DE69213539D1 - Halbleitervorrichtung mit verbessertem isoliertem Gate-Transistor - Google Patents

Halbleitervorrichtung mit verbessertem isoliertem Gate-Transistor

Info

Publication number
DE69213539D1
DE69213539D1 DE69213539T DE69213539T DE69213539D1 DE 69213539 D1 DE69213539 D1 DE 69213539D1 DE 69213539 T DE69213539 T DE 69213539T DE 69213539 T DE69213539 T DE 69213539T DE 69213539 D1 DE69213539 D1 DE 69213539D1
Authority
DE
Germany
Prior art keywords
semiconductor device
insulated gate
gate transistor
improved insulated
improved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69213539T
Other languages
English (en)
Other versions
DE69213539T2 (de
Inventor
Hiroshi Yuzurihara
Mamoru Miyawaki
Akira Ishizaki
Genzo Monma
Tetsunobu Kochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Application granted granted Critical
Publication of DE69213539D1 publication Critical patent/DE69213539D1/de
Publication of DE69213539T2 publication Critical patent/DE69213539T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823431MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66651Lateral single gate silicon transistors with a single crystalline channel formed on the silicon substrate after insulating device isolation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78612Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing the kink- or the snapback effect, e.g. discharging the minority carriers of the channel region for preventing bipolar effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78639Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a drain or source connected to a bulk conducting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1211Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/901MOSFET substrate bias

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)
DE69213539T 1991-04-26 1992-04-24 Halbleitervorrichtung mit verbessertem isoliertem Gate-Transistor Expired - Lifetime DE69213539T2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9724491 1991-04-26
JP9725791 1991-04-26
JP12950691 1991-05-31

Publications (2)

Publication Number Publication Date
DE69213539D1 true DE69213539D1 (de) 1996-10-17
DE69213539T2 DE69213539T2 (de) 1997-02-20

Family

ID=27308355

Family Applications (1)

Application Number Title Priority Date Filing Date
DE69213539T Expired - Lifetime DE69213539T2 (de) 1991-04-26 1992-04-24 Halbleitervorrichtung mit verbessertem isoliertem Gate-Transistor

Country Status (3)

Country Link
US (2) US5428237A (de)
EP (1) EP0510667B1 (de)
DE (1) DE69213539T2 (de)

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719065A (en) 1993-10-01 1998-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device with removable spacers
JP3501416B2 (ja) * 1994-04-28 2004-03-02 忠弘 大見 半導体装置
JP2891325B2 (ja) * 1994-09-01 1999-05-17 日本電気株式会社 Soi型半導体装置およびその製造方法
US5835045A (en) * 1994-10-28 1998-11-10 Canon Kabushiki Kaisha Semiconductor device, and operating device, signal converter, and signal processing system using the semiconductor device.
JPH08125935A (ja) * 1994-10-28 1996-05-17 Canon Inc 半導体装置、及びそれを用いた半導体回路、相関演算装置、a/d変換器、d/a変換器、信号処理システム
JPH08125152A (ja) 1994-10-28 1996-05-17 Canon Inc 半導体装置、それを用いた相関演算装置、ad変換器、da変換器、信号処理システム
US5903043A (en) * 1994-10-28 1999-05-11 Canon Kabushiki Kaisha Semiconductor device and an arithmetic and logic unit, a signal converter and a signal processing system using the same
JPH08125502A (ja) * 1994-10-28 1996-05-17 Canon Inc 半導体装置とこれを用いた半導体回路、相関演算装置、a/d変換器、d/a変換器、及び信号処理システム
US5643825A (en) * 1994-12-29 1997-07-01 Advanced Micro Devices, Inc. Integrated circuit isolation process
JPH08204563A (ja) * 1995-01-30 1996-08-09 Canon Inc 演算処理装置
JPH08212274A (ja) * 1995-02-02 1996-08-20 Canon Inc 半導体装置及びこれを用いた信号処理システム及び演算方法
JPH0964743A (ja) * 1995-08-23 1997-03-07 Canon Inc 半導体装置と相関演算装置、a/d変換器、d/a変換器、及び信号処理システム
JPH09129864A (ja) 1995-10-30 1997-05-16 Canon Inc 半導体装置及びそれを用いた半導体回路、相関演算装置、信号処理システム
TW374196B (en) * 1996-02-23 1999-11-11 Semiconductor Energy Lab Co Ltd Semiconductor thin film and method for manufacturing the same and semiconductor device and method for manufacturing the same
TW335503B (en) 1996-02-23 1998-07-01 Semiconductor Energy Lab Kk Semiconductor thin film and manufacturing method and semiconductor device and its manufacturing method
JP3695606B2 (ja) * 1996-04-01 2005-09-14 忠弘 大見 半導体装置及びその製造方法
KR0176202B1 (ko) * 1996-04-09 1999-04-15 김광호 에스.오.아이형 트랜지스터 및 그 제조방법
US5834813A (en) * 1996-05-23 1998-11-10 Micron Technology, Inc. Field-effect transistor for one-time programmable nonvolatile memory element
US5807771A (en) * 1996-06-04 1998-09-15 Raytheon Company Radiation-hard, low power, sub-micron CMOS on a SOI substrate
US5838176A (en) * 1996-07-11 1998-11-17 Foveonics, Inc. Correlated double sampling circuit
FR2762708B1 (fr) * 1997-04-29 1999-06-04 Sgs Thomson Microelectronics Procede de commande d'une cellule memoire et memoire non volatile programmable une seule fois en technologie cmos
KR100248507B1 (ko) * 1997-09-04 2000-03-15 윤종용 소이 트랜지스터 및 그의 제조 방법
US6686623B2 (en) * 1997-11-18 2004-02-03 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile memory and electronic apparatus
DE19757609A1 (de) * 1997-12-23 1999-07-01 Siemens Ag Soi-mosfet
US6448615B1 (en) * 1998-02-26 2002-09-10 Micron Technology, Inc. Methods, structures, and circuits for transistors with gate-to-body capacitive coupling
JP2000012864A (ja) * 1998-06-22 2000-01-14 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
US6271101B1 (en) 1998-07-29 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Process for production of SOI substrate and process for production of semiconductor device
US6156589A (en) * 1998-09-03 2000-12-05 Micron Technology, Inc. Compact SOI body contact link
JP4476390B2 (ja) * 1998-09-04 2010-06-09 株式会社半導体エネルギー研究所 半導体装置の作製方法
DE19853268C2 (de) 1998-11-18 2002-04-11 Infineon Technologies Ag Feldeffektgesteuerter Transistor und Verfahren zu dessen Herstellung
US6002507A (en) 1998-12-01 1999-12-14 Xerox Corpoation Method and apparatus for an integrated laser beam scanner
USRE38437E1 (en) 1998-12-01 2004-02-24 Xerox Corporation Method and apparatus for an integrated laser beam scanner using a carrier substrate
JP3589102B2 (ja) * 1999-07-27 2004-11-17 セイコーエプソン株式会社 Soi構造のmos電界効果トランジスタ及びその製造方法
DE10004872C1 (de) * 2000-02-04 2001-06-28 Infineon Technologies Ag MOS-Feldeffekttransistoranordnung und Verfahren zur Herstellung
US6174754B1 (en) 2000-03-17 2001-01-16 Taiwan Semiconductor Manufacturing Company Methods for formation of silicon-on-insulator (SOI) and source/drain-on-insulator(SDOI) transistors
US6717151B2 (en) * 2000-07-10 2004-04-06 Canon Kabushiki Kaisha Image pickup apparatus
US6800836B2 (en) 2000-07-10 2004-10-05 Canon Kabushiki Kaisha Image pickup device, radiation image pickup device and image processing system
US6359298B1 (en) * 2000-07-20 2002-03-19 Advanced Micro Devices, Inc. Capacitively coupled DTMOS on SOI for multiple devices
US7163864B1 (en) * 2000-10-18 2007-01-16 International Business Machines Corporation Method of fabricating semiconductor side wall fin
US7176109B2 (en) * 2001-03-23 2007-02-13 Micron Technology, Inc. Method for forming raised structures by controlled selective epitaxial growth of facet using spacer
JP2003100907A (ja) * 2001-09-26 2003-04-04 Mitsubishi Electric Corp 半導体記憶装置およびその製造方法
CN1762047A (zh) * 2003-03-20 2006-04-19 松下电器产业株式会社 半导体装置及其制造方法
US6808994B1 (en) * 2003-06-17 2004-10-26 Micron Technology, Inc. Transistor structures and processes for forming same
KR100476940B1 (ko) * 2003-06-20 2005-03-16 삼성전자주식회사 기판으로부터 수직으로 연장된 게이트 채널을 갖는디램기억 셀 및 그 제조방법
US6913959B2 (en) * 2003-06-23 2005-07-05 Advanced Micro Devices, Inc. Method of manufacturing a semiconductor device having a MESA structure
US7087506B2 (en) * 2003-06-26 2006-08-08 International Business Machines Corporation Method of forming freestanding semiconductor layer
US7456476B2 (en) 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
US6890819B2 (en) * 2003-09-18 2005-05-10 Macronix International Co., Ltd. Methods for forming PN junction, one-time programmable read-only memory and fabricating processes thereof
US7323731B2 (en) 2003-12-12 2008-01-29 Canon Kabushiki Kaisha Photoelectric conversion device, method of manufacturing photoelectric conversion device, and image pickup system
EP1555688B1 (de) * 2004-01-17 2009-11-11 Samsung Electronics Co., Ltd. Verfahren zur Herstellung eines FinFET mit mehrseitigem Kanal
US7385247B2 (en) * 2004-01-17 2008-06-10 Samsung Electronics Co., Ltd. At least penta-sided-channel type of FinFET transistor
US7122412B2 (en) * 2004-04-30 2006-10-17 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating a necked FINFET device
US7737519B2 (en) * 2004-05-06 2010-06-15 Canon Kabushiki Kaisha Photoelectric conversion device and manufacturing method thereof
US7042009B2 (en) 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
US8604547B2 (en) 2005-02-10 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Memory element and semiconductor device
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US20060202266A1 (en) 2005-03-14 2006-09-14 Marko Radosavljevic Field effect transistor with metal source/drain regions
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
US7547637B2 (en) 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US7279375B2 (en) 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US20070090416A1 (en) 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
US7479421B2 (en) 2005-09-28 2009-01-20 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
US7422960B2 (en) 2006-05-17 2008-09-09 Micron Technology, Inc. Method of forming gate arrays on a partial SOI substrate
US8143646B2 (en) 2006-08-02 2012-03-27 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
US7537994B2 (en) 2006-08-28 2009-05-26 Micron Technology, Inc. Methods of forming semiconductor devices, assemblies and constructions
US7939403B2 (en) * 2006-11-17 2011-05-10 Micron Technology, Inc. Methods of forming a field effect transistors, pluralities of field effect transistors, and DRAM circuitry comprising a plurality of individual memory cells
US7855261B2 (en) 2006-12-08 2010-12-21 Eastman Chemical Company Aldehyde removal
US20080134893A1 (en) * 2006-12-08 2008-06-12 Thauming Kuo Particulate filter media
US20080135058A1 (en) * 2006-12-08 2008-06-12 Ted Calvin Germroth Tobacco smoke filter and method for removal of aldehydes from tobacco smoke
JP2009283685A (ja) * 2008-05-22 2009-12-03 Panasonic Corp 半導体装置およびその製造方法
US8274146B2 (en) * 2008-05-30 2012-09-25 Freescale Semiconductor, Inc. High frequency interconnect pad structure
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
US8624320B2 (en) * 2010-08-02 2014-01-07 Advanced Micro Devices, Inc. Process for forming fins for a FinFET device
JP5843527B2 (ja) 2011-09-05 2016-01-13 キヤノン株式会社 光電変換装置
US8803247B2 (en) * 2011-12-15 2014-08-12 United Microelectronics Corporation Fin-type field effect transistor
US20130320522A1 (en) * 2012-05-30 2013-12-05 Taiwan Semiconductor Manufacturing Company, Ltd. Re-distribution Layer Via Structure and Method of Making Same
US8999792B2 (en) * 2013-03-15 2015-04-07 Qualcomm Incorporated Fin-type semiconductor device
US9263455B2 (en) 2013-07-23 2016-02-16 Micron Technology, Inc. Methods of forming an array of conductive lines and methods of forming an array of recessed access gate lines
US9312389B2 (en) * 2014-05-23 2016-04-12 Broadcom Corporation FinFET with undoped body bulk
US10026843B2 (en) 2015-11-30 2018-07-17 Taiwan Semiconductor Manufacturing Co., Ltd. Fin structure of semiconductor device, manufacturing method thereof, and manufacturing method of active region of semiconductor device
US9893070B2 (en) * 2016-06-10 2018-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and fabrication method therefor
US11018229B2 (en) 2018-09-05 2021-05-25 Micron Technology, Inc. Methods of forming semiconductor structures
US10707298B2 (en) 2018-09-05 2020-07-07 Micron Technology, Inc. Methods of forming semiconductor structures
US10790145B2 (en) 2018-09-05 2020-09-29 Micron Technology, Inc. Methods of forming crystallized materials from amorphous materials
US11832438B2 (en) * 2019-06-28 2023-11-28 Intel Corporation Capacitor connections in dielectric layers
US11430866B2 (en) * 2020-03-26 2022-08-30 Intel Corporation Device contact sizing in integrated circuit structures
US20220384659A1 (en) * 2021-05-26 2022-12-01 Globalfoundries U.S. Inc. Field effect transistor
US11764225B2 (en) 2021-06-10 2023-09-19 Globalfoundries U.S. Inc. Field effect transistor with shallow trench isolation features within source/drain regions

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL61678A (en) * 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
JPS56135969A (en) * 1980-03-27 1981-10-23 Fujitsu Ltd Manufacture of semiconductor device
JPS577161A (en) * 1980-06-16 1982-01-14 Toshiba Corp Mos semiconductor device
JPS5754362A (ja) * 1980-09-19 1982-03-31 Nec Corp Handotaisochi
JPS5846174B2 (ja) * 1981-03-03 1983-10-14 株式会社東芝 半導体集積回路
JPS57211267A (en) * 1981-06-22 1982-12-25 Toshiba Corp Semiconductor device and manufacture thereof
JPS583286A (ja) * 1981-06-30 1983-01-10 Fujitsu Ltd フロ−テイングチヤネルmosfet
US4763183A (en) * 1984-08-01 1988-08-09 American Telephone And Telegraph Co., At&T Bell Laboratories Semiconductor-on-insulator (SOI) devices and SOI IC fabrication method
US4619033A (en) * 1985-05-10 1986-10-28 Rca Corporation Fabricating of a CMOS FET with reduced latchup susceptibility
JPS6319847A (ja) * 1986-07-14 1988-01-27 Oki Electric Ind Co Ltd 半導体記憶装置
US4810664A (en) * 1986-08-14 1989-03-07 Hewlett-Packard Company Method for making patterned implanted buried oxide transistors and structures
JPH0214578A (ja) * 1988-07-01 1990-01-18 Fujitsu Ltd 半導体装置
JPH0283980A (ja) * 1988-09-20 1990-03-26 Nec Corp 絶縁ゲート電界効果トランジスタ
US5115289A (en) * 1988-11-21 1992-05-19 Hitachi, Ltd. Semiconductor device and semiconductor memory device
JP2768719B2 (ja) * 1988-11-21 1998-06-25 株式会社日立製作所 半導体装置及び半導体記憶装置
FR2648623B1 (fr) * 1989-06-19 1994-07-08 France Etat Structure de transistor mos sur isolant avec prise de caisson reliee a la source et procede de fabrication
US5016070A (en) * 1989-06-30 1991-05-14 Texas Instruments Incorporated Stacked CMOS sRAM with vertical transistors and cross-coupled capacitors
EP0436038A4 (en) * 1989-07-14 1991-09-04 Seiko Instruments & Electronics Ltd. Semiconductor device and method of producing the same
US5331197A (en) * 1991-04-23 1994-07-19 Canon Kabushiki Kaisha Semiconductor memory device including gate electrode sandwiching a channel region

Also Published As

Publication number Publication date
EP0510667A1 (de) 1992-10-28
DE69213539T2 (de) 1997-02-20
US5428237A (en) 1995-06-27
US5612230A (en) 1997-03-18
EP0510667B1 (de) 1996-09-11

Similar Documents

Publication Publication Date Title
DE69213539D1 (de) Halbleitervorrichtung mit verbessertem isoliertem Gate-Transistor
DE69309193D1 (de) Halbleiteranordnung mit isoliertem Gate
DE69414311D1 (de) Halbleiteranordnung mit einer Bipolarfeldeffektanordnung mit isoliertem Gate
DE69600801D1 (de) Halbleiterbauelement mit isoliertem Gate
DE69233105D1 (de) Bipolartransistor mit isoliertem Graben-Gate
DE69021177D1 (de) Halbleiteranordnung mit isolierter Gateelektrode.
DE69131520D1 (de) Feldeffekttransistor mit geneigtem Kanal
DE3856545D1 (de) Halbleiterbauelement mit isoliertem Gatter
DE69224709D1 (de) Halbleiteranordnung mit verbesserter Durchbruchspannungs-Charakteristik
DE69027832D1 (de) Feld-Effekt-Transistor mit Gate-Abstandsstück
DE69233266D1 (de) HEMT-Halbleiterbauelement
DE69614949D1 (de) Leistungs-Halbleiterbauteil mit isoliertem Graben-Gate
DE4192215T1 (de) Transistorgeräte mit isoliertem Gate und Temperatur- und Stromfühler
DE69637366D1 (de) Halbleiteranordnung mit isoliertem Gate
DE69332191D1 (de) Halbleiteranordnung mit Überchipanschlüssen
DE69511726D1 (de) Halbleiteranordnung mit isoliertem gate
DE69330542D1 (de) Halbleitertransistor
DE69232470D1 (de) Flash-löschbare Halbleiterspeicheranordnung mit verbesserter Zuverlässigkeit
DE69526534D1 (de) Bipolartransistor mit isoliertem Gate
DE69426045D1 (de) Bipolartransistor mit isoliertem Gate
DE69223719D1 (de) Feldeffekttransistor mit isoliertem Gate vom Anreicherungstyp mit gesteuerter Anstiegszeit an der Drain-Ausgangselektrode
DE69215935D1 (de) Laterale Feldeffekthalbleiteranordnung mit isolierter Gateelektrode
DE69028161D1 (de) Halbleiteranordnung mit isoliertem Gate
DE3782748D1 (de) Feldeffekttransistor mit isoliertem gate.
GB2255228B (en) Insulated gate bipolar transistor

Legal Events

Date Code Title Description
8364 No opposition during term of opposition