DE19537291B4 - Bis-Resorcinyltriazine - Google Patents

Bis-Resorcinyltriazine Download PDF

Info

Publication number
DE19537291B4
DE19537291B4 DE19537291A DE19537291A DE19537291B4 DE 19537291 B4 DE19537291 B4 DE 19537291B4 DE 19537291 A DE19537291 A DE 19537291A DE 19537291 A DE19537291 A DE 19537291A DE 19537291 B4 DE19537291 B4 DE 19537291B4
Authority
DE
Germany
Prior art keywords
alkyl
substituted
phenyl
formula
alkoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19537291A
Other languages
English (en)
Other versions
DE19537291A1 (de
Inventor
Andreas Dr. Valet
Jean-Luc Dr. Birbaum
Vien Van Dr. Toan
Walter Knupp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Schweiz AG
Original Assignee
Ciba Spezialitaetenchemie Holding AG
Ciba SC Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Spezialitaetenchemie Holding AG, Ciba SC Holding AG filed Critical Ciba Spezialitaetenchemie Holding AG
Publication of DE19537291A1 publication Critical patent/DE19537291A1/de
Application granted granted Critical
Publication of DE19537291B4 publication Critical patent/DE19537291B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F20/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/815Photosensitive materials characterised by the base or auxiliary layers characterised by means for filtering or absorbing ultraviolet light, e.g. optical bleaching
    • G03C1/8155Organic compounds therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34926Triazines also containing heterocyclic groups other than triazine groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Paints Or Removers (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Materials For Photolithography (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Verbindung der Formel I
Figure 00000001
worin R1 und R5, unabhängig voneinander, C1-C12-Alkyl bedeuten;
R2, R3 und R4, unabhängig voneinander, H, C1-C12-Alkyl; C2-C6-Alkenyl; C1-C12-Alkoxy; C2-C18-Alkenyloxy; Halogen; Trifluormethyl; C7-C11-Phenylalkyl; Phenyl; durch C1-C18-Alkyl, C1-C18-Alkoxy oder Halogen substituiertes Phenyl; Phenyloxy; oder durch C1-C18-Alkyl, C1-C18-Alkoxy oder Halogen substituiertes Phenyloxy darstellen;
die beiden Reste R7 gleich oder verschieden sind und Wasserstoff oder C1-C18-Alkyl bedeuten; oder C1-C18-Alkyl bedeuten, welches durch OH, C1-C18-Alkoxy, C3-C6-Alkenyloxy, Halogen, -COOH, -COOR8, -CONH2, -CONHR9, -CON(R9)(R10), -NH2, -NHR9, -N(R9)(R10), -NHCOR11, -CN, -OCOR11, Phenoxy und/oder durch C1-C18-Alkyl, C1-C18-Alkoxy oder Halogen substituiertes Phenoxy substituiert ist; oder die Reste R7 C3-C50-Alkyl darstellen, das durch -O- unterbrochen ist und durch OH, Phenoxy oder C7-C18-Alkylphenoxy substituiert sein kann; oder die Reste R7 C3-C6-Alkenyl; Glycidyl; C5-C12-Cycloalkyl; durch OH, C1-C4-Alkyl oder -OCOR11 substituiertes C5-C12-Cycloalkyl; unsubstituiertes oder durch OH, Cl oder CH3 substituiertes C7-C11-Phenylalkyl; durch OH oder -OCOR11 substituiertes C4-C14-Alkenyl; -CO-R12 oder -SO2-R13 bedeuten;
R8 C1-C18-Alkyl; C3-C18-Alkenyl; durch O, NH,...

Description

  • Die Erfindung betrifft neue Verbindungen vom Typ des 2,4-Bis(2'-Hydroxyphenyl)-6-aryl-1,3,5-triazins, mit Hilfe dieser Verbindungen gegen Schädigung durch Licht, Wärme und Sauerstoff stabilisiertes organisches Material, insbesondere ein Überzugsmaterial oder ein fotografisches Aufzeichnungsmaterial, sowie die entsprechende Verwendung der Verbindungen als Stabilisatoren für organisches Material.
  • Will man die Lichtstabilität eines organischen Materials erhöhen, gibt man üblicherweise ein Lichtschutzmittel zu. Eine sehr häufig eingesetzte Klasse von Lichtschutzmitteln sind die UV-Absorber, die das Material durch Absorption der schädlichen Strahlung über Chromophore schützen. Eine wichtige Gruppe von UV-Absorbern stellen die Triphenyltriazine dar, wie sie unter anderem in den Publikationen EP-A-434 608, US-A-5 364 749, US-A-4 619 956 und EP-A-483 488 beschrieben werden. Einige Bis-Resorcinylderivate aus dieser Gruppe sind beispielsweise in den Publikationen CH-A-480090, CH-A-484695, US-A-3 249 608, US-A-3 244 708, US-A-3 843 371, US-A-4 826 978, EP-A-434 608, EP-A-520 938, GB-A-2 273 498 und WO-A-94/18278 genannt.
  • Es wurde nun gefunden, daß gewisse Derivate des 2,4-Bis(2'-Hydroxyphenyl)-1,3,5-triazins überraschenderweise über besonders gute Stabilisatoreigenschaften verfügen.
  • Gegenstand der Erfindung ist daher eine Verbindung der Formel I
    Figure 00010001
    worin R1 und R5, unabhängig voneinander, C1-C12-Alkyl bedeuten;
    R2, R3 und R4, unabhängig voneinander, H, C1-C12-Alkyl; C2-C6-Alkenyl; C1-C12-Alkoxy; C2-C18-Alkenyloxy; Halogen; Trifluormethyl; C7-C11-Phenylalkyl; Phenyl; durch C1-C18-Alkyl, C1-C18-Alkoxy oder Halogen substituiertes Phenyl; Phenyloxy; oder durch C1-C12-Alkyl, C1-C18-Alkoxy oder Halogen substituiertes Phenyloxy darstellen;
    die beiden Reste R7 gleich oder verschieden sind und Wasserstoff oder C1-C18-Alkyl bedeuten; oder C1-C18-Alkyl bedeuten, welches durch OH, C1-C18-Alkoxy, C3-C6-Alkenyloxy, Halogen, -COOH, -COOR8, -CONH2, -CONHR9, -CON(R9)(R10), -NH2, -NHR9, -N(R9)(R10), -NHCOR11, -CN, -OCOR11, Phenoxy und/oder durch C1-C18-Alkyl, C1-C18-Alkoxy oder Halogen substituiertes Phenoxy substituiert ist; oder die Reste R7 C3-C50-Alkyl darstellen, das durch -O- unterbrochen ist und durch OH, Phenoxy oder C7-C18-Alkylphenoxy substituiert sein kann; oder die Reste R7 C3-C6-Alkenyl; Glycidyl; C5-C12-Cycloalkyl; durch OH, C1-C4-Alkyl oder -OCOR11 substituiertes C5-C12-Cycloalkyl; unsubstituiertes oder durch OH, Cl oder CH3 substituiertes C7-C11-Phenylalkyl; durch OH oder -OCOR11 substituiertes C4-C14-Alkenyl; -CO-R12 oder -SO2-R13 bedeuten;
    R8 C1-C18-Alkyl; C3-C18-Alkenyl; durch O, NH, NR9 oder S unterbrochenes und/oder durch OH substituiertes C3-C50-Alkyl; durch -P(O)(OR14)2, -N(R9)(R10) oder -OCOR11 und/oder OH substituiertes C1-C4-Alkyl; Glycidyl; C5-C12-Cycloalkyl; Phenyl; C7-C14-Alkylphenyl oder C7-C11-Phenylalkyl bedeutet;
    R9 und R10 unabhängig voneinander C1-C12-Alkyl; C3-C12-Alkoxyalkyl;
    C4-C16-Dialkylaminoalkyl oder C5-C12-Cycloalkyl bedeuten oder R9 und R10 zusammen C3-C9-Alkylen oder -Oxaalkylen oder -Azaalkylen bedeuten;
    R11 C1-C18-Alkyl, C5-C12-Cycloalkyl oder Phenyl bedeutet; oder C3-C50-Alkyl darstellt, das durch -O- unterbrochen ist und durch OH substituiert sein kann;
    R12 C1-C18-Alkyl; Phenyl; C5-C12-Cycloalkyl; C1-C12-Alkoxy; Phenoxy; C1-C12-Alkylamino; Phenylamino; Tolylamino oder Naphthylamino bedeutet;
    R13 C1-C12-Alkyl; Phenyl; Naphthyl oder C7-C14-Alkylphenyl bedeutet; und
    R14 C1-C12-Alkyl oder Phenyl bedeutet.
  • Treten mehrere gleichnamige Reste innerhalb derselben Verbindung auf, so können diese gleich oder auch, im Rahmen der angegebenen Bedeutungsmöglichkeiten, unterschiedlich sein; beispielsweise können die Reste R7 in einer Verbindung Formel I gleiche oder verschiedene Bedeutungen haben. Bevorzugt sind in Verbindungen der Formel I die Reste R7 gleich.
  • Von besonderem technischem Interesse sind Verbindungen der Formel I, deren zum Triazinring p-ständige Hydroxylgruppen verethert sind, d.h. deren Reste R7 ungleich Wasserstoff sind.
  • Ein Substituent Halogen bedeutet -F, -Cl, -Br oder -I; bevorzugt ist -F, -Cl oder -Br, vor allem -Cl.
  • Alkylphenyl bedeutet durch Alkyl substituiertes Phenyl; C7-C14-Alkylphenyl umfaßt beispielsweise Methylphenyl (Tolyl), Dimethylphenyl (Xylyl), Trimethylphenyl (Mesityl), Ethylphenyl, Propylphenyl, Butylphenyl, Dibutylphenyl, Pentylphenyl, Hexylphenyl, Heptylphenyl, Octylphenyl.
  • Phenylalkyl bedeutet durch Phenyl substituiertes Alkyl; C7-C11-Phenylalkyl umfaßt beispielsweise Benzyl, α-Methylbenzyl, α,α-Dimethylbenzyl, Phenylethyl, Phenylpropyl, Phenylbutyl, Phenylpentyl.
  • Glycidyl bedeutet 2,3-Epoxypropyl.
  • n-Alkyl oder Alkyl-n bezeichnet einen unverzweigten Alkylrest.
  • Durch O, NH, NR9 oder S unterbrochenes und gegebenenfalls durch OH substituiertes Alkyl kann allgemein eines oder mehrere der genannten Heteroatome enthalten, wobei Sauerstoff-, Stickstoff- und Schwefelatome nicht benachbart auftreten. In der Regel stehen Heteroatom in der Alkylkette und Hydroxy nicht vicinal; vorzugsweise bindet ein Kohlenstoffatom der Alkylkette an höchstens 1 Sauerstoff-, Stickstoff- und Schwefelatom.
  • Die Reste R1, R2, R3, R4, R5, R7, R8, R9, R10, R11, R12, R13, R14 als Alkyl stellen, im Rahmen der angegebenen Definitionen, verzweigtes oder unverzweigtes Alkyl dar wie Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, sec-Butyl, Isobutyl, t-Butyl, 2-Ethylbutyl, n-Pentyl, Isopentyl, 1-Methylpentyl, 1,3-Dimethylbutyl, n-Hexyl, 1-Methylhexyl, n-Heptyl, Isoheptyl, 1,1,3,3-Tetramethylbutyl, 1-Methylheptyl, 3-Methylheptyl, n-Octyl, 2-Ethylhexyl, 1,1,3-Trimethylhexyl, 1,1,3,3-Tetramethylpentyl, Nonyl, Decyl, Undecyl, 1-Methylundecyl, Dodecyl, 1,1,3,3,5,5-Hexamethylhexyl, Tridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl, Octadecyl. Bevorzugt sind R1, R2, R3, R4, R5, R8, R9, R10, R11, R12, R13, R14 als Alkyl kurzkettig, z.B. C1-C8-Alkyl, vor allem C1-C4-Alkyl wie Methyl oder Butyl. R1, R3 und R5 sind vor allem bevorzugt als Methyl, Ethyl oder Isopropyl.
  • R2, R3 und R4 sind vorzugsweise H, C1-C12-Alkyl, C1-C12-Alkoxy, Phenyl oder Phenyloxy; besonders H, C1-C4-Alkyl, C1-C4-Alkoxy oder Phenyl. Vor allem bevorzugt sind R2 und R4 als H, Methyl oder Methoxy, R3 vor allem als C1-C4-Alkyl oder Methoxy.
  • C1-C4-Alkyl bedeutet vor allem Methyl, Ethyl, Isopropyl, n-Butyl, 2-Butyl, 2-Methylpropyl oder tertiär-Butyl.
  • R9 oder R10 als C4-C16-Dialkylaminoalkyl bedeuten Alkyl, welches durch Dialkylamino substituiert ist, wobei der gesamte Rest 4 bis 16 Kohlenstoffatome enthält. Beispiele dafür sind (CH3)2N-CH2CH2-; (C2H5)2N-CH2CH2-; (C3H7)2N-CH2CH2-; (C4H9)2N-CH2CH2-; (C5H11)2N-CH2CH2- (C6H13)2N-CH2CH2-; (CH3)2N-CH2CH2CH2-; (C2H5)2N-CH2CH2CH2-; (C3H7)2N-CH2CH2CH2-; (C4H9)2N-CH2CH2CH2-; (C5H11)2N-CH2CH2CH2-; (C6H13)2N-CH2CH2CH2-.
  • R9 und R10 in der gemeinsamen Bedeutung C3-C9-Alkylen oder -Oxaalkylen oder -Azaalkylen stellen, zusammen mit dem Stickstoffatom, an das sie gebunden sind, allgemein einen 5- bis 9-gliedrigen Ring dar, der 3 bis 9 Kohlenstoffatome enthält und weitere Stickstoff- oder Sauerstoffatome enthalten kann, wobei direkt benachbarte Stickstoff- oder Sauerstoffatome (Strukturen vom Typ Hydrazin, Oxylamin oder Peroxid) ausgeschlossen sind. Beispiele dafür sind u.a. Pyrrolidino, Piperidino, Piperazino, Morpholino.
  • Von besonderem Interesse sind Verbindungen der Formel I, worin die Reste R1, R3 und R5 gleich sind, vor allem diejenigen, worin R2 und R4 gleichzeitig H sind; besonders bevorzugt sind diejenigen Verbindungen, worin R1, R3 und R5 Methyl sind.
  • R7 als unsubstituiertes oder substituiertes C5-C12-Cycloalkyl ist beispielsweise Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl, Cyclododecyl, Methylcyclohexyl, Hydroxycyclohexyl oder Acetyloxycyclohexyl; bevorzugt ist Cyclohexyl.
  • Tragen Alkylreste weitere Substituenten oder stellen einzelne Reste Alkylen dar, können freie Valenzen sowie Bindungen an Substituenten von demselben oder von verschiedenen Kohlenstoffatomen ausgehen. Vorzugsweise gehen Bindungen zu Heteroatomen von verschiedenen Kohlenstoffatomen aus.
  • So umfaßt R7 als substituiertes C1-C12-Alkyl beispielsweise Hydroxyalkyl wie 2-Hydroxyethyl, 3-Hydroxypropyl oder 2-Hydroxypropyl; Alkoxyhydroxyalkyl wie 2-Hydroxy-3-methoxypropyl, 2-Hydroxy-3-ethoxypropyl, 2-Hydroxy-3-butoxypropyl, 2-Hydroxy-3-hexoxypropyl oder 2-Hydroxy-3-(2-ethylhexyloxy)-propyl; Alkoxycarbonylalkyl wie Methoxycarbonylmethyl, Ethoxycarbonylmethyl, Butoxycarbonylmethyl, Octyloxycarbonylmethyl, 1-Octyloxycarbonyl-1-methyl-methyl, 1-Octyloxycarbonyl-1-ethyl-methyl oder 1-Octyloxycarbonyl-1-hexyl-methyl; oder Alkanoyloxyalkyl oder Alkenoyloxyalkyl wie 2-(Acetyloxy)-ethyl, 2-Acryloxyethyl oder 2-Methacryloxyethyl; oder beispielsweise 3-Acryloxy- oder 3-Methacryloxy-2-hydroxy-propyl.
  • R7 als Alkyl, das durch OH, Alkoxy, Phenoxy, -COOR8, und/oder -OCOR11 substituiert ist, umfaßt beispielsweise folgende Bedeutungen:
    -CH2CH(OH)CH2O-R19, worin R19 eine der oben für Alkyl angegebenen Bedeutungen hat oder z.B. Phenyl, Acetyl, Propionyl darstellen kann; oder Alkyloxycarbonylalkyl wie z.B. -CH(R20)-(CH2)p-COOR8, worin p die Zahl 0 oder eine ganze Zahl aus dem Bereich 1-9 darstellt und R20 Wasserstoff oder C1-C10-Alkyl ist und wobei die Summe aus p und der Anzahl der Kohlenstoffatome in R20 nicht größer als 17 ist; und R8 C1-C8-Alkyl ist; als Beispiele für solche Reste seien genannt -CH2CH(OH)C8H17, -CH2CH(OH)C12H25, -CH2CH(OH)CH2O-n-C8H17, -CH2CH(OH)CH2O-C6H5, -CH2CH(OH)CH2O-CH2CH(C2H5)-(CH2)3-CH3, -CH2CH(OH)CH2O-(CH2)12-14-CH3
  • R7, R8 und R11 als durch O unterbrochenes und gegebenenfalls durch OH substituiertes Alkyl kann ein oder mehrere O unterbrochen und durch ein oder mehrere OH substituiert sein. Vorzugsweise sind diese Reste durch mehrere O, z.B. 2-12 Sauerstoffatome, unterbrochen und unsubstituiert oder durch 1-2 OH substituiert. Bevorzugt entsprechen R8 oder R11 in dieser Bedeutung der Formel -(CH2CHR15-O)n-R18, und R7 einer der Formeln -(CH2CHR15-O)n-R18 oder -CH2-CH(OH)-CH2-O-(CH2CHR15-O)n-R18, wobei n eine Zahl aus dem Bereich 1-16, insbesondere aus dem Bereich 2-12, vor allem 4-10, darstellt, R15 H oder Methyl ist und R18 H, C1-C18-Alkyl, Phenyl oder C7-C10-Alkylphenyl bedeutet. Ein typisches Beispiel für solche Reste ist Polyoxyethylen, beispielsweise solches mit 4-10 Ethylenoxy-Einheiten, welches am Kettenende eine freie Hydroxylgruppe trägt oder durch Alkyl abgesättigt ist.
  • R2, R3, R4, R7, R8 als Alkenyl umfaßt im Rahmen der angegebenen Bedeutungen u.a. Alkyl, Isopropenyl, 2-Butenyl, 3-Butenyl, Isobutenyl, n-Penta-2,4-dienyl, 3-Methyl-but- 2-enyl, n-Oct-2-enyl, n-Dodec-2-enyl, iso-Dodecenyl, n-Octadec-2-enyl, n-Octadec-4-enyl.
  • Verbindungen der Formel I, welche in R2, R3, R4, R7, R8 eine ethylenische Doppelbindung enthalten, eignen sich auch zum Einbau in geeignete Polymere durch Copolymerisation. Der Einbau kann z.B. gemäß den in US-A-5 198 498 beschriebenen Verfahren oder in Analogie zu solchen Verfahren erfolgen. Die entsprechenden Verbindungen sind daher von gesondertem Interesse.
  • Von besonderem technischem Interesse sind auch solche Verbindungen der Formel I, worin mindestens einer der Reste R2, R3 und R4 verschieden von H ist. Von Interesse sind ferner Verbindungen der Formel I, worin 2 der Reste R2, R3 und R4 oder alle 3 Reste verschieden von H sind.
  • Einen Gegenstand von hervorgehobenem Interesse bilden Verbindungen der Formel I, worin
    R1 und R5, unabhängig voneinander, C1-C4-Alkyl bedeuten;
    R2, R3 und R4, unabhängig voneinander, H, C1-C12-Alkyl, C2-C6-Alkenyl, C1-C12-Alkoxy, Cl, F, Phenyl oder Phenyloxy darstellen; darunter besonders solche, worin
    R1 und R5, unabhängig voneinander, C1-C4-Alkyl bedeuten;
    R2, R3 und R4, unabhängig voneinander, H, C1-C6-Alkyl, Allyl, C1-C4-Alkoxy, Cl, F oder Phenyl darstellen.
  • Bevorzugt sind Verbindungen der Formel I, worin
    R7 Wasserstoff oder C1-C18-Alkyl; oder C1-C12-Alkyl bedeuten, welches durch OH, C1-C18-Alkoxy, C3-C6-Alkenyloxy, -Cl, -F, -COOH, -COOR8, -CONHR9, -CON(R9)(R10), -NH2, -NHR9, -N(R9)(R10), -NHCOR11, -CN, -OCOR11, Phenoxy und/oder durch C1-C18-Alkyl, C1-C18-Alkoxy oder Halogen substituiertes Phenoxy substituiert ist; oder die Reste R7 C3-C50-Alkyl darstellen, das durch -O- unterbrochen ist und durch OH, Phenoxy oder C7-C18-Alkylphenoxy substituiert sein kann; oder die Reste R7 C3-C6-Alkenyl; Glycidyl; C5-C12-Cycloalkyl; durch OH, C1-C4-Alkyl oder -OCOR11 substituiertes C5-C12-Cycloalkyl; unsubstituiertes oder durch OH, Cl oder CH3 substituiertes C7-C11-Phenylalkyl; durch OH oder -OCOR11 substituiertes C4-C14-Alkenyl; oder -CO-R12 bedeuten;
    R8 C1-C18-Alkyl; C3-C18-Alkenyl; durch O unterbrochenes und/oder durch OH substituiertes C3-C50-Alkyl; durch -P(O)(OR14)2, -N(R9)(R10) oder -OCOR11 und/oder OH substituiertes C1-C4-Alkyl; Glycidyl; C5-C12-Cycloalkyl; Phenyl oder C7-C11-Phenylalkyl bedeutet;
    R11 C1-C18-Alkyl, Cyclohexyl oder Phenyl bedeutet; oder C3-C50-Alkyl darstellt, das durch -O- unterbrochen ist und durch OH substituiert sein kann; und
    R12 C1-C18-Alkyl; Phenyl; Cyclohexyl; C1-C12-Alkoxy; Phenoxy bedeutet.
  • Besonders bevorzugt sind Verbindungen der Formel I, worin
    R7 Wasserstoff oder C1-C18-Alkyl; oder C1-C18-Alkyl darstellt, welches durch OH, C1-C18-Alkoxy, C3-C6-Alkenyloxy, Phenoxy -COOR9, -CONHR9, -CON(R9)(R10) und/oder -OCOR11 substituiert ist; oder R7 -(CH2CHR15-O)n-R18 oder -CH2-CH(OH)-CH2-O-(CH2CHR15-O)n-R18 ist, wobei n eine Zahl aus dem Bereich 1-12 darstellt; oder die Reste R7 C3-C6-Alkenyl; Glycidyl; C5-C12-Cycloalkyl; durch OH oder -OCOR11 substituiertes C5-C12-Cycloalkyl; C7-C11-Phenylalkyl; durch OH oder -OCOR11 substituiertes C4-C14-Alkenyl; oder -CO-R12 bedeuten;
    R8 C1-C18-Alkyl; C3-C8-Alkenyl; durch O unterbrochenes und/oder durch OH substituiertes C3-C50-Alkyl; durch -P(O)(OR14)2 oder -OCOR11 und/oder OH substituiertes C1-C4-Alkyl; C5-C12-Cycloalkyl; Phenyl oder C7-C11-Phenylalkyl bedeutet;
    R11 C1-C8-Alkyl, Cyclohexyl oder Phenyl bedeutet;
    R12 C1-C18-Alkyl oder Phenyl bedeutet;
    R14 C1-C4-Alkyl bedeutet;
    R15 H oder Methyl ist; und
    R18 H, C1-C18-Alkyl, Phenyl oder C7-C18-Alkylphenyl bedeutet.
  • Vor allem bevorzugt sind darunter Verbindungen der Formel I, worin
    R1 und R5 Methyl sind;
    R2, R3 und R4 H, C1-C4-Alkyl, C1-C4-Alkoxy, -Cl oder Phenyl darstellen; die Reste R7 gleich sind und Wasserstoff oder C1-C18-Alkyl sind; oder durch OH, C1-C18-Alkoxy, C3-C5-Alkenyloxy, Phenoxy, -COOR8 und/oder -OCOR11 substituiertes C1-C12-Alkyl darstellen; oder R7 -(CH2CHR15-O)n-R18 oder -CH2-CH(OH)-CH2-O-(CH2CHR15-O)n-R18 ist, wobei n eine Zahl aus dem Bereich 1-12 darstellt; oder die Reste R7 C5-C12-Cycloalkyl; durch OH substituiertes C5-C12-Cycloalkyl; oder durch OH substituiertes C4-C14-Alkenyl bedeuten;
    R8 C1-C12-Alkyl;
    R11 C1-C4-Alkyl bedeutet und
    R12 H oder C1-C8-Alkyl ist.
  • Verbindungen der Formel I, worin
    R7 C1-C18-Alkyl, C5-C12-Cycloalkyl oder eine Gruppe einer der Formeln
    Figure 00080001
    -C(R22)(R23)-(CH2)p-COOR8 ist, worin p die Zahl 0 oder eine ganze Zahl aus dem Bereich 1-9 darstellt,
    R8 C1-C8-Alkyl;
    R19 C1-C18-Alkyl, C3-C5-Alkenyl oder Phenyl bedeutet;
    R20 Wasserstoff, C1-C16-Alkyl oder C4-C8-Alkenyl ist;
    R21 geradkettiges C4-C10-Alkylen; und
    im Fall, daß p 0 ist R22 und R23, unabhängig voneinander, Wasserstoff oder C1-C16-Alkyl, und
    im Fall, daß p eine Zahl aus dem Bereich 1-9 darstellt, R22 und R23 Wasserstoff sind;
    insbesondere solche, worin R1, R3 und R5 Methyl sind und R2 und R4 Wasserstoff darstellen, stellen einen Gegenstand von besonders hervorgehobenem Interesse dar.
  • Typische Verbindungen der Formel I sind beispielsweise die folgenden (geradkettige Reste sind mit -n gekennzeichnet):
    Figure 00080002
    • (1) R = CH2-CH(OH)-CH2-O-C2H5
    • (2) R = CH2-CH(OH)-CH2-O-C4H9-n
    • (3) R = CH2-CH(OH)-CH2-O-C(CH3)3
    • (4) R = CH2-CH(OH)-CH2-O-CH2-CH(CH3)-CH3
    • (4a) R = CH2-CH(OH)-CH2-O-CH(CH3)-C2H5
    • (5) R = CH2-CH(OH)-CH2-O-(-CH(CH3)-C2H5/-CH(CH3)-C3H7-n) (1:1)
    • (6) R = CH2-CH(OH)-CH2-O-C6H13-n
    • (7) R = CH2-CH(OH)-CH2-O-CH2-CH(C2H5)-C4H9-n
    • (8) R = CH2-CH(OH)-CH2-O-C12H25 (Isomerenmischung)
    • (8d) R = CH2-CH(OH)-CH2-O-C6H5
    • (8x) R = CH2-CH(OH)-CH2-O-(-C12H25/-C13H27) (Isomerenmischung)
    • (9) R = C6H13-n
    • (10) R = CH2-CH(C2H5)-C4H9-n
    • (11) R = C8H17 (Isomerenmischung)
    • (12) R = CH2-CH(OH)-CH2-O-(CH2-CH2-O-)7-8-CH3
    • (13) R = CH(CH3)-CO-O-C2H5
    • (14) R = CH(C4H9-n)-CO-OC2H5
    • (15) R = -(CH2)5-CO-O-C2H5
    • (15a) R = CH(C2H5)-CO-OC2H5
    • (15b) R = CH(CH3)2-CO-OC2H5
    • (15c) R = CH(C2H5)-CO-OC8H17 (Isomerenmischung)
    • (16) R = CH2-CH(O-CO-CH3)-CH2-O-C4H9-n
    • (17) R = CH2-CH(OH)-CH2-O-CH2-CH=CH2
    • (20a) R = CH2-CH(OH)-C4H9-n
    • (20b) R = CH2-CH(OH)-(CH2)2-CH=CH2
    • (20c) R = CH2-CH(OH)-(CH2)6-CH=CH2
      Figure 00090001
    • (21) R = CH2-CH(OH)-CH2-O-C4H9-n
    • (22) R = C8H17 (Isomerenmischung)
    • (22a) R = C6H13-n
      Figure 00100001
    • (23) R = CH2-CH(OH)-CH2-O-C4H9-n
    • (24) R = -(CH2)10-CO-O-C2H5
      Figure 00100002
    • (25) R = CH2-CH(OH)-CH2-O-C4H9-n
    • (26) R = CH2-CH(OH)-C6H13-n
      Figure 00110001
    • (27) R = CH2-CH(OH)-CH2-O-C4H9-n
    • (28) R = CH2-CH(OH)-CH2-O-C12H25 (Isomerenmischung)
      Figure 00110002
    • (29) R = CH2-CH(OH)-CH2-O-C4H9-n
    • (30) R = CH2-CH(OH)-CH2-O-C6H5
      Figure 00120001
    • (31) R = CH2-CH(OH)-CH2-O-C4H9-n
    • (32) R = CH2-CH(OH)-CH2-O-CH2-CH=CH2
      Figure 00120002
    • (33) R = CH2-CH(OH)-CH2-O-C4H9-n
      Figure 00120003
      Figure 00130001
    • (35) R = CH2-CH(OH)-CH2-O-C4H9-n
    • (36) R = C6H13-n
      Figure 00130002
    • (37) R = CH2-CH(OH)-CH2-O-C4H9-n.
  • Die Herstellung der Verbindungen der Formel I kann in Analogie zu einer der in EP-A-434 608 oder in der Publikation von H. Brunetti und C.E. Lüthi, Helv. Chim. Acta 55, 1566 (1972), angegebenen Methoden durch Friedel-Crafts-Addition von Halogentriazinen an entsprechende Phenole erfolgen. Daran kann sich eine weitere Umsetzung nach bekannten Methoden anschließen zu Verbindungen der Formel I, worin R7 ungleich Wasserstoff ist; solche Umsetzungen und Verfahren sind beispielsweise beschrieben in EP-A-434 608, Seite 15, Zeile 11, bis Seite 17, Zeile 1.
  • Zweckmäßig geht man zur Herstellung der Verbindungen der Formel I von einem Äquivalent einer Verbindung der Formel (A) aus,
    Figure 00140001
    worin R' einen Rest der Formel
    Figure 00140002
    darstellt und R1, R2, R3, R4 und R5 jeweils die oben für Formel I angegebenen Bedeutungen haben, und läßt dieses mit zwei Äquivalenten Resorcin reagieren.
  • Die Umsetzung geschieht in an sich bekannter Weise, indem die Edukte in einem inerten Lösemittel in Gegenwart von wasserfreiem AlCl3 zur Reaktion gebracht werden. Aluminiumtrichlorid und Resorcin werden dabei zweckmäßig im Überschuß eingesetzt, beispielsweise kann Aluminiumtrichlorid in 5-15% molarem Überschuß und das Phenol in 1-30 %, insbesondere in 5-20 % molarem Überschuß verwendet werden.
  • Als Lösemittel kommen beispielsweise Kohlenwasserstoffe, chlorierte Kohlenwasserstoffe, SO- oder SO2-Gruppen enthaltende Kohlenwasserstoffe oder nitrierte aromatische Kohlenwasserstoffe in Frage; bevorzugt sind hochsiedende Kohlenwasserstoffe wie Ligroin, Petrolether, Toluol oder Xylol, oder Sulfolan.
  • Die Temperatur ist allgemein nicht kritisch; meist wird bei Temperaturen gearbeitet, die zwischen 20°C und dem Siedepunkt des Lösemittels liegen, beispielsweise zwischen 50°C und 150°C. Die Aufarbeitung kann nach gängigen Methoden erfolgen, z.B. durch Extraktions- und Separationsschritte, Filtration und Trocknen; im Bedarfsfall können weitere Reinigungsschritte vorgenommen werden wie z.B. Umkristallisation.
  • Freie phenolische Hydroxylgruppen des Umsetzungsproduktes in p-Stellung zum Triazinring können anschließend in bekannter Weise verethert oder verestert werden. Zur Herstellung der Phenolether werden die freien Phenole vorzugsweise mit Epoxiden oder Halogeniden, besonders mit Glycidylverbindungen oder geeigneten Chloriden oder Bromiden zur Reaktion gebracht.
  • Die Ausgangsverbindungen der Formel (A)
    Figure 00150001
    worin R' einen Rest der Formel
    Figure 00150002
    darstellt und R1, R2, R3, R4 und R5 jeweils die oben für Formel I angegebenen Bedeutungen haben,
    sind ebenfalls neue Verbindungen und stellen als solche einen weiteren Gegenstand der Erfindung dar.
  • Ausgangsverbindungen der Formel (A) können beispielsweise durch die Umsetzung von Cyanurchlorid mit einem entsprechend substituierten Phenylmagnesiumhalogenid hergestellt werden (Grignard-Reaktion). Die Reaktion kann ebenfalls in bekannter Weise ausgeführt werden, beispielsweise in Analogie zu dem in EP-A-577 559 beschriebenen Verfahren. Dazu wird zunächst durch Umsetzung einer Verbindung der Formel
    Figure 00150003
    worin X' Cl oder Br bedeutet, mit metallischem Magnesium in einem Ether, beispielsweise in Diethylether oder in Tetrahydrofuran (THF), das Phenylmagnesiumhalogenid hergestellt. Dieses Reagens wird anschließend mit Cyanurchlorid zur Verbindung der Formel (A) umgesetzt, vorzugsweise geschieht dies unter Ausschluß von Sauerstoff und Feuchtigkeit, beispielsweise unter Stickstoff. Die folgende Aufarbeitung kann wiederum auf bekannte Weise geschehen, z.B. durch Verdünnen mit einem organischen Lösemittel, beispielsweise Toluol, Hydrolyse restlichen Phenylmagnesiumhalogenids mit wässriger HCl, sowie Abtrennen, Trocknen und Einengen der organischen Phase.
  • Die Ausgangsverbindungen der Formel (A) können auch durch Friedel-Crafts-Reaktion einer Verbindung der Formel
    Figure 00160001
    mit AlCl3 und Cyanurchlorid hergestellt werden, beispielsweise in Analogie zu dem in GB-A-884802 beschriebenen Verfahren.
  • Beispiele für Ausgangsverbindungen der Formel (A) sind unter anderem die folgenden Verbindungen:
    Figure 00160002
    Figure 00170001
  • Die erfindungsgemäßen Verbindungen der Formel I sind verwendbar als Stabilisatoren für organische Materialien gegen Schädigung durch Licht, Sauerstoff oder Hitze. Ganz besonders eignen sich die erfindungsgemäßen Verbindungen als Lichtstabilisatoren (UV-Absorber). Solche zu stabilisierenden Materialien können z.B. Oele, Fette, Wachse, fotografisches Material, Kosmetika oder Biocide sein. Von besonderem Interesse ist die Verwendung in polymeren Materialien, wie sie in Kunststoffen, Kautschuken, Anstrichstoffen oder Klebstoffen vorliegen. Beispiele für Polymere und andere Substrate, die auf diese Weise stabilisiert werden können, sind die folgenden:
    • 1. Polymere von Mono- und Diolefinen, beispielsweise Polypropylen, Polyisobutylen, Polybuten-1, Poly-4-methylpenten-1, Polyisopren oder Polybutadien sowie Polymerisate von Cycloolefinen wie z.B. von Cyclopenten oder Norbornen; ferner Polyethylen (das gegebenenfalls vernetzt sein kann), z.B. Polyethylen hoher Dichte (HDPE), Polyethylen hoher Dichte und hoher Molmasse (HDPE-HMW), Polyethylen hoher Dichte und ultrahoher Molmasse (HDPE-UHMW), Polyethylen mittlerer Dichte (MDPE), Polyethylen niederer Dichte (LDPE), lineares Polyethylen niederer Dichte (LLDPE), verzweigtes Polyethylen niederer Dichte (VLDPE). Polyolefine, d.h. Polymere von Monoolefinen, wie sie beispielhaft im vorstehenden Absatz erwähnt sind, insbesondere Polyethylen und Polypropylen, können nach verschiedenen Verfahren hergestellt werden, insbesondere nach den folgenden Methoden: a) radikalisch (gewöhnlich bei hohem Druck und hoher Temperatur). b) mittels Katalysator, wobei der Katalysator gewöhnlich ein oder mehrere Metalle der Gruppe IVb, Vb, VIb oder VIII enthält. Diese Metalle besitzen gewöhnlich einen oder mehrere Liganden wie Oxide, Halogenide, Alkoholate, Ester, Ether, Amine, Alkyle, Alkenyle und/oder Aryle, die entweder π- oder σ-koordiniert sein können. Diese Metallkomplexe können frei oder auf Träger fixiert sein, wie bei spielsweise auf aktiviertem Magnesiumchlorid, Titan(III)chlorid, Aluminiumoxid oder Siliziumoxid. Diese Katalysatoren können im Polymerisationsmedium löslich oder unlöslich sein. Die Katalysatoren können als solche in der Polymerisation aktiv sein, oder es können weitere Aktivatoren verwendet werden, wie beispielsweise Metallalkyle, Metallhydride, Metallalkylhalogenide, Metallalkyloxide oder Metallalkyloxane, wobei die Metalle Elemente der Gruppen Ia, IIa und/oder IIIa sind. Die Aktivatoren können beipielsweise mit weiteren Ester-, Ether-, Amin- oder Silylether-Gruppen modifiziert sein. Diese Katalysatorsysteme werden gewöhnlich als Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), Metallocen oder Single Site Katalysatoren (SSC) bezeichnet.
    • 2. Mischungen der unter 1) genannten Polymeren, z.B. Mischungen von Polypropylen mit Polyisobutylen, Polypropylen mit Polyethylen (z.B. PPIHDPE, PP/LDPE) und Mischungen verschiedener Polyethylentypen (z.B. LDPE/HDPE).
    • 3. Copolymere von Mono- und Diolefinen untereinander oder mit anderen Vinylmonomeren, wie z.B. Ethylen-Propylen-Copolymere, lineares Polyethylen niederer Dichte (LLDPE) und Mischungen desselben mit Polyethylen niederer Dichte (LDPE), Propylen-Buten-1-Copolymere, Propylen-Isobutylen-Copolymere, Ethylen-Buten-1-Copolymere, Ethylen-Hexen-Copolymere, Ethylen-Methylpenten-Copolymere, Ethylen-Hepten-Copolymere, Ethylen-Octen-Copolymere, Propylen-Butadien-Copolymere, Isobutylen-Isopren-Copolymere, Ethylen-Alkylacrylat-Copolymere, Ethylen-Alkylmethacrylat-Copolymere, Ethylen-Vinylacetat-Copolymere und deren Copolymere mit Kohlenstoffmonoxid, oder Ethylen-Acrylsäure-Copolymere und deren Salze (Ionomere), sowie Terpolymere von Ethylen mit Propylen und einem Dien, wie Hexadien, Dicyclopentadien oder Ethylidennorbornen; ferner Mischungen solcher Copolymere untereinander und mit unter 1) genannten Polymeren, z.B. Polypropylen/Ethylen-Propylen-Copolymere, LDPE/Ethylen-Vinylacetat-Copolymere, LDPE/Ethylen-Acrylsäure-Copolymere, LLDPE/Ethylen-Vinylacetat-Copolymere, LLDPE/Ethylen-Acrylsäure-Copolymere und alternierend oder statistisch aufgebaute Polyalkylen/Kohlenstoffmonoxid-Copolymere und deren Mischungen mit anderen Polymeren wie z.B. Polyamiden.
    • 4. Kohlenwasserstoffharze (z.B. C5-C9) inklusive hydrierte Modifikationen davon (z.B. Klebrigmacherharze) und Mischungen von Polyalkylenen und Stärke.
    • 5. Polystyrol, Poly-(p-methylstyrol), Poly-(α-methylstyrol).
    • 6. Copolymere von Styrol oder α-Methylstyrol mit Dienen oder Acrylderivaten, wie z.B. Styrol-Butadien, Styrol-Acrylnitril, Styrol-Alkylmethacrylat, Styrol-Butadien-Alkylacrylat und -methacrylat, Styrol-Maleinsäureanhydrid, Styrol-Acrylnitril-Methylacrylat; Mischungen von hoher Schlagzähigkeit aus Styrol-Copolymeren und einem anderen Polymer, wie z.B. einem Polyacrylat, einem Dien-Polymeren oder einem Ethylen-Propylen-Dien-Terpolymeren; sowie Block-Copolymere des Styrols, wie z.B. Styrol-Butadien-Styrol, Styrol-Isopren-Styrol, Styrol-Ethylen/Butylen-Styrol oder Styrol-Ethylen/Propylen-Styrol.
    • 7. Pfropfcopolymere von Styrol oder α-Methylstyrol, wie z.B. Styrol auf Polybutadien, Styrol auf Polybutadien-Styrol- oder Polybutadien-Acrylnitril-Copolymere, Styrol und Acrylnitril (bzw. Methacrylnitril) auf Polybutadien; Styrol, Acrylnitril und Methylmethacrylat auf Polybutadien; Styrol und Maleinsäureanhydrid auf Polybutadien; Styrol, Acrylnitril und Maleinsäureanhydrid oder Maleinsäureimid auf Polybutadien; Styrol und Maleinsäureimid auf Polybutadien, Styrol und Alkylacrylate bzw. Alkylmethacrylate auf Polybutadien, Styrol und Acrylnitril auf Ethylen-Propylen-Dien-Terpolymeren, Styrol und Acrylnitril auf Polyalkylacrylaten oder Polyalkylmethacrylaten, Styrol und Acrylnitril auf Acrylat-Butadien-Copolymeren, sowie deren Mischungen mit den unter 6) genannten Copolymeren, wie sie z.B. als sogenannte ABS-, MBS-, ASA- oder AES-Polymere bekannt sind.
    • 8. Halogenhaltige Polymere, wie z.B. Polychloropren; Chlorkautschuk, chloriertes und bromiertes Copolymer aus Isobutylen-Isopren (Halobutylkautschuk), chloriertes oder chlorsulfoniertes Polyethylen, Copolymere von Ethylen und chloriertem Ethylen, Epichlorhydrinhomo- und -copolymere, insbesondere Polymere aus halogenhaltigen Vinylverbindungen, wie z.B. Polyvinylchlorid, Polyvinylidenchlorid, Polyvinylfluorid, Polyvinylidenfluorid; sowie deren Copolymere, wie Vinylchlorid-Vinylidenchlorid, Vinylchlorid-Vinylacetat oder Vinylidenchlorid-Vinylacetat.
    • 9. Polymere, die sich von α,β-ungesättigten Säuren und deren Derivaten ableiten, wie Polyacrylate und Polymethacrylate, mit Butylacrylat schlagzäh modifizierte Polymethylmethacrylate, Polyacrylamide und Polyacrylnitrile.
    • 10. Copolymere der unter 9) genannten Monomeren untereinander oder mit anderen ungesättigten Monomeren, wie z.B. Acrylnitril-Butadien-Copolymere, Acrylnitril-Alkylacry lat-Copolymere, Acrylnitril-Alkoxyalkylacrylat-Copolymere, Acrylnitril-Vinylhalogenid-Copolymere oder Acrylnitril-Alkylmethacrylat-Butadien-Terpolymere.
    • 11. Polymere, die sich von ungesättigten Alkoholen und Aminen bzw. deren Acylderivaten oder Acetalen ableiten, wie Polyvinylalkohol, Polyvinylacetat, -stearat, -benzoat, -maleat, Polyvinytbutyral, Polyallylphthalat, Polyallylmelamin; sowie deren Copolymere mit in Punkt 1 genannten Olefinen.
    • 12. Homo- und Copolymere von cyclischen Ethern, wie Polyalkylenglykole, Polyethylenoxyd, Polypropylenoxyd oder deren Copolymere mit Bisglycidylethern.
    • 13. Polyacetale, wie Polyoxymethylen, sowie solche Polyoxymethylene, die Comonomere, wie z.B. Ethylenoxid, enthalten; Polyacetale, die mit thermoplastischen Polyurethanen, Acrylaten oder MBS modifiziert sind.
    • 14. Polyphenylenoxide und -sulfide und deren Mischungen mit Styrolpolymeren oder Polyamiden.
    • 15. Polyurethane, die sich von Polyethern, Polyestern und Polybutadienen mit endständigen Hydroxylgruppen einerseits und aliphatischen oder aromatischen Polyisocyanaten andererseits ableiten, sowie deren Vorprodukte.
    • 16. Polyamide und Copolyamide, die sich von Diaminen und Dicarbonsäuren und/oder von Aminocarbonsäuren oder den entsprechenden Lactamen ableiten, wie Polyamid 4, Polyamid 6, Polyamid 6/6, 6/10, 6/9, 6/12, 4/6, 12/12, Polyamid 11, Polyamid 12, aromatische Polyamide ausgehend von m-Xylol, Diamin und Adipinsäure; Polyamide, hergestellt aus Hexamethylendiamin und Iso- und/oder Terephthalsäure und gegebenenfalls einem Elastomer als Modifikator, z.B. Poly-2,4,4-trimethylhexamethylenterephthalamid oder Poly-m-phenylen-isophthalamid. Block-Copolymere der vorstehend genannten Polyamide mit Polyolefinen, Olefin-Copolymeren, Ionomeren oder chemisch gebundenen oder gepfropften Elastomeren; oder mit Polyethern, wie z.B. mit Polyethylenglykol, Polypropylenglykol oder Polytetramethylenglykol. Ferner mit EPDM oder ABS modifizierte Polyamide oder Copolyamide; sowie während der Verarbeitung kondensierte Polyamide ("RIM-Polyamidsysteme").
    • 17. Polyharnstoffe, Polyimide, Polyamid-imide, Polyetherimide, Polyesterimide, Polyhy dantoine und Polybenzimidazole.
    • 18. Polyester, die sich von Dicarbonsäuren und Dialkoholen und/oder von Hydroxycarbonsäuren oder den entsprechenden Lactonen ableiten, wie Polyethylenterephthalat, Polybutylenterephthalat, Poly-1,4-dimethylolcyclohexanterephthalat, Polyhydroxybenzoate, sowie Block-Polyether-ester, die sich von Polyethern mit Hydroxylendgruppen ableiten; ferner mit Polycarbonaten oder MBS modifizierte Polyester.
    • 19. Polycarbonate und Polyestercarbonate.
    • 20. Polysulfone, Polyethersulfone und Polyetherketone.
    • 21. Vernetzte Polymere, die sich von Aldehyden einerseits und Phenolen, Harnstoff oder Melamin andererseits ableiten, wie Phenol-Formaldehyd-, Harnstoff-Formaldehyd- und Melamin-Formaldehydharze.
    • 22. Trocknende und nicht-trocknende Alkydharze.
    • 23. Ungesättigte Polyesterharze, die sich von Copolyestern gsättigter und ungesättigter Dicarbonsäuren mit mehrwertigen Alkoholen, sowie Vinylverbindungen als Vernetzungsmittel ableiten, wie auch deren halogenhaltige, schwerbrennbare Modifikationen.
    • 24. Vernetzbare Acrylharze, die sich von substituierten Acrylsäureestern ableiten, wie z.B. von Epoxyacrylaten, Urethan-acrylaten oder Polyester-acrylaten.
    • 25. Alkydharze, Polyesterharze und Acrylatharze, die mit Melaminharzen, Harnstoffharzen, Isocyanaten, Isocyanuraten, Polyisocyanaten oder Epoxidharzen vernetzt sind.
    • 26. Vernetzte Epoxidharze, die sich von aliphatischen, cycloaliphatischen, heterocyclischen oder aromatischen Glycidylverbindungen ableiten, z.B. Produkte von Bisphenol-A-diglycidylethern, Bisphenol-F-diglycidylethern, die mittels üblichen Härtern wie z.B. Anhydriden oder Aminen mit oder ohne Beschleunigern vernetzt werden.
    • 27. Natürliche Polymere, wie Cellulose, Naturkautschuk, Gelatine, sowie deren polymerhomolog chemisch abgewandelte Derivate, wie Celluloseacetate, -propionate und -butyrate, bzw. die Celluloseether, wie Methylcellulose; sowie Kolophoniumharze und Deri vate.
    • 28. Mischungen (Polyblends) der vorgenannten Polymeren, wie z.B. PP/EPDM, Polyamid/EPDM oder ABS, PVC/EVA, PVC/ABS, PVC/MBS, PC/ABS, PBTP/ABS, PC/ASA, PC/PBT, PVC/CPE, PVC/Acrylate, POM/thermoplastisches PUR, PC/thermoplastisches PUR, POM/Acrylat, POM/MBS, PPO/HIPS, PPO/PA 6.6 und Copolymere, PA/HDPE, PA/PP, PA/PPO, PBT/PC/ABS oder PBT/PET/PC.
  • Gegenstand der Erfindung ist daher auch eine Zusammensetzung enthaltend
    • A) ein gegen Schädigung durch Licht, Sauerstoff und/oder Hitze empfindliches organisches Material, und
    • B) als Stabilisator eine Verbindung der Formel I.
  • Die Erfindung betrifft auch ein Verfahren zum Stabilisieren von organischem Material gegen Schädigung durch Licht, Sauerstoff und/oder Hitze, dadurch gekennzeichnet, daß man diesem als Stabilisator eine Verbindung der Formel I zusetzt sowie die Verwendung von Verbindungen der Formel I zum Stabilisieren von organischem Material.
  • Die Menge des zu verwendenden Stabilisators richtet sich nach dem zu stabilisierenden organischen Material und der beabsichtigten Verwendung des stabilisierten Materials. Im allgemeinen enthält die erfindungsgemäße Zusammensetzung auf 100 Gew.-Teile der Komponente A 0,01 bis 15, besonders 0,05 bis 10, und vor allem 0,1 bis 5 Gew.-Teile des Stabilisators (Komponente B).
  • Der Stabilisator (Komponente B) kann auch ein Gemisch sein von zwei oder mehr erfindungsgemäßen Verbindungen. Die erfindungsgemäßen Zusammensetzungen können außer dem Stabilisator der Formel I noch andere Stabilisatoren oder sonstige Zusätze enthalten, wie z.B. Antioxidantien, weitere Lichtschutzmittel, Metalldesaktivatoren, Phosphite oder Phosphonite. Beispiele hierfür sind die folgenden Stabilisatoren:
  • 1. Antioxidantien
    • 1.1. Alkylierte Monophenole, z.B. 2,6-Di-tert-butyl-4-methylphenol, 2-Butyl-4,6-di-methylphenol, 2,6-Di-tert-butyl-4-ethylphenol, 2,6-Di-tert-butyl-4-n-butylphenol, 2,6-Di-tert-butyl-4-iso-butylphenol, 2,6-Di-cyclopentyl-4-methylphenol, 2-(α-Methylcyclohexyl)-4,6-dimethylphenol, 2,6-Di-octadecyl-4-methylphenol, 2,4,6-Tri-cyclohexylphenol, 2,6-Di-tert-butyl-4-methoxymethylphenol, lineare oder in der Seitenkette verzweigte Nonylphenole wie z.B. 2,6-Di-nonyl-4-methylphenol, 2,4-Dimethyl-6-(1'-methyl-undec-1'-yl)-phenol, 2,4-Dimethyl-6-(1'-methyl-heptadec-1'-yl)-phenol, 2,4-Dimethyl-6-(1'-methyl-tridec-1'-yl)-phenol und Mischungen davon.
    • 1.2. Alkylthiomethylphenole, z.B. 2,4-Di-octylthiomethyl-6-tert-butylphenol, 2,4-Di-octylthiomethyl-6-methylphenol, 2,4-Di-octylthiomethyl-6-ethylphenol, 2,6-Di-dodecylthiomethyl-4-nonylphenol.
    • 1.3. Hydrochinone und alkylierte Hydrochinone, z.B. 2,6-Di-tert-butyl-4-methoxyphenol, 2,5-Di-tert-butyl-hydrochinon, 2,5-Di-tert-amyl-hydrochinon, 2,6-biphenyl-4-octadecyloxyphenol, 2,6-Di-tert-butyl-hydrochinon, 2,5-Di-tert-butyl-4-hydroxyanisol, 3,5-Di-tert-butyl-4-hydroxyanisol, 3,5-Di-tert-butyl-4-hydroxyphenyl-stearat, Bis(3,5-di-tert-butyl-4-hydroxyphenyl)adipat.
    • 1.4. Tocopherole, z.B. α-Tocopherol, β-Tocopherol, γ-Tocopherol, δ-Tocopherol und Mischungen davon (Vitamin E).
    • 1.5. Hydroxylierte Thiodiphenylether, z.B. 2,2'-Thio-bis(6-tert-butyl-4-methylphenol), 2,2'-Thio-bis(4-octylphenol), 4,4'-Thio-bis(6-tert-butyl-3-methylphenol), 4,4'-Thio-bis-(6-tert-butyl-2-methylphenol), 4,4'-Thio-bis(3,6-di-sec.-amylphenol), 4,4'-Bis(2,6-di-methyl-4-hydroxyphenyl)-disulfid.
    • 1.6. Alkyliden-Bisphenole, z.B. 2,2'-Methylen-bis(6-tert-butyl-4-methylphenol), 2,2'-Methylen-bis(6-tert-butyl-4-ethylphenol), 2,2'-Methylen-bis[4-methyl-6-(α-methylcyclohexyl)-phenol], 2,2'-Methylen-bis(4-methyl-6-cyclohexylphenol), 2,2'-Methylen-bis(6-nonyl-4-methylphenol), 2,2'-Methylen-bis(4,6-di-tert-butylphenol), 2,2'-Ethyliden-bis-(4,6-di-tert-butylphenol), 2,2'-Ethyliden-bis(6-tert-butyl-4-isobutylphenol), 2,2'-Methylen-bis[6-(α-methylbenzyl)-4-nonylphenol], 2,2'-Methylen-bis[6-(α,α-dimethylbenzyl)-4-nonylphenol], 4,4'-Methylen-bis(2,6-di-tert-butylphenol), 4,4'-Methylen-bis(6-tert-butyl-2-methylphenol), 1,1-Bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-butan, 2,6-Bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1,1,3-Tris(5-tert-butyl-4-hydroxy-2-methylphenyl)-butan, 1,1-Bis(5-tert-butyl-4-hydroxy-2-methyl-phenyl)-3-n-dodecylmercaptobutan, Ethylenglycol-bis[3,3-bis(3'-tert-butyl-4'-hydroxyphenyl)-butyrat], Bis(3-tert-butyl-4-hydroxy-5-methyl-phenyl)-dicyclopentadien, Bis[2-(3'-tert-butyl-2'-hydroxy-5'-methyl-benzyl)-6-tert-butyl-4-methyl-phenyl]-terephthalat, 1,1-Bis(3,5-dmethyl-2- hydroxyphenyl)-butan, 2,2-Bis(3,5-di-tert-butyl-4-hydroxyphenyl)-propan, 2,2-Bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-4-n-dodecylmercapto-butan, 1,1,5,5-Tetra-(5-tert-butyl-4-hydroxy-2-methylphenyl)-pentan.
    • 1.7. O-, N- und S-Benzylverbindungen, z.B. 3,5,3',5'-Tetra-tert-butyl-4,4'-dihydroxydibenzylether, Octadecyl-4-hydroxy-3,5-dimethylbenzyl-mercaptoacetat, Tridecyl-4-hydroxy-3,5-di-tert-butylbenzyl-mercaptoacetat, Tris(3,5-di-tert-butyl-4-hydroxybenzyl)-amin, Bis(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-dithioterephthalat, Bis(3,5-di-tert-butyl-4-hydroxybenzyl)-sulfid, Isooctyl-3,5-di-tert-butyl-4-hydroxybenzyl-mercaptoacetat.
    • 1.8. Hydroxybenzylierte Malonate, z.B. Dioctadecyl-2,2-bis(3,5-di-tert-butyl-2-hydroxybenzyl)-malonat, Di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)-malonat, Di-dodecylmercaptoethyl-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-malonat, Di-[4-(1,1,3,3-tetramethylbutyl)-phenyl]-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-malonat.
    • 1.9. Hydroxybenzyl-Aromaten, z.B. 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzol,1,4-Bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetramethylbenzol, 2,4,6-Tris(3,5-di-tert-butyl-4-hydroxybenzyl)-phenol.
    • 1.10. Triazinverbindungen, z.B. 2,4-Bis-octylmercapto-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazin, 2-Octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazin, 2-Octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,3,5-triazin, 2,4,6-Tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxybenzyl)-isocyanurat, 1,3,5-Tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-isocyanurat, 2,4,6-Tris(3,5-di-tert-butyl-4-hydroxyphenylethyl)-1,3,5-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazin, 1,3,5-Tris(3,5-dicyclohexyl-4-hydroxybenzyl)-isocyanurat.
    • 1.11. Benzylphosphonate, z.B. Dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphosphonat, Diethyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonat, Dioctadecyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonat, Dioctadecyl-5-tert-butyl-4-hydroxy-3-methylbenzylphosphonat, Ca-Salz des 3,5-Di-tert-butyl-4-hydroxybenzyl-phosphonsäure-monoethylesters.
    • 1.12. Acylaminophenole, z.B. 4-Hydroxy-laurinsäureanilid, 4-Hydroxystearinsäureanilid, N-(3,5-di-tert-butyl-4-hydroxyphenyl)-carbaminsäureoctylester.
    • 1.13. Ester der β-(3,5-Di-tert-butyl-4-hydroxyphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z.B. mit Methanol, Ethanol, n-Octanol, i-Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris(hydroxyethyl)-isocyanurat, N,N'-Bis(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2.2.2]-octan.
    • 1.14. Ester der β-(5-tert-Butyl-4-hydroxy-3-methylphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z.B. mit Methanol, Ethanol, n-Octanol, i-Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris(hydroxyethyl)-isocyanurat, N,N'-Bis(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2.2.2]-octan.
    • 1.15. Ester der β-(3,5-Dicyclohexyl-4-hydroxyphenyl)-propionsäure mit ein- oder mehrwertigen Alkoholen, wie z.B. mit Methanol, Ethanol, Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris(hydroxyethyl)-isocyanurat, N,N'-Bis(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2.2.2]-octan.
    • 1.16. Ester der 3,5-Di-tert-butyl-4-hydroxyphenylessigsäure mit ein- oder mehrwertigen Alkoholen, wie z.B. mit Methanol, Ethanol, Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythrit, Tris(hydroxyethyl)-isocyanurat, N,N'-Bis(hydroxyethyl)-oxalsäurediamid, 3-Thiaundecanol, 3-Thiapentadecanol, Trimethylhexandiol, Trmethylolpropa, 4-Hydroxymethyl-1-phospha-2,6,7-trioxabicyclo-[2.2.2]-octan.
    • 1.17. Amide der β-(3,5-Di-tert-butyl-4-hydroxyphenyl)-propionsäure, wie z.B. N,N'-Bis-(3,5-di-ten-butyl-4-hydroxyphenylpropionyl)-hexamethylendiamin, N,N'-Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-trimethylendiamin, N,N'-Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hydrazin.
    • 1.18. Ascorbinsäure (Vitamin C).
    • 1.19. Aminische Antioxidantien, wie z.B. N,N'-Di-isopropyl-p-phenylendiamin, N,N'-Di-sec-butyl-p-phenylendiamin, N,N'-Bis(1,4-dimethyl-pentyl)-p-phenylendiamin, N,N'-Bis(1-ethyl-3-methyl-pentyl)-p-phenylendiamin, N,N'-Bis(1-methyl-heptyl)-p-phenylendiamin, N,N'-Dicyclohexyl-p-phenylendiamin, N,N'-biphenyl-p-phenylendiamin, N,N'-Di-(naphthyl-2)-p-phenylendiamin, N-Isopropyl-N'-phenyl-p-phenylendiamin, N-(1,3-Di-methyl-butyl)-N'-phenyl-p-phenylendiamin, N-(1-Methyl-heptyl)-N'-phenyl-p-phenylendiamin, N-Cyclohexyl-N'-phenyl-p-phenylendiamin, 4-(p-Toluol-sulfonamido)-diphenylamin, N,N'-Dimethyl-N,N'-di-sec-butyl-p-phenylendiamin, Diphenylamin, N-Allyldiphenylamin, 4-Isopropoxy-diphenylamin, N-Phenyl-1-naphthylamin, N-(4-tert-Octylphenyl)-1-naphthylamin, N-Phenyl-2-naphthylamin, octyliertes Diphenylamin, z.B. p,p'-Di-tert-octyldiphenylamin, 4-n-Butylaminophenol, 4-Butyrylamino-phenol, 4-Nonanoylaminophenol, 4-Dodecanoylamino-phenol, 4-Octadecanoylamino-phenol, Di-(4-methoxyphenyl)-amin, 2,6-Di-tert-butyl-4-dimethylamino-methyl-phenol, 2,4'-Diamino-diphenylmethan, 4,4'-Diamino-diphenylmethan, N,N,N',N'-Tetramethyl-4,4'-diamino-diphenylmethan, 1,2-Di-[(2-methyl-phenyl)-amino]-ethan, 1,2-Di-(phenylamino)-propan, (o-Tolyl)-biguanid, Di-[4-(1',3'-dimethyl-butyl)-phenyl]amin, tert-octyliertes N-Phenyl-1-naphthylamin, Gemisch aus mono- und dialkylierten tert-Butyl/tert-Octyldiphenylaminen, Gemisch aus mono- und dialkylierten Nonyldiphenylaminen, Gemisch aus mono- und dialkylierten Dodecyldiphenylaminen, Gemisch aus mono- und dialkylierten Isopropyl/Isohexyl-diphenylaminen, Gemische aus mono- und dialkylierten tert-Butyldiphenylaminen, 2,3-Dihydro-3,3-dimethyl-4H-1,4-benzothiazin, Phenothiazin, Gemisch aus mono- und dialkylierten tert-Butyl/tert-Octyl-phenothiazinen, Gemisch aus mono- und dialkylierten tert-Octyl-phenothiazinen, N-Allylphenothiazin, N,N,N',N'-Tetraphenyl-1,4-diaminobut-2-en, N,N-Bis-(2,2,6,6-tetramethyl-piperidin-4-yl-hexamethylendiamin, Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-sebacat, 2,2,6,6-Tetramethylpiperidin-4-on, 2,2,6,6-Tetramethylpiperidin-4-ol.
  • 2. UV-Absorber und Lichtschutzmittel
    • 2.1. 2-(2'-Hydroxyphenyl)-benzotriazole, wie z.B. 2-(2'-Hydroxy-5'-methylphenyl)-benzotriazol, 2-(3',5'-Di-tert-butyl-2'-hydroxyphenyl)-benzotriazol, 2-(5'-tert-Butyl-2'-hydroxyphenyl)-benzotriazol, 2-(2'-Hydroxy-5'-(1,1,3,3-tetramethylbutyl)phenyl)-benzotriazol, 2-(3',5'-Di-tert-butyl-2'-hydroxyphenyl)-5-chlor-benzotriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-methylphenyl)-5-chlor-benzotriazol, 2-(3'-sec-Butyl-5'-tert-butyl-2'-hydroxy phenyl)-benzotriazol, 2-(2'-Hydroxy-4'-octoxyphenyl)-benzotriazol, 2-(3',5'-Di-tert-amyl-2'-hydroxyphenyl)-benzotriazol, 2-(3',5'-Bis(α,α-dimethylbenzyl)-2'-hydroxyphenyl)-benzotriazol, Mischung aus 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)-phenyl)-5-chlor-benzotriazol, 2-(3'-tert-Butyl-5'-[2-(2-ethylhexyloxy)-carbonylethyl]-2'-hydroxyphenyl)-5-chlor-benzotriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-methoxycarbonylethyl)phenyl)-5-chlor-benzotriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-methoxycarbonylethyl)phenyl)-benzotriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)phenyl)-benzotriazol, 2-(3'-tert-Butyl-5'-[2-(2-ethylhexyloxy)carbonylethyl]-2'-hydroxyphenyl)-benzotriazol, 2-(3'-Dodecyl-2'-hydroxy-5'-methylphenyl)-benzotriazol, und 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-isooctyloxycarbonylethyl)phenyl-benzotriazol, 2,2'-Methylenbis[4-(1,1,3,3-tetramethylbutyl)-6-benzotriazol-2-yl-phenol]; Umesterungsprodukt von 2-[3'-tert-Butyl-5'-(2-methoxycarbonylethyl)-2'-hydroxy-phenyl]-benzotriazol mit Polyethylenglycol 300; [R-CH2CH2-COO(CH2)3 ] 2 mit R = 3'-tert-Butyl-4'-hydroxy-5'-2H-benzotriazol-2-yl-phenyl.
    • 2.2. 2-Hydroxybenzophenone, wie z.B. das 4-Hydroxy-, 4-Methoxy-, 4-Octoxy-, 4-Decyloxy-, 4-Dodecyloxy-, 4-Benzyloxy-, 4,2',4'-Trihydroxy-, 2'-Hydroxy-4,4'-dimethoxy-Derivat.
    • 2.3. Ester von gegebenenfalls substituierten Benzoesäuren, wie z.B. 4-tert-Butyl-phenylsalicylat, Phenylsalicylat, Octylphenyl-salicylat, Dibenzoylresorcin, Bis(4-tert-butylbenzoyl)-resorcin, Benzoylresorcin, 3,5-Di-tert-butyl-4-hydroxybenzoesäure-2,4-di-tert-butylphenylester, 3,5-Di-tert-butyl-4-hydroxybenzoesäurehexadecylester, 3,5-Di-tert-butyl-4-hydroxybenzoesäure-octadecylester, 3,5-Di-tert-butyl-4-hydroxybenzoesäure-2-methyl-4,6-di-tert-butylphenylester.
    • 2.4. Acrylate, wie z.B. α-Cyan-β,β-diphenylacrylsäure-ethylester bzw. -isooctylester, α-Carbomethoxy-zimtsäuremethylester, α-Cyano-β-methyl-p-methoxy-zimtsäuremethylester bzw. -butylester, α-Carbomethoxy-p-methoxy-zimtsäure-methylester, N-(β-Carbomethoxy-β-cyanovinyl)-2-methyl-indolin.
    • 2.5. Nickelverbindungen, wie z.B. Nickelkomplexe des 2,2'-Thio-bis[4-(1,1,3,3-tetramethylbutyl)-phenols], wie der 1:1- oder der 1:2-Komplex, gegebenenfalls mit zusätzlichen Liganden, wie n-Butylamin, Triethanolamin oder N-Cyclohexyl-diethanolamin, Nickeldibutyldithiocarbamat, Nickelsalze von 4-Hydroxy-3,5-di-tert-butylbenzylphosphonsäure-monoalkylestern, wie vom Methyl- oder Ethylester, Nickelkomplexe von Ket oximen, wie von 2-Hydroxy-4-methyl-phenyl-undecylketoxim, Nickelkomplexe des 1-Phenyl-4-lauroyl-5-hydroxy-pyrazols, gegebenenfalls mit zusätzlichen Liganden.
    • 2.6. Sterisch behinderte Amine, wie z.B. Bis(2,2,6,6-tetramethyl-piperidin-4-yl)-sebacat, Bis(2,2,6,6-tetramethyl-piperidin-4-yl)-succinat, Bis(1,2,2,6,6-pentamethylpiperidin-4-yl)-sebacat, Bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-sebacat, n-Butyl-3,5-di-tert-butyl-4-hydroxybenzyl-malonsäure-bis(1,2, 2,6,6-pentamethylpiperidyl)-ester, Kondensationsprodukt aus 1-Hydroxyethyl-2,2,6,6-tetramethyl-4-hydroxypiperidin und Bernsteinsäure, Kondensationsprodukt aus N,N'-Bis(2,2,6,6-Tetramethyl-4-piperidyl)-hexamethylendiamin und 4-tert-Outylamino-2,6-dichlor-1,3,5-s-triazin, Tris(2,2,6,6-tetramethyl-4-piperidyl)-nitrilotriacetat, Tetrakis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butantetraoat, 1,1'-(1,2-Ethandiyl)-bis(3,3,5,5-tetramethyl-piperazinon), 4-Benzoyl-2,2,6,6-tetramethylpiperidin, 4-Stearyloxy-2,2,6,6-tetramethylpiperidin, Bis(1,2,2,6,6-pentamethylpiperidyl)-2-n-butyl-2-(2-hydroxy-3,5-di-tert-butylbenzyl)-malonat, 3-n-Octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dion, Bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)-sebacat, Bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl)-succinat, Kondensationsprodukt aus N,N'-Bis(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylendiamin und 4-Morpholino-2,6-dichlor-1,3,5-triazin, Kondensationsprodukt aus 2-Chlor-4,6-di-(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazin und 1,2-Bis(3-aminopropylamino)-ethan, Kondensationsprodukt aus 2-Chlor-4,6-di-(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazin und 1,2-Bis(3-aminopropylamino)-äthan, 8-Acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dion, 3-Dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidin-2,5-dion, 3-Dodecyl-1-(1,2,2,6,6-pentamethyl-4-piperidyl)-pyrrolidin-2,5-dion, Gemisch von 4-Hexadecyloxy- und 4-Stearyloxy-2,2,6,6-tetramethylpiperidin, Kondenstionsprodukt aus N,N'-Bis(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylendiamin und 4-Cyclohexylamino-2,6-dichlor-1,3,5-triazin, Kondensationsprodukt aus 1,2-Bis(3-aminopropylamino)-ethan und 2,4,6-trichlor-1,3,5-triazin sowie 4-Butylamino-2,2,6,6-tetramethyl-piperidin (CAS Reg. No. [136504-96-6]); N-(2,2,6,6-tetramethyl-4-piperidyl)-n-dodecylsuccinimid, N-(1,2,2,6,6-pentamethyl-4-piperidyl)-n-dodecylsuccinimid, 2-Undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxo-spiro[4,5]decan, Umsetzungsprodukt von 7,7,9,9-Tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro[4,5]decan und Epichlorhydrin.
    • 2.7. Oxalsäurediamide, wie z.B. 4,4'-Di-octyloxy-oxanilid, 2,2'-Diethoxy-oxanilid, 2,2'-Di-octyloxy-5,5'-di-tert-butyl-oxanilid, 2,2'-Di-dodecyloxy-5,5'-di-tert-butyl-oxanilid, 2-Ethoxy-2'-ethyl-oxanilid, N,N'-Bis(3-dimethylaminopropyl)-oxalamid, 2-Ethoxy-5-tert- butyl-2'-ethyloxanilid und dessen Gemisch mit 2-Ethoxy-2'-ethyl-5,4'-di-tert-butyl-oxanilid, Gemische von o- und p-Methoxy- sowie von o- und p-Ethoxy-di-substituierten Oxaniliden.
    • 2.8. 2-(2-Hydroxyphenyl)-1,3,5-triazine, wie z.B. 2,4,6-Tris(2-hydroxy-4-octyloxyphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-(2,4-Dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2,4-Bis(2-hydroxy-4-propyloxyphenyl)-6-(2,4-dimethylphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4,6-bis(4-methylphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-dodecyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-tridecyloxyphenyl)-4,6-bis-(2,4-dimethylphenyl)-1,3,5-triazin, 2-[2-Hydroxy-4-(2-hydroxy-3-butyloxy-propyloxy)-phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-[2-Hydroxy-4-(2-hydroxy-3-octyloxy-propyloxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-[4-(dodecyloxy/tridecyloxy-2-hydroxypropoxy)-2-hydroxy-phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-[2-Hydroxy-4-(2-hydroxy-3-dodecyloxy-propoxy)phenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-hexyloxy)phenyl-4,6-diphenyl-1,3,5-triazin, 2-(2-Hydroxy-4-methoxyphenyl)-4,6-diphenyl-1,3,5-triazin, 2,4,6-Tris[2-hydroxy-4-(3-butoxy-2-hydroxy-propoxy)phenyl]-1,3,5-triazin, 2-(2-Hydroxyphenyl)-4-(4-methoxyphenyl)-6-phenyl-1,3,5-triazin.
    • 3. Metalldesaktivatoren, wie z.B. N,N'-Diphenyloxalsäurediamid, N-Salicylal-N'-salicyloylhydrazin, N,N'-Bis(salicyloyl)-hydrazin, N,N'-Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hydrazin, 3-Salicyloylamino-1,2,4-triazol, Bis(benzyliden)-oxalsäuredihydrazid, Oxanilid, Isophthalsäure-dihydrazid, Sebacinsäure-bis-phenylhydrazid, N,N'-Diacetyl-adipinsäure-dihydrazid, N,N'-Bis-salicyloyl-oxalsäure-dihydrazid, N,N'-Bis-salicyloyl-thiopropionsäure-dihydrazid.
    • 4. Phosphite und Phosphonite, wie z.B. Triphenylphosphit, Diphenylalkylphosphite, Phenyldialkylphosphite, Tris(nonylphenyl)-phosphit, Trilaurylphosphit, Trioctadecylphosphit, Distearyl-pentaerythritdiphosphit, Tris(2,4-di-tert-butylphenyl)-phosphit, Diisodecylpentaerythrit-diphosphit, Bis(2,4-di-tert-butylphenyl)-pentaerythritdiphosphit, Bis-(2,6-di-tert-butyl-4-methylphenyl)-pentaerythritdiphosphit, Bis-iodecyloxy-pentaerythritdiphosphit, Bis(2,4-di-tert-butyl-6-ntethylphenyl)-pentaerythritdiphosphit, Bis-(2,4,6-tri-tert-butylphenyl)-pentaerythritdiphosphit, Tristearyl-sorbit-triphosphit, Tetrakis(2,4-di-tert-butylphenyl)-4,4'-biphenylen-diphosphonit, 6-Isooctyloxy-2,4,8,10-tetra-tert-butyl-l2H-di-benz[d,g]-1,3,2-dioxaphosphocin, 6-Fluor-2,4,8,10-tetra-tert-butyl-l2-methyl-dibenz- [d,g]-1,3,2-dioxaphosphocin, Bis(2,4-di-tert-butyl-6-methylphenyl)-methylphosphit, Bis-(2,4-di-tert-butyl-6-methylphenyl)-ethylphosphit.
    • 5. Hydroxylamine wie z.B. N,N-Dibenzylhydroxylamin, N,N-diethylhydroxylamin, N,N-Dioctylhydroxylamin, N,N-Dilaurylhydroxylamin, N,N-Ditetradecylhydroxylamin, N,N-Dihexadecylhydroxylamin, N,N-Dioctadecylhydroxylamin, N-Hexadecyl-N-octadecylhydroxylamin, N-Heptadecyl-N-octadecylhydroxylamin, N,N-Dialkylhydroxylamin aus hydrierten Talgfettaminen.
    • 6. Nitrone wie z.B. N-Benzyl-alpha-phenyl-nitron, N-Ethyl-alpha-methyl-nitron, N-Octyl-alpha-heptyl-nitron, N-Lauryl-alpha-undecyl-nitron, N-Tettadecyl-alpha-tridecylnitron, N-Hexadecyl-alpha-pentadecyl-nitron, N-Opadecyl-alpha-heptadecyl-nitron, N-Hexadecyl-alpha-heptadecyl-nitron, N-Ocatadecyl-alpha-pentadecyl-nitron, N-Heptadecyl-alpha-heptadecyl-nitron, N-Opadecyl-alpha-hexadecyl-nitron, Nitrone abgeleitet von N,N-Dialkylhydroxylaminen hergestellt aus hydrierten Talgfettaminen.
    • 7. Thiosynergisten wie z.B. Thiodipropionsäure-di-laurylester oder Thiodipropionsäure-di-stearylester.
    • 8. Peroxidzerstörende Verbindungen, wie z.B. Ester der β-Thio-dipropionsäure, beispielsweise der Lauryl-, Stearyl-, Myristyl- oder Tridecylester, Mercaptobenzimidazol, das Zinksalz des 2-Mercaptobenzimidazols, Zink-dibutyl-dithiocarbamat, Dioctadecyldisulfid, Pentaerythrit-tetrakis(β-dodecylmercapto)-propionat.
    • 9. Polyamidstabilisatoren, wie z.B. Kupfersalze in Kombination mit Jodiden und/oder Phosphorverbindungen und Salze des zweiwertigen Mangans.
    • 10. Basische Co-Stabilisatoren, wie z.B. Melamin, Polyvinylpyrrolidon, Dicyandiamid, Triallylcyanurat, Harnstoff-Derivate, Hydrazin-Derivate, Amine, Polyamide, Polyurethane, Alkali- und Erdalkalisalze höherer Fettsäuren, beispielsweise Ca-Stearat, Zn-Stearat, Mg-Behenat, Mg-Stearat, Na-Ricinoleat, K-Palmitat, Antimonbrenzcatechinat oder Zinnbrenzcatechinat.
    • 11. Nukleierungsmittel, wie z.B. anorganische Stoffe wie z.B. Talk, Metalloxide wie Titandioxid oder Magnesiumoxid, Phosphate, Carbonate oder Sulfate von vorzugsweise Erdalkalimetallen; organische Verbindungen wie Mono- oder Polycarbonsäuren sowie ihre Salze wie z.B. 4-tert-Butylbenzoesäure, Adipinsäure, Diphenylessigsäure, Natriumsuccinat oder Natriumbenzoat; polymere Verbindungen wie z.B. ionische Copolymerisate ("Ionomere").
    • 12. Füllstoffe und Verstärkungsmittel, wie z.B. Calciumcarbonat, Silikate, Glasfasern, Glaskugeln, Asbest, Talk, Kaolin, Glimmer, Bariumsulfat, Metalloxide und -hydroxide, Ruß, Graphit, Holzmehl und Mehle oder Fasern anderer Naturprodukte, synthetische Fasern.
    • 13. Sonstige Zusätze, wie z.B. Weichmacher, Gleitmittel, Emulgatoren, Pigmente, Rheologieadditive, Katalysatoren, Verlaufshilfsmittel, Optische Aufheller, Flammschutzmittel, Antistatika, Treibmittel.
    • 14. Benzofuranone bzw. Indolinone, wie z.B. in US-A-4 325 863, US-A-4 338 244, US-A-5 175 312, US-A-5 216 052, US-A-5 252 643, DE-A-4 316 611, DE-A-4 316 622, DE-A-4 316 876, EP-A-0 589 839 oder EP-A-0 591 102 beschrieben, oder 3-[4-(2-Acetoxyethoxy)phenyl]-5,7-di-tert-butyl-benzofuran-2-on, 5,7-Di-tert-butyl-3-[4-(2-stearoyloxyethoxy)phenyl]-benzofuran-2-on, 3,3'-Bis[5,7-di-tert-butyl-3-(4-[2-hydroxyethoxy]-phenyl)-benzofuran-2-on], 5,7-Di-tert-butyl-3-(4-ethoxyphenyl)benzofuran-2-on, 3-(4-Acetoxy-3,5-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-on, 3-(3,5-Dimethyl-4-pivaloyloxy-phenyl)-5,7-di-tert-butyl-benzofuran-2-on.
  • Die Art und Menge der zugesetzten weiteren Stabilisatoren wird von der Art des zu stabilisierenden Substrates und dessen Verwendungszweck bestimmt; häufig werden 0,1 bis 5 Gew.-% bezogen auf das zu stabilisierende Polymer verwendet.
  • Besonders vorteilhaft lassen sich die erfindungsgemäßen Verbindungen der Formel I einsetzen in Zusammensetzungen, die als Komponente A ein synthetisches organisches Polymer, insbesondere ein thermoplastisches Polymer, ein Bindemittel für Überzüge wie beispielsweise Lacke, oder ein fotografisches Material enthalten.
  • Als thermoplastische Polymere kommen beispielsweise Polyolefine sowie Polymere in Frage, die Heteroatome in der Hauptkette enthalten. Bevorzugt sind auch solche Zusammensetzungen, worin Komponente A ein thermoplastisches Polymer ist, das Stickstoff, Sauerstoff und/oder Schwefel, insbesondere Stickstoff oder Sauerstoff, in der Hauptkette enthält.
  • Polymere, die Heteroatome in der Hauptkette enthalten, sind vor allem O, S und/oder N enthaltende Polymere. Beispiele für solche Polymere sind die folgenden Klassen von thermoplastischen Polymeren:
    • 1. Polyacetale, wie Polyoxymethylen, sowie solche Polyoxymethylene, die Comonomere, wie z.B. Ethylenoxid, enthalten; Polyacetale, die mit thermoplastischen Polyurethanen, Acrylaten oder MBS modifiziert sind.
    • 2. Polyphenylenoxide und -sulfide und deren Mischungen mit Styrolpolymeren oder Polyamiden.
    • 3. Polyamide und Copolyamide, z.B. solche, die sich von Diaminen und Dicarbonsäuren und/oder von Aminocarbonsäuren oder den entsprechenden Lactamen ableiten, wie Polyamid 4, Polyamid 6, Polyamid 6/6, 6/10, 6/9, 6/12, 4/6, Polyamid 11, Polyamid 12, aromatische Polyamide ausgehend von m-Xylol, Diamin und Adipinsäure; Polyamide, hergestellt aus Hexamethylendiamin und Iso- und/oder Terephthalsäure und gegebenenfalls einen Elastomer als Modifikator, z.B. Poly-2,4,4-trimethylhexamethylenterephthalamid, Poly-m-phenylen-isophthalamid. Block-Copolymere der vorstehend genannten Polyamide mit Polyolefinen, Olefin-Copolymeren, Ionomeren oder chemisch gebundenen oder gepfropften Elastomeren; oder mit Polyethern, wie z.B. mit Polyethylenglykol, Polypropylenglykol oder Polytetramethylenglykol. Ferner mit EPDM oder ABS modifizierte Polyamide oder Copolyamide; sowie während der Verarbeitung kondensierte Polyamide ("RIM-Polyamidsysteme").
    • 4. Polyharnstoffe, Polyimide, Polyamid-imide und Polybenzimidazole.
    • 5. Polyester, z.B. solche, die sich von Dicarbonsäuren und Dialkoholen und/oder von Hydroxycarbonsäuren oder den entsprechenden Lactonen ableiten, wie Polyethylenterephthalat, Polybutylenterephthalat, Poly-1,4-dimethylolcyclohexanterephthalat, Polyhydroxybenzoate, sowie Block-Polyether-ester, die sich von Polyethern mit Hydroxylendgruppen ableiten; ferner mit Polycarbonaten oder MBS modifizierte Polyester.
    • 6. Polycarbonate und Polyestercarbonate, insbesondere aromatische Polycarbonate, wie z.B. solche basierend auf 2,2-Bis(4-hydroxyphenyl)-propan oder 1,1-Bis(4-hydroxyphenyl)-cyclohexan.
    • 7. Polysulfone, Polyethersulfone und Polyetherketone, insbesondere aromatische Polymere dieser Klasse.
    • 8. Mischungen (Polyblends) solcher Polymerer untereinander oder mit anderen Polymeren, z.B. mit Polyolefinen, Polyacrylaten, Polydienen oder anderen Elastomeren als Schlagzähmodifikatoren.
  • Bevorzugt sind darunter die Polycarbonate, Polyester, Polyamide, Polyacetale, Polyphenylenoxide und Polyphenylensulfide, insbesondere aber die Polycarbonate. Darunter sind insbesondere solche Polymere zu verstehen, deren konstitutionelle Repetiereinheit (constitutional repeating unit) der Formel
    Figure 00330001
    entspricht, worin A einen divalenten phenolischen Rest darstellt. Beispiele für A sind u.a. in US-A-4 960 863 und DE-A-3 922 496 genannt. A kann beispielsweise abgeleitet sein von Hydrochinon, Resorcin, von Dihydroxybiphenylen oder Bisphenolen im weitesten Sinn wie Bis-(hydroxyphenyl)-alkanen, -cycloalkanen, -sulfiden, -ethern, -ketonen, -sulfonen, -sulfoxiden, α,α'-Bis-(hydroxyphenyl)-diisopropylbenzolen, z.B. von den Verbindungen 2,2-Bis-(4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dimethyl-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dichlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-propan, 1,1-Bis-(4-hydroxyphenyl)-cyclohexan, oder von den Verbindungen der Formeln
    Figure 00330002
    Figure 00340001
  • Von Interesse sind auch Zusammensetzungen, worin Komponente (A) ein Polyolefin ist, beispielsweise Polyethylen oder Polypropylen.
  • Die Einarbeitung in die organischen Polymere, beispielsweise in die synthetischen organischen, insbesondere thermoplastischen Polymere, kann durch Zusatz der erfindungsgemäßen Verbindungen und gegebenenfalls weiterer Additive nach den in der Technik üblichen Methoden erfolgen. Die Einarbeitung kann zweckmäßig vor oder während der Formgebung, beispielsweise durch Mischen der pulverförmigen Komponenten oder durch Zusatz des Stabilisators zur Schmelze oder Lösung des Polymeren, oder durch Aufbringen der gelösten oder dispergierten Verbindungen auf das Polymere, gegebenenfalls unter nachträglichem Verdunsten des Lösungsmittels erfolgen. Im Fall von Elastomeren können diese auch als Latices stabilisiert werden. Eine weitere Möglichkeit der Einarbeitung der erfindungsgemäßen Verbindungen in Polymere besteht in deren Zugabe vor oder während der Polymerisation der entsprechenden Monomeren bzw. vor der Vernetzung.
  • Die erfindungsgemäßen Verbindungen oder Mischungen davon können auch in Form eines Masterbatches, der diese Verbindungen beispielsweise in einer Konzentration von 2,5 bis 25 Gew.% enthält, den zu stabilisierenden Kunststoffen zugesetzt werden.
  • Zweckmäßig kann die Einarbeitung der erfindungsgemäßen Verbindungen nach folgenden Methoden erfolgen:
    • – als Emulsion oder Dispersion (z.B. zu Latices oder Emulsionspolymeren)
    • – als Trockenmischung während des Vermischens von Zusatzkomponenten oder Polymermischungen
    • – durch direktes Zugeben in die Verarbeitungsapparatur (z.B. Extruder, Innenmischer usw.)
    • – als Lösung oder Schmelze.
  • Die so erhaltenen stabilisierten Polymerzusammensetzungen können nach den üblichen Methoden, wie z.B. durch Heißpressen, Spinnen, Extrudieren oder Spritzgießen, in geformte Gegenstände überführt werden, wie z.B. in Fasern, Folien, Bändchen, Platten, Stegplatten, Gefäße, Rohre und sonstige Profile.
  • Die Erfindung betrifft daher weiterhin die Verwendung der erfindungsgemäßen Polymerzusammensetzung zur Herstellung eines geformten Gegenstandes.
  • Von Interesse ist auch die Verwendung in Mehrschichtsystemen. Hierbei wird eine erfindungsgemäße Polymerenzusammensetzung mit einem relativ hohen Gehalt an Stabilisator der Formel I, beispielsweise 5 – 15 Gew.-%, in dünner Schicht (10-100 μm) auf einen geformten Gegenstand aus einem Polymer, das wenig oder keinen Stabilisator der Formel I enthält, aufgebracht. Das Aufbringen kann zugleich mit der Formgebung des Grundkörpers geschehen, z.B. durch sogenannte Coextrusion. Das Aufbringen kann aber auch auf den fertig geformten Grundkörper geschehen, z.B. durch Lamination mit einem Film oder durch Beschichtung mit einer Lösung. Die äußere Schicht bzw. die äußeren Schichten des fertigen Gegenstandes haben die Funktion eines UV-Filters, der das Innere des Gegenstandes gegen UV-Licht schützt. Die äußere Schicht enthält vorzugsweise 5-15 Gew.%, insbesondere 5-10 Gew.%, mindestens eines Stabilisators der Formel I.
  • Die Verwendung der erfindungsgemäßen Polymerzusammensetzung zur Herstellung von Mehrschichtsystemen, wobei die äußere(n) Schicht(en) in einer Dicke von 10-100 μm aus einer erfindungsgemäßen Polymerzusammensetzung besteht, während die innere Schicht wenig oder keinen Stabilisator der Formel I enthält, stellt daher einen weiteren Gegenstand der Erfindung dar.
  • Von besonderem Interesse ist die Verwendung einer erfindungsgemäßen Polymerzusammensetzung, worin die Komponente A ein Polycarbonat ist, zur Herstellung von Mehrschichtsystemen.
  • Die so stabilisierten Polymere zeichnen sich aus durch hohe Witterungsbeständigkeit, vor allem durch hohe Beständigkeit gegen UV-Licht. Sie behalten dadurch auch im Außengebrauch lange Zeit ihre mechanischen Eigenschaften sowie ihre Farbe und ihren Glanz.
  • Ebenfalls von besonderem Interesse ist die Verwendung der erfindungsgemäßen Verbindungen der Formel I als Stabilisatoren für Überzüge, beispielsweise für Lacke. Gegenstand der Erfindung sind daher auch solche Zusammensetzungen, deren Komponente A ein filmbildendes Bindemittel ist.
  • Das erfindungsgemäße Überzugsmittel enthält vorzugsweise auf 100 Gew.-Teile festes Bindemittel A 0,01-10 Gew.-Teile B, insbesondere 0,05-10 Gew.-Teile B, vor allem 0,1-5 Gew.-Teile B.
  • Auch hier sind Mehrschichtsysteme möglich, wobei die Konzentration der Verbindung der Formel I (Komponente B) in der Deckschicht höher sein kann, beispielsweise 1 bis 15 Gew.-Teile B, vor allem 3-10 Gew.-Teile B auf 100 Gew.-Teile festes Bindemittel A.
  • Die Verwendung der erfindungsgemäßen Verbindung der Formel I als Stabilisator in Überzügen bringt den zusätzlichen Vorteil mit sich, daß der Delaminierung, d.h. dem Abblättern des Überzuges vom Substrat, vorgebeugt wird. Dieser Vorteil kommt insbesondere bei metallischen Substraten zum tragen, auch bei Mehrschichtsystemen auf metallischen Substraten.
  • Als Bindemittel (Komponente A) kommen prinzipiell alle in der Technik gebräuchlichen in Betracht, beispielsweise solche, wie sie beschrieben sind in Ullmann's Encyclopedia of Industrial Chemistry, 5. Ed., Vol. A18, pp. 368-426, VCH, Weinheim 1991. Allgemein handelt es sich um ein filmbildendes Bindemittel basierend auf einem thermoplastischen oder thermohärtbaren Harz, vorwiegend auf einem thermohärtbaren Harz. Beispiele hierfür sind Alkyd-, Acryl-, Polyester-, Phenol-, Melamin-, Epoxid-, Polyurethanharze und deren Gemische.
  • Komponente A kann ein kalt aushärtbares oder ein heiß aushärtbares Bindemittel sein, wobei die Zugabe eines Härtungskatalysators vorteilhaft sein kann. Geeignete Katalysatoren, die die Aushärtung des Bindemittels beschleunigen, sind beispielsweise beschrieben in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 18, S. 469, VCH Verlagsgesellschaft, Weinheim 1991.
  • Bevorzugt sind Überzugsmittel, worin die Komponente A ein Bindemittel aus einem funktionellen Acrylatharz und einem Vernetzer ist.
  • Beispiele von Überzugsmitteln mit speziellen Bindemitteln sind:
    • 1. Lacke auf Basis von kalt- oder heiß-vernetzbaren Alkyd-, Acrylat-, Polyester-, Epoxid- oder Melaminharzen oder Mischungen solcher Harze, gegebenenfalls mit Zusatz eines Härtungskatalysators;
    • 2. Zweikomponenten-Polyurethanlacke auf Basis von hydroxylgruppenhaltigen Acrylat-, Polyester- oder Polyetherharzen und aliphatischen oder aromatischen Isocyanaten, Isocyanuraten oder Polyisocyanaten;
    • 3. Einkomponenten-Polyurethanlacke auf Basis von blockierten Isocyanaten, Isocyanuraten oder Polyisocyanaten, die während des Einbrennens deblockiert werden;
    • 4. Zweikomponentenlacke auf Basis von (Poly)ketiminen und aliphatischen oder aromatischen Isocyanaten, Isocyanuraten oder Polyisocyanaten;
    • 5. Zweikomponentenlacke auf Basis von (Poly)ketiminen und einem ungesättigten Acrylatharz oder einem Polyacetoacetatharz oder einem Methacrylamidoglykolatmethylester;
    • 6. Zweikomponentenlacke auf Basis von carboxyl- oder aminogruppenhaltigen Polyacrylaten und Polyepoxiden;
    • 7. Zweikomponentenlacke auf Basis von anhydridgruppenhaltigen Acrylatharzen und einer Polyhydroxy- oder Polyaminokomponente;
    • 8. Zweikomponentenlacke auf Basis von (Poly)oxazolinen und anhydridgruppenhaltigen Acrylatharzen oder ungesättigten Acrylatharzen oder aliphatischen oder aromatischen Isocyanaten, Isocyanuraten oder Polyisocyanaten;
    • 9. Zweikomponentenlacke auf Basis von ungesättigten Polyacrylaten und Polymalonaten;
    • 10. thermoplastische Polyacrylatlacke auf Basis von thermoplastischen Acrylatharzen oder fremdvernetzenden Acrylatharzen in Kombination mit veretherten Melaminharzen;
    • 11. Lacksysteme auf Basis von siloxanmodifizierten oder fluormodifizierten Acrylat harzen.
  • Bei den erfindungsgemäßen Überzugsmitteln kann es sich auch um strahlenhärtbare Überzugsmittel handeln. In diesem Fall besteht das Bindemittel im wesentlichen aus monomeren oder oligomeren Verbindungen mit ethylenisch ungesättigten Bindungen, die nach der Applikation durch UV- oder Elektronenstrahlung gehärtet, d.h. in eine vernetzte, hochmolekulare Form überführt werden. Entsprechende Systeme sind in der oben genannten Publikation, Ullmann's Encyclopedia of Industrial Chemistry, 5. Ed., Vol. A18, Seiten 451-453, beschrieben. In strahlenhärtbaren Überzugsmitteln können die Verbindungen der Formel I auch ohne Zusatz von sterisch gehinderten Aminen eingesetzt werden.
  • Die erfindungsgemäße Zusammensetzung, insbesondere das erfindungsgemäße Überzugsmittel, enthält vorzugsweise neben den Komponenten A und B als Komponente C ein Lichtschutzmittel vom Typ der sterisch gehinderten Amine, der 2-(2-Hydroxyphenyl)-1,3,5-triazine und/oder der 2-Hydroxyphenyl-2H-benztriazole, beispielsweise wie sie in obiger Liste unter den Punkten 2.1, 2.6 und 2.8 aufgeführt sind. Von besonderem technischem Interesse ist dabei der Zusatz von 2-mono-Resorcinyl-4,6-diaryl-1,3,5-triazinen und/oder 2-Hydroxyphenyl-2H-benztriazolen.
  • Zur Erzielung maximaler Lichtbeständigkeit ist vor allem der Zusatz von sterisch gehinderten Aminen, wie sie in der genannten Liste unter 2.6 beispielhaft aufgeführt sind, von Interesse. Die Erfindung betrifft daher auch ein Überzugsmittel, das neben den Komponenten A, und B als Komponente C ein Lichtschutzmittel vom Typ der sterisch gehinderten Amine enthält.
  • Vorzugsweise handelt es sich dabei um ein 2,2,6,6-Tetraalkylpiperidinderivat, das mindestens eine Gruppe der Formel
    Figure 00380001
    enthält, worin R Wasserstoff oder Methyl, insbesondere Wasserstoff, ist.
  • Die Komponente C wird vorzugsweise in einer Menge von 0,05-5 Gew.-Teilen auf 100 Gew.-Teile des festen Bindemittels verwendet.
  • Beispiele für als Komponente C verwendbare Tetraalkylpiperidinderivate sind der EP-A-356677, Seiten 3-17, Abschnitte a) bis f) zu entnehmen. Die genannten Abschnitte dieser EP-A werden als Teil der vorliegenden Beschreibung betrachtet. Besonders zweckmäßig setzt man folgende Tetraalkylpiperidinderivate ein:
    Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-succinat,
    Bis-(2,2,6,6-tetramethylpiperidin-4-yl)-sebacat,
    Bis-(1,2,2,6,6-pentamethylpiperidin-4-yl)-sebacat,
    Butyl-(3,5-di-tert.-butyl-4-hydroxybenzyl)-malonsäure-di-(1,2,2,6,6-pentamethylpiperidin-4-yl)-ester,
    Bis-(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl)-sebacat,
    Tetra(2,2,6,6-tetramethylpiperidin-4-yl)-butan-1,2,3,4-tetracarboxylat,
    Tetra(1,2,2,6,6-pentamethylpiperidin-4-yl)-butan-1,2,3,4-tetracarboxylat,
    2,2,4,4-Tetramethyl-7-oxa-3,20-diaza-21-oxo-dispiro[5.1.11.2]-heneicosan,
    8-Acetyl-3-dodecyl-1,3,8-triaza-7,7,9,9-tetramethylspiro[4,5]-decan-2,4-dion,
    oder eine Verbindung der Formeln
    Figure 00390001
    Figure 00400001
    Figure 00410001
    wobei m ein Wert von 5-50 bedeutet.
  • Das Überzugsmittel kann außer den Komponenten A, B und gegebenenfalls C weitere Komponenten enthalten, z.B. Lösungsmittel, Pigmente, Farbstoffe, Weichmacher, Stabilisatoren, Thixotropiemittel, Trocknungskatalysatoren oder/und Verlaufhilfsmittel. Mögliche Komponenten sind beispielsweise solche, wie sie in Ullmann's Encyclopedia of Industrial Chemistry, 5. Ed., Vol. A18, pp. 429-471, VCH, Weinheim 1991 beschrieben sind.
  • Mögliche Trocknungskatalysatoren beziehungsweise Härtungskatalysatoren sind beispielsweise organische Metallverbindungen, Amine, aminogruppenhaltige Harze oder/und Phosphine. Organische Metallverbindungen sind z.B. Metallcarboxylate, insbesondere solche der Metalle Pb, Mn, Co, Zn, Zr oder Cu, oder Metallchelate, insbesondere solche der Metalle Al, Ti oder Zr oder Organometallverbindungen wie z.B. Organozinnverbindungen.
  • Beispiele für Metallcarboxylate sind die Stearate von Pb, Mn oder Zn, die Octoate von Co, Zn oder Cu, die Naphthenate von Mn und Co oder die entsprechenden Linoleate, Resinate oder Tallate.
  • Beispiele für Metallchelate sind die Aluminium-, Titan- oder Zirkonium-Chelate von Acetylaceton, Ethylacetylacetat, Salicylaldehyd, Salicylaldoxim, o-Hydroxyacetophenon oder Ethyl-trifluoracetylacetat und die Alkoxide dieser Metalle.
  • Beispiele für Organozinnverbindungen sind Dibutylzinnoxid, Dibutylzinn-dilaurat oder Dibutylzinn-dioctoat.
  • Beispiele für Amine sind vor allem tertiäre Amine, wie z.B. Tributylamin, Triethanolamin, N-Methyl-diethanolamin, N-Dimethylethanolamin, N-Ethylmorpholin, N-Methylmorpholin oder Diazabicyclooctan (Triethylendiamin) sowie deren Salze. Weitere Beispiele sind quaternäre Ammoniumsalze, wie z.B. Trimethylbenzylammoniumchlorid.
  • Aminogruppenhaltige Harze sind gleichzeitig Bindemittel und Härtungskatalysator. Beispiel hierfür sind aminogruppenhaltige Acrylat-copolymere.
  • Als Härtungskatalysator können auch Phosphine verwendet werden, wie z.B. Triphenylphosphin.
  • Die erfindungsgemäßen Überzugsmittel können auf beliebige Substrate aufgebracht werden, beispielsweise auf Metall, Holz, Kunststoff oder keramische Materialien. Vorzugsweise werden sie beim Lackieren von Automobilen als Decklack verwendet. Besteht der Decklack aus zwei Schichten, wovon die untere Schicht pigmentiert ist und die obere Schicht nicht pigmentiert ist, so kann das erfindungsgemäße Überzugsmittel für die obere oder die untere Schicht oder für beide Schichten verwendet werden, vorzugsweise jedoch für die obere Schicht.
  • Die erfindungsgemäßen Überzugsmittel können auf die Substrate nach den üblichen Verfahren aufgebracht werden, beispielsweise durch Streichen, Besprühen, Gießen, Tauchen oder Elektrophorese; s.a. Ullmann's Encyclopedia of Industrial Chemistry, 5. Ed., Vol. A18, pp. 491-500.
  • Die Härtung der Überzüge kann – je nach dem Bindemittelsystem – bei Raumtemperatur oder durch Erwärmen erfolgen. Vorzugsweise härtet man die Überzüge bei 50-150°C, Pulverlacke auch bei höheren Temperaturen.
  • Die erfindungsgemäß erhaltenen Überzüge weisen eine hervorragende Beständigkeit gegen schädigende Einflüsse von Licht, Sauerstoff und Wärme auf; insbesondere ist auf die gute Licht- und Witterungsbeständigkeit der so erhaltenen Überzüge, beispielsweise Lacke, hinzuweisen.
  • Gegenstand der Erfindung ist daher auch ein Überzug, besonders ein Lack, der durch einen Anteil der erfindungsgemäßen Verbindung der Formel I gegen schädigende Einflüsse von Licht, Sauerstoff und Wärme stabilisiert ist. Der Lack ist vorzugsweise ein Decklack für Automobile. Die Erfindung beinhaltet weiterhin ein Verfahren zum Stabilisieren eines Überzuges auf Basis organischer Polymere gegen Schädigung durch Licht, Sauerstoff und/oder Wärme, dadurch gekennzeichnet, daß man dem Überzugsmittel eine Verbindung der Formel I beimischt, sowie die Verwendung von Verbindungen der Formel I in Überzugsmitteln als Stabilisatoren gegen Schädigung durch Licht, Sauerstoff und/oder Wärme.
  • In einer weiteren Ausgestaltung des Verfahrens verwendet man solche Bindemittel, in die eine Verbindung der Formel I durch Copolymerisation oder Copolykondensation eingebaut ist. Hierzu eignen sich solche Verbindungen der Formel I, in denen der Rest R7 beispielsweise eine zur Copolykondensation geeignete funktionelle Gruppe enthält. In diesem Fall kann das erfindungsgemäße Überzugsmittel auch nur aus einer Komponente, nämlich dem Bindemittel mit eingebautem Stabilisator bestehen.
  • Meistens enthalten die Überzugsmittel ein organisches Lösungsmittel oder Lösungsmittelgemisch, in dem das Bindemittel löslich ist. Das Überzugsmittel kann aber auch eine wäßrige Lösung oder Dispersion sein. Das Vehikel kann auch ein Gemisch eines organischen Lösungmittels und Wasser sein. Das Überzugsmittel kann auch ein feststoffreicher Lack (high solids Lack) sein oder kann lösungsmittelfrei (Pulverlack) sein.
  • Die Pigmente können anorganische, organische oder metallische Pigmente sein. Vorzugsweise enthalten die erfindungsgemäßen Überzugsmittel keine Pigmente und werden als Klarlack verwendet.
  • Ebenfalls bevorzugt ist der Einsatz des Überzugsmittels als Decklack für Anwendungen in der Automobilindustrie, besonders als pigmentierte oder unpigmentierte Deckschicht des Lackes. Die Verwendung für darunter liegende Schichten ist jedoch auch möglich.
  • Typischerweise basiert fotografisches Aufzeichnungsmaterial auf Siberhalogenidemulsionen, wobei Silberhalogenid und bei farbfotografischem Material auch die Farbstoffe oder Farbstoffvorläufer für UV-Strahlung empfindlich sind. Besonders durch UV-Strahlung der Wellenlängen zwischen 300 und 400 nm verändert sich das Material beziehungsweise verfärbt sich oder bleicht aus. Diese Empfindlichkeit gegenüber UV-Strahlung ist unerwünscht. Die genannten Effekte können ganz oder teilweise unterdrückt werden, indem man den Farbstoffen Cyan, Magenta und Gelb sowie den Kupplern Stabilisatoren zusetzt, typischerweise UV-Absorber, deren Absorptionsmaximum unter 400 nm, z.B. zwischen 300 und 400 nm liegt; bekannte Beispiele dafür sind Verbindungen aus der Klasse der 2-Hydroxyphenyl-benztriazole.
  • Die Verwendung der bisher bekannten UV-Absorber (UVA) führt jedoch häufig zu unerwünschten Effekten wie beispielsweise Verfärbung und/oder Fleckenbildung als Folge ungenügender Eigenstabilität gegenüber Licht, Wärme oder Feuchtigkeit. Weiterhin kann als Folge des hochsiedenden organischen Lösungsmittels, welches zur Herstellung der UVA-Emulsion verwendet wird, eine Erweichung der Schicht und verschlechterte Adhäsion zwischen den diversen Schichten eintreten. Eine Kompensation dieses Effektes durch Erhöhung des Gelatineanteils führt in der Regel nur zu einer Destabilisierung der Schicht, während eine zusätzliche Gelatine-Schutzschicht über den UVA-enthaltenden Schichten eine unerwünschte Zunahme der Gesamtschichtdicke bewirkt. Andere Nachteile konventioneller UVA-Systeme können sein: Migration, Oberflächenkristallisation oder Blooming, Zusammenklumpen und Lichtstreuung an übermäßig großen Öltröpfchen, die den UVA enthalten und gemäß bekannten Emulgiermethoden hergestellt werden.
  • Es ist bekannt, daß Polymer-Latices, hergestellt durch Polymerisation von bestimmten UVA-Monomeren, die oben erwähnten Probleme teilweise lösen können, wie das z.B. in EP-A-577122 für polymere 2-Hydroxyphenyl-benztriazole diskutiert wird.
  • Auch die Verwendung einiger UV-Absorber vom Typ 2-Hydroxyphenyltriazin in Fotomaterial wurde bereits vorgeschlagen (EP-A-530 135, US-A-5 364 749, US-A-5 300 414). Weitere Verbindungen dieses Typs sind beispielsweise in EP-A-434 608 und US-A-5 189 084 beschrieben.
  • Es wurde nun gefunden, daß die erfindungsgemäßen Bisresorcinyltriazin-UV-Absorber der Formel I überraschenderweise die durch die Technik gestellten Anforderungen in hohem Maße erfüllen. Insbesondere verfügen diese Bisresorcinyltriazine über eine verbesserte Eigenlichtstabilität und sind darüberhinaus geeignet, die Stabilität der Cyan-, Magenta- und Gelbschicht fotografischer Materialien zu erhöhen. Die erfindungsgemäßen fotografischen Materialien bieten gegenüber bekannten, unter Verwendung von Hydroxyphenyltriazin UV-Absorbern stabilisierten Materialien (z.B. US-A-5 364 749) beispielsweise den Vorteil geringerer Gelbfärbung ohne Beeinträchtigung der Lichtschutzwirkung.
  • Die erfindungsgemäßen UV-Absorber können für alle Arten fotosensitiven Materials verwendet werden. Beispielsweise können sie für Farbpapier, Farbumkehrpapier, Direkt-Positiv-Farbmaterial, Farbnegativfilm, Farbpositivfilm, Farbumkehrfilm und weitere eingesetzt werden. Unter anderem werden sie bevorzugt für fotosensitives Farbmaterial, welches ein Umkehrsubstrat enthält oder welches Positive bildet, verwendet.
  • Ferner können diese Triazine mit Vorteil mit UV-Absorbern vom Hydroxyphenylbenzotriazoltyp, insbesondere bei Raumtemperatur flüssigen Vertretern hiervon (vgl. beispielsweise US-A-4,853,471, US-A-4,973,702, US-A-4,921,966 und US-A-4,973,701) kombiniert werden.
  • Auch Kombinationen der Hydroxyphenyltriazine mit anderen Typen von UV-Absorbern wie Benzophenonen, Oxaniliden, Cyanoacrylaten, Salicylsäureestern, Acrylnitrilen oder Thiazolinen eignen sich zur Verwendung in fotografischen Aufzeichnungsmaterialien.
  • Der Gegenstand vorliegender Anmeldung umfaßt somit auch fotografisches Aufzeichnungsmaterial enthaltend auf einem Träger mindestens eine Silberhalogenidemulsionsschicht sowie gegebenenfalls mindestens eine Zwischenschicht und/oder eine Protektionsschicht, wobei mindestens eine der genannten Schichten einen UV-Absorber enthält, dadurch gekennzeichnet, daß der UV-Absorber der Formel I entspricht.
  • Die erfindungsgemäßen fotografischen Aufzeichnungsmaterialien bieten gegenüber Materialien enthaltend Benztriazol UV-Absorber auch den Vorteil, daß die UVA der Formel I in einer vergleichsweise geringen Menge benötigt werden, so daß auch die Dicke der UVA enthaltenden Schicht gering bleibt, was sich u.a. positiv auf die Abbildungseigenschaften auswirkt.
  • Die erfindungsgemäßen fotografischen Aufzeichnungsmaterialien bieten gegenüber Materialien enthaltend bekannte Hydroxyphenyltriazin UVA, wie sie beispielsweise in US-A-5364749 beschrieben sind, den Vorteil geringerer Gelbfärbung ohne Beeinträchtigung der Lichtschutzwirkung bezüglich der drei Farbstoffe Cyan, Magenta und Gelb.
  • Das erfindungsgemäße fotografische Aufzeichnungsmaterial kann schwarzweiß- oder farbfotografisches Material sein. Bevorzugt ist farbfotografisches Material.
  • Beispiele für farbfotografische Materialien sind Farbnegativfilme, Farumkehrfilme, Farbpositivfilme, farbfotografisches Papier, farbumkehrfotografisches Papier, farbempfindliche Materialien für das Farbdiffusionstransfer-Verfahren oder das Silberfarb-Bleichverfahren.
  • Geeignete Träger zur Herstellung farbfotografischer Materialien sind z.B. Filme und Folien von halbsynthetischen und synthetischen Polymeren, wie Cellulosenitrat, Celluloseacetat, Cellulosebutyrat, Polystyrol, Polyvinylchlorid, Polyothylenterephthalat und Polycarbonat und mit einer Barytschicht oder α-Olefinpolymerschicht (z.B. Polyethylen) laminiertes Papier. Diese Träger können mit Farbstoffen und Pigmenten, beispielsweise Titandioxid, gefärbt sein. Sie können auch zum Zwecke der Abschirmung von Licht schwarz gefärbt sein. Die Oberfläche des Trägers wird im allgemeinen einer Behandlung unterzogen, um die Adhäsion der fotografischen Emulsionsschicht zu verbessern, beispielsweise einer Corona-Entladung mit nachfolgendem Antrag einer Substratschicht.
  • Die farbfotografischen Materialien enthalten üblicherweise mindestens je eine rotempfindliche, grünempfindliche und blauempfindliche Silberhalogenidemulsionsschicht sowie gegebenenfalls Zwischenschichten und Schutzschichten. Bevorzugt enthält das erfindungsgemäße Material die Silberhalogenidemulsionsschichten vom Träger aus in der Reihenfolge blauempfindliche, grünempfindliche und rotempfindliche Schicht. Im erfindungsgemäßen farbfotografischen Material ist der UV-Absorber vorzugsweise in einer Schicht über der grünempfindlichen Schicht, besonders bevorzugt in einer Schicht oberhalb der Silberhalogenidemulsionsschicht(en) enthalten.
  • Der erfindungsgemäße UV-Absorber ist in dem fotografischen Material vorzugsweise in einer Menge von 0,05 bis 10 g pro m2, besonders 0,1 bis 8, vor allem 0,2 bis 5 g/m2 enthalten.
  • Ein Beispiel für ein erfindungsgemäßes farbfotografisches Aufzeichnungsmaterial stellt ein Material mit folgender Schichtabfolge dar:
    Figure 00470001
  • Ein anderes Beispiel ist ein Material mit ähnlichem Schichtaufbau, worin jedoch Schicht a fehlt. Der erfindungsgemäße UV-Absorber der Formel (I) ist bei der dargestellten Schichtabfolge z.B. zweckmäßig in Schicht b, c und/oder d enthalten, besonders in b und/oder c, vor allem in b.
  • Bevorzugt ist allgemein ein fotografisches Aufzeichnungsmaterial enthaltend eine Verbindung der Formel (I) in einer Schicht oberhalb der Silberhalogenidemulsionsschicht(en). Weiterhin bevorzugt ist fotografisches Aufzeichnungsmaterial enthaltend mindestens je eine rotempfindliche und grünempfindliche Silberhalogenidemulsionsschicht sowie dazwischen eine Zwischenschicht, wobei mindestens eine Verbindung der Formel (I) in der Zwischenschicht zwischen der rotempfindlichen und der grünempfindlichen Silberhalogenidemulsionsschicht enthalten ist. Ganz besonders bevorzugt ist fotografisches Aufzeichnungsmaterial enthaltend mindestens je eine rotempfindliche, grünempfindliche und blauempfindliche Silberhalogenidemulsionsschicht sowie mindestens zwei zwischen den genannten Schichten liegende Zwischenschichten und eine Schutzschicht, wobei mindestens eine Verbindung der Formel (I) in einer Schicht oberhalb der grünempfindlichen Silberhalogenidemulsionsschicht enthalten ist und die Silberhalogenidemulsionsschichten Dunkellager- und/oder Lichtstabilisatoren enthalten.
  • Wesentliche Bestandteile der fotografischen Emulsionsschichten sind Bindemittel, Silberhalogenidkörnchen und Farbkuppler.
  • Als Bindemittel wird vorzugsweise Gelatine verwendet. Diese kann jedoch ganz oder teilweise durch andere synthetische, halbsynthetische oder auch natürlich vorkommende Polymere ersetzt werden. Synthetische Gelatineersatzstoffe sind beispielsweise Polyvinylalkohol, Poly-N-vinylpyrrolidon, Polyacrylamide, Polyacrylsäure oder deren Derivate, insbesondere deren Mischpolymerisate. Natürlich vokommende Gelatineersatzstoffe sind beispielsweise andere Proteine wie Albumin oder Casein, Cellulose, Zucker, Stärke oder Alginate. Halbsynthetische Gelatineersatzstoffe sind in der Regel modifizierte Naturprodukte. Cellulosederivate wie Hydroxyalkylcellulose sowie Gelatinederivate, die durch Umsetzung mit Alkylierungs- oder Acylierungsmitteln oder durch Aufpfropfung von polymerisierbaren Monomeren erhalten worden sind, sind Beispiele hierfür.
  • Die Bindemittel sollen über eine ausreichende Menge an funktionellen Gruppen verfügen, so daß durch Umsetzung mit geeigneten Härtungsmitteln genügend widerstandsfähige Schichten erzeugt werden können. Solche funktionellen Gruppen sind insbesondere Aminogruppen, aber auch Carboxylgruppen, Hydroxylgruppen und aktive Methylengruppen.
  • Die vorzugsweise verwendete Gelatine kann durch sauren oder alkalischen Aufschluß erhalten sein. Es kann auch oxidierte Gelatine verwendet werden. Die Herstellung solcher Gelatinen wird beispielsweise in The Science and Technology of Gelatine, herausgegeben von A.G. Ward und A. Courts, Academic Press 1977, Seite 295 ff beschireben. Die jeweils eingesetzte Gelatine soll einen möglichst geringen Gehalt an fotografisch aktiven Verunreinigungen enthalten (Inertgelatine). Gelatinen mit hoher Viskosität und niedriger Quellung sind besonders vorteilhaft.
  • Das als lichtempfindlicher Bestandteil in dem fotografischen Material befindliche Silberhalogenid kann als Halogenid Chlorid, Bromid oder Iodid bzw. Mischungen davon enthalten. Beispielsweise kann der Halogenidanteil wenigstens einer Schicht zu 0 bis 15 mol-% aus Iodid, zu 0 bis 100 mol-% aus Chlorid und zu 0 bis 100 mol-% aus Bromid bestehen. Im Falle von Farbnetagiv- und Farbumkehrfilmen werden üblicherweise Silberbromidiodidemulsionen, im Falle von Farbnegativ- und Farbumkehrpapier üblicherweise Silberchloridbromidemulsionen mit hohem Chloridanteil, beispielsweise mindestens 90 mol % Silberchlorid, bis zu reinen Silberchloridemulsionen verwendet. Es kann sich um überwiegend kompakte Kristalle handeln, die z.B. regulär kubisch oder oktaedrisch sind oder Übergangsformen aufweisen können, vorzugsweise können aber auch plättchen förmige Kristalle vorliegen, deren durchschnittliches Verhältnis von Durchmesser zu Dicke bevorzugt wenigstens 5:1 ist, wobei der Durchmesser eines Kornes definiert ist als der Durchmesser eines Kreises mit einem Kreisinhalt entsprechend der projizierten Fläche des Kornes. Die Schichten können aber auch tafelförmige Silberhalogenidkristalle aufweisen, bei denen das Verhältnis von Durchmesser zu Dicke wesentlich größer als 5:1 ist, z.B. 12:1 bis 30:1.
  • Die Silberhalogenidkörner können auch einen mehrfach geschichteten Kornaufbau aufweisen, im einfachsten Fall mit einem inneren und einem äußeren Kornbereich (core/shell), wobei die Halogenidzusammensetzung und/oder sonstige Modifizierungen, z.B. Dotierungen der einzelnen Kornbereiche unterschiedlich sind. Die mittlere Korngröße der Emulsionen liegt vorzugsweise zwischen 0,2 μm und 2,0 μm, die Korngrößenverteilung kann sowohl homo- als auch heterodispers sein. Homodisperse Korngrößenverteilung bedeutet, daß 95 % der Körner nicht mehr als ± 30 % von der mittleren Korngröße abweichen. Die Emulsionen können neben dem Silberhalogenid auch organische Silbersalze enthalten, z.B. Silberbenztriazolat oder Silberbehenat.
  • Es können zwei oder mehrere Arten von Silberhalogenidemulsionen, die getrennt hergestellt werden, als Mischung verwendet werden.
  • Die fotografischen Emulsionen können nach verschiedenen Methoden (z.B. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), G.F. Duffin, Phtographic Emulsion Chemistry, The Focal Press, London (1966), V.L. Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) aus löslichen Silbersalzen und löslichen Halogeniden hergestellt werden.
  • Die Fällung des Silberhalogenids erfolgt bevorzugt in Gegenwart des Bindemittels, z.B. der Gelatine und kann im sauren, neutralen oder alkalischen pH-Bereich durchgeführt werden, wobei vorzugsweise Silberhalogenidkomplexbildner zusätzlich verwendet werden. Zu letzteren gehören z.B. Ammoniak, Thioether, Imidazol, Ammoniumthiocyanat oder überschüssiges Halogenid. Die Zusammenführung der wasserlöslichen Silbersalze und der Halogenide erfolgt wahlweise nacheinander nach dem single-jet- oder gleichzeitig nach dem double-jet-Verfahren oder nach beliebiger Kombination beider Verfahren. Bevorzugt wird die Dosierung mit steigenden Zuflußraten, wobei die "kritische" Zufuhrgeschwindigkeit, bei der gerade noch keine Neukeime entstehen, nicht überschritten werden sollte. Der p-Ag-Bereich kann während der Fällung in weiten Grenzen variieren, vorzugsweise wird das sogenannte pAg-gesteuerte Verfahren benutzt, bei dem ein bestimmter pAg-Wert konstant gehalten oder ein definiertes pAg-Profil während der Fällung durchfahren wird. Neben der bevorzugten Fällung bei Halogenidüberschuß ist aber auch die sogenannte inverse Fällung bei Silberhalogenidüberschuß möglich. Außer durch Fällung können die Silberhalogenidkristalle auch durch physikalische Reifung (Ostwaldreifung), in Gegenwart von überschüssigem Halogenid und/oder Silberhalogenidkomplexierungsmittel wachsen. Das Wachstum der Emulsionskörper kann sogar überwiegend durch Ostwaldreifung erfolgen, wobei vorzugsweise eine feinkörnige, sogenannte Lippmann-Emulsion, mit einer schwerer löslichen Emulsion gemischt und auf letzterer umgelöst wird.
  • Während der Fällung und/oder der physikalischen Reifung der Silberhalogenidkörner können auch Salze oder Komplexe von Metallen, wie Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe vorhanden sein.
  • Ferner kann die Fällung auch in Gegenwart von Sensibilisierungsfarbstoffen erfolgen. Komplexierungsmittel und/oder Farbstoffe lassen sich zu jedem beliebigen Zeitpunkt unwirksam machen, z.B. durch Aenderung des pH-Wertes oder durch eine oxidative Behandlung.
  • Nach abgeschlossener Kristallbildung oder auch schon zu einem früheren Zeitpunkt werden die löslichen Salze aus der Emulsion entfernt, z.B durch Nutschen und Waschen, durch Flocken und Waschen, durch Ultrafiltration oder durch Ionenaustauscher.
  • Die Silberhalogenidemulsion wird im allgemeinen einer chemischen Sensibilisierung unter definierten Bedingungen – pH, pAg, Temperatur, Gelatine-, Silberhalogenid- und Sensibilisatorkonzentration – bis zum Erreichen des Empfindlichkeits- und Schleieroptimums unterworfen. Die Verfahrensweise ist z.B. bei H. Frieser "Die Grundlagen der Photographischen Prozesse mit Silberhalogeniden" Seite 675-734, Akademische Verlagsgesellschaft (1968) beschrieben.
  • Dabei kann die chemische Sensibilisierung unter Zusatz von Verbindungen von Schwefel, Selen, Tellur und/oder Verbindungen der Metalle der VIII. Nebengruppe des Periodensystems (z.B. Gold, Platin, Palladium, Iridium) erfolgen, weiterhin können Thiocyanatverbindungen, oberflächenaktive Verbindungen, wie Thioether, heterocyclische Stickstoffverbindungen (z.B. Imidazole, Azaindene) oder auch spektrale Sensibilisatoren (beschrieben z.B. bei F. Hamer "The Cyanine Dyes and Related Compounds", 1964, bzw. Ullmanns Encyclopädie der technischen Chemie, 4. Auflage, Bd. 18, S. 431ff, und Research Disclosure 17643 (Dez. 1978), Kapitel III) zugegeben werden. Ersatzweise oder zusätzlich kann eine Reduktionssensibilisierung unter Zugabe von Reduktionsmitteln (Zinn-II-Salze, Amine, Hydrazinderivate, Aminoborane, Silane, Formamidinsulfinsäure) durch Wasserstoff, durch niedrigen pAg (z.B. kleiner 5) und/oder hohen pH (z.B. über 8) durchgeführt werden.
  • Die fotografischen Emulsionen können Verbindungen zur Verhinderung der Schleierbildung oder zur Stabilisierung der fotografischen Funktion während der Produktion, der Lagerung oder der fotografischen Verarbeitung enthalten.
  • Besonders geeignet sind Azaindene, vorzugsweise Tetra- und Pentaazaindene, insbesondere solche, die mit Hydroxyl- oder Aminogruppen substituiert sind. Derartige Verbindungen sind z.B. von Birr, Z. Wiss. Phot. 47 (1952), S. 2-58 beschrieben worden. Weiter können als Antischleiermittel Salze von Metallen wie Quecksilber oder Cadmium, aromatische Sulfon- oder Sulfinsäure wie Benzolsulfinsäure, oder stickstoffhaltige Heterocyclen wie Nitrobenzimidazol, Nitroindazol, gegebenenfalls subsitutierte Benztriazole oder Benzthiazoliumsalze eingesetzt werden. Besonders geeignet sind Mercaptogruppen enthaltende Heterocyclen, z.B. Mercaptobenzthiazole, Mercaptobenzimidazole, Mercaptotetrazole, Mercaptothiadiazole, Mercaptopyrimidine, wobei diese Mercaptoazole auch eine wasserlöslichmachende Gruppe, z.B. eine Carboxylgruppe oder Sulfogruppe, enthalten können. Weitere geeignete Verbindungen sind in Research Disclosure 17643 (Dez. 1978), Kapitel VI, veröffentlicht.
  • Die Stabilisatoren können den Silberhalogenidemulsionen vor, während oder nach deren Reifung zugesetzt werden. Selbstverständlich kann man die Verbindungen auch anderen fotografischen Schichten, die einer Halogensilberschicht zugeordnet sind, zusetzen.
  • Es können auch Mischungen aus zwei oder mehreren der genannten Verbindungen eingesetzt werden.
  • Die fotografischen Emulsionsschichten oder andere hydrophile Kolloidschichten des erfindungsgemäß hergestellten lichtempfindlichen Materials können oberflächenaktive Mittel für verschiedene Zwecke enthalten, wie Überzügshilfen, zur Verhinderung der elektrischen Aufladung, zur Verbesserung der Gleiteigenschaften, zum Emulgieren der Dispersion, zur Verhinderung der Adhäsion und zur Verbesserung der fotografischen Charakteristika (z.B. Entwicklungsbeschleunigung, hoher Kontrast, Sensibilisierung usw.). Neben natürlichen oberflächenaktiven Verbindungen, z.B. Saponin, finden hauptsächlich synthetische oberflächenaktive Verbindungen (Tenside) Verwendung; nicht-ionische Tenside, z.B. Alkylenoxidverbindungen, Glycerinverbindungen oder Glycidolverbindungen, kationische Tenside, z.B. höhere Alkylamine, quartäre Ammoniumsalze, Pyridinverbindungen und andere heterocyclische Verbindungen, Sulfoniumverbindungen oder Phosphoniumverbindungen, anionische Tenside, enthaltend eine Säuregruppe, z.B. Carbonsäure-, Sulfonsäure-, eine Phosphorsäure-, Schwefelsäureester- oder Phosphorsäureestergruppe, ampholytische Tenside, z.B. Aminosäure- und Aminosulfonsäureverbindungen sowie Schwefel- oder Phosphorsäureester eines Aminoalkohols.
  • Die fotografischen Emulsionen können unter Verwendung von Methinfarbstoffen oder anderen Farbstoffen spektral sensibilisiert werden. Besonders geeignete Farbstoffe sind Cyaninfarbstoffe, Merocyaninfarbstoffe und komplexe Merocyaninfarbstoffe.
  • Eine Übersicht über die als Spektralsensibilisatoren geeigneten Polymethinfarbstoffe, deren geeignete Kombinationen und supersensibilisierend wirkenden Kombinationen enthält Research Disclosure 17643 (Dez. 1978), Kapitel IV.
  • Insbesondere sind die folgenden Farbstoffe – geordnet nach Spektralgebieten – geeignet:
    • 1. als Rotsensibilisatoren 9-Ethylcarbocyanine mit Benzthiazol, Benzselenazol oder Naphthothiazol als basische Endgruppen, die in 5- und/oder 6-Stellung durch Halogen, Methyl, Methoxy, Carbalkoxy, Aryl substituiert sein können sowie 9-Ethyl-naphthoxathia- bzw. -selencarbocyanine und 9-Ethyl-naphthothiazoxa- bzw. -benzimidazocarbocyanine, vorausgesetzt, daß die Farbstoffe mindestens eine Sulfoalkylgruppe am heterocyclischen Stickstoff tragen.
    • 2. als Grünsensibilisatoren 9-Ethylcarbocyanine mit Benzoxazol, Naphthoxazol oder einem Benzoxazol und einem Benzthiazol als basische Endgruppen sowie Benzimidazocarbocyanine, die ebenfalls weiter substituiert sein können und ebenfalls mindestens eine Sulfoalkylgruppe am heterocyclischen Stickstoff enthalten müssen.
    • 3. als Blausensibilisatoren symmetrische oder asymmetrische Benzimidazo-, Oxa-, Thia- oder Selenacyanine mit mindestens einer Sulfoalkylgruppe am heterocyclischen Stickstoff und gegebenenfalls weiteren Substituenten am aromatischen Kern, sowie Apomerocyanine mit einer Rhodaningruppe.
  • Als Beispiele seinen, insbesondere für Negativ- und Umkehrfilm, die nachfolgend aufgeführten Rotsensibilisatoren RS, Grünsensibilisatoren GS und Blausensibilisatoren BS genannt, die jeweils einzeln oder in Kombination untereinander eingesetzt werden können, z.B. RS-1 und RS-2, sowie GS-1 und GS-2.
    Figure 00530001
    RS-1: R1, R3, R7, R9 = H; R2, R8 = Cl; R4 = -SO3⊖⊕NH(C2H5)3; R5 = -C2H5; R6 = -SO3⊖; m, n = 3; X, Y = S;
    Figure 00530002
    R5 = C2H5; R6 = -SO3⊖; R7, R8 = -OCH3; m = 2; n = 3; X = O; Y = S;
    RS-3: R1, R9 = H; R2, R3 zusammen -CH=CH-CH=CH-; R4 = -SO3⊖Na⊕; R5 = -C2H5; R6 = -SO3⊖; R7, R8 = Cl; m, n = 3; X = S; Y = N-C2H5;
    RS-4: R1 = -OCH3; R2, R8 = -CH3; R3, R4, R7, R9 = H; R5 = -C2H5; R6 = -SO3⊖; m = 2; n = 4; X = S; Y = Se;
    RS-5: R1, R7 = H; R2, R3 sowie R8, R9 zusammen -CH=CH-CH=CH-; R4 = -SO3⊖⊕NH(C2H5)3; R5 = C2H5; R6 = SO3⊖; m = 2; n = 3; X, Y = S;
    GS-1: R1, R3, R7, R9 = H; R2 = Phenyl;
    Figure 00540001
    GS-3: R1, R7 = H; R2, R3 sowie R8, R9 zusammen -CH=CH-CH=CH-; R4 = SO3⊖Na⊕; R5 = C2H5; R6 = SO3⊖; m, n = 3; X, Y = O;
    GS-4: R1, R3, R4, R7, R8, R9 = H; R2 = -OCH3; R5 = -C2H5; R6 = SO3⊖; m = 2; n = 4; X = O; Y = S;
    Figure 00540002
    Figure 00550001
  • Auf Sensibilisatoren kann verzichtet werden, wenn für einen bestimmten Spektralbereich die Eigenempfindlichkeit des Silberhalogenids ausreichend ist, beispielsweise die Blauempfindlichkeit von Silberbromiden.
  • Den unterschiedlich sensibilisierten Emulsionsschichten werden nicht diffundierende monomere oder polymere Farbkuppler zugeordnet, die sich in der gleichen Schicht oder in einer dazu benachbarten Schicht befinden können. Gewöhnlich werden den rotempfindlichen Schichten Cyankuppler, den grünempfindlichen Schichten Magentakuppler und den blauempfindlichen Schichten Gelbkuppler zugeordnet.
  • Im erfindungsgemäßen Material verwendbare Gelbkuppler sind vorzugsweise Verbindungen der Formel A
    Figure 00550002
    worin R1 Alkyl oder Aryl ist, R2 Aryl ist und Q Wasserstoff oder eine Gruppe ist, die durch Reaktion mit dem oxidierten Entwickler abgespaltet werden kann.
  • Eine Gruppe von Gelbkupplern sind solche Verbindungen der Formel A, in denen R1 t-Butyl ist und R2 eine Gruppe der Formel
    Figure 00560001
    ist, worin R3 Wasserstoff, Halogen, Alkyl oder Alkoxy bedeutet und R4, R5 und R6 Wasserstoff, Halogen, Alkyl, Alkenyl, Alkoxy, Aryl, Carboxy, Alkoxycarbonyl, eine Carbamoylgruppe, eine Sulfon- oder Sulfamoylgruppe, eine Alkylsulfonaminogruppe, Acylaminogruppe, Ureidogruppe oder Aminogruppe bedeuten.
  • Vorzugsweise sind R3 Chlor oder Methoxy, R4 und R5 Wasserstoff und R6 eine Acylaminogruppe. Hierzu gehören auch die Verbindungen der Formel
    Figure 00560002
    worin x 0-4 ist, R7 Wasserstoff oder Alkyl bedeutet und R8 und R9 Alkyl sind.
  • Eine andere Gruppe von Gelbkupplern entspricht der Formel B
    Figure 00560003
    worin R10 Wasserstoff, Halogen oder Alkoxy ist,
    R11, R12 und R13 Wasserstoff, Halogen, Alkyl, Alkenyl, Alkoxy, Aryl, Carboxyl, Alkoxycarbonyl, eine Carbamoylgruppe, eine Sulfongruppe, Sulfamoylgruppe, Sulfonamidogruppe, Acylaminogruppe, Ureidogruppe oder Aminogruppe bedeuten und R1 und Q die oben angegebene Bedeutung haben.
  • Dazu gehören Verbindungen der Formel B, in denen R1 t-Butyl ist, R10 Chlor ist, R11 und R13 Wasserstoff sind und R12 Alkoxycarbonyl ist.
  • In den Verbindungen der Formel A und B kann die Abgangsgruppe Q Wasserstoff (4-Äquivalentkuppler) sein oder sie ist eine heterocyclische Gruppe (2-Äquivalentkuppler)
    Figure 00570001
    worin R14 eine organische zweiwertige Gruppe ist, die den Ring zu einem 4-7-gliedrigen Ring ergänzt, oder Q ist eine Gruppe -OR15, worin R15 Alkyl, Aryl, Acyl oder ein heterocyclischer Rest ist.
  • Typische Beispiele für gebräuchliche Gelbkuppler sind die Verbindungen der folgenden Formeln (1 und 2):
    Figure 00570002
    Figure 00580001
    Figure 00590001
  • Weitere Beispiele für Gelbkuppler sind zu finden in den US-A 2,407,210, 2,778,658, 2,875,057, 2,908,513, 2,908,573, 3,227,155, 3,227,550, 3,253,924, 3,265,506, 3,277,155, 3,408,194, 3,341,331, 3,369,895, 3,384,657, 3,415,652, 3,447,928, 3,551,155, 3,582,322, 3,725,072, 3,891,445, 3,933,501, 4,115,121, 4,401,752 und 4,022,620, 5,118,599, 5,215,878, 5,260,182, 5,294,527, 5,298,383, 5,300,412, 5,306,609, 5,314,797, 5,336,591 in den DE-A 1,547,868, 2,057,941, 2,162,899, 2,163,813, 2,213,461, 2,219,917, 2,261,361, 2,261,362, 2,263,875, 2,329,587, 2,414,006 und 2,422,812, in den GB-A 1,425,020 und 1,077,874 und in JP-A-88/123,047, 4,133,052, 5,080,469, 5,313,323 und in EP-A-447,969, 447,920, 508,398, 510,535, 542,463, 568,198.
  • Die Gelbkuppler werden üblicherweise in einer Menge von 0,05-2 Mol und vorzugsweise 0,1-1 Mol pro Mol Silberhalogenid verwendet.
  • Typische und bevorzugte Gelbkuppler entsprechen den Formeln:
    Figure 00590002
    Figure 00600001
    Figure 00610001
    Figure 00620001
    Figure 00630001
    Figure 00640001
    Figure 00650001
  • Magentakuppler können z.B. einfache 1-Aryl-5-pyrazolone sein oder mit 5-gliedrigen Heteroringen kondensierte Pyrazolderivate wie z.B. Imidazopyrazole, Pyrazolopyrazole, Pyrazolotriazole oder Pyrazolotetrazole.
  • Eine Gruppe von Magentakupplern sind 5-Pyrazolone der Formel C,
    Figure 00650002
    wie sie in der Britischen Patentschrift 2,003,473 beschrieben sind. Darin ist R16 Wasserstoff, Alkyl, Aryl, Alkenyl oder eine heterocyclische Gruppe. R17 ist Wasserstoff, Alkyl, Aryl, eine heterocyclische Gruppe, eine Estergruppe, Alkoxygruppe, Alkylthiogruppe, Carboxylgruppe, Arylaminogruppe, Acylaminogruppe, (Thio)-harnstoffgruppe, (Thio)-carbamoylgruppe, Guanidinogruppe oder Sulfonamidogruppe.
  • Bevorzugt ist R17 eine Gruppe
    Figure 00660001
    worin R18 Imino, Acylamino oder Ureido ist, R19 Wasserstoff, Halogen, Alkyl oder Alkoxy ist, R20 Wasserstoff, Alkyl, Acylamino, Carbamoyl, Sulfamoyl, Sulfonamido, Alkoxycarbonyl, Acyloxy oder eine Urethangruppe ist.
  • Wenn Q' Wasserstoff ist, so ist der Magentakuppler tetraäquivalent in bezug auf das Silberhalogenid.
  • Typische Beispiele für diesen Typ von Magentakupplern sind Verbindungen der Formel
    Figure 00660002
    worin R20 die oben genannten Bedeutungen hat, und Q', wie oben beschrieben, eine Abgangsgruppe ist. Diese Verbindungen liegen bevorzugt im erfindungsgemäßen Material vor.
  • Weitere Beispiele solcher tetraäquivalenter Magentakuppler sind zu finden in den US-A 2,983,608, 3,061,432, 3,062,653, 3,127,269, 3,152,896, 3,311,476, 3,419,391, 3,519,429, 3,558,319, 3,582,322, 3,615,506, 3,684,514, 3,834,908, 3,888,680, 3,891,445, 3,907,571, 3,928,044, 3,930,861, 3,930,866 und 3,933,500 und in JP-A-89/309,058. Wenn Q' in Formel C nicht Wasserstoff ist sondern eine Gruppe, die bei der Reaktion mit dem oxidierten Entwickler eliminiert wird, so handelt es sich um einen diäquivalenten Magentakuppler. Q kann in diesem Fall z.B. Halogen oder eine über O, S oder N an den Pyrazolring gebundenen Gruppe sein. Solche diäquivalenten Kuppler ergeben eine höhere Farbdichte und sind reaktiver gegenüber dem oxidierten Entwickler als die entsprechenden tetraäquivalenten Magentakuppler.
  • Beispiele für diäquivalente Magentakuppler sind beschrieben in den US-A 3,006,579, 3,419,391, 3,311,476, 3,432,521, 3,214,437, 4,032,346, 3,701,783, 4,351,897, 3,227,554, 3,262,292. in den EP-A-133,503, 529,784, 530,039, DE-A-2,944,601, JP-A-78/34044, 74/53435, 74/53436, 75/53372 und 75/122935, 3,323,851, 4,018,547, 5,150,429, und WO 93/02392
  • Typische und bevorzugte Magentakuppler entsprechen der Formeln
    Figure 00670001
    Figure 00680001
  • Ueber ein zweiwertiges Q' können 2 Pyrazolonringe verknüpft werden und man erhält dann sogenannte Bis-Kuppler. Solche sind z.B. beschrieben in den US-A-2,632,702, US-A-2,618,864, GB-A-968,461, GB-A-786,859, JP-A-76/37646, 59/4086, 69/16110, 69/26589, 74/37854 und 74/29638. Bevorzugt ist Y eine O-Alkoxyarylthio-Gruppe.
  • Wie vorstehend erwähnt, können als Magentakuppler auch mit 5-gliedrigen Heterocyclen kondensierte Pyrazole – sogenannte Pyrazoloazole – verwendet werden. Deren Vorteile gegenüber einfachen Pyrazolen ist, daß sie Farben von größerer Formalin-Beständigkeit und reineren Absorptionsspektren aufweisen.
  • Magentakuppler vom Pyrazoloazoltyp, welche ebenfalls bevorzugt sind, können durch die Formeln D
    Figure 00690001
    dargestellt werden, worin R1 Wasserstoff oder ein Substituent ist, Z die zur Vervollständigung eines 5-gliedrigen Ringes mit 2 oder 3 Stickstoffatomen notwendigen nichtmetallischen Atome darstellt, wobei dieser Ring substituiert sein kann, und Q Wasserstoff (4-Äquivalentkuppler) oder eine Abgangsgruppe (2-Äquivalentkuppler) ist.
  • Bevorzugt hiervon sind Magentakuppler der Formeln
    Figure 00690002
    R11, R12 und R13 bedeuten unabhängig voneinander beispielsweise Wasserstoff, Halogen (z.B. Chlor, Brom), eine Gruppe der Formel -CR3, worin die Reste R unabhängig voneinander Wasserstoff oder Alkyl sind, Aralkyl, Alkenyl, Alkinyl, Cycloalkyl oder Cycloalkenyl und besonders bevorzugt Methyl, Ethyl, Propyl, Isopropyl, t-Butyl, Tridecyl, 2-Methansulfonylethyl, 3-(3-Pentadecylphenoxy)propyl, 3-(4-(2-(4-(4-Hydroxyphenylsulfonyl)phenoxy)dodecanamido)phenyl)propyl, 2-Ethoxytridecyl, Trifluoromethyl, Cyclopentyl, 3-(2,4-Di-t-Amylphenoxy)propyl); Aryl (z.B. Phenyl, 4-t-Butylphenyl, 2,4-Di-t-amylphenyl, 4-Tetradecaneamidophenyl); Heterocyclyl (z.B. 2-Furyl, 2-Thienyl, 2-Pyrimidinyl, 2-Benzothiazolyl); Cyano; Hydroxy, Nitro; Carboxy; Amino; Alkoxy (z.B. Methoxy, Ethoxy, 2-Methoxyethoxy; 2-Dodecylethoxy, 2-Methansulfonylethoxy); Aryloxy (z.B. Phenoxy, 2-Methylphenoxy, 4-t-Butylphenoxy, 3-Nitrophenoxy, 3-t-Butyloxycarbamoylphenoxy, 3-Methoxycarbamoyl); Acylamino (z.B. Acetoamido, Benzamido, Tetradecanamido, 2-(2,4-Di-t-amylphenoxy)butanamido, 4-(3-t-Butyl-4-hydroxyphenoxy)butanamido, 2-(4-(4-Hydroxyphenylsulfonyl)phenoxy)decanamido); Methylbutylamino); Anilino (z.B. Phenylamino, 2-Chloranilino, 2-Chloro-5- tetradecanaminoanilino, 2-Chloro-5-dodecyloxycarbonylanilino, N-Acetylanilino, 2-Chloro-5-(alpha-(3-t-butyl-4-hydroxyphenoxy)dodecanamidoanilino); Ureido (z.B. Phenylureido, Methylureido, N,N-Dibutylureido); Sulfamoylamino (z.B. N,N-Dipropylsulfamoylamino, N-Methyl-N-decylsulfamoylamino); Alkylthio (z.B. Methylthio, Octylthio, Tetradecylthio, 2-Phenoxyethylthio, 3-Phenoxypropylthio, 3-(4-t-Butylphenoxy)-propylthio); Arylthio (z.B. Phenylthio, 2-Butoxy-5-t-octylphenylthio, 3-Pentadecylphenylthio, 2-Carboxyphenylthio, 4-Tetradecanamidophenylthio); Alkoxycarbonylamino (z.B. Methoxycarbonylamino, Tetradecyloxycarbonylamino); Sulfonamido (z.B. Methansulfonamido, Hexadecansulfonamido, Benzolsulfonamido, p-Toluolsulfonamido, Octadecansulfonamido, 2-Methyloxy-5-t-butylbenzolsulfonamido); Carbamoyl (z.B. N-Ethylcarbamoyl, N,N-Dibutylcarbamoyl, N-(2-Dodecyloxyethyl)-carbamoyl, N-Methyl-N-dodecylcarbamoyl, N-(3-(2,4-Di-t-Amylphenoxy)propyl)-carbamoyl); Sulfamoyl (z.B. N-Ethylsulfamoyl, N,N-Dipropylsulfamoyl, N-2(-Dodecyloxyethyl)-sulfamoyl, N-Ethyl-N-dodecylsulfamoyl, N,N-Diethylsulfamoyl); Sulfonyl (z.B. Methansulfonyl, Octansulfonyl, Benzolsulfonyl, Toluolsulfonyl); Alkoxycarbonyl (z.B. Methoxycarbonyl, Butoxycarbonyl, Dodecyloxycarbonyl, Octadecyloxycarbonyl); heterocyclische Ringoxy (z.B. 1-Phenyltetrazol-5-oxy, 2-Tetrahydropyranyloxy); Azo (z.B. Phenylazo, 4-Methoxyphenylazo, 4-Pivaloylaminophenylazo, 2-Hydroxy-4-propanoylphenylazo); Acyloxy (z.B. Acetoxy); Carbamoyloxy (z.B. N-Methylcarbamoyloxy, N-Phenylcarbamoyloxy); Silyloxy (z.B. Trimethylsilyloxy, Dibutylmethylsilyloxy); Aryloxycarbonylamino (z.B. Phenoxycarbonylamino); Imido (z.B. N-Succinimido, N-Phthalimido, 3-Octadecenylsuccinimido); heterocyclische Ring-thio (z.B. 2-Benzothiazolylthio, 2,4-Diphenyloxy-1,3,5-triazol-6-thio, 2-Pyridylthio); Sulfinyl (z.B. Dodecansulfinyl, 3-Pentadecylphenylsulfinyl, 3-Phenoxypropylsulfinyl); Phosphonyl (z.B. Phenoxyphosphonyl, Octyloxyphosphonyl, Phenylphosphonyl); Aryloxycarbonyl (z.B. Phenoxycarbonyl); Acyl (z.B. Acetyl, 3-Phenylpropanoyl, Benzoyl, 4-Dodecyloxybenzoyl); Azolyl (z.B. Imidazolyl, Pyrazolyl, 3-Chloro-pyrazol-1-yl).
  • Diese Substituenten sind gegebenenfalls weiter substituiert, beispielsweise durch Halogen oder durch einen über ein C-, O-, N- oder S-Atom gebundenen organischen Rest.
  • Die bevorzugten Gruppen R11 sind Alkyl, Aryl, Alkoxy, Aryloxy, Alkylthio, Ureido, Urethan und Acylaminogruppen.
  • R12 kann die Bedeutung von R11 besitzen und ist vorzugsweise Wasserstoff, Alkyl, Aryl, ein heterocyclischer Ring, Alkoxycarbonyl, Carbamoyl, Sulfamoyl, Sulfinyl, Acyl oder Cyano.
  • R13 kann die Bedeutung von R11 haben und ist vorzugsweise Wasserstoff, Alkyl, Aryl, Heterocyclic, Alkoxy, Aryloxy, Alkylthio, Arylthio, Alkoxycarbonyl, Carbamoyl oder Acyl, besonders Alkyl, Aryl, Heterocyclic, Alkylthio oder Arylthio.
  • Q ist Wasserstoff oder eine Abgangsgruppe wie Halogen, Alkoxy, Aryloxy, Acyloxy, Alkyl- oder Arylsulfonyloxy, Acylamino, Alkyl- oder Aryl-sulfonamido, Alkoxycarbonyloxy, Aryloxycarbonyloxy, Alkyl-, Aryl- oder Heterocyclyl-S-Carbamoylamino, ein 5- oder 6-gliedriger stickstoffhaltiger heterocyclischer Rest, Imido und Arylazo. Diese Gruppen sind gegebenenfalls wie für R11 gezeigt weiter substituiert.
  • Vorzugsweise ist Q Halogen (z.B. Fluor, Chlor, Brom); Alkoxy (z.B. Ethoxy, Dodecyloxy, Methoxyethylcarbamoylmethoxy, Carboxypropyloxy, Methylsulfonylethoxy, Ethoxycarbonylmethoxy); Aryloxy (z.B. 4-Methylphenoxy, 4-Chlorphenoxy, 4-Methoxyphenoxy, 4-Carboxyphenoxy, 3-Ethoxycarboxyphenoxy, 3-Acetylaminophenoxy, 2-Carboxyphenoxy); Acyloxy (z.B. Acetoxy, Tetradecanoyloxy, Benzoyloxy); Alkyl- oder Aryl-sulfonyloxy (z.B. Methansulfonyloxy, Toluolsulfonyloxy); Acylamino (z.B. Dichloracetylamino, Heptafluorobutyrylamino); Alkyl- oder Arylsulfonamido (z.B. Methanesulfonamido, Trifluoromethansulfonamido, p-Toluolsulfonylamido); Alkoxycarbonyloxy (z.B. Ethoxycarbonyloxy, Benzyloxycarbonyloxy); Aryloxycarbonyloxy (z.B. Phenoxycarbonyloxy); Alkyl-, Aryl- oder Heterocyclyl-S- (z.B. Dodecylthio, 1-Carboxydodecylthio, Phenylthio, 2-Butoxy-5-t-octylphenylthio, Tetrazolylthio); Carbamoylamino (z.B. N-Methylcarbamoylamino, N-Phenylcarbamoylamino); 5- oder 6-gliedriger stickstoffhaltiger Ring (z.B. Imidazolyl, Pyrazolyl, Triazolyl, Tetrazolyl, 1,2-Dihydro-2-oxo-1-pyridyl); Imido (z.B. Succinimido, Hydantoinyl); Arylazo (z.B. Phenylazo, 4-Methoxyphenylazo).
  • Q kann auch entsprechende Bisverbindungen bilden durch Kondensation von 4 äquivalenten Kuppler mit einem Aldehyd oder Keton. Des weiteren kann Q fotografisch wirksame Gruppen enthalten wie Entwicklungsinhibitoren oder Entwicklungsbeschleuniger. Vorzugsweise ist Q Halogen, Alkoxy, Aryloxy, Alkyl-, Aryl-thio, oder eine 5- oder 6-gliedrige stickstoffhaltige heterocyclische Gruppe, die an den Ort der Kupplung über ein Stickstoffatom gebunden ist.
  • Pyrazolo-tetrazole sind beschrieben in der JP-A-85/33552; Pyrazolo-pyrazole in der JP-A-85/43,695; Pyrazolo-imidazole in den JP-A-85/35732, JP-A-86/18949 und US-A-4,500,630; Pyrazolo-triazole in den JP-A-85/186,567, JP-A-86/47957, JP-A-85/215,687, JP-A-85/197,688, JP-A-85/172,982, EP-A-0 119 860, EP-A-0 173 256, EP-A-0 178 789, EP-A-0 178 788 und in Research Disclosure 84/24,624.
  • Weitere Pyrazoloazol-Magentakuppler sind beschrieben in: JP-A-86/28,947, JP-A-85/140,241, JP-A-85/262,160, JP-A-85/213,937, JP-A-87/278,552, JP-A-87/279,340, JP-A-88/100,457, JP-A-5,027,391, JP-A-5,053,271, JP-A-5,053,272, 7P-A-232,646, JP-A-5,241,286, JP-A-5,241,287, JP-A-5,241,288, JP-A-5,241,289, JP-A-5,241,290, JP-A-5,249,633, JP-A-5,303,181, JP-A-5,323,530, EP-A-0 177 765, EP-A-0 176 804, EP-A-0 170 164, EP-A-0 164 130, EP-A-0 178 794, EP-A-0 487 081, EP-A-0 489 333, EP-A-0 558 145, EP-A-0 568 894, DE-A-35 16 996, DE-A-35 08 766, DE-A-42 40 000, WO 92/10788, WO 92/12464, US-A-5,100,772, US-A-5,254,451, US-A-5,300,407, US-A-5,336,593 und Research Disclosure 81/20919, 84/24531 und 85/25758.
  • Geeignete Beispiele solcher Kuppler sind:
    Figure 00720001
    Figure 00730001
    Figure 00740001
    Figure 00750001
    Figure 00760001
    Figure 00770001
    Figure 00780001
    Figure 00790001
    Figure 00800001
    Figure 00810001
    Figure 00820001
    Figure 00830001
    Figure 00840001
    Figure 00850001
  • Cyankuppler können z.B. Derivate von Phenol, von 1-Naphthol oder von Pyrazolochinazolon sein. Bevorzugt sind Strukturen der Formel E,
    Figure 00860001
    worin R21, R22, R23 und R24 Wasserstoff, Halogen, Alkyl, Carbamoyl, Amino, Sulfonamido, Phosphoramido oder Ureido sind. R21 ist vorzugsweise H oder Cl, R22 ist vorzugsweise eine Alkyl- oder Aminogruppe. R23 ist vorzugsweise eine Aminogruppe und R24 ist vorzugsweise Wasserstoff. Q'' ist Wasserstoff (4-Äquivalentkuppler) oder eine Abgangsgruppe (2-Äquivalentkuppler), die bei der Reaktion mit den oxidierten Entwickler abgespalten wird. Eine ausführliche Aufzählung von Cyankupplern ist im US-A-4,456,681 zu finden.
  • In der rotempfindlichen Silberhalogenidemulsionsschicht des erfindungsgemäßen Materials kommen vorzugsweise Cyankuppler der Formel
    Figure 00860002
    und/oder oder Formel
    Figure 00860003
    zum Einsatz, worin
    Z1 Alkyl, Aryl, Z2 Alkyl, Cycloalkyl, Aryl, eine heterocyclische Gruppe, oder eine Ballastgruppe, Z3 Wasserstoff oder Halogen ist, Z1 und Z3 zusammen einen Ring bilden können, und Z4 Wasserstoff oder eine Abgangsgruppe ist, und Z5 eine Ballastgruppe, Z6 Wasserstoff oder eine Abgangsgruppe und Z7 Alkyl ist.
  • Beispiele von gebräuchlichen Cyankupplern sind die folgenden:
    Figure 00870001
    Figure 00880001
    Figure 00890001
  • Weitere Beispiele von Cyankupplern sind in folgenden US-A- zu finden:
    2,369,929, 2,423,730, 2,434,272, 2,474,293, 2,521,293, 2,521,908, 2,698,794, 2,706,684, 2,772,162, 2,801,171, 2,895,826, 2,908,573, 3,034,892, 3,046,129, 3,227,550, 3,253,294, 3,311,476, 3,386,301, 3,419,390, 3,458,315, 3,476,560, 3,476,563, 3,516,831, 3,560,212, 3,582,322, 3,583,971, 3,591,383, 3,619,196, 3,632,347, 3,652,286, 3,737,326, 3,758,308, 3,839,044, 3,880,661, 4,004,929, 4,124,396, 4,333,999, 4,463,086, 4,456,681, 4,873,183, 4,923,791, 5,143,824, 5,256,526, 5,269,181, 5,262,293, 5,270,153, 5,306,610 und in den EP-A-0 354 549, EP-A-0 398 664, EP-A-0 456 226, EP-A-0 484 909, EP-A-0 487 111, EP-A-0 488 248, EP-A-0 491 197, EP-A-0 544 316, EP-A-0 545 300, EP-A-0 545 305, EP-A-0 556 777, EP-A-0 578 248, EP-A-0 608 133 und JP-A-3,240,053, 3,284,746, 4,009,050, 4,043,346, 4,125,557, 5,262,293, 5,306,610, 6,083,000, 6,083,001.
  • Zu den 2-Äquivalentkupplern sind solche zu rechnen, die farblos sind, als auch solche, die eine intensive Eigenfarbe aufweisen, die bei der Farbkupplung verschwindet bzw. durch die Farbe des erzeugten Bildfarbstoffes ersetzt wird (Maskenkuppler), und die Weißkuppler, die bei Reaktion mit Farbentwickleroxidationsprodukten im wesentlichen farblose Produkte ergeben. Zu den 2-Äquivalentkupplern sind ferner solche Kuppler zu rechnen, die in der Kupplungsstelle einen abspaltbaren Rest enthalten, der bei Reaktion mit Farbentwickleroxidationsprodukten in Freiheit gesetzt wird und dabei entweder direkt oder nachdem aus dem primär abgespalteten Rest eine oder mehrere weitere Gruppen abgespalten worden sind (z.B. DE-A-27 03 145, DE-A-28 55 697, DE-A-31 05 026, DE-A-33 19 428), eine bestimmte erwünschte fotografische Wirksamkeit entfaltet, z.B. als Entwicklungshinhbitor oder -accelerator. Beispiele für solche 2-Äquivalentkuppler sind die bekannten DIR-Kuppler wie auch DAR- bzw. FAR-Kuppler.
  • Beispiel für Weißkuppler sind:
    Figure 00900001
    Figure 00910001
  • Beispiele für Maskenkuppler sind
    Figure 00910002
    Figure 00920001
    Figure 00930001
    Figure 00940001
    Figure 00950001
    Figure 00960001
  • DIR-Kuppler, die Entwicklungsinhibitoren vom Azoltyp, z.B. Triazole und Benzotriazole freisetzen, sind in DE-A-24 14 006, 26 10 546, 26 59 417, 27 54 281, 28 42 063, 36 26 219, 36 30 564, 36 36 824, 36 44 416 beschrieben. Weitere Vorteile für die Farbwiedergabe, d.h. Farbtrennung und Farbreinheit, und für die Detailwiedergabe, d.h. Schärfe und Körnigkeit, sind mit solchen DIR-Kupplern zu erzielen, die z.B. den Entwicklungsinhibitor nicht unmittelbar als Folge der Kupplung mit einem oxidierten Farbentwickler abspalten, sondern erst nach einer weiteren Folgereaktion, die beispielsweise mit einer Zeitsteuergruppe erreicht wird. Beispiel dafür sind in DE-A-28 55 697, 32 99 671, 38 18 231, 35 18 797, in EP-A-0 157 146 und 0 204 175, in US-A-4 146 396 und 4 438 393 sowie in GB-A-2 072 363 beschrieben.
  • DIR-Kuppler, die einen Entwicklungsinhibitor freisetzen, der im Entwicklerbad zu im wesentlichen fotografisch unwirksamen Produkten zersetzt wird, sind beispielsweise in DE-A-32 09 486 und in EP-A-0 167 168 und 0 219 713 beschrieben. Mit dieser Maßnahme wird eine störungsfreie Entwicklung und Verarbeitungskonstanz erreicht.
  • Bei Einsatz von DIR-Kupplern, insbesondere von solchen, die einen gut diffundierbaren Entwicklungsinhibitor abspalten, lassen sich durch geeignete Maßnahmen bei der optischen Sensibilisierung Verbesserungen der Farbwiedergabe, z.B. eine differenziertere Farbwiedergabe erzielen, wie beispielsweise in EP-A-0 115 304, 0 167 173, GB-A-2 165 058, DE-A-37 00 419 und US-A-4 707 436 beschrieben.
  • Die DIR-Kuppler können in einem mehrschichtigen fotografischen Material den unterschiedlichsten Schichten zugesetzt werden, z.B. auch lichtunempfindlichen oder Zwischenschichten. Vorzugsweise werden sie jedoch den lichtempfindlichen Silberhalogenidemulsionsschichten zugesetzt, wobei die charakteristischen Eigenschaften der Silberhalogenidemulsion, z.B. deren Iodidgehalt, die Struktur der Silberhalogenidkörner oder deren Korngrößenverteilung von Einfluss auf die erzielten fotografischen Eigenschaften sind. Der Einfluß der freigesetzten Inhibitoren kann beispielsweise durch den Einbau einer Inhibitorfängerschicht gemäß DE-A-24 31 223 begrenzt werden. Aus Gründen der Reaktivität oder Stabilität kann es vorteilhaft sein, einen DIR-Kuppler einzusetzen, der in der jeweiligen Schicht, in der er eingebracht ist, eine von der in dieser Schicht zu erzeugenden Farbe abweichende Farbe bei der Kupplung bildet.
  • Zur Steigerung der Empfindlichkeit, des Kontrastes und der maximalen Dichte können vor allem DAR- bzw. FAR-Kuppler eingesetzt werden, die einen Entwicklungsbeschleuniger oder ein Schleiermittel abspalten. Verbindungen dieser Art sind beispielsweise in DE-A-25 34 466, 32 09 110, 33 33 355, 34 10 616, 34 29 545, 34 41 823, in EP-A-0 089 834, 0 110 511, 0 118 087, 0 147 765 und in US-A-4 618 572 und 4 656 123 beschrieben.
  • Als Beispiel für den Einsatz in BAR-Kuppler (Bleach Accelerator Releasing Coupler) wird auf EP-A-193 389 verwiesen.
  • Es kann vorteilhaft sein, die Wirkung einer aus einem Kuppler abgespaltenen fotografisch wirksamen Gruppe dadurch zu modifizieren, daß eine intermolekulare Reaktion dieser Gruppe nach ihrer Freisetzung mit einer anderen Gruppe gemäß DE-A-35 06 805 eintritt.
  • Figure 00980001
  • Figure 00990001
  • Figure 01000001
  • Figure 01010001
  • Figure 01020001
  • Figure 01030001
  • Figure 01040001
  • Beispiele für DAR-Kuppler
    Figure 01040002
    Figure 01050001
  • Da bei den DIR-, DAR- bzw. FAR-Kupplern hauptsächlich die Wirksamkeit des bei der Kupplung freigesetzten Restes erwünscht ist und es weniger auf die farbbildenden Eigenschaften dieser Kuppler ankommt, sind auch solche DIR-, DAR- bzw. FAR-Kuppler geeignet, die bei der Kupplung im wesentlichen farblose Produkte ergeben (DE-A-15 47 640).
  • Der abspaltbare Rest kann auch ein Ballastrest sein, so daß bei der Reaktion mit Farbentwickleroxidationsprodukten Kupplungsprodukte erhalten werden, die diffusionsfähig sind oder zumindest eine schwache bzw. eingeschränkte Beweglichkeit aufweisen (US-A-4 420 556).
  • Das Material kann weiterhin von Kupplern verschiedene Verbindungen enthalten, die beispielsweise einen Entwicklungsinhibitor, einen Entwicklungsbeschleuniger einen Bleichbeschleuniger, einen Entwickler, ein Silberhalogenidlösungsmittel, ein Schleiermittel oder ein Antischleiermittel in Freiheit setzen könne, beispielsweise sogenannte DIR-Hydrochinone und andere Verbindungen, wie sie beispielsweise in US-A-4 636 546, 4 345 024, 4 684 604 und in DE-A-31 45 640, 25 15 213, 24 47 079 und in EP-A-198 438 beschrieben sind. Diese Verbindungen erfüllen die gleiche Funktion wie die DIR-, DAR- oder FAR-Kuppler, außer daß sie keine Kupplungsprodukte bilden.
  • Hochmolekulare Farbkuppler sind beispielsweise in DE-A-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-4 080 211 beschrieben. Die hochmolekularen Farbkuppler werden in der Regel durch Polymerisation von ethylenisch ungesättigten monomeren Farbkupplern hergestellt. Sie können aber auch durch Polyaddition oder Polykondensation erhalten werden.
  • Die Einarbeitung der Kuppler oder anderer Verbindungen in Silberhalogenidemulsionsschichten kann in der Weise erfolgen, daß zunächst von der betreffenden Verbindung eine Lösung, eine Dispersion oder eine Emulsion hergestellt und dann der Gießlösung für die betreffende Schicht zugefügt wird. Die Auswahl des geeigneten Lösungs- oder Dispersionsmittels hängt von der jeweiligen Löslichkeit der Verbindung ab.
  • Methoden zum Einbringen von in Wasser im wesentlichen unlöslichen Verbindungen durch Mahlverfahren sind beispielsweise in DE-A-26 09 741 und DE-A-26 09 742 beschrieben.
  • Hydrophobe Verbindungen können auch unter Verwendung von hochsiedenden Lösungsmitteln, sogenannten Ölbildnern, in die Gießlösung eingebracht werden. Entsprechende Methoden sind beispielsweise in US-A-2 322 027, US-A-2 801 170, US-A-2 801 171 und EP-A-0 043 037 beschrieben.
  • Anstelle der hochsiedenden Lösungsmitteln können Oligomere oder Polymere, sogenannte polymere Ölbildner Verwendung finden.
  • Die Verbindungen können auch in Form beladener Latices in die Gießlösung eingebracht werden. Verwiesen wird beispielsweise auf DE-A-25 41 230, DE-A-25 41 274, DE-A-28 35 856, EP-A-0 014 921, EP-A-0 069 671, EP-A-0 130 115, US-A-4 291 113.
  • Die diffusionsfeste Einlagerung anionischer wasserlöslicher Verbindungen (z.B. von Farbstoffen) kann auch mit Hilfe von kationischen Polymeren, sogenannten Beizenpolymeren erfolgen.
  • Die erfindungsgemäß verwendeten UV-Absorber der Formel I können allein oder zusammen mit dem Farbkuppler und gegebenenfalls weiteren Zusätzen in das farbfotografische Material eingearbeitet werden, indem man sie in hochsiedenden organischen -Lösungsmitteln vorlöst.
  • Geeignete hochsiedende Lösungsmittel sind z.B. Phthalsäurealkylester, Phosphonsäureester, Phosphorsäureester, Citronensäureester, Benzoesäureester, Amide, Fettsäureester, Trimesinsäureester, Alkohole, Phenole, Anilinderivate und Kohlenwasserstoffe.
  • Beispiele für geeignete hochsiedende Lösungsmittel sind Dibutylphthalat, Dicyclohexyl phthalat, Di-2-ethylhexylphthalat, Decylphthalat, Triphenylphosphat, Tricresylphosphat, 2-Ethylhexyldiphenylphosphat, Tridecylphosphat, Tributoxyethylphosphat, Trichlorpropylphosphat, Di-2-ethylhexylphenylphosphat, 2-Ethylhexylbenzoat, Dodecylbenzoat, 2-Ethylhexyl-p-hydroxybenzoat, Diethyldodecanamid, N-Tetradecylpyrrolidon, Isostearylalkohol, 2,4-Di-t-amylphenol, Dioctylacelat, Glycerintributyrat, Isostearyllactat, Trioctylcitrat, N,N-Dibutyl-2-butoxy-5-t-octylanilin, Paraffin, Didecylbenzol und Diisopropylnaphthalin.
  • Weitere Details über verwendbare hochsiedende Lösungsmittel sind in den folgenden Veröffentlichungen zu finden:
    Phosphate: GB-A-791,219, BE-A-755,248, JP-A-76/76739, 78/27449, 78/218,252, 78/97573, 79/148,133, 82/216,177, 82/93323 und 83/216,177 und EP-A265,296.
    Phthalate: GB-A-791,219, JP-A-77/98050, 82/93322, 82/216,176, 82/218,251, 83/24321, 83/45699, 84/79888.
    Amide: GB-A-791,129, JP-A-76/105,043, 77/13600, 77/61089, 84/189,556, 87/239,149, US-A-928,741, EP-A-270,341, WO 88/00723.
    Phenole: GB-A-820,329, FR-A-1,220,657, JP-A-69/69946, 70/3818, 75/123,026, 75/82078, 78/17914, 78/21166, 82/212,114 und 83/45699.
    Andere sauerstoffhaltige Verbindungen: US-A-3,748,141, 3,779,765, JP-A-73/75126, 74/101,114, 74/10115, 75/101,625, 76/76740, 77/61089, EP-A-304,810 und BE-A-826,039.
    Sonstige Verbindungen: JP-A-72/115,369, 72/130,258, 73/127,521, 73/76592, 77/13193, 77/36294, 79/95233, 91/2,748, 83/105,147 und Research Disclosure 82/21918.
  • Die Menge an hochsiedendem Lösungsmittel liegt z.B. im Bereich von 50 mg bis 2 g pro m2 Träger, vorzugsweise von 200 mg bis 1 g pro m2.
  • Gegebenenfalls können die UV-Absorber auch ohne Öl in der Gelatineschicht dispergiert werden; Research Disclosure 88/296017 und 89/303070.
  • Weiter kann der UV-Absorber oder ein Gemisch von UV-Absorbern so in mindestens eine der fotografischen Schichten eingebracht werden, daß ein Latex mit kleinen lipophilen Partikeln (typischer Durchmesser 0,02 bis 2 μm) hergestellt wird, der sowohl den UV-Absorber als auch ein hydrophobes Polymer enthält. Eine entsprechende Technik ist beispielsweise in Spalte 17 der US-A-5 200 307 für Benztriazole beschrieben. Erfindungsgemäß können nun UV-Absorber der Formel I, allein oder in Kombination mit einem anderen UV-Absorber derselben oder einer anderen Klasse, z.B. der 2-Hydroxyphenylbenztriazole, zusammen mit einem hydrophoben Polymer in einem geeigneten organischen Lösungsmittel wie beispielsweise Ethylacetat gelöst werden; diese Lösung kann anschließend emulgiert und zu einem Latex in Wasser oder wässriger Gelatine dispergiert werden. Nach Abtrennen des organischen Lösungsmittels kann der Latex in das fotografische System eingebracht werden. Als hydrophobes Polymer eignet sich dabei z.B. ein Homo- oder Copolymer, wie es durch Polymerisation von ethylenisch ungesättigten Monomeren der Formeln II bis VII erhalten werden kann: R18-CH=C(R17)-C(=O)-X'-R20, (II)worin X' -O- oder -NR19- ist;
    R17 H, C1-C4-Alkyl, -CH2-COOR21, -Cl oder -CN;
    R18 H, -COOR21 oder -CH3;
    R19 H, C1-C8-Alkyl, C4-C12-Cycloalkyl, durch -N(RX)2 substituiertes C1-C4-Alkyl, -S(=O)-RX, -C(CH3)2-CH2-C(=O)-CH3, -C(CH3)2-CH2-SO3M, -(CH2)s-SO3M oder
    Figure 01080001
    ; R20 H; C1-C18-Alkyl; C2-C18-Alkenyl; durch ein oder mehrere O-Atome unterbrochenes C2-C18-Alkyl, das durch OH substituiert sein kann; oder -(CH2)s-SO3M;
    Figure 01080002
    ;-CH2F; -CH2Cl; -CH2CN; -CH2CH2Cl; -CH2CH2CN; -CH2CH2-COORX; C7-C11-Phenylalkyl; Naphthyl; durch -N(RX)2 substituiertes C1-C4-Alkyl; Adamantyl; C6-C12-Cycloalkyl;
    R21 H, C1-C18-Alkyl, Phenyl oder C2-C18-Alkenyl;
    RX C1-C4-Alkyl oder Phenyl;
    RY H, C1-C12-Alkyl, Phenyl, -CO-ORX, -CN, -F, -Cl;
    M H oder ein Alkalimetall; und
    s eine Zahl zwischen 1 und 5 bedeuten. R22-C(=O)-O-CH=CH2, (III)worin R22 C1-C19-Alkyl oder Phenyl bedeutet.
    Figure 01090001
    worin R23 H oder -CH3;
    R24 -CR23=CH2, -C(O)-Phenyl oder -SO3M; und
    M H oder ein Alkalimetall bedeutet.
    Figure 01090002
    worin R25 H oder -CH3 bedeutet. CH2=CR26-R27, (VI)worin R26 H, -F, -Cl oder -CH3 und
    R27 -Cl, -Br, -F oder -CN bedeutet.
  • Figure 01090003
  • In bestimmten Fällen kann es sich bei dem hydrophoben Polymer auch um ein Kondensationspolymer handeln, z.B. um einen Polyester wie 1,4-Butandiol-adipinsäurepolyester oder Polycaprolakton. Zusätzlich kann auch ein hochsiedendes organisches Lösungsmittel zur Anwendung gelangen, wenn beispielsweise der eingesetzte UV-Absorber nicht flüssig ist. Auch Mischungen von geeigneten organischen Lösungsmitteln können zweckmäßig eingesetzt werden.
  • Gegenstand der Erfindung ist daher auch ein fotografisches Aufzeichnungsmaterial, dadurch gekennzeichnet, daß es in mindestens einer der Schichten zusätzlich zu dem UV-Absorber ein hydrophobes Polymer enthält. Dieses kann beispielsweise ein hydrophobes Homo- oder Copolymer aus Monomeren der oben beschriebenen Formeln II bis VII sein. Vorzugsweise enthält dieses Polymer kein Polyoxyalkylen, keine Hydroxylgruppen und keine Sulfongruppen.
  • Eine andere Technik, beispielsweise in GB-A-2 016 017 oder US-A-5 372 922 analog beschrieben, besteht darin, einen gemäß obiger Beschreibung durch Emulsionspolymerisation hergestellten Latex umfassend kleine wasserunlösliche, ein Lösungsmittel enthaltende Partikel mit dem erfindungsgemäßen UV-Absorber zu versetzen; der UV-Absorber wird daraufhin in die Partikel aufgenommen. Anschließend kann der beladene Latex in das fotografische System eingebracht werden.
  • Die Erfindung betrifft daher weiterhin ein fotografisches Aufzeichnungsmaterial enthaltend in mindestens einer der Schichten den UV-Absorber und das hydrophobe Polymer, welches dadurch erhältlich ist, daß der UV-Absorber und das hydrophobe Polymer in einem organischen Lösungsmittel gelöst und hierauf in wässrigem Milieu emulgiert, dispergiert und als Latex ins fotografische System eingebracht werden, sowie ein entsprechendes Herstellungsverfahren für fotografisches Aufzeichnungsmaterial.
  • Jede der unterschliedlich sensibilisierten, lichtempfindlichen Schichten kann aus einer einzigen Schicht bestehen oder auch zwei oder mehr Silberhalogenidemulsionsteilschichten umfassen (DE-C-1 121 470). Dabei sind rotempfindliche Silberhalogenidemulsionsschichten dem Schichtträger häufig näher angeordnet als grünempfindliche Silberhalogenidemulsionsschichten und diese wiederum näher als blauempfindliche, wobei sich im allgemeinen zwischen grünempfindlichen Schichten und blauempfindlichen Schichten eine nicht lichtempfindliche gelbe Filterschicht befindet.
  • Bei geeignet geringer Eigenempfindlichkeit der grün- bzw. rotempfindlichen Schichten kann man unter Verzicht auf die Gelbfilterschicht andere Schichtanordnungen wählen, bei denen auf den Träger z.B. die blauempfindlchen, dann die rotempfindlichen und schließlich die grünempfindlichen Schichten folgen.
  • Die in der Regel zwischen Schichten unterschiedlicher Spektralempfindlichkeit angeordneten nicht lichtempfindlichen Zwischenschichten können Mittel enthalten, die eine unerwünschte Diffusion von Entwickleroxidationsprodukten aus einer lichtempfindlichen in eine andere lichtempfindliche Schicht mit unterschiedlicher spektraler Sensibilisierung verhindern.
  • Geeignete Mittel, die auch Scavenger oder EOP-Fänger genannt werden, werden in Research Disclosure 17 643 (Dez. 1978), Kapitel VII, 17 842 (Feb. 1979) und 18 716 (Nov. 1979), Seite 650 sowie in EP-A-0 069 070, 0 098 072, 0 124 877, 0 125 522 beschrieben.
  • Beispiele für besonders geeignete Verbindungen sind:
    Figure 01110001
  • Liegen mehrere Teilschichten gleicher spektraler Sensibilisierung vor, so können sich diese hinsichtlich ihrer Zusammensetzung, insbesondere was Art und Menge der Silberhalogenidkörnchen betrifft unterscheiden. Im allgemeinen wird die Teilschicht mit höherer Empfindlichkeit von Träger entfernter angeordnet sein als die Teilschicht mit geringerer Empfindlichkeit. Teilschichten gleicher spektraler Sensibilisierung können zueinander benachbart oder durch andere Schichten, z.B. durch Schichten anderer spektraler Sensibilisierung getrennt sein. So können z.B. alle hochempfindlichen und alle niedrigempfindlichen Schichten jeweils zu einem Schichtpaket zusammengefaßt sein (DE-A-19 58 709, DE-A-25 30 645, DE-A-26 22 922).
  • Das fotografische Material kann weiterhin UV-Licht absorbierende Verbindungen, Weißtöner, Abstandshalter, Filterfarbstoffe, Formalinfänger, Lichtschutzmittel, Antioxidantien, DMin-Farbstoffe, Zusätze zur Verbesserung der Farbstoff-, Kuppler- und Weißentstabilisierung sowie zur Verringerung des Farbschleiers, Weichmacher (Latices), Biocide und anderes enthalten.
  • Die fotografischen Schichten im erfindungsgemäßen Material, insbesondere die Schichten b, c und/oder d im oben beispielhaft beschriebenen farbfotografischen Material, können auch weitere UV-Absorber enthalten. Beispiele für solche UV-Absorber sind Benztriazole, 2-Hydroxybenzophenone, Oxanilide, Cyanoacrylate, Salicylsäureester, Acrylnitrilderivate oder Thiazoline.
  • Solche UV-Absorber sind z.B. in folgenden Veröffenlichungen näher erläutert:
    US-A-3,314,794, 3,352,681, 3,705,805, 3,707,375, 4,045,229, 3,700,455, 3,700,458, 3,533,794, 3,698,907, 3,705,805, 3,738,837, 3,762,272, 4,163,671, 4,195,999, 4,309,500, 4,431,726, 4,443,543, 4,576,908, 4,749,643, GB-A-1,564,089, EP-A-190,003 und JP-A-71/2784, 81/111,826, 81/27,146, 88/53,543 und 88/55,542. Bevorzugte UV-Absorber sind Benzotriazole, insbesondere 2-(2-Hydroxyphenyl)-benztriazole.
  • Bevorzugt ist auch fotografisches Aufzeichnungsmaterial enthaltend zusätzlich einen nicht der Formel (I) entsprechenden UV-Absorber aus der Reihe der Hydroxyphenyltriazine, wie sie beispielsweise in US 5,300,414 und US 5,364,749 beschrieben sind.
  • Beispiele besonders geeigneter Verbindungen sind:
    Benzotriazolverbindungen der Formel AII
    Figure 01120001
    worin T1, T2 und T3 unabhängig voneinander Wasserstoff, Halogen, Alkyl, Alkyl substituiert mit einer Carbonsäureestergruppe, Alkoxy, Aryloxy, Hydroxyl oder Acyloxy sind, und T4 Wasserstoff, Alkoxy, Aryloxy oder Acyloxy ist.
  • Beispiele für HBT-Verbindungen der Formel AII sind:
    Figure 01130001
    • *Hauptprodukt
    Figure 01140001
  • Es können auch ultraviolettabsorbierende Kuppler (wie Cyankuppler des α-Naphtholtyps) und ultraviolettabsorbierende Polymere verwendet werden. Diese Ultraviolettabsorbentien können durch Beizen in einer speziellen Schicht fixiert sein.
  • Für sichtbares Licht geeignete Filterfarbstoffe umfassen Oxonolfarbstoffe, Hemioxonolfarbstoffe, Styrylfarbstoffe, Merocyaninfarbstoffe, Cyaninfarbstoffe und Azofarbstoffe. Von diesen Farbstoffen werden Oxonolfarbstoffe, Hemioxonolfarbstoffe und Merocyaninfarbstoffe besonders vorteilhaft verwendet.
  • Geeignete Weißtöner sind z.B. in Research Disclosure 17 643 (Dez. 1978), Kapitel V, in US-A-2 632 701, 3 269 840 und in GB-A-852 075 und 1 319 763 beschrieben.
  • Bestimmte Bindemittelschichten, insbesondere die vom Träger am weitesten entfernte Schicht, aber auch gelegentlich Zwischenschichten, insbesondere, wenn sie während der Herstellung die vom Träger am weitesten entferte Schicht darstellen, können fotografisch inerte Teilchen anorganischer oder organischer Natur enthalten, z.B. als Mattierungsmittel oder als Abstandshalter (DE-A-33 31 542; DE-A-34 24 893, Research Disclosure 17 643 (Dez. 1978), Kapitel XVI).
  • Der mittlere Teilchendurchmesser der Abstandshalter liegt insbesondere im Bereich von 0,2 bis 10 μm. Die Abstandshalter sind wasserunlöslich und können alkaliunlöslich oder alkalilöslich sein, wobei die alkalilöslichen im allgemeinen im alkalischen Entwicklungsbad aus dem fotografischen Material entfernt werden. Beispiele für geeignete Polymere sind Polymethylacyrlat, Copolymere aus Acrylsäure und Methylmethacrylat sowie Hydroxypropylmethylcellulosehexahydrophthalat. Geeignete Formalinfänger sind z.B.
  • Figure 01150001
  • Die fotografischen Schichten können auch phenolische Verbindungen enthalten, die als Lichtschutzmittel für das Farbbild sowie als Mittel gegen Farbschleier wirken. Sie können in einer lichtempfindlichen Schicht (Farbschicht) oder in einer Zwischenschicht enthalten sein, allein oder zusammen mit anderen Additiven. Solche Verbindungen sind z.B. in den folgenden Veröffentlichungen näher beschrieben: US-A-3,700,455, 3,591,381, 3,573,052, 4,030,931, 4,174,220, 4,178,184, 4,228,235, 4,268,593, 4,279,990, 4,346,165, 4,366,226, 4,447,523, 4,528,264, 4,581,326, 4,562,146, 4,559,297, GB-A-1,309,277, 1,547,302, 2,023,862, 2,135,788, 2,139,370, 2,156,091; DE-A-2,301,060, 2,347,708, 2,526,468, 2,621,203, 3,323,448; DD-A-200,691, 214,468; EP-A-106,799, 113,124, 125,522, 159,912, 161,577, 164,030, 167,762, 176,845, 246,766, 320,776; JP-A-74/134,326, 76/127,730, 76/30462, 77/3822, 77/154,632, 78/10842, 79/48535, 79/70830, 79/73032, 79/147,038, 79/154,325, 79/155,836, 82/142,638, 83/224,353, 84/5246, 84/72443, 84/87456, 84/192,246, 84/192,247, 84/204,039, 84/204,040, 84/212,837, 84/220,733, 84/222,836, 84/228,249, 86/2540, 86/8843, 86/18835, 86/18836, 87/11456, 87/42245, 87/62157, 86/6652, 89/137,258 sowie in Research Disclosure 79/17804.
  • Die fotografischen Schichten können auch gewisse Phosphor-III-Verbindungen, insbesondere Phosphite und Phosponite, enthalten. Diese fungieren als Lichtschutzmittel für die Farbbilder sowie als Dunkellager-Stabilisator für Magentakuppler. Man setzt sie vorzugsweise den hochsiedenden Lösungsmitteln zu, zusammen mit dem Kuppler. Solche Phosphor-III-Verbindungen sind z.B. in den folgenden Veröffentlichungen näher beschrieben: US-A-4,407,935, US-A-4,436,811, US-A-4,956,406, EP-A-181,289, JP-A-73/32728, JP-A-76/1420 und JP-A-55/66741.
  • Die fotografischen Schichten können auch metallorganische Komplexe enthalten, die Lichtschutzmittel für die Farbbilder sind, insbesondere für die Magenta-Farbstoffe. Solche Verbindungen und deren Kombination mit anderen Additiven sind z.B. in folgenden Veröffentlichungen näher beschrieben: US-A-4,050,938, 4,239,843, 4,241,154, 4,242,429, 4,241,155, 4,242,430, 4,273,854, 4,246,329, 4,271,253, 4,242,431, 4,248,949, 4,245,195, 4,268,605, 4,246,330, 4,269,926, 4,245,018, 4,301,223, 4,343,886, 4,346,165, 4,590,153; JP-A-81/167,138, 81/168,652, 82/30834, 82/161,744; EP-A-137,271, 161,577, 185,506; DE-A-2,853,865.
  • Die fotografischen Schichten können auch Hydrochinonverbindungen enthalten. Diese wirken als Lichtschutzmittel für die Farbkuppler und für die Farbbilder sowie als Abfänger von oxidiertem Entwickler in Zwischenschichten. Sie werden vor allem in der Magentaschicht verwendet. Solche Hydrochinon-Verbindungen und deren Kombinationen mit anderen Additiven sind z.B. in folgenden Veröffentlichungen näher beschrieben: US-A-2,360,290, 2,336,327, 2,403,721, 2,418,613, 2,675,314, 2,701,197, 2,710,801, 2,732,300, 2,728,659, 2,735,765, 2,704,713, 2,937,086, 2,816,028, 3,582,333, 3,637,393, 3,700,453, 3,960,570, 3,935,016, 3,930,866, 4,065,435, 3,982,944, 4,232,114, 4,121,939, 4,175,968, 4,179,293, 3,591,381, 3,573,052, 4,279,990, 4,429,031, 4,346,165, 4,360,589, 4,346,167, 4,385,111, 4,416,978, 4,430,425, 4,277,558, 4,489,155, 4,504,572, 4,559,297, FR-A-885,982; GB-A-891,158, 1,156,167, 1,363,921, 2,022,274, 2,066,975, 2,071,348, 2,081,463, 2,117,526, 2,156,091; DE-A-2,408,168, 2,726,283, 2,639,930, 2,901,520, 3,308,766, 3,320,483, 3,323,699; DD-A-216,476, 214,468, 214,469, EP-A-84290, 110,214, 115,305, 124,915, 124,877, 144,288, 147,747, 178,165, 161,577; JP-A-75/33733, 75/21249, 77/128,130, 77/146,234, 79/70036, 79/133,131, 81/83742, 81/87040, 811109,345, 83/134,628, 82/22237, 82/112,749, 83/17431, 83/21249, 84/75249, 84/149,348, 84/182,785, 84/180,557, 84/189,342, 84/228,249, 84/101,650, 79/24019, 79/25823, 86/48856, 86/48857, 86/27539, 86/6652, 86/72040, 87/11455, 87/62157, sowie in Research Disclosure 79/17901, 79/17905, 79/18813, 83/22827 und 84/24014.
  • Die fotografischen Schichten können auch Derivate von Hydrochinonethern enthalten. Diese Verbindungen wirken als Lichtschutzmittel und sind besonders geeignet zur Stabilisierung von Magenta-Farbstoffen. Solche Verbindungen und deren Kombination mit anderen Additiven sind z.B. in folgenden Veröffentlichungen näher beschrieben: US-A 3,285,937, 3,432,300, 3,519,429, 3,476,772, 3,591,381, 3,573,052, 3,574,627, 3,573,050, 3,698,909, 3,764,337, 3,930,866, 4,113,488, 4,015,990, 4,113,495, 4,120,723, 4,155,765, 4,159,910, 4,178,184, 4,138,259, 4,174,220, 4,148,656, 4,207,111, 4,254,216, 4,134,011, 4,273,864, 4,264,720, 4,279,990, 4,332,886, 4,436,165, 4,360,589, 4,416,978, 4,385,111, 4,459,015, 4,559,297; GB-A 1,347,556, 1,366,441, 1,547,392, 1,557,237, 2,135,788; DE-A 3,214,567; DD-214,469, EP-A 161,577, 167,762, 164,130, 176,845; JP-A 76/123,642, 77/35633, 77/147,433, 781126, 78/10430, 78/53321, 79/24019, 79/25823, 79/48537, 79/44521, 79/56833, 79/70036, 79/70830, 79/73032, 79/95233, 79/145,530, 80/21004, 80/50244, 80/52057, 80/70840, 801139,383, 81/30125, 81/151,936, 82/34552, 82/68833, 82/204,306 82/204,037, 83/134,634, 83/207,039, 84/60434, 84/101,650, 84/87450, 84/149,348, 84/182,785, 86/72040, 87/11455, 87/62157, 87/63149, 86/2151, 86/6652, 86/48855, 89/309,058 sowie in Research Disclosure 78/17051.
  • Die fotografischen Schichten, insbesondere die den erfindungsgemäßen UV-Absorber enthaltende(n) Schicht(en), können auch Lichtschutzmittel vom Typ der sterisch gehinderten Amine enthalten, beispielsweise solche Verbindungen, wie sie weiter oben als Zusatz zu den erfindungsgemäßen Überzugsmitteln sowie in der Liste bevorzugter Coadditive unter 2.6 aufgeführt sind.
  • Beispiele besonders geeigneter Verbindungen sind:
    Figure 01180001
    Figure 01190001
    Figure 01200001
    Figure 01210001
    sowie die als EOP-Fänger aufgeführten Verbindungen.
  • Die Schichten des fotografischen Materials können mit den üblichen Härtungsmitteln gehärtet werden. Geeignete Härtungsmittel sind z.B. Formaldehyd, Glutaraldehyd und ähnliche Aldehydverbindungen, Diacetyl, Cyclopentadion und ähnliche Ketonverbindungen, Bis-(2-chlorethylharnstoff), 2-Hydroxy-4,6-dichlor-1,3,5-triazin und andere Verbindungen, die reaktives Halogen enthalten (US-A-3 288 775, US-A-2 732 303, GB-A-974 723 und GB-A-1 167 207), Divinylsulfonverbindungen, 5-Acetyl-1,3-di-acryloylhexahydro-1,3,5-triazin und andere Verbindungen, die eine reaktive Olefinbindung enthalten (US-A-3 635 718, US-A-3 232 763 und GB-A-994 869); N-Hydroxymethylphthalimid und andere N-Methylolverbindungen (US-A-2 732 316 und US-A-2 586 168); Isocyanate (US-A-3 103 437); Aziridinverbindungen (US-A-3 017 280 und US-A-2 983 611); Säurederivate (US-A-2 725 294 und US-A-2 725 295); Verbindungen vom Carbodiimidtyp (US-A-3 100 704); Carbamoylpyridiniumsalze (DE-A-22 25 230 und US-A-24 39 511); Carbamoylpyridiniumverbindungen (DE-A-24 08 814); Verbindungen mit einer Phosphor-Halogen-Bindung (JP-A-113 929/83); N-Carbonyloximid-Verbindungen (JP-A-43353/81); N-Sulfonyloximido-Verbindungen (US-A-4 111 926), Dihydrochinolinverbindungen (US-A-4 013 468), 2-Sulfonyloxypyridiniumsalze (JP-A-110 762/81), Formamidiniumsalze (EP-A-0 162 308), Verbindungen mit zwei oder mehr N-Acyloximino-Gruppen (US-A-4 052 373), Epoxyverbindungen (US-A-3 091 537), Verbindungen vom Isoxazoltyp (US-A-3 321 313 und US-A-3 543 292); Halogencarboxyaldehyde, wie Mucochlorsäure; Dioxanderivate, wie Dihydroxydioxan und Di-chlordioxan; und anorganische Härter, wie Chromalaun und Zirkonsulfat.
  • Die Härtung kann in bekannter Weise dadurch bewirkt werden, daß das Härtungsmittel der Gießlösung für die zu härtende Schicht zugesetzt wird, oder dadurch, daß die zu härtende Schicht mit einer Schicht überschichtet wird, die ein diffusionsfähiges Härtungsmittel enthält.
  • Unter den aufgeführten Klassen gibt es langsam wirkende und schnell wirkende Härtungsmittel sowie sogenannte Soforthärter, die besonders vorteilhaft sind. Unter Soforthärtern werden Verbindungen verstanden, die geeignete Bindemittel so vernetzen, daß unmittelbar nach Beguß, spätestens nach 24 Stunden, vorzugsweise spätestens nach 8 Stunden die Härtung so weit abgeschlossen ist, daß keine weitere durch die Vernetzungsreaktion bedingte Aenderung der Sensitometrie und der Quellung des Schichtverbandes auftritt. Unter Quellung wird die Differenz von Naßschichtdicke und Trockenschichtdicke bei der wäßrigen Verarbeitung des Films verstanden (Photogr. Sci., Eng. 8 (1964), 275; Photogr. Sci., Eng. (1972), 449).
  • Bei diesen mit Gelatine sehr schnell reagierenden Härtungsmitteln handelt es sich z.B. um Carbamoylpyridiniumsalze, die mit freien Carboxylgruppen der Gelatine zu reagieren vermögen, so daß letztere mit freien Aminogruppen der Gelatine unter Ausbildung von Peptidbindungen und Vernetzung der Gelatine reagieren.
  • Geeignete Beispiele für Soforthärter sind z.B. Verbindungen der allgemeinen Formel
    Figure 01230001
    worin
    R1 Alkyl, Aryl oder Aralkyl bedeutet,
    R2 die gleiche Bedeutung wie R1 hat oder Alkylen, Arylen, Aralkylen oder Alkaralkylen bedeutet, wobei die zweite Bindung mit einer Gruppe der Formel
    Figure 01230002
    verknüpft ist, oder
    R1 und R2 zusammen die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome bedeuten, wobei der Ring z.B. durch C1-C3-Alkyl oder Halogen substituiert sein kann,
    R3 für Wasserstoff, Alkyl, Aryl, Alkoxy, -NR4-COR5, -(CH2)m-NR8R9,
    Figure 01240001
    oder ein Brückenglied oder eine direkte Bindung an eine Polymerkette steht, wobei
    R4, R6, R7, R8, R14, R15, R17, R18, und R19 Wasserstoff oder C1-C4-Alkyl,
    R5 Wasserstoff, C1-C4-Alkyl oder NR6R7,
    R8 -COR10
    R10 NR11R12
    R11 C1-C4-Alkyl oder Aryl, insbesondere Phenyl,
    R12 Wasserstoff, C1-C4-Alkyl oder Aryl, insbesondere Phenyl,
    R13 Wasserstoff, C1-C4-Alkyl oder Aryl, insbesondere Phenyl,
    R16 Wasserstoff, C1-C4-Alkyl, -COR18 oder CONHR19,
    m eine Zahl 1 bis 3
    n eine Zahl 0 bis 3
    p eine Zahl 2 bis 3 und
    Y O oder NR17 bedeuten oder
    R13 und R14 gemeinsam die zur Vervollständigung eines gegebenenfalls substituierten heterocyclischen Ringes, beispielsweise eines Piperidin-, Piperazin- oder Morpholinringes erforderlichen Atome darstellen, wobei der Ring z.B. durch C1-C3-Alkyl oder Halogen substituiert sein kann,
    Z die zur Vervollständigung eines 5- oder 6-gliedriegn aromatischen heterocyclischen Ringes, gegebenenfalls mit anelliertem Benzolring, erforderlichen C-Atome und
    X ein Anion bedeuten, das entfällt, wenn bereits eine anionische Gruppe mit dem übrigen Molekül verknüpft ist;
    Figure 01250001
    worin
    R1, R2, R3 und X die für Formel (a) amgegebene Bedeutung besitzen.
  • Es gibt diffusionsfähige Härtungsmittel, die auf alle Schichten innerhalb eines Schichtverbandes in gleicher Weise härtend wirken. Es gibt aber auch schichtbegrenzt wirkende, nicht diffundierende, niedermolekulare und hochmolekulare Härter. Mit ihnen kann man einzelnen Schichten, z.B. die Schutzschicht besonders stark vernetzen. Dies ist wichtig, wenn man die Silberhalogenid-Schicht wegen der Silberdeckkrafterhöhung wenig härtet und mit der Schutzschicht die mechanischen Eigenschaften verbessern muß (EP-A-0 114 699).
  • Farbfotografische Negativmaterialien werden üblicherweise durch Entwickeln, Bleichen, Fixieren und Wässern oder durch Entwickeln, Bleichen, Fixieren und Stabilisieren ohne nachfolgende Wässerung verarbeitet, wobei Bleichen und Fixieren zu einem Verarbeitungsschritt zusammengefaßt sein können. Als Farbentwicklerverbindung lassen sich sämtliche Entwicklerverbindungen verwenden, die die Fähigkeit besitzen, in Form ihres Oxidationsproduktes mit Farbkupplern zu Azomethin- bzw. Indophenolfarbstoffen zu reagieren. Geeignete Farbentwicklerverbindungen sind aromatische, mindestens eine primäre Aminogruppe enthaltende Verbindungen vom p-Phenylendiamintyp, beispielsweise N,N-Dialkyl-p-phenylendiamine wie N,N-Diethyl-p-phenylendiamin, 1-(N-Ethyl-N-methansulfonamidoethyl)-3-methyl-p-phenylendiamin und 1-(N-Ethyl-N-methoxyethyl)-3-methyl-p-phenylendiamin. Weitere brauchbare Farbentwickler sind beispielsweise in J. Amer. Chem. Soc. 73, 3106 (1951) und G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons, New York 545 ff. beschrieben.
  • Nach der Farbentwicklung kann ein saures Stoppbad oder eine Wässerung folgen.
  • Ueblicherweise wird das Material unmittelbar nach der Farbentwicklung gebleicht und fixiert. Als Bleichmittel können z.B. Fe(III)-Salze unf Fe(III)-Komplexsalze wie Fenicyanide, Dichromate, wasserlösliche Kobalt-Komplexe verwendet werden. Besonders bevorzugt sind Eisen-(III)-Komplexe von Aminopolycarbonsäuren, insbesondere z.B. von Ethylendiamintetraessigsäure, Propylendiamintetraessigsäure, Diethylentriaminpentaessigsäure, Nitrilotriessigsäure, Iminodiessigsäure, N-Hydroxyethyl-ethylendiamintriessigsäure, Alkyliminodicarbonsäuren und von entsprechenden Phosphonsäuren. Geeignete als Bleichmittel sind weiterhin Persulfate und Peroxide, z.B. Wasserstoffperoxid.
  • Auf das Bleichfixierbad oder Fixierbad folgt meist eine Wässerung, die als Gegenstromwässerung ausgeführt ist oder aus mehreren Tanks mit eigener Wasserzufuhr besteht.
  • Günstige Ergebnisse können bei Verwendung eines darauf folgenden Schlußbades, das keinen oder nur wenig Formaldehyd enthält, erhalten werden.
  • Die Wässerung kann aber durch ein Stabilisierbad vollständig ersetzt werden, das üblicherweise im Gegenstrom geführt wird. Dieses Stabilisierbad übernimmt bei Formaldehydzusatz auch die Funktion eines Schlußbades.
  • Bei Farbumkehrmaterialien erfolgt zunächst eine Entwicklung mit einem Schwarz-Weiß-Entwickler, dessen Oxidationsprodukt nicht zur Reaktion mit den Farbkupplern befähigt ist. Es schließt sich eine diffuse Zweitbelichtung und dann Entwicklung mit einem Farbentwickler, Bleichen und Fixieren an.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zum Stabilisieren von fotografischem Aufzeichnungsmaterial enthaltend auf einem Träger mindestens eine Silberhalogenidemulsionsschicht sowie gegebenenfalls mindestens eine Zwischenschicht und/oder eine Protektionsschicht, dadurch gekennzeichnet, daß mindestens einer der genannten Schichten ein UV-Absorber der Formel (I) zugegeben wird.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von Verbindungen der Formel (I) zum Stabilisieren von fotografischem Aufzeichnungsmaterial enthaltend auf einem Träger mindestens eine Silberhalogenidemulsionsschicht sowie gegebenenfalls mindestens eine Zwischenschicht und/oder eine Protektionsschicht.
  • Für das erfindungsgemäße Verfahren, die erfindungsgemäße Verwendung und die erfindungsgemäßen Verbindungen der Formel (I) gelten sinngemäß die weiter vorne bei dem erfindungsgemäßen fotografischen Aufzeichnungsmaterial näher beschriebenen Bevorzugungen.
  • Die folgenden Beispiele beschreiben den Erfindungsgegenstand weiter, ohne ihn auf die Beispiele zu beschränken. Darin bedeuten Teile Gewichtsteile und % Gewichts-%; ist in einem Beispiel Raumtemperatur erwähnt, so ist darunter eine Temperatur im Bereich 20-25°C zu verstehen. Diese Vorgaben gelten jeweils sofern nichts anderes angegeben ist. Verbindungsnummern beziehen sich, wo immer möglich, auf die weiter oben gegebene Liste erfindungsgemäßer Verbindungen. Mit -n gekennzeichnete Alkylreste sind geradkettig; i- kennzeichnet Isomerengemische.
  • Folgende Abkürzungen werden verwendet:
  • THF
    Tetrahydrofuran
    abs.
    wasserfrei
    Smp.
    Schmelzpunkt bzw. Schmelzbereich
    Tg.
    Glasübergangstemperatur
    Sdp.
    Siedepunkt
    NMR
    Kernmagnetische Resonanz
    Fl.
    Flüssigkeit
    mmHg
    Torr (1 Torr = 133,3224 Pa)
    DSC
    Differential-Scan Calorimetrie
    Extinktionskoeffizient (Ethylacetat); Index bezeichnet die Wellenlänge
  • A) Herstellungsbeispiele
  • Beispiel A1: 2-Mesityl-4,6-dichlor-1,3,5-triazin
  • Eine Lösung von 109,5 g (0,55 Mol) 2-Brom-mesitylen (Reinheit 98%) in 150 ml abs. THF (Reinheit 99,5%) wird innerhalb von 1½ Stunden unter Stickstoff zu einer gerührten, auf 60°C temperierten Suspension von 14,6 g (0,60 Mol) Magnesiumspänen (Reinheit 99,8%) in 100 ml abs. THF gegeben, der ein Iodkristall beigegeben ist.
  • Anschließend wird die Mischung für 30 Minuten auf Rückflußtemperatur gehalten (68°C).
  • Nach Abkühlen wird das erhaltene Grignard-Reagens in einen Tropftrichter überführt und tropfenweise zu einer Lösung von 96,0 g (0,52 Mol) Cyanurchlorid (98%) in 270 ml THF gegeben. Während der Zugabe, die 1½ Stunden dauert, wird durch Kühlen eine Temperatur zwischen 15 und 30°C gehalten. Anschließend wird die Mischung bei 25°C für 2 Stunden gerührt, dann auf 21 einer Eis-Wasser-Mischung enthaltend 80 ml 32 % HCl (0,81 Mol) gegossen. Nach einstündigem Rühren wird filtriert. Der Filterkuchen wird in 1000 ml Wasser suspendiert, 30 Min. gerührt und wieder filtriert. Diese Operation wird noch zweimal wiederholt. Der Filterkuchen wird für 24 h bei 25°C und einem Druck von 60 mmHg (8000 Pa) über P2O5 getrocknet. 171,0 g Rohprodukt werden anschließend in Toluol gelöst, heiß filtriert, und durch Zusatz von Hexan und Kühlen auf 0°C kristallisiert.
  • Nach Abfiltrieren und Trocknen werden 82,8 g des Titelproduktes (Verbindung 1a)
    Figure 01280001
    mit dem Smp. 85-91°C.
    1H-NMR (CDCl3, 300 MHz): δ 2,22 (s, 6H); 2,32 (s, 3H); 6,95 (s, 2H).
  • Beispiel A2: 2-Mesityl-4,6-bis(2,4-dihydroxyphenyl)-1,3,5-triazin
  • Zu einer Suspension von 130,0 g (0,485 Mol) 2-Mesityl-4,6-dichlor-1,3,5-triazin (Verbindung 1a) in 300 ml Benzin vom Siedebereich 110-140°C und 385 ml Sulfolan werden unter Rühren 148,7 g (1,21 Mol) wasserfreies Aluminiumtrichlorid (Reinheit 98%) gegeben. Die Mischung erwärmt sich dabei auf 45°C. Dazu wird während 45 Min. eine Lösung von 133,5 g (1,21 Mol) Resorcin (Reinheit 98%) in 155 ml Sulfolan gegeben.
  • Die Mischung wird unter HCl-Entwicklung für 5 h 30 Min. auf 80-85°C erwärmt. Die obere Phase (Benzin) wird entfernt, die untere, dickflüssige Phase wird heiß in eine gerührte Mischung aus 2,1 l Methanol und 2,1 l Wasser gegeben. Nach Rühren für die Dauer von 14 h wird der Feststoff abfiltriert, in 2,2 l 1-molarer HCl für 1 h gerührt und wieder abfiltriert. Der Filterkuchen wird in 1000 ml Wasser suspendiert, 30 Min. gerührt und wieder filtriert. Diese Operation wird noch zweimal wiederholt. Der Filterkuchen wird für 24 h bei 80°C und einem Druck von 60 mmHg (8000 Pa) getrocknet. Es werden 170,5 g des Titelproduktes (Verbindung 1b) erhalten der Formel
    Figure 01290001
    mit dem Smp. 230-234°C.
  • Beispiel A3: 2-Mesityl-4,6-bis(2-hydroxy-4-[3-n-butyloxy-2-hydroxy-propyloxy]-phenyl)-1,3,5-triazin
  • Eine Mischung von 20,0 g (0,048 Mol) 2-Mesityl-4,6-bis(2,4-dihydroxyphenyl)-1,3,5-triazin (Verbindung 1b), 13,8 g (0,105 Mol) n-Butyl-glycidyl-ether (Reinheit 95%) und 1,8 g (4,8 mMol) Ethyl-triphenyl-phosphoniumbromid (Reinheit 97%) in 100 ml Mesitylen (Reinheit 99%) wird unter Stickstoff für 21 h bei 140°C gerührt. Dekantieren und Verdampfen des restlichen Lösungsmittels ergibt 41,2 g Rohprodukt. Dieses wird in 100 ml Ethylacetat gelöst und durch eine 10,5 cm hohe Schüttung Kiese1gel 60 (230-400 mesh) vom Durchmesser 7,5 cm filtriert, eluiert wird mit 3 l Ethylacetat/Hexan (1:1-Mischung). Nach Entfernen des Lösungsmittels erhaltene 34,0 g Feststoff werden erneut in 25 ml Ethylacetat gelöst. Zu der dickflüssigen Lösung werden 250 ml Hexan gegeben. Nach zweistündigem Rühren bei 0°C wird abfiltriert; der Feststoff wird für 24 h bei 80°C und einem Druck von 60 mmHg (8000 Pa) getrocknet. Es werden 23,0 g des Titelproduktes (Verbindung 2) erhalten der Formel
    Figure 01300001
    mit dem Smp. 125-131°C.
  • Beispiel A4: 2-Mesityl-4,6-bis(2-hydroxy-4-[3-(2-ethyl-hexyloxy)-2-hydroxypropyloxy]-phenyl)-1,3,5-triazin
  • Eine Mischung von 39,5 g (0,095 Mol) 2-Mesityl-4,6-bis(2,4-dihydroxyphenyl)-1,3,5-triazin (Verbindung 1b), 40,7 g (0,2185 Mol) 2-Ethyl-hexyl-glycidylether (Reinheit 98%) und 3,5 g (9,5 mMol) Ethyl-triphenyl-phosphoniumbromid (Reinheit 97%) in 250 ml Mesitylen (Reinheit 99%) wird unter Stickstoff für 16 h bei 140°C gerührt. Die klare Lösung wird unter vermindertem Druck vom Lösungsmittel befreit. Das Rohprodukt wird in 200 ml Ethylacetat gelöst und durch eine 6,0 cm hohe Schüttung Kieselgel 60 (230-400 mesh) vom Durchmesser 8,0 cm filtriert; eluiert wird mit 1000 ml Ethylacetat. Nach Entfernen des Lösungsmittels und Trocknen für 2 Stunden bei 100°C und einem Druck von 0,6 mmHg (80 Pa) werden 61,3 g (Ausbeute: 81,8 %) des Titelproduktes (Verbindung 7; Tg. 54,5 °C) erhalten der Formel
    Figure 01300002
    mit R = CH2-CH(OH)-CH2O-CH2-CH(C2H5)-CH2CH2CH2CH3.
    UV-Maxima (Ethylacetat): ε (299 nm) = 32780; ε (352 nm) = 41690.
  • Beispiel A5: 2-Mesityl-4,6-bis(2-hydroxy-4-[3-(iso*-dodecyloxy)-2-hydroxypropyloxy]-phenyl)-1,3,5-triazin
  • Im Verbindungsnamen steht iso*-dodecyloxy für eine Mischung verschiedener Dodecylsubstituenten (i-C12H25).
  • Eine Mischung von 29,9 g (0,072 Mol) 2-Mesityl-4,6-bis(2,4-dihydroxyphenyl)-1,3,5-triazin (Verbindung 1b), 40,1 g (0,166 Mol) Dodecyl-glycidylether (Isomerenmischung, erhältlich als HAGE®-12, Shell) und 2,7 g (7,2 mMol) Ethyl-triphenyl-phosphoniumbromid (Reinheit 97%) in 200 ml Mesitylen (Reinheit 99%) wird unter Stickstoff für 15 h bei 140°C gerührt. Die klare braune Lösung wird unter vermindertem Druck vom Lösungsmittel befreit. Das Rohprodukt wird in 200 ml Ethylacetat gelöst und durch eine 6,0 cm hohe Schüttung Kiese1gel 60 (230-400 mesh) vom Durchmesser 8,0 cm filtriert; eluiert wird mit 500 ml Ethylacetat. Nach Entfernen des Lösungsmittels und Trocknen für 2 Stunden bei 140°C und einem Druck von 0,9 mmHg (120 Pa) werden 60,2 g (Ausbeute: 92,9 %) des Titelproduktes (Verbindung 8; Tg. 0,8 °C) erhalten der Formel
    Figure 01310001
    mit R = CH2-CH(OH)-CH2O-i-C12H25.
    UV-Maxima (Ethylacetat): ε (298 nm) = 30790; ε (351,5 nm) = 39520.
  • Nach der gleichen Methode werden die folgenden Verbindungen der angegebenen allgemeinen Formel erhalten, wobei an Stelle von Dodecyl-glycidylether die in der folgenden Tabelle A5 angegebenen Reagentien eingesetzt werden. Die in der letzten Spalte angegebenen Temperaturen bezeichnen, sofern nichts anderes angegeben ist, die Schmelzpunkte; mit * gekennzeichnete Temperaturen sind Glasübergangstemperaturen.
    ** UV-Daten: Lösungsmittel Ethylacetat.
  • Tabelle A5: Herstellung der Verbindungen 1, 3, 4, 4a, 5, 6, 8d, 8x, 12, 17 und 20a-d
    Figure 01320001
  • Beispiel A6: 2-Mesityl-4,6-bis-(2-hydroxy-4-n-hexyloxy-phenyl)-1,3,5-triazin
  • Eine Mischung aus 25,0 g (60 mmol) 2-Mesityl-4,6-(2,4-dihydroxy-phenyl)-1,3,5-triazin, 18,2 g (132 mmol) K2CO3 (Fluka, 99%), 200 mL Diethylenglycol-dimethylether (Fluka, 99,5%) und 24,8 g (150 mmol) 1-Bromhexan werden unter Rühren für 17 Stunden auf 115°C gehalten. Es wird heiß filtriert und das Lösungsmittel entfernt (Rotavapor). Nach Umkristallisieren aus 100 mL Ethylenglycol-monoethylether und 24-stündigem Trocknen bei 60°C/60 Torr erhält man 20,7 g (58,9 %) 2-Mesityl-4,6-bis-(2-hydroxy-4-n-hexyloxy-phenyl)-1,3,5-triazin (Verbindung 9), Smp. 140-142°C.
  • Verbindung (10) wird nach derselben Methode unter Verwendung von 1-Brom-2-ethylhexan an Stelle von 1-Bromhexan als orangefarbenes Harz erhalten; Tg. 8,1 °C.
  • Beispiel A7:
  • (i) Herstellung einer 1-Bromoctan-Isomerenmischung
  • Unter Rühren und Kühlung im Eisbad wird eine Lösung aus 195,3 g (1,50 mol) Isooctanol (erhältlich von Exxon unter der Bezeichnung Exxal® 8N) tropfenweise mit 75,0 g (0,75 mol) Schwefelsäure (98 %) versetzt. Anschließend werden tropfenweise 379,2 g (256,2 mL) 48 % wässrige HBr (2,25 mol) zugesetzt. Die Mischung wird für 5 h auf 113°C erhitzt. Nach Abkühlen wird die organische Phase (oben) abgetrennt und mit 250 mL Ethyl-acetat verdünnt. Die Lösung wird aufeinanderfolgend
    1 × mit 250 mL Wasser,
    2 × mit 250 mL 10 % wässriger NaHCO3 und
    2 × mit 250 mL gesättigter wässriger Kochsalzlösung gewaschen. Nach Trocknen (MgSO4), Abtrennen des Lösungsmittels wird über eine Vigreux-Kolonne destilliert. Man erhält 214,10 g (73,9 %) einer Mischung verschiedener Bromoctan-Isomere als farblose Fl., Sdp. (16 mmHg) 66-69°C.
  • (ii) 2-Mesityl-4,6-bis-(2-hydroxy-4-i-octyl-oxy-phenyl)-1,3,5-triazin
  • Eine Mischung aus 20,0 g (48,0 mmol) 2-Mesityl-4,6-(2,4-dihydroxy-phenyl)-1,3,5-triazin, 13,3 g (96,0 mmol) K2CO3 (Fluka, 99%), 0,5 g (3 mmol) KI (Merck, 99,5 %), 90 mL Diethylenglycol-dimethylether (Fluka, 99,5%) und 24,8 g (150 mmol) 1-Bromoctan-Isomerenmischung (i) werden unter Rühren für 23 h auf 120°C erhitzt. Es wird heiß filtriert und das Lösungsmittel entfernt (Rotavapor). Das Rohprodukt wird in 60 ml Toluol gelöst und durch eine Schicht aus Kiese1gel 60 filtriert (230-400 mesh; Höhe 8 cm; Durchmesser 10 cm). Eluiert wird mit 1000 mL Toluol. Nach Abtrennen des Lösungsmittels und Trocknen bei 130°C/0,1 mmHg für 4 h erhält man 23,8 g (77,5 %) 2-Mesityl-4,6-bis-(2-hydroxy-4-isomix.-octyloxy-phenyl)-1,3,5-triazin, (Verbindung 11) als gelbes Harz; Tg. 122,9 °C.
  • Beispiel A8: 2-Mesityl-4,6-bis-(2-hydroxy-4-[1-(ethoxy-carbonyl)-ethoxy]-phenyl)-1,3,5-triazin
  • Eine Mischung aus 24,9 g (60,0 mmol) 2-Mesityl-4,6-(2,4-dihydroxy-phenyl)-1,3,5-triazin, 16,6 g (96,0 mmol) K2CO3 (Fluka, 99 %), 0,5 g (3 mmol) Kaliumiodid (Merck, 99,5 %), 90 mL Diethylenglycol-dimethylether (Fluka, 99,5%) und 23,9 g (132,0 mmol) α-Brompropionsäure-ethylester (Fluka, 98%) werden unter Rühren für 17 h auf 110°C erhitzt. Es wird heiß filtriert und das Lösungsmittel entfernt (Rotavapor). Das Rohprodukt wird in 100 mL Ethylacetat gelöst und durch eine Schicht aus Kieselgel 60 filtriert (230-400 mesh; Höhe 4,5 cm; Durchmesser 6,5 cm). Eluiert wird mit 200 mL Ethylacetat. Nach Abtrennen des Lösungsmittels, Trocknen bei 100°C/0,1 mmHg für 2 h, pulverisieren des Feststoffes und weiterem Trocknen für 14 h bei 80°C/60 mmHg erhält man 32,8 g (88,8 %) 2-Mesityl-4,6-bis-(2-hydroxy-4-[1-(ethoxy-carbonyl)-ethoxy]-phenyl)-1,3,5-triazin (Verbindung 13), Smp. 142-147 °C.
  • Nach der unter A8 beschriebenen Methode werden die folgenden Verbindungen der angegebenen allgemeinen Formel
    Figure 01340001
    erhalten, wobei an Stelle von α-Brompropionsäure-ethylester die in der folgenden Tabelle A8 angegebenen Reagentien eingesetzt werden. Die in der letzten Spalte angegebenen Temperaturen bezeichnen, sofern nichts anderes angegeben ist, die Schmelzpunkte; mit * gekennzeichnete Temperaturen sind Glasübergangstemperaturen; i-Octyl bedeutet eine Octyl-Isomerenmischung.
    ** UV-Daten: Lösungsmittel Ethylacetat.
  • Tabelle A8: Herstellung der Verbindungen 14, 15 und 15a-c
    Figure 01350001
  • Beispiel A9: 2-Mesityl-4,6-bis-[2-hydroxy-4-((3-n-butoxy-2-acetoxy)-propoxy)-phenyl]-1,3,5-triazin
  • Eine Mischung aus 25,0 g (37,0 mmol) 2-Mesityl-4,6-bis-[2-hydroxy-4-(3-n-butoxy-2-hydroxy-propoxy)-phenyl]-1,3,5-triazin (Verbindung 2), 8,7 g (110 mmol) Acetylchlorid (Fluka, 99%), 0,4 g (5 mmol) Pyridin (Fluka, 99%) in 120 mL Toluol (Fluka, 99,5 %) wird unter Rühren für 14 h auf 55°C erhitzt. Das Lösungsmittel wird entfernt (Rotavapor). Das Rohprodukt wird in 50 mL Methylenchlorid gelöst und durch eine Schicht aus Kieselgel 60 filtriert (230-400 mesh; Höhe 5 cm; Durchmesser 6 cm). Eluiert wird mit 500 mL Methylenchlorid. Nach Abtrennen des Lösungsmittels und Trocknen bei 80°C/0,2 mmHg für 2 h erhält man 25,1 g (89,3 %) 2-Mesityl-4,6-bis-[2-hydroxy-4-((3-n-butoxy-2-acetoxy)-propoxy)-phenyl]-1,3,5-triazin (Verbindung 16) als gelbes Harz.
    1H-NMR (300 MHz, CDCl3): Das Spektrum ist konsistent mit dem gewünschten Produkt.
    UV-Maxima (Ethylacetat): ε (298 nm) = 35490; ε (351 nm) = 41410.
  • Beispiel A10: Ausgangsverbindungen für Verbindungen (21)-(22a)
    • (i) Wird in dem in Beispiel A1 beschriebenen Verfahren an Stelle von 2-Brom-mesitylen 2,6-Dimethyl-brombenzol eingesetzt, erhält man die Verbindung der Formel
      Figure 01360001
      als langsam kristallisierendes Harz; Smp. 70-83°C.
    • (ii) Einsatz obiger Verbindung A10(i) an Stelle von Verbindung 1a in dem in Beispiel A2 beschriebenen Verfahren liefert die Verbindung der Formel
      Figure 01360002
      Smp. 161,5-164,5°C.
  • Beispiel A11: Ausgangsverbindungen für Verbindungen (23) und (24)
    • (i) Wird in dem in Beispiel A1 beschriebenen Verfahren an Stelle von 2-Brom-mesitylen 2,3,5,6-Tetramethyl-brombenzol eingesetzt, erhält man die Verbindung der Formel
      Figure 01360003
      Smp. 210-213°C.
    • (ii) Einsatz obiger Verbindung A11(i) an Stelle von Verbindung 1a in dem in Beispiel A2 beschriebenen Verfahren liefert die Verbindung der Formel
      Figure 01370001
      als blaßgelben Feststoff; Smp. 300-307°C.
  • Beispiel A12: Ausgangsverbindungen für Verbindungen (25) und (26)
    • (i) Wird in dem in Beispiel A1 beschriebenen Verfahren an Stelle von 2-Brom-mesitylen 2,3,4,6-Tetramethyl-brombenzol eingesetzt, erhält man die Verbindung der Formel
      Figure 01370002
      als weißen Feststoff; Smp. 103,5-105°C.
    • (ii) Einsatz obiger Verbindung A12(i) an Stelle von Verbindung 1a in dem in Beispiel A2 beschriebenen Verfahren liefert die Verbindung der Formel
      Figure 01370003
      als gelben Feststoff; Smp. 279-290°C.
  • Beispiel A13: Ausgangsverbindungen für Verbindungen (27) und (28)
    • (i) Wird in dem in Beispiel A1 beschriebenen Verfahren an Stelle von 2-Brom-mesitylen 2,3,4,5,6-Pentamethyl-brombenzol eingesetzt, erhält man die Verbindung der Formel
      Figure 01380001
      als weißen Feststoff; Smp. 177-178°C.
    • (ii) Einsatz obiger Verbindung A13(i) an Stelle von Verbindung 1a in dem in Beispiel A2 beschriebenen Verfahren liefert die Verbindung der Formel
      Figure 01380002
      als gelben Feststoff; Smp. 258-283°C.
  • Beispiel A14: Ausgangsverbindungen für Verbindungen (29) und (30)
    • (i) Wird in dem in Beispiel A1 beschriebenen Verfahren an Stelle von 2-Brom-mesitylen 2,6-Dimethyl-4-tert.-butyl-brombenzol eingesetzt, erhält man die Verbindung der Formel
      Figure 01380003
      Smp. 149-150,5°C.
    • (ii) Einsatz obiger Verbindung A14(i) an Stelle von Verbindung 1a in dem in Beispiel A2 beschriebenen Verfahren liefert die Verbindung der Formel
      Figure 01390001
      Smp. 291-300°C.
  • Beispiel A15: Ausgangsverbindungen für Verbindungen (31) und (32)
    • (i) Wird in dem in Beispiel A1 beschriebenen Verfahren an Stelle von 2-Brom-mesitylen 2,6-Dimethyl-4-methoxy-Brombenzol eingesetzt, erhält man die Verbindung der Formel
      Figure 01390002
      Smp. 111-114°C.
    • (ii) Einsatz obiger Verbindung A15(i) an Stelle von Verbindung 1a in dem in Beispiel A2 beschriebenen Verfahren liefert die Verbindung der Formel
      Figure 01400001
      als gelben Feststoff; Smp. 292-298°C.
  • Beispiel A16: Ausgangsverbindungen für Verbindungen (33) und (34)
    • (i) Wird in dem in Beispiel A1 beschriebenen Verfahren an Stelle von 2-Brom-mesitylen 2,4,6-Triisopropyl-Brombenzol eingesetzt, erhält man die Verbindung der Formel
      Figure 01400002
      als blaßgelben Feststoff; Smp. 95-101°C.
    • (ii) Einsatz obiger Verbindung A16(i) an Stelle von Verbindung 1a in dem in Beispiel A2 beschriebenen Verfahren liefert die Verbindung der Formel
      Figure 01410001
      Zersetzungspunkt: 307-315°C.
  • Beispiel A17: Ausgangsverbindungen für Verbindungen (35) und (36)
    • (i) Wird in dem in Beispiel A1 beschriebenen Verfahren an Stelle von 2-Brom-mesitylen 2,6-Dimethyl-4-chlor-brombenzol eingesetzt, erhält man die Verbindung der Formel
      Figure 01410002
    • (ii) Einsatz obiger Verbindung A17(i) an Stelle von Verbindung 1a in dem in Beispiel A2 beschriebenen Verfahren liefert die Verbindung der Formel
      Figure 01410003
  • Beispiel A18: Ausgangsverbindungen für Verbindung (37)
    • (i) Wird in dem in Beispiel A1 beschriebenen Verfahren an Stelle von 2-Brom-mesitylen 2,4,6-Trimethyl-3-methoxy-brombenzol eingesetzt, erhält man die Verbindung der Formel
      Figure 01420001
      Smp. 103-105°C.
    • (ii) Einsatz obiger Verbindung A11(i) an Stelle von Verbindung 1a in dem in Beispiel A2 beschriebenen Verfahren liefert die Verbindung der Formel
      Figure 01420002
      als gelben Feststoff; Smp. 268-276°C.
  • Beispiel A19:
  • Gemäß der in Beispiel A3 beschriebenen Methode werden die in der folgenden Tabelle dargestellten Verbindungen hergestellt.
  • Tabelle A19: Herstellung der Verbindungen (21), (23), (25), (27), (29), (31), (33), (35), (37)
    Figure 01430001
  • Beispiel A20:
  • Verbindungen (22), (22a), (24), (26), (28), (30), (32), (34) und (36) werden hergestellt wie in Tabelle A20 angegeben.
  • Tabelle A20
    Figure 01430002
  • B) Anwendungsbeispiele
  • Beispiel B1: Stabilisierung eines 2-Schicht Metalliclackes
  • Die zu prüfende Verbindung wird in 5-10 g Xylol eingearbeitet und in einem Klarlack folgender Zusammensetzung geprüft:
    Figure 01440001
    • 1) Acrylatharz, Fa. Hoechst AG; 65 % Lösung in Xylol/Butanol 26:9
    • 2) Acrylatharz, Fa. Hoechst AG; 75 % Lösung in Solvesso®1004)
    • 3) Melaminharz, Fa. Hoechst AG; 55 % Lösung in Isobutanol
    • 4) aromat. Kohlenwasserstoffgemisch, Siedebereich 182-203°C (Solvesso® 150) bzw. 161-178°C (Solvesso® 100); Hersteller: Fa. ESSO
    • 5) aliphat. Kohlenwasserstoffgemisch, Siedebereich 145-200°C; Hersteller: Fa. Shell
    • 6) 1 % in Solvesso® 1504); Hersteller: Fa. Bayer AG
  • Dem Klarlack werden 1,7 % der zu prüfenden Verbindung zugesetzt, bezogen auf den Feststoffgehalt des Lackes. Einige weitere Lackproben werden hergestellt, die zusätzlich zu der erfindungsgemäßen Verbindung 1 % der Verbindung
    Figure 01440002
    (Verbindung A) bezogen auf den Feststoffgehalt des Lackes enthalten. Als Vergleich dient ein Klarlack, der kein Lichtschutzmittel enthält.
  • Der Klarlack wird mit Solvesso® 100 auf Spritzfähigkeit verdünnt und auf ein vorbereitetes Aluminiumblech (coil coat, Füller, silbermetallic Basislack) gespritzt und bei 130°C 30 Minuten eingebrannt. Es resultiert eine Trockenfilmdicke von 40-50 μm Klarlack.
  • Die Proben werden dann in einem UVCON®-Bewitterungsgerät der Fa. Atlas Corp. (UVB-313 Lampen) bei einem Zyklus von 8 h UV-Bestrahlung bei 70°C und 4 h Kondensation bei 50°C bewittert.
  • Von den Proben wird in regelmäßigen Abständen der Oberflächenglanz (20°-Glanz gemäß DIN 67530) gemessen. Zusätzlich wird die Oberfläche auf Rißbildung untersucht. Die Ergebnisse sind in Tabelle B1 zusammengestellt.
  • Tab. B1: 20°-Glanz vor und während Bewitterung
    Figure 01450001
  • Die erfindungsgemäß stabiliserten Proben weisen eine deutlich bessere Bewitterungsstabilität (Glanzhaltung, Rißfestigkeit) auf als die unstabilisierte Vergleichsprobe. Eine starke weitere Verbesserung wird durch die Mitverwendung von Verbindung A erreicht.
  • Beispiel B2: Stabilisierung mit UVA-Kombination
  • Die in Tabelle B2 aufgeführten erfindungsgemäßen Verbindungen werden in einen Klarlack eingearbeitet und geprüft wie in Beispiel B1 beschrieben, jedoch werden dem Klarlack neben der angegebenen Menge der zu prüfenden erfindungsgemäßen Verbindung zusätzlich eine Mischung aus 85 Gewichtsteilen eines weiteren UV-Absorbers (UVA) der Formel
    Figure 01460001
    (Verbindung B; Isomerenmischung enthaltend C12- und C13-Alkylreste) und 15 Gewichtsteilen 1-Methoxy-2-propanol zugesetzt, Mengen jeweils bezogen auf den Feststoffgehalt des Lackes. Die Ergebnisse sind in Tabelle B2 zusammengestellt. Tab. B2: 20°-Glanz vor und während Bewitterung
    Figure 01460002
  • Beispiel B3: Stabilisierung eines 2-Komponenten-Polyurethanlackes Ein Klarlack wird aus den folgenden beiden Komponenten hergestellt: Komponente 1:
    28,8 % Desmophen®A VP LS 2051 (75% in Xylol)1)
    13,4 % Desmophen®VP LS 2971 (80% in Butylacetat)1)
    0,5 % Baysilon OL 17 (10% in Xylol)2)
    0,5 % Modaflow (1% in Xylol)3)
    33,5 % einer 1:1-Mischung aus 1-Methoxypropylacetat und Solventnaphta 100
    Komponente 2:
    23,5 % Desmodur®N 3390 (90% in 1:1-Mischung Butylacetat/Solventnaphta 100)4)
    100,0 %
    • 1) Polyol (Bayer AG)
    • 2) Verlaufshilfsmittel (Bayer AG)
    • 3) Verlaufshilfsmittel (Monsanto)
    • 4) Isocyanurat (Bayer AG)
  • Die erfindungsgemäßen Verbindungen werden zusammen mit Costabilisatoren (A) und/oder (B) entsprechend den Beispielen B1 und B2 in den Lösemittelanteil der Komponente 1 eingearbeitet. Zu Vergleichszwecken wird eine unstabilisierte Lackprobe hergestellt. Der Klarlack wird auf ein vorbereitetes Aluminiumblech (Elektrotauchlackierung, wäßriger silbermetallic Basislack) appliziert und bei 130°C 30 Minuten eingebrannt. Es resultiert eine Trockenfilmdicke von ca. 45 μm.
  • Die Bewitterung erfolgt im Xenon-Weather-O-Meter (CAM 180).
  • Von den Proben wird in regelmäßigen Abständen der Oberflächenglanz (20°-Glanz gemäß DIN 67530) gemessen. Die Ergebnisse sind in Tabelle B3 zusammengestellt.
  • Tab. B3: 20°-Glanz vor und während Bewitterung
    Figure 01470001
  • Beispiel B4:
  • Auf ein Polyethylen-Trägermaterial wird eine Gelatineschicht aufgetragen, die Silberbromid, einen Magentakuppler und einen Stabilisator enthält. Eine weitere Gelatineschicht enthält einen UV-Absorber (UVA) der Formel (I); die Nummer in Tabelle B4 bezieht sich auf die eingangs wiedergegebenen Liste.
  • Die Gelatineschichten enthalten folgende Komponenten (je m2 Trägermaterial):
    Figure 01480001
    • * bei Verwendung von 4-Aequivalentkupplern, ** bei Verwendung von 2-Aequivalentkupplern
    • A (Ölmenge) = 50 % der Magentakuppler-Menge,
    • B (Stabilisatormenge) = 35 % der Magentakuppler-Menge
  • Als Härter wird 2,4-Dichlor-6-hydroxytriazin-K-salzlösung verwendet, als Netzmittel das Natriumsalz der Diisobutylnaphthalinsulfonsäure.
  • Auf die so erhaltenen Proben wird jeweils ein Stufenkeil mit einem Dichteunterschied von 0,30 logE pro Stufe aufbelichtet und anschliessend gemäss den Vorschriften des Herstellers im Verarbeitungsprozess RA 4 der Firma Kodak für Negativ-Farbpapiere verarbeitet.
  • Nach Belichtung und Verarbeitung wird die Remissionsdichte im grün für die Magentastufe mit einer Dichte zwischen 0,9 und 1,1 des Keils gemessen. Dann wird der Keil in einem Atlas-Belichungsgerät mit total 30 kJ/cm2 belichtet und erneut die Remissionsdichte gemessen. Der Farbstoffverlust (–ΔDG; in %) ist in Tabelle B4 angegeben. Tabelle B4: Farbstoffverlust –ΔDG nach Belichtung
    Figure 01490001
  • Durch die Mischung aus einem erfindungsgemässen UV-Absorber und einem Stabilisator wird eine geringere Abnahme der Magentadichte festgestellt, verglichen mit einer Probe, die keinen UV-Absorber enthält.
  • Beispiel B5:
  • Es wird wie in Beispiel B4 vorgegangen, jedoch ohne Stabilisator und unter Verwendung eines Cyankupplers. Die Zusammensetzung der Gelatineschichten (pro m2) ist folgende:
    Figure 01500001
    • A (Ölmenge) = 1,5 × Cyankupplermenge
  • Nach Belichtung und Verarbeitung wie in Beispiel B4 beschrieben, wird die Remissionsdichte im Rot für die Cyanstufe mit einer Dichte zwischen 0,9 und 1,1 des Keils gemessen. Dann wird der Keil in einem Atlas-Belichtungsgerät mit total 30 kJ/cm2 belichtet und erneut die Remissionsdichte gemessen. Der Farbstoffverlust (–ΔDR; in %) ist in Tabelle B5 angegeben.
  • Tabelle B5: Farbstoffverlust –ΔDR nach Belichtung
    Figure 01500002
  • Figure 01510001
  • Durch die erfindungsgemässen UV-Absorber wird eine geringere Abnahme in der Dichte des Cyanfarbstoffs festgestellt, verglichen mit einer Probe, die keinen UV-Absorber enthält.
  • Beispiel B6:
  • Es wird wie in Beispiel B4 vorgegangen, jedoch ohne Stabilisator und unter Verwendung eines Gelbkupplers.
  • Die Zusammensetzung der Gelatineschichten (pro m2) ist folgende:
    Figure 01510002
    • A (Oelmenge) = 33 % der Gelbkuppler-Menge
  • Nach Belichtung und Verarbeitung wie in Beispiel B4 beschrieben, wird die Remissionsdichte im Blau für die Gelbstufe mit einer Dichte zwischen 0,9 und 1,1 des Keils gemessen. Dann wird der Keil in einem Atlas-Belichtungsgerät mit total 45 kJ/cm2 belichtet und erneut die Remissionsdichte gemessen. Der Farbstoffverlust (–ΔDB; in %) ist in Tabelle B6 angegeben.
  • Tabelle B6: Farbstoffverlust –ΔDB nach Belichtung
    Figure 01520001
  • Durch die erfindungsgemässen UV-Absorber wird eine geringere Abnahme in der Gelbfarbstoffdichte festgestellt, verglichen mit einer Probe, die keinen UV-Absorber enthält.
  • Beispiel B7:
  • Es wird wie in Beispiel B4 vorgegangen.
  • Die Mengen an Magentakuppler und Stabilisator sind in Tabelle B7 angegeben.
  • Zu Vergleichszwecken wird in einigen Proben auch ein UV-Absorber gemäß Stand der Technik eingesetzt; es ist die folgende Verbindung:
    Figure 01530001
  • Es wird die Remissionsdichte im Blau für die Vergilbung gemessen. Der Keil wird in einem Atlas-Belichtungsgerät mit total 45 kJ/cm2 belichtet, anschließend wird die Remissionsdichte bei 406 nm gemessen. Tabelle B7 zeigt den ermittelten Gelbwert (D406). Tabelle B7: Gelbwert D406 nach Belichtung
    Figure 01530002
  • Die Verwendung der erfindungsgemässen UV-Absorber im Gemisch mit einem Stabilisator führt zu einem geringeren Gelbwert im Vergleich zu einem strukturell ähnlichen UV-Absorber gemäß Stand der Technik.
  • Beispiel B8:
  • Es wird wie in Beispiel B4 vorgegangen, aber
    • ➀ man belichtet nur 30 kJ/cm2
    • ➁ man mischt den UV-Absorber der Erfindung (110 mg) mit Hydroxybenzotriazol (110 mg)
  • Folgende Hydroxybenztriazole werden eingesetzt:
    Figure 01540001
  • Der Farbstoffverlust (–ΔDG; in %) ist in Tabelle B8 angegeben. Tabelle B8: Farbstoffverlust –ΔDG nach Belichtung
    Figure 01540002
  • Durch Verwendung der erfindungsgemässen UV-Absorber im Gemisch mit einem Hydroxybenzotriazol wird eine geringere Abnahme der Magentafarbstoffdichte erreicht.
  • Beispiel B9:
  • Auf ein Polyethylen-Trägermaterial wird eine Gelatineschicht aufgetragen, die Silberbromid, einen Cyankuppler und einen UV-Absorber der Formel (I) enthält. Die Gelatineschicht enthält folgende Komponenten (je m2 Trägermaterial)
    Figure 01550001
    • A (Ölmenge) = 1,5 × Cyankupplermenge
  • Nach Belichtung und Verarbeitung wie in Beispiel B4 beschrieben, wird die Remissionsdichte im Rot für die Cyanstufe mit einer Dichte zwischen 0,9 und 1,1 des Keils gemessen. Dann wird der Keil in einem Atlas-Belichtungsgerät mit 30 kJ/cm2 belichtet und erneut die Remissionsdichte gemessen. Der Farbstoffverlust (–ΔDR; in %) ist in Tabelle B9 angegeben.
  • Tabelle B9: Farbstoffverlust –ΔDR nach Belichtung
    Figure 01550002
  • Durch Verwendung der erfindungsgemässen UV-Absorber wird eine geringere Abnahme in der Cyanfarbstoffdichte erreicht, verglichen mit einer Probe, die keinen UVA enthält.
  • Beispiel B10:
  • Es wird wie in Beispiel B6 vorgegangen, aber man mischt den UV-Absorber der Erfindung (110 mg) mit einem Hydroxybenzotriazol (110 mg) wie in Beispiel B8 angegeben.
  • Der Farbstoffverlust (–ΔDB; in %) ist in Tabelle B10 angegeben. Tabelle B10: Farbstoffverlust –ΔDB nach Belichtung
    Figure 01560001
  • Mit Hilfe der erfindungsgemässen UV-Absorber im Gemisch mit einem Hydroxybenzotriazol wird eine geringere Abnahme in der Gelbfarbstoffdichte erreicht gegenüber einer Probe, die keinen UVA enthält.
  • Beispiel B11:
  • Es wird wie in Beispiel B6 vorgegangen, aber man gibt zusätzlich einen Stabilisator zu. Die Mengen von Gelbkuppler und Stabilisator sowie der Farbstoffverlust (–ΔDB; in %) sind in Tabelle B11 angegeben.
  • Tabelle B11: Farbstoffverlust –ΔDB nach Belichtung
    Figure 01560002
  • Figure 01570001
  • Mit Hilfe der erfindungsgemässen UV-Absorber im Gemisch mit einem Stabilisator wird eine geringere Abnahme in der Gelbfarbstoffdichte erreicht gegenüber einer Probe, die keinen UVA enthält.
  • Beispiel B12:
  • Es wird wie in Beispiel B11 vorgegangen, aber man mischt den UV-Absorber der Erfindung (110 mg) mit einem Hydroxybenzotriazol (110 mg) wie in Beispiel B8 angegeben.
  • Der Farbstoffverlust (–ΔDB; in %) ist in Tabelle B12 angegeben. Tabelle B12: Farbstoffverlust –ΔDB nach Belichtung
    Figure 01570002
  • Mit Hilfe der erfindungsgemässen UV-Absorber im Gemisch mit einem Stabilisator und einem Hydroxybenzotriazol wird eine geringere Abnahme in der Gelbfarbstoffdichte erreicht gegenüber einer Probe, die keinen UVA enthält.
  • Beispiel B13:
  • Es wird ein fotographisches Material mit folgendem Schichtbau hergestellt:
    Figure 01580001
  • Die Gelatineschichten bestehen aus folgenden Komponenten (je m2 Trägermaterial): Blauempfindliche Schicht
    Figure 01590001
    Erste Gelatinezwischenschicht
    Figure 01590002
    Grünempfindliche Schicht
    Figure 01600001
    Zweite Gelatinezwischenschicht
    Figure 01600002
    Rotempfindliche Schicht
    Figure 01610001
  • Eine Schutzschicht wird mit und ohne UV-Absorber hergestellt
  • Figure 01610002
  • Als Härter und Netzmittel werden die entsprechenden Verbindungen gemäss Beispiel B4 verwendet.
  • Auf die Proben werden (mit blauem, grünem bzw. rotem Licht) jeweils drei Stufenkeile mit einem Dichteunterschied von 0,3 kJ pro Stufe aufbelichtet.
  • Anschliessend wird gemäss Verarbeitungsprozess RA 4 (Kodak) für Negativ-Farbpapiere verfahren.
  • Nach Belichtung und Verarbeitung werden die Remissionsdichten im Rot für die Cyanstufe, im Grün für die Magentastufe und im Blau für die Gelbstufe bei einer Dichte zwischen 0,9 und 1,1 der Keile gemessen. Dann werden die Keile in einem Atlas-Belichtungsgerät mit insgesamt 15 kJ/cm2 belichtet und es werden erneut die Remissionsdichten gemessen.
  • Auch bei dem Magentakeil wird die Remissionsdichte vor und nach der Belichtung im Blau für die Vergilbung gemessen.
  • Die Anwesenheit der UV-Absorber reduziert den Farbstoffdichteverlust des Cyan-, Magenta- und Gelbbildfarbstoffs sowie die Vergilbung.
  • Beispiel B14:
  • Es wird ein fotographisches Material mit folgendem Schichtbau hergestellt:
    Figure 01620001
  • Die Gelatineschichten bestehen aus folgenden Komponenten (je m2 Trägermaterial):
  • Blauempfindliche Schicht
    • α-(3-Benzyl-4-ethoxyhydantoin-1-yl)-α-pivaloyl-2-chloro-5-[α-(2,4-di-t-amylphenoxy)butanamido]acetanilid (400 mg)
    • α-(1-Butyl-phenylurazol-4-yl)-α-pivaloyl-5-(3-dodecansulfonyl-2-methylpropanamido)-2-methoxyacetamid (400 mg)
    • Dibutylphthalat (130 mg)
    • Dinonylphthalat (130 mg)
    • Gelatine (1200 mg)
    • 1,5-Dioxa-3-ethyl-3-[β-(3,5-di-t-butyl-4-hydroxyphenyl)-propionyloxymethyl]-8,10-diphenyl-9-thia-[5,5]spiroundecan (150 mg)
    • Bis(1-acryloyl-2,2,6,6-tetramethyl-4-piperidyl)2,2-bis-(3,5-di-t-butyl-4-hydroxybenzyl)malonate (150 mg)
    • 3,5-Di-t-butyl-4-hydroxy-(2,4-di-t-amylphenyl)-benzoate (150 mg)
    • Poly(N-t-butylacrylamid) (50 mg)
    • blauempfindliche Silberchlorobromid-emulsion (240 mg)
  • Erste Gelatinezwischenschicht
    • Gelatine (1000 mg)
    • 2,5-Di-t-octylhydrochinon (100 mg)
    • 5-[2,5-Dihydroxy-4-(4-hexyloxycarbonyl-1,1-dimethylbutyl)-phenyl]-5-methylhexansäurehexylester (100 mg)
    • Dibutylphthalat (200 mg)
    • Diisodecylphthalat (200 mg)
  • Grünempfindliche Schicht
    • 7-Chloro-2-{2-[2-(2,4-di-t-amylphenoxy)octanamido]-1-methylethyl}-6-methyl-1H-pyrazolo[1,5-b][1,2,4]triazol (100 mg)
    • 6-t-Butyl-7-chloro-3-(3-dodecansulfonylpropyl)-1H-pyrazolo[5,1-o][1,2,4]triazol (100 mg)
    • Dibutylphthalat (100 mg)
    • Dikresylphosphat (100 mg)
    • Trioctylphosphat (100 mg)
    • Gelatine (1400 mg)
    • 3,3,3',3'-Tetramethyl-5,5',6,6'-tetrapropoxy-1,1'-spirobiindane (100 mg)
    • 4-(i-Tridecyloxyphenyl)thiomorpholine-1,1-dioxide (100 mg)
    • 4,4'-Butyliden-bis(3-methyl-6-t-butylphenol) (50 mg)
    • 2,2'-Isobutyliden-bis(4,6-dimethylphenol) (10 mg)
    • 3,5-Dichloro-4-(hexadecyloxycarbonyloxy)ethylbenzoat (20 mg)
    • 3,5-Bis[3-(2,4-di-t-amylphenoxy)propylcarbamoyl]natriumbenzolsulfinat (20 mg)
    • grünempfindliche Silberchlorobromid-emulsion (150 mg)
  • Zweite Gelatinezwischenschicht
    • Gelatine (1000 mg)
    • 5-Chloro-2-(3,5-di-t-butyl-2-hydroxyphenyl)benz-1,2,3-triazol (200 mg)
    • 2-(3-Dodecyl-2-hydroxy-5-methylphenyl)benz-1,2,3-triazol (200 mg)
    • Trinonylphosphat (300 mg)
    • 2,5-Di-t-octylhydrochinon (50 mg)
    • 5-[2,5-Dihydroxy-4-(4-hexyloxycarbonyl-1,1-dimethylbutyl)-phenyl]-5-methylhexansäurehexylester (50 mg)
  • Rotempfindliche Schicht
    • 2-[α-(2,4-Di-t-amylphenoxy)butanamido]-4,6-di-chloro-5-ethylphenol (150 mg)
    • 2,4-Dichloro-3-ethyl-6-hexadecanamidophenol (150 mg)
    • 4-Chloro-2-(1,2,3,4,5-pentafluorobenzamido)-5-[2-(2,4-di-t-amylphenoxy)-3-methylbutanamido]phenol (100 mg)
    • Dioctylphthalat (100 mg)
    • Dicyclohexylphthalat (100 mg)
    • Gelatine (1200 mg)
    • 5-Chloro-2-(3,5-di-t-butyl-2-hydroxyphenyl)benz-1,2,3-triazol (100 mg)
    • 2-(3-Dodecyl-2-hydroxy-5-methylphenyl)benz-1,2,3-triazol (100 mg)
    • 3,5-Di-t-butyl-4-hydroxy-(2,4-di-t-amylphenyl)-benzoate (50 mg)
    • Poly(N-t-butylacrylamid) (300 mg)
    • N,N-Diethyl-2,4-di-t-amylphenoxyacetamid (100 mg)
    • 2,5-Di-t-octylhydrochinon (50 mg)
    • rotempfindliche Silberchlorobromid-emulsion (200 mg)
  • Die oberste Schicht wird mit und ohne UV-Absorber hergestellt mit UV-Absorber:
    2,5-Di-t-octylhydrochinon (20 mg)
    5-[2,5-Dihydroxy-4-(4-hexyloxycarbonyl-1,1-dimethylbutyl)-phenyl]-5-methylhexansäurehexylester (20 mg)
    Gelatine (400 mg)
    Trinonylphosphat (120 mg)
    UV-Absorber Verb. Nr. (2) (200 mg)
    ohne UV-Absorber:
    Gelatine (800 mg)
  • Als Härter wird 2,4-Dichlor-6-hydroxytriazin-K-salzlösung verwendet, als Netzmittel das Natriumsalz der Diisobutylnaphthalinsulfonsäure.
  • Auf die Proben werden (mit blauem, grünem bzw. rotem Licht) jeweils drei Stufenkeile mit einem Dichteunterschied von 0,3 kJ pro Stufe aufbelichtet. Anschliessend wird gemäss Verarbeitungsprozess RA-4 (Kodak) für Farbpapiere verfahren.
  • Nach Belichtung und Verarbeitung werden die Remissionsdichten im Rot für die Cyanstufe, im Grün für die Magentastufe und im Blau für die Gelbstufe bei einer Dichte zwischen 0,9 und 1,1 der Keile gemessen. Dann werden die Keile in einem Atlas-Belichtungsgerät mit insgesamt 15 kJ/cm2 belichtet und es werden erneut die Remissionsdichten gemessen.
  • Auch bei dem Magentakeil wird die Remissionsdichte vor und nach der Belichtung im Blau für die Vergilbung gemessen.
  • Die Anwesenheit der UV-Absorber reduziert den Farbstoffdichteverlust des Cyan-, Magenta- und Gelbbildfarbstoffs.
  • Beispiel B15:
  • Auf einem transparenten Polyesterträger wird eine Gelatineschicht aufgetragen, welche in trockenem Zustand eine Schichtdicke von ca. 2 μm hat und einen in Tabelle B15 aufgeführten UV-Absorber (UVA) enthält. Die Struktur des als Vergleich getesteten UVA ist wie in Beispiel B7 angegeben. Die Gelatineschicht enthält pro m2 1,2 g Gelatine, 40 mg Härtungsmittel (Kaliumsalz von 2,4-Dichlor-6-hydroxytriazin), 100 mg Netzmittel (Na-Salz der Diisobutylnaphthalinsulfonsäure), 510 mg Trikresylphosphat und 220 mg UVA. Die gehärtete Schicht wird spektrophotometrisch untersucht; aus den Daten wird der spezifische Extinktionskoeffizient (∊sp) für die jeweilige Wellenlänge berechnet. Erwünscht ist eine hohe Absorption in der Nähe des UV-Maximum bei ca. 252 nm und möglichst geringe Absorption im sichtbaren Bereich oberhalb von 400 nm. Die Ergebnisse sind in Tabelle B15 zusammengestellt.
  • Tabelle B15: Spezifischer Extinktionskoeffizient (∊sp)
    Figure 01660001
  • Der Vergleich zeigt, daß der erfindungsgemäße UVA (2) überraschenderweise im UV-Bereich stärker absorbiert als ein vergleichbarer UVA aus dem Stand der Technik (SA-1), während (2) an der Grenze des sichtbaren Bereiches praktisch keine Absorption zeigt.
  • Beispiel B16:
  • Es wird wie in Beispiel B4 vorgegangen, jedoch unter Verwendung eines Gelbkupplers sowie unter zusätzlicher Verwendung des unten beschriebenen hydrophoben Polymers in der blauempfindlichen Schicht.
  • Die Zusammensetzung der Gelatineschichten (Mengen jeweils pro m2) ist folgende:
    Figure 01670001
  • Nach Belichtung und Verarbeitung wie in Beispiel B4 beschrieben wird die Remissionsdichte im Blau für die Gelbstufe mit einer Dichte zwischen 0,9 und 1,1 des Keils gemessen. Dann wird der Keil in einem Atlas-Belichungsgerät mit total 30 kJ/cm2 belichtet und erneut die Remissionsdichte gemessen. Der Farbstoffverlust (–ΔDB; in %) ist in Tabelle B16 angegeben.
  • P1
    ist ein Homopolymer von tert.-Butylacrylamid;
    P2
    ist ein Copolymer von Fumarsäure-dibutylester und Acrylsäure-2-ethylhexylester;
    TKP
    bedeutet Trikresylphosphat.
    Tabelle B16: Farbstoffverlust –ΔDB nach Belichtung
    Figure 01680001
  • Die erfindungsgemäßen UV-Absorber in Kombination mit den genannten Polymeren zeigen eine gute Schutzwirkung für den Gelbfarbstoff.

Claims (22)

  1. Verbindung der Formel I
    Figure 01690001
    worin R1 und R5, unabhängig voneinander, C1-C12-Alkyl bedeuten; R2, R3 und R4, unabhängig voneinander, H, C1-C12-Alkyl; C2-C6-Alkenyl; C1-C12-Alkoxy; C2-C18-Alkenyloxy; Halogen; Trifluormethyl; C7-C11-Phenylalkyl; Phenyl; durch C1-C18-Alkyl, C1-C18-Alkoxy oder Halogen substituiertes Phenyl; Phenyloxy; oder durch C1-C18-Alkyl, C1-C18-Alkoxy oder Halogen substituiertes Phenyloxy darstellen; die beiden Reste R7 gleich oder verschieden sind und Wasserstoff oder C1-C18-Alkyl bedeuten; oder C1-C18-Alkyl bedeuten, welches durch OH, C1-C18-Alkoxy, C3-C6-Alkenyloxy, Halogen, -COOH, -COOR8, -CONH2, -CONHR9, -CON(R9)(R10), -NH2, -NHR9, -N(R9)(R10), -NHCOR11, -CN, -OCOR11, Phenoxy und/oder durch C1-C18-Alkyl, C1-C18-Alkoxy oder Halogen substituiertes Phenoxy substituiert ist; oder die Reste R7 C3-C50-Alkyl darstellen, das durch -O- unterbrochen ist und durch OH, Phenoxy oder C7-C18-Alkylphenoxy substituiert sein kann; oder die Reste R7 C3-C6-Alkenyl; Glycidyl; C5-C12-Cycloalkyl; durch OH, C1-C4-Alkyl oder -OCOR11 substituiertes C5-C12-Cycloalkyl; unsubstituiertes oder durch OH, Cl oder CH3 substituiertes C7-C11-Phenylalkyl; durch OH oder -OCOR11 substituiertes C4-C14-Alkenyl; -CO-R12 oder -SO2-R13 bedeuten; R8 C1-C18-Alkyl; C3-C18-Alkenyl; durch O, NH, NR9 oder S unterbrochenes und/oder durch OH substituiertes C3-C50-Alkyl; durch -P(O)(OR14)2, -N(R9)(R10) oder -OCOR11 und/oder OH substituiertes C1-C4-Alkyl; Glycidyl; C5-C12-Cycloalkyl; Phenyl; C7-C14-Alkylphenyl oder C7-C11-Phenylalkyl bedeutet; R9 und R10 unabhängig voneinander C1-C12-Alkyl; C3-C12-Alkoxyalkyl; C4-C16-Dialkylaminoalkyl oder C5-C12-Cycloalkyl bedeuten oder R9 und R10 zusammen C3-C9-Alkylen oder -Oxaalkylen oder -Azaalkylen bedeuten; R11 C1-C18-Alkyl, C5-C12-Cycloalkyl oder Phenyl bedeutet; oder C3-C50-Alkyl darstellt, das durch -O- unterbrochen ist und durch OH substituiert sein kann; R12 C1-C18-Alkyl; Phenyl; C5-C12-Cycloalkyl; C1-C12-Alkoxy; Phenoxy; C1-C12-Alkylamino; Phenylamino; Tolylamino oder Naphthylamino bedeutet; R13 C1-C12-Alkyl; Phenyl; Naphthyl oder C7-C14-Alkylphenyl bedeutet; und R14 C1-C12-Alkyl oder Phenyl bedeutet.
  2. Verbindung der Formel I gemäß Anspruch 1, worin R1 und R5, unabhängig voneinander, C1-C4-Alkyl bedeuten; R2, R3 und R4, unabhängig voneinander, H, C1-C12-Alkyl, C2-C6-Alkenyl, C1-C12-Alkoxy, Cl, F, Phenyl oder Phenyloxy darstellen.
  3. Verbindung der Formel I gemäß Anspruch 1, worin R7 Wasserstoff oder C1-C18-Alkyl; oder C1-C12-Alkyl bedeuten, welches durch OH, C1-C18-Alkoxy, C3-C6-Alkenyloxy, -Cl, -F, -COOH, -COOR8, -CONHR9, -CON(R9)(R10), -NH2, -NHR9, -N(R9)(R10), -NHCOR11, -CN, -OCOR11, Phenoxy und/oder durch C1-C18-Alkyl, C1-C18-Alkoxy oder Halogen substituiertes Phenoxy substituiert ist; oder die Reste R7 C3-C50-Alkyl darstellen, das durch -O- unterbrochen ist und durch OH, Phenoxy oder C7-C18-Alkylphenoxy substituiert sein kann; oder die Reste R7 C3-C6-Alkenyl; Glycidyl; C5-C12-Cycloalkyl; durch OH, C1-C4-Alkyl oder -OCOR11 substituiertes C5-C12-Cycloalkyl; unsubstituiertes oder durch OH, Cl oder CH3 substituiertes C7-C11-Phenylalkyl; durch OH oder -OCOR11 substituiertes C4-C14-Alkenyl; oder -CO-R12 bedeuten; R8 C1-C18-Alkyl; C3-C18-Alkenyl; durch O unterbrochenes und/oder durch OH substituiertes C3-C50-Alkyl; durch -P(O)(OR14)2, -N(R9)(R10) oder -OCOR11 und/oder OH substituiertes C1-C4-Alkyl; Glycidyl; C5-C12-Cycloalkyl; Phenyl oder C7-C11-Phenylalkyl bedeutet; R11 C1-C18-Alkyl, Cyclohexyl oder Phenyl bedeutet; oder C3-C50-Alkyl darstellt, das durch -O- unterbrochen ist und durch OH substituiert sein kann; und R12 C1-C18-Alkyl; Phenyl; Cyclohexyl; C1-C12-Alkoxy; Phenoxy bedeutet.
  4. Verbindung der Formel I gemäß Anspruch 1, worin R7 Wasserstoff oder C1-C18-Alkyl; oder C1-C18-Alkyl darstellt, welches durch OH, C1-C18-Alkoxy, C3-C6-Alkenyloxy, Phenoxy, -COOR8, -CONHR9, -CON(R9)(R10) und/oder -OCOR11 substituiert ist; oder R7 -(CH2CHR15-O)n-R18 oder -CH2-CH(OH)-CH2-O-(CH2CHR15-O)n-R18 ist, wobei n eine Zahl aus dem Bereich 1-12 darstellt; oder die Reste R7 C3-C6-Alkenyl; Glycidyl; C5-C12-Cycloalkyl; durch OH oder -OCOR11 substituiertes C5-C12-Cycloalkyl; C7-C11-Phenylalkyl; durch OH oder -OCOR11 substituiertes C4-C14-Alkenyl; oder -CO-R12 bedeuten; R8 C1-C18-Alkyl; C3-C8-Alkenyl; durch O unterbrochenes und/oder durch OH substituiertes C3-C50-Alkyl; durch -P(O)(OR14)2 oder -OCOR11 und/oder OH substituiertes C1-C4-Alkyl; C5-C12-Cycloalkyl; Phenyl oder C7-C11-Phenylalkyl bedeutet; R11 C1-C8-Alkyl, Cyclohexyl oder Phenyl bedeutet; R12 C1-C18-Alkyl oder Phenyl bedeutet; R14 C1-C4-Alkyl bedeutet; R15 H oder Methyl ist; und R18 H, C1-C18-Alkyl, Phenyl oder C7-C18-Alkylphenyl bedeutet.
  5. Verbindung gemäß Anspruch 1, worin R1 und R5, unabhängig voneinander, C1-C4-Alkyl bedeuten; R2, R3 und R4, unabhängig voneinander, H, C1-C6-Alkyl, Allyl, C1-C4-Alkoxy, Cl, F oder Phenyl darstellen.
  6. Verbindung gemäß Anspruch 1, worin R1 und R5 Methyl sind; R2, R3 und R4 H, C1-C4-Alkyl, C1-C4-Alkoxy, -Cl oder Phenyl darstellen; die Reste R7 gleich sind und Wasserstoff oder C1-C18-Alkyl sind; oder durch OH, C1-C18-Alkoxy, C3-C5-Alkenyloxy, Phenoxy, -COOR8 und/oder -OCOR11 substituiertes C1-C12-Alkyl darstellen; oder R7 -(CH2CHR15-O)n-R18 oder -CH2-CH(OH)-CH2-O-(CH2CHR15-O)n-R18 ist, wobei n eine Zahl aus dem Bereich 1-12 darstellt; oder die Reste R7 C5-C12-Cycloalkyl; durch OH substituiertes C5-C12-Cycloalkyl; oder durch OH substituiertes C4-C14-Alkenyl bedeuten; R8 C1-C12-Alkyl; R11 C1-C4-Alkyl bedeutet und R18 H oder C1-C8-Alkyl ist.
  7. Zusammensetzung enthaltend A) ein gegen Schädigung durch Licht, Sauerstoff und/oder Hitze empfindliches organisches Material und B) als Stabilisator mindestens eine Verbindung der Formel I.
  8. Zusammensetzung gemäß Anspruch 7, enthaltend auf 100 Gew.-Teile der Komponente A 0,01 bis 15 Gew.-Teile der Komponente B.
  9. Zusammensetzung gemäß Anspruch 7, enthaltend außer den Komponenten A und B einen oder mehrere andere Stabilisatoren oder sonstige Zusätze.
  10. Zusammensetzung gemäß Anspruch 9, enthaltend als weiteren Zusatz ein Lichtschutzmittel aus der Klasse der gehinderten Amine, der 2-Hydroxyphenylbenztriazole und/oder der 2-Hydroxyphenyltriazine.
  11. Zusammensetzung gemäß Anspruch 7, enthaltend als Komponente A ein synthetisches organisches Polymer.
  12. Zusammensetzung gemäß Anspruch 7, enthaltend als Komponente A ein thermoplastisches Polymer, ein Bindemittel für Überzüge oder ein fotografisches Material.
  13. Zusammensetzung gemäß Anspruch 7, enthaltend als Komponente A ein fotografisches Aufzeichnungsmaterial, welches auf einem Träger mindestens eine Silberhalogenidemulsionsschicht sowie gegebenenfalls mindestens eine Zwischenschicht und/oder eine Protektionsschicht enthält, wobei mindestens eine der genannten Schichten einen UV-Absorber der Komponente B enthält.
  14. Zusammensetzung gemäß Anspruch 13 enthaltend eine Verbindung der Formel (I) in einer Schicht oberhalb der Silberhalogenidemulsionsschicht(en).
  15. Zusammensetzung gemäß Anspruch 13 enthaltend den UV-Absorber in einer Schicht über der grünempfindlichen Schicht.
  16. Zusammensetzung gemäß Anspruch 13, enthaltend den UV-Absorber in einer Menge von 0,05 bis 10 g pro m2.
  17. Zusammensetzung gemäß Anspruch 13, dadurch gekennzeichnet, daß mindestens eine der Schichten ein hydrophobes Homo- oder Copolymer enthält.
  18. Zusammensetzung gemäß Anspruch 17, enthaltend in mindestens einer der Schichten den UV-Absorber der Formel I und das hydrophobe Polymer, dadurch erhältlich, daß der UV-Absorber und das hydrophobe Polymer in einem organischen Lösungsmittel gelöst und hierauf in wässrigem Milieu emulgiert und als Dispersion ins fotografische System eingebracht werden.
  19. Zusammensetzung gemäß Anspruch 13, enthaltend auf einem Träger mindestens je eine rotempfindliche, grünempfindliche und blauempfindliche Silberhalogenidemulsionsschicht sowie mindestens zwei zwischen den genannten Schichten liegende Zwischenschichten und eine Schutzschicht, wobei mindestens eine Verbindung der Formel (I) in einer Schicht oberhalb der grünempfindlichen Silberhalogenidemulsionsschicht enthalten ist und die Silberhalogenidemulsionsschichten Dunkellager- und/oder Lichtstabilisatoren enthalten.
  20. Verfahren zum Stabilisieren von organischem Material gegen Schädigung durch Licht, Sauerstoff und/oder Hitze, dadurch gekennzeichnet, daß man diesem als Stabilisator eine Verbindung der Formel I gemäß Anspruch 1 zusetzt.
  21. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 zum Stabilisieren von organischem Material gegen Schädigung durch Licht, Sauerstoff und/oder Hitze.
  22. Verbindung der Formel (A)
    Figure 01730001
    worin R' eine Gruppe der Formel
    Figure 01730002
    darstellt und R1, R2, R3, R4 und R5 jeweils die in Anspruch 1 für Formel I angegebenen Bedeutungen haben.
DE19537291A 1994-10-10 1995-10-06 Bis-Resorcinyltriazine Expired - Fee Related DE19537291B4 (de)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CH303994 1994-10-10
CH364/95-3 1995-02-08
CH365/95-5 1995-02-08
CH36595 1995-02-08
CH3039/94-0 1995-02-08
CH36495 1995-02-08

Publications (2)

Publication Number Publication Date
DE19537291A1 DE19537291A1 (de) 1996-04-18
DE19537291B4 true DE19537291B4 (de) 2006-06-22

Family

ID=27172041

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19537291A Expired - Fee Related DE19537291B4 (de) 1994-10-10 1995-10-06 Bis-Resorcinyltriazine

Country Status (17)

Country Link
US (1) US5686233A (de)
JP (1) JPH08239368A (de)
KR (1) KR100363980B1 (de)
CN (1) CN1067994C (de)
AT (1) AT406161B (de)
AU (1) AU703967B2 (de)
BE (1) BE1009090A3 (de)
BR (1) BR9504359A (de)
CA (1) CA2160091A1 (de)
CZ (1) CZ263695A3 (de)
DE (1) DE19537291B4 (de)
ES (1) ES2106685B1 (de)
FR (1) FR2725444B1 (de)
GB (1) GB2294043B (de)
IT (1) IT1276903B1 (de)
NL (1) NL1001381C2 (de)
SK (1) SK125595A3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005059739A1 (de) * 2005-12-13 2007-06-14 Beiersdorf Ag Sonnenschutzmittel mit Merocyaninen und Triazinen

Families Citing this family (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998116A (en) * 1996-09-13 1999-12-07 Ciba Specialty Chemicals Corporation Color-photographic recording material
GB2319523B (en) 1996-11-20 2000-11-08 Ciba Sc Holding Ag Hydroxyphenyltriazines
DE19735900A1 (de) * 1997-08-19 1999-02-25 Beiersdorf Ag Kosmetische oder dermatologische Lichtschutzmittel, welche gelöste Triazinderivate und polymere UV-Filtersubstanzen auf Siliconbasis enthalten
DE19735901A1 (de) * 1997-08-19 1999-02-25 Beiersdorf Ag Kosmetische oder dermatologische Lichtschutzmittel, welche als Festkörper vorliegende UV-Filtersubstanzen und polymere UV-Filtersubstanzen auf Siliconbasis enthalten
US6117997A (en) * 1997-11-19 2000-09-12 Ciba Specialty Chemicals Corporation Hydroxyphenyltriazines
CA2330054A1 (en) 1998-05-19 1999-11-25 E.I. Du Pont De Nemours And Company Polyacrylics containing pendant acetoacetonate moieties
AU5789299A (en) 1998-09-04 2000-03-27 Ciba Specialty Chemicals Holding Inc. Process for making 2-hydroxy-4-alkoxyphenyl or 2,4-dihydroxyphenyl substituted 1,3,5-triazine uv absorbers
US6034047A (en) * 1998-09-04 2000-03-07 Au; Van Bleach detergent compositions comprising nitrones and nitroso spin traps
GB2343007B (en) 1998-10-19 2001-11-07 Ciba Sc Holding Ag Colour photographic material
TWI259182B (en) 1998-11-17 2006-08-01 Cytec Tech Corp Process for preparing triazines using a combination of Lewis acids with reaction promoters
JP3821470B2 (ja) * 2001-12-26 2006-09-13 株式会社Adeka 合成樹脂用紫外線吸収剤、これを含有してなる合成樹脂組成物及び樹脂成形品
TWI318208B (en) * 2001-07-02 2009-12-11 Ciba Sc Holding Ag Highly compatible hydroxyphenyltriazine uv-absorbers
US6855269B2 (en) * 2001-11-09 2005-02-15 Cytec Technology Corp. Phenyl ether-substituted hydroxyphenyl triazine ultraviolet light absorbers
GB0130418D0 (en) * 2001-12-20 2002-02-06 Eastman Kodak Co Photographic elements containing a deaggregating compound and dye forming coupler
GB0130416D0 (en) * 2001-12-20 2002-02-06 Eastman Kodak Co Photographic elements containing a de-aggregating compound dye-forming coupler and stabilizer
JP4486810B2 (ja) 2003-01-08 2010-06-23 富士フイルム株式会社 着色組成物及びインクジェット記録方法
ATE485346T1 (de) 2003-06-18 2010-11-15 Fujifilm Corp Tinte und tintenstrahldrucktinte
EP1668085A4 (de) 2003-09-29 2009-05-06 Fujifilm Corp Tinte für tintenstrahldruck, tintenkombination für tintenstrahldruck, tintenstrahlaufzeichnungsmaterial und herstellungsverfahren für tintenstrahlaufzeichnungsmaterial sowie tintenstrahlaufzeichnungsverfahren
US7776144B2 (en) 2003-10-23 2010-08-17 Fujifilm Corporation Ink and ink set for inkjet recording
EP1709483A4 (de) 2004-01-30 2007-06-27 Fujifilm Corp Fotografisches lichtempfindliches silberhalogenid-farbmaterial und farbbilderzeugungsverfahren
US20060204732A1 (en) 2005-03-08 2006-09-14 Fuji Photo Film Co., Ltd. Ink composition, inkjet recording method, printed material, method of producing planographic printing plate, and planographic printing plate
DE102005036520A1 (de) * 2005-04-26 2006-11-09 Osram Opto Semiconductors Gmbh Optisches Bauteil, optoelektronisches Bauelement mit dem Bauteil und dessen Herstellung
JP4662822B2 (ja) 2005-07-19 2011-03-30 富士フイルム株式会社 光硬化型インクジェット記録装置
ATE410460T1 (de) 2005-08-23 2008-10-15 Fujifilm Corp Härtbare tinte enthaltend modifiziertes oxetan
JP4677306B2 (ja) 2005-08-23 2011-04-27 富士フイルム株式会社 活性エネルギー硬化型インクジェット記録装置
JP4757574B2 (ja) 2005-09-07 2011-08-24 富士フイルム株式会社 インク組成物、インクジェット記録方法、印刷物、平版印刷版の製造方法、及び、平版印刷版
EP1783184B9 (de) 2005-11-04 2011-05-11 Fujifilm Corporation Härtbare Tintenzusammensetzung und Oxetanverbindung
DE602007012161D1 (de) 2006-03-03 2011-03-10 Fujifilm Corp Härtbare Zusammensetzung, Tintenzusammensetzung, Tintenstrahlaufzeichnungsverfahren und Flachdruckplatte
JP4719606B2 (ja) 2006-03-30 2011-07-06 富士フイルム株式会社 インクジェットヘッド記録装置
US20090115328A1 (en) 2006-05-26 2009-05-07 Seiji Yamashita Surface emitting-type electroluminescent device
JP5215538B2 (ja) 2006-06-30 2013-06-19 富士フイルム株式会社 アゾ色素、着色組成物、感熱転写記録用インクシート、感熱転写記録方法、カラートナー、インクジェット用インクおよびカラーフィルタ
JP5276264B2 (ja) 2006-07-03 2013-08-28 富士フイルム株式会社 インク組成物、インクジェット記録方法、印刷物、及び、平版印刷版の製造方法
US20100062270A1 (en) * 2007-01-15 2010-03-11 Ciba Corporation Tinted clear coatings uv stabilized with 2-hydroxy phenyl triazine
US8038283B2 (en) 2007-01-18 2011-10-18 Fujifilm Corporation Ink-jet recording apparatus
JP2008189776A (ja) 2007-02-02 2008-08-21 Fujifilm Corp 活性放射線硬化型重合性組成物、インク組成物、インクジェット記録方法、印刷物、平版印刷版の作製方法、及び平版印刷版
JP5227521B2 (ja) 2007-02-26 2013-07-03 富士フイルム株式会社 インク組成物、インクジェット記録方法、印刷物、及び、インクセット
JP2008208266A (ja) 2007-02-27 2008-09-11 Fujifilm Corp インク組成物、インクジェット記録方法、印刷物、平版印刷版の製造方法、および平版印刷版
JP5224699B2 (ja) 2007-03-01 2013-07-03 富士フイルム株式会社 インク組成物、インクジェット記録方法、印刷物、平版印刷版の製造方法、及び平版印刷版
EP1970196A3 (de) 2007-03-13 2010-01-27 FUJIFILM Corporation Hydrophiles Element und Herstellungsverfahren dafür
US8119562B2 (en) 2007-03-29 2012-02-21 Fujifilm Corporation Heat-sensitive transfer sheet and image-forming method using heat-sensitive transfer system
JP2008246793A (ja) 2007-03-29 2008-10-16 Fujifilm Corp 活性エネルギー線硬化型インクジェット記録装置
EP1974948A3 (de) 2007-03-29 2012-02-08 FUJIFILM Corporation Bildgebendes Verfahren mit einem wärmeempfindlichen Übertragungssystem
EP1980409A3 (de) 2007-03-29 2010-09-29 FUJIFILM Corporation Wärmeempfindliche Übertragungsfolie zur Verwendung in wärmeempfindlichen Übertragungssystemen und Bilderzeugungsverfahren mit wärmeempfindlichem Übertragungssystem
JP5159141B2 (ja) 2007-03-30 2013-03-06 富士フイルム株式会社 インク組成物、インクジェット記録方法、印刷物、平版印刷版の作製方法及び平版印刷版
JP2008248124A (ja) 2007-03-30 2008-10-16 Fujifilm Corp 着色組成物、感熱転写記録用インクシート、感熱転写記録方法、カラートナー、インクジェット用インク、カラーフィルターおよびアゾ色素
JP2008273641A (ja) 2007-04-25 2008-11-13 Fujifilm Corp 感熱転写受像シート用紙管、感熱転写受像シートのロール形態加工物、及び画像形成方法
JP5337394B2 (ja) 2007-05-15 2013-11-06 富士フイルム株式会社 親水性コーティング組成物及びこれを用いた親水性部材
US7951854B2 (en) 2007-06-08 2011-05-31 Fujifilm Corporation Ink composition, ink set and inkjet recording method
EP2177549B1 (de) * 2007-07-13 2015-11-04 Samsung Electronics Co., Ltd. Triazinringhaltige polymerverbindung und neue verbindung und die polymerverbindung verwendende organische lichtemittierende vorrichtung
JP5213382B2 (ja) 2007-08-09 2013-06-19 富士フイルム株式会社 水性インク組成物、インクセット、及び画像記録方法
JP2009256568A (ja) 2007-08-17 2009-11-05 Fujifilm Corp 親水性膜形成用組成物、スプレー用組成物およびこれを用いた親水性部材
JP5469837B2 (ja) 2007-09-12 2014-04-16 富士フイルム株式会社 親水性組成物
JP2009090641A (ja) 2007-09-20 2009-04-30 Fujifilm Corp 防曇性カバー、及び該防曇性カバーを用いたメーター用カバー
US8076393B2 (en) 2007-09-26 2011-12-13 Fujifilm Corporation Ink composition, inkjet recording method, and printed material
JP2009256564A (ja) 2007-09-26 2009-11-05 Fujifilm Corp 親水性膜形成用組成物および親水性部材
JP5111039B2 (ja) 2007-09-27 2012-12-26 富士フイルム株式会社 重合性化合物、重合開始剤、および染料を含有する光硬化性組成物
JP5227560B2 (ja) 2007-09-28 2013-07-03 富士フイルム株式会社 インク組成物、インクジェット記録方法、印刷物、及び、成形印刷物の製造方法
JP5236238B2 (ja) 2007-09-28 2013-07-17 富士フイルム株式会社 インクジェット記録用ホワイトインク組成物
JP2009084494A (ja) 2007-10-01 2009-04-23 Fujifilm Corp 水系着色剤分散物、水系着色剤分散物の製造方法、及びインクジェット記録用水系インク
JP2009090489A (ja) 2007-10-04 2009-04-30 Fujifilm Corp 画像形成方法及び画像形成装置
JP4642892B2 (ja) 2007-11-09 2011-03-02 富士フイルム株式会社 顔料組成物、水性顔料分散物、水性顔料分散物の製造方法、インクジェット記録用水系インク
JP5201954B2 (ja) 2007-11-19 2013-06-05 富士フイルム株式会社 インクジェット記録用記録媒体及びその製造方法、並びにインクジェット記録方法
JP5201955B2 (ja) 2007-11-19 2013-06-05 富士フイルム株式会社 インクジェット記録用記録媒体及びその製造方法、並びにインクジェット記録方法
US8240838B2 (en) 2007-11-29 2012-08-14 Fujifilm Corporation Ink composition for inkjet recording, inkjet recording method, and printed material
JP5124496B2 (ja) 2008-02-01 2013-01-23 富士フイルム株式会社 親水性部材
JP5591473B2 (ja) 2008-02-05 2014-09-17 富士フイルム株式会社 インク組成物、インクジェット記録方法、及び印刷物
JP5383225B2 (ja) 2008-02-06 2014-01-08 富士フイルム株式会社 インク組成物、インクジェット記録方法、および印刷物
JP5254632B2 (ja) 2008-02-07 2013-08-07 富士フイルム株式会社 インク組成物、インクジェット記録方法、印刷物、及び、成形印刷物
JP5079538B2 (ja) 2008-02-13 2012-11-21 富士フイルム株式会社 インクジェット記録用インクセットおよび画像記録方法
US20090214797A1 (en) 2008-02-25 2009-08-27 Fujifilm Corporation Inkjet ink composition, and inkjet recording method and printed material employing same
JP2009226781A (ja) 2008-03-24 2009-10-08 Fujifilm Corp インクジェット画像の形成方法
JP2009233867A (ja) 2008-03-25 2009-10-15 Fujifilm Corp インクジェット記録方法及び記録物
JP2009227909A (ja) 2008-03-25 2009-10-08 Fujifilm Corp インクジェット用インクセット、画像記録方法、及び画像記録装置
JP5427382B2 (ja) 2008-03-25 2014-02-26 富士フイルム株式会社 親水性部材、フィン材、アルミニウム製フィン材、熱交換器およびエアコン
JP2009235113A (ja) 2008-03-25 2009-10-15 Fujifilm Corp インクジェット画像の形成方法
JP4914862B2 (ja) 2008-03-26 2012-04-11 富士フイルム株式会社 インクジェット記録方法、及び、インクジェット記録装置
US8523990B2 (en) 2008-06-16 2013-09-03 Fujifilm Corporation Ink composition, inkjet recording ink composition, ink set, ink cartridge, inkjet recording method and recorded matter
JP2010030223A (ja) 2008-07-30 2010-02-12 Fujifilm Corp インクジェット記録方法、インクジェット記録装置、及び、印刷物
JP5383133B2 (ja) 2008-09-19 2014-01-08 富士フイルム株式会社 インク組成物、インクジェット記録方法及び印刷物成形体の製造方法
JP2010069805A (ja) 2008-09-19 2010-04-02 Fujifilm Corp インクセット及びインクジェット記録方法
JP2010077228A (ja) 2008-09-25 2010-04-08 Fujifilm Corp インク組成物、インクジェット記録方法、及び、印刷物
JP2010077285A (ja) 2008-09-26 2010-04-08 Fujifilm Corp インクセット及び画像形成方法
ATE541905T1 (de) 2008-09-26 2012-02-15 Fujifilm Corp Tintenzusammensetzung und tintenaufzeichnungsverfahren
JP5461809B2 (ja) 2008-09-29 2014-04-02 富士フイルム株式会社 インク組成物、及び、インクジェット記録方法
JP5344892B2 (ja) 2008-11-27 2013-11-20 富士フイルム株式会社 インクジェット用インク組成物、及びインクジェット記録方法
KR101773621B1 (ko) 2009-01-19 2017-08-31 바스프 에스이 유기 흑색 안료 및 이의 제조 방법
JP5225156B2 (ja) 2009-02-27 2013-07-03 富士フイルム株式会社 活性放射線硬化型インクジェット記録用インク組成物、インクジェット記録方法及び印刷物
JP2010202756A (ja) 2009-03-03 2010-09-16 Fujifilm Corp 活性エネルギー線硬化型インク組成物、インクジェット記録方法、及び印刷物
JP2010209183A (ja) 2009-03-09 2010-09-24 Fujifilm Corp インク組成物及びインクジェット記録方法
JP5349095B2 (ja) 2009-03-17 2013-11-20 富士フイルム株式会社 インク組成物、及び、インクジェット記録方法
JP5349097B2 (ja) 2009-03-19 2013-11-20 富士フイルム株式会社 インク組成物、インクジェット記録方法、印刷物、及び、成形印刷物の製造方法
JP2010229349A (ja) 2009-03-27 2010-10-14 Fujifilm Corp 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク組成物インク組成物及びインクジェット記録方法
JP5405174B2 (ja) 2009-03-30 2014-02-05 富士フイルム株式会社 インク組成物
JP5383289B2 (ja) 2009-03-31 2014-01-08 富士フイルム株式会社 インク組成物、インクジェット用であるインク組成物、インクジェット記録方法、およびインクジェット法による印刷物
JP5579533B2 (ja) 2009-08-27 2014-08-27 富士フイルム株式会社 新規なオキセタン化合物、活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク組成物、及びインクジェット記録方法
JP5583376B2 (ja) 2009-09-15 2014-09-03 富士フイルム株式会社 インクジェット用インク組成物
JP5572026B2 (ja) 2009-09-18 2014-08-13 富士フイルム株式会社 インク組成物、及び、インクジェット記録方法
JP2011068783A (ja) 2009-09-25 2011-04-07 Fujifilm Corp インク組成物、及び、インクジェット記録方法
JP5489616B2 (ja) 2009-09-28 2014-05-14 富士フイルム株式会社 インク組成物及び印刷物成型体の製造方法
CN104118168A (zh) * 2010-02-10 2014-10-29 宇部兴产株式会社 聚酰亚胺膜、含它的聚酰亚胺层压体和含它的聚酰亚胺金属层压体
JP5448924B2 (ja) 2010-02-25 2014-03-19 富士フイルム株式会社 インク組成物、インクセット、及びこれを用いた画像形成方法
JP5448934B2 (ja) 2010-03-01 2014-03-19 富士フイルム株式会社 インク組成物、インクセット、及びこれを用いた画像形成方法
JP5538964B2 (ja) 2010-03-16 2014-07-02 富士フイルム株式会社 インク組成物、インクセット、及びこれを用いた画像形成方法
JP5371844B2 (ja) 2010-03-16 2013-12-18 富士フイルム株式会社 処理液、インクセット及び画像形成方法
JP5566745B2 (ja) 2010-03-26 2014-08-06 富士フイルム株式会社 インク組成物、インクセット、および画像形成方法
JP5554114B2 (ja) 2010-03-29 2014-07-23 富士フイルム株式会社 活性放射線硬化型インクジェット用インク組成物、印刷物、印刷物の製造方法、印刷物成形体、及び印刷物成形体の製造方法
JP5496739B2 (ja) 2010-03-30 2014-05-21 富士フイルム株式会社 画像形成方法
CN102248777B (zh) 2010-03-31 2016-03-02 富士胶片株式会社 图像形成方法
EP2371912B1 (de) 2010-03-31 2014-04-30 Fujifilm Corporation Aktive strahlungshärtbare Tintenzusammensetzung, Tintenzusammensetzung zur Tintenstrahlaufzeichnung, Druckmaterial und Verfahren zum Herstellen eines geformten Artikels aus Druckmaterial
JP5813352B2 (ja) 2010-04-09 2015-11-17 富士フイルム株式会社 インク組成物及びその製造方法、インクセット、並びに画像形成方法
JP5518588B2 (ja) 2010-06-17 2014-06-11 富士フイルム株式会社 インクセット、並びに画像形成方法
JP5606817B2 (ja) 2010-07-27 2014-10-15 富士フイルム株式会社 活性放射線硬化型インクジェット用インク組成物、印刷物、印刷物成形体、及び印刷物の製造方法
JP5544239B2 (ja) 2010-07-29 2014-07-09 富士フイルム株式会社 重合性組成物
JP5866150B2 (ja) 2010-07-30 2016-02-17 富士フイルム株式会社 新規なアゾ化合物、水溶液、インク組成物、インクジェット記録用インク、インクジェット記録方法、インクジェット記録用インクカートリッジ、及びインクジェット記録物
JP5785799B2 (ja) 2010-07-30 2015-09-30 富士フイルム株式会社 新規なアゾ化合物、水溶液、インク組成物、インクジェット記録用インク、インクジェット記録方法、インクジェット記録用インクカートリッジ、及びインクジェット記録物
JP5850654B2 (ja) 2010-12-28 2016-02-03 富士フイルム株式会社 インクジェット記録用インク
CN103391979A (zh) 2011-02-28 2013-11-13 富士胶片株式会社 油墨组合物、图像形成方法及印相物
JP2012211293A (ja) 2011-03-18 2012-11-01 Fujifilm Corp インク組成物、インクジェット記録用インク及びインクジェット記録方法
JP2012201874A (ja) 2011-03-28 2012-10-22 Fujifilm Corp インク組成物、及び画像形成方法
JP5696004B2 (ja) 2011-08-30 2015-04-08 富士フイルム株式会社 トリアジン側鎖を有する新規化合物、着色組成物、インクジェット用インク、インクジェット記録方法、カラーフィルター、及びカラートナー
EP2760947B1 (de) 2011-09-29 2015-11-04 FUJIFILM Corporation Tintenstrahltintenzusammensetzung und tintenstrahlaufzeichnungsverfahren
KR101717829B1 (ko) 2011-11-08 2017-03-17 후지필름 가부시키가이샤 착색 조성물 및 잉크젯 기록용 잉크
WO2013099677A1 (ja) 2011-12-26 2013-07-04 富士フイルム株式会社 キサンテン骨格を有する化合物、着色組成物、インクジェット記録用インク、及びインクジェット記録方法
WO2013103139A1 (ja) 2012-01-06 2013-07-11 コニカミノルタアドバンストレイヤー株式会社 フィルムミラー、フィルムミラーの製造方法、太陽熱発電用フィルムミラー及び太陽熱発電用反射装置
WO2013129265A1 (ja) 2012-02-29 2013-09-06 富士フイルム株式会社 着色組成物、インクジェット記録用インク、及びインクジェット記録方法
JP2014062219A (ja) 2012-03-07 2014-04-10 Fujifilm Corp 捺染用着色組成物、捺染方法、及び布帛
JP5666498B2 (ja) 2012-03-22 2015-02-12 富士フイルム株式会社 インク組成物、インクセット、及び、画像形成方法
JP5836200B2 (ja) 2012-05-30 2015-12-24 富士フイルム株式会社 キサンテン骨格を有する化合物、着色組成物、インクジェット記録用インク、及びインクジェット記録方法
EP2669338B1 (de) 2012-05-31 2017-04-05 Fujifilm Corporation Färbungszusammensetzung, Tinte für Tintenstrahlaufzeichnung und Tintenstrahlaufzeichnungsverfahren
JP2014198816A (ja) 2012-09-26 2014-10-23 富士フイルム株式会社 アゾ化合物、水溶液、インク組成物、インクジェット記録用インク、インクジェット記録方法、インクジェット記録用インクカートリッジ、及びインクジェット記録物
CN104812846A (zh) 2012-11-15 2015-07-29 富士胶片株式会社 着色组合物、使用了该着色组合物的喷墨记录用油墨、使用了该喷墨记录用油墨的喷墨记录方法、墨盒及喷墨记录物
CN104797658A (zh) 2012-11-15 2015-07-22 富士胶片株式会社 着色组合物、喷墨记录用油墨、喷墨记录方法、喷墨打印机盒子及喷墨记录物
JP5980702B2 (ja) 2013-03-07 2016-08-31 富士フイルム株式会社 インクジェットインク組成物、インクジェット記録方法、及び、成型印刷物の製造方法
CN105377568B (zh) 2013-07-12 2017-11-07 富士胶片株式会社 图像形成方法及图像记录物
JP5939644B2 (ja) 2013-08-30 2016-06-22 富士フイルム株式会社 画像形成方法、インモールド成型品の製造方法、及び、インクセット
JP6117072B2 (ja) 2013-09-30 2017-04-19 富士フイルム株式会社 顔料分散組成物、インクジェット記録方法、及び化合物の製造方法
JP6170901B2 (ja) 2014-01-10 2017-07-26 富士フイルム株式会社 化合物、着色組成物、インクジェット記録用インク、インクジェット記録方法、インクジェットプリンタカートリッジ、インクジェット記録物、カラーフィルタ、カラートナー、及び転写用インク
JP6169501B2 (ja) 2014-01-31 2017-07-26 富士フイルム株式会社 インクジェット記録用インク
JP6169545B2 (ja) 2014-09-09 2017-07-26 富士フイルム株式会社 重合性組成物、インクジェット記録用インク組成物、インクジェット記録方法、及び記録物
JP6086888B2 (ja) 2014-09-26 2017-03-01 富士フイルム株式会社 インクジェット記録用インク組成物、インクジェット記録方法、及び記録物
JP6169548B2 (ja) 2014-09-26 2017-07-26 富士フイルム株式会社 重合性組成物、インクジェット記録用インク組成物、インクジェット記録方法、及び記録物
US10183916B2 (en) 2015-05-18 2019-01-22 Dsm Ip Assets B.V. Process for the preparation of triazines
JP6775018B2 (ja) 2016-07-28 2020-10-28 富士フイルム株式会社 インクジェット捺染方法、着色組成物、インクジェットインク、インクカートリッジ、及び染料ポリマー
WO2019044313A1 (ja) 2017-08-29 2019-03-07 富士フイルム株式会社 顔料組成物及びその製造方法、並びに、水性インク組成物
JP7113889B2 (ja) 2018-03-30 2022-08-05 富士フイルム株式会社 インクジェット記録用インク、インクジェット記録用インクの製造方法及び画像記録方法
EP4212591A4 (de) 2020-10-14 2024-03-13 Fujifilm Corp Verbindung, tautomer davon oder salz dieser verbindung oder tautomer, verfahren zur herstellung davon, färbezusammensetzung, färbeverfahren und gefärbter artikel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619956A (en) * 1985-05-03 1986-10-28 American Cyanamid Co. Stabilization of high solids coatings with synergistic combinations
EP0434608A1 (de) * 1989-12-05 1991-06-26 Ciba-Geigy Ag Stabilisiertes organisches Material
EP0483488A1 (de) * 1990-10-29 1992-05-06 Cytec Technology Corp. Hydroxyaryltriazine und Tetraalkylpiperidine enthaltende synergistische UV-Absorbermischung
US5364794A (en) * 1990-07-26 1994-11-15 Nippon Shinyaku Company Limited Process for producing saccharides

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH480090A (de) * 1962-10-30 1969-10-31 Ciba Geigy Verwendung von neuen Hydroxyphenyl-1,3,5-triazinen als Ultraviolettschutzmittel ausserhalb der Textilindustrie
CH484695A (de) * 1962-10-30 1970-01-31 Ciba Geigy Verwendung von neuen Hydroxyphenyl-1,3,5-triazinen als Ultraviolettschutzmittel ausserhalb der Textilindustrie
NL130993C (de) * 1963-02-07
CH469053A (de) * 1963-07-26 1969-02-28 Ciba Geigy Verwendung von neuen Hydroxyphenyl-1,3,5-triazinen als Schutzmittel gegen Ultraviolettstrahlung für nichttextile organische Materialien
CH481954A (de) * 1965-11-09 1969-11-30 Ciba Geigy Verfahren zur Herstellung von gegen die Einwirkung ultravioletter Strahlen geschützten Polymeren
CH485484A (de) * 1964-12-04 1970-02-15 Ciba Geigy Verwendung von neuen Hydroxyphenyl-1,3,5-triazinen als Schutzmittel gegen Ultraviollettstrahlung für organische Materialien ausserhalb der Textilindustrie
US3645743A (en) * 1968-08-27 1972-02-29 Agfa Gevaert Ag Process for hardening protein layers
US3641213A (en) * 1969-02-27 1972-02-08 American Cyanamid Co Synergistic uv absorber combination for polypropylene-polyvinylpyridine blend
CH533853A (de) * 1970-03-23 1973-02-15 Ciba Geigy Ag Verwendung von 2'-Hydroxyphenyl-1,3,5-triazinen als Stabilisierungsmittel gegen Ultraviolettstrahlung in photographischem Material
DE2756438A1 (de) * 1977-12-17 1979-06-21 Bayer Ag Verfahren zur herstellung von 4,6-dihalogen-triazinen
US4826978A (en) * 1987-12-29 1989-05-02 Milliken Research Corporation Reactive, non-yellowing triazine compounds useful as UV screening agents for polymers
ES2077052T3 (es) * 1989-12-21 1995-11-16 Ciba Geigy Ag Procedimiento para la incorporacion de o-hidroxifenil-s-triazinas a polimeros organicos.
EP0530135A1 (de) * 1991-06-03 1993-03-03 Ciba-Geigy Ag UV-Absorber enthaltendes photographisches Material
EP0520938B1 (de) * 1991-06-03 1997-09-24 Ciba SC Holding AG UV-Absorber enthaltendes photographisches Material
DE59208885D1 (de) * 1991-09-05 1997-10-16 Ciba Geigy Ag UV-Absorber enthaltendes photographisches Material
JP3800344B2 (ja) * 1992-09-07 2006-07-26 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド ヒドロキシフェニル−s−トリアジン
US5489503A (en) * 1992-12-03 1996-02-06 Ciba-Geigy Corp. UV absorbers
DE4340725B4 (de) * 1992-12-03 2005-11-24 Ciba Speciality Chemicals Holding Inc. UV-Absorber
US5354794A (en) * 1993-02-03 1994-10-11 Ciba-Geigy Corporation Electro coat/base coat/clear coat finishes stabilized with S-triazine UV absorbers
GB2278115B (en) * 1993-05-17 1997-08-06 Ciba Geigy Ag 2-(2-Hydroxyphenyl)-1,3-pyrimidine derivatives and their use as stabilizers for coating compositions
US5438840A (en) * 1994-03-14 1995-08-08 The Boc Group Inc. Field harvest cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4619956A (en) * 1985-05-03 1986-10-28 American Cyanamid Co. Stabilization of high solids coatings with synergistic combinations
EP0434608A1 (de) * 1989-12-05 1991-06-26 Ciba-Geigy Ag Stabilisiertes organisches Material
US5364794A (en) * 1990-07-26 1994-11-15 Nippon Shinyaku Company Limited Process for producing saccharides
EP0483488A1 (de) * 1990-10-29 1992-05-06 Cytec Technology Corp. Hydroxyaryltriazine und Tetraalkylpiperidine enthaltende synergistische UV-Absorbermischung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005059739A1 (de) * 2005-12-13 2007-06-14 Beiersdorf Ag Sonnenschutzmittel mit Merocyaninen und Triazinen

Also Published As

Publication number Publication date
NL1001381A1 (nl) 1996-04-10
NL1001381C2 (nl) 1996-04-12
US5686233A (en) 1997-11-11
ITMI952053A0 (de) 1995-10-09
ITMI952053A1 (it) 1997-04-09
BR9504359A (pt) 1996-10-08
DE19537291A1 (de) 1996-04-18
KR100363980B1 (ko) 2003-02-14
CN1067994C (zh) 2001-07-04
KR960014110A (ko) 1996-05-22
JPH08239368A (ja) 1996-09-17
CA2160091A1 (en) 1996-04-11
CN1132747A (zh) 1996-10-09
FR2725444A1 (fr) 1996-04-12
FR2725444B1 (fr) 1997-01-31
AT406161B (de) 2000-03-27
GB2294043A (en) 1996-04-17
CZ263695A3 (en) 1996-04-17
GB2294043B (en) 1998-09-30
BE1009090A3 (fr) 1996-11-05
AU703967B2 (en) 1999-04-01
SK125595A3 (en) 1996-06-05
GB9520261D0 (en) 1995-12-06
IT1276903B1 (it) 1997-11-03
ES2106685B1 (es) 1998-07-01
ES2106685A1 (es) 1997-11-01
AU3304795A (en) 1996-04-26
ATA166795A (de) 1999-07-15

Similar Documents

Publication Publication Date Title
DE19537291B4 (de) Bis-Resorcinyltriazine
DE19750906B4 (de) Hydroxyphenyltriazine
EP0323408B1 (de) Neue 2-(2-Hydroxyphenyl)-benztriazol-derivate
US5597854A (en) Latent light stabilizers
DE19739797B4 (de) Stabilisatorkombination
DE69821645T2 (de) Trisaryl 1,3,5-triazine als ultraviolettlicht absorbierendes mittel
DE19601213B4 (de) Stabilisatorgemisch, dessen Verwendung und diese enthaltende Zusammensetzungen
DE60026177T2 (de) Stabilisatormischung
DE19748658A1 (de) Benzotriazol-UV-Absorptionsmittel mit erhöhter Haltbarkeit
DE19739748A1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0706083A1 (de) Fotografisches Aufzeichnungsmaterial enthaltend einen UV-Absorber
DE69921478T2 (de) Vergilbungsbeständige para-tertiär-alkyl phenyl substituierte triazine und pyrimidine als uv-licht-absorber
DE4416809A1 (de) Gegen Schädigung durch Licht, Wärme und Sauerstoff stabilisierte Überzugsmittel
US6706215B1 (en) Coating compositions stabilized against damage by light, heat and oxygen
CH691302A5 (de) Bis-Resorcinyltriazine und deren Verwendung als Stabilisatoren für organisches Materialoder für ein photographisches Aufzeichnungsmaterial.
CH692916A5 (de) Triphenyltriazine enthaltend zwei freie und eine substituierte Hydroxyfunktion.
MXPA97008911A (en) Hidroxifeniltriazi

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: CIBA SPECIALTY CHEMICALS HOLDING INC., BASEL, CH

8110 Request for examination paragraph 44
8328 Change in the person/name/address of the agent

Representative=s name: PFENNING MEINIG & PARTNER GBR, 80339 MUENCHEN

8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee