CZ99897A3 - Způsob polymerace monomerů ve fluidní vrstvě - Google Patents

Způsob polymerace monomerů ve fluidní vrstvě Download PDF

Info

Publication number
CZ99897A3
CZ99897A3 CZ97998A CZ99897A CZ99897A3 CZ 99897 A3 CZ99897 A3 CZ 99897A3 CZ 97998 A CZ97998 A CZ 97998A CZ 99897 A CZ99897 A CZ 99897A CZ 99897 A3 CZ99897 A3 CZ 99897A3
Authority
CZ
Czechia
Prior art keywords
reactor
bulk density
fluidized bed
density function
ethylene
Prior art date
Application number
CZ97998A
Other languages
English (en)
Other versions
CZ292982B6 (cs
Inventor
John Robert Griffin
Marc Louis Dechellis
Original Assignee
Exxon Chemical Patents Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23232345&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CZ99897(A3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Exxon Chemical Patents Inc. filed Critical Exxon Chemical Patents Inc.
Publication of CZ99897A3 publication Critical patent/CZ99897A3/cs
Publication of CZ292982B6 publication Critical patent/CZ292982B6/cs

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/901Monomer polymerized in vapor state in presence of transition metal containing catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

Tento vynález se týká způsobu polymerace olefinů v plynné fázi, prováděné ve fluidní vrstvě reaktorů. Tento vynález dovoluje podstatné úspory energie a investičních nákladů významným zvýšením velikosti kapacity produkce polymeru při daném rozměru reaktoru.
Dosavadní stav techniky
Nalezení způsobu výroby polymerů ve fluidní vrstvě poskytlo prostředek k produkci rozmanitých souborů polymerů. Za použití způsobu polymerace plynu ve fluidní vrstvě se podstatně snižují nároky na energii, v porovnání s jinými procesy, a velmi podstatně se snižují kapitálové investice, vyžadované pro provoz při takovém způsobu produkce polymerů.
Zařízení pro polymeraci plynu ve fluidní vrstvě obecně vyžadují kontinuální cyklus. V jedné části cyklu se v reaktoru cirkulující plynný proud zahřívá teplem z polymerace. Toto teplo se odstraňuje do jiné části cyklu chladicím systémem vně reaktoru.
Obecně při způsobu výroby polymerů z plynných monomerních α-olefinů ve fluidní vrstvě se plynný proud obsahující jeden nebo několik monomerů kontinuálně vede fluidní vrstvou za reakčních podmínek v přítomnosti katalyzátoru. Tento plynný proud se odvádí z fluidní vrstvy a recirkuluje zpět do reaktoru. Současně se odvádí polymerní produkt z reaktoru a na místo zreagovaného polymeru se přidává nový monomer.
Je důležité, aby se odstraňovalo teplo vznikající reakcí, za účelem udržení teploty plynného proudu uvnitř reaktoru při teplotě pod teplotou, při které nastává degradace polymeru a katalyzátoru. Kromě toho je důležité zabránit aglomeraci nebo tvorbě kousků polymeru, které se nemohou odstraňovat jako produkt. Toho se dosahuje řízením teploty plynného proudu ve vrstvě v reaktoru na teplotu ležící pod teplotou tání nebo slepování částic polymeru, které se připravují během polymerační reakce. Tak je zapotřebí vzít v úvahu, že množství vyrobeného polymeru ve fluidní vrstvě při polymerním procesu je ve vztahu k množství tepla, které se může odvést z reakční zóny ve fluidní vrstvě uvnitř reaktoru.
Obvykle se teplo odstraňuje z recirkulovaného plynného proudu chlazením tohoto proudu vně reaktoru. Požadavkem při procesu ve fluidní vrstvě je, aby rychlost recirkulovaného plynného proudu byla dostatečná, k dosažení fluidní vrstvy ve fluidním stavu. U obvyklého reaktoru s fluidní vrstvou je množství cirkulované tekutiny, určené k odstranění tepla z polymerace, větší než množství tekutiny vyžadované pro podporu fluidní vrstvy a pro přiměřené míchání tuhých látek ve fluidní vrstvě. Aby se však zabránilo nadměrnému st tuhých látek v plynném proudu odváděném z fluidní vrstvy, musí se regulovat rychlost plynného proudu. Také v ustáleném stavu procesu polymerace ve fluidní vrstvě, ve kterém teplo vytváření polymerační reakcí je v podstatě v poměru k rychlosti produkce polymeru, je vznikající teplo rovno teplu absorbovanému plynným proudem a ztrátám jinými prostředky, takže se udržuje konstantní teplota ve vrstvě.
Po určitou dobu převládalo přesvědčení, že teplota plynného proudu vně reaktoru, jinak známá jako teplota recirkulovaného proudu, by neměla klesnout pod teplotu rosného bodu recirkulovaného proudu. Teplota rosného bodu recirkulovaného proudu označuje teplotu, při které se začíná tvořit kapalný kondenzát v recirkulovaném plynném proudu. Předpokládá se, že zavádění kapaliny do recirkulovaného proudu plynné fáze při polymeračním procesu ve fluidní vrstvě by nevyhnutelně způsobilo ucpávání potrubí recirkulovaného plynu, výměníku tepla, prostoru pod fluidním vrstvou nebo v rozváděčích deskách pro plyn. Důsledkem provozování při teplotách nad teplotou rosného bodu je, že se vyhne problémům spojeným s kapalinou, která je v recirkulovaném plynném proudu, přičemž rychlost produkce v průmyslových reaktorech se výrazně nemůže zvýšit bez zvětšení průměrů reaktoru.
V minulosti byly obavy, aby nadbytečná množství kapaliny v recirkulovaném proudu nenarušila fluidizační proces v rozsahu, kdy fluidní vrstva by se zhroutila v důsledku slinutí tuhých částic polymeru v pevnou hmotu v reaktoru, co by bylo příčinou odstavení reaktoru. Toto široce rozšířené přesvědčení, že se má vyhnout kapalině v recirkulovaném proudu, může být zřejmé z těchto spisů: US patenty č.
922 322, 4 035 560, 4 359 561 a 5 028 670 a evropské patentové spisy č. 0 050 477 a 0 100 879.
V protikladu k tomuto přesvědčení doložil Jenkins III a kol. v US patentu č. 4 543 399 a v příbuzném patentu č.
588 790, že recirkulovaný proud se může ochladit na teplotu pod teplotou rosného bodu při polymeračním procesu ve fluidní vrstvě, co má za výsledek kondenzaci části recirkulovaného proudu. Údaje z těchto dvou patentu Jenkinse III se zde uvádějí jako součást dosavadního stavu techniky. Výsledný proud, obsahující strhovanou kapalinu, se potom vrací do reaktoru, aniž by nastal svrchu zmíněného jevu aglomerace a/nebo ucpávání, o kterém převládá přesvědčení, že se vyskytuje, pokud se kapalina zavede do polymeračního procesu ve fluidní vrstvě. Tento proces úmyslného zavádění kapaliny do recirkulovaného proudu nebo reaktoru je znám v průmyslu jako kondenzační způsob provádění polymeračního procesu v plynné fázi.
Svrchu zmíněné US patenty Jenkinse III a kol. uvádějí, že pokud se teplota recirkulovaný proudu sníží pod teplotu rosného bodu při provozování kondenzačního způsobu, je možné zvýšení produkce polymeru v porovnání s produkcí při nekondenzačním způsobu v důsledku zvýšení chladicí kapacity. Jenkins III a kol. také zjistili, že podstatné zvýšení výtěžku v prostoru a čase, tedy množství vyprodukovaného polymeru na daný objem reaktoru, se může dosáhnout při provozování kondenzačního způsobu s nepatrnou nebo žádnou změnou vlastností produktu.
Kapalná fáze směsi dvoufázového recirkulovaného proudu při provozování kondenzačního způsobu zůstává stržena nebo suspendována v plynné fázi směsi. Chlazení recirkulovaného proudu, vedoucí k produkci této směsi dvou fází, je výsledkem rovnováhy kapaliny a páry. Odpařování kapaliny nastává pouze pokud se přivádí teplo nebo snižuje tlak. Zvýšení výtěžku v prostoru a čase, dosahované podle Jenkinse III a kol., je výsledkem této zvýšené chladicí kapacity recirkulovaného proudu, která je naopak důsledkem jak zvýšeného teplotního diferenciálu mezi vstupujícím recirkulovaným plynem a teplotou fluidní vrstvy, tak odpařování kondenzované kapaliny, strhované do recirkulovaného proudu.
Jenkins III a kol. ilustruje obtíže a složitost řízení obecně a pokouší se prodloužit stabilní provozní zónu k optimalizaci výtěžku v prostoru a čase v reaktoru s plynnou fází.
U Jenkinse III a kol. se recirkulovaný plyn ochlazuje a přidává do reaktoru při teplotě pod teplotou rosného bodu tak, že kondenzované tekutiny se odpařují uvnitř reaktoru. Chladicí kapacita recirkulovaného plynu se může dále zvýšit, zatímco při dané teplotě chlazení se zahřívá přenosové prostředí. Jednou popsanou možností je přidávat nepolymerující materiál (isopentan), ke zvýšení teploty rosného bodu. Protože při větším chlazením se může odvést více tepla, mají být možné vyšší výtěžky v prostoru a čase. Jenkins III a kol. doporučuje nepřekročit 20 % hmotnostních, výhodně 2 až 12 % hmotnostních, kondenzované kapaliny v recirkulovaném plynu. Uvedené určité potenciální nebezpečí zahrnuje tvorbu kalu, dosahovanou při dostatečně vysoké rychlosti recirkulovaného plynu nebo vyhnutí se nahromadění kapaliny v rozváděči desce. Jenkins III a kol. mlčí o tom, kde leží horní hranice pro nepolymerovatelné nebo polymerovatelné kondenzovatelné materiály a je otázkou, jak optimalizovat výtěžek v prostoru a čase za použití kondenzačního způsobu.
Reaktor pro zpracování plynu ve fluidní vrstvě se může řídit tak, že se dosahuje požadovaného indexu toku taveniny a hustoty polymeru při optimální produkci. Větší péče se obecně věnuje tomu, aby se vyhnulo stavu, který může vést ke vzniku kousků nebo lístků nebo v horším případě nestabilní fluidní vrstvy, která se hroutí nebo je příčinou vzájemného spékání částic polymeru. Má se proto uplatnit řízení polymerní vrstvy, aby se snížila tvorba kousků nebo lístků a aby se zabránilo zhroucení vrstvy nebo potřebě ukončení reakce a odstavení reaktoru. To je příčinou proč reaktory pro průmyslové měřítko jsou určeny k provozu, při kterém poskytují stabilní provozních zóny a proč se používají reaktory tvaru pečlivě opisujícího kružnici.
I při omezení na běžné, bezpečné operace je řízení složité, protože přistupují další obtíže a nejistota experimentu, pokud je přáním nalézt nové a zlepšené provozní podmínky.
Jsou cílové hodnoty, určené polymerem a katalyzátorem, pro provozní teplotu, poměr komomomeru nebo komonomerů k monomeru a poměr vodíku k monomeru. Reaktor a chladicí systém se udržují v tlakových nádobách. Sledují se hodnoty, bez nežádoucího ovlivňování fluidizací, měřením mimo jiné
1) tlaku na hlavě,
2) tlakového rozdílu v různých výškách vrstvy v podélném směru,
3) teploty proudu vystupujícího z vrstvy,
4) teploty ve fluidní vrstvě a teploty na výstupu proudu z vrstvy, stejně jako
5) složení plynu a
6) rychlosti průtoku plynu.
Tato měření se mimo jiné používají k řízení přidávání katalyzátoru, parciálního tlaku monomeru a rychlosti recirkulovaného plynu. Odstraňování polymeru je omezováno v určitých případech sypnou hmotností (nefluidizované) usazeniny nebo sypnou hmotností látek ve fluidní vrstvě, v závislosti na navrženém zařízení a tyto hodnoty se musí často sledovat, stejně jako hladina popela v polymeru. Zařízení tvoří uzavřený systémem. Provozní změny jedné nebo většího počtu měřených hodnot vedou ve svém důsledku ke změnám, které mohou nastat kdekoli. U návrhu zařízení je optimalizace kapacity závislá na větším počtu omezujících prvků, které se promítají do celého návrhu.
Není však obecně přijímaný pohled, pokud jde o příčinu vzniku kousků a lístků polymeru. Zřejmě nastává určité vzájemné spékání částic polymeru, možná v důsledku nedostatečného přenosu tepla, způsobeného nepřiměřenou fluidizací ve fluidní vrstvě. Avšak nebyla nalezena žádná jasná korelace mezi individuálním usazováním a výskytem kousků a lístků polymeru. Celek naměřených hodnot a řízení se proto používá ke stanovení známých, bezpečných provozní oblastí pro daný návrh zařízení.
Velkoobjemová zařízení s plynnou fázi jsou nákladná a vysoce produktivní. Riziko spojené s experimentováním na takových zařízeních je vysoké, protože čas na odstavení je nákladný. Proto je obtížné prozkoumat návrh a provozní hranice experimentálně s ohledem na náklady a rizika.
Je žádoucí mít k dispozici způsob stanovení stabilních provozních podmínek pro polymeraci plynu ve fluidní vrstvě, aby se usnadnilo optimální navržení zařízení a stanovily se požadované provozní podmínky pro daný návrh zařízení. Bylo by také žádoucí dosáhnout procesu polymerace plynu ve fluidní vrstvě, který by poskytoval maximální produktivitu reaktoru.
Proto mimo jiné vynález má pomoci určit stabilní provozní zóny pro proces zpracování plynu ve fluidní vrstvě a navržené zařízení, najít kritéria pro bezpečný průběh procesu s nízkým rizikem špatné funkce a současně s vysokými produktivitami reaktoru a/nebo vyhnout se jakémukoli omezení celkové kapacity zařízení v důsledku produktivity reaktoru.
Podstata vynálezu
Tento vynález se týká způsobu polymerace a-olefinů v plynné fázi reaktoru při podstatně vyšší rychlosti produkce než jaká se dosud předpokládala. Vynález je zaměřen na způsob polymerace α-olefinů v plynné fázi reaktoru, který je opatřen fluidní vrstvou a fluidizačním prostředím, kde úroveň kapaliny ve fluidizačním prostředí je větší než 15 % hmotnostních, výhodně větší než 20 % hmotnostních, vztaženo na celkovou hmotnost fluidizačního prostředí.
Vynález je také zaměřen na způsob polymerace α-olefinů v reaktoru pro plynnou fázi, který je opatřen fluidní vrstvou a fluidizačním prostředím, tak že změna enthalpie fluidizačního prostředí vystupujícího z reaktoru a vstupujícího do reaktoru je větší než 92 J/g, výhodně větší než 116 J/g.
Vynález dále skýtá způsob polymerace a-olefinů v reaktoru pro plynnou fázi při rychlosti výroby větší než přibližně 2441 kg/h.m2.
Tento vynález se v jiném ztělesnění týká způsobu stanovení stabilních provozních podmínek polymeračního reaktoru pro plynnou fázi, vybaveného fluidní vrstvou, poznáním vlastností vhodných pro stanovení stability fluidní vrstvy a pro řízení složení fluidizačního prostředí nebo recirkulovaného proudu, k prokázání rozmezí hodnot vlastností pro udržení stabilních provozních podmínek.
Vynález je v jiném provedení také zaměřen na způsob řízení polymeračního reaktoru s plynnou fází, vybaveného fluidní vrstvou, sledováním stavu reaktoru, který svědčí o počátku poruchového stavu, a řízením složení fluidizačního prostředí nebo recirkulovaného proudu v odezvu na tento počáteční stav, aby se vyhnulo výskytu poruchového stavu. Při tomto výhodném provedení se sleduje funkce sypné hmotnosti. Tato funkce se udržuje rovna nebo výhodně nad hodnotou, která závisí na teplotě, tlaku, změnách částic, jako velikosti, hmotnosti tuhé látky, sypné hmotnosti usazeniny a proměnných plynu, jako složení a rychlosti, jak byly vymezeny dříve v popisu tohoto patentu.
Vynález se ještě dále týká, v jiném ztělesnění, způsobu stanovení stabilních provozních podmínek polymeračního reaktoru ke zpracování plynu ve fluidní vrstvě, provozovaného kondenzačním způsobem, který spočívá v tom, že se sledují změny sypné hmotnosti fluidní fáze v reaktoru ve spojitosti se změnami složení fluidizačního prostředí a zvyšuje se chladicí kapacita recirkulovaného proudu bez překročení hladiny, při které se snížení sypné hmotnosti fluidní fáze stává nevratným. Jako obecné pravidlo platí, že snížení funkce sypné hmotnosti na méně než minimální nebo limitní hodnotu, jak je dále definována v popisu tohoto patentu, může zahrnout riziko rozpadu fluidní vrstvy a je třeba se tomu vyhnout.
Jiné provedení tohoto vynálezu poskytuje způsob polymerace plynu v fluidní vrstvě, pro polymeraci na polymer tím, že se vede plynný proud obsahující monomer fluidní vrstvou reaktoru v přítomnosti katalyzátoru za reaktivních podmínek, k produkci polymerního produktu a proudu, který obsahuje nezreagované monomerní plyny, provede se stlačování a ochlazování těchto plynů, míchání uvedeného proudu s dávkovanými složkami a vracení plynné fáze a kapalné fáze do tohoto reaktoru, kde zlepšení spočívá v tom, že se chladí tento proud tak, že kapalná fáze tvoří více než 15 % hmotnostních, výhodně více než 20 % hmotnostních z celkové hmotnosti vráceného proudu a složení proudu je takové, že funkce sypné hmotnosti se udržuje nad přibližně limitní hodnotou, jak je dále popsáno v popise tohoto patentu.
Přehled obrázků na výkresech
Dále uvedené předměty, znaky a výhody tohoto vynálezu se stanou jasnější a srozumitelnější, pokud se bude číst podrobný popis, který následuje, v souvislosti v výkresy, kde:
Obr. 1 je schematická ilustrace výhodného provedení reaktoru používaného při provádění zlepšeného procesu polymerace plynu ve fluidní vrstvě k produkci polymerů podle tohoto vynálezu.
Na obr. 2 je grafická závislost % molárních isopentanu a sypné hmotnosti fluidní fáze z tabulky 1.
Na obr. 3 je grafická závislost % molárních isopentanu a sypné hmotnosti fluidní fáze z tabulky 2.
Dále se uvádí podrobný popis vynálezu.
V následujícím textu jsou podobné části označeny v popisu a na výkresech stejnými čísly vztahových značek. Výkresy nejsou nezbytně provedeny v měřítku a určité části jsou nadsazeny pro lepší ilustraci zlepšeného způsobu podle tohoto vynálezu.
Tento vynález není omezen na nějaký zvláštní typ nebo druh polymerační nebo kopolymerační reakce, ale je obzvláště vhodný k polymeračním reakcím, které zahrnují polymeraci alespoň jednoho z monomerů, například olefinických monomerů, jako je ethylen, propylen, 1-buten, 1-penten, 4-methyl-l-penten, 1-hexen, 1-okten a styren. Mezi jiné monomery se mohou zahrnout polární vinylové konjugované nebo nekonjugované dieny, acetylen a aldehydické monomery.
Katalyzátor používaný při tomto zlepšeném způsobu může zahrnovat koordinátové anionové katalyzátory, kationové katalyzátory, katalyzátory s volnými radikály nebo anionové katalyzátory a obsahuje složku přechodného kovu a metalocenovou složku obsahující jediné nebo vícenásobné cyklopentadienylovou složky zreagované buď se složkou tvořenou alkylovou nebo alkoxylovou sloučeninou kovu nebo složkou ionové sloučeniny. Tyto katalyzátory mohou obsahovat částečně nebo zcela aktivované prekurzorové složky, katalyzátory modifikované prepolymerací nebo enkapsulací a katalyzátory nanesené na nosiči.
Jak již bylo dříve uvedeno, tento vynález není omezen na nějaký zvláštní typ polymerační reakce a dále uvedený rozbor provozování zlepšeného způsobu je zaměřen na polymeraci monomerů olefinového typu v plynné fázi, například na výrobu polyethylenu, kde jak bylo shledáno je tento vynález obzvláště výhodný. Významné zlepšení produktivity reaktoru je možné bez nepříznivého účinku na jakost nebo vlastnosti produktu.
K dosažení vyšších chladicích kapacit, a proto vyšší produktivity reaktoru může být žádoucí zvýšit teplotu rosného bodu recirkulovaného proudu, která by dovolila dosáhnout většího odstraňovaného tepla z fluidní vrstvy. Pro účely tohoto patentu výrazy recirkulovaný proud a fluidizační prostředí jsou navzájem zaměnitelné. Teplota rosného bodu se může zvýšit zvýšením provozního tlaku reakčního nebo recirkulačního systému a/nebo zvýšením procentuálního obsahu kondenzovatelných tekutin a snížením procentuálního obsahu nekondenzovatelných plynů v recirkulovaném proudu způsobem, který uvedl Jenkins III a kol. v US patentech č. 4 588 790 a 4 543 399. Kondenzovatelná tekutina může být inertní ke katalyzátoru, reakčním složkám a produkovaném polymernímu produktu. Mohou být také zahrnuty komonomery. Kondenzovatelná tekutina se může zavádět do reakčního nebo recirkulačního systému v libovolném místě systému, jak bude dále ilustrováno na obr. 1. Pro účely tohoto vynálezu výraz kondenzovatelná tekutiny zahrnuje nasycené nebo nenasycené uhlovodíky. Příklady vhodných inertních kondenzovatelných tekutin jsou snadno těkavé kapalné uhlovodíky, které se mohou vybrat z nasycených uhlovodíků, obsahujících od 2 do 8 atomů uhlíku. Mezi některé vhodné nasycené uhlovodíky se zahrnuje propan, n-butan, isobutan, n-pentan, isopentan, neopentan, n-hexan, isohexan a jiné nasycené uhlovodíky se 6 atomy uhlíku, n-heptan, n-oktan a jiné nasycené uhlovodíky se 7 a 8 atomy uhlíku nebo jejich směsi. Výhodné inertní kondenzovatelná uhlovodíky jsou nasycené uhlovodíky s 5 a 6 atomy uhlíku.
Mezi kondenzovatelná tekutiny se mohou také zahrnout polymerovátelné kondenzovatelná komonomery, jako jsou olefiny, α-olefiny, diolefiny, diolefiny obsahující alespoň jednu α-olefinovou část nebo jejich směsi, které zahrnují některé ze svrchu zmíněných monomerů, jež mohou být částečně nebo zcela vpraveny do polymerního produktu.
Při provádění tohoto vynálezu množství plynu v recirkulovaném proudu a rychlost tohoto recirkulovaného proudu by se měly udržovat na úrovních dostačujících k uchování kapalné fáze směsi, která je suspendována v plynné fázi, až do vstupu recirkulovaného proudu do fluidní vrstvy, takže se kapalina nehromadí v hlavě spodní části reaktoru, pod rozváděči deskou. Rychlost recirkulovaného proudu musí být dostatečně vysoká, aby podporovala fluidní vrstvu v reaktoru a míšení. Je také žádoucí, aby kapalina vstupující do fluidní vrstvy byla dispergována a rychle se odpařila.
Řízení složení, teploty, tlaku a zdánlivé rychlosti plynu ve vztahu ke složení a fyzikálním vlastnostem polymeru je důležité k udržení životaschopné fluidní vrstvy. Životaschopná fluidní vrstva neboli stabilní provozní podmínky jsou definovány jako fluidní vrstva částic, které jsou suspendovány a dobře promíchávány ve stabilním stavu za reakčních podmínek, bez vzniku významného množství aglomerátu (kousků nebo lístků), které by narušily reaktor nebo vedly k propadu provozovaného procesu.
Při výhodném provedení více než 15 % hmotnostních, výhodně více než 20 % hmotnostních recirkulovaného proudu může být kondenzováno nebo může být v kapalné fázi, aniž by nastalo poškození procesu ve fluidní fázi za předpokladu, že se nepřekročí stanovené bezpečné provozní hranice stabilní provozní zóny, stanovené pomocí měření sypné hmotnosti fluidní fáze.
Během polymeračního procesu reaguje minoritní podíl (obvykle menší než zhruba 10 %) plynného proudu protékajícího směrem vzhůru fluidní vrstvou. Část proudu, která nezreagovala, to znamená majoritní podíl, se vede do oblasti nad fluidní vrstvou, nazývané volná zóna, která může působit jako zóna pro snížení rychlosti. Ve volné zóně se větší částice tuhého polymeru, které vystoupily nad vrstvu erupcí bublin plynu z povrchu nebo které byly strženy proudem plynu, se nechají klesat zpět do fluidní vrstvy. Menší částice tuhého polymeru, známé v průmyslu jako jemná frakce, se odvádějí společně s recirkulovaným proudem, protože jejich rychlost konečného usazování je nižší než je rychlost recirkulovaného proudu ve volné zóně.
Provozní teplota při způsobu je nastavena nebo upravena na teplotu pod teplotou tání nebo slepování částic produkovaného polymeru. Udržování této teploty je důležité k tomu, aby se zabránilo ucpání reaktoru kousky polymeru, které rychle rostou, pokud teplota dosahuje vyšších hodnot. Tyto kousky polymeru se stávají příliš velikými, než aby mohly být odvedeny z reaktoru jako produkovaný polymer, a jsou příčinou toho, že nastává porucha procesu a reaktoru. Také kousky odcházející směrem dolů, které zasahují do procesu produkce polymeru, mohou poškodit například přenosové systémy, sušicí jednotky a extrudéry. Stěny reaktoru se mohou ošetřit podle US patentu č. 4 876 320, který se zde uvádí jako součást dosavadního stavu techniky.
Při jednom výhodném provedení tohoto vynálezu je výhodně vstupní místo pro recirkulovaný proud pod nejnižším místem fluidní vrstvy tak, že poskytuje rovnoměrný tok recirkulovaného proudu reaktorem, za účelem udržení fluidní vrstvy v suspendovaném stavu a zajištění rovnoměrnosti recirkulovaného proudu procházejícího směrem vzhůru fluidní vrstvou. Při jiném provedení tohoto vynálezu se recirkulovaný proudu může rozdělit do dvou nebo většího počtu oddělených proudů, z jichž alespoň jeden se může zavádět přímo do fluidní vrstvy za předpokladu, že rychlost plynu a průchod fluidní vrstvou jsou dostatečné k udržení vrstvy v suspendo15 váném stavu. Například recirkulovaný proud se může dělit na kapalný a plynný proud, které se potom mohou zavádět odděleně do reaktoru.
Při praktickém provedení zlepšeného způsobu podle tohoto vynálezu se recirkulovaný proud, který obsahuje směs plynné fáze s kapalnou fází, v reaktoru pod rozváděči deskou může tvořit odděleně vstřikováním kapaliny a recirkulovaného plynu za podmínek, které povedou k produkci proudu sestávajícího z obou fází.
Výhody tohoto vynálezu nejsou omezeny na přípravu polyolefinů. Tak tento vynález se může provádět v souvislosti s libovolnou exotermní reakcí, která probíhá v plynem fluidizované vrstvě. Výhody způsobu prováděného za provozování kondenzačního způsobu, ve srovnání s jinými procesy obvykle provozovanými, se zvyšují přímo s přiblížením reakční teploty uvnitř fluidní vrstvy do blízkosti teploty rosného bodu recirkulovaného proudu. Pro danou teplotu rosného bodu se výhody způsobu mohou přímo zvyšovat s procentuálním obsahem kapaliny v recirkulovaném proudu vraceném do reaktoru. Vynález dovoluje, aby se při způsobu použil vysoký procentuální obsah kapaliny.
Reaktor pro plynem fluidizovanou vrstvu, který je obzvláště vhodný pro výrobu polymerů způsobem podle tohoto vynálezu, je nejlépe ilustrován na připojeném výkrese, obecně označeném na obr. 1 vztahovou značnou TO. Mělo by se poznamenat, že reakční systém znázorněný na obr. 1 je zamýšlen toliko jako příklad. Tento vynález se dobře hodí pro libovolné reakční systémy s fluidní vrstvou.
Nyní v souvislosti s obr. 1 se poznamenává, že reaktor zahrnuje reakční zónu 12 a volnou zónu, která je v tomto případě také zónou 14 snížení rychlosti. Poměr výšky k průměru reakční zóny 12 se může měnit v závislosti na požadované kapacitě produkce a době setrvání. Reakční zóna 12 zahrnuje fluidní vrstvu, obsahující částice rostoucího polymeru, existující částice dřívějšího polymeru a malá množství katalyzátoru. Fluidní vrstva v reakční zóně 12 je podporována recirkulovaným proudem 16 neboli fluidizačním prostředím, které je obecně připravováno z násady a recirkulovaných tekutin. Recirkulovaný proud vstupuje do reaktoru rozváděči deskou 18 v sekci dna reaktoru, která napomáhá rovnoměrné fluidizaci a podporuje fluidní vrstvu v reakční zóně 12. Za účelem dosažení fluidní vrstvy reakční zóny 12 v suspendovaném a životaschopném stavu, zdánlivá rychlost plynu z plynného proudu procházejícího reaktorem obecně překračuje minimální průtok požadovaný pro fluidizaci.
Částice polymeru v reakční zóně 12 napomáhají zabránit tvorbě lokálních horkých míst a distribuují částice katalyzátoru ve fluidní vrstvě. Na začátku se do reaktoru nadávkuje základ částic polymeru před tím, než začne protékat recirkulovaný proud 16 tekutiny. Tyto částice polymeru jsou výhodně stejné jako nové částice polymeru určeného k výrobě, avšak pokud jsou odlišné, odvádějí se s nově vytvářený prvním produktem, poté co se zahájí recirkulace, přitéká katalyzátor a zahájí se reakce. Tato směs se obecně odděluje od pozdější v podstatě nové produkce, pro změněné dispozice. Katalyzátor použitý při zlepšeném procesu podle tohoto vynálezu je obvykle citlivý ke kyslíku, a proto se katalyzátor výhodně skladuje v zásobníku 20. katalyzátoru pod vrstvou netečného plynu, který je inertní ke skladovanému katalyzátoru, jako pod dusíkem nebo argonem, na které výčet však není omezen.
Fluidizace fluidní vrstvy v reakční zóně 12 se dosahuje vysokou rychlostí, při které recirkulovaný proud 16 přitéká a prochází reaktorem 10. Obvykle při operaci rychlost recirkulovaného proudu 16 je přibližně desetkrát až padesátkrát vyšší než rychlost, kterou se násada zavádí do recirkulovaného proudu .16. Tato vysoká rychlost recirkulovaného proudu 16 skýtá zdánlivou rychlost plynu, která je nezbytná k suspendování a míchání fluidní vrstvy v reakční zóně 12 ve fluidizovaném stavu.
Fluidní vrstva má obecně vzhled podobný jako intenzivně vroucí kapalina, s hustou hmotou částic, které se jednotlivě pohybují prosakováním a probubláváním plynu fluidní vrstvou. Jak se recirkulovaný proud 16 vede fluidní vrstvou do reakční zóny 12, dochází k poklesu tlaku. Vznikající pokles tlaku je roven hmotnosti fluidní vrstvy v reakční zóně 12 dělené průřezem plochy reakční zóny 12 nebo je slabě větší než je tento poměr, a proto je pokles tlaku závislý na geometrických rozměrech reaktoru.
Znovu v souvislosti s obr. 1 se poznamenává, že připravená násada vstupuje do recirkulovaného proudu 16 v zaváděcím místě 22, na který však řešení není omezeno. Do analyzátoru 24 plynu se dodávají vzorky plynu z potrubí recirkulovaného proudu 16 a sleduje se složení recirkulovaného proudu 16, které prochází potrubím. Analyzátor 24 plynu je také uzpůsoben k regulaci složení recirkulovaného proudu 16. v potrubí a dávkování se udržuje v ustáleném stavu, pokud jde o složení recirkulovaného proudu 16 v reakční zóně 12. Analyzátor 24 plynu obvykle analyzuje vzorky plynu odebrané z potrubí recirkulovaného proudu 16 v místě mezi volnou zónou 14 a výměníkem 26 tepla, výhodně mezi kompresorem 28 a výměníkem 26 tepla.
Recirkulovaný proud 16 se vede směrem vzhůru reakční zónou 12 a adsorbuje teplo vytvářené polymeračním procesem.
Ta část recirkulovaného proudu 16, která nereaguje v reakční zóně 12, vystupuje z reakční zóny 12 a prochází zónou snížení rychlosti neboli volnou zónou 14.. Jak již dříve bylo popsáno, v této oblasti, ve volné zóně 14 neboli v zóně snížení rychlosti, hlavní část částic st polymeru klesá zpět do fluidní vrstvy reakční zóny 12, přičemž se snižuje množství přenášených částic tuhého polymeru v recirkulovaném proudu 16 procházejícím potrubím. Jakmile recirkulovaný proud 16 opustí reaktor nad volnou zónou 14, je potom stlačen v kompresoru 28 a veden výměníkem 26 tepla, kde se teplo vzniklé polymerační reakcí a stlačováním plynu odstraňuje z recirkulovaného proudu 16 před tím, než se recirkulovaný proud 16 vrací zpět do reakční zóny 12 v reaktoru 10.. Do potrubí recirkulovaného proudu 16 se může umístit výměník 26 tepla obvyklého typu, buď ve vertikální nebo v horizontální poloze. Při alternativním provedení tohoto vynálezu se může zařadit více než jedna zóna výměny tepla nebo kompresní zóna do potrubí recirkulovaného proudu 16.
V souvislosti s obr. 1 se uvádí, že recirkulovaný proud 16 vystupující z výměníku 26 tepla se vrací do spodní části reaktoru 10. Výhodně průtokový deflektor 30 tekutiny je umístěn pod rozváděči desku 18. Průtokový deflektor 30 tekutiny brání polymeru, aby se usazoval v tuhé hmotě a udržuje st kapalinu a částice polymeru v recirkulovaném proudu 16 pod rozváděči deskou 18. Výhodný typ průtokového deflektoru tekutiny je tvaru kruhového disku, jako je například typ popsaný v US patentu č. 4 933 149. Za použití kruhového typu disk vytváří jak středový vzestupný tok, tak obvodový sestupný tok. Středový vzestupný tok napomáhá při strhování kapiček kapaliny v hlavě spodní části a obvodový sestupný tok pomáhá snížit na minimum vznik částic polymeru v hlavě spodní části. Rozváděči deskou 18 difunduje recirkulovaný proud 16, aby se vyhnulo proudu, který vstupuje do reakční zóny 12 ve středovém uspořádání proudu pohybujícího se směrem vzhůru nebo trysce, která by narušila fluidizaci fluidní vrstvy v reakční zóně 12.
Teplota fluidní vrstvy je závislá na teplotě slepování částic, ale je v podstatě závisí na třech okolnostech:
1) aktivitě katalyzátoru a rychlosti injekčního zavádění katalyzátoru, které řídí rychlost polymerace a průvodní rychlost vývoje tepla,
2) teplotě, tlaku a složení recirkulovaného proudu a připraveného proudu, které se zavádějí do reaktoru a
3) objemu recirkulovaného proudu, vedeného fluidní vrstvou.
Množství kapaliny zaváděné do vrstvy buď s recirkulovaným proudem nebo odděleně, jak bylo již popsáno, zvláště ovlivňuje teplota, protože se kapalina odpařuje v reaktoru a slouží ke snížení teploty fluidní vrstvy. Obvykle se používá množství přidávaného katalyzátoru k řízení rychlosti produkce polymeru.
Teplota fluidní vrstvy v reakční zóně 12 při výhodném provedení zůstává konstantní v ustáleném stavu kontinuálním odváděním reakčního tepla. Ustálený stav v reakční zóně 12 nastává, pokud množství vytvářeného tepla při způsobu je v rovnováze s množstvím odváděného tepla. Tento ustálený stav vyžaduje, aby celkové množství materiálu vstupujícího do polymeračního procesu bylo vyváženo množstvím polymeru a dalších látek, které se odvádějí. V důsledku toho teplota, tlak a složení v libovolném daném místě při procesu jsou konstantní v průběhu času. V převážné části fluidní vrstvy reakční zóny 12 nenastává významný teplotní gradient, avšak teplotní gradient je ve spodní části fluidní vrstvy v reakční zóně 12., v oblasti nad rozváděči deskou 18 plynu. Tento gradient je výsledkem rozdílu mezi teplotou recirkulovaného proudu 16 vstupujícího rozváděči deskou 18 ve spodní části reaktoru 10 a teplotou fluidní vrstvy v reakční zóně 12.
Účinnost provozování reaktoru 10 vyžaduje dobrou distribuci recirkulovaného proudu 16. Pokud by se měl projevovat růst nebo tvorba polymeru a částice katalyzátoru by dovolovaly vypadávání z fluidní vrstvy, mohlo by nastat spékání polymeru. To může mít za výsledek, v extrémním případě, tvorbu tuhé hmoty prostupující reaktor. Reaktor průmyslové velikosti obsahuje v libovolném daném čase tisíce kilogramů tuhého polymeru. Odstranění tuhé hmoty polymeru v tomto rozsahu by mělo za následek veliké obtíže, vyžadující podstatnou námahu a prodlouženou dobu odstavení. Stanovením stabilních provozních podmínek pomocí měření sypné hmotnosti zlepšuje procesy polymerace, které se mohou provádět, a ve kterých se dosahuje fluidizace a podpory fluidní vrstvy v reakční zóně 12 v reaktoru 10.
Při výhodném provedení se změny v sypné hmotnosti fluidní fáze pro danou jakost polymeru a/nebo složení katalyzátoru používají pro optimalizaci podmínek procesu a navržené zařízení. Sypná hmotnost fluidní fáze je poměr změřené tlakové ztráty v příčném směru středové pevné části reaktoru k výšce této pevné části. Jde o střední hodnotu, která může být větší nebo menší než lokální sypná hmotnost v libovolném místě pevné části reaktoru. Mělo by se vzít v úvahu, že za určitých podmínek, které jsou známé odborníko vi v oboru, se může změřit střední hodnota, která je větší nebo menší než lokální sypná hmotnost ve vrstvě.
Přihlašovatelé zjistili, že koncentrace kondenzovatel né složky se zvyšuje v plynném proudu protékajícím vrstvou a identifikovatelné místo se může dosáhnout za touto vrstvou, přičemž je nebezpečí zhroucení procesu, pokud koncentrace dále stoupá. Toto místo je charakterizováno nevratným poklesem sypné hmotnosti fluidní fáze se vzrůstem koncentrace kondenzovatelné tekutiny v plynu. Obsah kapaliny v recirkulovaném proudu vstupujícím do reaktoru nemusí být přímo důležitý. Pokles sypné hmotnosti fluidní fáze nastává obecně s nekorespondující změnou sypné hmotnosti usazeniny z granulí konečného produktu. Tak změna chování při fluidiza ci se odráží v poklesu sypné hmotnosti fluidní fáze, která zdánlivě nezahrnuje jakékoli trvalé změny v charakteristických vlastnostech částic polymeru.
Koncentrace kondenzovatelné tekutiny v plynu, při které nastává pokles sypné hmotnosti fluidní fáze závisí na typu polymeru, který se vyrábí, a na jiných podmínkách procesu. Může se zjistit sledováním sypné hmotnosti fluidní fáze, jak se zvyšuje koncentrace kondenzovatelné tekutiny v plynu pro daný typ polymeru a jiné podmínky procesu.
Sypná hmotnost fluidní fáze (FDB) závisí na jiných proměnných, kromě koncentrace kondenzovatelné tekutiny v plynu, včetně například zdánlivé rychlosti plynu protékajícího reaktorem a charakteristických vlastností částic, jako je velikost, měrná hmotnost a sypná hmotnost usazeniny, stejně jako měrná hmotnost plynu, viskozita, teplota a tlak. Tak při testech ke stanovení změn sypné hmotnosti fluidní fáze přičítaných změnám v koncentraci kondenzované tekutiny v plynu se má vyhnout významným změnám jiných podmínek. Proto v rozsahu tohoto vynálezu je sledování jiných proměnných, z nichž se může stanovit sypná hmotnost fluidní fáze, která nezpůsobí nestabilitu vrstvy. Pro účely této aplikace sledování a udržování sypné hmotnosti fluidní fáze zahrnuje sledování nebo udržování těchto proměnných popsaných výše, které působí na sypnou hmotnost fluidní fáze nebo se používají pro stanovení sypné hmotnosti fluidní fáze.
I když se může přizpůsobit určitému mírnému poklesu sypné hmotnosti fluidní fáze bez ztráty řízení, další změny ve složení plynu nebo jiných proměnných, které také zvyšují teplotu rosného bodu, mohou být doprovázeny nevratným poklesem sypné hmotnosti fluidní fáze, vyvinutým z horkých míst ve fluidní vrstvě v reaktoru, vytvářením spečených aglomerátů a popřípadě odstavením reaktoru.
Jiné parciální důsledky přímo související se snížením sypné hmotnosti fluidní fáze zahrnují sníženou kapacitu polymeru z vyprazdňovacího systému pevného objemu reaktoru a snížení doby setrvání polymeru a/nebo katalyzátoru v reaktoru, při konstantní rychlosti produkce polymeru. Posledně uvedené může, pro daný katalyzátor, snížit produktivitu katalyzátoru a zvýšit hladinu zbytků katalyzátoru v produkovaném polymeru. Při výhodném provedení je žádoucí, aby se snížila koncentrace kondenzovatelné tekutiny v plynu pro danou cílovou rychlost produkce reaktoru a související chladicí vybavení.
Za použití takových změn sypné hmotnosti fluidní fáze se mohou definovat stabilní provozní podmínky. Jakmile se zjistí vhodná směs, tato směs se může použít k dosažení mnohem vyšších chladicích kapacit pro recirkulovaný proud (aniž by se narazilo na nestabilitu vrstvy), chlazením této směsi ve větším rozsahu. Kondenzovatelné nepolymerovatelné materiály se mohou přidávat ve vhodných množstvích pro zvláštní jakost k dosažení vysoké produktivity reaktoru, zatímco se uchrání dobré podmínky ve fluidní vrstvě udržované ve stavu, ve kterém tak jsou určeny stabilní provozní zóny. Vysoká produktivita reaktoru se může dosáhnout při způsobu nebo v navrženém zařízení, a veliká kapacita zařízení se může navrhnout při relativně malém průměru reaktoru nebo se již existující reaktor může upravit, aby poskytl zvýšenou kapacitu bez změny velikosti reaktoru.
Při vyšších produktivitách reaktoru bylo nalezeno, že u stavu v hranicích definovaných přijatelnými změnami sypné hmotnosti fluidní fáze se mohou přizpůsobit hladiny kondenzované kapaliny nad přibližně 15 %, 18 %, 20 %, 22 %, %, 27 %, 30 % nebo rovněž 35 %, které jsou však obvykle větší než tyto hodnoty, zatímco se vyhne významným úrovním tvorby kousků nebo lístků, které by vyplývaly ze zhroucení fluidní vrstvy. Hladiny kondenzovatelné kapaliny, vztažené na celkovou hmotnost recirkulovaného proudu nebo fluidizačního prostředí, jsou v rozmezí od 15 do 50 % hmotnostních, výhodně větší než přibližně 20 až 50 % hmotnostních, nebo rovněž větší než 20 až zhruba 40 % hmotnostních a nejvýhodněji přibližně od 25 do zhruba 40 % hmotnostních.
Výhodně se sypná hmotnost fluidní fáze sleduje za použití měření tlakového rozdílu v části fluidní vrstvy, která není náchylná ke zrušení, nad rozváděči deskou. Zatímco obvykle změny sypné hmotnosti fluidní fáze v nižší části vrstvy mohou svědčit o poškození vrstvy nad rozváděči deskou, s vyšší sypnou hmotností fluidní fáze naměřenou v určité vzdálenosti od rozváděči desky, které se používá jako stabilního srovnání, nyní s překvapením bylo nalezeno, že změny ve vyšší sypné hmotnosti fluidní fáze korelují se změnami ve složení proudu a mohou se použít k nalezení a definování stabilních provozních zón.
Při jednom provedení je funkce (Z) sypné hmotnosti definována jako (r°bf - rog)/robs (ros - rog)/ros
ve kterém
robf znamená sypnou hmotnost fluidní fáze,
robs znamená sypnou hmotnost usazeniny,
r°g znamená měrnou hmotnost plynu a
r°s znamená měrnou hmotnost tuhé látky (pryskyřice).
Funkce (Z) sypné hmotnosti se může vypočítat z měření parametrů procesu a produktu.
Při jiném ztělesnění funkce (Z) sypné hmotnosti je definována jako
0,59 - ro /robs Z < --1 - rog/ros ve kterém robf znamená sypnou hmotnost fluidní fáze, rojjg znamená sypnou hmotnost usazeniny, rOg znamená měrnou hmotnost plynu a ros znamená měrnou hmotnost tuhé látky (pryskyřice).
Podle tohoto vynálezu zhroucení fluidizace se vyhne udržováním hodnoty funkce (Z) sypné hmotnosti nad přibližně minimálními nebo limitními hodnotami uvedenými v dále zařazených tabulkách A a B, založených na vypočtených hodnotách pro X a Y.
Pro účely tohoto popisu a připojených patentových nároků, X a Y jsou definovány dále uvedenými rovnicemi;
X = log dproguo μ
Y = log gdp 3rogrobs(ros - rog) τοθμ2 ve kterém dp znamená hmotnostní střední průměr částic, g představuje gravitační zrychlení (9,805 m/s2),
UQ znamená zdánlivou rychlost plynu a μ znamená viskozitu plynu.
Pro účely popisu tohoto patentu a připojených patentových nároků, vypočtený limit funkce sypné hmotnosti je založen na hodnotách pro funkce X a Y, jak se spočítají za použití soustavy vzorců uvedené výše. Vypočtený limit je číslo určené z tabulky A a/nebo B za použití vypočtených hodnot pro X a Y.
Tabulka A obsahuje hodnoty vypočteného limitu funkce sypné hmotnosti pro rozmezí X a Y. Tabulka B obsahuje hodnoty vypočteného limitu funkce sypné hmotnosti pro výhodná rozmezí X a Y.
Třebaže tabulka A a/nebo B představuje pouze vybrané bodové hodnoty pro X a Y, odborník v oboru zjistí, že obecně bude nutné interpolovat hodnoty X a Y, aby se dosáhla odpovídající limitní hodnota Z.
Při výhodném provedení funkce (Z) sypné hmotnosti se dosáhne při hodnotě větší nebo rovné, výhodněji větší, než je hodnota uvedená v tabulce A a/nebo B, za použití hodnot pro X a Y.
Při ještě jiném ztělesnění funkce (Z) sypné hmotnosti se dosáhne úrovně větší než 1 % nad limitní funkcí sypné hmotnosti, stanovenou z tabulek A a B, a výhodněji větší než přibližně 2 %, ještě výhodněji větší než zhruba 4% a obzvláště výhodně větší než přibližně 5 %.
Při jiném provedení funkce (Z) sypné hmotnosti je v rozmezí od přibližně 0,2 do zhruba 0,7, výhodně v rozmezí od přibližně 0,3 do zhruba 0,6 a obzvláště výhodně větší než od přibližně 0,4 do zhruba 0,6.
Průměr částic (čip) může být v rozmezí od 100 do 3000 μπι, výhodněji přibližně od 500 do 2500 μπι, ještě výhodněji přibližně od 500 do 2000 μτη a nejvýhodněji od 500 do 1500 μπι.
Viskozita plynu (μ) může být v rozmezí od přibližně 0,01 do zhruba 0,02 mPa.s, výhodně od 0,01 do zhruba 0,18 mPa.s a nejvýhodněji od 0,011 do zhruba 0,015 mPa.s.
Sypná hmotnost usazeniny (SBD) neboli robs může být v rozmezí od přibližně 160 do 560 kg/m3, výhodně zhruba od 192 do 561 kg/m3, výhodněji přibližně od 224 do 513 kg/m3
O a nejvýhodněji od přibližně 240 do 480 kg/m .
Měrná hmotnost plynu (ro„) může být v rozmezí od o
přibližně 8 do zhruba 77 kg/m , výhodně zhruba od 16 do 64 kg/m3, výhodněji od přibližně 18 do zhruba 64 kg/m3 β
a nejvýhodněji od přibližně 19 do zhruba 58 kg/m .
Měrná hmotnost tuhé pryskyřice (ros) může být v rozmezí od 0,86 do 0,97 g/cm3, výhodně v rozmezí od 0,87 do přibližně 0,97 g/cm3, výhodněji v rozmezí od 0,875 do přibližně 0,970 g/cm3 a nejvýhodněji v rozmezí od 0,88 do přibližně 0,97 g/cm3.
Teplota v reaktoru může být od 60 do 120 °C, výhodně od 60 do 115 °C a nejvýhodněji v rozmezí od 70 do 110 °C.
Reakční přetlak může být od 687 do 6870 kPa, výhodně přibližně od 1030 do 4122 kPa, výhodněji od 1374 do přibližně 3435 kPa a nejvýhodněji od 1717 do zhruba 2748 kPa.
Tabulka A
Funkce limitní sypné hmotnosti
Y 2,0 2,5 3,0 1 3,5 4.0 4,5 5,0 5,5 63 6,5 7,0 7,5 8,0
X
0,3 0,411
0.4 0,403
- 0.5 0.393
0.6 0,381
0.7 0,367 0,460
[* 0,8 0,351 0,450
0.9 0,332 0,437
1,0 0,311 0,422 0,522
1.1 CV289 0,404 0,510
1.2 0365 0,384 0,496
1.3 0,239 0,361 0,480
1.4 0,214 0,336 0.460 0,561
1.5 0,188 0,309 0438 0,546
1.6 0,281 0,413 0,529
~^T 0,252 0,386 0,508 0,598
1.8 0,223 0,355 0,484 0,582
1.9 0,324 0,457 0,563
2,0 0,291 0,427 0,541 0,620
2,1 0,258 0,394 0,516 0,602
2.2 0,226 0f360 0487 0381
2,3 0,324 0455 0,557 0,633
24 0,288 0421 0329 0,614
2.5 0,252 0J84 0,497 0390
2.6 0,346 0,462 0,563 0,635
2,7 0,307 0.425 0,533 0314
2.8 0,270 0385 0,499 0388
2.9 0339 0461 0,559 0,628
3,0 0,299 0,422 0326 0,605
3.1 0,261 0,381 0490 0377 0341
' 3/2 0,339 0,451 0,546 0319
3.3 0398 0,410 0,511 0393
3.4 0,259 0,368 0,473 0364 0,631
3,5 0325 0433 0331 0308
3,6 0,284 0.391 0,494 0380 0343
3.7 0,245 0f348 0,455 0349 0321
3.8 0,306 0413 0,514 0395 0,653
3,9 0.266 0,371 0476 0.566 0333
4.0 0328 (X435 0332 0,609
4.1 0,287 0,393 0,496 0381
43 0,247 0,350 0,456 0350
4.3 0308 0415 0,515
4.4 0,267 CV372 0/77
4(5 0329 0436
0^288 0394
Tabulka Β
Výhodné rozmezí funkce limitní sypné hmotnosti
Y 4.00 4,25 4.50 4,75 5,00 5,25 5,50 5,75 6,00 1 6,25 I 6,50 6.75 7,00
X -f-
2,00 0,541 0,584
2,05 d529 0.574
2,10 0,516 0,562
2,15 0,502 0,550 0.592
2,20 0,487 0,537 0,581
2,25 0.472 0,524 0,569
2,30 0,455 0,509 0,557 0,598
2,35 0438 0,493 0,543 CU587
2,40 0,420 0,477 0,529 0,574
2*45 0,402 0/160 0/513 U561 0602
2,50 0,384 0,442 0/197 (1547 d590
2,55 0^424 0,480 0.532 d577
X60 0*405 0,462 d515 0,563 0,605
2,65 0,386 0/144 d499 0,548 0,592
2,70 0,425 0,481 11533 0579
2,75 0/405 9r463 0,516 0.564 0,601
2^80 0.385 0.444 d499 0,549 0.588
2,85 0.424 0,480 0,533 0,574 0,609
2,90 0,404 CL461 0,515 0\559 oj597
2,95 0,384 0,442 0,497 0,543 0^583
3.00 CL422 0,478 0,526 0,568 0,605
3,05 0*401 0*459 0,509 0^553 0,591
3,10 0,381 0,439 d490 0,536 0,577 0.612
£15 0 418 0 471 0519 0562 IČJ599
3^20 0*398 0*451 0,501 0Í546 0,5.85
3,25 0,377 0,431 0482 0529 0,571 0.607
3,30 —— 0/110 0/62 0,511 0.555 0,593
3p5 d389 0.442 0,493 0,539 0,579 0,613
3,40 0422 0*473 0.521 0,564 0.601
3,45 0/01 0/453 0,503 0,548 d587
3,50 0,379 0.433 0^484 0,531 0,572 0.608
3,55 0^112 0.464 0,513 0.556 (^594
3,60 0.391 0,444 0494 0,540 0580
3,65 0,423 0yl75 0522 CL565
3,70 0/402 0ýl55 0^504 0,549
3,75 0.381 0434 0,485 0,532
3,80 0,413 0,465 0314
3,85 0,392 0.445 0,495
3,90 0,424 0476
3,95 0.403 0/56
4,00 0382 0j435
Výhodně se recirkulovaný proud chladí a vede takovou rychlostí reaktorem, že chladicí kapacita je dostatečná pro dosažení produktivity reaktoru, vyjádřené v kilogramech polymeru na plochu průřezu reaktoru (v h/m2), která překračuje hodnotu 2441 kg/h.m2, obzvláště 2929 kg/h.m2, co zahrnuje změnu enthalpie recirkulovaného proudu, od stavu na přívodu do reaktoru do stavu na výstupu z reaktoru, přinejmenším 92 J/g, výhodně 113 J/g. S výhodou kapalná a plynná složka proudu se přidávají ve směsi pod rozváděči desku reaktoru. Tato produktivita reaktoru je rovna výtěžku v prostoru a čase násobenému výškou fluidní vrstvy.
Při výhodném provedení tohoto vynálezu se kapalina zaváděná do reaktoru 10 odpařuje za účelem dosažení zvýšené chladicí kapacity reaktoru, co přispívá k uvedenému procesu polymerace. Vyšší úroveň kapaliny ve vrstvě může napomáhat tvorbě aglomerátů, které se nemohou rozmělnit mechanickými silami přítomnými ve vrstvě, co vede k potenciální defluidizaci, zhroucení vrstvy a odstavení reaktoru. Kromě toho přítomnost kapalin může ovlivňovat lokální teploty vrstvy a působit na kapacitu procesu vedoucího k produkci polymeru, který má stálé vlastnosti, protože ten vyžaduje v podstatě konstantní teplotu v celé vrstvě. Z tohoto důvodu množství kapaliny zaváděné do fluidní vrstvy za daných podmínek by nemělo materiálně překročit množství, které bude odpařeno v nižší oblasti fluidní vrstvy, zatímco mechanické síly spojené se vstupem recirkulovaného proudu přes rozváděči desku jsou dostatečné k rozrušení aglomerátů vzniklých interakcí částic a kapaliny.
Při tomto vynálezu nyní bylo nalezeno, že pro dané složení a fyzikální charakteristiky částic produktu ve fluidní vrstvě a jiných daných nebo příbuzných podmínkách v reaktoru a při recirkulaci, se definováním hraničních podmínek týkajících se složení plynu protékajícího vrstvou může při vysokých úrovních chlazení dosáhnout životaschopná fluidní vrstva.
Aniž by bylo přáním vázat se na nějakou teorii, přihlašovatel předpokládá, že pozorovaný pokles sypné hmotnosti fluidní fáze může odrážet expanzi zvláštní kusovité fáze a změny v chování bublin ve fluidní vrstvě.
Znovu v souvislosti s obr. 1 se uvádí, že aktivátor katalyzátoru, pokud je vyžadován v závislosti na použitém katalyzátoru, se obecně přidává ve směru proudu za výměníkem 26 tepla. Aktivátor katalyzátoru se může zavádět z dávkovače 32 do recirkulovaného proudu 16. Zlepšený způsob podle tohoto vynálezu však není omezen umístěním přívodu aktivátoru katalyzátoru nebo nějaké jiné požadované složky, jako jsou promotory katalyzátoru.
Katalyzátor se může ze zásobníku katalyzátoru přivádět buď přerušovaně nebo nepřetržitě do fluidní vrstvy reakční zóny 12, při výhodném provedení vstupem 34. který je umístěn nad rozváděči deskou 18 plynu. Při výhodném provedení, jak je popsáno výše, injikování katalyzátoru se při nej lepším provedení dosahuje v místě, kde se míchá s částicemi polymeru ve fluidní vrstvě 12. Protože některé katalyzátory jsou velmi aktivní, výhodné injekční zavádění do reaktoru 10 by mělo být nad rozváděči deskou 18 plynu a nikoli pod touto deskou. Injekce katalyzátoru do prostoru pod rozváděči deskou 18 plynu může mít důsledek v polymeraci produktu v tomto prostoru, co by mohlo mít za výsledek ucpávání rozváděči desky 18 plynu. Také zavádění katalyzátoru nad rozváděči desku 18 plynu napomáhá rovnoměrnému rozdělení katalyzátoru uvnitř fluidní vrstvy 12, a proto pomáhá vyloučit tvorbu horkých míst, které jsou výsledkem vysokých místních koncentrací katalyzátoru. Injekce se výhodně zavádí do nižší části fluidní vrstvy v reakční zóně 12, aby se napomohlo rovnoměrné distribuci a minimálnímu přenosu katalyzátoru do recirkulačního potrubí, kde polymerace může vést k případnému ucpání recirkulačního potrubí a výměníku tepla.
Mohou se používat různé technické postupy pro injekci katalyzátoru při zlepšeném způsobu podle tohoto vynálezu, například technický postup popsaný v US patentu č.
779 712, jehož obsah se zde uvádí jako součást dosavadního stavu techniky. Inertní plyn, jako je dusík, nebo inertní kapalina, která se snadno odpařuje za podmínek převládajících v reaktoru, se výhodně používá k dopravě katalyzátoru do fluidní vrstvy reakční zóny 12.. Rychlost injekčního zavádění katalyzátoru a koncentrace monomeru v recirkulovaném proudu 16 určuje rychlost produkce polymeru ve fluidní vrstvě reakční zóny 12. Je možné řídit rychlost produkce polymeru, který je vyráběn, jednoduchou úpravou rychlosti injekčního zavádění katalyzátoru.
Při výhodném způsobu provozování reaktoru 10, využívajícím zlepšeného způsobu podle tohoto vynálezu, se výška fluidní vrstvy v reakční zóně 12 udržuje odváděním části vyprodukovaného polymeru rychlostí, která souhlasí s tvorbou produkovaného polymeru.
Přístrojová technika, které je vhodná pro určení jakýchkoli změn teploty a tlaku uvnitř reaktoru 10. a recirkulovaného proudu 16., je vhodná ke sledování změn stavu fluidní vrstvy v reakční zóně 12. Tato přístrojová technika také dovoluje buď ruční nebo automatickou úpravu rychlosti injekčního zavádění katalyzátoru a/nebo teploty recirkulovaného proudu.
Při provozu reaktoru 10 se produkt odstraňuje z reaktoru vyprazdňovacím systémem 36. Po odvedení vyprodukovaného polymeru výhodně následuje oddělení tekutin od vyprodukovaného polymeru. Tyto tekutiny se mohou vracet jako plyn zpět do potrubí recirkulovaného proudu 16 přívodem 38 a/nebo jako kondenzovaná kapalina přítokem 40.. Vyprodukovaný polymer se vede směrem ze své výroby do výstupního místa 42. Vyprazdňování vyprodukovaného polymeru není omezeno na způsob znázorněným na obr. 1, který ilustruje právě jeden zvláštní způsob vyprazdňování. Může se použít jiný vyprazdňovací systém, například jako je popsán a nárokován v US patentech č. 4 543 399 a 4 588 790 Jenkinse a kol.
V souladu s tímto vynálezem způsob poskytuje zvyšující se produktivitu produkce polymeru ve fluidní vrstvě v reaktoru, za použití exotermní polymerační reakce chlazením recirkulovaného proudu pod teplotu rosného bodu a navracení výsledného recirkulovaného proudu do reaktoru. Recirkulovaný proud obsahující více než 15 % hmotnostních, výhodně více než 20 % hmotnostních, kapaliny se může recirkulovat do reaktoru k udržení fluidní vrstvy na požadované teplotě.
Při způsobu podle tohoto vynálezu se chladicí kapacita recirkulovaného proudu neboli fluidizačního prostředí může významně zvýšit jak odpařením kondenzovaných kapalin stržených do recirkulovaného proudu, tak jako výsledek většího teplotního rozdílu mezi teplotou vstupujícího recirkulovaného proudu a teplotou fluidní vrstvy.
Při jednom provedení vyráběný polymer, produkovaný způsobem podle tohoto vynálezu, má měrnou hmotnost v rozmezí od přibližně 0,90 do zhruba 0,939 g/cm3.
Při výhodném ztělesnění jsou vyrobené polymery, homopolymery nebo kopolymery zvoleny z pryskyřic jakosti pro film, které mají index toku taveniny (MI) od přibližně 0,01 do 5,0, výhodně od 0,5 do 5,0, a měrnou hmotnost od 0,900 do 0,930, nebo z pryskyřic jakosti pro odlévání, které mají index toku taveniny od přibližně 0,10 do 150,0, výhodně od 4,0 do 150,0, a měrnou hmotnost od 0,920 do 0,939, nebo z pryskyřic o vysoké měrné hmotnosti, které maj í index toku taveniny od přibližně 0,01 do 70,0, výhodně od 2,0 do 70,0, a měrnou hmotnost od 0,940 do 0,970, přičemž všechny výše o
uvedene hodnoty měrné hmotnosti jsou uvedeny v g/cm a indexy toku taveniny v g/10 min, jak se stanoví podle americké normy ASTM-1238, podmínka E.
V závislosti na cílové pryskyřici se mohou uzpůsobit rozdílné recirkulační podmínky, s tím, že dříve nebyla předpokládána taková úroveň produktivity reaktoru.
Předně se může vyrábět například pryskyřice jakosti pro film a při této výrobě recirkulovaný proud obsahuje buten a ethylen v molárním poměru od 0,001 do 0,60, výhodně od 0,30 do 0,50, 4-methyl-l-penten a ethylen v molárním poměru od 0,001 do 0,50, výhodně od 0,08 do 0,33, hexen a ethylen v molárním poměru od 0,001 do 0,30, výhodně od 0,05 do 0,20 nebo 1-okten a ethylen v molárním poměru od 0,001 do 0,10, výhodně od 0,02 do 0,07, vodík a ethylen v molárním poměru od 0,00 do 0,4, výhodně od 0,1 do 0,3 a hladina isopentanu je od 3 do 20 % molárních nebo hladina isohexanu je od 1,5 do 10 % molárních, a při které chladicí kapacita recirkulovaného proudu je alespoň 93 J/g, výhodně alespoň 116 J/g, nebo kondenzované látky jsou přítomny v množství alespoň 15 % hmotnostních, výhodně více než 20 % hmotnostních.
Za druhé způsob se může používat k získání pryskyřice jakosti pro odlévání, kde v recirkulovaném proudu je molární poměr 1-butenu k ethylenu od 0,001 do 0,60, výhodně od 0,10 do 0,50, molární poměr 4-methyl-l-pentenu k ethylenu od 0,001 do 0,50, výhodně od 0,08 do 0,20, molární poměr hexenu k ethylenu od 0,001 do 0,30, výhodně od 0,05 do 0,12, molární poměr 1-oktenu k ethylenu od 0,001 do 0,10, výhodně od 0,02 do 0,04, molární poměr vodíku k ethylenu od 0,00 do 1,6, výhodně od 0,3 do 1,4 a hladina isopentanu je od 3 do 30 % molárních nebo hladina isohexanu je od 1,5 do 15 % molárních, a při kterém chladicí kapacita recirkulovaného proudu je alespoň 93 J/g, výhodně alespoň 116 J/g, nebo kondenzované látky jsou přítomny v množství alespoň 15 % hmotnostních, výhodně více než 20 % hmotnostních.
Tímto způsobem se také mohou vyrábět pryskyřice o vysoké měrné hmotnosti, kde v recirkulovaném proudu je molární poměr butenu k ethylenu od 0,001 do 0,30, výhodně od 0,001 do 0,15, molární poměr 4-methyl-l-pentenu k ethylenu od 0,001 do 0,25, výhodně od 0,001 do 0,12, molární poměr hexenu k ethylenu od 0,001 do 0,15, výhodně od 0,001 do 0,07, nebo molární poměr 1-oktenu k ethylenu od 0,001 do 0,05, výhodně od 0,001 do 0,02, molární poměr vodíku k ethylenu od 0,00 do 1,5, výhodně od 0,3 do 1,0 a hladina isopentanu je od 10 do 40 % molárních nebo hladina isohexanu je od 5 do 20 % molárních, a při kterém chladicí kapacita recirkulovaného proudu je alespoň 139 J/g, výhodně více než 169 J/g a nejvýhodněji více než alespoň přibližně 174 J/g, nebo kondenzované látky jsou přítomny v množství alespoň 12 % hmotnostních, výhodně více než 20 % hmotnostních.
Příklady provedeni vynálezu
K lepšímu porozumění tomuto vynálezu včetně reprezentativních výhod a omezení tohoto vynálezu, se předkládají dále uvedené příklady, ve vztahu k aktuálním testům sloužícím pro praktické provedení tohoto vynálezu.
Příklad 1
Reaktor pro zpracování plynu ve fluidní vrstvě se provozuje k přípravě kopolymeru, který obsahuje ethylen a buten. Použitým katalyzátorem je komplex tetrahydrofuranu, chloridu hořečnatého a chloridu titanu, redukovaný diethylaluminiumchloridem (molární poměr diethylaluminiumchloridu k tetrahydrofuranu odpovídá 0,50) a tri-n-hexylhliníkem (molární poměr tri-n-hexylhliníku k tetrahydrofuranu odpovídá 0,30), napuštěný na oxid křemičitý zpracovaný s triethylhliníkem. Aktivátorem je triethylhliník (TEAL).
Údaje v tabulce 1 a ilustrované na obr. 2 ukazují parametry reaktoru, jak se úroveň isopentanu postupně zvyšuje, aby se dosáhlo přídavného chlazení, které je nezbytné k dosažení vyšší produktivity reaktoru. Tento příklad ukazuje, že přebytečné množství isopentanu vede ke změnám ve fluidní vrstvě a konečně k jejímu poškození vznikem horkých míst a aglomerátů, co nutně vyžaduje odstavení reaktoru. Jak se koncentrace isopentanu zvyšuje, sypná hmotnost fluidní fáze klesá, co ukazuje na změnu ve fluidní vrstvě, což má také za výsledek zvýšení výšky vrstvy. Dávka katalyzátoru se snižuje, aby se dosáhlo snížení úrovně vrstvy. Kromě toho se koncentrace isopentanu snižuje při pokusu obrátit změnu ve fluidní vrstvě. Avšak v tomto bodu, třebaže výška vrstvy se vrátila na normální úroveň, poškození spojené s horkými místy a aglomerací ve vrstvě je nevratné a reaktor se odstavuje.
Kromě toho z údajů v tabulce 1 může být zřejmé, že provozování reaktoru je stabilní, pokud hodnota funkce (Z) sypné hmotnosti zůstává na úrovni nad vypočteným limitem (vztaženo na hodnoty pro funkce X a Y v tabulkách A a B). Jakmile hodnota funkce (Z) sypné hmotnosti se dostane pod vypočtenou limitní hodnotu, provoz reaktoru se stane nestabilní a reaktor má být odstaven.
Tabulka 1
Doba (hodiny)
1 7 10 13 15 17 18
index toku taveniny pryskyřice (dg/10 min) 1,01 1,04 1,03 1,12 1,09 1,11 1,11
měrná hmotnost pryskyřice (g/cm3) 0,9176 0,9183 0,9190 0,9190 0,9183 0,9193 0,9193
složení recirkulovaného proudu:
ethylen 47,4 46,0 44,7 44,1 44,0 45,9 46,3
1-buten 19,0 18,1 17,3 17,0 16,9 18,5 19,5
1-hexen
vodík 9,5 9,4 9,3 9,3 8,9 8,7 8,9
isopentan 8,0 10,8 13,7 15,1 15,4 14,3 13,2
nasycené uhlovodíky
se 6 atomy uhlíku
dusík 14,3 13,9 13,3 12,8 13,2 11,2 10,7
ethan 1,8 1,8 1,7 1,7 1,6 1,4 1,4
methan nasycené uhlovodíky s 8 atomy uhlíku teplota rosného bodu recirkulovaného plynu (°C)
61,6 67,5 73,2 75,7 76,7 76,0 73,9
teplota na vstupu do
reaktoru l (°c)
52,3 57,6 61,9 62,2 65,0 65,7 63,5
kapalina v recirkulovaném
plynu (% hmot.) 11,4 12,1 14,3 17,4 14,5 11,6 12,3
teplota v reaktoru (°C) 83,6 83,4 83,7 83,8 83,9 84,9 85,1
přetlak v reaktoru (kPa) 2150,5 2147,7 2166,3 2160,8 2169,8 2161,5 2155,3
zdánlivá rychlost plynu v reaktoru (m/s) 0,70 0,70 0,66 0,64 0,59 0,61 0,64
výška vrstvy v reaktoru (m) 13,2 13,2 13,3 15,0 15,6 14,0 13,8
pryskyřice: sypná hmotnost usazeniny (kg/m3) 482,2 483,8 483,8 483,8 480,6 479,0 479,0
sypná hmotnost fluidní vrstvy v reaktoru (kg/m3) 302,8 314,0 290,0 285,2 275,5 262,7 253,1
výtěžek v prostoru a čase (kg/h.m3) 153,0 151,8 149,3 136,0 106,0 113,8 117,2
rychlost produkce (t/h) 31,1 30,7 30,4 31,4 25,4 24,4 24,9
produktivita reaktoru (kg/h.m2) 2026 2006 1982 2045 1660 1591 1621
změna enthalpie recirkulovaného proudu (J/g) 96,3 92,1 92,1 96,3 87,9 79,5 75,3
měrná hmotnost plynu (kg/m3) 29,1 30,2 31,7 32,2 32,6 32,5 32,1
viskozita plynu (mPa.s) 0,012 0,012 0,012 0,012 0,012 0,012 0,012
velikost částic
(μιη) 762
funkce X 3,11
funkce Y 5,61
funkce (Z) měrné
hmotnosti 0,59
limity: tabulka A a B* 0,51
762 762 762
3,13 3,12 3,12
5,63 5,65 5,66
0,61 0,55 0,54
0,50 0,51 0,51
762 762 762
3,09 3,10 3,12
5,66 5,66 5,65
0,52 0,50 0,48
0,52 0,52 0,51
vztaženo na hodnoty pro funkce X a Y, tabulky A a B se používají ke stanovení limitů.
Kromě toho při druhém pokusu, uvedeném v tabulce 2 a na obr. 3, se ukazuje, že jak se koncentrace isopentanu postupně zvyšuje, sypná hmotnost fluidní fáze klesá, jak je očekáváno z tabulky 1. Avšak v tomto čase sypná hmotnost fluidní fáze postupně vzrůstá jako výsledek snižování koncentrace isopentanu. Tak v tomto případě změna fluidizace ve vrstvě je znovu obnovitelná a vratná.
Údaje v tabulce 2 ukazují, že při udržování hodnoty funkce (Z) sypné hmotnosti rovné nebo větší než je vypočtená limitní hodnota (stanoveno z hodnot funkce pro X a Y a z tabulek A a B), změna ve fluidní vrstvě zůstává stabilní.
Tabulka 2
Doba (hodiny)
13 5 7 9 11 14 16 18
index toku taveniny
pryskyřice (dg/10 min)
0,92 0,99 1,08 1,02 1,05 1,09 1,11 1,05 0,98
měrná hmotnost
pryskyřice (g/cm3) 0,9183
0,9187 0,9184 0,9183 0,9181 0,9178 0,9177 0,9186 0,9184
složení recirkulovaného proudu:
ethylen 52,6 53,2 52,6 1-buten 52,0 52,1 51,6 52,9 52,8 52,8
20,0 19,8 19,7 1-hexen 20,4 19,7 19,8 19,1 20,1 20,1
vodík 9,7 10,2 10,3 isopentan 9,9 9,9 9,9 10,4 10,0 9,6
9,9 9,5 10,7 11,2 12,2 12,8 11,5 10,4 9,6
nasycené uhlovodíky
se 6 atomy uhlíku
dusík
8,7 ethan 8,0 7,3 6,7 6,3 6,0 6,5 7,3 8,1
1,2 1,2 1,1 1,1 1,1 1,1 1,2 1,2 1,3
methan nasycené uhlovodíky s 8 atomy uhlíku teplota rosného bodu recirkulovaného plynu (°C)
67.8 66,9 69,4 71,1 teplota na vstupu do reaktoru (°C)
51.2 47,9 48,7 51,8 kapalina v recirkulovaném plynu (% hmot.)
22.2 24,9 27,4 26,4 teplota v reaktoru (°C)
84.8 85,1 84,5 84,1 přetlak v reaktoru (kPa) 2170,0 2173,3 2173,3 2172,5 zdánlivá rychlost plynu v reaktoru (m/s)
0,53 0,53 0,53 0,54 výška vrstvy v reaktoru (m)
13,6 13,7 13,6 13,7 pryskyřice: sypná hmotnost usazeniny (kg/m3)
479,0 479,0 475,8 461,4 sypná hmotnost fluidní vrstvy v reaktoru (kg/m3)
323.9 330,9 314,4 309,9 výtěžek v prostoru a čase (kg/h.m3)
154.9 165,1 178,1 178,0
72,2 73,9 70,8 68,8 67,4
52,9 56,2 53,3 52,3 50,6
27,0 24,3 23,2 22,1 22,2
84,2 84,0 83,8 83,3 83,2
2174,2 2170,7 2157,6 2157,7 2160,6
0,54 0,54 0,53 0,53 0,53
14,0 14,3 13,9 13,9 13,8
464,6 465,4 468,6 471,3 471,8
291,1 274,3 296,2 308,1 321,1
177,0 158,4 149,1 144,9 147,3
rychlost produkce (t/h)
32,3 34,7 37,3 37,3 produktivita reaktoru (kg/h.m2) 38,1 34,8 31,7 30,8 31,1
2109 2265 2431 2431 změna enthalpie recirkulovaného proudu (J/g) 2485 2270 2065 2011 2026
125,6 138,2 142,4 měrná hmotnost plynu (kg/m3) 138,2 142,4 129,8 121,4 117,2 121,4
30,6 30,2 30,9 viskozita plynu (mPa.s) 31,6 31,9 32,3 31,0 30,9 30,6
0,012 0,012 0,012 velikost částic (μιη) 0,012 0,011 0,011 0,012 0,012 0,012
737 737 749 funkce X 762 775 787 787 787 787
3,00 2,99 3,01 funkce Y 3,03 3,08 3,10 3,03 3,03 3,03
5,59 5,58 5,61 funkce (Z) měrné hmotnosti 5,63 5,73 5,76 5,67 5,67 5,67
0,63 0,65 0,62 limity: tabulka - A a B 0,62 0,58 0,54 0,59 0,61 0,64
0,54 0,54 0,54 0,54 0,54 0,54 0,55 0,55 0,55
vztaženo na hodnoty pro funkce X a Y, tabulky A a B se používají ke stanovení limitů.
Funkce sypné hmotnosti uvedené v tabulkách 1 a 2 jasně ilustruje bod, ve kterém změny ve fluidní vrstvě nejsou již vratné, protože se nadměrně použilo kondenzovatelné tekutiny. Tento bod je definován v místě, kde funkce (Z) sypné hmotnosti se stává menší než vypočtené limitní hodnoty pro funkci sypné hmotnosti.
Příklad 2
Dále zařazený příklad se provádí v podstatě stejným způsobem jako je uvedeno v příkladu 1, za použití stejného typu katalyzátoru a aktivátoru k produkci homopolymerů a kopolymerů ethylenu s butenem o různých rozmezích měrné hmotnosti a indexu toku taveniny.
Tabulka 3
Pokus
2 3 4 5 index toku taveniny pryskyřice (dg/10 min)
0,86 6,74 7,89 22,22 1,91 měrná hmotnost pryskyřice (g/cm3)
0,9177 0,9532 0,9664 0,9240 0,9186 složení recirkulovaného proudu:
ethylen 53,1 40,5 49,7 34,1 44,0
1-buten 20,2 14,9 18,2
1-hexen 0,6
vodík 8,9 17,7 26,5 25,0 11,9
isopentan 9,7 3,7 0,7 14,1 9,6
nasycené uhlovodíky
se 6 atomy uhlíku 7,0 10,2
dusík 8,7 19,2 8,8 9,4 14,9
ethan 1,7 9,4 4,0 2,5 3,3
methan 1,1 0,3
nasycené uhlovodíky
s 8 atomy uhlíku 0,4 0,5
teplota rosného bodu recirkulovaného plynu (°C)
67,8 teplota na vstupu do 78,1 83,1 72,3 64,7
reaktoru (°C)
46,2 42,1 47,6 57,2 45,7
- 47 kapalina v recirkulovaném plynu (% hmot.)
28,6 25,4 27,6 21,8 24,4
teplota v reaktoru
(°c) 84,1 98,0 98,5 81,1 84,3
přetlak v reaktoru
(kPa) 2176,7 2069,7 2066,8 2169,8 2167,
zdánlivá rychlost plynu
v reaktoru (m/s) výška vrstvy 0,52 0,84 0,72 0,53 0,53
v reaktoru (m) 14,4 13,1 12,8 13,5 13,9
pryskyřice: sypná hmotnost usazeniny (kg/m3) 453,4 371,0 464,0 392,5 468,6
sypná hmotnost fluidní
vrstvy v reaktoru
(kg/m3) výtěžek v prostoru a čase (kg/h.m3) 314,0 267,9 347,4 251,5 305,7
rychlost produkce 172,8 228,8 208,0 123,2 157,2
(t/h) 38,0 45,9 40,9 25,7 33,4
produktivita reaktoru
(kg/h.m2) 2475 2992 2665 1674 2177
změna enthalpie recirkulovaného (J/g) proudu 150,7 154,9 175,8 113,0 138,2
měrná hmotnost plynu
(kg/m3) 31,0 22,2 20,6 27,1 29,0
viskozita plynu (mPa.s) 0,012 0,013 0,013 0,012 0,012
velikost částic
(μπ) 749 686 558 660 737
funkce X 3,00 2,99 2,80 2,90 2,97
funkce Y 5,59 5,18 4,97 5,31 5,55
funkce (Z) měrné
hmotnosti 0,65 0,68 0,72 0,59 0,61
limity: tabulka
, _& A a B 0,54 0,47 0,49 0,53 0,54
vztaženo na hodnoty pro funkce X a Y, tabulky A a B se používají ke stanovení limitů.
Tyto pokusy dokládají výhody dosahování vyšší produktivity reaktoru při úrovních kondenzované kapaliny, které překračují 20 % hmotnostních, i když se udržuje funkce (Z) sypné hmotnosti nad vypočtenými limitními hodnotami pro funkci sypné hmotnosti, jak je definována výše.
Kvůli ovládání procesů za vlastní výrobou, například systémů odebírání produktu, extrudérů a podobně, mají být upraveny určité podmínky v reaktoru, aby se nepřekročila celková kapacita zařízení. Proto celkové výhody tohoto vynálezu nemohou být naprosto oceněny na základě příkladů, které jsou uvedeny v tabulce 3.
Například při pokusu 1 z tabulky 3 se zdánlivá rychlost plynu udržuje nízká, okolo 0,52 m/s, a proto výtěžek v prostoru a čase je mnohem menší, než jaký by jinak byl v tomto případě. Pokud se rychlost udržuje okolo 0,74 m/s, odhadnutý výtěžek v prostoru a čase by byl dosažitelný v úrovni vyšší než 245,4 kg/h.m3. Pokusy 2 a 3 z tabulky 3 ukazují účinek provozování reaktoru při vysoké zdánlivé rychlosti plynu a hmotnostním obsahu kondenzované látky nad 20 %. Dosahované výtěžky v prostoru a čase okolo 229,4 a 208,5 kg/h.m3 dokládají významný vzestup rozsahu produkce. Tak vysoké výtěžky v prostoru a čase neboli rozsah produkce nejsou uváděny nebo navrženy v pracích Jenkinse a kol. Podobně jako v pokusu 1, pokus 4 z tabulky 3 vykazuje zdánlivou rychlost plynu 0,54 m/s při obsahu kondenzované kapaliny 21,8 % hmotnostních. Pokud rychlost při pokusu 4 vzroste na 0,92 m/s, dosažitelný výtěžek v prostoru a čase by vzrostl ze 123,5 na hodnotu 213,3 kg/h.m3. Jestliže rychlost při pokusu 5 vzroste na 0,92 m/s, dosažitelný výtěžek v prostoru a čase by vzrostl ze 157,2 na hodnotu 272,7 kg/h.mJ. Pro všechny pokusy 1 až 5 se funkce (Z) sypné hmotnosti udržuje nad limitní hodnotou pro funkci sypné hmotnosti, jak je definováno výše.
Příklad 3
Údaje uvedené pro případy popsané v příkladu 3, tabulka 4, se dostávají extrapolací informace ze skutečných provozních podmínek za použití termodynamických rovnic, které jsou dobře známé v oblasti navrhování cílových podmínek. Tyto údaje z tabulky 4 ilustrují výhody tohoto vynálezu, pokud se odstraní omezení pomocného vybavení reaktoru.
Tabulka 4
Pokus 1: Pokus 2:
Případ 12341234 index toku taveniny pryskyřice (dg/10 min)
0,86 6,74 měrná hmotnost pryskyřice (g/cm3)
0,9177 0,9532 složení recirkulovaného proudu: ethylen
53,1 53,1 53,1 53,1 40,5 40,5 40,5 40,5
1-buten
20,2 20,2 20,2 20,2
1-hexen 0,6 0,6 0,6 0,6
vodík
8,9 8,9 8,9 8,9 17,7 17,7 17,7 17,7
isopentan
9,7 9,7 9,7 13,0 3,7 3,7 3,7 3,7
nasycené uhlovodíky se 6 atomy uhlíku ethan
7,0 7,0 10,0 10,0
8,7 8,7 8,7 5,9 19,2 19,2 17,2 17,2
1,7 1,7 1,7 1,2 9,4 9,4 8,5 8,5
methan nasycené uhlovodíky s 8 atomy uhlíku teplota rosného bodu recirkulovaného plynu (°C)
67.8 67,8 67,8 teplota na vstupu do reaktoru (°C)
46,2 46,2 40,6 kapalina v recirkulovaném plynu (% hmot.)
28,6 28,6 34,4 teplota v reaktoru (°C)
84,1 84,1 84,1 přetlak v reaktoru (kPa)
2176,7 2176,7 2176,7 zdánlivá rychlost plynu v reaktoru (m/s)
0,52 0,73 0,73 výška vrstvy v reaktoru (m)
14,4 14,4 14,4 výtěžek v prostoru a čase (kg/h.m3)
172.8 245,4 290,3 rychlost produkce (t/h)
38,0 53,9 63,8 produktivita reaktoru (kg/h.m2)
2475 3515 4154
1,1 1,1 1,0 1,0
0,4 0,4 0,4 0,4
75,5 78,1 78,1 86,8 86,8
40,6 42,1 37,8 37,8 29,4
44,2 25,4 27,1 35,9 38,6
84,1 98,0 98,0 98,0 98,0
2176,7 2069,7 2069,7 2069,7 2069,7
0,73 0,84 0,84 0,84 0,84
14,4 13,1 13,1 13,1 13,1
372,2 228,8 249,9 284,4 317,6
81,7 45,9 50,1 57,0 63,7
5331 2992 3266 3720 4154
změna enthalpie recirkulovaného proudu (J/g)
154,9 154,9 pryskyřice: sypná hmotnost usazeniny (kg/m3)
453,4 453,4 měrná hmotnost plynu (kg/m3)
31,3 31,0 viskozita plynu (mPa.s)
0,012 0,012 velikost částic (ům)
749 749
funkce X
3,00 3,15
funkce Y
5,59 5,59
limity: tabulka •Jg
A a B
0,54 0,49
180,0 221,9 159,0
453,4 453,4 371,0
31,0 32,8 22,2
0,012 0,011 0,013
749 749 686
3,15 3,21 2,99
5,59 5,69 5,18
0,49 0,49 0,47
175,8 188,4 209,3
371,0 371,0 371,0
22,2 23,7 23,7
0,013 0,013 0,013
686 686 686
2,99 3,02 3,02
5,18 5,21 5,21
0,47 0,46 0,46
vztaženo na hodnoty pro funkce X a Y, tabulky A a B se používají ke stanovení limitů.
Při pokusu 1 se zdánlivá rychlost plynu zvyšuje z 0,52 na 0,74 m/s, co má za výsledek vyšší výtěžek v prostoru a čase odpovídající 245,4 kg/h.m3, v porovnání s počáteční hodnotou 173,2 kg/h.m3. V dalším stupni se recirkulovaný proud na přívodu ochladí na 40,6 °C z teploty 46,2 °C. Toto ochlazení zvýší hladinu kondenzovaných látek v recirkulovaném proudu na 34,4 % hmotnostních a umožní další zlepšení výtěžku v prostoru a čase na 290,3 kg/h.m3. V posledním stupni se změní složení plynu zvýšením koncentrace kondenzované inertní látky, isopentanu, čímž se zlepší chladicí schopnost. To znamená, že hladina kondenzovaných látek v recirkulovaném proudu dále vzroste na 44,2 % hmotnostních a výtěžek v prostoru a čase dosáhne hodnoty 373,7 kg/h.m3. Celkově přírůstek ze stupňů poskytuje 116% zvýšení produkční kapacity reaktorového systému.
Při pokusu 2 teplota na přívodu recirkulovaného proudu se sníží na 37,8 °C z teploty 42,1 °C. Toto ochlazení zvyšuje kondenzovanou látku v recirkulovaném proudu z 25,4 % hmotnostních na 27,1 % hmotnostních a dále zvyšuje výtěžek v prostoru a čase z 229,3 na hodnotu 250,2 kg/h.m3. V dalším stupni se koncentrace uhlovodíků s 6 atomy uhlíku zvýší ze 7 % molárních na 10 % molárních. Toto zlepšení chladicí kapacity dovoluje zvýšit výtěžek v prostoru a čase na 285,5 o
kg/h.m . Jako konečný stupeň k doložení hodnoty tohoto zlepšení se teplota na přívodu recirkulovaného proudu znovu sníží na 29,4 °C. Toto další ochlazení dovoluje výtěžek v prostoru a čase 317,6 kg/h.m3, když úroveň kondenzovaných látek z recirkulovaného proudu dosáhne 38,6 % hmotnostních. Celkově přírůstek ze stupňů poskytuje 39% zvýšení produkční kapacity reaktorového systému.
Třebaže tento vynález je popsán a ilustrován v souvislosti s jeho zvláštními provedeními, odborníkovi v oboru bude zřejmé, že vynález sám umožňuje změny, které nezbytně zde nejsou ilustrovány. Například do rozsahu tohoto vynálezu spadá použití katalyzátoru o zvýšené aktivitě, ke zvýšení rozsahu produkce, nebo snížení teploty recirkulované ho proudu za použití chladicích jednotek. Z tohoto důvodu potom se mohou provést toliko odkazy na připojené patentové nároky pro účely stanovení skutečného rozsahu tohoto vynálezu.

Claims (14)

1. Způsob polymerace α-olefinu nebo a-olefinů v plynné fázi reaktoru, opatřeného fluidní vrstvou a fluidizačním prostředím obsahujícím plynnou fázi a kapalnou fázi, které vstupují do reaktoru, vyznačující se tím, že zahrnuje
a) řízení chladicí kapacity fluidizačního prostředí řízením poměru plynné fáze ke kapalné fázi,
b) výpočet limitu funkce sypné hmotnosti,
c) udržování a sledování funkce (Z) sypné hmotnosti a
d) úpravu funkce (Z) sypné hmotnosti, k udržování funkce (Z) sypné hmotnosti při hodnotě rovné nebo větší než vypočtený limit funkce sypné hmotnosti.
2. Kontinuální způsob polymerace α-olefinu nebo a-olefinů v plynné fázi reaktoru, opatřeného fluidní vrstvou a fluidizačním prostředím obsahujícím plynnou fázi a kapalnou fázi, které vstupují do reaktoru, vyznačující se tím, že zahrnuje
a) řízení chladicí kapacity fluidizačního prostředí řízením poměru plynné fáze ke kapalné fázi a
b) udržování funkce (Z) sypné hmotnosti při hodnotě rovné nebo větší než vypočtený limit funkce sypné hmotnosti.
3. Kontinuální způsob pro zvýšení produktivity polymerace v plynné fázi reaktoru, opatřeného fluidizačním prostředím a fluidní vrstvou, přičemž způsob zahrnuje vedení plynného proudu obsahujícího monomer reakční zónou v přítomnosti katalyzátoru k produkci polymerního produktu, odvádění polymerního produktu, odtahování fluidizačního prostředí obsahujícího nezreagovaný monomer z uvedené reakční zóny
- 57 a míšení tohoto fluidizačního prostředí s uhlovodíkem a polymerovatelným monomerem nebo polymerovatelnými monomery za vzniku kapaliny a plynné fáze, a recirkulování fluidizačního prostředí do tohoto reaktoru, vyznačuj ící se t í m, že zahrnuje
a) zavádění uhlovodíku a fluidizačního prostředí, pro dovolení zvýšit chladicí kapacitu fluidizačního prostředí nad alespoň 96 J/g (40 Btu/lb),
b) zvýšení rychlosti odvádění polymerního produktu nad alespoň 2440,9 kg/h.m2 (500 lb/hr-ft2),
c) výpočet limitu funkce sypné hmotnosti a
d) udržování funkce (Z) sypné hmotnosti při hodnotě rovné nebo větší než vypočtený limit funkce sypné hmotnosti.
4. Způsob polymerace α-olefinu nebo a-olefinů v plynné fázi reaktoru, opatřeného fluidní vrstvou a fluidizačním prostředím, obsahujícím plynnou fázi k produkci polymerního produktu, ve kterém fluidizační prostředí slouží k řízení chladicí kapacity tohoto reaktoru, vyznačuj ící se t í m, že způsob zahrnuje použití fluidizačního prostředí s hladinou kapaliny vstupující do reaktoru, která je větší než 15 % hmotnostních, vztaženo na celkovou hmotnost fluidizačního prostředí, kde se udržuje funkce (Z) sypné hmotnosti při hodnotě rovné nebo větší než vypočtený limit funkce sypné hmotnosti.
5. Způsob podle některého z předcházejících nároků 3a4,vyznačující se tím, že hladina kapaliny je v rozmezí od 15 do 50 % hmotnostních, výhodně v rozmezí od 20 do 40 % hmotnostních, vztaženo na celkovou hmotnost fluidizačního prostředí.
6. Způsob podle některého z předcházejících nároků 3 až 5,vyznačující se tím, že hladina kapaliny je větší než 20 % hmotnostních, výhodně větší než 22 % hmotnostních, nejvýhodněji větší než 25 % hmotnostních, vztaženo na celkovou hmotnost fluidizačního prostředí.
7. Způsob podle některého z předcházejících nároků 3 až 6,vyznačující se tím, že polymerní produkt se odvádí rychlostí větší než 2440,9 kg/h.m2 (500 lb/hr-ft2), výhodně větší než 2929,0 kg/h.m2 (600 lb/hr-ft2).
8. Způsob podle některého z předcházejících nároků, vyznačující se tím, že funkce (Z) sypné hmotnosti je větší než vypočtený limit funkce sypné hmotnosti.
9. Způsob podle některého z předcházejících nároků, vyznačující se tím, že vypočtený limit je v rozmezí od 0,2 do 0,7, výhodně od 0,3 do 0,6 a nejvýhodněji od 0,4 do 0,6.
10. Způsob podle některého z předcházejících nároků, vyznačující se tím, že funkce (Z) sypné hmotnosti je větší než 1 %, výhodně než 2, nad vypočteným limitem funkce sypné hmostnosti.
11. Způsob podle některého z předcházejících nároků, vyznačující se tím, že fluidizační prostředí obsahuje
i) 1-buten a ethylen v molárním poměru od 0,001 do 0,60,
4-methyl-l-penten a ethylen v molárním poměru od
0,001 do 0,50, 1-hexen a ethylen v molárním poměru od
0,001 do 0,30 nebo 1-okten a ethylen v molárním poměru od 0,001 do 0,10, ii) kondenzovatelnou tekutinu tvořící od 1,5 do 20 % molárních fluidizačního prostředí nebo
i) 1-buten a ethylen v molárním poměru od 0,001 do 0,60,
4-methyl-1-penten a ethylen v molárním poměru od
0,001 do 0,50, 1-hexen a ethylen v molárním poměru od
0,001 do 0,30 nebo 1-okten a ethylen v molárním poměru od 0,001 do 0,10, ii) kondenzovatelnou tekutinu tvořící od 1,5 do 30 % molárních fluidizačního prostředí nebo
i) 1-buten a ethylen v molárním poměru od 0,001 do 0,30,
4-methyl-l-penten a ethylen v molárním poměru od
0,001 do 0,25, 1-hexen a ethylen v molárním poměru od
0,001 do 0,15 nebo 1-okten a ethylen v molárním poměru od 0,001 do 0,05, ii) kondenzovatelnou tekutinu tvořící od 5 do 40 % molárních fluidizačního prostředí.
12. Způsob podle některého z předcházejících nároků, vyznačující se tím, že plynná fáze vstupuje do reaktoru odděleně a nezávisle na kapalné fázi a/nebo kapalná fáze vstupuje do reaktoru pod rozváděči deskou.
ť
13. Způsob podle některého z předcházejících nároků
3 až 12,vyznačující se tím, že poměr sypné hmotnosti fluidní fáze k sypné hmotnosti usazeniny je menší než 0,59.
14. Způsob podle některého z předcházejících nároků, vyznačující se tím, že funkce (Z) sypné hmotnosti je rovna nebo větší než
CZ1997998A 1994-10-03 1995-09-26 Způsob polymerace monomerů ve fluidní vrstvě CZ292982B6 (cs)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/317,153 US5436304A (en) 1992-03-19 1994-10-03 Process for polymerizing monomers in fluidized beds

Publications (2)

Publication Number Publication Date
CZ99897A3 true CZ99897A3 (cs) 1998-10-14
CZ292982B6 CZ292982B6 (cs) 2004-01-14

Family

ID=23232345

Family Applications (1)

Application Number Title Priority Date Filing Date
CZ1997998A CZ292982B6 (cs) 1994-10-03 1995-09-26 Způsob polymerace monomerů ve fluidní vrstvě

Country Status (21)

Country Link
US (1) US5436304A (cs)
EP (1) EP0784637B2 (cs)
JP (1) JP3356434B2 (cs)
KR (1) KR100375154B1 (cs)
CN (1) CN1149233C (cs)
AT (1) ATE185821T1 (cs)
AU (1) AU697428B2 (cs)
BR (1) BR9509223A (cs)
CA (1) CA2196590C (cs)
CZ (1) CZ292982B6 (cs)
DE (1) DE69512928T3 (cs)
DK (1) DK0784637T3 (cs)
ES (1) ES2140709T3 (cs)
GR (1) GR3032334T3 (cs)
MY (1) MY112736A (cs)
NO (1) NO310878B1 (cs)
PL (1) PL184510B1 (cs)
PT (1) PT784637E (cs)
RU (1) RU2139888C1 (cs)
SA (1) SA95160299B1 (cs)
WO (1) WO1996010590A1 (cs)

Families Citing this family (638)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025448A (en) 1989-08-31 2000-02-15 The Dow Chemical Company Gas phase polymerization of olefins
US6538080B1 (en) 1990-07-03 2003-03-25 Bp Chemicals Limited Gas phase polymerization of olefins
US5436304A (en) * 1992-03-19 1995-07-25 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
US5462999A (en) * 1993-04-26 1995-10-31 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
ZA943399B (en) * 1993-05-20 1995-11-17 Bp Chem Int Ltd Polymerisation process
US6001938A (en) * 1993-05-20 1999-12-14 Bp Chemicals Limited Polymerization process
US6384156B1 (en) 1994-08-02 2002-05-07 Union Carbide Chemicals & Plastics Technology Corporation Gas phase polymerization process
US5453471B1 (en) * 1994-08-02 1999-02-09 Carbide Chemicals & Plastics T Gas phase polymerization process
CA2188722A1 (en) 1995-10-26 1997-04-27 George Norris Foster Process for preparing an in situ polyethylene blend
EP0814100A1 (en) * 1996-06-21 1997-12-29 Bp Chemicals S.N.C. Polymerisation process
EP0803519A1 (en) * 1996-04-26 1997-10-29 Bp Chemicals S.N.C. Polymerisation process
AU718884B2 (en) 1996-06-17 2000-04-20 Exxon Chemical Patents Inc. Mixed transition metal catalyst systems for olefin polymerization
US6759499B1 (en) * 1996-07-16 2004-07-06 Exxonmobil Chemical Patents Inc. Olefin polymerization process with alkyl-substituted metallocenes
EP0824115A1 (en) * 1996-08-13 1998-02-18 Bp Chemicals S.N.C. Polymerisation process
EP0824117B1 (en) * 1996-08-13 2002-12-11 BP Chemicals Limited Polymerisation process
EP0824116A1 (en) * 1996-08-13 1998-02-18 Bp Chemicals S.N.C. Polymerisation process
JP4218988B2 (ja) 1997-02-07 2009-02-04 エクソンモービル・ケミカル・パテンツ・インク 分枝鎖オレフィンコポリマーに由来する熱可塑性エラストマー組成物
US6063877A (en) * 1997-07-31 2000-05-16 Union Carbide Chemicals & Plastics Technology Corporation Control of gas phase polymerization reactions
US7232871B2 (en) 1997-08-12 2007-06-19 Exxonmobil Chemical Patents Inc. Propylene ethylene polymers and production process
US6921794B2 (en) 1997-08-12 2005-07-26 Exxonmobil Chemical Patents Inc. Blends made from propylene ethylene polymers
US6642316B1 (en) 1998-07-01 2003-11-04 Exxonmobil Chemical Patents Inc. Elastic blends comprising crystalline polymer and crystallizable polym
US6635715B1 (en) 1997-08-12 2003-10-21 Sudhin Datta Thermoplastic polymer blends of isotactic polypropylene and alpha-olefin/propylene copolymers
US6630545B2 (en) 1997-09-15 2003-10-07 The Dow Chemical Company Polymerization process
US6150297A (en) 1997-09-15 2000-11-21 The Dow Chemical Company Cyclopentaphenanthrenyl metal complexes and polymerization process
US6184327B1 (en) 1997-12-10 2001-02-06 Exxon Chemical Patents, Inc. Elastomeric propylene polymers
US6197910B1 (en) 1997-12-10 2001-03-06 Exxon Chemical Patents, Inc. Propylene polymers incorporating macromers
US6245868B1 (en) 1998-05-29 2001-06-12 Univation Technologies Catalyst delivery method, a catalyst feeder and their use in a polymerization process
BR9913647B1 (pt) 1998-08-26 2008-11-18 polipropileno ramificado e processo para produzir o mesmo.
US6403773B1 (en) 1998-09-30 2002-06-11 Exxon Mobil Chemical Patents Inc. Cationic group 3 catalyst system
US6486088B1 (en) 1998-10-23 2002-11-26 Exxonmobil Chemical Patents Inc. High activity carbenium-activated polymerization catalysts
AU1241600A (en) 1998-11-02 2000-05-22 Dupont Dow Elastomers L.L.C. Shear thinning ethylene/alpha-olefin interpolymers and their preparation
AU1288300A (en) 1998-11-30 2000-06-19 Bp Chemicals Limited Polymerisation control process
US6306981B1 (en) 1999-04-02 2001-10-23 Union Carbide Chemicals & Plastics Technology Corporation Gas phase polymerization process
US6391985B1 (en) 1999-10-21 2002-05-21 Union Carbide Chemicals & Plastics Technology Corporation High condensing mode polyolefin production under turbulent conditions in a fluidized bed
US6476164B1 (en) 1999-10-22 2002-11-05 Exxonmobil Chemical Patents Inc. Carbenium cationic complexes suitable for polymerization catalysts
US6475946B1 (en) * 1999-10-22 2002-11-05 Exxonmobil Chemical Patents Inc. Olefin polymerization catalysis with aryl substituted carbenium cationic complexes
US6489480B2 (en) 1999-12-09 2002-12-03 Exxonmobil Chemical Patents Inc. Group-15 cationic compounds for olefin polymerization catalysts
US6822057B2 (en) * 1999-12-09 2004-11-23 Exxon Mobil Chemical Patents Inc. Olefin polymerization catalysts derived from Group-15 cationic compounds and processes using them
US6281306B1 (en) 1999-12-16 2001-08-28 Univation Technologies, Llc Method of polymerization
US6472483B1 (en) 2000-02-28 2002-10-29 Union Carbide Chemicals & Plastics Technology Corporation Dry product discharge from a gas phase polymerization reactor operating in the condensing mode
US6809209B2 (en) 2000-04-07 2004-10-26 Exxonmobil Chemical Patents Inc. Nitrogen-containing group-13 anionic compounds for olefin polymerization
US6359083B1 (en) 2000-05-02 2002-03-19 Eastman Chemical Company Olefin polymerization process
US7125933B2 (en) * 2000-06-22 2006-10-24 Univation Technologies, Llc Very low density polyethylene blends
US6441261B1 (en) 2000-07-28 2002-08-27 Exxonmobil Chemical Patents Inc. High pressure oxygenate conversion process via diluent co-feed
US6548610B2 (en) * 2000-10-06 2003-04-15 Univation Technologies, Llc Method and apparatus for reducing static charges during polymerization of olefin polymers
US6905654B2 (en) 2000-10-06 2005-06-14 Univation Technologies, Llc Method and apparatus for reducing static charges during polymerization of olefin polymers
US6914027B2 (en) * 2000-12-01 2005-07-05 Univation Technologies, Llc Polymerization reactor operability using static charge modifier agents
US6541578B2 (en) 2001-03-22 2003-04-01 Nova Chemicals (International) S.A. Increased space-time yield in gas phase polymerization
ATE485319T1 (de) 2001-04-12 2010-11-15 Exxonmobil Chem Patents Inc Verfahren zur polymerisation von propylen und ethylen in lösung
AU2002315077A1 (en) 2001-06-20 2003-01-08 Exxonmobil Chemical Patents Inc. Polyolefins made by catalyst comprising a noncoordinating anion and articles comprising them
JP2004531629A (ja) * 2001-06-22 2004-10-14 エクソンモービル・ケミカル・パテンツ・インク メタロセンにより製造される、対衝撃性改質剤としての超低密度ポリエチレン又は線状低密度ポリエチレン
EP1927617A1 (en) 2001-07-19 2008-06-04 Univation Technologies, LLC Polyethylene films with improved physical properties.
US6825293B1 (en) 2001-08-20 2004-11-30 Nova Chemicals (International) S.A. Polymer control through co-catalyst
US6927256B2 (en) * 2001-11-06 2005-08-09 Dow Global Technologies Inc. Crystallization of polypropylene using a semi-crystalline, branched or coupled nucleating agent
JP2005508415A (ja) 2001-11-06 2005-03-31 ダウ グローバル テクノロジーズ インコーポレイティド アイソタクチックプロピレンコポリマー類、その製法および用途
CA2466318A1 (en) * 2001-11-09 2003-05-22 Exxonmobil Chemical Patents Inc. On-line measurement and control of polymer properties by raman spectroscopy
US7799877B2 (en) 2001-11-15 2010-09-21 Univation Technologies, Llc Polymerization monitoring and control using leading indicators
US7226789B2 (en) * 2001-12-17 2007-06-05 Unication Technolofies, Llc Method of applying non-linear dynamics to control a gas-phase polyethylene reactor operability
US7846736B2 (en) * 2001-12-17 2010-12-07 Univation Technologies, Llc Method for polymerization reaction monitoring with determination of entropy of monitored data
DE60134431D1 (de) * 2001-12-20 2008-07-24 Union Carbide Chem Plastic Polyolefin-herstellungsverfahren in einem fliessbettreaktor unter turbulenten bedingungen und unter kondensation des rückführstroms
RU2215799C1 (ru) * 2002-03-04 2003-11-10 Государственное научное учреждение "Научно-исследовательский институт высоких напряжений" при Томском политехническом университете Способ контроля изменения фазового состава газовой смеси в замкнутом реакторе
EP1348720B1 (en) * 2002-03-29 2004-12-29 Mitsui Chemicals, Inc. Process for producing olefinic polymer
US20050232995A1 (en) 2002-07-29 2005-10-20 Yam Nyomi V Methods and dosage forms for controlled delivery of paliperidone and risperidone
US20050208132A1 (en) * 2002-07-29 2005-09-22 Gayatri Sathyan Methods and dosage forms for reducing side effects of benzisozazole derivatives
US7153571B2 (en) * 2002-07-31 2006-12-26 Exxonmobil Chemical Patents Inc. Silane crosslinkable polyethylene
CA2493274A1 (en) * 2002-09-05 2004-03-18 Exxonmobil Chemical Patents Inc. Stretch film
EP1537175B1 (en) * 2002-09-05 2008-05-14 ExxonMobil Chemical Patents Inc. Shrink film
US7943700B2 (en) * 2002-10-01 2011-05-17 Exxonmobil Chemical Patents Inc. Enhanced ESCR of HDPE resins
US20060136149A1 (en) * 2002-10-15 2006-06-22 Long Robert L On-line measurement and control of polymer properties by raman spectroscopy
CN101724110B (zh) 2002-10-15 2013-03-27 埃克森美孚化学专利公司 用于烯烃聚合的多催化剂体系和由其生产的聚合物
US7223822B2 (en) 2002-10-15 2007-05-29 Exxonmobil Chemical Patents Inc. Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom
US7459500B2 (en) 2002-11-05 2008-12-02 Dow Global Technologies Inc. Thermoplastic elastomer compositions
US7579407B2 (en) 2002-11-05 2009-08-25 Dow Global Technologies Inc. Thermoplastic elastomer compositions
US6831140B2 (en) * 2002-12-26 2004-12-14 Univation Technologies, Llc Static measurement and detection in a gas phase polyethylene reactor
CA2512225A1 (en) * 2002-12-31 2004-07-22 Exxonmobil Chemical Patents Inc. Method for transitioning from a catalyst to an incompatible catalyst in a gas-phase reactor
US6867270B2 (en) * 2002-12-31 2005-03-15 Univation Technologies, Llc Process for transitioning between incompatible catalysts using a substantially contaminant free seedbed
US7106437B2 (en) * 2003-01-06 2006-09-12 Exxonmobil Chemical Patents Inc. On-line measurement and control of polymer product properties by Raman spectroscopy
KR20060002837A (ko) 2003-03-21 2006-01-09 다우 글로벌 테크놀로지스 인크. 형태 제어된 올레핀 중합 방법
TW200504093A (en) * 2003-05-12 2005-02-01 Dow Global Technologies Inc Polymer composition and process to manufacture high molecular weight-high density polyethylene and film therefrom
US6759489B1 (en) 2003-05-20 2004-07-06 Eastern Petrochemical Co. Fluidized bed methods for making polymers
BRPI0411257B1 (pt) * 2003-05-30 2019-12-31 Union Carbide Chemicals & Plastics Tech Corporation processo para controlar um processo exotérmico em fase gasosa contínuo em um reator
WO2005007711A1 (en) * 2003-07-11 2005-01-27 Innovene Europe Limited Process for the (co-)polymerisation of ethylene in the gas phase
DE602004003707T2 (de) 2003-07-11 2007-04-12 Innovene Europe Ltd., Staines Verfahren zur polymerisation und copolymerisation von ethylen in der gasphase
US6864331B1 (en) * 2003-12-09 2005-03-08 Fina Technology, Inc. Process for the production of polymers
US7838605B2 (en) * 2003-10-17 2010-11-23 Univation Technologies, Llc Polymerization monitoring and control using improved leading indicators
US8058366B2 (en) * 2003-10-17 2011-11-15 Univation Technologies, Llc Polymerization monitoring and method of selecting leading indicators
WO2005049671A1 (en) 2003-11-14 2005-06-02 Exxonmobil Chemical Patents Inc. High strength propylene-based elastomers and uses thereof
US7410926B2 (en) * 2003-12-30 2008-08-12 Univation Technologies, Llc Polymerization process using a supported, treated catalyst system
CN1929919A (zh) * 2004-03-16 2007-03-14 联合碳化化学及塑料技术公司 用于乙烯低聚的磷酸铝负载的族6金属酰胺催化剂
WO2005090425A1 (en) 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene copolymer formation
KR20070003947A (ko) 2004-03-17 2007-01-05 다우 글로벌 테크놀로지스 인크. 셔틀링제를 포함하는, 고급 올레핀 다중 블록 공중합체형성용 촉매 조성물
SG151301A1 (en) 2004-03-17 2009-04-30 Dow Global Technologies Inc Catalyst composition comprising shuttling agent for ethylene multi- block copolymer formation
KR100895168B1 (ko) * 2004-05-20 2009-05-04 유니베이션 테크놀로지즈, 엘엘씨 가스 올레핀 중합 방법
US7683140B2 (en) * 2004-05-20 2010-03-23 Univation Technologies, Llc Method for determining temperature value indicative of resin stickiness from data generated by polymerization reaction monitoring
US7754830B2 (en) 2004-05-20 2010-07-13 Univation Technologies, Llc Polymerization reaction monitoring with determination of induced condensing agent concentration for preventing discontinuity events
GB0411742D0 (en) 2004-05-26 2004-06-30 Exxonmobil Chem Patents Inc Transition metal compounds for olefin polymerization and oligomerization
US7531606B2 (en) * 2004-05-26 2009-05-12 Chevron Phillips Chemical Company Lp Method for operating a gas phase polymerization reactor
US7309741B2 (en) * 2004-06-01 2007-12-18 Nova Chemicals (International) S.A. Polyolefin blends and pipe
EP1778738B1 (en) * 2004-08-09 2014-05-07 Dow Global Technologies LLC Supported bis(hydroxyarylaryloxy) catalysts for manufacture of polymers
US7211535B2 (en) 2004-10-29 2007-05-01 Nova Chemicals Corporation Enhanced polyolefin catalyst
EP1805226A1 (en) 2004-10-29 2007-07-11 Exxonmobil Chemical Patents Inc. Catalyst compound containing divalent tridentate ligand
US7745526B2 (en) 2004-11-05 2010-06-29 Exxonmobil Chemical Patents Inc. Transparent polyolefin compositions
US7829623B2 (en) * 2004-11-05 2010-11-09 Exxonmobil Chemical Patents Inc. Thermoplastic vulcanizates having improved fabricability
TW200631965A (en) * 2004-12-07 2006-09-16 Fina Technology Random copolymers and formulations useful for thermoforming and blow molding applications
CN101107310A (zh) * 2004-12-16 2008-01-16 埃克森美孚化学专利公司 聚合物组合物、包括其用途和制备方法
US7803876B2 (en) * 2005-01-31 2010-09-28 Exxonmobil Chemical Patent Inc. Processes for producing polymer blends and polymer blend pellets
US9410009B2 (en) 2005-03-17 2016-08-09 Dow Global Technologies Llc Catalyst composition comprising shuttling agent for tactic/ atactic multi-block copolymer formation
BRPI0609835A2 (pt) 2005-03-17 2010-05-04 Dow Global Technologies Inc copolìmero, processo para preparar um copolìmero em multiblocos, copolìmero em multiblocos, derivado funcionalizado, mistura polimérica homogênea, e polìmero
EP1861438B1 (en) * 2005-03-17 2015-03-04 Dow Global Technologies LLC Catalyst composition comprising shuttling agent for regio-irregular multi-block copolymer formation
US7081285B1 (en) 2005-04-29 2006-07-25 Fina Technology, Inc. Polyethylene useful for blown films and blow molding
US20060247394A1 (en) * 2005-04-29 2006-11-02 Fina Technology, Inc. Process for increasing ethylene incorporation into random copolymers
US7645834B2 (en) * 2005-04-29 2010-01-12 Fina Technologies, Inc. Catalyst system for production of polyolefins
US7220806B2 (en) * 2005-04-29 2007-05-22 Fina Technology, Inc. Process for increasing ethylene incorporation into random copolymers
US20070003720A1 (en) * 2005-06-22 2007-01-04 Fina Technology, Inc. Cocatalysts useful for preparing polyethylene pipe
US20070004875A1 (en) * 2005-06-22 2007-01-04 Fina Technology, Inc. Cocatalysts useful for improving polyethylene film properties
US7282546B2 (en) * 2005-06-22 2007-10-16 Fina Technology, Inc. Cocatalysts for reduction of production problems in metallocene-catalyzed polymerizations
US20070004876A1 (en) * 2005-06-22 2007-01-04 Fina Technology, Inc. Cocatalysts for olefin polymerizations
US7634937B2 (en) 2005-07-01 2009-12-22 Symyx Solutions, Inc. Systems and methods for monitoring solids using mechanical resonator
US7505127B2 (en) * 2005-07-22 2009-03-17 Exxonmobil Chemical Patents Inc. On-line raman analysis and control of a high pressure reaction system
US7483129B2 (en) * 2005-07-22 2009-01-27 Exxonmobil Chemical Patents Inc. On-line properties analysis of a molten polymer by raman spectroscopy for control of a mixing device
WO2007018773A1 (en) 2005-07-22 2007-02-15 Exxonmobil Chemical Patents Inc. On-line analysis of polymer properties for control of a solution phase reaction system
US7625982B2 (en) * 2005-08-22 2009-12-01 Chevron Phillips Chemical Company Lp Multimodal polyethylene compositions and pipe made from same
US20070060724A1 (en) * 2005-09-13 2007-03-15 Nova Chemicals Corporation And Innovene Europe Ltd. Enhanced catalyst productivity
US7947797B2 (en) 2005-09-14 2011-05-24 Univation Technologies, Llc Method for operating a gas-phase reactor at or near maximum production rates while controlling polymer stickiness
SG156614A1 (en) 2005-09-15 2009-11-26 Dow Global Technologies Inc Catalytic olefin block copolymers via polymerizable shuttling agent
KR20080055838A (ko) * 2005-09-15 2008-06-19 다우 글로벌 테크놀로지스 인크. 다중심 셔틀링제를 통한 중합체 구성 및 분자량 분포의제어
US7714082B2 (en) * 2005-10-04 2010-05-11 Univation Technologies, Llc Gas-phase polymerization process to achieve a high particle density
US7420010B2 (en) * 2005-11-02 2008-09-02 Chevron Philips Chemical Company Lp Polyethylene compositions
US7737206B2 (en) 2005-11-18 2010-06-15 Exxonmobil Chemical Patents Inc. Polyolefin composition with high filler loading capacity
WO2007070041A1 (en) 2005-12-14 2007-06-21 Exxonmobil Chemical Patents Inc. Halogen substituted metallocene compounds for olefin polymerization
DE102006004429A1 (de) * 2006-01-31 2007-08-02 Advanced Micro Devices, Inc., Sunnyvale Halbleiterbauelement mit einem Metallisierungsschichtstapel mit einem porösen Material mit kleinem ε mit einer erhöhten Integrität
US7517939B2 (en) 2006-02-02 2009-04-14 Chevron Phillips Chemical Company, Lp Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching
US7589162B2 (en) * 2006-02-22 2009-09-15 Chevron Philips Chemical Company Lp Polyethylene compositions and pipe made from same
US7619047B2 (en) * 2006-02-22 2009-11-17 Chevron Phillips Chemical Company, Lp Dual metallocene catalysts for polymerization of bimodal polymers
US7714083B2 (en) * 2006-03-08 2010-05-11 Exxonmobil Chemical Patents Inc. Recycle of hydrocarbon gases from the product tanks to a reactor through the use of ejectors
US20070299222A1 (en) 2006-04-04 2007-12-27 Fina Technology, Inc. Transition metal catalysts and formation thereof
US7683002B2 (en) 2006-04-04 2010-03-23 Fina Technology, Inc. Transition metal catalyst and formation thereof
US20070235896A1 (en) * 2006-04-06 2007-10-11 Fina Technology, Inc. High shrink high modulus biaxially oriented films
US7951873B2 (en) * 2006-05-05 2011-05-31 Exxonmobil Chemical Patents Inc. Linear low density polymer blends and articles made therefrom
US7696289B2 (en) 2006-05-12 2010-04-13 Exxonmobil Chemical Patents Inc. Low molecular weight induced condensing agents
RU2008149712A (ru) 2006-05-17 2010-06-27 Дау Глобал Текнолоджиз Инк. (Us) Высокоэффективный способ полимеризации в растворе
EP2032616B1 (en) * 2006-06-27 2014-04-30 Univation Technologies, LLC Improved polymerization processes using metallocene catalysts, their polymer products and end uses
RU2434888C2 (ru) * 2006-06-27 2011-11-27 ЮНИВЕЙШН ТЕКНОЛОДЖИЗ, ЭлЭлСи Сополимеры этилена и альфа-олефина и способы полимеризации для их получения
US7632907B2 (en) 2006-06-28 2009-12-15 Chevron Phillips Chemical Company Lp Polyethylene film having improved mechanical and barrier properties and method of making same
US7893181B2 (en) * 2006-07-11 2011-02-22 Fina Technology, Inc. Bimodal film resin and products made therefrom
US7449529B2 (en) * 2006-07-11 2008-11-11 Fina Technology, Inc. Bimodal blow molding resin and products made therefrom
US20080051538A1 (en) * 2006-07-11 2008-02-28 Fina Technology, Inc. Bimodal pipe resin and products made therefrom
US7514510B2 (en) 2006-07-25 2009-04-07 Fina Technology, Inc. Fluorenyl catalyst compositions and olefin polymerization process
US7470759B2 (en) * 2006-07-31 2008-12-30 Fina Technology, Inc. Isotactic-atactic polypropylene and methods of making same
RU2441027C2 (ru) * 2006-07-31 2012-01-27 ЮНИВЕЙШН ТЕКНОЛОДЖИЗ, ЭлЭлСи Способ и устройство регулирования статического заряда в полиолефиновых реакторах
JP5246839B2 (ja) * 2006-08-24 2013-07-24 独立行政法人産業技術総合研究所 半導体薄膜の製造方法、半導体薄膜の製造装置、光電変換素子の製造方法及び光電変換素子
US7774178B2 (en) * 2006-09-07 2010-08-10 Univation Technologies, Llc Methods for on-line determination of degree of resin stickiness using a model for depression of melt initiation temperature
AU2007293505A1 (en) 2006-09-07 2008-03-13 Univation Technologies, Llc Methods for determining temperature value indicative of resin stickiness from data generated by polymerization reaction monitoring
US8198373B2 (en) * 2006-10-02 2012-06-12 Exxonmobil Chemical Patents Inc. Plastic toughened plastics
US7538167B2 (en) * 2006-10-23 2009-05-26 Fina Technology, Inc. Syndiotactic polypropylene and methods of preparing same
US20080114130A1 (en) * 2006-11-10 2008-05-15 John Ashbaugh Resin composition for production of high tenacity slit film, monofilaments and fibers
BRPI0719722A2 (pt) * 2006-12-04 2013-12-10 Univation Tech Llc Revestimentos semicondutores para um sistema de reação de poliolefina
EP2092014A4 (en) 2006-12-15 2011-05-25 Fina Technology BLOWN POLYPROPYLENE FILM
WO2008082954A1 (en) * 2006-12-29 2008-07-10 Fina Technology, Inc. Succinate-containing polymerization catalyst system using n-butylmethyldimethoxysilane for preparation of polypropylene film grade resins
TW200902558A (en) * 2007-02-16 2009-01-16 Univation Tech Llc Method for on-line monitoring and control of polymerization processes and reactors to prevent discontinuity events
US7754834B2 (en) * 2007-04-12 2010-07-13 Univation Technologies, Llc Bulk density promoting agents in a gas-phase polymerization process to achieve a bulk particle density
US7897539B2 (en) * 2007-05-16 2011-03-01 Chevron Phillips Chemical Company Lp Methods of preparing a polymerization catalyst
US8058200B2 (en) * 2007-05-17 2011-11-15 Chevron Phillips Chemical Company, L.P. Catalysts for olefin polymerization
EP2003151A1 (en) 2007-06-15 2008-12-17 Nova Chemicals Corporation Improved hydrogen response through catalyst modification
US8420733B2 (en) 2007-08-16 2013-04-16 Univation Technologies, Llc Continuity additives and their use in polymerization processes
US7700516B2 (en) 2007-09-26 2010-04-20 Chevron Phillips Chemical Company Lp Methods of preparing a polymerization catalyst
US8119553B2 (en) 2007-09-28 2012-02-21 Chevron Phillips Chemical Company Lp Polymerization catalysts for producing polymers with low melt elasticity
US7799721B2 (en) * 2007-09-28 2010-09-21 Chevron Phillips Chemical Company Lp Polymerization catalysts for producing polymers with high comonomer incorporation
US7589044B2 (en) * 2007-10-02 2009-09-15 Chevron Phillips Chemical Company Lp Methods of preparing a polymerization catalyst
TW200932762A (en) 2007-10-22 2009-08-01 Univation Tech Llc Polyethylene compositions having improved properties
CN101873883B (zh) * 2007-11-27 2013-07-03 尤尼威蒂恩技术有限责任公司 整合的烃进料汽提器及其应用方法
US7638456B2 (en) 2007-12-18 2009-12-29 Chevron Phillips Chemical Company Lp Methods of preparing a polymerization catalyst
US8183173B2 (en) * 2007-12-21 2012-05-22 Chevron Phillips Chemical Company Lp Fast activating catalyst
EP2112173A1 (en) 2008-04-16 2009-10-28 ExxonMobil Chemical Patents Inc. Catalyst compounds and use thereof
US8012900B2 (en) * 2007-12-28 2011-09-06 Chevron Phillips Chemical Company, L.P. Nano-linked metallocene catalyst compositions and their polymer products
US7863210B2 (en) * 2007-12-28 2011-01-04 Chevron Phillips Chemical Company Lp Nano-linked metallocene catalyst compositions and their polymer products
US8080681B2 (en) 2007-12-28 2011-12-20 Chevron Phillips Chemical Company Lp Nano-linked metallocene catalyst compositions and their polymer products
US8859084B2 (en) * 2008-01-29 2014-10-14 Fina Technology, Inc. Modifiers for oriented polypropylene
US8003741B2 (en) 2008-02-07 2011-08-23 Fina Technology, Inc. Ziegler-Natta catalyst
US20090202770A1 (en) * 2008-02-08 2009-08-13 Fengkui Li Polypropylene/polyisobutylene blends and films prepared from same
US11208514B2 (en) 2008-03-20 2021-12-28 Chevron Phillips Chemical Company Lp Silica-coated alumina activator-supports for metallocene catalyst compositions
US7884163B2 (en) 2008-03-20 2011-02-08 Chevron Phillips Chemical Company Lp Silica-coated alumina activator-supports for metallocene catalyst compositions
US8211988B2 (en) * 2008-04-30 2012-07-03 Chevron Phillips Chemical Company Lp Methods of preparing a polymerization catalyst
US8759446B2 (en) 2008-06-30 2014-06-24 Fina Technology, Inc. Compatibilized polypropylene and polylactic acid blends and methods of making and using same
US8545971B2 (en) * 2008-06-30 2013-10-01 Fina Technology, Inc. Polymeric compositions comprising polylactic acid and methods of making and using same
US8268913B2 (en) * 2008-06-30 2012-09-18 Fina Technology, Inc. Polymeric blends and methods of using same
US7884165B2 (en) 2008-07-14 2011-02-08 Chevron Phillips Chemical Company Lp Half-metallocene catalyst compositions and their polymer products
US8580902B2 (en) * 2008-08-01 2013-11-12 Exxonmobil Chemical Patents Inc. Catalyst system, process for olefin polymerization, and polymer compositions produced therefrom
SG195587A1 (en) 2008-08-01 2013-12-30 Exxonmobil Chem Patents Inc Catalyst system and process for olefin polymerization
US9334342B2 (en) 2008-10-01 2016-05-10 Fina Technology, Inc. Polypropylene for reduced plate out in polymer article production processes
US20100087602A1 (en) * 2008-10-08 2010-04-08 Fina Technology, Inc. Long chain branched polypropylene for cast film applications
US20100119855A1 (en) * 2008-11-10 2010-05-13 Trazollah Ouhadi Thermoplastic Elastomer with Excellent Adhesion to EPDM Thermoset Rubber and Low Coefficient of Friction
US8114946B2 (en) 2008-12-18 2012-02-14 Chevron Phillips Chemical Company Lp Process for producing broader molecular weight distribution polymers with a reverse comonomer distribution and low levels of long chain branches
RU2531959C2 (ru) 2008-12-22 2014-10-27 Юнивейшн Текнолоджиз, Ллк Системы и способы производства полимеров
BRPI0923478B1 (pt) 2008-12-22 2019-11-05 Univation Tech Llc sistemas e processos para a fabricação de polímeros
JP5661645B2 (ja) 2009-01-08 2015-01-28 ユニベーション・テクノロジーズ・エルエルシー ポリオレフィン重合プロセス用の添加剤
WO2010080871A1 (en) 2009-01-08 2010-07-15 Univation Technologies, Llc Additive for gas phase polymerization processes
US8852748B2 (en) * 2009-02-27 2014-10-07 Chevron Phillips Chemical Company Lp Polyethylene film having improved barrier properties and methods of making same
US7951881B2 (en) * 2009-02-27 2011-05-31 Chevron Phillips Chemical Company Lp Polyethylene film having improved barrier properties and methods of making same
BRPI1012232A2 (pt) 2009-02-27 2017-01-31 Chevron Phillips Chemical Co Lp película de polietileno com propriedades de barreira aperfeiçoadas e métodos para a sua produção
US8309485B2 (en) 2009-03-09 2012-11-13 Chevron Phillips Chemical Company Lp Methods for producing metal-containing sulfated activator-supports
US7910669B2 (en) 2009-03-17 2011-03-22 Chevron Phillips Chemical Company Lp Methods of preparing a polymerization catalyst
US9090000B2 (en) 2009-03-26 2015-07-28 Fina Technology, Inc. Injection stretch blow molded articles and random copolymers for use therein
US20100247887A1 (en) 2009-03-26 2010-09-30 Fina Technology, Inc. Polyolefin films for in-mold labels
US8653198B2 (en) 2009-03-26 2014-02-18 Fina Technology, Inc. Method for the preparation of a heterophasic copolymer and uses thereof
US7910668B2 (en) * 2009-05-08 2011-03-22 Univation Technologies, Llc Method for on-line determination of degree or onset of resin stickiness using acoustic data
WO2010129634A1 (en) 2009-05-08 2010-11-11 Univation Technologies, Llc Systems and methods for monitoring a polymerization reaction
US8013177B2 (en) 2009-05-14 2011-09-06 Chevron Phillips Chemical Company Lp Method and system for forming a precursor compound for non-bridged unsymmetric polyolefin polymerization catalyst
US7919639B2 (en) * 2009-06-23 2011-04-05 Chevron Phillips Chemical Company Lp Nano-linked heteronuclear metallocene catalyst compositions and their polymer products
US9289739B2 (en) 2009-06-23 2016-03-22 Chevron Philips Chemical Company Lp Continuous preparation of calcined chemically-treated solid oxides
US8329834B2 (en) 2009-06-29 2012-12-11 Chevron Phillips Chemical Company Lp Dual metallocene catalyst systems for decreasing melt index and increasing polymer production rates
MX2012000254A (es) * 2009-06-29 2012-01-25 Chevron Philips Chemical Company Lp El uso de catalizadores de depuracion de hidrogeno para controlar niveles de hidrogeno y peso molecular de polimero en un reactor de polimerizacion.
WO2011017092A1 (en) 2009-07-28 2011-02-10 Univation Technologies, Llc Polymerization process using a supported constrained geometry catalyst
KR101688253B1 (ko) 2009-07-29 2016-12-20 다우 글로벌 테크놀로지스 엘엘씨 이중- 또는 다중-헤드 사슬 이동제 및 그의 블록 공중합체의 제조에서의 용도
US9174384B2 (en) * 2009-09-01 2015-11-03 Fina Technology, Inc. Multilayer polypropylene films and methods of making and using same
US8425924B2 (en) * 2009-11-24 2013-04-23 Exxonmobil Chemical Patents Inc. Propylene compositions containing a pyrethroid and products made therefrom
RU2012128353A (ru) 2009-12-07 2014-01-20 Юнивейшн Текнолоджиз, Ллк Способы уменьшения статического заряда катализатора и способы применения такого катализатора для производства полиолефинов
RU2012130155A (ru) 2009-12-18 2014-01-27 Юнивейшн Текнолоджиз, Ллк Способы получения полиолефиновых продуктов, имеющих различное истончение сдвига и различную мутность
BR112012015320A2 (pt) * 2009-12-21 2018-11-06 Dow Global Technologies Llc processo para preparar copolimero de polipropileno ou de propileno
WO2011078923A1 (en) 2009-12-23 2011-06-30 Univation Technologies, Llc Methods for producing catalyst systems
US8592535B2 (en) 2010-01-11 2013-11-26 Fina Technology, Inc. Ziegler-natta catalyst systems and polymers formed therefrom
US8871886B1 (en) 2013-05-03 2014-10-28 Chevron Phillips Chemical Company Lp Polymerization product pressures in olefin polymerization
MY159256A (en) 2010-02-18 2016-12-30 Univation Tech Llc Methods for operating a polymerization reactor
CN102947067B (zh) 2010-02-22 2015-06-03 英力士销售(英国)有限公司 改进的聚烯烃制造方法
US8058461B2 (en) 2010-03-01 2011-11-15 Exxonmobil Chemical Patents Inc. Mono-indenyl transition metal compounds and polymerization therewith
BR112012025198A2 (pt) 2010-04-05 2016-06-21 Dow Global Technologies Llc processo para produzir um polímero a base de olefina e produto de reação
US8383754B2 (en) 2010-04-19 2013-02-26 Chevron Phillips Chemical Company Lp Catalyst compositions for producing high Mz/Mw polyolefins
US10351640B2 (en) 2010-04-22 2019-07-16 Fina Technology, Inc. Formation of Ziegler-Natta catalyst using non-blended components
RU2490281C2 (ru) 2010-04-30 2013-08-20 Дэлим Индастриал Ко, Лтд. Газофазная полимеризация альфа-олефина
JP5787379B2 (ja) 2010-05-27 2015-09-30 サウディ ベーシック インダストリーズ コーポレイション オレフィン気相重合
CA2707171C (en) 2010-06-07 2018-08-14 Nova Chemicals Corporation Increased run length in gas phase reactors
US8288487B2 (en) 2010-07-06 2012-10-16 Chevron Phillips Chemical Company Lp Catalysts for producing broad molecular weight distribution polyolefins in the absence of added hydrogen
US8278403B2 (en) 2010-07-08 2012-10-02 Fina Technology, Inc. Multi-component catalyst systems and polymerization processes for forming broad composition distribution polymers
WO2012009216A1 (en) 2010-07-16 2012-01-19 Univation Technologies, Llc Systems and methods for measuring particle accumulation on reactor surfaces
WO2012009215A1 (en) 2010-07-16 2012-01-19 Univation Technologies, Llc Systems and methods for measuring static charge on particulates
WO2012015898A1 (en) 2010-07-28 2012-02-02 Univation Technologies, Llc Systems and methods for measuring velocity of a particle/fluid mixture
US20120046429A1 (en) 2010-08-23 2012-02-23 Fina Technology, Inc. Sequential Formation of Ziegler-Natta Catalyst Using Non-blended Components
US8476394B2 (en) 2010-09-03 2013-07-02 Chevron Philips Chemical Company Lp Polymer resins having improved barrier properties and methods of making same
US8557906B2 (en) 2010-09-03 2013-10-15 Exxonmobil Chemical Patents Inc. Flame resistant polyolefin compositions and methods for making the same
US8932975B2 (en) 2010-09-07 2015-01-13 Chevron Phillips Chemical Company Lp Catalyst systems and methods of making and using same
US8828529B2 (en) 2010-09-24 2014-09-09 Chevron Phillips Chemical Company Lp Catalyst systems and polymer resins having improved barrier properties
US8501651B2 (en) 2010-09-24 2013-08-06 Chevron Phillips Chemical Company Lp Catalyst systems and polymer resins having improved barrier properties
US8609793B2 (en) 2010-10-07 2013-12-17 Chevron Phillips Chemical Company Lp Catalyst systems containing a bridged metallocene
US8629292B2 (en) 2010-10-07 2014-01-14 Chevron Phillips Chemical Company Lp Stereoselective synthesis of bridged metallocene complexes
US8637616B2 (en) 2010-10-07 2014-01-28 Chevron Philips Chemical Company Lp Bridged metallocene catalyst systems with switchable hydrogen and comonomer effects
US9180405B2 (en) 2010-10-15 2015-11-10 Chevron Phillips Chemical Company Lp Ethylene recovery by absorption
US9108147B2 (en) 2010-10-15 2015-08-18 Chevron Phillips Chemical Company Lp Component separations in polymerization
US8410329B2 (en) 2010-10-15 2013-04-02 Chevron Phillips Chemical Company Lp Ethylene separation
KR20130113470A (ko) 2010-10-21 2013-10-15 엑손모빌 케미칼 패턴츠 인코포레이티드 폴리에틸렌 및 그의 제조 방법
US9464181B2 (en) 2010-11-24 2016-10-11 Exxonmobil Chemical Patents Inc. High filler loaded polymer composition
RU2608124C2 (ru) 2010-11-29 2017-01-13 Инеос Коммершиал Сервисиз Юк Лимитед Способ контроля полимеризации
KR101832541B1 (ko) 2010-11-30 2018-02-26 유니베이션 테크놀로지즈, 엘엘씨 개선된 유동 특성을 갖는 촉매 조성물 및 그의 제조 방법 및 사용 방법
ES2571737T3 (es) 2010-11-30 2016-05-26 Univation Tech Llc Procedimientos para la polimerización de olefinas con sales metálicas de carboxilato extraídas
BR112013014992B1 (pt) 2010-12-17 2020-12-29 Univation Technologies, Llc sistemas e métodos para recuperar hidrocarbonetos de um produto gasoso da purga de poliolefina
ES2640318T3 (es) 2010-12-22 2017-11-02 Univation Technologies, Llc Aditivo para procedimientos de polimerización de olefinas
US8309748B2 (en) 2011-01-25 2012-11-13 Chevron Phillips Chemical Company Lp Half-metallocene compounds and catalyst compositions
US10711077B2 (en) 2011-02-07 2020-07-14 Fina Technology, Inc. Ziegler-natta catalyst composition with controlled morphology
US8586192B2 (en) 2011-02-15 2013-11-19 Fina Technology, Inc. Compatibilized polymeric compositions comprising polyolefin-polylactic acid copolymers and methods of making the same
US9382347B2 (en) 2011-02-16 2016-07-05 Fina Technology Inc Ziegler-Natta catalysts doped with non-group IV metal chlorides
US8492498B2 (en) 2011-02-21 2013-07-23 Chevron Phillips Chemical Company Lp Polymer compositions for rotational molding applications
US8618229B2 (en) 2011-03-08 2013-12-31 Chevron Phillips Chemical Company Lp Catalyst compositions containing transition metal complexes with thiolate ligands
CA2734167C (en) 2011-03-15 2018-03-27 Nova Chemicals Corporation Polyethylene film
US8362161B2 (en) 2011-04-12 2013-01-29 Chevron Phillips Chemical Company Lp System and method for processing reactor polymerization effluent
US8907031B2 (en) 2011-04-20 2014-12-09 Chevron Phillips Chemical Company Lp Imino carbene compounds and derivatives, and catalyst compositions made therefrom
US8809472B2 (en) 2011-04-26 2014-08-19 Chevron Phillips Chemical Company Lp Process of melt index control
US8440772B2 (en) 2011-04-28 2013-05-14 Chevron Phillips Chemical Company Lp Methods for terminating olefin polymerizations
CA2739969C (en) 2011-05-11 2018-08-21 Nova Chemicals Corporation Improving reactor operability in a gas phase polymerization process
CN103534279B (zh) 2011-05-13 2016-08-17 尤尼威蒂恩技术有限责任公司 喷雾干燥的催化剂组合物及使用其的聚合方法
CA2740755C (en) 2011-05-25 2019-01-15 Nova Chemicals Corporation Chromium catalysts for olefin polymerization
US8318883B1 (en) 2011-06-08 2012-11-27 Chevron Phillips Chemical Company Lp Polymer compositions for blow molding applications
US9221935B2 (en) 2011-06-09 2015-12-29 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
CA2742454C (en) 2011-06-09 2018-06-12 Nova Chemicals Corporation Methods for controlling ethylene copolymer properties
US9315591B2 (en) 2011-06-09 2016-04-19 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
US9243092B2 (en) 2011-06-09 2016-01-26 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
US9321859B2 (en) 2011-06-09 2016-04-26 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
CA2742461C (en) 2011-06-09 2018-06-12 Nova Chemicals Corporation Modified phosphinimine catalysts for olefin polymerization
US9127106B2 (en) 2011-06-09 2015-09-08 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
US9127094B2 (en) 2011-06-09 2015-09-08 Nova Chemicals (International) S.A. Modified phosphinimine catalysts for olefin polymerization
US10647790B2 (en) 2011-06-30 2020-05-12 W. R. Grace & Co.-Conn. Process for gas-phase polymerization having high bed bulk density
US8431729B2 (en) 2011-08-04 2013-04-30 Chevron Phillips Chemical Company Lp High activity catalyst compositions containing silicon-bridged metallocenes with bulky substituents
CA2749835C (en) 2011-08-23 2018-08-21 Nova Chemicals Corporation Feeding highly active phosphinimine catalysts to a gas phase reactor
BR112014004831B1 (pt) 2011-08-30 2021-08-03 Chevron Phillips Chemical Company Lp Homopolímero de polietileno de variação topológica isolado e método de fazer o mesmo
US9018329B2 (en) 2011-09-02 2015-04-28 Chevron Phillips Chemical Company Lp Polymer compositions having improved barrier properties
US9284391B2 (en) 2011-09-02 2016-03-15 Chevron Phillips Chemical Company Lp Polymer compositions having improved barrier properties
KR20140074887A (ko) 2011-09-09 2014-06-18 셰브론 필립스 케미컬 컴퍼니 엘피 폴리에틸렌 첨가제 조성물 및 이로부터 제조되는 물품
US8487053B2 (en) 2011-11-30 2013-07-16 Chevron Phillips Chemical Company Lp Methods for removing polymer skins from reactor walls
US9023967B2 (en) 2011-11-30 2015-05-05 Chevron Phillips Chemical Company Lp Long chain branched polymers and methods of making same
CA2856988C (en) 2011-11-30 2019-05-07 Univation Technologies, Llc Methods and systems for catalyst delivery
US9096699B2 (en) 2011-12-02 2015-08-04 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst
CA2760264C (en) 2011-12-05 2018-08-21 Nova Chemicals Corporation Passivated supports for use with olefin polymerization catalysts
US8501882B2 (en) 2011-12-19 2013-08-06 Chevron Phillips Chemical Company Lp Use of hydrogen and an organozinc compound for polymerization and polymer property control
US8580893B2 (en) 2011-12-22 2013-11-12 Fina Technology, Inc. Methods for improving multimodal polyethylene and films produced therefrom
US8785576B2 (en) 2011-12-28 2014-07-22 Chevron Phillips Chemical Company Lp Catalyst compositions for the polymerization of olefins
US8791217B2 (en) 2011-12-28 2014-07-29 Chevron Phillips Chemical Company Lp Catalyst systems for production of alpha olefin oligomers and polymers
US8703883B2 (en) 2012-02-20 2014-04-22 Chevron Phillips Chemical Company Lp Systems and methods for real-time catalyst particle size control in a polymerization reactor
WO2013151863A1 (en) 2012-04-02 2013-10-10 Chevron Phillips Chemical Company Lp Catalyst systems containing a bridged metallocene reference to related application
EP2836285A1 (en) 2012-04-13 2015-02-18 Chevron Phillips Chemical Company LP Ethylene recovery by absorption
CA2869960A1 (en) 2012-04-13 2013-10-17 Chevron Phillips Chemical Company Lp Component separations in polymerization
ES2728300T3 (es) 2012-04-19 2019-10-23 Ineos Europe Ag Catalizador para la polimerización de olefinas, procedimiento para su producción y uso
US8771816B2 (en) 2012-05-31 2014-07-08 Chevron Phillips Chemical Company Lp Controlling melt fracture in bimodal resin pipe
US10273315B2 (en) 2012-06-20 2019-04-30 Chevron Phillips Chemical Company Lp Methods for terminating olefin polymerizations
CA2798855C (en) 2012-06-21 2021-01-26 Nova Chemicals Corporation Ethylene copolymers having reverse comonomer incorporation
US9115233B2 (en) 2012-06-21 2015-08-25 Nova Chemicals (International) S.A. Ethylene copolymer compositions, film and polymerization processes
US8916494B2 (en) 2012-08-27 2014-12-23 Chevron Phillips Chemical Company Lp Vapor phase preparation of fluorided solid oxides
ES2914610T3 (es) 2012-09-07 2022-06-14 Univation Tech Llc Un método para determinar la temperatura de pegajosidad de una resina
MX2015003054A (es) 2012-09-07 2016-04-28 Univation Tech Llc Controlar una reaccion de poliolefina.
US8940842B2 (en) 2012-09-24 2015-01-27 Chevron Phillips Chemical Company Lp Methods for controlling dual catalyst olefin polymerizations
US8865846B2 (en) 2012-09-25 2014-10-21 Chevron Phillips Chemical Company Lp Metallocene and half sandwich dual catalyst systems for producing broad molecular weight distribution polymers
US8821800B2 (en) 2012-10-18 2014-09-02 Chevron Phillips Chemical Company Lp System and method for catalyst preparation
US8937139B2 (en) 2012-10-25 2015-01-20 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US8895679B2 (en) 2012-10-25 2014-11-25 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US11214659B2 (en) 2012-10-26 2022-01-04 Exxonmobil Chemical Patents Inc. Polymer blends and articles made therefrom
US8921498B2 (en) 2012-10-31 2014-12-30 Chevron Phillips Chemical Company Lp Pressure management for slurry polymerization
US9238698B2 (en) 2012-10-31 2016-01-19 Chevron Phillips Chemical Company Lp Pressure management for slurry polymerization
RU2662936C2 (ru) 2012-11-01 2018-07-31 Юнивейшн Текнолоджиз, Ллк Смешанные совместимые катализаторы циглера-натты/хромовые для получения улучшенных полимерных продуктов
ES2606684T3 (es) 2012-11-07 2017-03-27 Chevron Phillips Chemical Company Lp Resinas de poliolefina de baja densidad y películas preparadas a partir de éstas
BR112015009968A2 (pt) 2012-11-12 2017-07-11 Univation Tech Llc sistemas resfriadores de gás de reciclagem para processos de polimerização em fase gasosa
WO2014081505A1 (en) 2012-11-21 2014-05-30 Exxonmobil Chemical Patents Inc. Films comprising ethlyene-based polymers and methods of making same
CA2797620C (en) 2012-12-03 2019-08-27 Nova Chemicals Corporation Controlling resin properties in a gas phase polymerization process
EP2928691B1 (en) 2012-12-05 2021-07-28 ExxonMobil Chemical Patents Inc. Ethylene-based polymers and articles made therefrom
US8912285B2 (en) 2012-12-06 2014-12-16 Chevron Phillips Chemical Company Lp Catalyst system with three metallocenes for producing broad molecular weight distribution polymers
CN104903100B (zh) 2012-12-18 2017-11-14 埃克森美孚化学专利公司 聚乙烯膜及其制造方法
CA2800056A1 (en) 2012-12-24 2014-06-24 Nova Chemicals Corporation Polyethylene blend compositions
US9360453B2 (en) 2012-12-28 2016-06-07 Exxonmobil Research And Engineering Company Instruments for monitoring electrostatic phenomena in reactors
WO2014106078A2 (en) 2012-12-28 2014-07-03 Exxonmobil Research And Engineering Company Instruments for monitoring electrostatic phenomena in reactors
US9328177B2 (en) 2012-12-28 2016-05-03 Exxonmobil Research And Engineering Company Methods for processing and interpreting signals from static and acoustic probes in fluidized bed reactor systems
US8877672B2 (en) 2013-01-29 2014-11-04 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US8957148B2 (en) 2013-01-29 2015-02-17 Chevron Phillips Chemical Company Lp Polymer compositions having improved barrier properties
US9034991B2 (en) 2013-01-29 2015-05-19 Chevron Phillips Chemical Company Lp Polymer compositions and methods of making and using same
EP2951211B1 (en) 2013-01-30 2019-11-13 Univation Technologies, LLC Processes for making catalyst compositions having improved flow
US8680218B1 (en) 2013-01-30 2014-03-25 Chevron Phillips Chemical Company Lp Methods for controlling dual catalyst olefin polymerizations with an organozinc compound
US8703886B1 (en) 2013-02-27 2014-04-22 Chevron Phillips Chemical Company Lp Dual activator-support catalyst systems
US8815357B1 (en) 2013-02-27 2014-08-26 Chevron Phillips Chemical Company Lp Polymer resins with improved processability and melt fracture characteristics
US8623973B1 (en) 2013-03-08 2014-01-07 Chevron Phillips Chemical Company Lp Activator supports impregnated with group VIII transition metals for polymer property control
US9840570B2 (en) 2013-03-11 2017-12-12 Chevron Phillips Chemical Company, Lp Medium density polyethylene compositions
US9181369B2 (en) 2013-03-11 2015-11-10 Chevron Phillips Chemical Company Lp Polymer films having improved heat sealing properties
US10577440B2 (en) 2013-03-13 2020-03-03 Chevron Phillips Chemical Company Lp Radically coupled resins and methods of making and using same
US10654948B2 (en) 2013-03-13 2020-05-19 Chevron Phillips Chemical Company Lp Radically coupled resins and methods of making and using same
US9376511B2 (en) 2013-03-13 2016-06-28 Chevron Phillips Chemical Company Lp Polymerization catalysts and polymers
US9068027B2 (en) 2013-03-13 2015-06-30 Chevron Phillips Chemical Company Lp Methods of preparing a polymerization catalyst
BR112015026427B1 (pt) 2013-05-14 2020-07-21 Exxonmobil Chemical Patents Inc. polímeros à base de etileno e artigos feitos do mesmo
US9346897B2 (en) 2013-05-14 2016-05-24 Chevron Phillips Chemical Company Lp Peroxide treated metallocene-based polyolefins with improved melt strength
WO2015002747A1 (en) 2013-07-02 2015-01-08 Exxonmobile Chemical Patents Inc. Carpet backing compositions and carpet backing comprising the same
US9023959B2 (en) 2013-07-15 2015-05-05 Chevron Phillips Chemical Company Lp Methods for producing fluorided-chlorided silica-coated alumina activator-supports and catalyst systems containing the same
US8957168B1 (en) 2013-08-09 2015-02-17 Chevron Phillips Chemical Company Lp Methods for controlling dual catalyst olefin polymerizations with an alcohol compound
US9102768B2 (en) 2013-08-14 2015-08-11 Chevron Phillips Chemical Company Lp Cyclobutylidene-bridged metallocenes and catalyst systems containing the same
US9156970B2 (en) 2013-09-05 2015-10-13 Chevron Phillips Chemical Company Lp Higher density polyolefins with improved stress crack resistance
CN103554632B (zh) * 2013-10-21 2016-06-29 中国石油化工股份有限公司 一种高强度线性低密度聚乙烯薄膜树脂及其制备方法
US9181370B2 (en) 2013-11-06 2015-11-10 Chevron Phillips Chemical Company Lp Low density polyolefin resins with low molecular weight and high molecular weight components, and films made therefrom
US9217049B2 (en) 2013-11-19 2015-12-22 Chevron Phillips Chemical Company Lp Dual catalyst systems for producing polymers with a broad molecular weight distribution and a uniform short chain branch distribution
US9540465B2 (en) 2013-11-19 2017-01-10 Chevron Phillips Chemical Company Lp Boron-bridged metallocene catalyst systems and polymers produced therefrom
US9303110B2 (en) 2013-11-19 2016-04-05 Chevron Phillips Chemical Company Lp Boron-bridged bis-indenyl metallocene catalyst systems and polymers produced therefrom
US9303109B2 (en) 2013-11-19 2016-04-05 Chevron Phillips Chemical Company Lp Catalyst systems containing boron-bridged cyclopentadienyl-fluorenyl metallocene compounds with an alkenyl substituent
US10246528B2 (en) 2014-01-09 2019-04-02 Chevron Phillips Chemical Company Lp Chromium (III) catalyst systems with activator-supports
US9163098B2 (en) 2014-01-10 2015-10-20 Chevron Phillips Chemical Company Lp Processes for preparing metallocene-based catalyst systems
US9096694B1 (en) 2014-01-20 2015-08-04 Chevron Phillips Chemical Company Lp Monomer/diluent recovery
US9206293B2 (en) 2014-01-31 2015-12-08 Fina Technology, Inc. Polyethyene and articles produced therefrom
US9273170B2 (en) 2014-03-12 2016-03-01 Chevron Phillips Chemical Company Lp Polymers with improved toughness and ESCR for large-part blow molding applications
US9169337B2 (en) 2014-03-12 2015-10-27 Chevron Phillips Chemical Company Lp Polymers with improved ESCR for blow molding applications
ES2980063T3 (es) 2014-04-02 2024-09-27 Univation Tech Llc Composiciones de continuidad y método de polimerización de olefinas usando las mismas
US9389161B2 (en) 2014-04-09 2016-07-12 Exxonmobil Chemical Patents Inc. On-line FT-NIR method to determine particle size and distribution
US20150322184A1 (en) 2014-05-07 2015-11-12 Chevron Phillips Chemical Company Lp High Performance Moisture Barrier Films at Lower Densities
US9394387B2 (en) 2014-05-15 2016-07-19 Chevron Phillips Chemical Company Lp Synthesis of aryl coupled bis phenoxides and their use in olefin polymerization catalyst systems with activator-supports
US9079993B1 (en) 2014-05-22 2015-07-14 Chevron Phillips Chemical Company Lp High clarity low haze compositions
ES2731585T3 (es) 2014-05-22 2019-11-18 Chevron Phillips Chemical Co Lp Sistemas catalíticos duales para producir polímeros con una distribución de peso molecular amplia y una SCBD (distribución de ramificación de cadena corta) uniforme
JP6806567B2 (ja) 2014-06-11 2021-01-06 フイナ・テクノロジー・インコーポレーテツドFina Technology, Incorporated 耐塩素性ポリエチレン化合物およびそれから製造される製品
US9624321B2 (en) 2014-06-13 2017-04-18 Fina Technology, Inc. Formation of a Ziegler-Natta catalyst
US9650448B2 (en) 2014-06-13 2017-05-16 Fina Technology, Inc. Formation of a Ziegler-Natta catalyst
CA2854224C (en) 2014-06-13 2022-01-04 Nova Chemicals Corporation Scb control in eb resin
US9789463B2 (en) 2014-06-24 2017-10-17 Chevron Phillips Chemical Company Lp Heat transfer in a polymerization reactor
US9284389B2 (en) 2014-07-29 2016-03-15 Chevron Phillips Chemical Company Lp Bimodal resins having good film processability
US10077516B2 (en) 2014-09-05 2018-09-18 Exxonmobil Chemical Patents Inc. Polymer compositions and nonwoven materials prepared therefrom
WO2016048986A1 (en) 2014-09-22 2016-03-31 Chevron Phillips Chemical Company Lp Pressure management for slurry polymerization
US9441063B2 (en) 2014-10-09 2016-09-13 Chevron Phillips Chemical Company Lp Titanium phosphinimide and titanium iminoimidazolidide catalyst systems with activator-supports
US9303106B1 (en) 2014-10-17 2016-04-05 Chevron Phillips Chemical Company Lp Processes for preparing solid metallocene-based catalyst systems
US9828451B2 (en) 2014-10-24 2017-11-28 Chevron Phillips Chemical Company Lp Polymers with improved processability for pipe applications
JP6498760B2 (ja) 2014-10-24 2019-04-10 エクソンモービル・ケミカル・パテンツ・インク 熱可塑性加硫物組成物
CA2870027C (en) 2014-11-07 2022-04-26 Matthew Zaki Botros Blow molding composition and process
CA2871463A1 (en) 2014-11-19 2016-05-19 Nova Chemicals Corporation Passivated supports: catalyst, process and product
US9108891B1 (en) 2014-11-21 2015-08-18 Chevron Phillips Chemical Company Ethylene separation with pressure swing adsorption
US10155826B2 (en) 2014-12-12 2018-12-18 Exxonmobil Research And Engineering Company Olefin polymerization catalyst system comprising mesoporous organosilica support
US10294312B2 (en) 2014-12-12 2019-05-21 Exxonmobil Research And Engineering Company Olefin polymerization catalyst system comprising mesoporous organosilica support
WO2016094870A1 (en) 2014-12-12 2016-06-16 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system comprising mesoporous organosilica support
EP3230325B1 (en) 2014-12-12 2020-06-17 ExxonMobil Research and Engineering Company Methods of separating aromatic compounds from lube base stockes
CA2874344C (en) 2014-12-15 2021-08-31 Nova Chemicals Corporation Spheroidal catalyst for olefin polymerization
WO2016099605A1 (en) 2014-12-19 2016-06-23 Exxonmobil Chemical Patents Inc. Heat-activated fabrics made from blends containing propylene-based polymers
EP3247547B1 (en) 2015-01-21 2023-03-22 Univation Technologies, LLC Methods for gel reduction in polyolefins
CN107206655B (zh) 2015-01-21 2019-09-06 尤尼威蒂恩技术有限责任公司 用于控制聚合物链断裂的方法
US9579619B2 (en) 2015-01-28 2017-02-28 Chevron Phillips Chemical Company Lp Temperature control for polymerizing particulate polyolefin
EP3268399B1 (en) 2015-03-10 2021-01-20 Univation Technologies, LLC Spray dried catalyst compositions, methods for preparation and use in olefin polymerization processes
US10344151B2 (en) 2015-03-27 2019-07-09 Exxonmobil Chemical Patents Inc. Propylene-based polymer compositions for grip applications
ES2741625T3 (es) 2015-04-20 2020-02-11 Univation Tech Llc Ligandos bi-aromáticos con puente y catalizadores de polimerización de olefinas preparados a partir de los mismos
US10618989B2 (en) 2015-04-20 2020-04-14 Exxonmobil Chemical Patents Inc. Polyethylene composition
US10533063B2 (en) 2015-04-20 2020-01-14 Exxonmobil Chemical Patents Inc. Supported catalyst systems and processes for use thereof
EP3286202B1 (en) 2015-04-20 2019-03-13 Univation Technologies, LLC Bridged bi-aromatic ligands and transition metal compounds prepared therefrom
EP3274380B1 (en) 2015-04-20 2020-08-19 ExxonMobil Chemical Patents Inc. Catalyst composition comprising fluorided support and processes for use thereof
SG11201708626SA (en) 2015-04-27 2017-11-29 Univation Tech Llc Supported catalyst compositions having improved flow properties and preparation thereof
US9587048B2 (en) 2015-04-29 2017-03-07 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst
CA2890606C (en) 2015-05-07 2022-07-19 Nova Chemicals Corporation Process for polymerization using dense and spherical ziegler-natta type catalyst
SG11201708617YA (en) 2015-05-08 2017-11-29 Exxonmobil Chemical Patents Inc Polymerization process
CA2891002C (en) 2015-05-13 2022-09-06 Veronica Rose Zimmerman Modeling a bed plate and its use
CA2891693C (en) 2015-05-21 2022-01-11 Nova Chemicals Corporation Controlling the placement of comonomer in an ethylene copolymer
CA2892552C (en) 2015-05-26 2022-02-15 Victoria Ker Process for polymerization in a fluidized bed reactor
CA2892882C (en) 2015-05-27 2022-03-22 Nova Chemicals Corporation Ethylene/1-butene copolymers with enhanced resin processability
US10351647B2 (en) 2015-05-29 2019-07-16 Exxonmobil Chemical Patents Inc. Polymerization process using bridged metallocene compounds supported on organoaluminum treated layered silicate supports
BR112017022413A2 (pt) 2015-06-05 2018-07-10 Exxonmobil Chemical Patents Inc tecidos de filamentos contínuos termossoldados compreendendo composições de elastômero à base de propileno e métodos para fazê-los
US9481749B1 (en) 2015-06-26 2016-11-01 Chevron Phillips Chemical Company Lp Processes for preparing metallocene-based catalyst systems in cyclohexene
US10131725B2 (en) 2015-06-26 2018-11-20 Chevron Phillips Chemical Company Lp Production of high haze films using metallocene-based catalyst systems in cyclohexene
CN107849177A (zh) 2015-07-08 2018-03-27 切弗朗菲利浦化学公司 具有活化剂‑负载物的齐格勒‑纳塔‑金属茂双催化剂系统
US9970869B2 (en) 2015-07-24 2018-05-15 Chevron Phillips Chemical Company Lp Use of turbidimeter for measurement of solid catalyst system component in a reactor feed
WO2017025331A1 (en) * 2015-08-07 2017-02-16 Sabic Global Technologies B.V. Process for the polymerization of olefins
US10696756B2 (en) 2015-08-07 2020-06-30 Sabic Global Technologies B.V. Process for the polymerization of olefins
WO2017025330A1 (en) * 2015-08-07 2017-02-16 Sabic Global Technologies B.V. Process for the polymerization of olefins
EP3331923B1 (en) 2015-08-07 2021-02-17 SABIC Global Technologies B.V. Process for the polymerization of olefins
CA2900772C (en) 2015-08-20 2022-07-12 Nova Chemicals Corporation Method for altering melt flow ratio of ethylene polymers
US9493589B1 (en) 2015-09-09 2016-11-15 Chevron Phillips Chemical Company Lp Polymers with improved ESCR for blow molding applications
US9650459B2 (en) 2015-09-09 2017-05-16 Chevron Phillips Chemical Company Lp Methods for controlling die swell in dual catalyst olefin polymerization systems
EP3350236B1 (en) 2015-09-17 2023-10-04 ExxonMobil Chemical Patents Inc. Polyethylene polymers and articles made therefrom
US10213766B2 (en) 2015-09-18 2019-02-26 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst
EP3353217A4 (en) 2015-09-24 2018-11-07 ExxonMobil Chemical Patents Inc. Polymerization process using pyridyldiamido compounds supported on organoaluminum treated layered silicate supports
US9845367B2 (en) 2015-09-24 2017-12-19 Chevron Phillips Chemical Company Lp Heterogeneous Ziegler-Natta catalysts with fluorided silica-coated alumina
US9758599B2 (en) 2015-09-24 2017-09-12 Chevron Phillips Chemical Company Lp Heterogeneous Ziegler-Natta catalysts with fluorided silica-coated alumina
US9540457B1 (en) 2015-09-24 2017-01-10 Chevron Phillips Chemical Company Lp Ziegler-natta—metallocene dual catalyst systems with activator-supports
EP3356374B1 (en) 2015-09-30 2025-09-24 Dow Global Technologies LLC Multi- or dual-headed compositions useful for chain shuttling and process to prepare the same
WO2017078974A1 (en) 2015-11-05 2017-05-11 Chevron Phillips Chemical Company Lp Radically coupled resins and methods of making and using same
US9645066B1 (en) 2015-12-04 2017-05-09 Chevron Phillips Chemical Company Lp Polymer compositions having improved processability and methods of making and using same
US9645131B1 (en) 2015-12-04 2017-05-09 Chevron Phillips Chemical Company Lp Polymer compositions having improved processability and methods of making and using same
US10883197B2 (en) 2016-01-12 2021-01-05 Chevron Phillips Chemical Company Lp High melt flow polypropylene homopolymers for fiber applications
US9505856B1 (en) 2016-01-13 2016-11-29 Chevron Phillips Chemical Company Lp Methods for making fluorided chromium (VI) catalysts, and polymerization processes using the same
US9840571B2 (en) 2016-02-04 2017-12-12 Chevron Phillips Chemical Company Lp Inert stripping of volatile organic compounds from polymer melts
US20180319964A1 (en) 2016-02-10 2018-11-08 Exxonmobil Chemical Patents Inc. Polyethylene Shrink Films and Processes for Making the Same
ES2818733T3 (es) 2016-03-29 2021-04-13 Univation Tech Llc Complejos metálicos
JP2019513307A (ja) 2016-03-30 2019-05-23 エクソンモービル・ケミカル・パテンツ・インク 太陽電池用途向けの熱可塑性加硫物組成物
US11299607B2 (en) 2016-04-22 2022-04-12 Exxon Mobil Chemical Patents Inc. Polyethylene sheets
US10844529B2 (en) 2016-05-02 2020-11-24 Exxonmobil Chemicals Patents Inc. Spunbond fabrics comprising propylene-based elastomer compositions and methods for making the same
EP3452521B1 (en) 2016-05-03 2023-07-12 ExxonMobil Chemical Patents Inc. Tetrahydroindacenyl catalyst composition, catalyst system, and processes for use thereof
US9803037B1 (en) 2016-05-03 2017-10-31 Exxonmobil Chemical Patents Inc. Tetrahydro-as-indacenyl catalyst composition, catalyst system, and processes for use thereof
US9758600B1 (en) 2016-05-25 2017-09-12 Chevron Phillips Chemical Company Lp Bicyclic bridged metallocene compounds and polymers produced therefrom
US9758540B1 (en) 2016-05-25 2017-09-12 Chevron Phillips Chemical Company Lp Bicyclic bridged metallocene compounds and polymers produced therefrom
EP3464390A1 (en) 2016-05-27 2019-04-10 ExxonMobil Chemical Patents Inc. Metallocene catalyst compositions and polymerization process therewith
US10005861B2 (en) 2016-06-09 2018-06-26 Chevron Phillips Chemical Company Lp Methods for increasing polymer production rates with halogenated hydrocarbon compounds
WO2018017180A1 (en) 2016-07-21 2018-01-25 Exxonmobil Chemical Patents Inc. Rotomolded compositions, articles, and processes for making the same
US10975183B2 (en) 2016-09-09 2021-04-13 Exxonmobil Chemical Patents Inc. Pilot plant scale semi-condensing operation
WO2018063765A1 (en) 2016-09-27 2018-04-05 Exxonmobil Chemical Patents Inc. Polymerization process
WO2018063767A1 (en) 2016-09-27 2018-04-05 Exxonmobil Chemical Patents Inc. Polymerization process
WO2018063764A1 (en) 2016-09-27 2018-04-05 Exxonmobil Chemical Patents Inc. Polymerization process
JP7123040B2 (ja) 2016-09-30 2022-08-22 ダウ グローバル テクノロジーズ エルエルシー 連鎖シャトリングに有用な多頭または二頭組成物の調製方法
EP3519456B1 (en) 2016-09-30 2024-07-03 Dow Global Technologies Llc Capped multi- or dual-headed compositions useful for chain shuttling and process to prepare the same
US9988468B2 (en) 2016-09-30 2018-06-05 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst
CN109937217B (zh) 2016-09-30 2021-09-14 陶氏环球技术有限责任公司 适用于链梭移的多头或双头组合物和其制备方法
SG11201903060XA (en) 2016-10-05 2019-05-30 Exxonmobil Chemical Patents Inc Metallocene catalysts, catalyst systems, and methods for using the same
WO2018067289A1 (en) 2016-10-05 2018-04-12 Exxonmobil Chemical Patents Inc. Sterically hindered metallocenes, synthesis and use
WO2018071250A1 (en) 2016-10-14 2018-04-19 Exxonmobil Chemical Patents Inc. Oriented films comprising ethylene-based and methods of making same
US20200048382A1 (en) 2016-10-19 2020-02-13 Exxonmobil Chemical Patents Inc. Mixed Catalyst Systems and Methods of Using the Same
WO2018075243A1 (en) 2016-10-19 2018-04-26 Exxonmobil Chemical Patents Inc. Supported catalyst systems and methods of using same
JP6967073B2 (ja) 2016-10-28 2021-11-17 フイナ・テクノロジー・インコーポレーテツドFina Technology, Incorporated Boppに応用するためのポリプロピレン中の結晶度を下げる作用剤の使用
US10000594B2 (en) 2016-11-08 2018-06-19 Chevron Phillips Chemical Company Lp Dual catalyst system for producing LLDPE copolymers with a narrow molecular weight distribution and improved processability
ES2919777T5 (en) 2016-11-08 2025-09-25 Univation Tech Llc Bimodal polyethylene
CN109891221B (zh) 2016-11-17 2023-01-24 尤尼威蒂恩技术有限责任公司 测量浆料催化剂组合物中的固体含量的方法
EP3541858B1 (en) 2016-11-18 2022-11-09 ExxonMobil Chemical Patents Inc. Polymerization processes utilizing chromium-containing catalysts
EP3545010B1 (en) 2016-11-28 2021-03-31 Univation Technologies, LLC Producing a polyethylene polymer
US10662262B2 (en) 2016-12-02 2020-05-26 Exxonmobil Chemical Patents, Inc. Olefin polymerization catalyst systems and methods for making the same
WO2018102091A1 (en) 2016-12-02 2018-06-07 Exxonmobil Chemical Patents Inc. Polyethylene films
CN110114128B (zh) 2016-12-15 2022-09-13 切弗朗菲利浦化学公司 膜和变压吸附混合inru方法
WO2018118155A1 (en) 2016-12-20 2018-06-28 Exxonmobil Chemical Patents Inc. Polymerization process
US10563055B2 (en) 2016-12-20 2020-02-18 Exxonmobil Chemical Patents Inc. Carpet compositions and methods of making the same
EP3559058A1 (en) 2016-12-22 2019-10-30 ExxonMobil Chemical Patents Inc. Spray-dried olefin polymerization catalyst compositions and polymerization processes for using the same
US11267914B2 (en) 2016-12-29 2022-03-08 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst
US20200369803A1 (en) 2016-12-29 2020-11-26 Chevron Phillips Chemical Company Lp Methods of Preparing a Catalyst
US10654953B2 (en) 2016-12-29 2020-05-19 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst
US11230614B2 (en) 2017-02-03 2022-01-25 Exxonmobil Chemical Patent Inc. Methods for making polyethylene polymers
SG11201907244SA (en) 2017-02-07 2019-09-27 Exxonmobil Chemical Patents Inc Processes for reducing the loss of catalyst activity of a ziegler-natta catalyst
WO2018151904A1 (en) 2017-02-20 2018-08-23 Exxonmobil Chemical Patents Inc. Group 4 catalyst compounds and process for use thereof
SG11201906927PA (en) 2017-02-20 2019-09-27 Exxonmobil Chemical Patents Inc Group 4 catalyst compounds and process for use thereof
WO2018151790A1 (en) 2017-02-20 2018-08-23 Exxonmobil Chemical Patents Inc. Hafnocene catalyst compounds and process for use thereof
EP3583140B1 (en) 2017-02-20 2023-03-08 ExxonMobil Chemical Patents Inc. Supported catalyst systems and processes for use thereof
KR102653652B1 (ko) 2017-03-15 2024-04-03 다우 글로벌 테크놀로지스 엘엘씨 다중-블록 공중합체 형성을 위한 촉매 시스템
SG11201908306TA (en) 2017-03-15 2019-10-30 Dow Global Technologies Llc Catalyst system for multi-block copolymer formation
US11897992B2 (en) 2017-03-15 2024-02-13 Dow Global Technologies Llc Catalyst system for multi-block copolymer formation
SG11201908307XA (en) 2017-03-15 2019-10-30 Dow Global Technologies Llc Catalyst system for multi-block copolymer formation
US20200247918A1 (en) 2017-03-15 2020-08-06 Dow Global Technologies Llc Catalyst system for multi-block copolymer formation
US10221258B2 (en) 2017-03-17 2019-03-05 Chevron Phillips Chemical Company Lp Methods for restoring metallocene solids exposed to air
CN110637049B (zh) 2017-04-06 2022-04-05 埃克森美孚化学专利公司 流延膜及其制造方法
US10000595B1 (en) 2017-04-07 2018-06-19 Chevron Phillips Chemical Company Lp Catalyst systems containing low valent titanium compounds and polymers produced therefrom
US10428091B2 (en) 2017-04-07 2019-10-01 Chevron Phillips Chemical Company Lp Catalyst systems containing low valent titanium-aluminum complexes and polymers produced therefrom
US10005865B1 (en) 2017-04-07 2018-06-26 Chevron Phillips Chemical Company Lp Methods for controlling molecular weight and molecular weight distribution
US11193008B2 (en) 2017-04-10 2021-12-07 Exxonmobil Chemical Patents Inc. Methods for making polyolefin polymer compositions
US9975976B1 (en) 2017-04-17 2018-05-22 Chevron Phillips Chemical Company Lp Polyethylene compositions and methods of making and using same
EP4039349A1 (en) 2017-04-17 2022-08-10 Chevron Phillips Chemical Company LP System for processing reactor polymerization effluent
US10550252B2 (en) 2017-04-20 2020-02-04 Chevron Phillips Chemical Company Lp Bimodal PE resins with improved melt strength
US10287369B2 (en) 2017-04-24 2019-05-14 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst
CN110770265B (zh) 2017-05-10 2023-05-05 尤尼威蒂恩技术有限责任公司 催化剂体系及其使用方法
WO2018217772A1 (en) 2017-05-25 2018-11-29 Chevron Phillips Chemical Company Lp Methods for improving color stability in polyethylene resins
CA2969627C (en) 2017-05-30 2024-01-16 Nova Chemicals Corporation Ethylene copolymer having enhanced film properties
US10864494B2 (en) 2017-06-07 2020-12-15 Chevron Phillips Chemical Company Lp Rotary feeder with cleaning nozzles
WO2018226311A1 (en) 2017-06-08 2018-12-13 Exxonmobil Chemical Patents Inc. Polyethylene blends and extrudates and methods of making the same
US10697889B2 (en) 2017-07-21 2020-06-30 Chevron Phillips Chemical Company Lp Methods for determining transition metal compound concentrations in multicomponent liquid systems
US10030086B1 (en) 2017-07-21 2018-07-24 Chevron Phillips Chemical Company Lp Methods for determining transition metal compound concentrations in multicomponent liquid systems
WO2019022801A1 (en) 2017-07-24 2019-01-31 Exxonmobil Chemical Patents Inc. POLYETHYLENE FILMS AND METHODS OF PRODUCING THE SAME
US11046796B2 (en) 2017-08-04 2021-06-29 Exxonmobil Chemical Patents Inc. Films made from polyethylene compositions and processes for making same
US11274196B2 (en) 2017-08-04 2022-03-15 Exxonmobil Chemical Patents Inc. Polyethylene compositions and films prepared therefrom
WO2019027586A1 (en) 2017-08-04 2019-02-07 Exxonmobil Chemical Patents Inc. MIXED CATALYSTS COMPRISING 2,6-BIS (IMINO) PYRIDYL-IRON COMPLEXES AND BRONZED HAFNOCENES
SG11202000942TA (en) 2017-08-04 2020-02-27 Exxonmobil Chemical Patents Inc Mixed catalysts with unbridged hafnocenes with -ch2-sime3 moieties
US10358506B2 (en) 2017-10-03 2019-07-23 Chevron Phillips Chemical Company Lp Dual catalyst system for producing LLDPE copolymers with improved processability
US10808053B2 (en) 2017-10-23 2020-10-20 Exxonmobil Chemical Patents Inc. Polyethylene compositions and articles made therefrom
SG11202001743RA (en) 2017-10-31 2020-05-28 Exxonmobil Chemical Patents Inc Toluene free silica supported single-site metallocene catalysts from in-situ supported alumoxane formation in aliphatic solvents
US10927202B2 (en) 2017-11-13 2021-02-23 Exxonmobil Chemical Patents Inc. Polyethylene compositions and articles made therefrom
CN111344316B (zh) 2017-11-13 2023-02-03 埃克森美孚化学专利公司 聚乙烯组合物和由其制成的制品
EP3710502A1 (en) 2017-11-15 2020-09-23 ExxonMobil Chemical Patents Inc. Polymerization processes
EP3710500A1 (en) 2017-11-15 2020-09-23 ExxonMobil Chemical Patents Inc. Polymerization processes
US10954328B2 (en) 2017-11-15 2021-03-23 Exxonmobil Chemical Patents Inc. Polymerization processes
US10323109B2 (en) 2017-11-17 2019-06-18 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst utilizing hydrated reagents
WO2019099131A1 (en) 2017-11-17 2019-05-23 Exxonmobil Chemical Patents Inc. Pe-rt pipes and processes for making the same
US10300460B1 (en) 2017-11-17 2019-05-28 Chevron Phillips Chemical Company L.P. Aqueous methods for titanating a chromium/silica catalyst
US10513570B2 (en) 2017-11-17 2019-12-24 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst
US10934376B2 (en) 2017-11-28 2021-03-02 Exxonmobil Chemical Patents Inc. Polyethylene compositions and films made therefrom
WO2019108315A1 (en) 2017-11-28 2019-06-06 Exxonmobil Chemical Patents Inc. Catalyst systems and polymerization processes for using the same
WO2019108327A1 (en) 2017-12-01 2019-06-06 Exxonmobil Chemical Patents Inc. Films comprising polyethylene composition
EP3717522A1 (en) 2017-12-01 2020-10-07 ExxonMobil Chemical Patents Inc. Catalyst systems and polymerization processes for using the same
WO2019118073A1 (en) 2017-12-13 2019-06-20 Exxonmobil Chemical Patents Inc. Deactivation methods for active components from gas phase polyolefin polymerization process
WO2019162760A1 (en) 2018-02-05 2019-08-29 Exxonmobil Chemical Patents Inc. A Corporation Of State Of Delaware Enhanced processability of lldpe by addition of ultra-high molecular weight high density polyethylene
CN111741961B (zh) 2018-02-19 2024-01-12 埃克森美孚化学专利公司 催化剂、催化剂体系和使用它们的方法
US10259893B1 (en) 2018-02-20 2019-04-16 Chevron Phillips Chemical Company Lp Reinforcement of a chromium/silica catalyst with silicate oligomers
US11098139B2 (en) 2018-02-28 2021-08-24 Chevron Phillips Chemical Company Lp Advanced quality control tools for manufacturing bimodal and multimodal polyethylene resins
WO2019173030A1 (en) 2018-03-08 2019-09-12 Exxonmobil Chemical Patents Inc. Methods of preparing and monitoring a seed bed for polymerization reactor startup
US10590213B2 (en) 2018-03-13 2020-03-17 Chevron Phillips Chemical Company Lp Bimodal polyethylene resins and pipes produced therefrom
CN112004841B (zh) 2018-03-19 2023-05-26 埃克森美孚化学专利公司 使用四氢引达省基催化剂体系制备具有低的玻璃化转变温度的高丙烯含量pedm的方法
WO2019182746A2 (en) 2018-03-23 2019-09-26 Univation Technologies, Llc Catalyst formulations
US10507445B2 (en) 2018-03-29 2019-12-17 Chevron Phillips Chemical Company Lp Methods for determining transition metal compound concentrations in multicomponent liquid systems
US10679734B2 (en) 2018-03-29 2020-06-09 Chevron Phillips Chemical Company Lp Methods for determining transition metal compound concentrations in multicomponent liquid systems
US10787526B2 (en) 2018-04-06 2020-09-29 Chevron Phillips Chemical Company Lp Method for startup of a gas phase polymerization reactor
US11266976B2 (en) 2018-04-16 2022-03-08 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst with low HRVOC emissions
US10543480B2 (en) 2018-04-16 2020-01-28 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst utilizing hydrated reagents
US10722874B2 (en) 2018-04-16 2020-07-28 Chevron Phillips Chemical Company Lp Methods of preparing a catalyst utilizing hydrated reagents
EP3784648B1 (en) 2018-04-26 2025-07-02 ExxonMobil Chemical Patents Inc. Non-coordinating anion type activators containing cation having branched alkyl groups
WO2019209334A1 (en) 2018-04-27 2019-10-31 Exxonmobil Chemical Patents Inc. Polyethylene films and methods of making the same
US11459408B2 (en) 2018-05-02 2022-10-04 Exxonmobil Chemical Patents Inc. Methods for scale-up from a pilot plant to a larger production facility
WO2019213227A1 (en) 2018-05-02 2019-11-07 Exxonmobil Chemical Patents Inc. Methods for scale-up from a pilot plant to a larger production facility
CN112154174B (zh) 2018-05-22 2024-02-06 埃克森美孚化学专利公司 形成膜的方法及其相关的计算装置
WO2019246069A1 (en) 2018-06-19 2019-12-26 Exxonmobil Chemical Patents Inc. Polyethylene compositions and films prepared therefrom
WO2020046406A1 (en) 2018-08-30 2020-03-05 Exxonmobil Chemical Patents Inc. Polymerization processes and polymers made therefrom
WO2020056119A1 (en) 2018-09-14 2020-03-19 Fina Technology, Inc. Polyethylene and controlled rheology polypropylene polymer blends and methods of use
CA3110886A1 (en) 2018-09-17 2020-03-26 Chevron Phillips Chemical Company Lp Modified supported chromium catalysts and ethylene-based polymers produced therefrom
MX2021003373A (es) 2018-09-24 2021-05-27 Chevron Phillips Chemical Co Lp Metodos para hacer catalizadores de cromo soportados con mayor actividad de polimerizacion.
CA3112325A1 (en) 2018-09-27 2020-04-02 Chevron Phillips Chemical Company Lp Processes for producing fluorided solid oxides and uses thereof in metallocene-based catalyst systems
US10961331B2 (en) 2018-12-19 2021-03-30 Chevron Phillips Chemical Company Lp Ethylene homopolymers with a reverse short chain branch distribution
US20200208315A1 (en) 2018-12-27 2020-07-02 Exxonmobil Chemical Patents Inc. Propylene-Based Spunbond Fabrics With Faster Crystallization Time
US10774161B2 (en) 2019-01-31 2020-09-15 Chevron Phillips Chemical Company Lp Systems and methods for polyethylene recovery with low volatile content
CN113474404A (zh) 2019-02-20 2021-10-01 弗纳技术股份有限公司 具有低翘曲的聚合物组合物
WO2020190510A1 (en) 2019-03-21 2020-09-24 Exxonmobil Chemical Patents Inc. Methods for improving gas phase polymerization
CN113614117B (zh) * 2019-03-21 2023-06-20 埃克森美孚化学专利公司 改进气相聚合中生产的方法
CN113710731A (zh) 2019-04-17 2021-11-26 埃克森美孚化学专利公司 改进热塑性硫化橡胶的uv耐候性的方法
US20200339780A1 (en) 2019-04-29 2020-10-29 Chevron Phillips Chemical Company Lp Additive Systems Containing an Antioxidant and a Glycerol Stearate for Improved Color in Polyethylene Resins
US11014997B2 (en) 2019-05-16 2021-05-25 Chevron Phillips Chemical Company Lp Dual catalyst system for producing high density polyethylenes with long chain branching
US11186656B2 (en) 2019-05-24 2021-11-30 Chevron Phillips Chemical Company Lp Preparation of large pore silicas and uses thereof in chromium catalysts for olefin polymerization
US10889664B2 (en) 2019-06-12 2021-01-12 Chevron Phillips Chemical Company Lp Surfactant as titanation ligand
US11242416B2 (en) 2019-06-12 2022-02-08 Chevron Phillips Chemical Company Lp Amino acid chelates of titanium and use thereof in aqueous titanation of polymerization catalysts
US10858456B1 (en) 2019-06-12 2020-12-08 Chevron Phillips Chemical Company Lp Aqueous titanation of Cr/silica catalysts by the use of acetylacetonate and another ligand
US11478781B2 (en) 2019-06-19 2022-10-25 Chevron Phillips Chemical Company Lp Ziegler-Natta catalysts prepared from solid alkoxymagnesium halide supports
JP7430774B2 (ja) 2019-07-17 2024-02-13 エクソンモービル・ケミカル・パテンツ・インク 低ガラス転移温度を有する高プロピレン含有量ep
US11377541B2 (en) 2019-07-26 2022-07-05 Chevron Phillips Chemical Company Lp Blow molding polymers with improved cycle time, processability, and surface quality
US11028258B2 (en) 2019-08-19 2021-06-08 Chevron Phillips Chemical Company Lp Metallocene catalyst system for producing LLDPE copolymers with tear resistance and low haze
US11078143B2 (en) 2019-09-16 2021-08-03 Chevron Phillips Chemical Company, Lp Chromium-catalyzed production of alcohols from hydrocarbons
WO2021055184A1 (en) 2019-09-16 2021-03-25 Chevron Phillips Chemical Company Lp Chromium-based catalysts and processes for converting alkanes into higher and lower aliphatic hydrocarbons
CN115023446B (zh) 2020-01-27 2024-08-30 台塑工业美国公司 制备催化剂的工艺和催化剂组合物
BR122022026884B1 (pt) 2020-01-28 2024-04-30 Chevron Phillips Chemical Company Lp Composição pré-catalisadora
WO2021154442A1 (en) 2020-01-31 2021-08-05 Exxonmobil Research And Engineering Company Polyethylene films having high tear strength
CN115427464B (zh) 2020-02-24 2024-10-29 埃克森美孚化学专利公司 路易斯碱催化剂及其方法
US20230159679A1 (en) 2020-03-18 2023-05-25 Exxonmobil Chemical Patents Inc. Extrusion Blow Molded Articles and Processes for Making Same
WO2021188361A1 (en) 2020-03-20 2021-09-23 Exxonmobil Chemical Patents Inc. Linear alpha-olefin copolymers and impact copolymers thereof
US11339279B2 (en) 2020-04-01 2022-05-24 Chevron Phillips Chemical Company Lp Dual catalyst system for producing LLDPE and MDPE copolymers with long chain branching for film applications
MX2022012093A (es) 2020-04-07 2022-10-13 Nova Chem Int Sa Polietileno de alta densidad para articulos rigidos.
US20230182366A1 (en) 2020-05-19 2023-06-15 Exxonmobil Chemical Patents Inc. Extrusion Blow Molded Containers And Processes For Making Same
US11267919B2 (en) 2020-06-11 2022-03-08 Chevron Phillips Chemical Company Lp Dual catalyst system for producing polyethylene with long chain branching for blow molding applications
WO2022010622A1 (en) 2020-07-07 2022-01-13 Exxonmobil Chemical Patents Inc. Processes for making 3-d objects from blends of polyethylene and polar polymers
WO2022035484A1 (en) 2020-08-10 2022-02-17 Exxonmobil Chemical Patents Inc. Methods for delivery of non-aromatic solutions to polymerization reactors
WO2022047449A1 (en) 2020-08-25 2022-03-03 Exxonmobil Chemical Patents Inc. High density polyethylene compositions with exceptional physical properties
CN116490268A (zh) 2020-09-14 2023-07-25 切弗朗菲利浦化学公司 由烃通过过渡金属催化生产醇和羰基化合物
CN116323707A (zh) 2020-10-08 2023-06-23 埃克森美孚化学专利公司 负载型催化剂体系及其使用方法
US11674023B2 (en) 2020-10-15 2023-06-13 Chevron Phillips Chemical Company Lp Polymer composition and methods of making and using same
US11578156B2 (en) 2020-10-20 2023-02-14 Chevron Phillips Chemical Company Lp Dual metallocene polyethylene with improved processability for lightweight blow molded products
CN116490525A (zh) 2020-11-19 2023-07-25 埃克森美孚化学专利公司 聚烯烃排放工艺和设备
CN116601160A (zh) 2020-11-23 2023-08-15 埃克森美孚化学专利公司 由原位形成的铝氧烷制备催化剂的改进方法
WO2022108973A1 (en) 2020-11-23 2022-05-27 Exxonmobil Chemical Patents Inc. Metallocene polypropylene prepared using aromatic solvent-free supports
EP4247819A1 (en) 2020-11-23 2023-09-27 ExxonMobil Chemical Patents Inc. Toluene free supported methylalumoxane precursor
KR102513518B1 (ko) 2020-12-23 2023-03-22 디엘케미칼 주식회사 메탈로센 올레핀 중합 공정용 대전방지제를 이용한 올레핀 중합 방법
US12195563B2 (en) 2020-12-29 2025-01-14 Exxonmobil Chemical Patents Inc. Polyolefin-based ionomers and production thereof
US11125680B1 (en) 2021-01-14 2021-09-21 Chevron Phillips Chemical Company Lp Methods for determining the activity of an activated chemically-treated solid oxide in olefin polymerizations
KR102731787B1 (ko) 2021-01-28 2024-11-18 셰브론 필립스 케미컬 컴퍼니 엘피 이봉 폴리에틸렌 공중합체
US11584806B2 (en) 2021-02-19 2023-02-21 Chevron Phillips Chemical Company Lp Methods for chromium catalyst activation using oxygen-enriched fluidization gas
US11505630B2 (en) 2021-03-15 2022-11-22 Chevron Phillips Chemical Company Lp Peroxide treated blow molding polymers with increased weight swell and constant die swell
BR112023019645A2 (pt) 2021-04-26 2023-11-07 Fina Technology Folhas de polímero catalisadas de sítio único finas
WO2022260896A1 (en) 2021-06-10 2022-12-15 Dow Global Technologies Llc Catalyst compositions that have modified activity and processes to make them
US11845826B2 (en) 2021-08-26 2023-12-19 Chevron Phillips Chemical Company Lp Processes for preparing metallocene-based catalyst systems for the control of long chain branch content
WO2023042155A1 (en) 2021-09-20 2023-03-23 Nova Chemicals (International) S.A. Olefin polymerization catalyst system and polymerization process
CN117881705A (zh) 2021-09-20 2024-04-12 陶氏环球技术有限责任公司 制备催化活性预聚物组合物的方法以及由此制备的组合物
WO2023081577A1 (en) 2021-11-02 2023-05-11 Exxonmobil Chemical Patents Inc. Polyethylene compositions, articles thereof, and methods thereof
US12077616B2 (en) 2021-12-15 2024-09-03 Chevron Phillips Chemical Company Lp Production of polyethylene and ethylene oligomers from ethanol and the use of biomass and waste streams as feedstocks to produce the ethanol
US12122857B2 (en) 2021-12-16 2024-10-22 Chevron Phillips Chemical Company Lp Controlling long-chain branch content with dual activator-supports
US11999814B2 (en) 2021-12-16 2024-06-04 Chevron Phillips Chemical Company Lp Modifications of sulfated bentonites and uses thereof in metallocene catalyst systems for olefin polymerization
US11802865B2 (en) 2021-12-27 2023-10-31 Chevron Phillips Chemical Company Lp Utilizing aTREF data with chemometric analysis for determining the types of polyethylene present in polymer blends and multilayer films
US12404357B2 (en) 2022-01-14 2025-09-02 Chevron Phillips Chemical Company Lp Dual metallocene bimodal HDPE resins with improved stress crack resistance
US11845814B2 (en) 2022-02-01 2023-12-19 Chevron Phillips Chemical Company Lp Ethylene polymerization processes and reactor systems for the production of multimodal polymers using combinations of a loop reactor and a fluidized bed reactor
CA3221979A1 (en) 2022-03-22 2023-10-05 Nova Chemicals Corporation Organometallic complex, olefin polymerization catalyst system and polymerization process
WO2023212573A1 (en) 2022-04-26 2023-11-02 Chevron Phillips Chemical Company Lp Tttanated chromium/silica catalyst with an alkali metal or zinc and aqueous methods for preparing the catalyst
US12077627B2 (en) 2022-04-26 2024-09-03 Chevron Phillips Chemical Company Lp Aqueous methods for titanating a chromium/silica catalyst with an alkali metal
KR20250022715A (ko) 2022-06-02 2025-02-17 셰브론 필립스 케미컬 컴퍼니 엘피 고다공성 플루오린화 실리카 코팅된 알루미나 활성제-지지체 및 올레핀 중합을 위한 메탈로센 기반 촉매 시스템에서의 이의 용도
WO2023239560A1 (en) 2022-06-09 2023-12-14 Formosa Plastics Corporaton, U.S.A. Clay composite support-activators and catalyst compositions
EP4540294A1 (en) 2022-06-15 2025-04-23 ExxonMobil Chemical Patents Inc. Ethylene-based polymers, articles made therefrom, and processes for making same
KR20250029161A (ko) 2022-06-24 2025-03-04 엑손모빌 케미칼 패턴츠 인코포레이티드 계내 mao 담지화의 저비용 공정 및 유도되어 완성된 폴리올레핀 촉매
US11753488B1 (en) 2022-06-24 2023-09-12 Chevron Phillips Chemical Company Lp Processes for preparing metallocene-based catalyst systems with an alcohol compound
US12134591B2 (en) 2022-10-31 2024-11-05 Chevron Phillips Chemical Company Lp Methanol production from methane utilizing a supported chromium catalyst
WO2024118536A1 (en) 2022-11-29 2024-06-06 Fina Technology, Inc. Polypropylenes for additive manufacturing
CN115615065B (zh) * 2022-12-05 2023-03-28 安徽普泛能源技术有限公司 一种回收安全阀出口气及净化不凝气的设备及其应用
EP4638513A1 (en) 2022-12-20 2025-10-29 Ineos Europe AG Process
US20240301099A1 (en) 2023-03-09 2024-09-12 Chevron Phillips Chemical Company Lp Dual metallocene polyethylene with improved escr for rotomolded, injection molded, and related products
CN120813613A (zh) 2023-03-13 2025-10-17 埃克森美孚技术与工程公司 在烯烃聚合期间改性负载型催化剂的方法
WO2024191713A1 (en) 2023-03-13 2024-09-19 ExxonMobil Technology and Engineering Company Methods for regulating reactor catalyst flow distribution during olefin polymerization
US12403454B2 (en) 2023-05-02 2025-09-02 Chevron Phillips Chemical Company Lp Methods of chromium catalyst activation to reduce gels and improve melt index potential
WO2024242936A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Catalysts and polymerizations for improved polyolefins
WO2024242931A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Catalysts, polyethylenes, polymerizations thereof, and films thereof
WO2024242933A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Catalysts and polymerizations for improved polyolefins
WO2024242949A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Polyethylenes having improved processability and films thereof
WO2024242929A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Low density polethylenes, films thereof, and methods and catalysts for production thereof
WO2024242932A1 (en) 2023-05-23 2024-11-28 ExxonMobil Technology and Engineering Company Polethylenes, catalysts for their polymerization, and films thereof
US20250011484A1 (en) 2023-06-27 2025-01-09 Chevron Phillips Chemical Company Lp Methods for preparing metallocene compounds
WO2025042807A1 (en) 2023-08-22 2025-02-27 Chevron Phillips Chemical Company Lp Integrated processes utilizing water electrolysis and oxidative dehydrogenation of ethane
WO2025090149A1 (en) 2023-10-23 2025-05-01 ExxonMobil Technology and Engineering Company Methods for modifying a supported catalyst during olefin polymerization through pressurized delivery of a catalyst solution
WO2025090431A1 (en) 2023-10-24 2025-05-01 Chevron Phillips Chemical Company Lp Aqueous methods for titanating a chromium/silica catalyst with an alkali metal
WO2025101724A1 (en) 2023-11-09 2025-05-15 Chevron Phillips Chemical Company Lp Systems and methods for chromium catalyst activation
WO2025117332A1 (en) 2023-12-01 2025-06-05 ExxonMobil Technology and Engineering Company Methods for producing impact copolymers using dianionic complexes containing eight-membered chelate rings
WO2025117379A1 (en) 2023-12-01 2025-06-05 ExxonMobil Technology and Engineering Company Formation of branched polypropylenes using dianionic complexes having eight-membered chelate rings
WO2025117273A1 (en) 2023-12-01 2025-06-05 ExxonMobil Technology and Engineering Company Support-bound activators, supported catalyst systems, and processes for use thereof
WO2025117354A1 (en) 2023-12-01 2025-06-05 ExxonMobil Technology and Engineering Company Methods for producing impact copolymers using c1 symmetric metallocene catalysts
US12319774B1 (en) 2024-01-23 2025-06-03 Chevron Phillips Chemical Company Lp Particle size control of silyl chromate catalysts and uses thereof in fluidized bed reactors
US20250257021A1 (en) 2024-02-09 2025-08-14 Chevron Phillips Chemical Company Lp Fractionation for Polymerized Reactor Effluent
KR20250143542A (ko) 2024-03-25 2025-10-02 디엘케미칼 주식회사 유동층 중합반응기
WO2025221361A1 (en) 2024-04-19 2025-10-23 ExxonMobil Technology and Engineering Company Setting reactor operator parameters based on polymer properties and/or polymer film properties

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1720292B2 (de) * 1967-08-10 1975-05-22 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von Propylenpolymerisaten
JPS5634709A (en) * 1979-08-31 1981-04-07 Mitsui Petrochem Ind Ltd Gas phase polymerization or copolymerization of olefin
JPS56166207A (en) * 1980-05-27 1981-12-21 Mitsui Petrochem Ind Ltd Gas-phase polymerization of olefin
US4287327A (en) * 1980-09-29 1981-09-01 Standard Oil Company (Indiana) Process for controlling polymer particle size in vapor phase polymerization
JPS57155204A (en) * 1981-02-19 1982-09-25 Chisso Corp Vapor-phase polymerization of olefin and equipment therefor
DE3123115A1 (de) * 1981-06-11 1982-12-30 Basf Ag, 6700 Ludwigshafen Verfahren zum herstellen von homopolymerisaten oder copolymerisaten des propylens
US4588790A (en) * 1982-03-24 1986-05-13 Union Carbide Corporation Method for fluidized bed polymerization
US4543399A (en) * 1982-03-24 1985-09-24 Union Carbide Corporation Fluidized bed reaction systems
DZ520A1 (fr) * 1982-03-24 2004-09-13 Union Carbide Corp Procédé perfectionné pour accroitre le rendement espace temps d'une réaction de polymérisation exothermique en lit fluidisé.
US4933149A (en) * 1984-08-24 1990-06-12 Union Carbide Chemicals And Plastics Company Inc. Fluidized bed polymerization reactors
DE3442659A1 (de) * 1984-11-23 1986-05-28 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen messung des fuellungsgrades von wirbelschichtapparaten
FR2634212B1 (fr) * 1988-07-15 1991-04-19 Bp Chimie Sa Appareillage et procede de polymerisation d'olefines en phase gazeuse dans un reacteur a lit fluidise
US5352749A (en) 1992-03-19 1994-10-04 Exxon Chemical Patents, Inc. Process for polymerizing monomers in fluidized beds
US5436304A (en) 1992-03-19 1995-07-25 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds
WO1994014855A1 (en) * 1992-12-28 1994-07-07 Mobil Oil Corporation Linear low density polyethylene film
US5332706A (en) * 1992-12-28 1994-07-26 Mobil Oil Corporation Process and a catalyst for preventing reactor fouling
EP0699212A1 (en) * 1993-04-26 1996-03-06 Exxon Chemical Patents Inc. Process for polymerizing monomers in fluidized beds

Also Published As

Publication number Publication date
ES2140709T3 (es) 2000-03-01
AU3641195A (en) 1996-04-26
CA2196590A1 (en) 1996-04-11
MX9702418A (es) 1997-10-31
PL319376A1 (en) 1997-08-04
EP0784637B1 (en) 1999-10-20
GR3032334T3 (en) 2000-04-27
CZ292982B6 (cs) 2004-01-14
PT784637E (pt) 2000-04-28
DE69512928T2 (de) 2000-06-15
AU697428B2 (en) 1998-10-08
CN1181090A (zh) 1998-05-06
BR9509223A (pt) 1998-01-27
RU2139888C1 (ru) 1999-10-20
MY112736A (en) 2001-08-30
DE69512928D1 (de) 1999-11-25
JP3356434B2 (ja) 2002-12-16
SA95160299B1 (ar) 2006-08-22
NO310878B1 (no) 2001-09-10
NO971275L (no) 1997-03-19
CA2196590C (en) 2002-11-05
ATE185821T1 (de) 1999-11-15
DE69512928T3 (de) 2009-03-26
WO1996010590A1 (en) 1996-04-11
JPH10506936A (ja) 1998-07-07
DK0784637T3 (da) 2000-04-25
CN1149233C (zh) 2004-05-12
NO971275D0 (no) 1997-03-19
US5436304A (en) 1995-07-25
EP0784637A1 (en) 1997-07-23
EP0784637B2 (en) 2008-03-19
KR100375154B1 (ko) 2003-05-22
PL184510B1 (pl) 2002-11-29

Similar Documents

Publication Publication Date Title
CZ99897A3 (cs) Způsob polymerace monomerů ve fluidní vrstvě
EP0970970B1 (en) Process for polymerizing monomers in fluidized beds
US5352749A (en) Process for polymerizing monomers in fluidized beds
RU2120947C1 (ru) Способ газофазной полимеризации в псевдоожиженном слое
US5698642A (en) Process and apparatus for the gas-phase polymerization of α-olefins
RU2533488C2 (ru) Системы и способы производства полимеров
US20050137364A1 (en) Condensing mode operation of gas-phase polymerization reactor
TWI245049B (en) Polymerisation process
US20050182207A1 (en) Gas-phase process
JP3295640B2 (ja) 改良された気体流動層重合方法
AU719107C (en) Process and apparatus for the gas-phase polymerization of alpha-olefins
MXPA97002417A (en) Process for polymerizing monomers in fluidized beds
MXPA97002418A (en) Process for polymerizing monomers in lechosfluidiza

Legal Events

Date Code Title Description
PD00 Pending as of 2000-06-30 in czech republic
MM4A Patent lapsed due to non-payment of fee

Effective date: 20090926