EP0249574A2 - Betonschwellensystem - Google Patents

Betonschwellensystem Download PDF

Info

Publication number
EP0249574A2
EP0249574A2 EP87730062A EP87730062A EP0249574A2 EP 0249574 A2 EP0249574 A2 EP 0249574A2 EP 87730062 A EP87730062 A EP 87730062A EP 87730062 A EP87730062 A EP 87730062A EP 0249574 A2 EP0249574 A2 EP 0249574A2
Authority
EP
European Patent Office
Prior art keywords
sleeper
concrete
rail
sleepers
supports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87730062A
Other languages
English (en)
French (fr)
Other versions
EP0249574B1 (de
EP0249574A3 (en
Inventor
Günter Dipl.-Ing. Fasterding
Jürgen Dipl.-Ing. Frenzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stahlwerke Pein Salzgitter AG
Preussag Stahl AG
Original Assignee
Stahlwerke Pein Salzgitter AG
Preussag Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stahlwerke Pein Salzgitter AG, Preussag Stahl AG filed Critical Stahlwerke Pein Salzgitter AG
Priority to AT87730062T priority Critical patent/ATE60381T1/de
Publication of EP0249574A2 publication Critical patent/EP0249574A2/de
Publication of EP0249574A3 publication Critical patent/EP0249574A3/de
Application granted granted Critical
Publication of EP0249574B1 publication Critical patent/EP0249574B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B9/00Fastening rails on sleepers, or the like
    • E01B9/02Fastening rails, tie-plates, or chairs directly on sleepers or foundations; Means therefor
    • E01B9/04Fastening on wooden or concrete sleepers or on masonry without clamp members
    • E01B9/14Plugs, sleeves, thread linings, or other inserts for holes in sleepers
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B3/00Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails
    • E01B3/28Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails made from concrete or from natural or artificial stone
    • E01B3/32Transverse or longitudinal sleepers; Other means resting directly on the ballastway for supporting rails made from concrete or from natural or artificial stone with armouring or reinforcement
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B9/00Fastening rails on sleepers, or the like
    • E01B9/68Pads or the like, e.g. of wood, rubber, placed under the rail, tie-plate, or chair
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B9/00Fastening rails on sleepers, or the like
    • E01B9/68Pads or the like, e.g. of wood, rubber, placed under the rail, tie-plate, or chair
    • E01B9/681Pads or the like, e.g. of wood, rubber, placed under the rail, tie-plate, or chair characterised by the material

Definitions

  • the invention relates to a concrete sleeper system for track systems according to the preamble of claim 1.
  • Concrete sleepers are suitable rail supports for the railway superstructure both in ballast beds and on solid concrete or asphalt surfaces. On the one hand, they have the task of fixing the rails true to the track and, on the other hand, to give the rail track the necessary elasticity due to its relatively short bearing surface for the rails in the event of a rolling load. During operation, these sleepers are subjected to pressure, bending, torsion and transverse displacement. An overlay of the underside of the sleeper in the fullest possible length ensures a good pressure distribution into the ground, especially with ballast beds.
  • Y sleepers can achieve a considerably better load distribution for a given nominal distance of the support points of the rails according to the distance between the usual rod-shaped concrete sleepers.
  • a smaller distance between the supports would be desirable and / or a higher resistance to torsional fracture, since an opposing moment load occurs in the fork of the Y-sleeper when the sleeper's axis of symmetry is operating.
  • Rail fastening (GB-PS 861473) is widespread, in which the rail foot is first fixed to a metal base plate by means of a steel spring and the metal base plate is fixed to the threshold by further clamping means.
  • the mass problem is met by a Y-shaped concrete tie, which saves approx. 20% of the concrete mass per unit length, with the same or better rail bearing.
  • the concrete cross sleeper according to the invention with two or more supports for the rail per sleeper end can be usefully used in particular in heavily loaded track sections such as light rail lines, high-speed lines and heavy-duty lines.
  • the fixed bearing Element threshold remain stable against torsion and bending fracture.
  • this is achieved, on the one hand, by distributing the threshold load to three points at each threshold end and, on the other hand, by using known polymer concrete made of colloidal cement and 4-10% addition of polymers such as polyvinyl acetate.
  • a concrete threshold with chopped or layered GRP fibers could also be used.
  • the technological properties of these composites are considerably better than those of conventional concrete or prestressed concrete. If necessary, the particularly stressed parts of the threshold determined on the basis of a stress analysis can be stabilized from a mixture of the composite materials or by adding long-fiber carbon fibers or glass fibers.
  • This reinforcement technology has the advantage that electrically conductive material is avoided, which could cause disturbances in track current detection systems by induction or conduction (electrolyte formation in rainwater between rail and threshold or threshold reinforcement).
  • the threshold system can also be used to prevent the magnetic field of DC-powered vehicles from being influenced.
  • the new concrete cross sleepers can be connected to the ground using so-called Nelson anchors; this contributes to the stiffening of the threshold as a rail support.
  • the reinforcement of the threshold at the particularly stressed points by connecting those for the tie rods, eg sleepers screwing, dowels cast into the concrete using a plastic bridge or fiber rope, can be done according to the invention in several ways: - by connecting the screw anchors on a rail to a crossbar, - by connecting the dowels on the inside of the rails, - by connecting all dowels and the Nelson anchor attachment.
  • the attachment point for the Nelson anchor could also be included in the reinforcement.
  • the cast-in dowels can also extend through to the underside of the threshold and be open at the bottom so that any penetrating electrolytes, such as rainwater etc., can drain off.
  • a metal base plate can first be arranged on the concrete sleeper, which in turn carries two resilient, insulated support elements made of preferably polyethylene or other environmentally resistant plastics. This results in a lower specific load on the threshold.
  • This type of support should be used in particular if the track bed is made of asphalt or concrete.
  • the plastic plates must then simulate or adopt the elastic sinking behavior of a ballast bed so that the track has an overall elastic characteristic despite the relatively rigid rails and sleepers. This is important for a long service life and break resistance of the track system at the extremely prevailing summer / winter temperatures of approx. 230 K to 350 K.
  • the known steel spring bracing of the rail foot with the metal base plate can be used.
  • the metal base plate can be pre-assembled at the factory so that no screwing tools are required when laying rails. This also prevents the rail from being braced with excessive screw torques.
  • the raised support surfaces on the sleeper end can be created particularly easily if the sleeper concrete casting mold is designed for each support in such a way that at each sleeper end two bumps which emerge from the later sleeper surface are formed. An elastic rail pad is then placed on these humps, if necessary under high load with the insertion of a metal intermediate plate.
  • the elastic rail underlay can also be designed as a continuous plate or molded body, each covering two humps located at a sleeper end, with lateral guides for fixing the position on the sleeper or the hump. If this plate is elastic enough, nothing changes in the three-point bracing of the rail foot on the threshold.
  • Two adjacent rod-shaped threshold ends 1 of concrete cross sleepers made of polymer concrete have wedge surfaces 14 with an inclination 1:40 to the center of the track (FIG. 1).
  • Bearings 3, 4, 5, 6 made of resilient, electrically insulating plastic plates for the rail foot 13 of the rail 2 are arranged on the wedge surfaces 14.
  • the center distance between the supports 4 and 5 is 600 mm, between the supports 3 and 4 or 5 and 6 170 mm.
  • the rail foot 13 is fixed in the center between the supports 3, 4 and 5, 6 by guide plates 7 and clamping brackets 8 resting in the groove 16 and the screws 9 inserted in dowels 17 (FIG. 2).
  • a slot 10 is provided for receiving a Nelson anchor 12, which is braced against the mounting surface 11 with the nut 15 via the washer 23.
  • the Nelson anchor 12 has previously been welded to a strip steel 21 cast in the asphalt bed 22 by means of a stud welding device, not shown.
  • Fig. 3 shows a section through a concrete cross sleeper two different reinforcement techniques and screw dowel trusses.
  • a cross member 18 made of GRP is cast in for the rail fastening on both sides in the sleeper end 1 and thus secures a critical point of the sleeper against breaking out.
  • an end 1 of a concrete threshold is shown, which encloses a reinforcement cross member 20, the webs 19 of which consist of glass fiber laminates laminated to the dowels 17 made of polyethylene, lengthways extend through the entire threshold and end in arm 24 with a hole for the Nelson anchor, not shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Railway Tracks (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Bridges Or Land Bridges (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Road Paving Structures (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

Moderne gleichstrombetriebene Bahnen und Gleisstrom-Meldesysteme sowie Hochleistungszüge verlangen Rücksicht bei der Gleisanlagen­ausbildung. Daher wird ein neues Betonschwellensystem für Schwerlast-, Hochgeschwindigkeits- und Stadtbahnstrecken in Gleisanlagen vorgeschlagen, wobei die Schwellenenden (1) eine Drei-Punkt-Befestigung der Schiene (2), bestehend aus zwei elastischen, elektrisch isolierten Auflagern (3, 4, 5, 6) und Spannmitteln (8, 9) zur Schienenfuß-Festlegung aufweist. Diese Bauweise, in Verbund mit einer neuen Bewehrungstechnik aus nicht leitendem Material, verringert die Belastung der Schwelle erheblich und vermeidet den störenden Einfluß einer Stahlbewehrung auf die elektrische Bahntechnik.

Description

  • Die Erfindung betrifft ein Betonschwellensystem für Gleisanlagen gemäß dem Oberbegriff des Anspruches 1.
  • Betonquerschwellen sind geeignete Schienenträger für den Eisenbahnoberbau sowohl in Schotterbetten als auch auf festem Beton- oder Asphaltuntergrund. Sie haben einerseits die Aufgabe, Schienen spurgetreu zu fixieren und andererseits dem Schienenstrang durch ihre relativ kurze Auflagerfläche für die Schienen bei der überrollenden Belastung die notwendige Elastizität zu geben. Im Betrieb werden diese Schwellen auf Druck, Biegung, Torsion und Querverschiebung beansprucht. Eine Auflage der Schwellenunterseite in möglichst gesamter Länge gewährleistet eine gute Druckverteilung auf in den Untergrund, insbesondere bei Schotterbetten.
  • Betonquerschwellen aus Spannbeton sind bekannt. Diese Schwellen, z.B. gemäß DE-PS 22 61 473, haben Nachteile. Gleisstrom-Signalsysteme können durch Schwellen mit integriertem elektrisch leitendem Material wie Stahlrohre beeinflußt werden. Bei Fahrzeugen mit Gleichstromantrieb erfassen Induktionsströme das leitende Material. Eine Verminderung der Biegebelastung in Gleislängsrichtung und damit verringerter Torsion und der bekannten "Pumpwirkung" in Schotterbetten läßt sich nur durch Verkürzung des Schwellenabstandes erreichen. Dieses bedingt einen hohen Materialaufwand.
  • Es wurde ebenfalls vorgeschlagen, durch Verwendung sogenannter "Ohrenschwellen" die Zahl der Schwellen zu reduzieren bzw. die Zahl der Schienen-Auflager zu erhöhen (CH-PS 40 591). Die seitlich der Schwellenachse sich.erstreckenden Betonteile dieser Schwelle brachen trotz Bewehrung in der Praxis jedoch häufig Bewehrung aufgrund der Belastung durch die Schienenfahrzeuge.
  • Durch ein anderes bekanntes Beton-Schwellensystem, sogenannte Y-Schwellen gemäß DE-OS 28 02 145, läßt sich, bei gegebenem Nominal-Abstand der Auflagerpunkte der Schienen entsprechend dem Abstand der gebräuchlichen stabförmigen Betonquerschwellen, schon eine erheblich bessere Lastverteilung erreichen. Für diese Betonschwellen wäre ein geringerer Auflager-Abstand wünschenswert und/oder eine höhere Torsionsbruchsicherheit, da in der Gabel der Y-Schwelle, bei Betriebsbelastung in der Symmetrieachse der Schwelle, eine gegensinnige Momentenbelastung auftritt.
  • Außerdem ist bekannt, Stahlschwellen auf Asphaltbetten (EP-A1-­023307) durch "Nelson-Anker" ( Merkblatt DVS 0902, Dezember 1972) zu fixieren.
  • Weit verbreitet ist eine Schienenbefestigung (GB-PS 861473), bei der der Schienenfuß zunächst auf einer Metallgrundplatte durch eine Stahlfeder befestigt und die Metallgrundplatte durch weitere Spannmittel an der Schwelle fixiert ist.
  • Von daher ist es Aufgabe der Erfindung, ein neues Betonschwellen­system vorzuschlagen, das es ermöglicht, bei hoher Elastizität der Gleisanlage auf Schotterbetten oder fester Fahrbahn, ein günstigeres Einsinkverhalten in Schotterbetten, verringerte Biegespannung in der Schiene und ein günstigeres Torsions- und Biegeverhalten der Schwelle zu erreichen sowie einen störungsfreien Betrieb von Gleisstrom-Signalsystemen auch bei Befahren der Gleisanlage mit gleichstromgetriebenen Fahrzeugen zu gewährleisten.
  • Die Aufgabe wird erfindungsgemäß durch die im Anspruch 1 angegebenen Merkmale gelöst.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen erfaßt.
  • Die Doppellagerung der Schiene auf einer normalen Betonquer­schwelle in Stabform mit der dazwischenliegenden Verspannung des Schienenfußes ergibt eine optimale Dreipunkt-Fixierung der Schiene.
  • Je größer der Abstand der Auflager auf den Schwellenenden, desto günstiger ist bei Belastung der Spannungsverlauf in der Schiene und Schwelle. Im Idealfall müßte zwischen den Auflagern aller Schwellen ein stets gleicher Abstand bestehen; dieses würde jedoch einen zu hohen Aufwand an Schwellen bedeuten. Der vorgeschlagene Zwischenschritt mit einem Auflagerabstand auf den Schwellen von mehr als 20 % des Abstandes zum Auflager der benachbarten Schwellen erbringt schon eine erhebliche Spannungsreduktion in der Schiene. Der Auflagerabstand wird durch die Schwellenbreite und damit zunehmendem Gewicht der Schwelle sowie der Gefahr des Schwellenbruches bei größer werdendem Hebelarm der Last zur Schwellenachse begrenzt.
  • Dem Massenproblem begegnet eine Betonquerschwelle in Y-Form, bei der ca. 20 % der Betonmasse pro Längeneinheit eingespart wird, bei gleich guter oder besserer Schienenlagerung.
  • Die erfindungsgemäße Betonquerschwelle mit zwei oder mehr Auflagern für die Schiene pro Schwellenende ist insbesondere in stark belasteten Gleisabschnitten wie Stadtbahnstrecken, Hochgeschwindigkeitsstrecken, Schwerlaststrecken sinnvoll einsetzbar.
    Trotz der Gesamtelastizität der Gleisanlage muß das Festlager-­ Element Schwelle gegen Torsions- und Biegebruch stabil bleiben. Dies erreicht man erfindungsgemäß zum einen durch die Verteilung der Schwellenbelastung auf drei Punkte je Schwellenende und zum anderen durch Verwendung an sich bekannten Polymerbetons aus kolloidalem Zement und 4 - 10 % Zusatz von Polymeren wie Polyvinylacetat.
    Ebenfalls verwendbar wäre eine mit gehäckselten oder lagenweise eingebrachten GFK-Fasern versehene Betonschwelle. Die technologischen Eigenschaften dieser Verbundstoffe sind erheblich besser als die von üblichem Beton oder Spannbeton. Erforderlichenfalls können die aufgrund einer Spannungsanalyse festgestellten besonders beanspruchten Teile der Schwelle aus einer Mischung der Verbundwerkstoffe oder durch Zusatz langfaseriger Kohlefasern oder Glasfasern stabilisiert werden.
  • Diese Bewehrungstechnik hat den Vorteil, daß elektrisch leitendes Material vermieden wird, welches durch Induktion oder Leitung (Elektrolyt-Bildung bei Regenwasser zwischen Schiene und Schwelle bzw. Schwellenbewehrung) Störungen in Gleisstrom-Meldeanlagen erzeugen könnnte.
    Auch eine Beeinflussung des Magnetfeldes gleichstromgetriebener Fahrzeuge durch das Schwellensystem kann so ausgeschlossen werden.
  • Zur Erhöhung des Querverschiebewiderstandes, insbesondere in Kurven von Gleisen auf Asphaltbetten, können die neuen Betonquerschwellen durch sogenannte Nelson-Anker mit dem Untergrund verbunden werden; dieses trägt zur Versteifung der Schwelle als Schienenträger bei.
  • Die Bewehrung der Schwelle an den besonders belasteten Punkten durch die Verbindung der für die Zuganker, z.B. Schwellen­ schrauben, in den Beton eingegossenen Dübel mittels Kunststoff­brücke oder Faserseil, kann erfindungsgemäß auf mehrere Arten erfolgen:

        - durch Verbindung der Schraubdübel an einer Schiene zu einer Traverse,
        - durch Verbindung der an den Schienen-Innenseiten liegenden Dübel,
        - durch Verbindung aller Dübel und der Nelson-Anker-­Befestigung.
  • In die Bewehrung einbezogen werden könnte noch der Befestigungs­punkt für den Nelson-Anker. Die eingegossenen Dübel können auch bis zur Schwellenunterseite durchragen und unten offen sein, damit eventuell eindringende Elektrolyte, wie Regenwasser etc., abfließen können.
  • Für Schwerlastverkehr kann gemäß der Erfindung auf der Betonschwelle zunächst eine Metallgrundplatte angeordnet werden, die ihrerseits zwei federnde, isolierte Auflagerelemente aus vorzugsweise Polyethylen oder anderen umweltresistenten Kunststoffen trägt. Dadurch wird eine geringere spezifische Belastung der Schwelle erreicht.
    Diese Ausführung eines Auflagers ist insbesondere zu verwenden, wenn das Gleisbett aus Asphalt oder Beton besteht. Die Kunststoffplatten müssen dann das elastische Einsinkverhalten eines Schotterbettes simulieren bzw. übernehmen, damit das Gleis trotz der relativ biegesteifen Schienen und Schwellen eine elastische Gesamtcharakteristik aufweist. Dies ist wichtig für eine hohe Lebensdauer und Bruchresistenz der Gleisanlage bei den extrem herrschenden Sommer-/Wintertemperaturen von ca. 230 K bis 350 K.
  • Im Zusammenhang mit dieser Auflagerform kann die für sich bekannte Stahlfeder-Verspannung des Schienenfußes mit der Metallgrundplatte angewendet werden. Die Metallgrundplatte kann bereits werkseitig vormontiert werden, so daß bei Schienen­verlegung keine Schraubwerkzeuge benötigt werden. Außerdem wird so verhindert, daß die Schienenverspannung mit zu hohen Schraubenmomenten erfolgt.
  • Besonders einfach lassen sich die erhöhten Auflagerflächen auf dem Schwellenende schaffen, wenn die Schwellen-Betongußform für jedes Auflager so ausgebildet wird, daß an jedem Schwellenende zwei aus der späteren Schwellenoberfläche hervorragende Höcker entstehen. Auf diesen Höckern wird dann eine elastische Schienenunterlage plaziert, erforderlichenfalls bei hoher Belastung unter Einfügung einer metallenen Zwischenplatte.
  • Im Rahmen der Erfindung kann die elastische Schienenunterlage auch als durchgehende, je zwei an einem Schwellenende gelegene Höcker überdeckende, Platte oder Formkörper mit seitlichen Führungen für die Lagefixierung auf der Schwelle bzw. dem Höcker ausgebildet sein. Wenn diese Platte elastisch genug ausgebildet ist, ändert sich dadurch nichts an der Drei-Punkt-Verspannung des Schienenfußes auf der Schwelle.
  • Anhand schematischer Zeichnungen soll die Erfindung näher erläutert werden.
  • Es zeigen
    • Fig. 1 eine Draufsicht auf ein erfindungsgemäßes System mit zwei Betonquerschwellen,
    • Fig. 2 eine Seitenansicht eines Schwellenendes mit Teilschnitt II-II gemäß Fig. 1,
    • Fig. 3 einen Schnitt durch eine erfindungsgemäße Betonquerschwelle.
  • Zwei benachbarte stabförmige Schwellenenden 1 von Beton­querschwellen aus Polymerbeton weisen Keilflächen 14 mit Neigung 1 : 40 zur Gleismitte auf (Fig. 1).
    Auf den Keilflächen 14 sind Auflager 3, 4, 5, 6 aus federnden, elektrisch isolierenden Kunststoffplatten für den Schienenfuß 13 der Schiene 2 angeordnet. Der Mittenabstand zwischen den Auflagern 4 und 5 beträgt 600 mm, zwischen den Auflagern 3 und 4 bzw. 5 und 6 170 mm.
  • Mittig zwischen den Auflagern 3, 4 bzw. 5, 6 ist der Schienenfuß 13 durch in Nut 16 ruhende Führungsplatten 7 und Spannbügel 8 sowie die in Dübel 17 (Fig. 2) eingelassene Schrauben 9 fixiert.
    Ein Schlitz 10 ist für die Aufnahme eines Nelson-Ankers 12 vorgesehen, der mit Mutter 15 über Scheibe 23 gegen die Befestigungsfläche 11 verspannt wird.
    Der Nelson-Anker 12 ist vorher an einem im Asphaltbett 22 eingegossenen Bandstahl 21 mittels nicht dargestelltem Bolzenschweißgerät verschweißt worden.
  • Fig. 3 zeigt im Schnitt durch eine Betonquerschwelle zwei unter­schiedliche Bewehrungstechniken und Schraubdübel-Traversen. Im rechten Bildabschnitt ist eine Traverse 18 aus GFK für die beidseitige Schienenbefestigung im Schwellenende 1 eingegossen und sichert so einen kritischen Punkt der Schwelle gegen Ausbrechen. In der linken Teilfigur ist ein Ende 1 einer Betonquerschwelle dargestellt, die eine Bewehrungstraverse 20 umschließt, deren Stege 19 aus Glasfaserlaminaten bestehen, die an die Dübel 17 aus Polyethylen anlaminiert sind, sich längs durch die gesamte Schwelle erstrecken und in Arm 24 mit Bohrung für den nicht dargestellten Nelson-Anker enden.

Claims (10)

1. Betonschwellensystem mit Betonquerschwellen in gegen Torsions- und Biegebruchwiderstandsfähiger Bauweise mit stabförmigen Schwellenenden für Gleisanlagen, insbesondere von Stadtbahn- und Hochgeschwindigkeitseisenbahnstrecken mit wenigstens zwei Schienen sowie Auflagern und Befestigungen für die Schienen, wobei die Schwelle ein Breiten/Höhen­verhältnis von kleiner als 2 : 1 hat, dadurch gekennzeichnet, daß jedes Schwellenende (1) mindestens je zwei Auflager (3, 4 bzw. 6, 5) aufweist, zwischen denen Spannmittel (8, 9) für die Befestigung des Schienenfußes (13) angeordnet sind und die Betonquerschwelle eine Bewehrung aus elektrisch nicht leitendem Material hat.
2. Betonschwellensystem nach Anspruch 1, dadurch gekennzeichnet, daß der Mittenabstand benachbarter Auflager (3, 4 bzw. 5, 6) größer als 0,2 mal dem Mittenabstand der Auflager (4, 5) benachbarter Schwellenenden (1) ist.
3. Betonschwellensystem nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die Betonquerschwelle y-förmig mit drei Schwellenenden (1) ausgebildet ist.
4. Betonschwellensystem nach den Ansprüchen 1 - 3, dadurch gekennzeichnet, daß der Betonquerschwellenkörper aus Polymer- und/oder Faserbeton besteht.
5. Betonschwellensystem nach den Ansprüchen 1 - 4, gekennzeichnet durch eine Bewehrung der Betonquerschwelle aus Kohlefaser und/oder verseifungsfester Glasfaser.
6. Betonschwellensystem nach den Ansprüchen 1 - 5, dadurch gekennzeichnet, daß jedes Schwellenende (1) einen Befestigungspunkt (11) für einen Nelson-Anker (12) aufweist.
7. Betonschwellensystem nach den Ansprüchen 1 - 6, dadurch gekennzeichnet, daß für mindestens je zwei Spannmittel (8, 9) eine Schraubdübel-Traverse (18, 20) aus Kunststoff in der Betonquerschwelle angeordnet ist.
8. Betonschwellensystem nach den Ansprüchen 1 - 5, dadurch gekennzeichnet, daß die Auflager (3, 4, 5, 6) eine Metallgrundplatte und eine darauf angeordnete, federnde, elektrisch isolierende Kunststoffplatte aufweisen.
9. Betonschwellensystem nach den Ansprüchen 1 - 8, dadurch gekennzeichnet, daß die Spannmittel (8, 9) für den Schienenfuß aus zwei Stahlfedern und einer die Stahlfedern einseitig haltenden Metallgrundplatte sowie mindestens zwei die Metallgrundplatte auf der Schwelle fixierenden Schrauben besteht.
10. Betonschwellensystem nach den Ansprüchen 1 - 7, dadurch gekennzeichnet, daß das Auflager (3, 4, 5, 6) als Basis einen aus der Oberfläche des Schwellenendes (1) hervorragenden Höcker aufweist.
EP87730062A 1986-06-10 1987-06-06 Betonschwellensystem Expired - Lifetime EP0249574B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87730062T ATE60381T1 (de) 1986-06-10 1987-06-06 Betonschwellensystem.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863619417 DE3619417A1 (de) 1986-06-10 1986-06-10 Betonschwelle
DE3619417 1986-06-10

Publications (3)

Publication Number Publication Date
EP0249574A2 true EP0249574A2 (de) 1987-12-16
EP0249574A3 EP0249574A3 (en) 1988-10-19
EP0249574B1 EP0249574B1 (de) 1991-01-23

Family

ID=6302651

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87730062A Expired - Lifetime EP0249574B1 (de) 1986-06-10 1987-06-06 Betonschwellensystem

Country Status (9)

Country Link
US (1) US4802623A (de)
EP (1) EP0249574B1 (de)
JP (1) JPS62296001A (de)
AT (1) ATE60381T1 (de)
AU (1) AU597379B2 (de)
DE (2) DE3619417A1 (de)
ES (1) ES2020297B3 (de)
GR (1) GR3001787T3 (de)
ZA (1) ZA874033B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005331A1 (de) * 1995-07-28 1997-02-13 Harms & Haffke Gmbh & Co. Zwei-block-schwelle aus polymerbeton und verfahren zu deren herstellung
DE102009049411A1 (de) * 2009-10-14 2011-04-21 Db Netz Ag Spannbetonschwelle sowie Verfahren zum Transport und Einbau einer Weiche mit Spannbetonschwellen
DE102010035675A1 (de) * 2010-08-27 2012-03-01 Db Netz Ag Klappbare Weiche

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728304A1 (de) * 1987-08-25 1989-03-16 Strabag Bau Ag Eisenbahnschwelle
DE8906790U1 (de) * 1989-06-02 1989-08-31 Vossloh-Werke GmbH, 58791 Werdohl Schienenbefestigung auf Betonschwellen od.dgl. mittels elastischer Spannklemmen
DE4040785C2 (de) * 1990-12-15 1994-06-09 Preussag Stahl Ag Eisenbahnoberbau
IN185922B (de) * 1991-12-18 2001-05-19 Pandrol Ltd
US5735458A (en) * 1991-12-18 1998-04-07 Pandrol Limited Fastening railway rails
DE19607339A1 (de) * 1996-02-27 1997-08-28 Vossloh Werke Gmbh Vorrichtung zur hochelastischen Befestigung von Eisenbahn-Schienen auf Standard-Betonschwellen
DE19620638C2 (de) * 1996-05-22 1999-05-06 Fritzsch Harald Dr Ing Gleisoberbau
SE9702375L (sv) * 1997-06-19 1998-12-20 Bengt Boenstroem Isolerande och dämpande spår för spårbunden trafik
SE9800106D0 (sv) 1998-01-19 1998-01-19 Swerrac Ab Rälsbundet transportsystem
DE102004021091A1 (de) * 2004-04-29 2006-10-19 Bwg Gmbh & Co. Kg Befestigung für eine Schiene sowie Anordnung zum Befestigen von Schienen
US8544763B2 (en) * 2010-03-15 2013-10-01 Concrete Systems Inc. Prefabricated plinth for supporting a railway track
DE102010060745A1 (de) * 2010-11-23 2012-05-24 Vossloh-Werke Gmbh Führungsplatte zum seitlichen Führen einer Schiene und System zum Befestigen einer Schiene
US20120248215A1 (en) * 2011-04-03 2012-10-04 Javad Mirmohamad Sadeghi Railroad tie
RU2504611C2 (ru) * 2012-04-09 2014-01-20 Открытое акционерное общество "БетЭлТранс" Железобетонная шпала
DE102012209764B4 (de) * 2012-06-12 2014-01-16 Lisega SE Kälteisoliertes Rohrlager
GB2510419B (en) * 2013-02-04 2020-02-05 Pandrol Ltd A railway rail anchoring device
US10422085B2 (en) * 2016-08-26 2019-09-24 Pandrol Limited Tie plate for railroad tracks with spike protectors
DE102016216529A1 (de) * 2016-09-01 2018-03-01 Schwihag Ag Vorrichtung zur Befestigung einer Schiene für Schienenfahrzeuge
KR102458085B1 (ko) * 2021-05-28 2022-10-24 오병용 철도용 분절형침목 및 이와 결합되는 언더플레이트
BR202022011494U2 (pt) * 2022-06-10 2022-11-29 Wirklich Ind De Plasticos Ltda Disposição em galocha para dormente de concreto

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB168743A (en) * 1920-07-13 1921-09-15 Olindo Valeri Improvements in supports for railway and like rails
US1464938A (en) * 1920-11-01 1923-08-14 Willys Morrow Company Gauging machine
GB535366A (en) * 1939-02-03 1941-04-07 Resilient Products Corp Improvements in or relating to tie plate arrangements for railroads
CH229635A (de) * 1943-01-27 1943-11-15 Sphinxwerke Mueller & Co Ag Vorrichtung zum Messen von Gewindebohrern, Reibahlen und ähnlichen Werkzeugen.
GB584925A (en) * 1944-03-24 1947-01-27 Louis Charles Jones Warren Improvements in or relating to linear dimension gauges
US2496212A (en) * 1944-06-06 1950-01-31 American Hardware Corp Diameter measuring device
DE806012C (de) * 1949-09-30 1951-06-11 Huettenwerke Ruhrort Meiderich Aus Beton bestehende Gleisschwelle
DE880596C (de) * 1943-01-14 1953-06-22 Continental Gummi Werke Ag Elastische Zwischenplatte fuer den Eisenbahnoberbau
US3088674A (en) * 1959-10-21 1963-05-07 Louis X H Maynier Railway track support
US3477136A (en) * 1967-11-28 1969-11-11 Lowell C Johnson Dimensional gage with equalized spring pressure
FR2190594A1 (de) * 1972-07-05 1974-02-01 Dow Chemical Co
GB1354299A (en) * 1971-05-03 1974-06-05 Portec Inc Railway sleepers
FR2378129A1 (fr) * 1977-01-20 1978-08-18 Frenzel Juergen Traverse de voie ferree
DE2718665A1 (de) * 1977-04-27 1978-11-02 Kloeckner Werke Ag Stahlschwelle fuer den gleisbau
GB2008176A (en) * 1977-11-18 1979-05-31 Dunlop Ltd Resilient Support Means
DE3222583A1 (de) * 1982-06-16 1983-12-22 Mauser-Werke Oberndorf Gmbh, 7238 Oberndorf Messkopf fuer gewindemessmaschinen
FR2545116A1 (fr) * 1983-04-29 1984-11-02 Getzner Chemie Gmbh & Co Element amortisseur de bruit pour voie ferree
DE3521673A1 (de) * 1984-11-08 1986-05-22 Stahlwerke Peine-Salzgitter Ag, 3320 Salzgitter Vorrichtung zur befestigung von schienen einer eisenbahn auf stahlschwellen, insbesondere auf y-stahlschwellen

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US618566A (en) * 1899-01-31 gereckey
CH40591A (de) * 1907-06-28 1908-08-01 August Huehne Eisenbahnschwelle aus Eisenbeton
US1406074A (en) * 1921-08-26 1922-02-07 Charles A Pierson Concrete railway tie
US1520987A (en) * 1923-02-27 1924-12-30 Waples Rufus Means for securing railroad rails to roadbeds
US2425883A (en) * 1941-08-08 1947-08-19 John G Jackson Concrete structural element reinforced with glass filaments
DE839363C (de) * 1949-11-04 1952-05-19 Dyckerhoff & Widmann Ag Verankerung von insbesondere aus Stahlbeton bestehenden Eisenbahn-schwellen in der Bettung
GB861473A (en) * 1956-08-03 1961-02-22 Lockspike Ltd Improvements in fastening members for anchoring railway rails and in rail-fastening arrangements employing such members
US3021291A (en) * 1958-12-15 1962-02-13 Koppers Co Inc Preparation of concrete containing expanded polymeric particles
FR1277989A (fr) * 1960-08-10 1961-12-08 Traverse perfectionnée de chemin de fer et dispositif de moulage destiné à sa fabrication
JPS4911770U (de) * 1972-05-01 1974-01-31
DE2751531A1 (de) * 1977-01-20 1978-07-27 Juergen Frenzel Eisenbahnschwelle
DE3223305A1 (de) * 1982-06-22 1983-12-29 Vossloh-Werke Gmbh, 5980 Werdohl Schienenbefestigung auf betonschwellen oder dergleichen
DE3243895A1 (de) * 1982-11-26 1984-05-30 Vossloh-Werke Gmbh, 5980 Werdohl Befestigungsanordnung fuer schienen auf schwellen
CH662840A5 (de) * 1984-02-23 1987-10-30 Studer Ag Fritz Querverbindungskoerper zwischen zwei schienen einer gleisanlage.
US4648554A (en) * 1984-10-30 1987-03-10 Acme Plastics, Inc. Impact and vibration attenuating pad with offset dimples

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB168743A (en) * 1920-07-13 1921-09-15 Olindo Valeri Improvements in supports for railway and like rails
US1464938A (en) * 1920-11-01 1923-08-14 Willys Morrow Company Gauging machine
GB535366A (en) * 1939-02-03 1941-04-07 Resilient Products Corp Improvements in or relating to tie plate arrangements for railroads
DE880596C (de) * 1943-01-14 1953-06-22 Continental Gummi Werke Ag Elastische Zwischenplatte fuer den Eisenbahnoberbau
CH229635A (de) * 1943-01-27 1943-11-15 Sphinxwerke Mueller & Co Ag Vorrichtung zum Messen von Gewindebohrern, Reibahlen und ähnlichen Werkzeugen.
GB584925A (en) * 1944-03-24 1947-01-27 Louis Charles Jones Warren Improvements in or relating to linear dimension gauges
US2496212A (en) * 1944-06-06 1950-01-31 American Hardware Corp Diameter measuring device
DE806012C (de) * 1949-09-30 1951-06-11 Huettenwerke Ruhrort Meiderich Aus Beton bestehende Gleisschwelle
US3088674A (en) * 1959-10-21 1963-05-07 Louis X H Maynier Railway track support
US3477136A (en) * 1967-11-28 1969-11-11 Lowell C Johnson Dimensional gage with equalized spring pressure
GB1354299A (en) * 1971-05-03 1974-06-05 Portec Inc Railway sleepers
FR2190594A1 (de) * 1972-07-05 1974-02-01 Dow Chemical Co
FR2378129A1 (fr) * 1977-01-20 1978-08-18 Frenzel Juergen Traverse de voie ferree
DE2718665A1 (de) * 1977-04-27 1978-11-02 Kloeckner Werke Ag Stahlschwelle fuer den gleisbau
GB2008176A (en) * 1977-11-18 1979-05-31 Dunlop Ltd Resilient Support Means
DE3222583A1 (de) * 1982-06-16 1983-12-22 Mauser-Werke Oberndorf Gmbh, 7238 Oberndorf Messkopf fuer gewindemessmaschinen
FR2545116A1 (fr) * 1983-04-29 1984-11-02 Getzner Chemie Gmbh & Co Element amortisseur de bruit pour voie ferree
DE3521673A1 (de) * 1984-11-08 1986-05-22 Stahlwerke Peine-Salzgitter Ag, 3320 Salzgitter Vorrichtung zur befestigung von schienen einer eisenbahn auf stahlschwellen, insbesondere auf y-stahlschwellen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005331A1 (de) * 1995-07-28 1997-02-13 Harms & Haffke Gmbh & Co. Zwei-block-schwelle aus polymerbeton und verfahren zu deren herstellung
DE102009049411A1 (de) * 2009-10-14 2011-04-21 Db Netz Ag Spannbetonschwelle sowie Verfahren zum Transport und Einbau einer Weiche mit Spannbetonschwellen
DE102010035675A1 (de) * 2010-08-27 2012-03-01 Db Netz Ag Klappbare Weiche

Also Published As

Publication number Publication date
EP0249574B1 (de) 1991-01-23
US4802623A (en) 1989-02-07
GR3001787T3 (en) 1992-11-23
ATE60381T1 (de) 1991-02-15
AU7401987A (en) 1987-12-17
EP0249574A3 (en) 1988-10-19
DE3767576D1 (de) 1991-02-28
AU597379B2 (en) 1990-05-31
ES2020297B3 (es) 1991-08-01
ZA874033B (en) 1987-12-04
DE3619417A1 (de) 1987-12-17
JPS62296001A (ja) 1987-12-23

Similar Documents

Publication Publication Date Title
EP0249574B1 (de) Betonschwellensystem
DE2803021A1 (de) Baugruppe zur bildung eines niveaugleichen uebergangs einer strasse ueber ein bahnschienenpaar
EP0787233B1 (de) Unterbau für ein gleis für schienenfahrzeuge
EP1709249B1 (de) Hochelastischer elektrisch isolierender schienenstützpunkt
EP2729617A1 (de) Übergang zwischen zwei gleisabschnitten
EP0432357A1 (de) Einrichtung zum Lagern von Schienen für Schienenfahrzeuge
DE4224082C2 (de) Schalldämmendes Stützpunktlager für eine Schiene
EP1914347B1 (de) Gleisübergangseinrichtung
DE3722627A1 (de) Lagesicherung fuer stahlschwellen
EP1048783A1 (de) Feste Fahrbahn für Schienenfahrzeuge und Verfahren zu ihrer Herstellung
DE8615554U1 (de) Betonschwelle
DE10237176B4 (de) Fahrbahn für Magnetbahnzüge
DE29703508U1 (de) Feste Fahrbahn, vornehmlich für den Weichenbereich
EP0739436B1 (de) Schienenlager
DE4438397C2 (de) Betonschwelle für Gleis mit Führungsschienen
WO1991004375A1 (de) Fahrwegschiene für ein magnetschwebefahrzeug
EP1887135A2 (de) Fahrbahn für Schienenfahrzeuge
DE202007016196U1 (de) Gleisanlage, insbesondere Baugleisanlage für einen Tunnelausbau
WO2020049156A2 (de) Weichenanordnung mit elastisch gelagerten weichentragplatten
DE1534108A1 (de) Gleiskonstruktion
DE4031540C2 (de) Schienenlager
DE2906165A1 (de) Fahrweg fuer mischbetrieb von spurkranzgefuehrten schienenfahrzeugen und gummibereiften radfahrzeugen
DE3708752A1 (de) Verstellbare schienenbefestigung
DE102005004506A1 (de) Hochelastischer elektrisch isolierender Schienenstützpunkt
DE4220109C2 (de) Halterung für Anbauteile an Schwellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19881020

17Q First examination report despatched

Effective date: 19891227

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 60381

Country of ref document: AT

Date of ref document: 19910215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3767576

Country of ref document: DE

Date of ref document: 19910228

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3001787

EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 87730062.4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960510

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960517

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960520

Year of fee payment: 10

Ref country code: BE

Payment date: 19960520

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960521

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19960522

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960529

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960601

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960606

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960612

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960613

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970606

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970606

Ref country code: AT

Effective date: 19970606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970607

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19970607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: BE

Effective date: 19970630

BERE Be: lapsed

Owner name: STAHLWERKE PEINE-SALZGITTER A.G.

Effective date: 19970630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19980101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970606

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

EUG Se: european patent has lapsed

Ref document number: 87730062.4

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050606