CN1914715A - 用于各种刻蚀和光刻集成方案的无定型碳的使用技术 - Google Patents

用于各种刻蚀和光刻集成方案的无定型碳的使用技术 Download PDF

Info

Publication number
CN1914715A
CN1914715A CNA2005800032995A CN200580003299A CN1914715A CN 1914715 A CN1914715 A CN 1914715A CN A2005800032995 A CNA2005800032995 A CN A2005800032995A CN 200580003299 A CN200580003299 A CN 200580003299A CN 1914715 A CN1914715 A CN 1914715A
Authority
CN
China
Prior art keywords
layer
amorphous carbon
carbon layer
substrate
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800032995A
Other languages
English (en)
Other versions
CN100524640C (zh
Inventor
伟·刘
吉姆·中义·何
桑-H·安
梅华·沈
海澈姆·穆萨德
温迪·H·叶
克里斯多佛·D·本彻尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of CN1914715A publication Critical patent/CN1914715A/zh
Application granted granted Critical
Publication of CN100524640C publication Critical patent/CN100524640C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3081Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3088Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3146Carbon layers, e.g. diamond-like layers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明提供一种刻蚀衬底的方法。该刻蚀衬底的方法包括使用衬底上的经两次图案化的无定型碳层作为硬掩模将图案转移到衬底中。可选地,在图案被转移到衬底中之前,非碳基层被沉积无定型碳层上作为覆盖层。

Description

用于各种刻蚀和光刻集成方案的无定型碳的使用技术
技术领域
本发明的实施例涉及集成电路的制造。更具体而言,本发明的实施例涉及图案化和刻蚀半导体衬底中的特征的方法。
背景技术
自从在几十年前第一次引入集成电路以来,这样的集成电路几何的尺寸已经极大地减小了。从那以后,集成电路一般遵循两年/尺寸减半规则(通常称为摩尔定律),这意味着芯片上的器件的数量每两年翻一番。现在的制造设备常规上制造具有0.13μm甚至0.1μm特征尺寸的器件,并且下一代的设备将制造具有甚至更小特征尺寸的器件。
器件几何的持续减小已经产生了对于形成在半导体衬底上以纳米尺度距离间隔开的纳米尺度特征的方法的需要。因为当前的光刻工艺即将达到光学分辨率的极限,一种已经开发来减小衬底上的特征或器件之间的距离的方法包括用于将图案转移到衬底中的硬掩模层的两次图案化。在两次图案化方法中,硬掩模层被沉积在将被刻蚀的衬底层上。硬掩模层通过沉积在硬掩模层上的光刻胶被图案化。然后去除光刻胶,利用沉积在硬掩模层上的第二光刻胶将第二图案引入到硬掩模层中。
虽然目前的两次图案化方法可以用来减小衬底上的特征之间的距离,但是仍然存在对于可以用作用于两次图案化方法的硬掩模的材料的需要。具体来说,存在对于充当抗反射涂层的两次图案化硬掩模层的需要,其中所述抗反射涂层使可能在光刻过程中损害分辨率的反射最小化。图1(现有技术)示出了具有以低分辨率图案化的特征12、14的衬底10的示例。还存在对于如下两次图案化硬掩模层的需要,该两次图案化硬掩模层具有对于将被刻蚀的下方衬底的良好刻蚀选择性,并且在衬底被刻蚀之后可容易去除。
发明内容
本发明的实施例提供一种刻蚀衬底的方法,包括:在所述衬底上沉积无定型碳层;在所述无定型碳层中定义第一图案;在所述无定型碳层上沉积一层光刻胶;图案化所述光刻胶;将所述光刻胶中的所述图案转移穿过所述无定型碳层,以在所述无定型碳层中形成第二图案;以及将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
在一个方面中,一种刻蚀衬底的方法包括:在所述衬底上沉积无定型碳层;在所述无定型碳层上沉积非碳基层;在所述无定型碳层上沉积一层光刻胶;图案化所述光刻胶;将所述光刻胶中的所述图案转移穿过所述非碳基层和所述无定型碳层,以在所述无定型碳层中形成第二图案;以及将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
在另一个方面中,一种刻蚀衬底的方法包括:在所述衬底上沉积无定型碳层;在所述无定型碳层上沉积第一非碳基层;在所述非碳基层和所述无定型碳层中定义第一图案;在所述无定型碳层上沉积第二非碳基层;在所述第二非碳基层上沉积一层光刻胶;图案化所述光刻胶;将所述光刻胶中的所述图案转移穿过所述第二非碳基层和所述无定型碳层,以在所述无定型碳层中形成第二图案;以及将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
附图说明
作为可以详细理解本发明的上述特征的方式,可以参考实施例对在上面简要说明的本发明进行更具体描述,其中的一些实施例图示于附图中。但是,应该注意,附图仅仅图示了本发明的典型实施例,因此不应认为是限制其范围,因为本发明可以允许其他等效实施例。
图1是根据现有技术处理的结构的剖视图。
图2A-2F是根据本发明的实施例处理的结构的剖视图。
图3A-3F是根据本发明的实施例处理的结构的剖视图。
图4A-4D是根据本发明的实施例处理的结构的剖视图。
具体实施方式
本发明的实施例提供一种刻蚀衬底以形成非常小的诸如线或互连孔之类的特征(例如,多条非常紧密间隔(例如相隔70-75nm)的70-75nm线)的方法。无定型碳层被用作用于刻蚀衬底以形成非常小且紧密间隔的特征的硬掩模层。在深紫外(DUV)波长(例如小于约250nm)下无定型碳层是抗反射涂层。无定型碳层具有对于氧化物约10∶1和对于多晶硅的约6∶1的刻蚀选择性。在无定型碳层被作为硬掩模使用之后,可以使用等离子体灰化容易地去除该无定型碳层。
现在将参照图2A-2F描述本发明的一个实施例。无定型碳层104被沉积在衬底102上,如图2A所示。衬底102可以是或可以包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。衬底102可以上覆于底层100。底层100可以是在衬底102的刻蚀过程中的用于衬底102的刻蚀停止层。可选地,在无定型碳层104沉积在衬底上之前,可以在衬底102上沉积抗反射涂层层,该抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。选择抗反射涂层层材料,使得抗反射涂层层和衬底之间具有良好的刻蚀选择性。
无定型碳层104可以通过各种方法来沉积,诸如化学气相沉积、等离子体增强化学气相沉积、高密度等离子体化学气相沉积、或其组合。无定型碳层可以包括碳和氢,或者碳、氢和掺杂剂,掺杂剂包括诸如氮、硼、氟、磷或者它们的混合、以及其它。
在一个实施例中,无定型碳层由烃化合物和诸如氩、氦、氙、氪、氖或其组合的惰性气体的气体混合物形成。优选地,碳源是气态烃,诸如线性烃。在一个实施例中,烃化合物具有通式CxHy,其中,x的范围为2~4,y的范围为2~10。例如,丙烯(C3H6)、丙炔(C3H4)、丙烷(C3H8)、丁烷(C4H10)、丁烯(C4H8)、丁二烯(C4H6)或者乙炔以及它们的组合可以被用作烃化合物。类似地,诸如氢气(H2)、氮气(N2)、氨气(NH3)或其组合等的各种气体可以被添加到气体混合物,如果需要的话,Ar、He和N2可以被用于控制无定型碳层的密度和沉积速率。如下所讨论的,H2和/或NH3的添加可以被用于控制无定型碳层的氢比率。
一般来说,下面的沉积工艺参数可以被用于形成无定型碳层。工艺参数范围为:约100℃~约700℃的晶片温度,约1托(Torr)~约20托的室压强、约50sccm~约500sccm(每8英寸晶片)的烃气体流率、约1W/in2~约100W/in2(诸如约3W/in2~约20W/in2)的RF功率、以及约300密耳~约600密耳的板间距。优选地,无定型碳层被沉积到约400埃~约10000埃(诸如约500埃)的厚度。上述的工艺参数提供了范围约100埃/分~约5000埃/分的典型无定型碳层沉积速率,并且可以在可从加利福尼亚Santa Clara的应用材料公司得到的沉积室中在200mm的衬底上实现。可使用的沉积室的实例是可从应用材料公司得到的Producer系统中的APFTM室。
其它的沉积室也落入了本发明的范围,并且上面列出的参数可以根据用于形成无定型碳层的特定沉积室变化。例如,其它的沉积室可以具有更大或更小的体积,需要比针对可从应用材料公司得到的沉积室所述的更大或更小的气体流率。
所沉积的无定型碳层具有可调节的碳∶氢比率,该碳∶氢比率的范围为从约10%的氢到约60%的氢。控制无定型碳层的氢比率对于调节其光学性能以及其刻蚀选择性是理想的。具体地,随着氢比率减小,所沉积的层的光学性能,诸如吸收系数(k)增大。类似地,随着氢比率减小,取决于所使用的刻蚀化学剂,无定型碳层的耐刻蚀性可能增加。
无定型碳层的光吸收系数(k)可以在低于约250nm的波长下在约0.1到约1.0之间变化,使其适于用作DUV波长下的抗反射涂层(ARC)。无定型碳层的吸收系数可以作为沉积温度的函数而变化。具体来说,随着温度增高,所沉积的层的吸收系数同样也增大。例如,当丙烯作为用于沉积无定型碳层的烃化合物时,通过将沉积温度从约150℃增高到约480℃,所沉积的无定型碳层的k值可以从约0.2增大到约0.7。优选地,无定型碳层吸收少于约50%的波长约450nm到约700nm的光,因为半导体衬底一般利用对齐标志对齐并且使用约450nm和约700nm之间的波长检验。
无定型碳层的吸收系数还可以作为在气体混合物中所使用的添加剂的函数变化。具体来说,在气体混合物中H2、NH3、N2或其组合物的存在下可以将k值增大约10%到约100%。
在另一个实施例中,无定型碳层通过高密度等离子体化学气相沉积方法(HDP-CVD)由包含烃化合物的气体混合物来沉积。优选的烃气体是甲烷(CH4)。但是,可以使用其它的烃气体(诸如C2H6和C2H2),以及多种烃气体的混合物(例如乙炔和甲烷的混合物)。可以使用选自烯烃族、烷烃族和炔烃族的气态烃和液态烃。这些烃的实例包括CH4、C2H2、C2H4、C2H6和C2H8
烃气体连同诸如氩的载气被引入到HDP-CVD室中。可以使用的HDP-CVD室的示例是可从应用材料公司得到的Centura系统上的UltimaHDP-CVD室。HDP-CVD室的示例在美国专利No.6,423,384中有进一步描述,该美国专利通过引用被包含在本文中。优选地,烃气体通过第一组气体喷嘴以约10sccm到约500sccm的流率引入到室中,载气通过第二组气体喷嘴以约5sccm到约300sccm的流率引入到室中。在一个优选实施例中,烃气体以约125sccm的流率引入到室中,氩气以约27sccm的流率引入到室中。烃气体的流率与载气的流率的优选比值为约2∶1到约5∶1之间。虽然烃气体和载气优选通过独立的气体喷嘴引入室中,但是烃气体和载气可以在它们被引入室中之前被预混合。
优选地,在处理期间的室压强被保持在约10mTorr到100mTorr之间,诸如保持在约20mTorr。施加到室以产生和维持处理气体(包括烃气体和载气两者)的等离子体的源等离子体功率优选为:对于200mm衬底,约2MHz下以及小于2000W(诸如约1000W)的RF功率。所施加的功率根据被处理的衬底的尺寸而被调节。优选地,衬底在沉积工艺期间被维持在约300℃到约430℃之间,并且衬底的背面通过静电卡盘中的通道中氦气冷却。优选地,在沉积工艺期间,不激活衬底偏压功率。在沉积工艺之后,衬底可以在不破坏真空的情况下被转移到退火室,可以在退火室中在真空或者在惰性气氛中、在约300℃到约430℃之间的温度下、持续约30分钟到约90分钟,来进行可选退火步骤。在一个实施例中,经沉积的衬底在氮气氛中退火约30分钟。
在衬底102上沉积无定型碳层104之后,无定型碳层104被图案化,以在其中包含特征108,如图2C所示。无定型碳层104可以通过在无定型碳层104上沉积和图案化光刻胶106来图案化,如图2B所示。在光刻胶106中图案化的特征107被转移到无定型碳层104中,以在无定型碳层104中创建特征108,并且光刻胶106被去除,如图2C所示。然后将光刻胶110沉积在无定型碳层上,并且将光刻胶110图案化以包括特征112,如图2D所示。在光刻胶110中图案化的特征112被转移到无定型碳层104,以在无定型碳层104中创建特征114,并且光刻胶110被去除,如图2E所示。无定型碳层104可以通过使用氧、氢和诸如NF3、SF6、CF4的含氟气体或其混合物的等离子体来刻蚀该层而被刻蚀。可选地,等离子体还可以包括HBr、N2、He、Ar或者其组合。然后使用无定型碳层作为掩模,将在无定型碳层中所图案化的特征108和114转移穿过衬底,以在衬底中形成特征116,如图2F所示。衬底可以通过将衬底暴露于适于衬底的组成的刻蚀剂来被图案化。在衬底被刻蚀之后,无定型碳层可以利用包含臭氧、氧、氨、氢或其组合的等离子体从衬底去除。
在本文所描述的实施例中任何一个中,光刻胶可以使用常规技术来沉积、图案化和去除。例如,具有约2000埃到约6000埃之间的厚度的光刻胶层可以被沉积在衬底上。可以使用对于波长小于约450nm的UV辐射敏感的光刻胶或者对于波长为诸如248nm或193nm的辐射敏感的深紫外辐射抗蚀剂。光刻胶可以通过将光刻胶经过图案化的掩模暴露于适当波长的辐射来图案化。光刻胶可以通过等离子体灰化工艺去除。
在另一个实施例中,诸如非碳基电介质层的非碳基层被沉积在上述的无定型碳层上,作为覆盖层。如在此所定义的,非碳基层包括小于约50at%的碳。可以使用的非碳基材料的示例包括无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛。非碳基层可以在诸如去除光刻胶的处理步骤中保护无定型碳层。非碳基层也可以充当抗反射涂层。选择非碳基层,使得在非碳基层和无定型碳层下方的衬底之间存在良好的刻蚀选择性。优选地,非碳基层具有约50埃到约500埃之间的厚度。优选地,非碳基层具有至少约200埃的厚度。
在无定型碳层上包括非碳基层作为覆盖层的实施例将参考图3A-3F来描述。上面参考图2A-2F所描述的方法可以被用于执行参考图3A-3F和图4A-4D所描述的实施例中的相应步骤。
无定型碳层204被沉积在衬底202上,如图3A所示。衬底202可以上覆于底层200。底层200可以是在衬底202的刻蚀过程中的用于衬底202的刻蚀停止层。非碳基层205沉积在无定型碳层204上。非碳基层205可以通过常规的方法来沉积,诸如化学气相沉积、物理气相沉积或者旋涂工艺。无定型碳层204和非碳基层205可以通过在非碳基层205上沉积和图案化光刻胶206来图案化,如图3B所示。在光刻胶206中图案化的特征207被转移到无定型碳层204和非碳基层205中,以在无定型碳层204和非碳基层205中创建特征208,并且光刻胶206被去除,如图3C所示。然后将光刻胶210沉积在无定型碳层上,并且将光刻胶210图案化以包括特征212,如图3D所示。在光刻胶210中图案化的特征212被转移到无定型碳层204和非碳基层205,以在无定型碳层204和非碳基层205中创建特征214,并且光刻胶210被去除,如图3E所示。然后使用无定型碳层作为掩模,将在无定型碳层中所图案化的特征208和214转移穿过衬底,以在衬底中形成特征216,如图3F所示。在特征被转移穿过衬底的同时或者在去除无定型碳层过程中,可以去除非碳基层。无定型碳层可以利用包含臭氧、氧、氨、氢或其组合的等离子体从衬底去除。
虽然在图3A-3F的实施例中的非碳基层205被图示和描述为在特征208形成在无定型碳层204中之后保留在衬底上,但是在其它实施例中,在特征208被形成在无定型碳层中之后(诸如在去除光刻胶206的过程中),可以去除非碳基层205的一部分或者全部。在一个实施例中,第二非碳基层被沉积在衬底上。第二非碳基层可以直接沉积在衬底上、沉积在第一非碳基层上、或者沉积在第一非碳基层的保留部分上。第二非碳基层可以包括无定型硅、氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛。第二非碳基层可以具有与第一非碳基层相同或者不同的组成。
图4A-4D示出了其中在处理过程中第一非碳基层205的全部被去除的实施例。图4A对应于图3C,不同之处为第一非碳基层205已经被去除。然后,第二非碳基层220被沉积在无定型碳层204和暴露的衬底202上,并且光刻胶222被沉积在第二非碳基层220上,如图4B所示。光刻胶222被图案化以包括特征224,如图4C所示。在光刻胶206中图案化的特征224被转移到无定型碳层204和非碳基层220,以在无定型碳层204和非碳基层220中创建特征208,并且光刻胶222被去除,如图4所示。图4D基本上对应于图3E。然后刻蚀衬底202,如图3F所示。
在图2A-2F和3A-3F所示的实施例中,相同或基本相同的特征被形成在被图案化两次并且用作图案化衬底的硬掩模的无定型碳层中。优选地,第一掩模被用于在无定型碳层中形成第一图案,第二掩模被用于在无定型碳层中形成第二图案。
示例
在Producer系统中将550埃的无定型碳APFTM层沉积在硅衬底上。在Producer系统中将250埃的非碳基层、氧氮化硅电介质抗反射涂层(DARC)沉积在无定型碳APFTM层上。无定型碳APFTM层和DARC层具有对于248nm电磁辐射小于0.5%的反射率。DARC被涂覆以2000埃的TOK N850负型光刻胶。光刻胶在90℃下预烘60秒。光刻胶用CanonFPA-5000ES2曝光工具在0.68的NA和0.3的σ下曝光。将光刻胶在110℃下曝光后烘90秒,然后用0.26N的氢氧化四甲基铵(TMAH)在23℃下显影60秒。侧壁铬交替孔隙掩模被用于该曝光。在可从应用材料公司得到的DPS II室中将在光刻胶中定义的图案转移穿过无定型碳层。另一层光刻胶被沉积在衬底上,并且如上所述进行图案化。在DPS II室中将在光刻胶中的图案转移穿过无定型碳层。然后,在DPS II室中将无定型碳层中的图案转移穿过衬底。图案化的衬底具有间隔75nm距离的75nm的互连。
虽然上面所述的涉及本发明的实施例,但是可以设计本发明的其它和更多的实施例,而不偏离本发明的基本范围,本发明的基本范围有所附权利要求确定。
权利要求书
(按照条约第19条的修改)
1.一种刻蚀衬底的方法,包括:
在所述衬底上沉积无定型碳层;
在所述无定型碳层中定义第一图案;
在所述无定型碳层上沉积一层光刻胶;
图案化所述光刻胶;
将所述光刻胶中的所述图案转移穿过所述无定型碳层,以在所述无定型碳层中形成第二图案;然后
将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
2.如权利要求1所述的方法,其中,所述无定型碳层通过由包含一种或多种具有通式CxHy的烃的气体混合物气相沉积来沉积,其中x的范围为2到4,y的范围为2到10。
3.如权利要求1所述的方法,其中,所述衬底包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。
4.如权利要求1所述的方法,还包括在沉积所述无定型碳层之前,在所述衬底上沉积抗反射涂层层,所述抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
5.如权利要求1所述的方法,其中,所述无定型碳层在约1W/in2到约100W/in2之间的功率下沉积。
6.如权利要求1所述的方法,还包括在所述无定型碳层中的所述第一和第二图案被转移穿过所述衬底之后,从所述衬底去除所述无定型碳层。
7.一种刻蚀衬底的方法,包括:
在所述衬底上沉积无定型碳层;
在所述无定型碳层上沉积非碳基层;
在所述非碳基层和所述无定型碳层中定义第一图案;
在所述无定型碳层上沉积一层光刻胶;
图案化所述光刻胶;
将所述光刻胶中的所述图案转移穿过所述非碳基层和所述无定型碳层,以在所述无定型碳层中形成第二图案;以及
将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
8.如权利要求7所述的方法,其中,所述无定型碳层通过由包含一种或多种具有通式CxHy的烃的气体混合物气相沉积来沉积,其中x的范围为2到4,y的范围为2到10。
9.如权利要求7所述的方法,其中,所述衬底包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。
10.如权利要求7所述的方法,还包括在沉积所述无定型碳层之前,在所述衬底上沉积抗反射涂层层,所述抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
11.如权利要求7所述的方法,其中,所述无定型碳层在约1W/in2到约100W/in2之间的功率下沉积。
12.如权利要求7所述的方法,其中,所述非碳基层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
13.如权利要求12所述的方法,其中,所述非碳基层具有约50埃到约500埃之间的厚度。
14.如权利要求7所述的方法,还包括在所述无定型碳层中的所述第一和第二图案被转移穿过所述衬底之后,从所述衬底去除所述无定型碳层和所述非碳基层。
15.一种刻蚀衬底的方法,包括:
在所述衬底上沉积无定型碳层;
在所述无定型碳层上沉积第一非碳基层;
在所述第一非碳基层和所述无定型碳层中定义第一图案;
在所述无定型碳层上沉积第二非碳基层;
在所述第二非碳基层上沉积一层光刻胶;
图案化所述光刻胶;
将所述光刻胶中的所述图案转移穿过所述第二非碳基层和所述无定型碳层,以在所述无定型碳层中形成第二图案;以及
将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
16.如权利要求15所述的方法,其中,所述第一非碳基层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
17.如权利要求16所述的方法,其中,所述第一非碳基层具有约50埃到约500埃之间的厚度。
18.如权利要求15所述的方法,其中,所述第二非碳基层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
19.如权利要求15所述的方法,其中,所述无定型碳层通过由包含一种或多种具有通式CxHy的烃的气体混合物气相沉积来沉积,其中x的范围为2到4,y的范围为2到10。
20.如权利要求15所述的方法,其中,所述衬底包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。
21.如权利要求15所述的方法,还包括在沉积所述无定型碳层之前,在所述衬底上沉积抗反射涂层层,所述抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
22.如权利要求15所述的方法,其中,所述无定型碳层在约1W/in2到约100W/in2之间的功率下沉积。
23.如权利要求15所述的方法,还包括在所述无定型碳层中的所述第一和第二图案被转移穿过所述衬底之后,从所述衬底去除所述无定型碳层和所述第二非碳基层。

Claims (23)

1.一种刻蚀衬底的方法,包括:
在所述衬底上沉积无定型碳层;
在所述无定型碳层中定义第一图案;
在所述无定型碳层上沉积一层光刻胶;
图案化所述光刻胶;
将所述光刻胶中的所述图案转移穿过所述无定型碳层,以在所述无定型碳层中形成第二图案;以及
将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
2.如权利要求1所述的方法,其中,所述无定型碳层通过由包含一种或多种具有通式CxHy的烃的气体混合物气相沉积来沉积,其中x的范围为2到4,y的范围为2到10。
3.如权利要求1所述的方法,其中,所述衬底包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。
4.如权利要求1所述的方法,还包括在沉积所述无定型碳层之前,在所述衬底上沉积抗反射涂层层,所述抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
5.如权利要求1所述的方法,其中,所述无定型碳层在约1W/in2到约100W/in2之间的功率下沉积。
6.如权利要求1所述的方法,还包括在所述无定型碳层中的所述第一和第二图案被转移穿过所述衬底之后,从所述衬底去除所述无定型碳层。
7.一种刻蚀衬底的方法,包括:
在所述衬底上沉积无定型碳层;
在所述无定型碳层上沉积非碳基层;
在所述非碳基层和所述无定型碳层中定义第一图案;
在所述无定型碳层上沉积一层光刻胶;
图案化所述光刻胶;
将所述光刻胶中的所述图案转移穿过所述非碳基层和所述无定型碳层,以在所述无定型碳层中形成第二图案;以及
将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
8.如权利要求7所述的方法,其中,所述无定型碳层通过由包含一种或多种具有通式CxHy的烃的气体混合物气相沉积来沉积,其中x的范围为2到4,y的范围为2到10。
9.如权利要求7所述的方法,其中,所述衬底包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。
10.如权利要求7所述的方法,还包括在沉积所述无定型碳层之前,在所述衬底上沉积抗反射涂层层,所述抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
11.如权利要求7所述的方法,其中,所述无定型碳层在约1W/in2到约100W/in2之间的功率下沉积。
12.如权利要求7所述的方法,其中,所述非碳基层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
13.如权利要求12所述的方法,其中,所述非碳基层具有约50埃到约500埃之间的厚度。
14.如权利要求7所述的方法,还包括在所述无定型碳层中的所述第一和第二图案被转移穿过所述衬底之后,从所述衬底去除所述无定型碳层和所述非碳基层。
15.一种刻蚀衬底的方法,包括:
在所述衬底上沉积无定型碳层;
在所述无定型碳层上沉积第一非碳基层;
在所述第一非碳基层和所述无定型碳层中定义第一图案;
在所述无定型碳层上沉积第二非碳基层;
在所述第二非碳基层上沉积一层光刻胶;
图案化所述光刻胶;
将所述光刻胶中的所述图案转移穿过所述第二非碳基层和所述无定型碳层,以在所述无定型碳层中形成第二图案;以及
将所述无定型碳层中的所述第一和第二图案转移穿过所述衬底。
16.如权利要求15所述的方法,其中,所述第一非碳基层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
17.如权利要求16所述的方法,其中,所述第一非碳基层具有约50埃到约500埃之间的厚度。
18.如权利要求15所述的方法,其中,所述第二非碳基层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
19.如权利要求15所述的方法,其中,所述无定型碳层通过由包含一种或多种具有通式CxHy的烃的气体混合物气相沉积来沉积,其中x的范围为2到4,y的范围为2到10。
20.如权利要求15所述的方法,其中,所述衬底包括选自由硅、多晶硅、氧化物、氮化物、钨、硅化钨、铝、氧碳化硅及其组合组成的组的材料。
21.如权利要求15所述的方法,还包括在沉积所述无定型碳层之前,在所述衬底上沉积抗反射涂层层,所述抗反射涂层层选自由无定型硅、氮化硅、氧氮化硅、氧化硅、掺杂氧化硅、氧碳化硅、碳化物、碳化硅、钛和氮化钛组成的组。
22.如权利要求15所述的方法,其中,所述无定型碳层在约1W/in2到约100W/in2之间的功率下沉积。
23.如权利要求15所述的方法,还包括在所述无定型碳层中的所述第一和第二图案被转移穿过所述衬底之后,从所述衬底去除所述无定型碳层和所述第二非碳基层。
CNB2005800032995A 2004-01-30 2005-01-07 用于各种刻蚀和光刻集成方案的无定型碳的方法 Expired - Fee Related CN100524640C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/768,724 US7064078B2 (en) 2004-01-30 2004-01-30 Techniques for the use of amorphous carbon (APF) for various etch and litho integration scheme
US10/768,724 2004-01-30

Publications (2)

Publication Number Publication Date
CN1914715A true CN1914715A (zh) 2007-02-14
CN100524640C CN100524640C (zh) 2009-08-05

Family

ID=34807939

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005800032995A Expired - Fee Related CN100524640C (zh) 2004-01-30 2005-01-07 用于各种刻蚀和光刻集成方案的无定型碳的方法

Country Status (5)

Country Link
US (2) US7064078B2 (zh)
KR (1) KR101155141B1 (zh)
CN (1) CN100524640C (zh)
TW (1) TWI428712B (zh)
WO (1) WO2005076337A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101308330B (zh) * 2007-05-16 2010-12-15 上海华虹Nec电子有限公司 利用可显影填充材料的两次图形曝光方法
CN101971102A (zh) * 2008-01-29 2011-02-09 布鲁尔科技公司 用来通过多次暗视场曝光对硬掩模进行图案化的在线法
CN102832163A (zh) * 2011-06-15 2012-12-19 联华电子股份有限公司 形成开口的方法
CN101285174B (zh) * 2007-04-10 2013-03-27 应用材料公司 用于等离子体增强型化学气相沉积工艺的等离子体感应电荷损坏的控制
CN103247525A (zh) * 2012-02-13 2013-08-14 诺发系统公司 用于蚀刻有机硬掩膜的方法
CN104956476A (zh) * 2013-11-06 2015-09-30 马特森技术有限公司 用于垂直nand器件的新型掩模去除方法策略
CN102832163B (zh) * 2011-06-15 2016-11-30 联华电子股份有限公司 形成开口的方法
US9618846B2 (en) 2013-02-25 2017-04-11 Lam Research Corporation PECVD films for EUV lithography
CN106960816A (zh) * 2016-01-08 2017-07-18 中芯国际集成电路制造(上海)有限公司 双重图形化的方法
CN113078105A (zh) * 2021-03-29 2021-07-06 长鑫存储技术有限公司 掩膜结构的制备方法、半导体结构及其制备方法
US11837441B2 (en) 2019-05-29 2023-12-05 Lam Research Corporation Depositing a carbon hardmask by high power pulsed low frequency RF
US11986633B2 (en) 2012-08-30 2024-05-21 Medtronic Minimed, Inc. Sensor model supervisor for temporary reductions in fluid delivery by a fluid delivery device

Families Citing this family (273)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541397B1 (en) * 2002-03-29 2003-04-01 Applied Materials, Inc. Removable amorphous carbon CMP stop
KR100598038B1 (ko) * 2004-02-25 2006-07-07 삼성전자주식회사 다층 반사 방지막을 포함하는 고체 촬상 소자 및 그 다층반사 방지막의 제조 방법
US20050191584A1 (en) * 2004-02-27 2005-09-01 Kevin Shea Surface treatment of a dry-developed hard mask and surface treatment compositions used therefor
US7355384B2 (en) * 2004-04-08 2008-04-08 International Business Machines Corporation Apparatus, method, and computer program product for monitoring and controlling a microcomputer using a single existing pin
US7151040B2 (en) * 2004-08-31 2006-12-19 Micron Technology, Inc. Methods for increasing photo alignment margins
US7910288B2 (en) 2004-09-01 2011-03-22 Micron Technology, Inc. Mask material conversion
US7115525B2 (en) 2004-09-02 2006-10-03 Micron Technology, Inc. Method for integrated circuit fabrication using pitch multiplication
US7655387B2 (en) * 2004-09-02 2010-02-02 Micron Technology, Inc. Method to align mask patterns
US7390746B2 (en) 2005-03-15 2008-06-24 Micron Technology, Inc. Multiple deposition for integration of spacers in pitch multiplication process
US7253118B2 (en) * 2005-03-15 2007-08-07 Micron Technology, Inc. Pitch reduced patterns relative to photolithography features
US7611944B2 (en) 2005-03-28 2009-11-03 Micron Technology, Inc. Integrated circuit fabrication
US7429536B2 (en) 2005-05-23 2008-09-30 Micron Technology, Inc. Methods for forming arrays of small, closely spaced features
US7560390B2 (en) 2005-06-02 2009-07-14 Micron Technology, Inc. Multiple spacer steps for pitch multiplication
US7396781B2 (en) * 2005-06-09 2008-07-08 Micron Technology, Inc. Method and apparatus for adjusting feature size and position
KR100733421B1 (ko) * 2005-06-30 2007-06-29 주식회사 하이닉스반도체 반도체 장치의 제조방법
US7413981B2 (en) 2005-07-29 2008-08-19 Micron Technology, Inc. Pitch doubled circuit layout
US7312148B2 (en) * 2005-08-08 2007-12-25 Applied Materials, Inc. Copper barrier reflow process employing high speed optical annealing
US7323401B2 (en) * 2005-08-08 2008-01-29 Applied Materials, Inc. Semiconductor substrate process using a low temperature deposited carbon-containing hard mask
US8123968B2 (en) * 2005-08-25 2012-02-28 Round Rock Research, Llc Multiple deposition for integration of spacers in pitch multiplication process
US7816262B2 (en) * 2005-08-30 2010-10-19 Micron Technology, Inc. Method and algorithm for random half pitched interconnect layout with constant spacing
US7829262B2 (en) 2005-08-31 2010-11-09 Micron Technology, Inc. Method of forming pitch multipled contacts
US7776744B2 (en) 2005-09-01 2010-08-17 Micron Technology, Inc. Pitch multiplication spacers and methods of forming the same
US7572572B2 (en) 2005-09-01 2009-08-11 Micron Technology, Inc. Methods for forming arrays of small, closely spaced features
US7759197B2 (en) 2005-09-01 2010-07-20 Micron Technology, Inc. Method of forming isolated features using pitch multiplication
US7393789B2 (en) 2005-09-01 2008-07-01 Micron Technology, Inc. Protective coating for planarization
US7432210B2 (en) * 2005-10-05 2008-10-07 Applied Materials, Inc. Process to open carbon based hardmask
US7399712B1 (en) * 2005-10-31 2008-07-15 Novellus Systems, Inc. Method for etching organic hardmasks
US8664124B2 (en) 2005-10-31 2014-03-04 Novellus Systems, Inc. Method for etching organic hardmasks
KR100663375B1 (ko) * 2006-01-18 2007-01-02 삼성전자주식회사 금속질화막을 게이트전극으로 채택하는 반도체소자의제조방법
US7476933B2 (en) 2006-03-02 2009-01-13 Micron Technology, Inc. Vertical gated access transistor
US7842558B2 (en) 2006-03-02 2010-11-30 Micron Technology, Inc. Masking process for simultaneously patterning separate regions
US7662721B2 (en) 2006-03-15 2010-02-16 Infineon Technologies Ag Hard mask layer stack and a method of patterning
US20070231748A1 (en) * 2006-03-29 2007-10-04 Swaminathan Sivakumar Patterning trenches in a photoresist layer with tight end-to-end separation
US7902074B2 (en) 2006-04-07 2011-03-08 Micron Technology, Inc. Simplified pitch doubling process flow
US8003310B2 (en) 2006-04-24 2011-08-23 Micron Technology, Inc. Masking techniques and templates for dense semiconductor fabrication
US7488685B2 (en) * 2006-04-25 2009-02-10 Micron Technology, Inc. Process for improving critical dimension uniformity of integrated circuit arrays
EP1850369A1 (en) 2006-04-28 2007-10-31 STMicroelectronics S.r.l. Manufacturing process of an organic mask for microelectronic industry
US7795149B2 (en) 2006-06-01 2010-09-14 Micron Technology, Inc. Masking techniques and contact imprint reticles for dense semiconductor fabrication
US7723009B2 (en) 2006-06-02 2010-05-25 Micron Technology, Inc. Topography based patterning
WO2008015212A1 (en) * 2006-08-02 2008-02-07 Koninklijke Philips Electronics N.V. Novel hard mask structure for patterning features in semiconductor devices
US7611980B2 (en) 2006-08-30 2009-11-03 Micron Technology, Inc. Single spacer process for multiplying pitch by a factor greater than two and related intermediate IC structures
US7959818B2 (en) 2006-09-12 2011-06-14 Hynix Semiconductor Inc. Method for forming a fine pattern of a semiconductor device
US7666578B2 (en) 2006-09-14 2010-02-23 Micron Technology, Inc. Efficient pitch multiplication process
US20080073321A1 (en) * 2006-09-22 2008-03-27 Tokyo Electron Limited Method of patterning an anti-reflective coating by partial etching
US7883835B2 (en) * 2006-09-22 2011-02-08 Tokyo Electron Limited Method for double patterning a thin film
US7862985B2 (en) * 2006-09-22 2011-01-04 Tokyo Electron Limited Method for double patterning a developable anti-reflective coating
US7858293B2 (en) * 2006-09-22 2010-12-28 Tokyo Electron Limited Method for double imaging a developable anti-reflective coating
KR100766239B1 (ko) * 2006-09-22 2007-10-10 주식회사 하이닉스반도체 반도체 소자의 금속 층간 절연막 형성 방법
US7811747B2 (en) * 2006-09-22 2010-10-12 Tokyo Electron Limited Method of patterning an anti-reflective coating by partial developing
US8168372B2 (en) * 2006-09-25 2012-05-01 Brewer Science Inc. Method of creating photolithographic structures with developer-trimmed hard mask
KR100808056B1 (ko) * 2006-12-27 2008-02-28 주식회사 하이닉스반도체 하드마스크를 이용한 패턴 형성 방법
JP5154140B2 (ja) * 2006-12-28 2013-02-27 東京エレクトロン株式会社 半導体装置およびその製造方法
US7932017B2 (en) * 2007-01-15 2011-04-26 Tokyo Electron Limited Method of double patterning a thin film using a developable anti-reflective coating and a developable organic planarization layer
US7767386B2 (en) * 2007-01-15 2010-08-03 Tokyo Electron Limited Method of patterning an organic planarization layer
JP5106020B2 (ja) * 2007-02-08 2012-12-26 パナソニック株式会社 パターン形成方法
JP2008227465A (ja) * 2007-02-14 2008-09-25 Renesas Technology Corp 半導体装置の製造方法
US7915166B1 (en) 2007-02-22 2011-03-29 Novellus Systems, Inc. Diffusion barrier and etch stop films
KR100843239B1 (ko) * 2007-03-08 2008-07-03 삼성전자주식회사 더블 패터닝 공정을 이용하는 반도체 소자의 미세 패턴형성 방법
US7943285B2 (en) * 2007-03-13 2011-05-17 Panasonic Corporation Pattern formation method
KR100822592B1 (ko) 2007-03-23 2008-04-16 주식회사 하이닉스반도체 반도체 소자의 미세 패턴 형성방법
KR100866735B1 (ko) * 2007-05-01 2008-11-03 주식회사 하이닉스반도체 반도체 소자의 미세 패턴 형성 방법
US20100327413A1 (en) * 2007-05-03 2010-12-30 Lam Research Corporation Hardmask open and etch profile control with hardmask open
KR100777043B1 (ko) * 2007-05-22 2007-11-16 주식회사 테스 비정질 탄소막 형성 방법 및 이를 이용한 반도체 소자의제조 방법
US7901869B2 (en) * 2007-06-01 2011-03-08 Applied Materials, Inc. Double patterning with a double layer cap on carbonaceous hardmask
US7807578B2 (en) * 2007-06-01 2010-10-05 Applied Materials, Inc. Frequency doubling using spacer mask
US7846849B2 (en) * 2007-06-01 2010-12-07 Applied Materials, Inc. Frequency tripling using spacer mask having interposed regions
US20080303037A1 (en) * 2007-06-04 2008-12-11 Irving Lyn M Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7923373B2 (en) 2007-06-04 2011-04-12 Micron Technology, Inc. Pitch multiplication using self-assembling materials
US7553770B2 (en) * 2007-06-06 2009-06-30 Micron Technology, Inc. Reverse masking profile improvements in high aspect ratio etch
WO2008157068A2 (en) * 2007-06-15 2008-12-24 Applied Materials, Inc. Oxygen sacvd to form sacrificial oxide liners in substrate gaps
US8337950B2 (en) * 2007-06-19 2012-12-25 Applied Materials, Inc. Method for depositing boron-rich films for lithographic mask applications
US7718546B2 (en) * 2007-06-27 2010-05-18 Sandisk 3D Llc Method for fabricating a 3-D integrated circuit using a hard mask of silicon-oxynitride on amorphous carbon
US7858514B2 (en) 2007-06-29 2010-12-28 Qimonda Ag Integrated circuit, intermediate structure and a method of fabricating a semiconductor structure
US20090023294A1 (en) * 2007-07-16 2009-01-22 Applied Materials, Inc. Method for etching using advanced patterning film in capacitive coupling high frequency plasma dielectric etch chamber
JP4476313B2 (ja) 2007-07-25 2010-06-09 東京エレクトロン株式会社 成膜方法、成膜装置、および記憶媒体
US8563229B2 (en) 2007-07-31 2013-10-22 Micron Technology, Inc. Process of semiconductor fabrication with mask overlay on pitch multiplied features and associated structures
US7737049B2 (en) * 2007-07-31 2010-06-15 Qimonda Ag Method for forming a structure on a substrate and device
US20090053620A1 (en) * 2007-08-24 2009-02-26 Hynix Semiconductor Inc. Blank Mask and Method for Fabricating Photomask Using the Same
US8962101B2 (en) 2007-08-31 2015-02-24 Novellus Systems, Inc. Methods and apparatus for plasma-based deposition
JP2009076661A (ja) * 2007-09-20 2009-04-09 Elpida Memory Inc 半導体装置の製造方法
US20090087993A1 (en) * 2007-09-28 2009-04-02 Steven Maxwell Methods and apparatus for cost-effectively increasing feature density using a mask shrinking process with double patterning
JP5671202B2 (ja) * 2007-10-26 2015-02-18 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated フォトレジストテンプレートマスクを用いて頻度を倍にする方法
KR101344019B1 (ko) * 2007-11-01 2013-12-24 삼성전자주식회사 이온 주입 방법
US7737039B2 (en) 2007-11-01 2010-06-15 Micron Technology, Inc. Spacer process for on pitch contacts and related structures
US7659208B2 (en) 2007-12-06 2010-02-09 Micron Technology, Inc Method for forming high density patterns
US7790531B2 (en) 2007-12-18 2010-09-07 Micron Technology, Inc. Methods for isolating portions of a loop of pitch-multiplied material and related structures
US8158334B2 (en) * 2008-01-14 2012-04-17 International Business Machines Corporation Methods for forming a composite pattern including printed resolution assist features
JP2009194207A (ja) * 2008-02-15 2009-08-27 Tokyo Electron Ltd パターン形成方法、半導体装置の製造方法及び半導体装置の製造装置
JP5086283B2 (ja) * 2008-02-15 2012-11-28 東京エレクトロン株式会社 パターン形成方法及び半導体装置の製造方法
JP5254049B2 (ja) * 2008-02-15 2013-08-07 東京エレクトロン株式会社 パターン形成方法及び半導体装置の製造方法
FR2927708A1 (fr) * 2008-02-19 2009-08-21 Commissariat Energie Atomique Procede de photolithographie ultraviolette a immersion
US8030218B2 (en) * 2008-03-21 2011-10-04 Micron Technology, Inc. Method for selectively modifying spacing between pitch multiplied structures
US8148269B2 (en) * 2008-04-04 2012-04-03 Applied Materials, Inc. Boron nitride and boron-nitride derived materials deposition method
KR100919350B1 (ko) * 2008-04-24 2009-09-25 주식회사 하이닉스반도체 반도체 소자의 패턴 형성 방법
JP2009283674A (ja) * 2008-05-22 2009-12-03 Elpida Memory Inc 半導体装置の製造方法
US20090297731A1 (en) * 2008-05-30 2009-12-03 Asm Japan K.K. Apparatus and method for improving production throughput in cvd chamber
US20090311634A1 (en) * 2008-06-11 2009-12-17 Tokyo Electron Limited Method of double patterning using sacrificial structure
US8293460B2 (en) * 2008-06-16 2012-10-23 Applied Materials, Inc. Double exposure patterning with carbonaceous hardmask
US8435608B1 (en) 2008-06-27 2013-05-07 Novellus Systems, Inc. Methods of depositing smooth and conformal ashable hard mask films
US8076208B2 (en) 2008-07-03 2011-12-13 Micron Technology, Inc. Method for forming transistor with high breakdown voltage using pitch multiplication technique
US8101497B2 (en) 2008-09-11 2012-01-24 Micron Technology, Inc. Self-aligned trench formation
US8252653B2 (en) * 2008-10-21 2012-08-28 Applied Materials, Inc. Method of forming a non-volatile memory having a silicon nitride charge trap layer
JP2010109148A (ja) * 2008-10-30 2010-05-13 Toshiba Corp レジストパターンの形成方法
US8492282B2 (en) 2008-11-24 2013-07-23 Micron Technology, Inc. Methods of forming a masking pattern for integrated circuits
US7972959B2 (en) * 2008-12-01 2011-07-05 Applied Materials, Inc. Self aligned double patterning flow with non-sacrificial features
US9640396B2 (en) 2009-01-07 2017-05-02 Brewer Science Inc. Spin-on spacer materials for double- and triple-patterning lithography
US8198671B2 (en) * 2009-04-22 2012-06-12 Applied Materials, Inc. Modification of charge trap silicon nitride with oxygen plasma
TWI419201B (zh) * 2009-04-27 2013-12-11 Macronix Int Co Ltd 圖案化的方法
US8519540B2 (en) * 2009-06-16 2013-08-27 International Business Machines Corporation Self-aligned dual damascene BEOL structures with patternable low- K material and methods of forming same
US8659115B2 (en) * 2009-06-17 2014-02-25 International Business Machines Corporation Airgap-containing interconnect structure with improved patternable low-K material and method of fabricating
US8163658B2 (en) * 2009-08-24 2012-04-24 International Business Machines Corporation Multiple patterning using improved patternable low-k dielectric materials
US8202783B2 (en) * 2009-09-29 2012-06-19 International Business Machines Corporation Patternable low-k dielectric interconnect structure with a graded cap layer and method of fabrication
US8637395B2 (en) * 2009-11-16 2014-01-28 International Business Machines Corporation Methods for photo-patternable low-k (PPLK) integration with curing after pattern transfer
US8367540B2 (en) 2009-11-19 2013-02-05 International Business Machines Corporation Interconnect structure including a modified photoresist as a permanent interconnect dielectric and method of fabricating same
TWI409852B (zh) * 2009-12-31 2013-09-21 Inotera Memories Inc 利用自對準雙重圖案製作半導體元件微細結構的方法
US8642252B2 (en) 2010-03-10 2014-02-04 International Business Machines Corporation Methods for fabrication of an air gap-containing interconnect structure
US8563414B1 (en) 2010-04-23 2013-10-22 Novellus Systems, Inc. Methods for forming conductive carbon films by PECVD
US8896120B2 (en) 2010-04-27 2014-11-25 International Business Machines Corporation Structures and methods for air gap integration
JP2013526061A (ja) 2010-04-30 2013-06-20 アプライド マテリアルズ インコーポレイテッド スタック欠陥率を改善するアモルファスカーボン堆積法
US8241992B2 (en) 2010-05-10 2012-08-14 International Business Machines Corporation Method for air gap interconnect integration using photo-patternable low k material
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US8373271B2 (en) 2010-05-27 2013-02-12 International Business Machines Corporation Interconnect structure with an oxygen-doped SiC antireflective coating and method of fabrication
TW201216331A (en) 2010-10-05 2012-04-16 Applied Materials Inc Ultra high selectivity doped amorphous carbon strippable hardmask development and integration
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US8592321B2 (en) 2011-06-08 2013-11-26 United Microelectronics Corp. Method for fabricating an aperture
US8641828B2 (en) 2011-07-13 2014-02-04 United Microelectronics Corp. Cleaning method of semiconductor manufacturing process
US8808563B2 (en) 2011-10-07 2014-08-19 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
US8557649B2 (en) 2011-10-21 2013-10-15 International Business Machines Corporation Method for controlling structure height
US8962484B2 (en) * 2011-12-16 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming pattern for semiconductor device
SG195494A1 (en) 2012-05-18 2013-12-30 Novellus Systems Inc Carbon deposition-etch-ash gap fill process
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9362133B2 (en) 2012-12-14 2016-06-07 Lam Research Corporation Method for forming a mask by etching conformal film on patterned ashable hardmask
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US9299574B2 (en) 2013-01-25 2016-03-29 Applied Materials, Inc. Silicon dioxide-polysilicon multi-layered stack etching with plasma etch chamber employing non-corrosive etchants
US9129911B2 (en) * 2013-01-31 2015-09-08 Applied Materials, Inc. Boron-doped carbon-based hardmask etch processing
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9355820B2 (en) * 2013-09-12 2016-05-31 Applied Materials, Inc. Methods for removing carbon containing films
US9320387B2 (en) 2013-09-30 2016-04-26 Lam Research Corporation Sulfur doped carbon hard masks
US9589799B2 (en) 2013-09-30 2017-03-07 Lam Research Corporation High selectivity and low stress carbon hardmask by pulsed low frequency RF power
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9177797B2 (en) * 2013-12-04 2015-11-03 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography using high selectivity spacers for pitch reduction
WO2015105651A1 (en) * 2014-01-08 2015-07-16 Applied Materials, Inc. Development of high etch selective hardmask material by ion implantation into amorphous carbon films
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US20150371861A1 (en) * 2014-06-23 2015-12-24 Applied Materials, Inc. Protective silicon oxide patterning
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9478434B2 (en) 2014-09-24 2016-10-25 Applied Materials, Inc. Chlorine-based hardmask removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9373522B1 (en) * 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US9928994B2 (en) 2015-02-03 2018-03-27 Lam Research Corporation Methods for decreasing carbon-hydrogen content of amorphous carbon hardmask films
US9520295B2 (en) 2015-02-03 2016-12-13 Lam Research Corporation Metal doping of amorphous carbon and silicon films used as hardmasks in substrate processing systems
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
KR102477091B1 (ko) 2015-07-24 2022-12-13 삼성전자주식회사 2차원 물질 하드마스크와 그 제조방법 및 하드 마스크를 이용한 물질층 패턴 형성방법
KR20170016107A (ko) 2015-08-03 2017-02-13 삼성전자주식회사 반도체 장치 제조 방법
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10418243B2 (en) 2015-10-09 2019-09-17 Applied Materials, Inc. Ultra-high modulus and etch selectivity boron-carbon hardmask films
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10128337B2 (en) * 2016-06-03 2018-11-13 Applied Materials, Inc. Methods for forming fin structures with desired profile for 3D structure semiconductor applications
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
WO2018111333A1 (en) 2016-12-14 2018-06-21 Mattson Technology, Inc. Atomic layer etch process using plasma in conjunction with a rapid thermal activation process
CN113658868B (zh) 2016-12-15 2023-08-08 联华电子股份有限公司 半导体元件及其制作方法
CN110402189B (zh) 2016-12-23 2023-04-21 德克萨斯大学系统董事会 一种用于将异构组件组装至产品衬底上的方法
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
KR102374206B1 (ko) 2017-12-05 2022-03-14 삼성전자주식회사 반도체 장치 제조 방법
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI766433B (zh) 2018-02-28 2022-06-01 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10566194B2 (en) * 2018-05-07 2020-02-18 Lam Research Corporation Selective deposition of etch-stop layer for enhanced patterning
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11195923B2 (en) 2018-12-21 2021-12-07 Applied Materials, Inc. Method of fabricating a semiconductor device having reduced contact resistance
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US11562909B2 (en) * 2020-05-22 2023-01-24 Applied Materials, Inc. Directional selective junction clean with field polymer protections
US20220102200A1 (en) * 2020-09-30 2022-03-31 Taiwan Semiconductor Manufacturing Company, Ltd. Patterning material including carbon-containing layer and method for semiconductor device fabrication
US11715640B2 (en) * 2020-09-30 2023-08-01 Taiwan Semiconductor Manufacturing Company, Ltd. Patterning material including silicon-containing layer and method for semiconductor device fabrication
US11776810B2 (en) 2021-08-31 2023-10-03 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming a semiconductor device

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258221A (ja) * 1988-08-23 1990-02-27 Semiconductor Energy Lab Co Ltd 炭素または炭素を主成分とするマスクを用いたエッチング方法
EP0381109A3 (de) 1989-02-01 1990-12-12 Siemens Aktiengesellschaft Feuchtesperre für organische Dielektrika
JP2862183B2 (ja) * 1989-04-28 1999-02-24 富士通株式会社 マスクの製造方法
DE69005938T2 (de) * 1989-07-31 1994-05-19 Matsushita Electric Ind Co Ltd Vorrichtung zur Herstellung von einer dünnen diamantartigen Kohlenstoffschicht.
US5308741A (en) * 1992-07-31 1994-05-03 Motorola, Inc. Lithographic method using double exposure techniques, mask position shifting and light phase shifting
TW366367B (en) * 1995-01-26 1999-08-11 Ibm Sputter deposition of hydrogenated amorphous carbon film
TW302507B (zh) * 1995-02-10 1997-04-11 Siemens Ag
JP3361918B2 (ja) 1995-07-26 2003-01-07 沖電気工業株式会社 半導体集積回路装置の微細ホールの形成方法
US5759746A (en) * 1996-05-24 1998-06-02 Kabushiki Kaisha Toshiba Fabrication process using a thin resist
JPH1126578A (ja) 1997-07-02 1999-01-29 Sony Corp 微細接続孔の形成方法
US6133618A (en) 1997-08-14 2000-10-17 Lucent Technologies Inc. Semiconductor device having an anti-reflective layer and a method of manufacture thereof
TWI246633B (en) * 1997-12-12 2006-01-01 Applied Materials Inc Method of pattern etching a low k dielectric layen
US6143476A (en) * 1997-12-12 2000-11-07 Applied Materials Inc Method for high temperature etching of patterned layers using an organic mask stack
US6140226A (en) * 1998-01-16 2000-10-31 International Business Machines Corporation Dual damascene processing for semiconductor chip interconnects
AU3534299A (en) * 1998-04-22 1999-11-08 Nikon Corporation Exposure method and exposure system
US6184572B1 (en) * 1998-04-29 2001-02-06 Novellus Systems, Inc. Interlevel dielectric stack containing plasma deposited fluorinated amorphous carbon films for semiconductor devices
US6316167B1 (en) * 2000-01-10 2001-11-13 International Business Machines Corporation Tunabale vapor deposited materials as antireflective coatings, hardmasks and as combined antireflective coating/hardmasks and methods of fabrication thereof and application thereof
JP3123548B2 (ja) * 1998-06-30 2001-01-15 キヤノン株式会社 露光方法及び露光装置
US6245662B1 (en) 1998-07-23 2001-06-12 Applied Materials, Inc. Method of producing an interconnect structure for an integrated circuit
JP3531666B2 (ja) * 1999-03-19 2004-05-31 シャープ株式会社 位相シフトマスク及びその製造方法
KR100307629B1 (ko) * 1999-04-30 2001-09-26 윤종용 하이드로 카본계의 가스를 이용한 반사방지막의 형성 및 적용방법
KR100307631B1 (ko) * 1999-06-01 2001-09-29 윤종용 반도체소자의 미세패턴 형성방법
US6821571B2 (en) * 1999-06-18 2004-11-23 Applied Materials Inc. Plasma treatment to enhance adhesion and to minimize oxidation of carbon-containing layers
US6423384B1 (en) * 1999-06-25 2002-07-23 Applied Materials, Inc. HDP-CVD deposition of low dielectric constant amorphous carbon film
KR100304708B1 (ko) * 1999-07-14 2001-11-01 윤종용 이중층 반사방지막을 갖는 반도체소자 및 그 제조방법
US6238850B1 (en) * 1999-08-23 2001-05-29 International Business Machines Corp. Method of forming sharp corners in a photoresist layer
US6265319B1 (en) * 1999-09-01 2001-07-24 Taiwan Semiconductor Manufacturing Company Dual damascene method employing spin-on polymer (SOP) etch stop layer
US6573030B1 (en) * 2000-02-17 2003-06-03 Applied Materials, Inc. Method for depositing an amorphous carbon layer
US20020086547A1 (en) * 2000-02-17 2002-07-04 Applied Materials, Inc. Etch pattern definition using a CVD organic layer as an anti-reflection coating and hardmask
US6511791B1 (en) * 2000-04-28 2003-01-28 International Business Machines Corporation Multiple exposure process for formation of dense rectangular arrays
JP2002194547A (ja) * 2000-06-08 2002-07-10 Applied Materials Inc アモルファスカーボン層の堆積方法
KR100669862B1 (ko) * 2000-11-13 2007-01-17 삼성전자주식회사 반도체 장치의 미세패턴 형성방법
DE10100822C2 (de) 2001-01-10 2003-04-10 Infineon Technologies Ag Plasmaätzverfahren für MoSi(ON)-Schichten
EP1364257A1 (en) * 2001-02-27 2003-11-26 ASML US, Inc. Simultaneous imaging of two reticles
US6548347B2 (en) * 2001-04-12 2003-04-15 Micron Technology, Inc. Method of forming minimally spaced word lines
JP2002351046A (ja) * 2001-05-24 2002-12-04 Nec Corp 位相シフトマスクおよびその設計方法
US7226853B2 (en) * 2001-12-26 2007-06-05 Applied Materials, Inc. Method of forming a dual damascene structure utilizing a three layer hard mask structure
DE10307518B4 (de) * 2002-02-22 2011-04-14 Hoya Corp. Halbtonphasenschiebermaskenrohling, Halbtonphasenschiebermaske und Verfahren zu deren Herstellung
US6541397B1 (en) * 2002-03-29 2003-04-01 Applied Materials, Inc. Removable amorphous carbon CMP stop
US6951709B2 (en) * 2002-05-03 2005-10-04 Micron Technology, Inc. Method of fabricating a semiconductor multilevel interconnect structure
KR20040012451A (ko) * 2002-05-14 2004-02-11 어플라이드 머티어리얼스, 인코포레이티드 포토리소그래픽 레티클을 에칭하는 방법
US6818141B1 (en) * 2002-06-10 2004-11-16 Advanced Micro Devices, Inc. Application of the CVD bilayer ARC as a hard mask for definition of the subresolution trench features between polysilicon wordlines
US6835663B2 (en) 2002-06-28 2004-12-28 Infineon Technologies Ag Hardmask of amorphous carbon-hydrogen (a-C:H) layers with tunable etch resistivity
US6653735B1 (en) * 2002-07-30 2003-11-25 Advanced Micro Devices, Inc. CVD silicon carbide layer as a BARC and hard mask for gate patterning
US6764949B2 (en) * 2002-07-31 2004-07-20 Advanced Micro Devices, Inc. Method for reducing pattern deformation and photoresist poisoning in semiconductor device fabrication
US6673684B1 (en) * 2002-07-31 2004-01-06 Advanced Micro Devices, Inc. Use of diamond as a hard mask material
US6939808B2 (en) * 2002-08-02 2005-09-06 Applied Materials, Inc. Undoped and fluorinated amorphous carbon film as pattern mask for metal etch
US20040038537A1 (en) * 2002-08-20 2004-02-26 Wei Liu Method of preventing or suppressing sidewall buckling of mask structures used to etch feature sizes smaller than 50nm
US6853043B2 (en) * 2002-11-04 2005-02-08 Applied Materials, Inc. Nitrogen-free antireflective coating for use with photolithographic patterning
US6787452B2 (en) * 2002-11-08 2004-09-07 Chartered Semiconductor Manufacturing Ltd. Use of amorphous carbon as a removable ARC material for dual damascene fabrication
US20040166691A1 (en) * 2003-02-26 2004-08-26 Chun-Feng Nieh Method of etching a metal line
US20040180551A1 (en) * 2003-03-13 2004-09-16 Biles Peter John Carbon hard mask for aluminum interconnect fabrication
KR100641952B1 (ko) * 2004-02-06 2006-11-02 주식회사 하이닉스반도체 반도체 소자의 미세 패턴 형성 방법
US8293430B2 (en) * 2005-01-27 2012-10-23 Applied Materials, Inc. Method for etching a molybdenum layer suitable for photomask fabrication

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285174B (zh) * 2007-04-10 2013-03-27 应用材料公司 用于等离子体增强型化学气相沉积工艺的等离子体感应电荷损坏的控制
CN101308330B (zh) * 2007-05-16 2010-12-15 上海华虹Nec电子有限公司 利用可显影填充材料的两次图形曝光方法
CN101971102A (zh) * 2008-01-29 2011-02-09 布鲁尔科技公司 用来通过多次暗视场曝光对硬掩模进行图案化的在线法
CN101971102B (zh) * 2008-01-29 2012-12-12 布鲁尔科技公司 用来通过多次暗视场曝光对硬掩模进行图案化的在线法
CN102832163A (zh) * 2011-06-15 2012-12-19 联华电子股份有限公司 形成开口的方法
CN102832163B (zh) * 2011-06-15 2016-11-30 联华电子股份有限公司 形成开口的方法
CN103247525B (zh) * 2012-02-13 2017-11-17 诺发系统公司 用于蚀刻有机硬掩膜的方法
CN103247525A (zh) * 2012-02-13 2013-08-14 诺发系统公司 用于蚀刻有机硬掩膜的方法
US11986633B2 (en) 2012-08-30 2024-05-21 Medtronic Minimed, Inc. Sensor model supervisor for temporary reductions in fluid delivery by a fluid delivery device
US9618846B2 (en) 2013-02-25 2017-04-11 Lam Research Corporation PECVD films for EUV lithography
CN104956476B (zh) * 2013-11-06 2017-11-14 马特森技术有限公司 用于垂直nand器件的新型掩模去除方法策略
CN104956476A (zh) * 2013-11-06 2015-09-30 马特森技术有限公司 用于垂直nand器件的新型掩模去除方法策略
CN106960816A (zh) * 2016-01-08 2017-07-18 中芯国际集成电路制造(上海)有限公司 双重图形化的方法
CN106960816B (zh) * 2016-01-08 2019-09-27 中芯国际集成电路制造(上海)有限公司 双重图形化的方法
US11837441B2 (en) 2019-05-29 2023-12-05 Lam Research Corporation Depositing a carbon hardmask by high power pulsed low frequency RF
CN113078105A (zh) * 2021-03-29 2021-07-06 长鑫存储技术有限公司 掩膜结构的制备方法、半导体结构及其制备方法
CN113078105B (zh) * 2021-03-29 2022-07-05 长鑫存储技术有限公司 掩膜结构的制备方法、半导体结构及其制备方法

Also Published As

Publication number Publication date
WO2005076337A1 (en) 2005-08-18
TW200527165A (en) 2005-08-16
US20050167394A1 (en) 2005-08-04
US7064078B2 (en) 2006-06-20
CN100524640C (zh) 2009-08-05
US7718081B2 (en) 2010-05-18
KR101155141B1 (ko) 2012-07-06
TWI428712B (zh) 2014-03-01
KR20060129412A (ko) 2006-12-15
US20060231524A1 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
CN1914715A (zh) 用于各种刻蚀和光刻集成方案的无定型碳的使用技术
CN111316405B (zh) 用于3d nand和dram应用的含有-nh2官能团的氢氟烃
US10410864B2 (en) Hybrid carbon hardmask for lateral hardmask recess reduction
US10014174B2 (en) Conformal strippable carbon film for line-edge-roughness reduction for advanced patterning
US6869542B2 (en) Hard mask integrated etch process for patterning of silicon oxide and other dielectric materials
US9337051B2 (en) Method for critical dimension reduction using conformal carbon films
US20080293248A1 (en) Method of forming amorphous carbon film and method of manufacturing semiconductor device using the same
KR20060127250A (ko) 금속 에칭 하드마스크 분야용 비정질 탄소막 증착 방법
KR102460794B1 (ko) 극자외선 (euv) 에칭 내성을 강화시키기 위한 보호 캡의 선택적 원자 층 증착 (ald)
JP2024096717A (ja) パターニング応用のための高密度炭素膜
JP3282292B2 (ja) ドライエッチング方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090805

Termination date: 20150107

EXPY Termination of patent right or utility model