CN1914715A - 用于各种刻蚀和光刻集成方案的无定型碳的使用技术 - Google Patents
用于各种刻蚀和光刻集成方案的无定型碳的使用技术 Download PDFInfo
- Publication number
- CN1914715A CN1914715A CNA2005800032995A CN200580003299A CN1914715A CN 1914715 A CN1914715 A CN 1914715A CN A2005800032995 A CNA2005800032995 A CN A2005800032995A CN 200580003299 A CN200580003299 A CN 200580003299A CN 1914715 A CN1914715 A CN 1914715A
- Authority
- CN
- China
- Prior art keywords
- layer
- amorphous carbon
- carbon layer
- substrate
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910003481 amorphous carbon Inorganic materials 0.000 title claims abstract description 158
- 238000000034 method Methods 0.000 title claims abstract description 73
- 230000010354 integration Effects 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 112
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 83
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 77
- 239000010410 layer Substances 0.000 claims description 278
- 229920002120 photoresistant polymer Polymers 0.000 claims description 62
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 45
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 38
- 229910052710 silicon Inorganic materials 0.000 claims description 38
- 239000010703 silicon Substances 0.000 claims description 38
- 238000000059 patterning Methods 0.000 claims description 36
- 230000008021 deposition Effects 0.000 claims description 34
- 238000012940 design transfer Methods 0.000 claims description 22
- 229930195733 hydrocarbon Natural products 0.000 claims description 22
- 239000004215 Carbon black (E152) Substances 0.000 claims description 21
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 15
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 15
- 239000006117 anti-reflective coating Substances 0.000 claims description 15
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 15
- 239000000377 silicon dioxide Substances 0.000 claims description 15
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 15
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 15
- 239000010936 titanium Substances 0.000 claims description 15
- 229910052719 titanium Inorganic materials 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 14
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 8
- 229920005591 polysilicon Polymers 0.000 claims description 8
- 239000004411 aluminium Substances 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 150000004767 nitrides Chemical class 0.000 claims description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 claims description 7
- 229910021342 tungsten silicide Inorganic materials 0.000 claims description 7
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 3
- 238000005530 etching Methods 0.000 abstract description 15
- 238000000151 deposition Methods 0.000 description 28
- 239000007789 gas Substances 0.000 description 27
- 150000002430 hydrocarbons Chemical class 0.000 description 24
- 239000001257 hydrogen Substances 0.000 description 14
- 229910052739 hydrogen Inorganic materials 0.000 description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000001259 photo etching Methods 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 206010013786 Dry skin Diseases 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/091—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
- H01L21/0276—Photolithographic processes using an anti-reflective coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02115—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0332—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0337—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0338—Process specially adapted to improve the resolution of the mask
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3081—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3083—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/3086—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/308—Chemical or electrical treatment, e.g. electrolytic etching using masks
- H01L21/3083—Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/3088—Process specially adapted to improve the resolution of the mask
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/3146—Carbon layers, e.g. diamond-like layers
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Drying Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
本发明提供一种刻蚀衬底的方法。该刻蚀衬底的方法包括使用衬底上的经两次图案化的无定型碳层作为硬掩模将图案转移到衬底中。可选地,在图案被转移到衬底中之前,非碳基层被沉积无定型碳层上作为覆盖层。
Description
技术领域
本发明的实施例涉及集成电路的制造。更具体而言,本发明的实施例涉及图案化和刻蚀半导体衬底中的特征的方法。
背景技术
自从在几十年前第一次引入集成电路以来,这样的集成电路几何的尺寸已经极大地减小了。从那以后,集成电路一般遵循两年/尺寸减半规则(通常称为摩尔定律),这意味着芯片上的器件的数量每两年翻一番。现在的制造设备常规上制造具有0.13μm甚至0.1μm特征尺寸的器件,并且下一代的设备将制造具有甚至更小特征尺寸的器件。
器件几何的持续减小已经产生了对于形成在半导体衬底上以纳米尺度距离间隔开的纳米尺度特征的方法的需要。因为当前的光刻工艺即将达到光学分辨率的极限,一种已经开发来减小衬底上的特征或器件之间的距离的方法包括用于将图案转移到衬底中的硬掩模层的两次图案化。在两次图案化方法中,硬掩模层被沉积在将被刻蚀的衬底层上。硬掩模层通过沉积在硬掩模层上的光刻胶被图案化。然后去除光刻胶,利用沉积在硬掩模层上的第二光刻胶将第二图案引入到硬掩模层中。
虽然目前的两次图案化方法可以用来减小衬底上的特征之间的距离,但是仍然存在对于可以用作用于两次图案化方法的硬掩模的材料的需要。具体来说,存在对于充当抗反射涂层的两次图案化硬掩模层的需要,其中所述抗反射涂层使可能在光刻过程中损害分辨率的反射最小化。图1(现有技术)示出了具有以低分辨率图案化的特征12、14的衬底10的示例。还存在对于如下两次图案化硬掩模层的需要,该两次图案化硬掩模层具有对于将被刻蚀的下方衬底的良好刻蚀选择性,并且在衬底被刻蚀之后可容易去除。
发明内容
本发明的实施例提供一种刻蚀衬底的方法,包括:在所述衬底上沉积无定型碳层;在所述无定型碳层中定义第一图案;在所述无定型碳层上沉积一层光刻胶;图案化所述光刻胶;将所述光刻胶中的所述图案转移穿过所述无定型碳层,以在所述无定型碳层中形成第二图案;以及将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
在一个方面中,一种刻蚀衬底的方法包括:在所述衬底上沉积无定型碳层;在所述无定型碳层上沉积非碳基层;在所述无定型碳层上沉积一层光刻胶;图案化所述光刻胶;将所述光刻胶中的所述图案转移穿过所述非碳基层和所述无定型碳层,以在所述无定型碳层中形成第二图案;以及将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
在另一个方面中,一种刻蚀衬底的方法包括:在所述衬底上沉积无定型碳层;在所述无定型碳层上沉积第一非碳基层;在所述非碳基层和所述无定型碳层中定义第一图案;在所述无定型碳层上沉积第二非碳基层;在所述第二非碳基层上沉积一层光刻胶;图案化所述光刻胶;将所述光刻胶中的所述图案转移穿过所述第二非碳基层和所述无定型碳层,以在所述无定型碳层中形成第二图案;以及将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
附图说明
作为可以详细理解本发明的上述特征的方式,可以参考实施例对在上面简要说明的本发明进行更具体描述,其中的一些实施例图示于附图中。但是,应该注意,附图仅仅图示了本发明的典型实施例,因此不应认为是限制其范围,因为本发明可以允许其他等效实施例。
图1是根据现有技术处理的结构的剖视图。
图2A-2F是根据本发明的实施例处理的结构的剖视图。
图3A-3F是根据本发明的实施例处理的结构的剖视图。
图4A-4D是根据本发明的实施例处理的结构的剖视图。
具体实施方式
本发明的实施例提供一种刻蚀衬底以形成非常小的诸如线或互连孔之类的特征(例如,多条非常紧密间隔(例如相隔70-75nm)的70-75nm线)的方法。无定型碳层被用作用于刻蚀衬底以形成非常小且紧密间隔的特征的硬掩模层。在深紫外(DUV)波长(例如小于约250nm)下无定型碳层是抗反射涂层。无定型碳层具有对于氧化物约10∶1和对于多晶硅的约6∶1的刻蚀选择性。在无定型碳层被作为硬掩模使用之后,可以使用等离子体灰化容易地去除该无定型碳层。
现在将参照图2A-2F描述本发明的一个实施例。无定型碳层104被沉积在衬底102上,如图2A所示。衬底102可以是或可以包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。衬底102可以上覆于底层100。底层100可以是在衬底102的刻蚀过程中的用于衬底102的刻蚀停止层。可选地,在无定型碳层104沉积在衬底上之前,可以在衬底102上沉积抗反射涂层层,该抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。选择抗反射涂层层材料,使得抗反射涂层层和衬底之间具有良好的刻蚀选择性。
无定型碳层104可以通过各种方法来沉积,诸如化学气相沉积、等离子体增强化学气相沉积、高密度等离子体化学气相沉积、或其组合。无定型碳层可以包括碳和氢,或者碳、氢和掺杂剂,掺杂剂包括诸如氮、硼、氟、磷或者它们的混合、以及其它。
在一个实施例中,无定型碳层由烃化合物和诸如氩、氦、氙、氪、氖或其组合的惰性气体的气体混合物形成。优选地,碳源是气态烃,诸如线性烃。在一个实施例中,烃化合物具有通式CxHy,其中,x的范围为2~4,y的范围为2~10。例如,丙烯(C3H6)、丙炔(C3H4)、丙烷(C3H8)、丁烷(C4H10)、丁烯(C4H8)、丁二烯(C4H6)或者乙炔以及它们的组合可以被用作烃化合物。类似地,诸如氢气(H2)、氮气(N2)、氨气(NH3)或其组合等的各种气体可以被添加到气体混合物,如果需要的话,Ar、He和N2可以被用于控制无定型碳层的密度和沉积速率。如下所讨论的,H2和/或NH3的添加可以被用于控制无定型碳层的氢比率。
一般来说,下面的沉积工艺参数可以被用于形成无定型碳层。工艺参数范围为:约100℃~约700℃的晶片温度,约1托(Torr)~约20托的室压强、约50sccm~约500sccm(每8英寸晶片)的烃气体流率、约1W/in2~约100W/in2(诸如约3W/in2~约20W/in2)的RF功率、以及约300密耳~约600密耳的板间距。优选地,无定型碳层被沉积到约400埃~约10000埃(诸如约500埃)的厚度。上述的工艺参数提供了范围约100埃/分~约5000埃/分的典型无定型碳层沉积速率,并且可以在可从加利福尼亚Santa Clara的应用材料公司得到的沉积室中在200mm的衬底上实现。可使用的沉积室的实例是可从应用材料公司得到的Producer系统中的APFTM室。
其它的沉积室也落入了本发明的范围,并且上面列出的参数可以根据用于形成无定型碳层的特定沉积室变化。例如,其它的沉积室可以具有更大或更小的体积,需要比针对可从应用材料公司得到的沉积室所述的更大或更小的气体流率。
所沉积的无定型碳层具有可调节的碳∶氢比率,该碳∶氢比率的范围为从约10%的氢到约60%的氢。控制无定型碳层的氢比率对于调节其光学性能以及其刻蚀选择性是理想的。具体地,随着氢比率减小,所沉积的层的光学性能,诸如吸收系数(k)增大。类似地,随着氢比率减小,取决于所使用的刻蚀化学剂,无定型碳层的耐刻蚀性可能增加。
无定型碳层的光吸收系数(k)可以在低于约250nm的波长下在约0.1到约1.0之间变化,使其适于用作DUV波长下的抗反射涂层(ARC)。无定型碳层的吸收系数可以作为沉积温度的函数而变化。具体来说,随着温度增高,所沉积的层的吸收系数同样也增大。例如,当丙烯作为用于沉积无定型碳层的烃化合物时,通过将沉积温度从约150℃增高到约480℃,所沉积的无定型碳层的k值可以从约0.2增大到约0.7。优选地,无定型碳层吸收少于约50%的波长约450nm到约700nm的光,因为半导体衬底一般利用对齐标志对齐并且使用约450nm和约700nm之间的波长检验。
无定型碳层的吸收系数还可以作为在气体混合物中所使用的添加剂的函数变化。具体来说,在气体混合物中H2、NH3、N2或其组合物的存在下可以将k值增大约10%到约100%。
在另一个实施例中,无定型碳层通过高密度等离子体化学气相沉积方法(HDP-CVD)由包含烃化合物的气体混合物来沉积。优选的烃气体是甲烷(CH4)。但是,可以使用其它的烃气体(诸如C2H6和C2H2),以及多种烃气体的混合物(例如乙炔和甲烷的混合物)。可以使用选自烯烃族、烷烃族和炔烃族的气态烃和液态烃。这些烃的实例包括CH4、C2H2、C2H4、C2H6和C2H8。
烃气体连同诸如氩的载气被引入到HDP-CVD室中。可以使用的HDP-CVD室的示例是可从应用材料公司得到的Centura系统上的UltimaHDP-CVD室。HDP-CVD室的示例在美国专利No.6,423,384中有进一步描述,该美国专利通过引用被包含在本文中。优选地,烃气体通过第一组气体喷嘴以约10sccm到约500sccm的流率引入到室中,载气通过第二组气体喷嘴以约5sccm到约300sccm的流率引入到室中。在一个优选实施例中,烃气体以约125sccm的流率引入到室中,氩气以约27sccm的流率引入到室中。烃气体的流率与载气的流率的优选比值为约2∶1到约5∶1之间。虽然烃气体和载气优选通过独立的气体喷嘴引入室中,但是烃气体和载气可以在它们被引入室中之前被预混合。
优选地,在处理期间的室压强被保持在约10mTorr到100mTorr之间,诸如保持在约20mTorr。施加到室以产生和维持处理气体(包括烃气体和载气两者)的等离子体的源等离子体功率优选为:对于200mm衬底,约2MHz下以及小于2000W(诸如约1000W)的RF功率。所施加的功率根据被处理的衬底的尺寸而被调节。优选地,衬底在沉积工艺期间被维持在约300℃到约430℃之间,并且衬底的背面通过静电卡盘中的通道中氦气冷却。优选地,在沉积工艺期间,不激活衬底偏压功率。在沉积工艺之后,衬底可以在不破坏真空的情况下被转移到退火室,可以在退火室中在真空或者在惰性气氛中、在约300℃到约430℃之间的温度下、持续约30分钟到约90分钟,来进行可选退火步骤。在一个实施例中,经沉积的衬底在氮气氛中退火约30分钟。
在衬底102上沉积无定型碳层104之后,无定型碳层104被图案化,以在其中包含特征108,如图2C所示。无定型碳层104可以通过在无定型碳层104上沉积和图案化光刻胶106来图案化,如图2B所示。在光刻胶106中图案化的特征107被转移到无定型碳层104中,以在无定型碳层104中创建特征108,并且光刻胶106被去除,如图2C所示。然后将光刻胶110沉积在无定型碳层上,并且将光刻胶110图案化以包括特征112,如图2D所示。在光刻胶110中图案化的特征112被转移到无定型碳层104,以在无定型碳层104中创建特征114,并且光刻胶110被去除,如图2E所示。无定型碳层104可以通过使用氧、氢和诸如NF3、SF6、CF4的含氟气体或其混合物的等离子体来刻蚀该层而被刻蚀。可选地,等离子体还可以包括HBr、N2、He、Ar或者其组合。然后使用无定型碳层作为掩模,将在无定型碳层中所图案化的特征108和114转移穿过衬底,以在衬底中形成特征116,如图2F所示。衬底可以通过将衬底暴露于适于衬底的组成的刻蚀剂来被图案化。在衬底被刻蚀之后,无定型碳层可以利用包含臭氧、氧、氨、氢或其组合的等离子体从衬底去除。
在本文所描述的实施例中任何一个中,光刻胶可以使用常规技术来沉积、图案化和去除。例如,具有约2000埃到约6000埃之间的厚度的光刻胶层可以被沉积在衬底上。可以使用对于波长小于约450nm的UV辐射敏感的光刻胶或者对于波长为诸如248nm或193nm的辐射敏感的深紫外辐射抗蚀剂。光刻胶可以通过将光刻胶经过图案化的掩模暴露于适当波长的辐射来图案化。光刻胶可以通过等离子体灰化工艺去除。
在另一个实施例中,诸如非碳基电介质层的非碳基层被沉积在上述的无定型碳层上,作为覆盖层。如在此所定义的,非碳基层包括小于约50at%的碳。可以使用的非碳基材料的示例包括无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛。非碳基层可以在诸如去除光刻胶的处理步骤中保护无定型碳层。非碳基层也可以充当抗反射涂层。选择非碳基层,使得在非碳基层和无定型碳层下方的衬底之间存在良好的刻蚀选择性。优选地,非碳基层具有约50埃到约500埃之间的厚度。优选地,非碳基层具有至少约200埃的厚度。
在无定型碳层上包括非碳基层作为覆盖层的实施例将参考图3A-3F来描述。上面参考图2A-2F所描述的方法可以被用于执行参考图3A-3F和图4A-4D所描述的实施例中的相应步骤。
无定型碳层204被沉积在衬底202上,如图3A所示。衬底202可以上覆于底层200。底层200可以是在衬底202的刻蚀过程中的用于衬底202的刻蚀停止层。非碳基层205沉积在无定型碳层204上。非碳基层205可以通过常规的方法来沉积,诸如化学气相沉积、物理气相沉积或者旋涂工艺。无定型碳层204和非碳基层205可以通过在非碳基层205上沉积和图案化光刻胶206来图案化,如图3B所示。在光刻胶206中图案化的特征207被转移到无定型碳层204和非碳基层205中,以在无定型碳层204和非碳基层205中创建特征208,并且光刻胶206被去除,如图3C所示。然后将光刻胶210沉积在无定型碳层上,并且将光刻胶210图案化以包括特征212,如图3D所示。在光刻胶210中图案化的特征212被转移到无定型碳层204和非碳基层205,以在无定型碳层204和非碳基层205中创建特征214,并且光刻胶210被去除,如图3E所示。然后使用无定型碳层作为掩模,将在无定型碳层中所图案化的特征208和214转移穿过衬底,以在衬底中形成特征216,如图3F所示。在特征被转移穿过衬底的同时或者在去除无定型碳层过程中,可以去除非碳基层。无定型碳层可以利用包含臭氧、氧、氨、氢或其组合的等离子体从衬底去除。
虽然在图3A-3F的实施例中的非碳基层205被图示和描述为在特征208形成在无定型碳层204中之后保留在衬底上,但是在其它实施例中,在特征208被形成在无定型碳层中之后(诸如在去除光刻胶206的过程中),可以去除非碳基层205的一部分或者全部。在一个实施例中,第二非碳基层被沉积在衬底上。第二非碳基层可以直接沉积在衬底上、沉积在第一非碳基层上、或者沉积在第一非碳基层的保留部分上。第二非碳基层可以包括无定型硅、氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛。第二非碳基层可以具有与第一非碳基层相同或者不同的组成。
图4A-4D示出了其中在处理过程中第一非碳基层205的全部被去除的实施例。图4A对应于图3C,不同之处为第一非碳基层205已经被去除。然后,第二非碳基层220被沉积在无定型碳层204和暴露的衬底202上,并且光刻胶222被沉积在第二非碳基层220上,如图4B所示。光刻胶222被图案化以包括特征224,如图4C所示。在光刻胶206中图案化的特征224被转移到无定型碳层204和非碳基层220,以在无定型碳层204和非碳基层220中创建特征208,并且光刻胶222被去除,如图4所示。图4D基本上对应于图3E。然后刻蚀衬底202,如图3F所示。
在图2A-2F和3A-3F所示的实施例中,相同或基本相同的特征被形成在被图案化两次并且用作图案化衬底的硬掩模的无定型碳层中。优选地,第一掩模被用于在无定型碳层中形成第一图案,第二掩模被用于在无定型碳层中形成第二图案。
示例
在Producer系统中将550埃的无定型碳APFTM层沉积在硅衬底上。在Producer系统中将250埃的非碳基层、氧氮化硅电介质抗反射涂层(DARC)沉积在无定型碳APFTM层上。无定型碳APFTM层和DARC层具有对于248nm电磁辐射小于0.5%的反射率。DARC被涂覆以2000埃的TOK N850负型光刻胶。光刻胶在90℃下预烘60秒。光刻胶用CanonFPA-5000ES2曝光工具在0.68的NA和0.3的σ下曝光。将光刻胶在110℃下曝光后烘90秒,然后用0.26N的氢氧化四甲基铵(TMAH)在23℃下显影60秒。侧壁铬交替孔隙掩模被用于该曝光。在可从应用材料公司得到的DPS II室中将在光刻胶中定义的图案转移穿过无定型碳层。另一层光刻胶被沉积在衬底上,并且如上所述进行图案化。在DPS II室中将在光刻胶中的图案转移穿过无定型碳层。然后,在DPS II室中将无定型碳层中的图案转移穿过衬底。图案化的衬底具有间隔75nm距离的75nm的互连。
虽然上面所述的涉及本发明的实施例,但是可以设计本发明的其它和更多的实施例,而不偏离本发明的基本范围,本发明的基本范围有所附权利要求确定。
权利要求书
(按照条约第19条的修改)
1.一种刻蚀衬底的方法,包括:
在所述衬底上沉积无定型碳层;
在所述无定型碳层中定义第一图案;
在所述无定型碳层上沉积一层光刻胶;
图案化所述光刻胶;
将所述光刻胶中的所述图案转移穿过所述无定型碳层,以在所述无定型碳层中形成第二图案;然后
将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
2.如权利要求1所述的方法,其中,所述无定型碳层通过由包含一种或多种具有通式CxHy的烃的气体混合物气相沉积来沉积,其中x的范围为2到4,y的范围为2到10。
3.如权利要求1所述的方法,其中,所述衬底包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。
4.如权利要求1所述的方法,还包括在沉积所述无定型碳层之前,在所述衬底上沉积抗反射涂层层,所述抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
5.如权利要求1所述的方法,其中,所述无定型碳层在约1W/in2到约100W/in2之间的功率下沉积。
6.如权利要求1所述的方法,还包括在所述无定型碳层中的所述第一和第二图案被转移穿过所述衬底之后,从所述衬底去除所述无定型碳层。
7.一种刻蚀衬底的方法,包括:
在所述衬底上沉积无定型碳层;
在所述无定型碳层上沉积非碳基层;
在所述非碳基层和所述无定型碳层中定义第一图案;
在所述无定型碳层上沉积一层光刻胶;
图案化所述光刻胶;
将所述光刻胶中的所述图案转移穿过所述非碳基层和所述无定型碳层,以在所述无定型碳层中形成第二图案;以及
将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
8.如权利要求7所述的方法,其中,所述无定型碳层通过由包含一种或多种具有通式CxHy的烃的气体混合物气相沉积来沉积,其中x的范围为2到4,y的范围为2到10。
9.如权利要求7所述的方法,其中,所述衬底包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。
10.如权利要求7所述的方法,还包括在沉积所述无定型碳层之前,在所述衬底上沉积抗反射涂层层,所述抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
11.如权利要求7所述的方法,其中,所述无定型碳层在约1W/in2到约100W/in2之间的功率下沉积。
12.如权利要求7所述的方法,其中,所述非碳基层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
13.如权利要求12所述的方法,其中,所述非碳基层具有约50埃到约500埃之间的厚度。
14.如权利要求7所述的方法,还包括在所述无定型碳层中的所述第一和第二图案被转移穿过所述衬底之后,从所述衬底去除所述无定型碳层和所述非碳基层。
15.一种刻蚀衬底的方法,包括:
在所述衬底上沉积无定型碳层;
在所述无定型碳层上沉积第一非碳基层;
在所述第一非碳基层和所述无定型碳层中定义第一图案;
在所述无定型碳层上沉积第二非碳基层;
在所述第二非碳基层上沉积一层光刻胶;
图案化所述光刻胶;
将所述光刻胶中的所述图案转移穿过所述第二非碳基层和所述无定型碳层,以在所述无定型碳层中形成第二图案;以及
将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
16.如权利要求15所述的方法,其中,所述第一非碳基层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
17.如权利要求16所述的方法,其中,所述第一非碳基层具有约50埃到约500埃之间的厚度。
18.如权利要求15所述的方法,其中,所述第二非碳基层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
19.如权利要求15所述的方法,其中,所述无定型碳层通过由包含一种或多种具有通式CxHy的烃的气体混合物气相沉积来沉积,其中x的范围为2到4,y的范围为2到10。
20.如权利要求15所述的方法,其中,所述衬底包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。
21.如权利要求15所述的方法,还包括在沉积所述无定型碳层之前,在所述衬底上沉积抗反射涂层层,所述抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
22.如权利要求15所述的方法,其中,所述无定型碳层在约1W/in2到约100W/in2之间的功率下沉积。
23.如权利要求15所述的方法,还包括在所述无定型碳层中的所述第一和第二图案被转移穿过所述衬底之后,从所述衬底去除所述无定型碳层和所述第二非碳基层。
Claims (23)
1.一种刻蚀衬底的方法,包括:
在所述衬底上沉积无定型碳层;
在所述无定型碳层中定义第一图案;
在所述无定型碳层上沉积一层光刻胶;
图案化所述光刻胶;
将所述光刻胶中的所述图案转移穿过所述无定型碳层,以在所述无定型碳层中形成第二图案;以及
将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
2.如权利要求1所述的方法,其中,所述无定型碳层通过由包含一种或多种具有通式CxHy的烃的气体混合物气相沉积来沉积,其中x的范围为2到4,y的范围为2到10。
3.如权利要求1所述的方法,其中,所述衬底包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。
4.如权利要求1所述的方法,还包括在沉积所述无定型碳层之前,在所述衬底上沉积抗反射涂层层,所述抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
5.如权利要求1所述的方法,其中,所述无定型碳层在约1W/in2到约100W/in2之间的功率下沉积。
6.如权利要求1所述的方法,还包括在所述无定型碳层中的所述第一和第二图案被转移穿过所述衬底之后,从所述衬底去除所述无定型碳层。
7.一种刻蚀衬底的方法,包括:
在所述衬底上沉积无定型碳层;
在所述无定型碳层上沉积非碳基层;
在所述非碳基层和所述无定型碳层中定义第一图案;
在所述无定型碳层上沉积一层光刻胶;
图案化所述光刻胶;
将所述光刻胶中的所述图案转移穿过所述非碳基层和所述无定型碳层,以在所述无定型碳层中形成第二图案;以及
将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
8.如权利要求7所述的方法,其中,所述无定型碳层通过由包含一种或多种具有通式CxHy的烃的气体混合物气相沉积来沉积,其中x的范围为2到4,y的范围为2到10。
9.如权利要求7所述的方法,其中,所述衬底包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。
10.如权利要求7所述的方法,还包括在沉积所述无定型碳层之前,在所述衬底上沉积抗反射涂层层,所述抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
11.如权利要求7所述的方法,其中,所述无定型碳层在约1W/in2到约100W/in2之间的功率下沉积。
12.如权利要求7所述的方法,其中,所述非碳基层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
13.如权利要求12所述的方法,其中,所述非碳基层具有约50埃到约500埃之间的厚度。
14.如权利要求7所述的方法,还包括在所述无定型碳层中的所述第一和第二图案被转移穿过所述衬底之后,从所述衬底去除所述无定型碳层和所述非碳基层。
15.一种刻蚀衬底的方法,包括:
在所述衬底上沉积无定型碳层;
在所述无定型碳层上沉积第一非碳基层;
在所述第一非碳基层和所述无定型碳层中定义第一图案;
在所述无定型碳层上沉积第二非碳基层;
在所述第二非碳基层上沉积一层光刻胶;
图案化所述光刻胶;
将所述光刻胶中的所述图案转移穿过所述第二非碳基层和所述无定型碳层,以在所述无定型碳层中形成第二图案;以及
将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
16.如权利要求15所述的方法,其中,所述第一非碳基层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
17.如权利要求16所述的方法,其中,所述第一非碳基层具有约50埃到约500埃之间的厚度。
18.如权利要求15所述的方法,其中,所述第二非碳基层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
19.如权利要求15所述的方法,其中,所述无定型碳层通过由包含一种或多种具有通式CxHy的烃的气体混合物气相沉积来沉积,其中x的范围为2到4,y的范围为2到10。
20.如权利要求15所述的方法,其中,所述衬底包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。
21.如权利要求15所述的方法,还包括在沉积所述无定型碳层之前,在所述衬底上沉积抗反射涂层层,所述抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
22.如权利要求15所述的方法,其中,所述无定型碳层在约1W/in2到约100W/in2之间的功率下沉积。
23.如权利要求15所述的方法,还包括在所述无定型碳层中的所述第一和第二图案被转移穿过所述衬底之后,从所述衬底去除所述无定型碳层和所述第二非碳基层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/768,724 US7064078B2 (en) | 2004-01-30 | 2004-01-30 | Techniques for the use of amorphous carbon (APF) for various etch and litho integration scheme |
US10/768,724 | 2004-01-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1914715A true CN1914715A (zh) | 2007-02-14 |
CN100524640C CN100524640C (zh) | 2009-08-05 |
Family
ID=34807939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005800032995A Expired - Fee Related CN100524640C (zh) | 2004-01-30 | 2005-01-07 | 用于各种刻蚀和光刻集成方案的无定型碳的方法 |
Country Status (5)
Country | Link |
---|---|
US (2) | US7064078B2 (zh) |
KR (1) | KR101155141B1 (zh) |
CN (1) | CN100524640C (zh) |
TW (1) | TWI428712B (zh) |
WO (1) | WO2005076337A1 (zh) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101308330B (zh) * | 2007-05-16 | 2010-12-15 | 上海华虹Nec电子有限公司 | 利用可显影填充材料的两次图形曝光方法 |
CN101971102A (zh) * | 2008-01-29 | 2011-02-09 | 布鲁尔科技公司 | 用来通过多次暗视场曝光对硬掩模进行图案化的在线法 |
CN102832163A (zh) * | 2011-06-15 | 2012-12-19 | 联华电子股份有限公司 | 形成开口的方法 |
CN101285174B (zh) * | 2007-04-10 | 2013-03-27 | 应用材料公司 | 用于等离子体增强型化学气相沉积工艺的等离子体感应电荷损坏的控制 |
CN103247525A (zh) * | 2012-02-13 | 2013-08-14 | 诺发系统公司 | 用于蚀刻有机硬掩膜的方法 |
CN104956476A (zh) * | 2013-11-06 | 2015-09-30 | 马特森技术有限公司 | 用于垂直nand器件的新型掩模去除方法策略 |
CN102832163B (zh) * | 2011-06-15 | 2016-11-30 | 联华电子股份有限公司 | 形成开口的方法 |
US9618846B2 (en) | 2013-02-25 | 2017-04-11 | Lam Research Corporation | PECVD films for EUV lithography |
CN106960816A (zh) * | 2016-01-08 | 2017-07-18 | 中芯国际集成电路制造(上海)有限公司 | 双重图形化的方法 |
CN113078105A (zh) * | 2021-03-29 | 2021-07-06 | 长鑫存储技术有限公司 | 掩膜结构的制备方法、半导体结构及其制备方法 |
US11837441B2 (en) | 2019-05-29 | 2023-12-05 | Lam Research Corporation | Depositing a carbon hardmask by high power pulsed low frequency RF |
US11986633B2 (en) | 2012-08-30 | 2024-05-21 | Medtronic Minimed, Inc. | Sensor model supervisor for temporary reductions in fluid delivery by a fluid delivery device |
Families Citing this family (273)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6541397B1 (en) * | 2002-03-29 | 2003-04-01 | Applied Materials, Inc. | Removable amorphous carbon CMP stop |
KR100598038B1 (ko) * | 2004-02-25 | 2006-07-07 | 삼성전자주식회사 | 다층 반사 방지막을 포함하는 고체 촬상 소자 및 그 다층반사 방지막의 제조 방법 |
US20050191584A1 (en) * | 2004-02-27 | 2005-09-01 | Kevin Shea | Surface treatment of a dry-developed hard mask and surface treatment compositions used therefor |
US7355384B2 (en) * | 2004-04-08 | 2008-04-08 | International Business Machines Corporation | Apparatus, method, and computer program product for monitoring and controlling a microcomputer using a single existing pin |
US7151040B2 (en) * | 2004-08-31 | 2006-12-19 | Micron Technology, Inc. | Methods for increasing photo alignment margins |
US7910288B2 (en) | 2004-09-01 | 2011-03-22 | Micron Technology, Inc. | Mask material conversion |
US7115525B2 (en) | 2004-09-02 | 2006-10-03 | Micron Technology, Inc. | Method for integrated circuit fabrication using pitch multiplication |
US7655387B2 (en) * | 2004-09-02 | 2010-02-02 | Micron Technology, Inc. | Method to align mask patterns |
US7390746B2 (en) | 2005-03-15 | 2008-06-24 | Micron Technology, Inc. | Multiple deposition for integration of spacers in pitch multiplication process |
US7253118B2 (en) * | 2005-03-15 | 2007-08-07 | Micron Technology, Inc. | Pitch reduced patterns relative to photolithography features |
US7611944B2 (en) | 2005-03-28 | 2009-11-03 | Micron Technology, Inc. | Integrated circuit fabrication |
US7429536B2 (en) | 2005-05-23 | 2008-09-30 | Micron Technology, Inc. | Methods for forming arrays of small, closely spaced features |
US7560390B2 (en) | 2005-06-02 | 2009-07-14 | Micron Technology, Inc. | Multiple spacer steps for pitch multiplication |
US7396781B2 (en) * | 2005-06-09 | 2008-07-08 | Micron Technology, Inc. | Method and apparatus for adjusting feature size and position |
KR100733421B1 (ko) * | 2005-06-30 | 2007-06-29 | 주식회사 하이닉스반도체 | 반도체 장치의 제조방법 |
US7413981B2 (en) | 2005-07-29 | 2008-08-19 | Micron Technology, Inc. | Pitch doubled circuit layout |
US7312148B2 (en) * | 2005-08-08 | 2007-12-25 | Applied Materials, Inc. | Copper barrier reflow process employing high speed optical annealing |
US7323401B2 (en) * | 2005-08-08 | 2008-01-29 | Applied Materials, Inc. | Semiconductor substrate process using a low temperature deposited carbon-containing hard mask |
US8123968B2 (en) * | 2005-08-25 | 2012-02-28 | Round Rock Research, Llc | Multiple deposition for integration of spacers in pitch multiplication process |
US7816262B2 (en) * | 2005-08-30 | 2010-10-19 | Micron Technology, Inc. | Method and algorithm for random half pitched interconnect layout with constant spacing |
US7829262B2 (en) | 2005-08-31 | 2010-11-09 | Micron Technology, Inc. | Method of forming pitch multipled contacts |
US7776744B2 (en) | 2005-09-01 | 2010-08-17 | Micron Technology, Inc. | Pitch multiplication spacers and methods of forming the same |
US7572572B2 (en) | 2005-09-01 | 2009-08-11 | Micron Technology, Inc. | Methods for forming arrays of small, closely spaced features |
US7759197B2 (en) | 2005-09-01 | 2010-07-20 | Micron Technology, Inc. | Method of forming isolated features using pitch multiplication |
US7393789B2 (en) | 2005-09-01 | 2008-07-01 | Micron Technology, Inc. | Protective coating for planarization |
US7432210B2 (en) * | 2005-10-05 | 2008-10-07 | Applied Materials, Inc. | Process to open carbon based hardmask |
US7399712B1 (en) * | 2005-10-31 | 2008-07-15 | Novellus Systems, Inc. | Method for etching organic hardmasks |
US8664124B2 (en) | 2005-10-31 | 2014-03-04 | Novellus Systems, Inc. | Method for etching organic hardmasks |
KR100663375B1 (ko) * | 2006-01-18 | 2007-01-02 | 삼성전자주식회사 | 금속질화막을 게이트전극으로 채택하는 반도체소자의제조방법 |
US7476933B2 (en) | 2006-03-02 | 2009-01-13 | Micron Technology, Inc. | Vertical gated access transistor |
US7842558B2 (en) | 2006-03-02 | 2010-11-30 | Micron Technology, Inc. | Masking process for simultaneously patterning separate regions |
US7662721B2 (en) | 2006-03-15 | 2010-02-16 | Infineon Technologies Ag | Hard mask layer stack and a method of patterning |
US20070231748A1 (en) * | 2006-03-29 | 2007-10-04 | Swaminathan Sivakumar | Patterning trenches in a photoresist layer with tight end-to-end separation |
US7902074B2 (en) | 2006-04-07 | 2011-03-08 | Micron Technology, Inc. | Simplified pitch doubling process flow |
US8003310B2 (en) | 2006-04-24 | 2011-08-23 | Micron Technology, Inc. | Masking techniques and templates for dense semiconductor fabrication |
US7488685B2 (en) * | 2006-04-25 | 2009-02-10 | Micron Technology, Inc. | Process for improving critical dimension uniformity of integrated circuit arrays |
EP1850369A1 (en) | 2006-04-28 | 2007-10-31 | STMicroelectronics S.r.l. | Manufacturing process of an organic mask for microelectronic industry |
US7795149B2 (en) | 2006-06-01 | 2010-09-14 | Micron Technology, Inc. | Masking techniques and contact imprint reticles for dense semiconductor fabrication |
US7723009B2 (en) | 2006-06-02 | 2010-05-25 | Micron Technology, Inc. | Topography based patterning |
WO2008015212A1 (en) * | 2006-08-02 | 2008-02-07 | Koninklijke Philips Electronics N.V. | Novel hard mask structure for patterning features in semiconductor devices |
US7611980B2 (en) | 2006-08-30 | 2009-11-03 | Micron Technology, Inc. | Single spacer process for multiplying pitch by a factor greater than two and related intermediate IC structures |
US7959818B2 (en) | 2006-09-12 | 2011-06-14 | Hynix Semiconductor Inc. | Method for forming a fine pattern of a semiconductor device |
US7666578B2 (en) | 2006-09-14 | 2010-02-23 | Micron Technology, Inc. | Efficient pitch multiplication process |
US20080073321A1 (en) * | 2006-09-22 | 2008-03-27 | Tokyo Electron Limited | Method of patterning an anti-reflective coating by partial etching |
US7883835B2 (en) * | 2006-09-22 | 2011-02-08 | Tokyo Electron Limited | Method for double patterning a thin film |
US7862985B2 (en) * | 2006-09-22 | 2011-01-04 | Tokyo Electron Limited | Method for double patterning a developable anti-reflective coating |
US7858293B2 (en) * | 2006-09-22 | 2010-12-28 | Tokyo Electron Limited | Method for double imaging a developable anti-reflective coating |
KR100766239B1 (ko) * | 2006-09-22 | 2007-10-10 | 주식회사 하이닉스반도체 | 반도체 소자의 금속 층간 절연막 형성 방법 |
US7811747B2 (en) * | 2006-09-22 | 2010-10-12 | Tokyo Electron Limited | Method of patterning an anti-reflective coating by partial developing |
US8168372B2 (en) * | 2006-09-25 | 2012-05-01 | Brewer Science Inc. | Method of creating photolithographic structures with developer-trimmed hard mask |
KR100808056B1 (ko) * | 2006-12-27 | 2008-02-28 | 주식회사 하이닉스반도체 | 하드마스크를 이용한 패턴 형성 방법 |
JP5154140B2 (ja) * | 2006-12-28 | 2013-02-27 | 東京エレクトロン株式会社 | 半導体装置およびその製造方法 |
US7932017B2 (en) * | 2007-01-15 | 2011-04-26 | Tokyo Electron Limited | Method of double patterning a thin film using a developable anti-reflective coating and a developable organic planarization layer |
US7767386B2 (en) * | 2007-01-15 | 2010-08-03 | Tokyo Electron Limited | Method of patterning an organic planarization layer |
JP5106020B2 (ja) * | 2007-02-08 | 2012-12-26 | パナソニック株式会社 | パターン形成方法 |
JP2008227465A (ja) * | 2007-02-14 | 2008-09-25 | Renesas Technology Corp | 半導体装置の製造方法 |
US7915166B1 (en) | 2007-02-22 | 2011-03-29 | Novellus Systems, Inc. | Diffusion barrier and etch stop films |
KR100843239B1 (ko) * | 2007-03-08 | 2008-07-03 | 삼성전자주식회사 | 더블 패터닝 공정을 이용하는 반도체 소자의 미세 패턴형성 방법 |
US7943285B2 (en) * | 2007-03-13 | 2011-05-17 | Panasonic Corporation | Pattern formation method |
KR100822592B1 (ko) | 2007-03-23 | 2008-04-16 | 주식회사 하이닉스반도체 | 반도체 소자의 미세 패턴 형성방법 |
KR100866735B1 (ko) * | 2007-05-01 | 2008-11-03 | 주식회사 하이닉스반도체 | 반도체 소자의 미세 패턴 형성 방법 |
US20100327413A1 (en) * | 2007-05-03 | 2010-12-30 | Lam Research Corporation | Hardmask open and etch profile control with hardmask open |
KR100777043B1 (ko) * | 2007-05-22 | 2007-11-16 | 주식회사 테스 | 비정질 탄소막 형성 방법 및 이를 이용한 반도체 소자의제조 방법 |
US7901869B2 (en) * | 2007-06-01 | 2011-03-08 | Applied Materials, Inc. | Double patterning with a double layer cap on carbonaceous hardmask |
US7807578B2 (en) * | 2007-06-01 | 2010-10-05 | Applied Materials, Inc. | Frequency doubling using spacer mask |
US7846849B2 (en) * | 2007-06-01 | 2010-12-07 | Applied Materials, Inc. | Frequency tripling using spacer mask having interposed regions |
US20080303037A1 (en) * | 2007-06-04 | 2008-12-11 | Irving Lyn M | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
US7923373B2 (en) | 2007-06-04 | 2011-04-12 | Micron Technology, Inc. | Pitch multiplication using self-assembling materials |
US7553770B2 (en) * | 2007-06-06 | 2009-06-30 | Micron Technology, Inc. | Reverse masking profile improvements in high aspect ratio etch |
WO2008157068A2 (en) * | 2007-06-15 | 2008-12-24 | Applied Materials, Inc. | Oxygen sacvd to form sacrificial oxide liners in substrate gaps |
US8337950B2 (en) * | 2007-06-19 | 2012-12-25 | Applied Materials, Inc. | Method for depositing boron-rich films for lithographic mask applications |
US7718546B2 (en) * | 2007-06-27 | 2010-05-18 | Sandisk 3D Llc | Method for fabricating a 3-D integrated circuit using a hard mask of silicon-oxynitride on amorphous carbon |
US7858514B2 (en) | 2007-06-29 | 2010-12-28 | Qimonda Ag | Integrated circuit, intermediate structure and a method of fabricating a semiconductor structure |
US20090023294A1 (en) * | 2007-07-16 | 2009-01-22 | Applied Materials, Inc. | Method for etching using advanced patterning film in capacitive coupling high frequency plasma dielectric etch chamber |
JP4476313B2 (ja) | 2007-07-25 | 2010-06-09 | 東京エレクトロン株式会社 | 成膜方法、成膜装置、および記憶媒体 |
US8563229B2 (en) | 2007-07-31 | 2013-10-22 | Micron Technology, Inc. | Process of semiconductor fabrication with mask overlay on pitch multiplied features and associated structures |
US7737049B2 (en) * | 2007-07-31 | 2010-06-15 | Qimonda Ag | Method for forming a structure on a substrate and device |
US20090053620A1 (en) * | 2007-08-24 | 2009-02-26 | Hynix Semiconductor Inc. | Blank Mask and Method for Fabricating Photomask Using the Same |
US8962101B2 (en) | 2007-08-31 | 2015-02-24 | Novellus Systems, Inc. | Methods and apparatus for plasma-based deposition |
JP2009076661A (ja) * | 2007-09-20 | 2009-04-09 | Elpida Memory Inc | 半導体装置の製造方法 |
US20090087993A1 (en) * | 2007-09-28 | 2009-04-02 | Steven Maxwell | Methods and apparatus for cost-effectively increasing feature density using a mask shrinking process with double patterning |
JP5671202B2 (ja) * | 2007-10-26 | 2015-02-18 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | フォトレジストテンプレートマスクを用いて頻度を倍にする方法 |
KR101344019B1 (ko) * | 2007-11-01 | 2013-12-24 | 삼성전자주식회사 | 이온 주입 방법 |
US7737039B2 (en) | 2007-11-01 | 2010-06-15 | Micron Technology, Inc. | Spacer process for on pitch contacts and related structures |
US7659208B2 (en) | 2007-12-06 | 2010-02-09 | Micron Technology, Inc | Method for forming high density patterns |
US7790531B2 (en) | 2007-12-18 | 2010-09-07 | Micron Technology, Inc. | Methods for isolating portions of a loop of pitch-multiplied material and related structures |
US8158334B2 (en) * | 2008-01-14 | 2012-04-17 | International Business Machines Corporation | Methods for forming a composite pattern including printed resolution assist features |
JP2009194207A (ja) * | 2008-02-15 | 2009-08-27 | Tokyo Electron Ltd | パターン形成方法、半導体装置の製造方法及び半導体装置の製造装置 |
JP5086283B2 (ja) * | 2008-02-15 | 2012-11-28 | 東京エレクトロン株式会社 | パターン形成方法及び半導体装置の製造方法 |
JP5254049B2 (ja) * | 2008-02-15 | 2013-08-07 | 東京エレクトロン株式会社 | パターン形成方法及び半導体装置の製造方法 |
FR2927708A1 (fr) * | 2008-02-19 | 2009-08-21 | Commissariat Energie Atomique | Procede de photolithographie ultraviolette a immersion |
US8030218B2 (en) * | 2008-03-21 | 2011-10-04 | Micron Technology, Inc. | Method for selectively modifying spacing between pitch multiplied structures |
US8148269B2 (en) * | 2008-04-04 | 2012-04-03 | Applied Materials, Inc. | Boron nitride and boron-nitride derived materials deposition method |
KR100919350B1 (ko) * | 2008-04-24 | 2009-09-25 | 주식회사 하이닉스반도체 | 반도체 소자의 패턴 형성 방법 |
JP2009283674A (ja) * | 2008-05-22 | 2009-12-03 | Elpida Memory Inc | 半導体装置の製造方法 |
US20090297731A1 (en) * | 2008-05-30 | 2009-12-03 | Asm Japan K.K. | Apparatus and method for improving production throughput in cvd chamber |
US20090311634A1 (en) * | 2008-06-11 | 2009-12-17 | Tokyo Electron Limited | Method of double patterning using sacrificial structure |
US8293460B2 (en) * | 2008-06-16 | 2012-10-23 | Applied Materials, Inc. | Double exposure patterning with carbonaceous hardmask |
US8435608B1 (en) | 2008-06-27 | 2013-05-07 | Novellus Systems, Inc. | Methods of depositing smooth and conformal ashable hard mask films |
US8076208B2 (en) | 2008-07-03 | 2011-12-13 | Micron Technology, Inc. | Method for forming transistor with high breakdown voltage using pitch multiplication technique |
US8101497B2 (en) | 2008-09-11 | 2012-01-24 | Micron Technology, Inc. | Self-aligned trench formation |
US8252653B2 (en) * | 2008-10-21 | 2012-08-28 | Applied Materials, Inc. | Method of forming a non-volatile memory having a silicon nitride charge trap layer |
JP2010109148A (ja) * | 2008-10-30 | 2010-05-13 | Toshiba Corp | レジストパターンの形成方法 |
US8492282B2 (en) | 2008-11-24 | 2013-07-23 | Micron Technology, Inc. | Methods of forming a masking pattern for integrated circuits |
US7972959B2 (en) * | 2008-12-01 | 2011-07-05 | Applied Materials, Inc. | Self aligned double patterning flow with non-sacrificial features |
US9640396B2 (en) | 2009-01-07 | 2017-05-02 | Brewer Science Inc. | Spin-on spacer materials for double- and triple-patterning lithography |
US8198671B2 (en) * | 2009-04-22 | 2012-06-12 | Applied Materials, Inc. | Modification of charge trap silicon nitride with oxygen plasma |
TWI419201B (zh) * | 2009-04-27 | 2013-12-11 | Macronix Int Co Ltd | 圖案化的方法 |
US8519540B2 (en) * | 2009-06-16 | 2013-08-27 | International Business Machines Corporation | Self-aligned dual damascene BEOL structures with patternable low- K material and methods of forming same |
US8659115B2 (en) * | 2009-06-17 | 2014-02-25 | International Business Machines Corporation | Airgap-containing interconnect structure with improved patternable low-K material and method of fabricating |
US8163658B2 (en) * | 2009-08-24 | 2012-04-24 | International Business Machines Corporation | Multiple patterning using improved patternable low-k dielectric materials |
US8202783B2 (en) * | 2009-09-29 | 2012-06-19 | International Business Machines Corporation | Patternable low-k dielectric interconnect structure with a graded cap layer and method of fabrication |
US8637395B2 (en) * | 2009-11-16 | 2014-01-28 | International Business Machines Corporation | Methods for photo-patternable low-k (PPLK) integration with curing after pattern transfer |
US8367540B2 (en) | 2009-11-19 | 2013-02-05 | International Business Machines Corporation | Interconnect structure including a modified photoresist as a permanent interconnect dielectric and method of fabricating same |
TWI409852B (zh) * | 2009-12-31 | 2013-09-21 | Inotera Memories Inc | 利用自對準雙重圖案製作半導體元件微細結構的方法 |
US8642252B2 (en) | 2010-03-10 | 2014-02-04 | International Business Machines Corporation | Methods for fabrication of an air gap-containing interconnect structure |
US8563414B1 (en) | 2010-04-23 | 2013-10-22 | Novellus Systems, Inc. | Methods for forming conductive carbon films by PECVD |
US8896120B2 (en) | 2010-04-27 | 2014-11-25 | International Business Machines Corporation | Structures and methods for air gap integration |
JP2013526061A (ja) | 2010-04-30 | 2013-06-20 | アプライド マテリアルズ インコーポレイテッド | スタック欠陥率を改善するアモルファスカーボン堆積法 |
US8241992B2 (en) | 2010-05-10 | 2012-08-14 | International Business Machines Corporation | Method for air gap interconnect integration using photo-patternable low k material |
US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
US8373271B2 (en) | 2010-05-27 | 2013-02-12 | International Business Machines Corporation | Interconnect structure with an oxygen-doped SiC antireflective coating and method of fabrication |
TW201216331A (en) | 2010-10-05 | 2012-04-16 | Applied Materials Inc | Ultra high selectivity doped amorphous carbon strippable hardmask development and integration |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
US8592321B2 (en) | 2011-06-08 | 2013-11-26 | United Microelectronics Corp. | Method for fabricating an aperture |
US8641828B2 (en) | 2011-07-13 | 2014-02-04 | United Microelectronics Corp. | Cleaning method of semiconductor manufacturing process |
US8808563B2 (en) | 2011-10-07 | 2014-08-19 | Applied Materials, Inc. | Selective etch of silicon by way of metastable hydrogen termination |
US8557649B2 (en) | 2011-10-21 | 2013-10-15 | International Business Machines Corporation | Method for controlling structure height |
US8962484B2 (en) * | 2011-12-16 | 2015-02-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming pattern for semiconductor device |
SG195494A1 (en) | 2012-05-18 | 2013-12-30 | Novellus Systems Inc | Carbon deposition-etch-ash gap fill process |
US9267739B2 (en) | 2012-07-18 | 2016-02-23 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
US9362133B2 (en) | 2012-12-14 | 2016-06-07 | Lam Research Corporation | Method for forming a mask by etching conformal film on patterned ashable hardmask |
US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
US9299574B2 (en) | 2013-01-25 | 2016-03-29 | Applied Materials, Inc. | Silicon dioxide-polysilicon multi-layered stack etching with plasma etch chamber employing non-corrosive etchants |
US9129911B2 (en) * | 2013-01-31 | 2015-09-08 | Applied Materials, Inc. | Boron-doped carbon-based hardmask etch processing |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
US20140271097A1 (en) | 2013-03-15 | 2014-09-18 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US9355820B2 (en) * | 2013-09-12 | 2016-05-31 | Applied Materials, Inc. | Methods for removing carbon containing films |
US9320387B2 (en) | 2013-09-30 | 2016-04-26 | Lam Research Corporation | Sulfur doped carbon hard masks |
US9589799B2 (en) | 2013-09-30 | 2017-03-07 | Lam Research Corporation | High selectivity and low stress carbon hardmask by pulsed low frequency RF power |
US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
US9177797B2 (en) * | 2013-12-04 | 2015-11-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lithography using high selectivity spacers for pitch reduction |
WO2015105651A1 (en) * | 2014-01-08 | 2015-07-16 | Applied Materials, Inc. | Development of high etch selective hardmask material by ion implantation into amorphous carbon films |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
US9499898B2 (en) | 2014-03-03 | 2016-11-22 | Applied Materials, Inc. | Layered thin film heater and method of fabrication |
US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
US20150371861A1 (en) * | 2014-06-23 | 2015-12-24 | Applied Materials, Inc. | Protective silicon oxide patterning |
US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
US9368364B2 (en) | 2014-09-24 | 2016-06-14 | Applied Materials, Inc. | Silicon etch process with tunable selectivity to SiO2 and other materials |
US9478434B2 (en) | 2014-09-24 | 2016-10-25 | Applied Materials, Inc. | Chlorine-based hardmask removal |
US9613822B2 (en) | 2014-09-25 | 2017-04-04 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9355922B2 (en) | 2014-10-14 | 2016-05-31 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US9502258B2 (en) | 2014-12-23 | 2016-11-22 | Applied Materials, Inc. | Anisotropic gap etch |
US9343272B1 (en) | 2015-01-08 | 2016-05-17 | Applied Materials, Inc. | Self-aligned process |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9373522B1 (en) * | 2015-01-22 | 2016-06-21 | Applied Mateials, Inc. | Titanium nitride removal |
US9449846B2 (en) | 2015-01-28 | 2016-09-20 | Applied Materials, Inc. | Vertical gate separation |
US9928994B2 (en) | 2015-02-03 | 2018-03-27 | Lam Research Corporation | Methods for decreasing carbon-hydrogen content of amorphous carbon hardmask films |
US9520295B2 (en) | 2015-02-03 | 2016-12-13 | Lam Research Corporation | Metal doping of amorphous carbon and silicon films used as hardmasks in substrate processing systems |
US20160225652A1 (en) | 2015-02-03 | 2016-08-04 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
KR102477091B1 (ko) | 2015-07-24 | 2022-12-13 | 삼성전자주식회사 | 2차원 물질 하드마스크와 그 제조방법 및 하드 마스크를 이용한 물질층 패턴 형성방법 |
KR20170016107A (ko) | 2015-08-03 | 2017-02-13 | 삼성전자주식회사 | 반도체 장치 제조 방법 |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US9691645B2 (en) | 2015-08-06 | 2017-06-27 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US9349605B1 (en) | 2015-08-07 | 2016-05-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10418243B2 (en) | 2015-10-09 | 2019-09-17 | Applied Materials, Inc. | Ultra-high modulus and etch selectivity boron-carbon hardmask films |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10128337B2 (en) * | 2016-06-03 | 2018-11-13 | Applied Materials, Inc. | Methods for forming fin structures with desired profile for 3D structure semiconductor applications |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
WO2018111333A1 (en) | 2016-12-14 | 2018-06-21 | Mattson Technology, Inc. | Atomic layer etch process using plasma in conjunction with a rapid thermal activation process |
CN113658868B (zh) | 2016-12-15 | 2023-08-08 | 联华电子股份有限公司 | 半导体元件及其制作方法 |
CN110402189B (zh) | 2016-12-23 | 2023-04-21 | 德克萨斯大学系统董事会 | 一种用于将异构组件组装至产品衬底上的方法 |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
KR102374206B1 (ko) | 2017-12-05 | 2022-03-14 | 삼성전자주식회사 | 반도체 장치 제조 방법 |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
TWI766433B (zh) | 2018-02-28 | 2022-06-01 | 美商應用材料股份有限公司 | 形成氣隙的系統及方法 |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10566194B2 (en) * | 2018-05-07 | 2020-02-18 | Lam Research Corporation | Selective deposition of etch-stop layer for enhanced patterning |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11195923B2 (en) | 2018-12-21 | 2021-12-07 | Applied Materials, Inc. | Method of fabricating a semiconductor device having reduced contact resistance |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
US11562909B2 (en) * | 2020-05-22 | 2023-01-24 | Applied Materials, Inc. | Directional selective junction clean with field polymer protections |
US20220102200A1 (en) * | 2020-09-30 | 2022-03-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Patterning material including carbon-containing layer and method for semiconductor device fabrication |
US11715640B2 (en) * | 2020-09-30 | 2023-08-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Patterning material including silicon-containing layer and method for semiconductor device fabrication |
US11776810B2 (en) | 2021-08-31 | 2023-10-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of forming a semiconductor device |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0258221A (ja) * | 1988-08-23 | 1990-02-27 | Semiconductor Energy Lab Co Ltd | 炭素または炭素を主成分とするマスクを用いたエッチング方法 |
EP0381109A3 (de) | 1989-02-01 | 1990-12-12 | Siemens Aktiengesellschaft | Feuchtesperre für organische Dielektrika |
JP2862183B2 (ja) * | 1989-04-28 | 1999-02-24 | 富士通株式会社 | マスクの製造方法 |
DE69005938T2 (de) * | 1989-07-31 | 1994-05-19 | Matsushita Electric Ind Co Ltd | Vorrichtung zur Herstellung von einer dünnen diamantartigen Kohlenstoffschicht. |
US5308741A (en) * | 1992-07-31 | 1994-05-03 | Motorola, Inc. | Lithographic method using double exposure techniques, mask position shifting and light phase shifting |
TW366367B (en) * | 1995-01-26 | 1999-08-11 | Ibm | Sputter deposition of hydrogenated amorphous carbon film |
TW302507B (zh) * | 1995-02-10 | 1997-04-11 | Siemens Ag | |
JP3361918B2 (ja) | 1995-07-26 | 2003-01-07 | 沖電気工業株式会社 | 半導体集積回路装置の微細ホールの形成方法 |
US5759746A (en) * | 1996-05-24 | 1998-06-02 | Kabushiki Kaisha Toshiba | Fabrication process using a thin resist |
JPH1126578A (ja) | 1997-07-02 | 1999-01-29 | Sony Corp | 微細接続孔の形成方法 |
US6133618A (en) | 1997-08-14 | 2000-10-17 | Lucent Technologies Inc. | Semiconductor device having an anti-reflective layer and a method of manufacture thereof |
TWI246633B (en) * | 1997-12-12 | 2006-01-01 | Applied Materials Inc | Method of pattern etching a low k dielectric layen |
US6143476A (en) * | 1997-12-12 | 2000-11-07 | Applied Materials Inc | Method for high temperature etching of patterned layers using an organic mask stack |
US6140226A (en) * | 1998-01-16 | 2000-10-31 | International Business Machines Corporation | Dual damascene processing for semiconductor chip interconnects |
AU3534299A (en) * | 1998-04-22 | 1999-11-08 | Nikon Corporation | Exposure method and exposure system |
US6184572B1 (en) * | 1998-04-29 | 2001-02-06 | Novellus Systems, Inc. | Interlevel dielectric stack containing plasma deposited fluorinated amorphous carbon films for semiconductor devices |
US6316167B1 (en) * | 2000-01-10 | 2001-11-13 | International Business Machines Corporation | Tunabale vapor deposited materials as antireflective coatings, hardmasks and as combined antireflective coating/hardmasks and methods of fabrication thereof and application thereof |
JP3123548B2 (ja) * | 1998-06-30 | 2001-01-15 | キヤノン株式会社 | 露光方法及び露光装置 |
US6245662B1 (en) | 1998-07-23 | 2001-06-12 | Applied Materials, Inc. | Method of producing an interconnect structure for an integrated circuit |
JP3531666B2 (ja) * | 1999-03-19 | 2004-05-31 | シャープ株式会社 | 位相シフトマスク及びその製造方法 |
KR100307629B1 (ko) * | 1999-04-30 | 2001-09-26 | 윤종용 | 하이드로 카본계의 가스를 이용한 반사방지막의 형성 및 적용방법 |
KR100307631B1 (ko) * | 1999-06-01 | 2001-09-29 | 윤종용 | 반도체소자의 미세패턴 형성방법 |
US6821571B2 (en) * | 1999-06-18 | 2004-11-23 | Applied Materials Inc. | Plasma treatment to enhance adhesion and to minimize oxidation of carbon-containing layers |
US6423384B1 (en) * | 1999-06-25 | 2002-07-23 | Applied Materials, Inc. | HDP-CVD deposition of low dielectric constant amorphous carbon film |
KR100304708B1 (ko) * | 1999-07-14 | 2001-11-01 | 윤종용 | 이중층 반사방지막을 갖는 반도체소자 및 그 제조방법 |
US6238850B1 (en) * | 1999-08-23 | 2001-05-29 | International Business Machines Corp. | Method of forming sharp corners in a photoresist layer |
US6265319B1 (en) * | 1999-09-01 | 2001-07-24 | Taiwan Semiconductor Manufacturing Company | Dual damascene method employing spin-on polymer (SOP) etch stop layer |
US6573030B1 (en) * | 2000-02-17 | 2003-06-03 | Applied Materials, Inc. | Method for depositing an amorphous carbon layer |
US20020086547A1 (en) * | 2000-02-17 | 2002-07-04 | Applied Materials, Inc. | Etch pattern definition using a CVD organic layer as an anti-reflection coating and hardmask |
US6511791B1 (en) * | 2000-04-28 | 2003-01-28 | International Business Machines Corporation | Multiple exposure process for formation of dense rectangular arrays |
JP2002194547A (ja) * | 2000-06-08 | 2002-07-10 | Applied Materials Inc | アモルファスカーボン層の堆積方法 |
KR100669862B1 (ko) * | 2000-11-13 | 2007-01-17 | 삼성전자주식회사 | 반도체 장치의 미세패턴 형성방법 |
DE10100822C2 (de) | 2001-01-10 | 2003-04-10 | Infineon Technologies Ag | Plasmaätzverfahren für MoSi(ON)-Schichten |
EP1364257A1 (en) * | 2001-02-27 | 2003-11-26 | ASML US, Inc. | Simultaneous imaging of two reticles |
US6548347B2 (en) * | 2001-04-12 | 2003-04-15 | Micron Technology, Inc. | Method of forming minimally spaced word lines |
JP2002351046A (ja) * | 2001-05-24 | 2002-12-04 | Nec Corp | 位相シフトマスクおよびその設計方法 |
US7226853B2 (en) * | 2001-12-26 | 2007-06-05 | Applied Materials, Inc. | Method of forming a dual damascene structure utilizing a three layer hard mask structure |
DE10307518B4 (de) * | 2002-02-22 | 2011-04-14 | Hoya Corp. | Halbtonphasenschiebermaskenrohling, Halbtonphasenschiebermaske und Verfahren zu deren Herstellung |
US6541397B1 (en) * | 2002-03-29 | 2003-04-01 | Applied Materials, Inc. | Removable amorphous carbon CMP stop |
US6951709B2 (en) * | 2002-05-03 | 2005-10-04 | Micron Technology, Inc. | Method of fabricating a semiconductor multilevel interconnect structure |
KR20040012451A (ko) * | 2002-05-14 | 2004-02-11 | 어플라이드 머티어리얼스, 인코포레이티드 | 포토리소그래픽 레티클을 에칭하는 방법 |
US6818141B1 (en) * | 2002-06-10 | 2004-11-16 | Advanced Micro Devices, Inc. | Application of the CVD bilayer ARC as a hard mask for definition of the subresolution trench features between polysilicon wordlines |
US6835663B2 (en) | 2002-06-28 | 2004-12-28 | Infineon Technologies Ag | Hardmask of amorphous carbon-hydrogen (a-C:H) layers with tunable etch resistivity |
US6653735B1 (en) * | 2002-07-30 | 2003-11-25 | Advanced Micro Devices, Inc. | CVD silicon carbide layer as a BARC and hard mask for gate patterning |
US6764949B2 (en) * | 2002-07-31 | 2004-07-20 | Advanced Micro Devices, Inc. | Method for reducing pattern deformation and photoresist poisoning in semiconductor device fabrication |
US6673684B1 (en) * | 2002-07-31 | 2004-01-06 | Advanced Micro Devices, Inc. | Use of diamond as a hard mask material |
US6939808B2 (en) * | 2002-08-02 | 2005-09-06 | Applied Materials, Inc. | Undoped and fluorinated amorphous carbon film as pattern mask for metal etch |
US20040038537A1 (en) * | 2002-08-20 | 2004-02-26 | Wei Liu | Method of preventing or suppressing sidewall buckling of mask structures used to etch feature sizes smaller than 50nm |
US6853043B2 (en) * | 2002-11-04 | 2005-02-08 | Applied Materials, Inc. | Nitrogen-free antireflective coating for use with photolithographic patterning |
US6787452B2 (en) * | 2002-11-08 | 2004-09-07 | Chartered Semiconductor Manufacturing Ltd. | Use of amorphous carbon as a removable ARC material for dual damascene fabrication |
US20040166691A1 (en) * | 2003-02-26 | 2004-08-26 | Chun-Feng Nieh | Method of etching a metal line |
US20040180551A1 (en) * | 2003-03-13 | 2004-09-16 | Biles Peter John | Carbon hard mask for aluminum interconnect fabrication |
KR100641952B1 (ko) * | 2004-02-06 | 2006-11-02 | 주식회사 하이닉스반도체 | 반도체 소자의 미세 패턴 형성 방법 |
US8293430B2 (en) * | 2005-01-27 | 2012-10-23 | Applied Materials, Inc. | Method for etching a molybdenum layer suitable for photomask fabrication |
-
2004
- 2004-01-30 US US10/768,724 patent/US7064078B2/en not_active Expired - Lifetime
-
2005
- 2005-01-07 CN CNB2005800032995A patent/CN100524640C/zh not_active Expired - Fee Related
- 2005-01-07 WO PCT/US2005/000395 patent/WO2005076337A1/en active Application Filing
- 2005-01-07 KR KR1020067017385A patent/KR101155141B1/ko active IP Right Grant
- 2005-01-17 TW TW094101346A patent/TWI428712B/zh active
-
2006
- 2006-06-02 US US11/422,031 patent/US7718081B2/en not_active Expired - Fee Related
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101285174B (zh) * | 2007-04-10 | 2013-03-27 | 应用材料公司 | 用于等离子体增强型化学气相沉积工艺的等离子体感应电荷损坏的控制 |
CN101308330B (zh) * | 2007-05-16 | 2010-12-15 | 上海华虹Nec电子有限公司 | 利用可显影填充材料的两次图形曝光方法 |
CN101971102A (zh) * | 2008-01-29 | 2011-02-09 | 布鲁尔科技公司 | 用来通过多次暗视场曝光对硬掩模进行图案化的在线法 |
CN101971102B (zh) * | 2008-01-29 | 2012-12-12 | 布鲁尔科技公司 | 用来通过多次暗视场曝光对硬掩模进行图案化的在线法 |
CN102832163A (zh) * | 2011-06-15 | 2012-12-19 | 联华电子股份有限公司 | 形成开口的方法 |
CN102832163B (zh) * | 2011-06-15 | 2016-11-30 | 联华电子股份有限公司 | 形成开口的方法 |
CN103247525B (zh) * | 2012-02-13 | 2017-11-17 | 诺发系统公司 | 用于蚀刻有机硬掩膜的方法 |
CN103247525A (zh) * | 2012-02-13 | 2013-08-14 | 诺发系统公司 | 用于蚀刻有机硬掩膜的方法 |
US11986633B2 (en) | 2012-08-30 | 2024-05-21 | Medtronic Minimed, Inc. | Sensor model supervisor for temporary reductions in fluid delivery by a fluid delivery device |
US9618846B2 (en) | 2013-02-25 | 2017-04-11 | Lam Research Corporation | PECVD films for EUV lithography |
CN104956476B (zh) * | 2013-11-06 | 2017-11-14 | 马特森技术有限公司 | 用于垂直nand器件的新型掩模去除方法策略 |
CN104956476A (zh) * | 2013-11-06 | 2015-09-30 | 马特森技术有限公司 | 用于垂直nand器件的新型掩模去除方法策略 |
CN106960816A (zh) * | 2016-01-08 | 2017-07-18 | 中芯国际集成电路制造(上海)有限公司 | 双重图形化的方法 |
CN106960816B (zh) * | 2016-01-08 | 2019-09-27 | 中芯国际集成电路制造(上海)有限公司 | 双重图形化的方法 |
US11837441B2 (en) | 2019-05-29 | 2023-12-05 | Lam Research Corporation | Depositing a carbon hardmask by high power pulsed low frequency RF |
CN113078105A (zh) * | 2021-03-29 | 2021-07-06 | 长鑫存储技术有限公司 | 掩膜结构的制备方法、半导体结构及其制备方法 |
CN113078105B (zh) * | 2021-03-29 | 2022-07-05 | 长鑫存储技术有限公司 | 掩膜结构的制备方法、半导体结构及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2005076337A1 (en) | 2005-08-18 |
TW200527165A (en) | 2005-08-16 |
US20050167394A1 (en) | 2005-08-04 |
US7064078B2 (en) | 2006-06-20 |
CN100524640C (zh) | 2009-08-05 |
US7718081B2 (en) | 2010-05-18 |
KR101155141B1 (ko) | 2012-07-06 |
TWI428712B (zh) | 2014-03-01 |
KR20060129412A (ko) | 2006-12-15 |
US20060231524A1 (en) | 2006-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1914715A (zh) | 用于各种刻蚀和光刻集成方案的无定型碳的使用技术 | |
CN111316405B (zh) | 用于3d nand和dram应用的含有-nh2官能团的氢氟烃 | |
US10410864B2 (en) | Hybrid carbon hardmask for lateral hardmask recess reduction | |
US10014174B2 (en) | Conformal strippable carbon film for line-edge-roughness reduction for advanced patterning | |
US6869542B2 (en) | Hard mask integrated etch process for patterning of silicon oxide and other dielectric materials | |
US9337051B2 (en) | Method for critical dimension reduction using conformal carbon films | |
US20080293248A1 (en) | Method of forming amorphous carbon film and method of manufacturing semiconductor device using the same | |
KR20060127250A (ko) | 금속 에칭 하드마스크 분야용 비정질 탄소막 증착 방법 | |
KR102460794B1 (ko) | 극자외선 (euv) 에칭 내성을 강화시키기 위한 보호 캡의 선택적 원자 층 증착 (ald) | |
JP2024096717A (ja) | パターニング応用のための高密度炭素膜 | |
JP3282292B2 (ja) | ドライエッチング方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090805 Termination date: 20150107 |
|
EXPY | Termination of patent right or utility model |