EP0251042B1 - Farbfotografisches Aufzeichnungsmaterial - Google Patents

Farbfotografisches Aufzeichnungsmaterial Download PDF

Info

Publication number
EP0251042B1
EP0251042B1 EP87108742A EP87108742A EP0251042B1 EP 0251042 B1 EP0251042 B1 EP 0251042B1 EP 87108742 A EP87108742 A EP 87108742A EP 87108742 A EP87108742 A EP 87108742A EP 0251042 B1 EP0251042 B1 EP 0251042B1
Authority
EP
European Patent Office
Prior art keywords
sensitivity
layer
red
sensitive
foreign
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87108742A
Other languages
English (en)
French (fr)
Other versions
EP0251042A3 (en
EP0251042A2 (de
Inventor
Reinhart Dr. Matejec
Erwin Dr. Ranz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0251042A2 publication Critical patent/EP0251042A2/de
Publication of EP0251042A3 publication Critical patent/EP0251042A3/de
Application granted granted Critical
Publication of EP0251042B1 publication Critical patent/EP0251042B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/3041Materials with specific sensitometric characteristics, e.g. gamma, density

Definitions

  • the invention relates to a color photographic recording material which gives satisfactory density gradations in the case of details of high color saturation.
  • IIE inter-image effect
  • the IIE is measured as a percentage distribution of the color gradation in the case of color separation exposure with light of the corresponding spectral range in relation to that color gradation which is obtained when exposed to white light.
  • the IIE is usually generated by DIR couplers, in the case of color reversal material usually by Ag+ complexing agents such as SCN ⁇ in the reversal first developer.
  • a well-known disadvantage of high IIE is the poor, often completely missing density gradation of details in colors that show high color saturation, especially in the area of red hues. For example, red roses from Color-Material with a large IIE are usually only reproduced as undifferentiated red colored areas in which the detailed drawing is extremely poor.
  • the object of the invention is to modify color material with a large IIE so that density gradations can be better recognized even in the details with high color saturation, without the good color quality achieved by the high IIE being noticeably deteriorated.
  • the color density of the color that is produced when exposed to light of a certain spectral range is to be referred to here as the "main color density” (for red exposure this is blue-green in the color negative system), while the color densities of the other two colors (in purple and yellow in this example) are referred to as "foreign color densities”.
  • the spectral sensitivity for which the halogen silver grains of a particular layer are dominantly sensitive is referred to as the main sensitivity, while the sensitivities of this layer for the other spectral ranges are called spectral foreign sensitivity.
  • the invention thus relates to a color photographic recording material, each with at least one layer, the main sensitivity of which is blue, green or red, which contains the color couplers which complement each other and whose IIE in the blue- and red-sensitive layer is at least 5%, preferably is at least 10% and in the green-sensitive layer is at least 10%, preferably at least 15%, characterized in that a non-red sensitivity is generated in at least one layer whose main sensitivity is green and in at least one layer whose skin sensitivity is blue, the main sensitivity 8 to 25 DIN, preferably 12 to 20 DIN, is greater than the foreign sensitivity.
  • a blue sensitivity is preferably generated in at least one layer whose main sensitivity is green and in at least one layer whose main sensitivity is red, and in at least one layer whose main sensitivity is blue and in at least one layer whose main sensitivity is red , whereby the sensitivity differences indicated above must be observed.
  • the red alien sensitivity in the green-sensitive layer deviate from the red alien sensitivity in the blue-sensitive layer by no more than 3 DIN, preferably 1 DIN, and that the red exposure resulting purple and yellow gradations within an exposure range of at least 5 DIN, preferably at least 10 DIN by no more than 25%, preferably no more than 10% from each other.
  • a possible embodiment of the invention consists in sensitizing a portion of the halosilver grains of one layer, preferably the smaller grains of the low-sensitivity layer of a color, if several sub-layers are assigned to this color, in the above-mentioned manner in a targeted manner to spectral foreign sensitivity.
  • the size of the required foreign sensitivity can best be determined by the amount of the spectral (foreign) sensitizer used in combination with the main spectral sensitivity of the halogen silver grains used for this purpose and other relevant layer parameters (e.g. coupler and DIR coupler content of the layer; positioning of the Layer in the layer structure, stabilizer additive and the like) can be set.
  • the required gradations of the foreign color density curves are expediently set for the given layer parameters by the amount of the spectrally externally sensitized halogen silver grains.
  • the spectrally foreign-sensitive emulsion grains are also accommodated in additional layers in the layer structure.
  • spectrally sensitive AgX grains there are preferably also those in a layer which are spectrally sensitive to foreign and foreign.
  • the layers contain in the usual way the color couplers complementary to the main spectral sensitivity, ie the red-sensitive layer cyan couplers, the green-sensitive layer purple couplers and blue-sensitive layer yellow couplers.
  • the couplers can be incorporated into the goat solution of the silver halide emulsion layers or other colloid layers in a known manner.
  • the oil-soluble or hydrophobic couplers may preferably consist of one Solution in a suitable coupler solvent (oil former), optionally in the presence of a wetting or dispersing agent, can be added to a hydrophilic colloid solution.
  • the hydrophilic casting solution can of course contain other conventional additives in addition to the binder.
  • the solution of the coupler need not be directly dispersed in the casting solution for the silver halide emulsion layer or other water permeable layer; Rather, it can also be advantageously first dispersed in an aqueous, non-photosensitive solution of a hydrophilic colloid, whereupon the mixture obtained, after removal of the low-boiling organic solvents used, may be mixed with the coating solution for the photosensitive silver halide emulsion layer or another water-permeable layer before application. So-called latex couplers are also very suitable.
  • Suitable light-sensitive silver halide emulsions are emulsions of silver chloride, silver bromide or mixtures thereof, possibly with a low silver iodide content of up to 10 mol% in one of the commonly used hydrophilic binders.
  • the silver halide grains can be limited by the usual crystallographic areas (100, 111, 110). They can be homo- or heterodisperse, twinned or non-twisted, bowl-shaped or platelet-like (T-grains), whereby the pure types or mixtures of individual types can be used.
  • Gelatin is preferably used as a binder for the photographic layers. However, this can be replaced in whole or in part by other natural or synthetic binders.
  • the emulsions can be chemically sensitized in the usual way, and the emulsion layers as well as other non-light-sensitive layers can be hardened in the usual way with known hardening agents.
  • Each of the light-sensitive layers mentioned can consist of a single layer or, in a known manner, for example in the case of the so-called double-layer arrangement, also comprise two or more silver halide emulsion partial layers (DE-C-1 121 470).
  • red-sensitive silver halide emulsion layers are arranged closer to the layer support than green-sensitive silver halide emulsion layers and these in turn are closer than blue-sensitive layers, with a non-light-sensitive yellow filter layer generally being located between green-sensitive layers and blue-sensitive layers.
  • a layer which is not sensitive to light is generally arranged between layers of different spectral sensitivity and can contain means for preventing the incorrect diffusion of developer oxidation products.
  • silver halide emulsion layers of the same spectral sensitivity they can be directly adjacent to one another or be arranged such that a light-sensitive layer with a different spectral sensitivity is located between them (DE-A-1 958 709, DE-A-2 530 645, DE-A -2 622 922).
  • the color couplers can be both conventional 4-equivalent couplers and 2-equivalent couplers in which a smaller amount of silver halide is required to produce the color.
  • 2-equivalent couplers are derived from the 4-equivalent couplers in that they contain a substituent in the coupling site, which is split off during the coupling.
  • the 2-equivalent couplers include both those that are practically colorless and those that have an intense intrinsic color that disappears when the color is coupled or is replaced by the color of the image dye produced.
  • the latter couplers can also be present in the light-sensitive silver halide emulsion layers and serve there as mask couplers to compensate for the undesired secondary densities of the image dyes.
  • the known white couplers are also to be counted among the 2-equivalent couplers, but they do not give any dye on reaction with color developer oxidation products.
  • the 2-equivalent couplers are also the known DIR couplers, which are couplers which contain a detachable residue in the coupling point, which is released as a diffusing development inhibitor when reacted with color developer oxidation products.
  • Other photographically active compounds e.g. Development adders or fogging agents can be released from such couplers during development.
  • 2-equivalent couplers of the pyrazolotriazole type preferred for cyan ureidophenol couplers.
  • the color photographic recording material of the present invention may contain further additives, for example antioxidants, dye-stabilizing agents and agents for influencing the mechanical and electrostatic properties.
  • further additives for example antioxidants, dye-stabilizing agents and agents for influencing the mechanical and electrostatic properties.
  • UV-absorbing compounds in one or more of the layers contained in the recording material, preferably in one of the upper layers use. Suitable UV absorbers are described for example in US-A-3 253 921, DE-C-2 036 719 and EP-A-0 057 160.
  • the color photographic recording material according to the invention is developed with a color developer compound.
  • All developer compounds which have the ability in the form of their oxidation product to react with color couplers to form azomethine dyes can be used as the color developer compound.
  • Suitable color developer compounds are aromatic compounds of the p-phenylenediamine type containing at least one primary amino group, for example N, N-dialkyl-p-phenylenediamines, such as N, N-diethyl-p-phenylenediamine, 1- (N-ethyl-N-methylsulfonamidoethyl) -3 -methyl-p-phenylenediamine, 1- (N-ethyl-N-hydroxyethyl-3-methyl-p-phenylenediamine and 1- (N-ethyl-N-methoxyethyl) -3-methyl-p-phenylenediamine.
  • N, N-dialkyl-p-phenylenediamines such as N, N-diethyl-p-phenylenediamine, 1- (N-ethyl-N-methylsulfonamidoethyl) -3 -methyl-p-phenylenediamine, 1- (N-eth
  • Example 2 part of the silver halide grains of layers 6 (pp) and 10 (gb) are also red-sensitized.
  • Example 3 part of the silver halide grains of layers 3 (bg) and 10 (gb) are also green-sensitized, and part of the silver halide grains of layers 6 (pp) and 10 (gb) are also red-sensitized.
  • Example 4 corresponds to Example 3, but contains between layers 2 and 3 an additional control layer with silver halide grains with high blue sensitivity and a bg coupler.
  • 56% by weight of the low-sensitivity emulsion GN (1) present in layer 6 are sensitized with a reduced amount of green sensitizer and with red sensitizer in such a way that the same sensitivity to white light as in Example 1 results and that the green sensitivity of this GN (1) emulsion portion is equal to its red sensitivity.
  • Example 2 is repeated, but 50% by weight of the non-red-sensitized portion of the low-sensitivity emulsion BN (1) from layer 10 is spectrally green sensitized to the same sensitivity with green exposure as with blue exposure; the increase in white sensitivity is reset by adding a stabilizer to the value that existed before this spectral sensitization; 62.5% by weight of the low-sensitivity emulsion RN (1) from layer 3 are sensitized with a reduced amount of red sensitizer and additionally with green sensitizer in such a way that the same sensitivity to white light as in example 1 results, and that the sensitivity to red is the same RN (1) emulsion portion is equal to its green sensitivity.
  • Example 3 is repeated, but the following layer 2a is cast between layer 2 and layer 3:
  • the blue sensitivity is reduced from 28.0 DIN to 26.0 DIN.
  • FIGS. 1 to 6 show the color density curves obtained on the four color negative layer structures of examples 1 to 4 (color densities D yellow (1), purple (2) and blue-green (3) as a function of the exposure log It).
  • Figures 7 to 12 show the color density curves (depending on the exposure log It of the negatives of Examples 1 to 4) which are obtained when the negatives are copied onto color-negative paper for positive copying.
  • 1 and 7 correspond to Example 1 with red exposure 2 and 8 correspond to Example 2 with red exposure 3 and 9 correspond to Example 1 with green exposure 4 and 10 correspond to Example 3 with green exposure 5 and 11 correspond to example 1 with blue exposure 6 and 12 correspond to example 4 in blue exposure.
  • example 3 has the same advantage over example 1 in green exposure, which can be seen from a comparison of FIG. 3 (negative gradation) and FIG. 9 (positive gradation) according to the prior art with FIG. 4 (negative gradation) and FIG. 10 (positive gradation) according to the invention.
  • example 4 corresponds to example 1 with blue exposure, which can be seen from a comparison of FIG. 5 (negative gradation) and FIG. 11 (positive gradation) according to the prior art with FIG. 12 (positive gradation) according to the invention.
  • IIE of Examples 1 to 4 (gradation division of the main color density curves at half the maximum density of percent with color separation exposure in relation to the white exposure): Red exposure from Fig. 1: + 85% Green exposure from Fig. 3: + 50% Blue exposure from Fig. 5: + 45%
  • a color reversal film structure was produced by applying the following layers to a transparent cellulose triacetate support in the order given here.
  • the quantities refer to 1 m2.
  • the corresponding amounts of AgNO3 are given.
  • the silver halide emulsions used are shown in Table 2.
  • Example 6 differs from Example 5 in that all silver halide grains of the low-sensitivity, spectrally blue-sensitized emulsion BN (2) of layer 10 are additionally sensitized spectrally red with so much red sensitizer that the same sensitivity results with red exposure as with blue exposure.
  • the increase in sensitivity to white light caused by this red sensitization is suppressed by as much of a stabilizer as is required to set the same white light sensitivity that was present before the spectral red sensitization.
  • all silver halide grains of the spectrally green-sensitized, low-sensitivity emulsion GN (2) from layer 6 are additionally spectrally red-sensitized.
  • the amount of green sensitizer is reduced, and enough red sensitizer is added to give the same sensitivity to white light as in Example 5 and the red sensitivity is equal to the green sensitivity.
  • FIGS. 13 and 14 show the color density curves obtained on the color reversal layer structures (color densities yellow, purple and blue-green as a function of the exposure (log it)) with red light.
  • the color density curves of the white exposure are shown in dashed lines.
  • Example 5 when Example 5 is red exposed in the log It range of 3.2 ⁇ log it ⁇ 4.2 all three color density curves (gb, pp and bg) run horizontally, ie have no density gradations (in contrast to white exposure, which still provides density gradations in this exposure range).
  • the gradation of the pp curve in Example 5 according to FIG. 13 is on the area 1.7 ⁇ log it ⁇ 3.2 limited, since it is caused by the pp secondary density of the bg image dye and can therefore only occur in the region of the bg gradation.

Description

  • Die Erfindung betrifft ein farbfotografisches Aufzeichnungsmaterial, das bei Details hoher Farbsättigung befriedigende Dichteabstufungen ergibt.
  • Es ist sowohl bei Color-Negativ-Material als auch bei Color-Umkehr-Material bekannt, die Farbwiedergabe durch den sogenannten Inter-Image-Effekt (IIE) zu verbessern (T.H. James, The Theory of the Photographic Process, 4. Auflage, Mc Millan Co. N.Y. (1977) S. 574 und 614).
  • Gemessen wird der IIE als prozentuale Aufsteilung der Farbgradation bei Farbauszugsbelichtung mit Licht des entsprechenden Spektralbereichs in Relation zu derjenigen Farbgradation, die sich bei Belichtung mit weißem Licht einstellt.
  • Erzeugt wird der IIE bei Color-Negativ-Material in der Regel durch DIR-Kuppler, bei Color-Umkehr-Material in der Regel durch Ag⁺-Komplexbildner wie SCN⁻ im Umkehr-Erstententwickler.
  • Ein bekannter Nachteil von hohem IIE ist die mangelhafte, oft ganz fehlende Dichteabstufung von Details bei Farben, die große Farbsättigung zeigen, besonders im Bereich roter Farbtöne. So werden z.B. rote Rosen von Color-Material mit großem IIE meist nur als undifferenzierte rote Farbflächen wiedergegeben, in denen die Detailzeichnung äußerst mangelhaft ist.
  • Aber auch bei anderen Farben ist die Verbesserung der Durchzeichnung von Details durch bessere Dichtabstimmungen wünschenswert.
  • Aufgabe der Erfindung ist, Colormaterial mit großem IIE so zu modifizieren, daß auch in den Details mit großer Farbsättigung Dichteabstufungen besser erkennbar werden, ohne daß die durch den hohen IIE erzeilte gute Farbqualität merklich verschlechtert wird.
  • Es wurde nun gefunden, daß man eine Detailwiedergabe im Bereich stark gesättigter Farben erzielen kann, und zwar überraschenderweise ohne nennenswerte Verschlechterung der Farbqualität, wenn man das farbfotografische Aufzeichnungsmaterials so modifiziert, daß bei Einbelichtung eines bestimmten Spektralbereichs (z.B. Rot) von einer bestimmten Lichtmenge dieses Spektralbereichs ab eine gewisse Farbgradation auch in denjenigen Farben (z.B. Purpur und Gelb) entsteht, deren Farbschichten durch diesen Spektralbereich (z.B. durch Rotlicht) bei den entsprechenden Lichtmengen normalerweise nicht angesprochen werden.
  • Zur besseren Beschreibung der Effekte wird hier folgende Nomenklatur verwendet:
    Die Farbdichte von derjenigen Farbe, die bei Belichtung mit Licht eines bestimmten Spektralbereichs (dominierend) entsteht, soll hier als "Hauptfarbdichte" bezeichnet werden (bei Rotbelichtung ist dies im Color-Negativ-System blaugrün), während die Farbdichten der beiden anderen Farben (in diesem Beispiel purpur und gelb) als "Fremdfarbdichten" bezeichnet werden.
  • Dementsprechend wird dann diejenige Spektralempfindlichkeit, für welche die Halogensilberkörner einer bestimmten Schicht dominierend empfindlich sind (z.B. die Rotempfindlichkeit der Halogensilberkörner in der Blaugrünschicht) als Hauptempfindlichkeit bezeichnet, während die Empfindlichkeiten dieser Schicht für die anderen Spektralbereiche spektrale Fremdempfindlichkeiten genannt werden.
  • Es ist zwar aus US-PS 3 252 795 bekannt, eine Silberhalogenidemulsionsschicht, die einen Blaugrünkuppler enthält, sowohl für rotes Licht als auch für grünes Licht zu sensibilisieren. In Kombination mit dieser Schicht enthält das fotografische Material, dessen Zweck die Vermeidung von Farbverfälschungen ist, ausschließlich eine rotsensibilisierte Schicht, die einen Purpurkuppler, und eine grünsensibilisierte Schicht, die einen Gelbkuppler enthält, d.h. die Farbkuppler kuppeln dort nicht komplementär zu der Spektralempfindlichkeit dieser Schichten. Außerdem wird dort kein IIE erzeugt.
  • Gegenstand der Erfindung ist somit ein farbfotografisches Aufzeichnungsmaterial mit jeweils wenigstens je einer Schicht, deren Hauptempfindlichkeit blau, grün bzw. rot ist, die die jeweils dazu komplementär kuppelnden Farbkuppler enthält und deren IIE in der blau- und in der rotempfindlichen Schicht mindestens 5 %, vorzugweise mindestens 10 % und in der grünempfindlichen Schicht mindestens 10 %, vorzugsweise mindestens 15 % beträgt, dadurch gekennzeichnet, daß in mindestens einer Schicht, deren Hauptempfindlichkeit grün, und in mindestens einer Schicht, deren Hautempfindlichkeit blau ist, eine Rotfremdempfindlichkeit erzeugt wird, wobei die Hauptempfindlichkeit 8 bis 25 DIN, vorzugsweise 12 bis 20 DIN, größer als die Fremdempfindlichkeiten ist.
  • Vorzugsweise wird zusätzlich in mindestens einer Schicht, deren Hauptempfindlichkeit grün, und in mindestens einer Schicht, deren Hauptempfindlichkeit rot ist, eine Blaufremdempfindlichkeit, und in mindestens einer Schicht, deren Hauptempfindlichkeit blau, und in mindesetns einer Schicht, deren Hauptempfindlichkeit rot ist, ein Grünempfindlichkeit erzeugt, wobei die vorstehend angegebenen Empfindlichkeitsunterschiede einzuhalten sind.
  • Bei Color-Negativmaterial ist es darüberhinaus empfehlenswert, daß die Rotfremdempfindlichkeit in der grünempfindlichen Schicht von der Rotfremdempfindlichkeit in der blauempfindlichen Schicht um nicht mehr als 3 DIN, vorzugsweise 1 DIN abweicht und daß die bei Rotbelichtung sich ergebenden Purpur- und Gelbfremdgradationen innerhalb eines Belichtungsbereiches von mindestens 5 DIN, vorzugsweise mindestens 10 DIN um nicht mehr als 25 %, vorzugsweise um nicht mehr als 10 % voneinander abweichen.
  • Eine mögliche Ausführungsform der Erfindung besteht darin, einen Teil der Halogensilberkörner einer Schicht, vorzugsweise die kleineren Körner der niedrigempfindlichen Schicht einer Farbe, wenn dieser Farbe mehrere Teilschichten zugeordnet sind, in der oben genannten Weise gezielt auf spektrale Fremdempfindlichkeit zu sensibilisieren. Dabei kann die Größe der geforderten Fremdempfindlichkeit am zweckmäßigsten durch die Menge des angewendeten spektralen (Fremd-)Sensibilisators in Kombination mit der spektralen Hauptempfindlichkeit der dazu verwendeten Halogensilberkörner und anderer hierfür relevanter Schichtparameter (beispielsweise Kuppler- und DIR-Kuppler-Gehalt der Schicht; Positionierung der Schicht im Schichtverband, Stabilisatorzusatz und dergleichen) eingestellt werden.
  • Die erforderlichen Gradationen der Fremdfarbdichtekurven werden zweckmäßigerweise bei gegebenen Schichtparametern durch die Menge der spektral fremdsensibilisierten Halogensilberkörner eingestellt.
  • In einer anderen möglichen Ausführungsform werden die spektral fremdempfindlichen Emulsionskörner auch in zusätzlichen Schichten im Schichtverband untergebracht.
  • Grundsätzlich sind folgende Ausführungsformen möglich:
    • 1. In einer Schicht befinden sich neben den spektral hauptempfindlichen AgX-Körnern auch solche, die spektral haupt- und fremd-empfindlich sind.
    • 2. In einer Schicht befinden sich neben den spektral hauptempfindlichen AgX-Körnern solche, die nur fremdempfindlich sind.
    • 3. In einer Schicht befinden sich nur AgX-Körner, die haupt- und fremdempfindlich sind.
    • 4. Die haupt- und fremd-empfindlichen AgX-Körner befinden sich jeweils in verschiedenen Schichten.
    • 5. Kombinationen von 1 bis 4.
  • Vorzugsweise befinden sich in einer Schicht neben den spektral hauptempfindlichen AgX-Körnern auch solche, die spektral haupt- und fremdempfindlich sind.
  • Die Schichten enthalten in üblicher Weise die zur spektralen Hauptempfindlichkeit komplementären Farbkuppler, also die rotempfindliche Schicht Blaugrünkuppler, die grünempfindliche Schicht Purpurkuppler und blauempfindliche Schicht Gelbkuppler.
  • Bei der Herstellung des lichtempfindlichen farbfotografischen Aufzeichnungsmaterials können die Kuppler in bekannter Weise in die Geißlösung der Silberhalogenidemulsionsschichten oder anderer Kolloidschichten eingearbeitet werden. Beispielsweise können die öllöslichen oder hydrophoben Kuppler vorzugsweise aus einer Lösung in einem geeigneten Kupplerlösungsmittel (Ölbildner) gegebenenfalls in Anwesenheit eines Netz- oder Dispergiermittels zu einer hydrophilen Kolloidlösung zugefügt werden. Die hydrophile Gießlösung kann selbstverständlich neben dem Bindemittel andere übliche Zusätze enthalten. Die Lösung des Kupplers braucht nicht direkt in die Gießlösung für die Silberhalogenidemulsionsschicht oder eine andere wasserdurchlässige Schicht dispergiert zu werden; sie kann vielmehr auch vorteilhaft zuerst in einer wäßrigen nichtlichtempfindlichen Lösung eines hydrophilen Kolloids dispergiert werden, worauf das erhaltene Gemisch gegebenenfalls nach Entfernung der verwendeten niedrig siedenden organischen Lösungsmittel mit der Gießlösung für die lichtempfindliche Silberhalogenidemulsionsschicht oder einer anderen wasserdurchlässigen Schicht vor dem Auftragen vermischt wird. Gut geeignet sind auch sogenannte Latexkuppler.
  • Als lichtempfindliche Silberhalogenidemulsionen eignen sich Emulsionen von Silberchlorid, Silberbromid oder Gemischen davon, evtl. mit einem geringen Gehalt an Silberiodid bis zu 10 mol-% in einem der üblicherweise verwendeten hydrophilen Bindemittel. Die Silberhalogenidkörner können durch die üblichen kristallografischen Flächen (100, 111, 110) begrenzt sein. Sie können homo- oder heterodispers, verzwillingt oder nicht verzwillingt, schalenförmig aufgebaut oder plättchenhaft (T-grains) sein, wobei die reinen Typen oder Mischungen einzelner Sorten zum Einsatz kommen können. Als Bindemittel für die fotografischen Schichten wird vorzugsweise Gelatine verwendet. Diese kann jedoch ganz oder teilweise durch andere natürliche oder synthetische Bindemittel ersetzt werden.
  • Die Emulsionen können in der üblichen Weise chemisch sensibilisiert sein, und die Emulsionsschichten wie auch andere nicht-lichtempfindliche Schichten können in der üblichen Weise mit bekannten Härtungsmitteln gehärtet sein.
  • Jede der genannten lichtempfindlichen Schichten kann aus einer einzigen Schicht bestehen oder in bekannter Weise, z.B. bei der sogenannten Doppelschichtanordnung, auch zwei oder mehr Silberhalogenidemulsionsteilschichten umfassen (DE-C-1 121 470). Üblicherweise sind rotempfindliche Silberhalogenidemulsionsschichten dem Schichtträger näher angeordnet als grünempfindliche Silberhalogenidemulsionschichten und diese wiederum näher als blauempfindliche, wobei sich im allgemeinen zwischen grünempfindlichen Schichten und blauempfindlichen Schichten eine nicht lichtemfindliche gelbe Filterschicht befindet. Es sind aber auch andere Anordnungen denkbar. Zwischen Schichten unterschiedlicher Spektralempfindlichkeit ist in der Regel eine nicht lichtempfindliche Zwischenschicht angeordnet, die Mittel zur Unterbindung der Fehldiffusion von Entwickleroxidationsprodukten enthalten kann. Falls mehrere Silberhalogenidemulsionsschichten gleicher Spektralempfindlichkeit vorhanden sind, können diese einander unmittelbar benachbart sein oder so angeordnet sein, daß sich zwischen ihnen eine lichtempfindliche Schicht mit anderer Spektralempfindlichkeit befindet (DE-A-1 958 709, DE-A-2 530 645, DE-A-2 622 922).
  • Bei den Farbkupplern kann es sich sowohl um übliche 4-Äquivalentkuppler handeln als auch um 2-Äquivalentkuppler, bei denen zur Farberzeugung eine geringere Menge Silberhalogenid erforderlich ist. 2-Äquivalentkuppler leiten sich bekanntlich von den 4-Äquivalentkupplern dadurch ab, daß sie in der Kupplungsstelle einen Substituenten enthalten, der bei der Kupplung abgespalten wird. Zu den 2-Äquivalentkupplern sind sowohl solche zu rechnen, die praktisch farblos sind, als auch solche, die eine intensive Eigenfarbe aufweisen, die bei der Farbkupplung verschwindet bzw. durch die Farbe des erzeugten Bildfarbstoffes ersetzt wird. Letztere Kuppler können ebenfalls zusätzlich in den lichtempfindlichen Silberhalogenidemulsionsschichten vorhanden sein und dort als Maskenkuppler zur Kompensierung der unerwünschten Nebendichten der Bildfarbstoffe dienen. Zu den 2-Äquivalenkupplern sind aber auch die bekannten Weißkuppler zu rechnen, die jedoch bei Reaktion mit Farbentwickleroxidationsprodukten keinen Farbstoff ergeben. Zu den 2-Äquivalentkupplern sind ferner die bekannten DIR-Kuppler zu rechnen, bei denen es sich um Kuppler handelt, die in der Kupplungsstelle einen abspaltbaren Rest enthalten, der bei Reaktion mit Farbentwickleroxidationsprodukten als diffundierender Entwicklungsinhibitor in Freiheit gesetzt wird. Auch andere fotografisch wirksame Verbindungen, z.B. Entwicklungsaceferatoren oder Schleiermittel, können bei der Entwicklung aus solchen Kupplern freigesetzt werden.
  • Für Purpur werden 2-Äquivalentkuppler des Pyrazolotriazoltyps; für Blaugrün Ureidophenolkuppler bevorzugt.
  • Über die genannten Bestandteile hinaus kann das farbfotografische Aufzeichnungsmaterial der vorliegenden Erfindung weitere Zusätze enthalten, zum Beispiel Antioxidantien, farbstoffstabiliserende Mittel und Mittel zur Beeinflussung der mechanischen und elektrostatischen Eigenschaften. Um die nachteilige Einwirkung von UV-Licht auf die mit dem erfindungsgemäßen farbfotografischen Aufzeichnungsmaterial hergestellten Farbbilder zu vermindern oder zu vermeiden, ist es vorteilhaft, in einer oder mehreren der in dem Aufzeichnungsmaterial enthaltenen Schichten, vorzugsweise in einer der oberen Schichten, UV-absorbierende Verbindungen zu verwenden. Geeignete UV-Absorber sind beispielsweise in US-A-3 253 921, DE-C-2 036 719 und EP-A-0 057 160 beschrieben.
  • Zur Herstellung farbfotografischer Bilder wird das erfindungsgemäße farbfotografische Aufzeichnungsmaterial, mit einer Farbentwicklerverbindung entwickelt. Als Farbentwicklerverbindung lassen sich sämtliche Entwicklerverbindungen verwenden, die die Fähigkeit besitzen in Form ihres Oxidationsproduktes mit Farbkupplern zu Azomethinfarbstoffen zu reagieren. Geeignete Farbentwicklerverbindungen sind aromatische mindestens eine primäre Aminogruppe enthaltende Verbindungen vom p-Phenylendiamintyp, beispielsweise N,N-Dialkyl-p-phenylendiamine, wie N,N-Diethyl-p-phenylendiamin, 1-(N-ethyl-N-methylsulfonamidoethyl)-3-methyl-p-phenylendiamin, 1-(N-ethyl-N-hydroxyethyl-3-methyl-p-phenylendiamin und 1-(N-ethyl-N-methoxyethyl)-3-methyl-p-phenylendiamin.
  • Beispiel 1
  • Es wurde ein Color-Negativfilmschichtaufbau hergestellt, indem auf einen transparenten Schichtträger nacheinander die nachfolgend beschriebenen Schichten aufgetragen wurden. Die Mengenangaben beziehen sich jeweils auf 1 m². Für den Silberauftrag werden die äquivalenten Mengen AgNO₃ angegeben. Alle Silberhalogenidemulsionen waren mit 0,1 g 4-Hydroxy-6-methyl-1,3,3a,7-tetraazainden pro 100 g AgNO₃ stabilisiert.
  • 1. Schicht:
    (Antihaloschicht)
    Schwarzes kolloidales Silbersol mit 1,5 g Gelatine und 0,33 g Ag
    2. Schicht:
    (Zwischenschicht)
    0,4 g Gelatine und 0,2 g 2,5-Diisooctyl-Hydrochinon
    3. Schicht:
    (niedrigempfindliche, rotsensibilisierte Schicht)
    2,5 g AgNO₃ der mittelempfindlichen, spektral rotsensibilisierten Ag (Br, J)-Emulsion RM (1) und 0,6 g AgNO₃ der niedrigempfindlichen, spektral rotsensibilisierten Ag (Br, J, Cl)-Emulsion RN (1), 2,2 g Gelatine, 0,6 g Blaugrünkuppler der Formel
    Figure imgb0001
    emulgiert mit 0,48 g Dibutylphthalat, 75 mg Rotmaske der Formel
    Figure imgb0002
    und 40 mg DIR-Kuppler der Formel
    Figure imgb0003
    4. Schicht:
    (hochempfindliche, rotsensibilisierte Schicht)
    2,7 g AgNO₃ der hochempfindlichen, spektral rot sensibilisierten Emulsion RH (1),
    1,9 g Gelatine, 15 mg des Blaugrünkupplers der Formel
    Figure imgb0004
    emulgiert mit 22,5 mg Dibutylphthalat.
    5. Schicht:
    (Zwischenschicht)
    0,7 g Gelatine und 0,2 g 2,5-Diisooctylhydrochinon
    6. Schicht:
    (niedrigempfindliche, grünsensibilisierte Schicht)
    1,8 g AgNO₃ der mittelempfindlichen, spektral grün sensibilisierten Ag (Br, J)-Emulsion GM (1) und 0,5 g AgNO₃ der niedrigempfindlichen, spektral grün sensibilisierten Ag (Br, J, Cl)-Emulsion GN (1),
    1,6 g Gelatine, 0,5 g des Purpurkupplers der Formel
    Figure imgb0005
    emulgiert in 0,5 g Trikresylphosphat,
    95 mg der Gelbmaske der Formel
    Figure imgb0006
    und 65 mg des DIR-Kupplers der Formel
    Figure imgb0007
    7. Schicht:
    (hochempfindliche, grünsensibilisierte Schicht)
    2,1 g AgNO₃ der hochempfindlichen, spektral grün sensibilisierten Emulsion GH (1),
    1,4 g Gelatine, 12 mg Purpurkuppler der Formel
    Figure imgb0008
    emulgiert mit 24 mg Trikresylphosphat und 5 mg der Gelbmaske gemäß Schicht 6.
    8. Schicht:
    (Zwischenschicht)
    0,5 g Gelatine und 0,15 g 2,5-Diisooctylhydrochinon
    9. Schicht:
    (Gelbfilterschicht)
    gelbes kolloidales Silbersol mit 0,2 g Ag und 0,9 g Gelatine
    10. Schicht:
    (niedrigempfindliche, blauempfindliche Schicht)
    0,4 g AgNO₃ der mittelempfindlichen, spektral blau empfindlichen Ag (Br, J, Cl)-Emulsion BM (1) und 0,3 g AgNO₃ der niedrigempfindlichen, spektral blau empfindlichen Emulsion BN (1),
    0,85 g Gelatine,
    0,45 g Gelbkuppler der Formel
    Figure imgb0009
    und 0,45 g Gelbkuppler der Formel
    Figure imgb0010
    beide zusammen emulgiert in 1,35 g Trikresylphosphat sowie 0,2 g des DIR-Kupplers der Formel
    Figure imgb0011
    11. Schicht:
    (hochempfindliche, blauempfindliche Schicht) 1,0 g AgNO₃ der hochempfindlichen, spektral blauempfindlichen Ag (Br, J, Cl)-Emulsion BH (1),
    1,2 g Gelatine, 0,20 g Gelbkuppler gemäß Schicht 10, 1. Formel, und 0,2 g Gelbkuppler gemäß Schicht 10, 2. Formel, emulgiert zusammen mit 0,6 g Trikresylphosphat.
    12. Schicht:
    (Schutzschicht)
    1,2 g Gelatine
    0,2 g des UV-Absorbers der Formel

    Figure imgb0012
    mit einem Gewichtsverhältnis x : y von 7 : 3 und einem Mw von etwa 50 000
    und 0,3 g des UV-Absorbers der Formel
    Figure imgb0013
    13. Schicht:
    (Härtungsschicht)
    1,5 g Gelatine und
    0,7 g des üblichen Härtungsmittels der Formel
    Figure imgb0014
    Beispiele 2 bis 4
  • Die folgenden Beispiele unterscheiden sich von Beispiel 1 wie folgt:
    In Beispiel 2 sind ein Teil der Silberhalogenidkörner der Schichten 6 (pp) und 10 (gb) auch rotsensibilisiert. In Beispiel 3 sind ein Teil der Silberhalogenidkörner der Schicht 3 (bg) und 10 (gb) auch grünsensibilisiert, ein Teil der Silberhalogenidkörner der Schichten 6 (pp) und 10 (gb) auch rotsensibilisiert. Beispiel 4 entspricht Beispiel 3, enthält aber zwischen den Schichten 2 und 3 eine zusätzliche Steuerschicht mit Silberhalogenidkörnern hoher Blauempfindlichkeit und einen bg-Kuppler.
  • Beispiel 2
  • 52 Gew.-% der niedrigempfindlichen, blauempfindlichen Emulsion BN (1) von Schicht 10 werden spektral rot mit soviel Rotsensibilisator sensibilisiert, daß sich bei Rotbelichtung die gleiche Empfindlichkeit wie bei Blaubelichtung ergibt. Der durch diese Rotsensibilisierung bewirkte Zuwachs an Empfindlichkeit gegen Weißlicht wird durch soviel eines Stabilisators zurückgedrückt, wie zur Einstellung der gleichen Weißlicht- Empfindlichkeit erforderlich ist, welche vor der spektralen Sensibilisierung vorlag.
  • 56 Gew.-% der in Schicht 6 vorhandenen, niedrigempfindlichen Emulsion GN (1) werden mit verminderter Menge an Grün-Sensibilisator und mit Rotsensibilisator derart sensibilisiert, daß sich die gleiche Empfindlichkeit gegen weißes Licht wie bei Beispiel 1 ergibt und daß die Grünempfindlichkeit dieses GN(1)-Emulsionsanteils gleich dessen Rotempfindlichkeit ist.
  • Beispiel 3
  • Beispiel 2 wird wiederholt, aber 50 Gew.-% des nicht rotsensibilisierten Anteils der niedrigempfindlichen Emulsion BN (1) von Schicht 10 werden spektral grün auf gleiche Empfindlichkeit bei Grünbelichtung wie bei Blaubelichtung sensibilisiert; der Zuwachs an Weißempfindlichkeit wird durch Zusatz eines Stabilisators, auf den Wert zurückgestellt, der vor dieser spektralen Sensibilisierung vorlag;
    62,5 Gew.-% der niedrigempfindlichen Emulsion RN (1) von Schicht 3 werden mit verminderter Menge an Rotsensibilisator und zusätzlich noch mit Grünsensibilisator derart sensibilisiert, daß sich die gleiche Empfindlichkeit gegen weißes Licht wie bei Beispiel 1 ergibt, und daß die Rotempfindlichkeit dieses RN(1) Emulsionsanteils gleich dessen Grünempfindlichkeit ist.
  • Beispiel 4
  • Beispiel 3 wird wiederholt, aber zwischen Schicht 2 und Schicht 3 wird die folgende Schicht 2a gegossen:
    Schicht 2a:
    0,5 g AgNO₃ der hoch-blauempfindlichen Emulsion BH (1) mit 0,20 g Blaugrün-Kuppler gemäß Schicht 4 und 30 mg DIR-Kuppler gemäß Schicht 3 sowie 0,8 g Gelatine.
  • Durch Zusatz des Stabilisators der Formel
    Figure imgb0015
    wird die Blauempfindlichkeit von 28,0 DIN auf 26,0 DIN vermindert.
  • Die in den Beispielen 1 bis 4 verwendeten Silberhalogenidemulsionen sind in der nachfolgenden Tabelle 1 zusammengestellt.
  • Die dort angegebenen Empfindlichkeiten beziehen sich jeweils auf den Wert, den man erhält, wenn man die Emulsion als Einzel-Emulsion zusammen mit den übrigen Bestandteilen der Schicht, in der diese Emulsion jeweils enthalten ist, als Einzelschicht vergießt, mit Licht des angegebenen Spektralbereichs hinter einem grauen Stufenkeil belichtet und dann in dem gleichen, weiter hinten angegebenen Color-Negativ-Prozeß verarbeitet.
    Figure imgb0016
  • Alle Silberhalogenidemulsionen waren mit 0,1 g 4-Hydroxy-6-methyl-1,3,3a,7-tetraazainden pro 100 g AgNO₃ stabilisiert.
  • Jeweils eine Probe der Materialien aus Beispielen 1 bis 4 wurde hinter einem grauen Stufenkeil mit Licht der jeweils angegebenen Spektralfarbe belichtet und dann nach einem Color-Negativ-Verarbeitungsverfahren, wie es in "The British Journal of Photography", (1974), Seiten 597 und 598 beschrieben ist, verarbeitet.
  • Die Figuren 1 bis 6 zeigen die an den vier Color-Negativ-Schichtaufbauten der Beispiele 1 bis 4 erhaltenen Farbdichtekurven (Farbdichten D Gelb (1), Purpur (2) und Blaugrün (3) in Abhängigkeit von der Belichtung log It). Die Figuren 7 bis 12 zeigen die Farbdichtekurven (in Abhängigkeit von der Belichtung log It der Negative der Beispiele 1 bis 4) die erhalten werden, wenn die Negative auf Color-Negativ-Papier zur Positiv-Kopie umkopiert werden.
    Fig. 1 und 7 entsprechen Beispiel 1 bei Rotbelichtung
    Fig. 2 und 8 entsprechen Beispiel 2 bei Rotbelichtung
    Fig. 3 und 9 entsprechen Beispiel 1 bei Grünbelichtung
    Fig. 4 und 10 entsprechen Beispiel 3 bei Grünbelichtung
    Fig. 5 und 11 entsprechen Beispiel 1 bie Blaubelichtung
    Fig. 6 und 12 entsprechen Beispiel 4 bei Blaubelichtung.
  • Die Farbdichtekurven, die nach den Beispielen 1 bis 4 bei Weißbelichtung erhalten wurden, sind in den Abbildungen gestrichelt gezeichnet. Unter "Weißbelichtung" wird hierbei eine additive Belichtung von Rot+Grün+Blau mit den gleichen Lichtmengen verstanden, wie sie bei den Einzelbelichtungen angewandt werden.
  • Rotbelichtung:
  • Bei Rotbelichtung werden bei Beispiel 1 nur die Schichten 3 und 4 angesprochen. Die Blaugrün-Farbdichtekurve steilt gegenüber der bei Weißbelichtung infolge des IIE stark auf, während die grünempfindlichen Schichten 6 und 7 und die blauempfindlichen Schichten 10 und 11 nicht angesprochen werden und deshalb gradationslos bleiben (Fig. 1).
  • Der geringe Gradationsanstieg der pp-Kurve liegt weit außerhalb des bildgenutzten Bereichs.
  • Bei Kopie auf Color-Negativ-Papier zeigen die Grauwerte (= Weißbelichtung des Negativmaterials von Beispiel 1) im log-It-Bereich von 3,5 bis 4,5 Gradation, während bei Rotbelichtung alle drei Farbdichten (gb, pp und bg) in diesem Bereich wegen des IIE (Aufsteilung der bg-Farbdichtekurve bei Rotbelichtung gegenüber der Weißbelichtung) gradationslos werden (Fig. 7).
  • Bei Rotbelichtung von Beispiel 2 werden dagegen im Negativ bei log It>3,5 auch bei pp und gb ein Ansteig der Farbdichten mit flacherer Gradation als bei Weißbelichtung beobachtet (Fig. 2). Infolge dessen resultiert im Positiv in diesem Bereich eine Gradation in den gb- und pp-Farbdichten, was zu den gewünschten Farbdichte-Abstufungen in den roten Details führt (Fig. 8), ohne daß der Vorteil des IIE (Verminderung der Verschwärzlichung der roten Farbtöne infolge Aufsteilung der bg-Farbdichtekurve in der Positiv-Kopie) nachteilig beeinflußt wird.
  • Grünbelichtung
  • Entsprechend der Rotbelichtung wird mit Beispiel 3 gegenüber Beispiel 1 bei der Grünbelichtung der gleiche Vorteil erzielt, was aus einem Vergleich der Fig. 3 (Negativgradation) und Fig. 9 (Positivgradation) nach Stand der Technik mit Fig. 4 (Negativgradation) und Fig. 10 (Positivgradation) nach der Erfindung hervorgeht.
  • Blaubelichtung
  • Entsprechend der Rotbelichtung wird mit Beispiel 4 gegenüber Beispiel 1 bei der Blaubelichtung der gleiche Vorteil erzielt, was aus einem Vergleich der Fig. 5 (Negativgradation) und Fig. 11 (Positivgradation) nach Stand der Technik mit Fig. 6 (Negativgradation) und Fig. 12 (Positivgradation) nach der Erfindung hervorgeht.
  • IIE der Beispiele 1 bis 4 (Gradationsaufsteilung der Hauptfarbdichtekurven bei der halben Maximaldichte von Prozent bei Farbauszugsbelichtung im Verhältnis zur Weißbelichtung):
    Rotbelichtung aus Fig. 1 : + 85 %
    Grünbelichtung aus Fig. 3 : + 50 %
    Blaubelichtung aus Fig. 5 : + 45 %
  • Beispiel 5
  • Es wurde ein Color-Umkehrfilmaufbau hergestellt, indem auf einen transparenten Schichtträger aus Cellulosetriacetat die folgenden Schichten in der hier angegebenen Reihenfolge aufgetragen wurden. Die Mengen beziehen sich jeweils auf 1 m². Für den Silberhalogenidauftrag werden die entsprechenden Mengen AgNO₃ angegeben.
  • Die verwendeten Silberhalogenid-Emulsionen sind in Tabelle 2 zusammengestellt.
  • Die dort angegebenen Empfindlichkeiten beziehen sich jeweils auf den Wert, den man erhält, wenn man die Emulsion als Einzel-Emulsion zusammen mit den übrigen Bestandteilen der Schicht, in der diese Emulsion jeweils enthalten ist, als Einzelschicht vergießt und mit Licht des jeweils angegebenen Spektralbereichs belichtet.
  • Alle Silberhalogenidemulsionen waren mit 0,1 g 4-Hydroxy-6-methyl-1,3,3a,7-tetraazainden pro 100 g AgNO₃ stabilisiert.
    Figure imgb0017
  • Schicht 1:
    (Antihaloschicht)
    Schwarzes kolloidales Silbersol mit 1,5 g Gelatine und 0,33 g Ag
    Schicht 2:
    (Zwischenschicht)
    0,4 g Gelatine und 0,2 g 2,5-Diisooctylhydrochinon
    Schicht 3:
    (1. rotsensibilisierte Schicht)
    0,58 g AgNO₃ der mittelempfindlichen, rotsensibilisierten Ag (Br, J)-Emulsion RM (2) und 0,38 g AgNO₃ der niedrigempfindlichen, rotsensibilisierten Emulsion RN (2),
    0,81 g Gelatine und 0,26 g Blaugrünkuppler der folgenden Formel
    Figure imgb0018
    Schicht 4:
    (2. rotsensibilisierte Schicht)
    0,84 g AgNO₃ der hochempfindlichen rotsensibilisierten Ag (Br, J)-Emulsion RH (2),
    0,7 g Gelatine und 0,58 g des in Schicht 3 enthaltenen Blaugrünkupplers.
    Schicht 5:
    (Zwischenschicht)
    1,2 g Gelatine und 0,4 g 2,5-Diisooctylhydrochinon
    Schicht 6:
    (1. grünsensibilisierte Schicht)
    0,54 g AgNO₃ der mittelempfindlichen, grünsensibilisierten Ag (Br, J)-Emulsion GM (2) und 0,36 g AgNO₃ der niedrigempfindlichen, grünsensibilisierten Emulsion GN (2)
    0,77 g Gelatine und 0,30 g Purpurkuppler gemäß Beispiel 1, Schicht 6
    Schicht 7:
    (2. grünsensibilisierte Schicht)
    0,94 g der hochempfindlichen, grünsensibilisierten Emulsion GH (2),
    0,87 g Gelatine und 0,64 g des in Schicht 6 enthaltenen Purpurkupplers.
    Schicht 8:
    (Zwischenschicht)
    0,4 g Gelatine und 0,2 g 2,5-Diisooctylhydrochinon
    Schicht 9:
    (Gelbfilterschicht)
    gelbes kolloidales Silbersol mit 0,2 g Ag und 0,9 g Gelatine
    Schicht 10:
    (1. blausensibilisierte Schicht)
    0,50 g AgNO₃ der mittelempfindlichen, spektral blau sensibilisierten Ag (Br, J)-Emulsion BM (2) und 0,28 g AgNO₃ der niedrigempfindlichen, spektral blau empfindlichen Ag (Br, J)-Emulsion BN (2),
    0,56 g Gelatine und 0,47 g Gelbkuppler der folgenden Formel
    Figure imgb0019
    Schicht 11:
    (2. blausensibilisierte Schicht)
    1,3 g AgNO₃ der hochempfindlichen, spektral blau sensibilisierten Emulsion BH (2)
    0,76 g Gelatine und 1,42 g des in Schicht 10 enthaltenen Gelbkupplers
    Schicht 12:
    (Schutzschicht)
    1,2 g Gelatine
    Schicht 13:
    (Härtungsschicht)
    1,5 g Gelatine und 0,7 g Härtungsmittel der folgenden Formel
    Figure imgb0020
    Beispiel 6
  • Beispiel 6 unterscheidet sich von Beispiel 5 dadurch, daß alle Silberhalogenidkörner der niedrigempfindlichen, spektral blausensibilisierten Emulsion BN (2) von Schicht 10 zusätzlich noch spektral rot mit soviel Rotsensibilisator sensibilisiert werden, daß sich bei Rotbelichtung die gleiche Empfindlichkeit ergibt wie bei Blaubelichtung. Der durch diese Rotsensibilisierung bewirkte Zuwachs an Empfindlichkeit gegen Weißlicht wird zurückgedrückt durch soviel eines Stabilisators, wie zur Einstellung der gleichen Weißlicht-Empfindlichkeit erforderlich ist, welche vor der spektralen Rotsensibilisierung vorlag.
  • Außerdem werden alle Silberhalogenidkörner der spektral grün sensibilisierten, niedrigempfindlichen Emulsion GN (2) von Schicht 6 zusätzlich noch spektral rot sensibilisiert. Die Menge an Grünsensibilisator wird vermindert, und es wird soviel Rotsensibilisator zugesetzt, daß sich die gleiche Empfindlichkeit gegen weißes Licht wie bei Beispiel 5 ergibt, und daß die Rotempfindlichkeit gleich der Grünempfindlichkeit ist.
  • Je eine Probe der Beispiele 5 und 6 wurden hinter einem grauen Stufenkeil mit Licht der jeweils angegebenen Spektralfarbe belichtet und anschließend in einem Color-Umkehrverarbeitungsvorgang verarbeitet wie in "The British Journal of Photography", 1981, Seiten 889, 890, 910, 911 und 919 beschrieben.
  • Die Figuren 13 und 14 zeigen die an den Color-Umkehr-Schichtaufbauten erhaltenen Farbdichtekurven (Farbdichten gelb, purpur und blaugrün in Abhängigkeit von der Belichtung (log it)) mit rotem Licht.
  • Die Farbdichtekurven der Weißbelichtung sind gestrichelt eingezeichnet.
  • Man erkennt aus Fig. 13, daß bei Rotbelichtung des Beispiels 5 im log It-Bereich von

    3,2 < log It < 4,2
    Figure imgb0021


    alle drei Farbdichtekurven (gb, pp und bg) horizontal verlaufen, d.h. keine Dichteabstufungen aufweisen (im Gegensatz zur Weißbelichtung, die in diesem Belichtungsbereich noch Dichteabstufungen liefert).
  • Die Gradation der pp-Kurve ist bei Beispiel 5 gemäß Fig. 13 auf den Bereich

    1,7 < log It < 3,2
    Figure imgb0022


    beschränkt, da sie durch die pp-Nebendichte des bg-Bildfarbstoffes verursacht wird und daher nur im Bereich der bg-Gradation auftreten kann.
  • Durch die im erfindungsgemäßen Beispiel 6 durchgeführte Maßnahme wird bei Rotbelichtung in den Farbdichtekurven von gb und pp im Bereich

    log It > 3,2
    Figure imgb0023


    eine Gradation erzeugt (Fig. 14). Dadurch werden bei der Aufzeichnung roter Details Dichteabstufungen im gleichen Belichtungsbereich log It bewirkt wie im Belichtungsbereich der Weißbelichtung.
    IIE der Beispiele 5 und 6:
    Rotbelichtung aus Fig. 13: + 40 %
  • Der für den Fall der Rotbelichtung demonstrierte Vorteil wird ebenso bei der Grün- bzw. Blaubelichtung bei erfindungsgemäß modifizierten grün- bzw. blausensibilisierten Schichten erzielt.

Claims (7)

  1. Farbfotografisches Aufzeichnungsmaterial mit jeweils wenigstens je einer Schicht, deren Hauptempfindlichkeit blau, grün bzw. rot ist, die die jeweils dazu komplementäre kuppelnden Farbkuppler enthält und deren IIE in der blau- und in der rotempfindlichen Schicht mindestens 5 %, vorzugweise mindestens 10 % und in der grünempfindlichen Schicht mindestens 10 %, vorzugsweise mindestens 15 % beträgt, dadurch gekennzeichnet, daß in mindestens einer Schicht, deren Hauptempfindlichkeit grün, und in mindestens einer Schicht, deren Hauptempfindlichkeit blau ist, eine Rotfremdempfindlichkeit erzeugt wird, wobei die Hauptempfindlichkeit 8 bis 25 DIN größer als die Fremdempfindlichkeiten ist.
  2. Farbfotografisches Aufzeichnungsmaterial nach Anspruch 1, dadurch gekennzeichnet, daß die Empfindlichkeitsdifferenz zwischen Haupt- und Fremdempfindlichkeit 12 bis 20 DIN beträgt.
  3. Farbfotografisches Aufzeichnungsmaterial nach Anspruch 1, dadurch gekennzeichnet, daß die Fremdempfindlichkeiten so realisiert sind, daß sich in einer Schicht neben spektral hauptempfindlichen AgX-Körnern solche befinden, die spektral haupt- und fremdempfindlich sind.
  4. Farbfotografisches Aufzeichnungsmaterial nach Anspruch 1, dadurch gekennzeichnet, daß bei doppel-oder mehrschichtiger Anordnung der farbempfindlichen Schichten die spektrale Fremdempfindlichkeit in der niedrigstempfindlichen Silberhalogenidemulsionsschicht realisiert ist.
  5. Farbfotografisches Aufzeichnungsmaterial nach Anspruch 1, wobei zusätzlich in mindestens einer Schicht, deren Hauptempfindlichkeit rot ist, eine Blaufremdempfindlichkeit, und in mindestens einer Schicht, deren Hauptempfindlichkeit blau, und in mindesens einer Schicht, deren Hauptempfindlichkeit rot ist, eine Grünfremdempfindlichkeit erzeugt wird, wobei die Hauptempfindlichkeit 8 bis 25 DIN größer als die Fremdempfindlichkeit ist.
  6. Color-Negativ-Material nach Anspruch 1, dadurch gekennzeichnet, daß die Rotempfindlichkeit in der grünempfindlichen Schicht von der Rotfremdempfindlichkeit in der blauempfindlichen Schicht um nicht mehr als 3 DIN abweicht und daß die bei Rotbelichtung sich ergebenden Purpur- und Gelbfremdgradationen innerhalb eines Belichtungsbereiches von mindestens 5 DIN um nicht mehr als 25 % voneinander abweichen.
  7. Color-Negativ-Material nach Anspruch 6, dadurch gekennzeichnet, daß die Rotempfindlichkeit in der grünempfindlichen Schicht von der Rotempfindlichkeit in der blauempfindlichen Schicht um nicht mehr als 1 DIN abweicht und daß die bei Rotbelichtung sich ergebenden Purpur- und Gelbfremdgradationen innerhalb eines Belichtungsbereichs von mindestens 10 DIN um nicht mehr als 25 % voneinander abweichen.
EP87108742A 1986-06-28 1987-06-19 Farbfotografisches Aufzeichnungsmaterial Expired - Lifetime EP0251042B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3621764 1986-06-28
DE19863621764 DE3621764A1 (de) 1986-06-28 1986-06-28 Farbfotografisches aufzeichnungsmaterial

Publications (3)

Publication Number Publication Date
EP0251042A2 EP0251042A2 (de) 1988-01-07
EP0251042A3 EP0251042A3 (en) 1989-07-12
EP0251042B1 true EP0251042B1 (de) 1991-07-03

Family

ID=6303956

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87108742A Expired - Lifetime EP0251042B1 (de) 1986-06-28 1987-06-19 Farbfotografisches Aufzeichnungsmaterial

Country Status (4)

Country Link
US (1) US4770980A (de)
EP (1) EP0251042B1 (de)
JP (1) JPS6313038A (de)
DE (2) DE3621764A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902609A (en) * 1987-08-20 1990-02-20 Eastman Kodak Company Photographic print material with increased exposure latitude
JPH02129628A (ja) * 1988-11-09 1990-05-17 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料
JPH02157751A (ja) * 1988-12-09 1990-06-18 Konica Corp ハロゲン化銀写真感光材料の処理方法
JPH02181144A (ja) * 1989-01-05 1990-07-13 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料
US5185237A (en) * 1989-06-13 1993-02-09 Fuji Photo Film Co., Ltd. Silver halide color photographic material and process for the formation of color images thereon
JPH0786674B2 (ja) * 1989-06-13 1995-09-20 富士写真フイルム株式会社 ハロゲン化銀カラー写真感光材料及びカラー画像形成方法
JPH03246540A (ja) * 1989-11-07 1991-11-01 Fuji Photo Film Co Ltd 直接ポジカラー写真感光材料
US5180657A (en) * 1989-12-22 1993-01-19 Konica Corporation Color photographic light-sensitive material offering excellent hue reproduction
JPH05504425A (ja) * 1990-12-19 1993-07-08 イーストマン コダック カンパニー 写真材料用アゾアニリンマスキングカプラー類
JPH05323528A (ja) * 1992-05-19 1993-12-07 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料
JPH0695284A (ja) * 1992-09-16 1994-04-08 Konica Corp ポジ型カラー感光材料及び画像形成方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE563174A (de) * 1957-12-02
BE729204A (de) * 1968-03-21 1969-08-28
BE757399A (en) * 1969-11-26 1971-03-16 Wolfen Filmfab Veb Photographic colour material
JPS5336780B2 (de) * 1973-06-19 1978-10-04
JPS593737B2 (ja) * 1973-06-29 1984-01-25 富士写真フイルム株式会社 多層カラ−感光材料
JPS5093147A (de) * 1973-12-18 1975-07-25
DE2718437A1 (de) * 1977-04-26 1978-11-09 Agfa Gevaert Ag Photographisches aufzeichnungsmaterial mit verstaerktem zwischenbildeffekt
US4387159A (en) * 1980-05-29 1983-06-07 Veb Filmfabrik Wolfen Light sensitive, color photographic silver halide compositions with DIR-couplers
DE3263486D1 (en) * 1981-03-02 1985-06-20 Agfa Gevaert Nv Photographic silver halide colour materials and process for the production of dye images by diffusion transfer
DE3364542D1 (en) * 1982-12-07 1986-08-21 Agfa Gevaert Nv New dye releasing compounds and their use in photographic silver halide colour materials for the production of colour images by a dye diffusion transfer process
JPH0623832B2 (ja) * 1984-08-17 1994-03-30 富士写真フイルム株式会社 ハロゲン化銀カラ−反転反射プリント感光材料

Also Published As

Publication number Publication date
EP0251042A3 (en) 1989-07-12
DE3621764A1 (de) 1988-01-07
JPS6313038A (ja) 1988-01-20
EP0251042A2 (de) 1988-01-07
US4770980A (en) 1988-09-13
DE3771134D1 (de) 1991-08-08

Similar Documents

Publication Publication Date Title
EP0251042B1 (de) Farbfotografisches Aufzeichnungsmaterial
DE2650715A1 (de) Farbphotographisches aufzeichnungsmaterial
EP0262567A2 (de) Farbfotografischer Negativ-Film
DE2622922A1 (de) Farbphotographisches aufzeichnungsmaterial
EP0045427B1 (de) Lichtempfindliches fotografisches Aufzeichnungsmaterial und dessen Verwendung zur Herstellung fotografischer Bilder
DE2704826A1 (de) Farbphotographisches aufzeichnungsmaterial
DE2622923A1 (de) Farbphotographisches aufzeichnungsmaterial
DE2622924A1 (de) Farbphotographisches aufzeichnungsmaterial
DE2411105C3 (de) Verfahren zur Herstellung farbphotographischer Bilder
DE3630564A1 (de) Farbfotografisches aufzeichnungsmaterial mit einem gelb-dir-kuppler
EP0866364B1 (de) Hochempfindliches farbfotografisches Aufzeichnungsmaterial mit erhöhter Empfindlichkeit im blauen Spektralbereich
EP0254151B1 (de) Fotografisches farbkupplerhaltiges Material
DE2421068C2 (de) Farbphotographisches mehrschichtiges Aufzeichnungsmaterial
DE3626219A1 (de) Farbfotografisches aufzeichnungsmaterial mit einem gelb-dir-kuppler
DE3625616A1 (de) Farbfotografisches aufzeichnungsmaterial mit 2-aequivalentpurpurkupplern
DE3736048C2 (de) Farbfotografisches Aufzeichnungsmaterial mit DIR-Verbindungen
DE3739555A1 (de) Farbfotografisches negativ-aufzeichnungsmaterial mit dir-verbindungen
DE2328014A1 (de) Lichtempfindliches farbphotographisches material
EP0866368B1 (de) Hochempfindliches farbfotografisches Aufzeichnungsmaterial mit erhöhter Empfindlichkeit im grünen spektralbereich
EP0809140B1 (de) Farbfotografisches Aufzeichnungsmaterial mit erhöhter Empfindlichkeit und verbesserter Farbwiedergabe
DE10335728B3 (de) Farbfotografisches Silberhalogenidmaterial
EP0866363B1 (de) Hochempfindliches farbfotografisches Aufzeichnungsmaterial mit erhöhter Empfindlichkeit im roten Spektralbereich
DE19749589A1 (de) Farbfotografisches Silberhalogenidmaterial
EP0217255A2 (de) Farbfotografisches Aufzeichnungsmaterial mit leicht dispergierbaren Farbkupplern
DE19742040A1 (de) Farbfotografisches Silberhalogenidmaterial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870619

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB

17Q First examination report despatched

Effective date: 19901026

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3771134

Country of ref document: DE

Date of ref document: 19910808

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930608

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930609

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930611

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940630

BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 19940630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950515

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970301