447B1 EP92120878A EP92120878A EP0553447B1 EP 0553447 B1 EP0553447 B1 EP 0553447B1 EP 92120878 A EP92120878 A EP 92120878A EP 92120878 A EP92120878 A EP 92120878A EP 0553447 B1 EP0553447 B1 EP 0553447B1
Authority
EP
European Patent Office
Prior art keywords
air
heat exchanger
printing plate
printing
plate surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92120878A
Other languages
German (de)
English (en)
Other versions
EP0553447A1 (fr
Inventor
Hans-Joachim Kurz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baldwin Gegenheimer GmbH
Original Assignee
Baldwin Gegenheimer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6450557&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0553447(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Baldwin Gegenheimer GmbH filed Critical Baldwin Gegenheimer GmbH
Priority to EP93110826A priority Critical patent/EP0602312B1/fr
Publication of EP0553447A1 publication Critical patent/EP0553447A1/fr
Application granted granted Critical
Publication of EP0553447B1 publication Critical patent/EP0553447B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F7/00Rotary lithographic machines
    • B41F7/20Details
    • B41F7/24Damping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/08Cylinders
    • B41F13/22Means for cooling or heating forme or impression cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F31/00Inking arrangements or devices
    • B41F31/002Heating or cooling of ink or ink rollers

Definitions

  • the invention relates to a printing plate temperature control system for a printing press according to the preamble of claim 1.
  • the inventor has already carried out experiments with a blown air cooling device which contains a heat exchanger through which cooling liquid flows and which has an air inlet and an air outlet, and a blower which drives air through the heat exchanger from the air inlet side to the air outlet side and on the surface of a rotating one on the air outlet side cylindrical pressure plate blows.
  • a blower which drives air through the heat exchanger from the air inlet side to the air outlet side and on the surface of a rotating one on the air outlet side cylindrical pressure plate blows.
  • the surface of the cylindrical pressure plate should be kept at a temperature between 24 o and 27 o C.
  • An object of the invention is to drastically reduce the energy required for the operation of the blown air cooling device.
  • Another object of the invention is to feed the blown air cooling device into a printing plate temperature control system of a printing press integrate that the printing unit of the printing press either with the blown air cooling device (waterless offset printing) or with inking rollers, so-called ink distribution rollers, through which coolant flows (waterless offset printing) or with dampening fluid which is applied to the surface of the printing plate (fountain solution offset printing) can.
  • the energy expenditure required for operation should be low.
  • the temperature control system should be designed such that it can be manufactured inexpensively.
  • the printing plate temperature control system is designed in such a way that it can be switched from one operating mode to another of these three operating modes in a short time and without extensive construction work.
  • This switchover should preferably be possible in a simple manner by switching valves without machine parts having to be removed or converted.
  • the invention relates in particular to waterless continuous offset printing and enables, instead, fountain solution offset printing to be printed continuously using the same printing unit of a printing press.
  • a microcomputer in which control characteristic curves for all operating modes of the printing plate temperature control system are stored, which contains all operating value setpoints and which receives all actual values to be monitored for operation.
  • Waterless offset printing uses water as the coolant, which can be mixed with additives. This water is referred to below as “cold water”. It is processed and stored in a first storage container. "Fountain water” is prepared and stored in a separate second reservoir for the fountain solution offset printing. Both the dampening water and the cold water are cooled by a common cooling system. This results in an overall compact, inexpensive system, which makes it possible to use either of the three possible operating modes with low energy requirements: 1. waterless offset printing with blown air cooling by the blown air cooling device; 2. waterless offset printing by cooling ink distribution rollers of an inking unit with the same cold water with which the cold air is cooled in the blown air cooling device; 3. Fountain solution offset printing by dampening the printing plate surface with the fountain solution.
  • Fig. 1 shows a broken perspective view of a blown air cooling device 2, which is a bar-like elongated unit.
  • This assembly or blown air cooling device 2 extends at a short distance essentially over the entire axial length of a cylindrical surface 4 of a cylindrical pressure plate 6 which rotates in the direction of an arrow 8.
  • the blown air cooling device 2 is arranged in a stationary manner relative to the rotating pressure plate 6.
  • the blown air cooling device 2 consists of a housing 10 which is open on its side facing the printing plate surface 4 and thereby forms an air outlet 12 which extends over the entire length of the roller; a pivotable around a hinge 14 cover 16 on the housing side facing away from the air outlet 12, in which a plurality of bores 18 is formed as an air inlet for air from outside the housing 10; Air return channels 20 and 22, which are each formed between a lower housing plate 24 and an upper housing plate 26 and a lower baffle plate 28 and upper baffle plate 30 arranged at a distance therefrom and each have a return air inlet 32 and 34 on the side of the blast air cooling device 2 opposite the pressure plate surface 4 form, and on the side facing away from the blown air cooling device 2 have return air outlets 36 and 38, via which return air 40 and 41 discharged from the pressure plate surface 4 flows together and is mixed with fresh air 42, which flows into the blown air cooling device 2 via the air inlet 18 in the cover 16.
  • the blowers 60 suck in fresh air 42 at the heat exchanger air inlet 54 through the air inlet 18 and return air 40 and 41 through the return air outlets 36 and 38, suck the mixed fresh air 42 and return air 40 and 41 through the heat exchanger 52, in which the mixed air cools and blow this mixture onto the cylindrical surface 4 of the cylindrical pressure plate 6.
  • the surface 4 directs the air in the direction of rotation 8 and in the opposite direction tangentially away into the return air inlets 32 and 34.
  • This return air 40 and 41 overflows through the air return channels 20 and 22 the return air outlets 36 and 38 again to the heat exchanger air inlet 54.
  • the blowers 60 contain an electric motor driving their propellers, the speed of which is controlled by a bundle of electrical lines 64 from one electronic control device 66, which contains a microcomputer, is regulated as a function of a target temperature value of the printing plate surface 4 and the respective actual temperature value of this printing plate surface 4.
  • the actual temperature of the printing plate surface 4 is measured by sensors 68, which are preferably infrared sensors.
  • sensors 68 which are preferably infrared sensors.
  • the speed of the rotors of the blowers 60 is automatically increased by the microcomputer of the control device 66 in order to cool the printing plate surface 4 more strongly; If the actual value temperature of the printing plate surface 4 falls below the desired temperature value, the speed of the rotor of the blower 60 is correspondingly reduced by the microcomputer.
  • Cold water is used as the cooling liquid for cooling the heat exchanger 52, preferably a plate heat exchanger, which flows through the heat exchanger from a cold water inlet 70 to a cold water outlet 72 in the direction of arrows 74.
  • the heat exchanger 52 is part of a coolant circuit in which the cold water warmed up by the heat exchanger 52 is continuously cooled before it is fed back to the heat exchanger 52. This makes it possible to change the temperature of the air blown by the blowers 60 onto the pressure plate surface 4 by changing the temperature of the cold water of the heat exchanger 52. This makes it possible to influence the temperature of the printing plate surface 4 either by varying the rotor speed of the blowers 60 and / or by varying the temperature of the cold water which is fed to the heat exchanger 52.
  • the blown air cooling device 2 has over the The axial length of the pressure plate surface distributes a number of cooling air sections 76, 77, 78, etc., corresponding to the number of fans 60.
  • the printing plate surface 4 can be individually stronger or weaker along its axial length corresponding to the cooling air sections 76, 77, 78, etc. be cooled.
  • each fan 60 can be assigned its own heat exchanger 52 and regulated individually with regard to the cold water temperature.
  • the temperature of the printing plate surface can also be set and regulated separately in each cooling air section 76, 77, 78 by the corresponding cold water temperature of the heat exchangers 52.
  • the printing plate surface 4 can thus be optimally temperature-controlled not only as a whole, but optionally in desired zones corresponding to the cooling air sections 76, 77, 78.
  • Fig. 2 shows a complete printing plate temperature control system for a printing machine according to the invention, wherein in Fig. 2, among other things, the blown air cooling device 2, its cold water inlet 70 and cold water outlet 72, and the bundle of electrical lines 64 of the electric motors of the blowers 60, and that Entire temperature control system controlling microcomputer control device 66 are shown.
  • the cold water serving as cooling liquid for the heat exchanger 52 is stored in a first reservoir 80, optionally provided with additives, kept at a certain level 81, and by a pump 82 through a line 83, a second heat exchanger 84, a Line 85 with a valve 86 controllable by the microcomputer of the control device 66 is fed through the cold water inlet 70 to the first heat exchanger 52 of the blown air cooling device 2.
  • the cold water gives off cold to the fresh air 42 and the recirculated return air 40 and 41 in the first heat exchanger 52 of the blown air cooling device 2.
  • the cold water heated in the process flows through the heat exchanger 52 and via its cold water outlet 72 and a cold water return line 88 back into the first reservoir 80.
  • the sensor 68 measuring the temperature of the surface 4 is connected to the microcomputer control device 66 via electrical lines 90 and reports the respective actual temperature of the printing plate surface 4.
  • the first pump 82 is also connected to the microcomputer by electrical lines (not shown). Control device 66 connected.
  • the microcomputer control device 66 can regulate the speed of the pump 82, and thereby the flow rate of the cold water flowing through the first heat exchanger 52, in such a way that the Air 40, 41, 42 blown by the blown air cooling device 2 onto the printing plate surface 4 keeps the actual value temperature of the printing plate surface 4 at the desired target value.
  • This temperature control can take place in addition to or instead of the temperature control by the speed control of the blowers 60.
  • the best efficiency is achieved with the blown air cooling device 2 when the edges of the air outlet 12 of the housing 10 lie airtight on the pressure plate surface 4, because then no air could escape from the blown air cooling device 2 between the housing 10 and the pressure plate surface 4.
  • Such a dense system is not possible in practice. It is sufficient if the edges of the air outlet 12 of the housing 10 are at a very small distance from the printing plate surface 4. Because the edges 44 and 46 of the guide plates 28 and 30 have a greater distance from the pressure plate surface 4 than the edges of the air outlet 12, the flow resistance for the air into the air return channels 20 and 22 is many times smaller than the air resistance between the edges the air outlet 12 of the housing 10 and the pressure plate surface 4.
  • the blown air cooling device 2 can also be arranged on a diametrically opposite side of the cylindrical pressure plate 6, or a plurality of blown air cooling devices 2 and a plurality of temperature sensors 68 can be arranged on the surface 4 of the pressure plate 6.
  • a level sensor 91 in the first reservoir 80 reports the cold water level 81 to the microcomputer of the control device 66.
  • the microcomputer generates a signal when the cold water level 81 in the first reservoir 80 is too low or too high, so that the cold water level 81 can be kept constant automatically or manually .
  • a ventilation line 92 with a flow restrictor 93 leads from the cold water line 83 back into the first reservoir 80 Vent line 92 prevents cold water from being sucked into the blown air cooling device 2 by capillary action or gravity action when the pump 82 is switched off.
  • the printing plate 6 is part of a printing unit 100 of a printing press.
  • the printing unit 100 contains a blanket roller 102, which transfers the print image from the surface 4 of the printing plate 6 to a printing material 104, which rolls in the direction of an arrow 105 over the cylindrical surface of the blanket roller 102.
  • the surface of the so-called blanket roller 102 can be made of rubber or another material.
  • An inking unit 106 transfers printing ink by means of rollers 107, so-called ink distributor rollers, from an ink reservoir, a so-called ink duct 108, to the surface 4 of the printing plate 6.
  • Cold ink of the first reservoir container 80 can be passed through the ink distributor rollers 107, around the cylindrical surfaces of the ink distributor rollers 107 and thereby also to cool the printing ink and the surface 4 of the printing plate 6.
  • the surface 4 of the pressure plate 6 can thus be optionally cooled by air 40, 41, 42 of the blown air cooling device 2 and / or by cold water cooling of the ink distributor rollers 107 and thereby kept at a desired temperature.
  • the ink cooler rollers 107 cooled by cold water can be supplied with cold water from the first reservoir 80 in that they are connected to the cold water supply line 85 and to the cold water return line 88 through supply connection lines 111 and return connection lines 112.
  • valve 114 which is controlled by the microcomputer control device 66 as a function of a temperature setpoint and a Actual temperature value is opened or closed.
  • the actual temperature value can be the temperature value of the surface 4 of the printing plate 6 measured by the infrared sensor 68.
  • “fountain solution offset printing” can also be printed if a trough 120 is additionally provided, from which a rotating roller 122 immersing in the fountain solution 124 receives fountain solution 124 and directly or via further rollers onto the surface 4 of the rotating roller Pressure plate 6 transmits.
  • the same printing unit 100 can optionally be used for printing in three different ways: 1. fountain solution offset printing, 2. waterless offset printing with cooling of the printing plate surface 4 by cooling the ink distributor rollers 107, and / or 3. waterless offset printing with cooling of the surface 4 of the printing roller 6 by the blown air cooling device 2.
  • the printing press can have a plurality of printing units 100, 200, etc., all of which can be of the same or different design. All printing units 100, 200 etc. can be designed for one or more of the three types of printing mentioned. This makes it possible for the printing material 104 to be printed in a plurality of printing units according to one of the three different types mentioned. As a result, better print quality and new print image variants can be achieved with less energy and less material than before.
  • the blown air cooling device 2 can also be retrofitted in any known printing unit.
  • the dampening water 124 is in a second hermetically separated from the cold water 130 of the first reservoir 80
  • Storage container 132 is stored in which it is kept at a substantially constant level 135 by a level sensor or level switch 134 connected to the microcomputer control device 66 and can be mixed with additives, for example alcohol.
  • both the first reservoir 80 and the second reservoir 132 each have their own water inlet, not shown, which is controlled by the microcomputer control device 66 as a function of the actual level 81 or 135, which is controlled by the level sensor 91 or 134 is measured.
  • a second pump 138 feeds dampening water 124 from the second reservoir 132 via a line 139 through a third heat exchanger 140 and after the heat exchanger through a dampening water feed line 142 into the dampening water pan 120.
  • the dampening water 124 is kept constant in the dampening water pan 120 at a certain liquid level 144 . This can be achieved by a liquid overflow.
  • the dampening water passes from the dampening water trough 120 via the liquid overflow by gravity through a drain line 150 and a filter 152 into a filter container 154.
  • a third pump 156 conveys the cleaned dampening water from the filter container 154 via a return line 158 back into the second storage container 132.
  • a filter sensor 160 generates a signal when the filter 152 is so dirty that it needs to be replaced.
  • the drain line 150 can be connected directly to the suction side 164 of the third pump 156, the filter 152 can be arranged interchangeably in or on the second container 132 according to the reference number 152/2 there, and the outlet end 166 can be connected to that in the storage container 132 arranged filter 152/2, so that the returned dampening water is pumped by the third pump 156 to above the filter 152/2 and then seeps through gravity through this filter 152/2 into the second reservoir 132.
  • a branch line 170 can flow from the dampening water supply line 142 into the dampening water pan 120 of the further printing units 200, etc.
  • the fountain solution tanks 120 of the further printing units are connected in the same way as in the printing unit 100 described first via a discharge branch line 172 to the discharge line 150, or in a modified embodiment directly to the suction side 164 of the third pump 156.
  • a vent line 174 is connected to the line 139, downstream of the alcohol sensor 162, with a flow restrictor 176, the outlet 178 of which opens into the second reservoir 132.
  • the vent line 174 prevents the suction of dampening water from the second reservoir 132 into the dampening water trough 120 due to negative pressure (suction effect) due to flowing dampening water when the pump 138 is switched off.
  • the bypass line 182 enables the second Allow pump 138 to run constantly in continuous operation and recycle the fountain solution if no fountain solution may be supplied to the fountain tank 120, for example during interruptions in operation or if the fountain water level in the fountain tank 120 is above the desired setpoint.
  • Said circuit is formed by the second reservoir 132, the second pump 138, the line 139, the third heat exchanger 140, and the bypass line 182.
  • the dampening fluid circuit is formed by the second reservoir 132, the second pump 138, the third heat exchanger 140, the dampening water supply line 142, the dampening water pan 120, the drain line 150, filter 152, third pump 156 and dampening water return line 158.
  • the second heat exchanger 84 and the third heat exchanger 140 are part of a cooling system 190, in which refrigerant is alternately compressed in a refrigerant circuit from the gaseous state to a liquid state and then expanded again into the gaseous state for the generation of cold.
  • a cooling system 190 has only a single refrigerant circuit with a refrigerant compressor 192, preferably a piston compressor, an air-cooled condenser 194 and a refrigerant collector 196, and two refrigerant branches 198 and 199 connected in parallel with one another.
  • the one refrigerant branch 198 contains its own refrigerant expansion valve 202, which can be adjusted manually or by the microcomputer control device 66, and leads through the second heat exchanger 84, in which the refrigerant of this branch cools the cold water, which cools through the cold water feed lines 83 and 85 is passed through the second heat exchanger 84.
  • the other Refrigerant parallel branch 199 also contains its own refrigerant expansion valve 204, which can be set manually or automatically by the microcomputer control device 66, and leads through the third heat exchanger 140, in which the refrigerant of this parallel branch 199 cools the fountain solution 124, which cools through the Flow lines 139 and 142 is passed through this third heat exchanger 140.
  • a separate temperature setpoint is stored in the microcomputer for each parallel refrigerant branch 198, 199.
  • a temperature sensor 208 which supplies the microcomputer via electrical lines 210 with the actual temperature values which the microcomuter requires to regulate the refrigerant expansion valve 202 via electrical lines 212.
  • a temperature sensor 214 which supplies the microcomputer 66 with the actual temperature values of this parallel branch 199 via electrical lines 216, depending on which the microcomputer control device 66 via electrical lines 218 the refrigerant expansion valve 204 of the second refrigerant.
  • Parallel branch 199 controls according to the specified temperature setpoint.
  • an evaporation pressure regulator 222 which can be set manually or regulated by the microcomputer control device 66.
  • the use of a single refrigerant circuit together for the cold water 130 of the first reservoir 80 and for the dampening water 124 of the second reservoir 132 results in a substantial saving in material and a significantly lower energy expenditure for the operation of the entire system than in known systems.
  • the entire printing plate temperature control system is very compact and small. It enables a variety of different modes of operation, as described above, and can be controlled and regulated with a single microcomputer.
  • the microcomputer controller 66 can have display elements 224 for optically displaying important operating data and can include several processors.
  • a printing group 300 contains a plurality of rotating cylindrical printing plates 6 and a rubber blanket roller 102 lying against them for transferring the print image from the printing plates 6 to a printing material to be printed.
  • the printing plate temperature control system of this embodiment contains cold air outlets 304 in the form of a plurality of nozzles which are directed against the cylindrical surfaces 4 of the printing plates 6 and blow cold air 306 onto these surfaces 4.
  • the cold air nozzles 304 are formed in cold air channels 308, preferably tubes, of which at least one each extends axially parallel over the surface 4 of each pressure plate 6 with a small radial distance.
  • the return air inlets 312 are in the form of a plurality of suction nozzles which are formed in at least one air return duct 314, which is preferably a tube.
  • the air return pipe 314 is arranged in a space 316 formed by the cold air pipes 308, the pressure plates 6 and the blanket roller 102.
  • the intermediate space 316 is preferably essentially closed, for example by a wall 318.
  • a fan and heat exchanger unit 320 is arranged separately from the cold air pipes 308 and the air return pipe 314. It contains at least one fan 60 and at least one heat exchanger 52.
  • the heat exchanger cold air outlet 56 is in flow connection with the suction side 322 of the fan 60.
  • the pressure side 324 of the blower 60 is connected to an inlet end 327 of one of the cold air pipes 308 via a fluid line 326, partially schematically represented by arrows, and supplies it with cold air cooled by the heat exchanger 52.
  • a connecting duct 330 distributes the cold air to all cold air pipes 308.
  • a heat exchanger air inlet 54 is shown partially schematically by arrows via a connection 332 and a second fluid line 334, connected to an outlet end 336 of the air return pipe 314, so that the fan 60 passes through the parts Return air 310 sucks.
  • fresh air 42 can be sucked in at the same time through holes 18.
  • the blower and heat exchanger unit 320 can also be arranged separately from the cold air duct 308 and the air return duct 314 if only one of these ducts 308 and 314 is provided, or if only one pressure plate 6 is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Control Of Temperature (AREA)
  • Rotary Presses (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Claims (12)

  1. Système de refroidissement de plaques d'impression pour une machine d'impression, avec un dispositif de refroidissement par air soufflé qui comprend au moins un échangeur de chaleur, traversé par du liquide de refroidissement et présentant une entrée d'air d'échangeur de chaleur et une sortie d'air d'échangeur de chaleur, et au moins une soufflante, qui entraîne de l'air à travers l'échangeur de chaleur de l'entrée d'air d'échangeur de chaleur à la sortie d'air d'échangeur de chaleur et qui, de la sortie d'air d'échangeur de chaleur, le souffle sous forme d'air froid sur la surface d'une plaque d'impression cylindrique rotative,
    caractérisé en ce qu'un circuit de récirculation d'air (60, 32, 34, 20, 22, 36, 38, 52, 60 ; 320, 308, 314) est formé, dans lequel se trouvent l'échangeur de chaleur (52), la soufflante (60) et au moins un canal de recyclage d'air (20, 22 ; 314), par lequel de l'air froid soufflé sur la surface (4) de la plaque d'impression est ensuite, en l'éloignant de cette surface, renvoyé à l'entrée d'air (54) de l'échangeur de chaleur (52), où l'air renvoyé (40, 41) se mélange à l'air frais (42) aspiré par la soufflante (60) et est, conjointement avec l'air frais, à nouveau soufflé, en traversant l'échangeur de chaleur (52), sur la surface (4) de la plaque d'impression.
  2. Système de refroidissement de plaques d'impression selon la revendication 1, caractérisé en ce que l'échangeur de chaleur (52) est disposé du côté d'aspiration de la soufflante (60).
  3. Système de refroidissement de plaques d'impression selon la revendication 1 ou 2, caractérisé en ce que la vitesse de rotation du rotor de la soufflante (60) est réglée ou régulée en fonction d'une consigne de température et de la valeur réelle de température respective de la surface (4) de la plaque d'impression.
  4. Système de refroidissement de plaques d'impression selon l'une des revendications 1 à 3, caractérisé en ce que la température et/ou la vitesse d'écoulement du liquide de refroidissement qui traverse l'échangeur de chaleur (52) sont réglées ou régulées en fonction d'une consigne de température et de la valeur réelle de température respective de la surface (4) de la plaque d'impression.
  5. Système de refroidissement de plaques d'impression selon l'une des revendications 1 à 4, caractérisé en ce qu'un premier réservoir de stockage (80) est prévu, d'où du liquide de refroidissement (130) peut être apporté, alternativement ou simultanément, tant à l'échangeur de chaleur (52) du dispositif de refroidissement par air soufflé (2) qu'à des rouleaux distributeurs d'encre (107) d'un groupe d'encrage (106) qui transmet de l'encre d'impression d'une source d'encre (108) sur la surface (4) de la plaque d'impression.
  6. Système de refroidissement de plaques d'impression selon l'une des revendications 1 à 5, caractérisé en ce qu'une installation réfrigérante (190) est prévue, dans laquelle, pour la production de froid, du réfrigérant est, dans un circuit de réfrigérant, alternativement comprimé de l'état gazeux à un état liquide puis à nouveau détendu à l'état gazeux ; en ce qu'un circuit de liquide de refroidissement (80, 82, 83, 84, 85, 2, 88, 80) est prévu, dont le liquide de refroidissement (130) est, par une première pompe (82), pompé à partir d'un (ou du) premier réservoir de stockage (80) à travers un dispositif échangeur de chaleur (84, 140, 202, 204, 222) de l'installation réfrigérante (190) puis à travers l'échangeur de chaleur (52) du dispositif de refroidissement par air soufflé (2), et retourne ensuite dans le premier réservoir de stockage ; et en ce qu'un circuit de liquide de mouillage (132, 138, 139, 140, 142, 120, 152, 156, 158, 132) est prévu, dont le liquide de mouillage (124) est, par une deuxième pompe (138), pompé à partir d'un deuxième réservoir de stockage (132) à travers le dispositif échangeur de chaleur (84, 140, 202, 204, 222) de la même installation réfrigérante (190) puis dans une cuve de liquide de mouillage (120), dans laquelle une partie du liquide de mouillage est absorbée par un rouleau (122) rotatif dans cette cuve, pour être ensuite, éventuellement par l'intermédiaire d'autres rouleaux, transmise sur la surface (4) de la plaque d'impression rotative (6), et le liquide de mouillage excédentaire est renvoyé de la cuve de liquide de mouillage (120) dans le deuxième réservoir de stockage (132).
  7. Système de refroidissement de plaques d'impression selon la revendication 6, caractérisé en ce que le premier réservoir de stockage (80) et le deuxième réservoir de stockage (132) contiennent chacun au moins une sonde de niveau de liquide (91, 134), qui produit un signal en fonction du niveau de liquide.
  8. Système de refroidissement de plaques d'impression selon la revendication 6 ou 7, caractérisé en ce que le dispositif échangeur de chaleur de l'installation réfrigérante (190) présente deux échangeurs de chaleur (84, 140), qui sont montés en parallèle dans le circuit de réfrigérant et dont le débit respectif de réfrigérant peut être indépendamment réglé ou régulé (202, 208, 204, 214), et ce, pour chacun de ces deux échangeurs de chaleur (84, 140), en fonction d'une propre consigne de température, et en ce que l'un (84) de ces deux échangeurs de chaleur sert au refroidissement du liquide de refroidissement (130) et l'autre (140) au refroidissement du liquide de mouillage (124).
  9. Système de refroidissement de plaques d'impression selon l'une des revendications 6 à 8, caractérisé en ce que le circuit de liquide de mouillage présente une conduite de dérivation (182) par laquelle, sélectivement, une partie ou la totalité du liquide de mouillage peut être renvoyée de la sortie de liquide de mouillage (180) de l'installation réfrigérante (190) dans le deuxième réservoir de stockage (132), au lieu d'être dirigée vers la cuve de liquide de mouillage (120).
  10. Système de refroidissement de plaques d'impression selon l'une des revendications 6 à 9, caractérisé par une unité à micro-ordinateur (66) régulant ses fonctions essentielles, et par un appareil d'affichage (224) pour l'affichage visuel de paramètres d'exploitation importants.
  11. Système de refroidissement de plaques d'impression selon l'une des revendications 1 à 10, caractérisé en ce que le circuit de récirculation d'air forme, conjointement avec l'échangeur de chaleur (52), la soufflante (60) et le canal de recyclage d'air (20, 22), une unité de construction oblongue du genre poutre.
  12. Système de refroidissement de plaques d'impression selon l'une des revendications 1 à 10, caractérisé en ce que l'échangeur de chaleur (52) et la soufflante (60) forment conjointement une unité de construction (320), et en ce que cette unité de construction (320) est située séparément d'un canal d'air froid (308), délivrant de l'air froid sur la plaque d'impression (6), et du canal de recyclage d'air (314), mais est fluidiquement reliée à ces canaux (308, 314) par des conduites de fluide (326, 334).
EP92120878A 1992-01-30 1992-12-08 Système de refroidissement de plaques d'impression pour une machine à imprimer Expired - Lifetime EP0553447B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP93110826A EP0602312B1 (fr) 1992-01-30 1992-12-08 Système de refroidissement pour machines d'impression

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4202544A DE4202544A1 (de) 1992-01-30 1992-01-30 Druckplatten-temperierungssystem fuer eine druckmaschine
DE4202544 1992-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP93110826.0 Division-Into 1992-12-08

Publications (2)

Publication Number Publication Date
EP0553447A1 EP0553447A1 (fr) 1993-08-04
EP0553447B1 true EP0553447B1 (fr) 1996-05-01

Family

ID=6450557

Family Applications (2)

Application Number Title Priority Date Filing Date
EP92120878A Expired - Lifetime EP0553447B1 (fr) 1992-01-30 1992-12-08 Système de refroidissement de plaques d'impression pour une machine à imprimer
EP93110826A Expired - Lifetime EP0602312B1 (fr) 1992-01-30 1992-12-08 Système de refroidissement pour machines d'impression

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP93110826A Expired - Lifetime EP0602312B1 (fr) 1992-01-30 1992-12-08 Système de refroidissement pour machines d'impression

Country Status (5)

Country Link
US (2) US5309838A (fr)
EP (2) EP0553447B1 (fr)
JP (1) JP2572516B2 (fr)
AT (2) ATE137446T1 (fr)
DE (3) DE4202544A1 (fr)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4325725C2 (de) * 1993-07-30 1998-02-19 Cleanpack Gmbh Innovative Verp Verfahren und Vorrichtung zum Aufwickeln von im Rollen-Offsetdruck bedruckten Folienbahnen
DE4326835A1 (de) * 1993-08-10 1995-02-16 Baldwin Gegenheimer Gmbh Temperierungssystem für Druckmaschinenzylinder
DE4335097C2 (de) * 1993-10-14 1999-02-25 Baldwin Grafotec Gmbh Vorrichtung zum Temperieren von Druckmaschinenzylindern und -walzen
DE9316932U1 (de) * 1993-11-05 1993-12-16 Roland Man Druckmasch Druckwerk für wasserlosen Offsetdruck
EP0652104B1 (fr) * 1993-11-05 2002-04-10 MAN Roland Druckmaschinen AG Unité d'impression pour impression offset sans eau de mouillage
DE4426083A1 (de) * 1994-07-22 1996-01-25 Baldwin Gegenheimer Gmbh Druckmaschinen-Temperierungsvorrichtung
DE4426077A1 (de) * 1994-07-22 1996-01-25 Baldwin Gegenheimer Gmbh Druckmaschinen-Temperierungsvorrichtung
AU3013695A (en) * 1994-08-18 1996-02-29 Martin David Allum A method and device for controlling the temperature of an image cylinder in a printing-press
DE4429520B4 (de) * 1994-08-19 2006-03-23 Baldwin Germany Gmbh Verfahren und Vorrichtung zur Temperierung von Temperierflüssigkeit in Druckmaschinen
DE9413439U1 (de) 1994-08-19 1994-11-17 Baldwin Gegenheimer Gmbh Druckmaschinen-Temperierungssystem
DE9413438U1 (de) 1994-08-19 1995-06-22 Baldwin Gegenheimer Gmbh Druckmaschinen-Temperierungssystem
DE4440380A1 (de) * 1994-11-11 1996-05-15 Baldwin Gegenheimer Gmbh Geräteschrank zur Bereitstellung von Prozeßwasser
DE4442072B4 (de) * 1994-11-25 2005-11-10 Technotrans Ag Anordnung zur Temperierung eines Feuchtmittels und eines Kühlfluids für ausgewählte Walzen einer Druckmaschine
GB9501272D0 (en) * 1995-01-23 1995-03-15 Gale Gate Invest Ltd Improvements in or relating to printing
GB2299782B (en) * 1995-04-07 1998-04-29 Gordon Mitchell A device for controlling temperatures in printing machinery
FR2733453B1 (fr) * 1995-04-28 1997-07-25 Heidelberg Harris Sa Plieuse comprenant un module additionnel delivrant des cahiers
DE19523076C5 (de) * 1995-06-24 2007-05-16 Heidelberger Druckmasch Ag Vorrichtung zur Erzielung einer einwandfreien Auflage eines Bedruckstoffs in einer Druckmaschine
US5908000A (en) * 1996-01-31 1999-06-01 Holoubek, Inc. Heat curing system for silk screen printing press
US5603261A (en) * 1996-03-08 1997-02-18 Tri Service, Inc. Water distribution system in an ink flow temperature control system of a printing press arrangement
US6209456B1 (en) 1996-03-13 2001-04-03 Heidelberger Druckmaschinen Ag Web- and sheet-fed printing unit using various ink types, particularly water-based inks
US5694848A (en) * 1996-03-13 1997-12-09 Heidelberger Druckmaschinen Ag Printing unit for water based inks
US5758580A (en) * 1996-03-13 1998-06-02 Heidelberger Druckmaschinen Ag Printing unit using various ink types
US5713138A (en) 1996-08-23 1998-02-03 Research, Incorporated Coating dryer system
DE19750960C2 (de) * 1996-11-26 2002-08-14 Roland Man Druckmasch Filmfarbwerk für eine Rotationsdruckmaschine
CN1085144C (zh) * 1997-01-27 2002-05-22 Oce印刷系统有限公司 在使用结构化冰层的条件下对底材进行印刷的方法和装置
DE19942118A1 (de) * 1999-09-03 2001-03-08 Technotrans Ag Verfahren zum Kühlen und Konditionieren von Luft für die Druckmaschinentemperierung sowie diesbezügliche Kühl- und Konditionierungsanordnung
DE19949906A1 (de) * 1999-10-16 2001-04-19 Baldwin Grafotec Gmbh Druckmaschinen-Reinigungsvorrichtung
JP4412447B2 (ja) 2001-05-29 2010-02-10 東洋製罐株式会社 印刷機の温度調節方法及びその装置
US6851359B2 (en) * 2001-06-22 2005-02-08 Sparflex Offset printing method and device
DE10152593A1 (de) 2001-10-24 2003-05-08 Koenig & Bauer Ag Einrichtung zur Bedruckstoff- und Druckwerkskühlung mittels gekühlter Blasluft an Bogenrotationsdruckmaschinen
US6765941B2 (en) * 2001-12-03 2004-07-20 Agfa Corporation Method and apparatus for cooling a self-contained laser head
DE10206488B4 (de) 2002-02-16 2009-08-27 Baldwin Germany Gmbh Alkoholkonstanthalter für Offsetdruck-Feuchtwasser
DE10308408A1 (de) * 2002-03-20 2003-10-02 Heidelberger Druckmasch Ag Verfahren zur Temperierung einer Druckmaschine
DE10213959A1 (de) * 2002-03-28 2003-10-09 Baldwin Germany Gmbh Feuchtwasserkreislaufabschnitt
DE10227953B4 (de) * 2002-06-22 2005-04-07 Schott Glas Druckeinrichtung
US8032659B2 (en) * 2003-01-21 2011-10-04 Nextio Inc. Method and apparatus for a shared I/O network interface controller
DE10302877A1 (de) * 2003-01-25 2004-08-05 Baldwin Germany Gmbh Verfahren und Einrichtung zur Antriebsenergieversorgung von Druckmaschinen
DK176520B1 (da) * 2003-09-18 2008-07-07 Tresu Anlaeg As Arkoffsetmaskine, törreenhed samt fremgangsmåde til törring i arkoffsetmaskine
DE10355909A1 (de) 2003-11-29 2005-06-30 Baldwin Germany Gmbh Druckmaschinen-Reinigungseinrichtung
DE102004063790A1 (de) * 2004-12-30 2006-07-13 Baldwin Germany Gmbh Flüssigkeitsversorgungsschrank für Offset-Druckmaschinen
DE102005015954B4 (de) * 2005-04-07 2007-01-04 Technotrans Ag Druckmaschine mit Temperiervorrichtung
DE102006028292A1 (de) * 2006-03-24 2007-09-27 Kohnert, Bärbel Verfahren und Vorrichtung zur Temperierung von Farbwerken und von Feuchtmittel einer Offsetdruckmaschine
DE102006056315B4 (de) * 2006-11-29 2018-05-30 Koenig & Bauer Ag Verfahren zum Betreiben eines Kurzfarbwerkes für Offset-Rotationsdruckmaschinen
DE102006061341A1 (de) * 2006-12-22 2008-06-26 Man Roland Druckmaschinen Ag Vorrichtung zur Steuerung des Farbtransportes in einem Farbwerk
DE102007003464B4 (de) * 2007-01-24 2012-10-18 Technotrans Ag Kühlvorrichtung für Druckmaschinen
JP2008207485A (ja) * 2007-02-27 2008-09-11 Mitsubishi Heavy Ind Ltd 印刷機及び印刷方法
DE202008018546U1 (de) 2008-02-19 2015-08-03 Baldwin Germany Gmbh Druckmaschinentemperiersystem
DE102008009996A1 (de) 2008-02-19 2009-08-20 Baldwin Germany Gmbh Druckmaschinentemperiersystem
GB2468703A (en) * 2009-03-19 2010-09-22 Gew Ink curing apparatus with water cooled heat exchanging means
JP5318015B2 (ja) * 2010-03-29 2013-10-16 富士フイルム株式会社 画像形成装置
DE102012014236B3 (de) * 2012-07-18 2013-05-23 Technotrans Ag Kühlvorrichtung zum Temperieren unterschiedlicher Komponenten einer Druckmaschine oder einer Werkzeugmaschine mit einem Kältemittelkreislauf sowie korrespondierendes Verfahren
KR101404073B1 (ko) * 2012-12-28 2014-06-05 주식회사 나래나노텍 개선된 필름 건조로용 가이드롤 장치 및 가이드롤 시스템, 및 이를 구비한 필름 인쇄 장치
CN104325789A (zh) * 2014-09-30 2015-02-04 北京印刷学院 一种无水胶印的印版温度控制装置
JP7319714B2 (ja) * 2016-07-26 2023-08-02 株式会社富田技研 版胴冷却装置
JP6985761B2 (ja) * 2016-07-26 2021-12-22 株式会社富田技研 版胴冷却装置
JP6780841B2 (ja) * 2016-07-26 2020-11-04 株式会社富田技研 版胴冷却装置
DE102018113959A1 (de) 2018-06-12 2019-12-12 Baldwin Technology Gmbh Druckmaschinen-temperierungsvorrichtung und verfahren zum temperieren von farbwerken und von feuchtmittel einer offset-druckmaschine
CN109159537B (zh) * 2018-09-20 2020-05-12 宁波中和纸制品有限公司 一种环保型印刷装置
CN112046143A (zh) * 2020-09-07 2020-12-08 安徽天翔高新特种包装材料集团有限公司 一种具有喷气加湿装置的柔版印刷机
CN113771477B (zh) * 2021-09-26 2022-11-29 温州佳耀包装有限公司 一种四开五色胶印设备及其方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB115970A (en) * 1917-07-30 1918-05-30 Amalgamated Press Ltd Improvements connected with Printing Machines.
US1749316A (en) * 1923-09-10 1930-03-04 Wood Newspaper Mach Corp Means for preserving form rolls
US2063636A (en) * 1932-02-24 1936-12-08 Miehle Printing Press & Mfg Method of and means for dampening printing plates
US2063672A (en) * 1932-02-24 1936-12-08 Carrier Engineering Corp Method of and means for controlling a film of moisture
US2022635A (en) * 1935-02-25 1935-11-26 Goss Printing Press Co Ltd Printing press
US2319853A (en) * 1939-05-10 1943-05-25 Goss Printing Press Co Ltd Printing method and means
US2651992A (en) * 1949-03-05 1953-09-15 Goebel Ag Web printing press
US2972301A (en) * 1954-04-06 1961-02-21 Interchem Corp Printing process and apparatus
US2884855A (en) * 1954-06-18 1959-05-05 Roland Offsetmaschf Device for drying the blanket cylinders in offset printing machines
US2971460A (en) * 1959-03-30 1961-02-14 George H Shindle Method and apparatus for automatic temperature control of rotary printing press ink rollers
US3318018A (en) * 1964-12-31 1967-05-09 Beloit Corp Cooling and protective means for printed web material
DE1953590C3 (de) * 1969-10-24 1983-02-10 Leo P.H. Dipl.Rer.Pol. 7000 Stuttgart Keller Verfahren zur Beeinflussung des Flachdruckvorganges und Flachdruckmaschine hierfür
US3628454A (en) * 1969-07-16 1971-12-21 United States Banknote Corp Offset mister air die
US3686771A (en) * 1970-07-23 1972-08-29 Polygraph Leipzig Humidity regulating system for printing machines
US3686171A (en) * 1970-12-02 1972-08-22 Abbott Lab N-4-formyl-5-amino pyrazoles
US3847079A (en) * 1972-05-04 1974-11-12 H Dahlgren Method of printing sheets
DE2258640A1 (de) * 1972-11-30 1974-06-20 Koenig & Bauer Ag Schalldaemmvorrichtung an rotationsdruckmaschinen
CA1020807A (fr) * 1975-02-18 1977-11-15 Canadian International Paper Company Systeme d'impression lithographique offset
JPS55135665A (en) * 1979-04-10 1980-10-22 Takeshi Hashimoto Dampening water cooling device in printing press
JPS56127457A (en) * 1980-03-13 1981-10-06 Nippon Baldwin Kk Cooler for ink roller
JPS5862053A (ja) * 1981-10-08 1983-04-13 株式会社 篠原鉄工所 オフセツト印刷機
DE3439090A1 (de) * 1984-10-25 1986-04-30 Albert-Frankenthal Ag, 6710 Frankenthal Zylinder fuer bahnfoermiges material verarbeitende maschinen
US4972774A (en) * 1985-04-29 1990-11-27 Baldwin Technology Corporation Automatically controlling water feedrate on a lithographic press
DE3541458A1 (de) * 1985-11-23 1987-05-27 Koenig & Bauer Ag Kurzfarbwerk fuer offsetrotationsdruckmaschinen
US5074213A (en) * 1987-08-04 1991-12-24 Seiichi Kurosawa Thermoregulator of a block cylinder used for an offset press
JPS6472846A (en) * 1987-09-14 1989-03-17 Dainippon Printing Co Ltd Plate surface cooling method in printing press
US5036761A (en) * 1989-11-20 1991-08-06 Wingo Patrick Y Forced flow press dampening apparatus
JPH0414452A (ja) * 1990-05-08 1992-01-20 Canon Inc 画像形成装置
DE9101888U1 (fr) * 1990-07-04 1991-05-08 Technotrans Boehnensieker Gmbh, 4414 Sassenberg, De
DE9017795U1 (fr) * 1990-10-08 1992-03-12 Man Roland Druckmaschinen Ag, 6050 Offenbach, De
US5189960A (en) * 1991-11-18 1993-03-02 Fredric Valentini Apparatus and method for controlling temperature of printing plate on cylinder in rotary press
JPH1072846A (ja) * 1996-08-30 1998-03-17 Kumagai Gumi Co Ltd 土砂の処理方法

Also Published As

Publication number Publication date
EP0602312A1 (fr) 1994-06-22
JP2572516B2 (ja) 1997-01-16
EP0553447A1 (fr) 1993-08-04
ATE137446T1 (de) 1996-05-15
JPH05261889A (ja) 1993-10-12
ATE137169T1 (de) 1996-05-15
US5375518A (en) 1994-12-27
US5309838A (en) 1994-05-10
EP0602312B1 (fr) 1996-04-24
DE59206131C5 (de) 2010-01-28
DE59206131D1 (de) 1996-05-30
DE59206184D1 (de) 1996-06-05
DE4202544A1 (de) 1993-08-05

Similar Documents

Publication Publication Date Title
EP0553447B1 (fr) Système de refroidissement de plaques d'impression pour une machine à imprimer
EP0652104B1 (fr) Unité d'impression pour impression offset sans eau de mouillage
EP0638418B1 (fr) Système de refroidissement pour cylindres de machines d'impression
WO2006072559A1 (fr) Procédé de réglage de transfert d'encre d'imprimerie
EP0693372B1 (fr) Dispositif de contrÔle de la température pour machines d'impression
DE4431188C2 (de) Druckwerk für wasserlosen Offsetdruck
EP2209631B1 (fr) Système de thermorégulation pour machines à imprimer, à plusieurs niveaux de température
EP0480230B1 (fr) Régulateur de température pour une forme d'impression disposée sur un cylindre de forme pour l'impression en offset saus eau
EP1016521B1 (fr) Dispositif de tempérage d'une machine d'impression
EP0437665B1 (fr) Dispositif pour régler la température du liquide mouilleur dans une machine à imprimer offset
DE4307732A1 (de) Temperierungsvorrichtung für Rotationskörper in Druckwerken
EP0693375B1 (fr) Dispositif de régulation de la température pour une imprimante
DE4429520B4 (de) Verfahren und Vorrichtung zur Temperierung von Temperierflüssigkeit in Druckmaschinen
EP1008448B1 (fr) Dispositif pour contrôler la température d'une machine à imprimer
DE19641031A1 (de) Einrichtung zur Temperierung eines Druckwerkzylinders im Druckwerk einer Rotationsdruckmaschine
EP0697285B2 (fr) Système de réglage de la température pour une machine à imprimer
EP0699525B1 (fr) Système de refroidissement pour machines d'impression
DE102006057519B4 (de) Antriebseinrichtung für eine Verarbeitungsmaschine
EP1679186B1 (fr) Rangement pour la distribution de fluides pour des machines d'impression offset
DE102008000866B4 (de) Verarbeitungsmaschine für Bogenmaterial
DE202008018546U1 (de) Druckmaschinentemperiersystem
EP1833675A1 (fr) Procédé de réglage de transfert d'encre d'imprimerie
EP2055477A1 (fr) Echangeur thermique pour pièces d'une imprimante

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19921208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19950814

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960501

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960501

Ref country code: BE

Effective date: 19960501

REF Corresponds to:

Ref document number: 137446

Country of ref document: AT

Date of ref document: 19960515

Kind code of ref document: T

XX Miscellaneous (additional remarks)

Free format text: TEILANMELDUNG 93110826.0.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960508

REF Corresponds to:

Ref document number: 59206184

Country of ref document: DE

Date of ref document: 19960605

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960801

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19961208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961231

Ref country code: CH

Effective date: 19961231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021114

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021217

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031208

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051208

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: CH

Ref legal event code: EP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061209

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701