CN110058005A - 用于显微的样品处理改进 - Google Patents
用于显微的样品处理改进 Download PDFInfo
- Publication number
- CN110058005A CN110058005A CN201910089876.0A CN201910089876A CN110058005A CN 110058005 A CN110058005 A CN 110058005A CN 201910089876 A CN201910089876 A CN 201910089876A CN 110058005 A CN110058005 A CN 110058005A
- Authority
- CN
- China
- Prior art keywords
- sample
- sensor
- predetermined position
- monomer
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 22
- 230000033001 locomotion Effects 0.000 claims abstract description 17
- 239000000178 monomer Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 20
- 238000003384 imaging method Methods 0.000 claims description 19
- 238000002156 mixing Methods 0.000 claims description 5
- 239000007921 spray Substances 0.000 claims description 2
- 238000000386 microscopy Methods 0.000 abstract description 5
- 239000000523 sample Substances 0.000 description 206
- 210000004027 cell Anatomy 0.000 description 29
- 239000011324 bead Substances 0.000 description 25
- 210000004369 blood Anatomy 0.000 description 24
- 239000008280 blood Substances 0.000 description 24
- 230000007423 decrease Effects 0.000 description 20
- 239000012530 fluid Substances 0.000 description 17
- 210000000265 leukocyte Anatomy 0.000 description 16
- 239000003153 chemical reaction reagent Substances 0.000 description 12
- 210000003743 erythrocyte Anatomy 0.000 description 11
- 239000006096 absorbing agent Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000003085 diluting agent Substances 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 7
- 239000003599 detergent Substances 0.000 description 7
- 108010054147 Hemoglobins Proteins 0.000 description 6
- 102000001554 Hemoglobins Human genes 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000005286 illumination Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000004820 blood count Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 108010061951 Methemoglobin Proteins 0.000 description 3
- 108010064719 Oxyhemoglobins Proteins 0.000 description 3
- 235000013405 beer Nutrition 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000003094 microcapsule Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229920001503 Glucan Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005670 electromagnetic radiation Effects 0.000 description 2
- 238000005429 filling process Methods 0.000 description 2
- 239000003349 gelling agent Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000013179 statistical model Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000013008 thixotropic agent Substances 0.000 description 2
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 description 1
- BVPWJMCABCPUQY-UHFFFAOYSA-N 4-amino-5-chloro-2-methoxy-N-[1-(phenylmethyl)-4-piperidinyl]benzamide Chemical compound COC1=CC(N)=C(Cl)C=C1C(=O)NC1CCN(CC=2C=CC=CC=2)CC1 BVPWJMCABCPUQY-UHFFFAOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000009087 cell motility Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- -1 fritter Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000003862 health status Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- CSJDCSCTVDEHRN-UHFFFAOYSA-N methane;molecular oxygen Chemical compound C.O=O CSJDCSCTVDEHRN-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000010148 water-pollination Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/34—Microscope slides, e.g. mounting specimens on microscope slides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/4077—Concentrating samples by other techniques involving separation of suspended solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
- G01N15/0606—Investigating concentration of particle suspensions by collecting particles on a support
- G01N15/0612—Optical scan of the deposits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1468—Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
- G01N15/0606—Investigating concentration of particle suspensions by collecting particles on a support
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/01—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
- G01N2015/016—White blood cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N2015/1029—Particle size
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1486—Counting the particles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/00029—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Dispersion Chemistry (AREA)
- Optics & Photonics (AREA)
- Ecology (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Sampling And Sample Adjustment (AREA)
- Microscoopes, Condenser (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
除其他事项外,第一表面被构造为接收样品并且将在显微设备中使用。有要被移动到相对第一表面的预定位置的第二表面,从而形成在第一表面与第二表面之间并包含样品的至少一部分的样品空间。有构造为将第二表面从初始位置移动到预定位置以形成所述样品空间的机构。当样品在第一表面上就位时,第二表面的运动包括不仅是所述第二表面朝向第一表面的线性运动的轨迹。
Description
本申请是申请日为2014年6月25日、申请号为201480047483.9、发 明名称为“用于显微的样品处理改进”的专利申请的分案申请。
本申请涉及2009年10月28日提交的美国专利申请序列号 61/255,781;2010年10月27日提交的12/913,639;2011年4月27日提交 的13/095,175;2013年2月6日提交的61/761,467;和2013年3月14日 提交的61/785,762。这些申请在此通过引用以其整体并入本文。
技术领域
本公开涉及用于显微的样品处理改进。
背景技术
在典型的光学显微镜中,穿过样品的光通过透镜传播到用户的眼睛, 或胶片或传感器,所述透镜形成表现样品的像。
在其他方法中,通过将样品放置在包括光敏元件布置的例如集成电路 的检测器上或附近,表现样品的光可无需透镜而被检测并用于形成样品的 像。由检测器产生的信号可被处理以导出图像。
发明内容
在一般情况下,在一个方面,显微样品腔室的一个表面被移动到距样 品腔室的另一表面的一距离处,所述距离使得在腔室内含有样品的流体能 够毛细流动。在毛细流动后,所述一个表面被移动靠近所述另一表面到将 样品压靠在另一表面上的距离,以用于高分辨率数字显微。
实施方式可以包括以下特征中的一个或者两个或更多的任意组合。所 述表面朝向另一表面的移动是自动控制的。在将所述一个表面移动靠近另 一表面之前,流体被喷射到样品腔室内。流体是自动喷射的。所述表面朝 向另一表面的移动是自动控制的。
在一般情况下,在一个方面,有容纳在显微中使用的流体样品的腔 室,以及将样品可控地输送到腔室的一个位置使得样品能够被毛细作用拉 动越过腔室的机构。
实施方式可以包括以下特征中的一个或者两个或更多的任意组合。在 腔室的壁上有亲水性涂层。在腔室中有暴露的传感器,并且所述装置包括 在传感器附近的亲水性疏水性涂层区域。该机构包括腔室的一种特征,以 与移液管的一种特征配合。移液管的特征包括末端,并且腔室的特征包括 在该腔室的边缘处用于末端的导向件。移液管的特征包括末端,并且腔室 的特征包括孔洞,以接受末端并且从末端输送样品到腔室中的预定位置。移液管特征和腔室特征构造为配合。该机构包括自动控制的泵送或混合设 备。
一般情况下,在一个方面,当样品由对应于吸收体的光学特性的波长 的光照射时,在样品的单体(element of a sample)内的光吸收体的特性通 过高分辨率传感器的像素产生的信号确定。所述确定包括通过将对与样品 单体相关联的像素进行强度平均而确定所述光被该单体内的吸收体的合计 吸收强度。背景光强度基于样品单体附近的像素的强度确定。该单体的模 型被用于推算穿过该单体的光的路径长度。吸收体的特性使用比尔定律 (Beer's law)确定。
实施方式可以包括以下特征中的一个或者两个或更多的任意组合。由 不均匀厚度、透镜化或散射造成的从比尔定律的偏离被纠正。前向散射信 号被用于确定吸收体的特性。所述光具有对应于该单体的最大吸收波长的 波长。
在一般情况下,在一个方面中,第一表面被构造为接收样品,并且将 在显微设备中使用。有要被移动到相对第一表面的预定位置上的第二表 面,从而形成在第一表面与第二表面之间并包含样品的至少一部分的样品 空间。有构造为将第二表面从初始位置移动到预定位置内以形成样品空间 的机构。当样品在第一表面上就位时,第二表面的运动包括不仅是第二表 面朝向第一表面上的线性运动的轨迹。
实施方式可以包括以下特征中的一个或者两个或更多的任意组合。所 述轨迹以受控的速度运行。所述轨迹包括弧。样品包括要被计数的单体, 并且该机构被构造为使得所述轨迹导致单体在显微设备的整个视场内均匀 分布,并且导致样品中的单体在第二表面到达预定位置后的体浓度始终正 比于样品中的单体在第二表面处于初始位置时的体浓度。样品中的单体在 第二表面到达预定位置后的体浓度相同于或高于样品中的单体在第二表面 处于初始位置时的体浓度。轨迹包括在第二表面到达预定位置之前多次朝 向和离开第一表面的运动,以导致样品的混合。第二表面具有对准边缘, 其抵靠与第一表面相关联的对准边缘,从而限定第二表面绕其转动以到达 预定位置的枢转轴线。所述对准边缘仅包括抵靠与第一表面相关联的对准 边缘的两个接触点。所述第一表面和第二表面的对准元件减少第二表面相 对于第一表面沿两个正交方向中的每一个的直线运动。该机构包括被动机 构。
在一般情况下,在一个方面中,通过在两个表面之间施加轨迹受控可 重复的运动,样品体积形成在两个表面之间,以用于在显微中使用,该轨 迹不完全是线性运动。
实施方式可以包括以下特征中的一个或者两个或更多的任意组合。轨 迹包括弧。轨迹受控可重复的运动包括速度受控的运动。
在一般情况下,在一个方面中,一种装置包括在样品经受显微之前或 当时降低所述样品中单体的运动的试剂,以及用于将试剂添加到样品的机 构。
实施方式可以包括以下特征中的一个或者两个或更多的任意组合。该 装置包括样品。所述试剂包括粘度增加剂。粘度增加剂包括葡聚糖、纤维 素衍生物和甘油中的至少一种。所述试剂包括密度增加剂。试剂增加样品 中的单体对在显微中使用的表面的粘性。所述试剂包括触变剂。所述试剂 包括可光致交联(photo crosslinkable)或可凝胶或两者的试剂。
在一般情况下,在一个方面中,拭子要被沿着显微设备表面的一个维 度拖动以将表面准备好接收样品。拭子具有对应于所述表面的垂直于所述 一个维度的第二维度的长度。
实施方式可以包括以下特征中的一个或者两个或更多的任意组合。拭 子被构造为清洁表面。拭子包括各自沿拭子的长度延伸的两个或更多不同 的特征。所述特征包括容纳在拭子被拖动时依次接触表面的不同流体的隔 室。所述特征中的一个包括清洁剂。所述特征中的一个包括干燥材料。流 体供应要在使用前输送到拭子。所述供应被容纳在减少流体的蒸发或降解 的容器中,直到它被输送到拭子。
在一般情况下,在一个方面中,在包含较大单体和较小单体并且要被 保持在两个表面之间的样品中,较大直径的单体的浓度相对于较小直径的 单体而增加,所述两个表面将要被带到一起以容纳样品并在显微设备中使 用。浓度的增加包括提供当两个表面被带到一起时在它们之间施加最小距 离的间隔机构,所述最小距离小于样品中的较大单体的原始直径,但大于 样品中的较小单体的原始直径。较大单体包括白血细胞而较小单体包括红 血细胞。
实施方式可以包括以下特征中的一个或者两个或更多的任意组合。较 大单体的原始直径是基于它们测得的面积和两个表面之间的最小距离确定 的。给定原始直径的较大单体的计数被用来确定样品中各原始直径的较大 单体的浓度。较大单体的平均原始浓度通过各原始直径的较大单体的浓度 得出。
在一般情况下,在一个方面中,有其中至少一个相对于另一个可移动 的两个表面,从而限定在其中含有稀释血液样品的空间。有在所述一个表 面朝向另一个移动时导致所述空间具有预定的最小高度的间隔机构。所述 高度对于导致白血细胞在两个表面之间被挤压是足够矮的,而对于允许红 血细胞在稀释样品内移动是足够高的。
本发明的其他特征、目的和优点从说明书和附图以及从权利要求中将 是显而易见的。
附图说明
图1是检测并使用样品的光表示(light representative)的系统的部分剖 切的示意性侧视图。
图2、图3A、图4A、图4B、图5A、图5B、图7和图8是检测并使 用样品的光表示的有用元件的示意性剖切侧视图。
图3B、图6A和图6B是检测并使用样品的光表示的有用元件的示意 性剖切顶视图。
图9是流程图。
具体实施方式
附图和其中所示的元件并不总是按比例的,并且其中许多是示意性地 示出的。图中的元件的空间关系会显得不同于文中所描述的,例如,上方 和下方以及顶部和底部可能与它们在文中所描述的方式相反地示出在附图 中。
如图1所示,在我们在这里描述的概念的一些实现方式中,系统100 可以捕捉与光传感器102接触(或接近)的样品101(例如,气相样品、液 相样品、或固相样品,或这些或其他形式的组合)的高分辨率图像(例 如,全彩、灰度、“黑白”或它们的组合)。光传感器包括二维布置的光敏 元件105,其可以对应于图像中的像素的阵列。为简单起见,我们有时将光传感器的元件称为像素。
我们有时以最广泛的意义使用短语“光敏位置”,从而包括例如设备中 的那些对光分别敏感或分别能够发光或两者的任何特征,包括光敏元件或 像素和光源位置。我们有时使用短语光源位置来指能够发光的元件。在某 些情况下,我们使用短语光敏位置指所述设备的特征的暴露的光敏部分, 而没有任何遮盖、保护层、防护物或者可将所述光敏部分从环境或从样品 分离的任何其他特征。
我们有时以最广泛的意义使用短语“接触显微镜”或“接触显微”以 指任何装置(或技术),其包括(a)被暴露于设备表面处的环境的光敏位 置紧密间隔的高分辨率传感器或高分辨率发光位置组,以及(b)将该表面 与要被成像的样品的一部分以及相对远离发光位置和样品的光检测器(在 发光位置的情况下)相关联的设备,使得样品的一部分与所述表面接触 (或接近接触),并且当样品的一部分就位时,可用的高分辨率图像可以通 过传感器获得。
在接触显微中,样品可以与传感器的光敏特征或光源的发光特征直接 接触,而没有任何中间材料,或者样品可以与光敏或发射特征几乎接触。 通过几乎接触,我们的意思是例如在特征的近场中,在某些情况下是在所 涉及的光的1/2波长范围内的距离处,或可能地在所涉及的光的波长范围内 的距离处。
我们在其最广泛意义上使用将样品与表面相关联的设备的概念,以包 括便利于将例如样品的一部分移动、流动、输送、放置或呈现到与光敏位 置接触或几乎接触的任何类型的任何机构,包括使用例如机械、电气、机 电、气动、液压、重力或其他特征的任何机构。
加载到传感器的样品的量有时大于需要成像的量。在一些实施方式 中,样品需要处于相对薄的层的形式中,例如,1μm至100μm,或具有使 得样品细胞的单层放置在用于成像的传感器上的厚度。盖子或罩或腔室或 腔室顶部95可以被移动(或可以下降)以接触样品并调整在传感器上的样 品的量,例如,样品的厚度。作为一个例子,所述调整可以通过将腔室顶 部95的一个端部压靠在样品101上完成,使得过量的样品流出传感器102 的周边。腔室顶部也能够以其他方式下降。我们有时将在已完成其下降的 腔室顶部95的表面与传感器表面102之间并且样品位于其中的空间称为腔 室。
传感器还可以包括或者作为光敏元件的一部分或者附加到其上的其他 部件,以驱动或读取该元件,产生、处理或传送到该元件或来自该元件的 信号,并且执行其他功能。通常地,当我们提及传感器时,我们指的是集 成电路或它的一部分,其(a)在光敏元件处接收光并产生代表由光敏元件 检测到的光强度的信号或数据,和(b)直接驱动光敏元件或导致光生信号 或数据由光敏元件传送的任何电子元件,而不是(c)用于处理信号或数据 以形成图像的任何其他电路。
传感器102可以是集成电路芯片104的一部分或形成在其上,所述集 成电路芯片能够以均匀制造模式或混合制造模式制造。该芯片104可以安 装在头板(headboard)106上,并且头板106可以是控制单元108的一部 分或可连接到控制单元108。在一些应用中,盖子或罩或腔室或腔室壁95 可以将样品或它的一部分抵靠、接触、环绕、包围或容纳在邻近传感器的 暴露表面103或头板的一部分或两者的空间或腔室内。
控制单元108可以是用户设备110的一部分或连接到用户设备110。用 户设备110能够为用户115提供界面109;可以通过用户界面接收来自用户 的指令111和信息113,处理它们,并将其转发到控制单元108;并且可以 接收来自控制单元的信息117,处理它,并将其通过用户界面提供给用户。 在一些情况下,用户界面可以通过控制单元108或头板106或它们的组合 或用户设备操作。命令和信息111、113和117可以在任何两个或多个部件 之间传递。
该系统还可以包括样品传送和管理设备131、133,其可以包括机械、 电气或电子部件或它们的组合,使得或导致样品能够根据需要被传递到所 述传感器,保持在传感器处,并从传感器移除。装置131、133也可以在成 像前和成像后处理样品,包括混合材料与样品,从样品中除去材料,从来 源获取样品,丢弃成像后的样品,以及为了操作该系统以执行成像可能需 要关于样品的任何其他功能。
用户设备110可以是蜂窝电话、另一种手持设备、仪器、系统、制造 组件、工作站或者任何其他用户设备,其包括专用于与控制单元交互的功 能的一种,或具有不限于与控制单元交互的功能的一种,或者是两者的组 合。
完整的工作系统或商业产品或组件不需要包括所有的传感器、芯片、 头板,控制单元以及所述用户设备,但可以包括它们中的任意两种或多种 的组合。
在各种实施方式中,传感器102、芯片104、头板106、控制单元108 以及用户设备110中两种或多种的任何组合在它们中可以具有多种机械和 电气连接。此外,各种操作所需要的机械、流体流动、电子、软件、数据 处理、通信、存储和电气功能能够以多种方式在系统的那些部件的对和三 个或更多之间分布。在多种方式中,功能的分布可以是任意的或者基于商 业和技术方面的考虑。
在一些情况下,我们用来指芯片104的光敏区域的传感器102可以作 为电荷耦合器件(CCD)或互补金属氧化物半导体(CMOS)传感器技术 操作。其他成像机制是可能的。如前面提到的,在一些示例中,传感器是 像素化的,即关于成排和成列(或其他排列布置)的光敏像元(像素)105 进行操作。
在操作过程中,传感器响应于从样品101穿过1091、散射或射出的入 射电磁辐射(如,光)99。从样品穿过、散射或射出的光的波长可被改 变,例如,当其穿过或散射或射出时。入射的电磁辐射99和发射、散射或 射出的辐射通常在可见光、近紫外或近红外的波长范围内。例如,我们在 其最广泛意义上使用术语光以包括所有这些范围。
由于样品101与传感器的表面103接触或基本上接触或接近,在系统 中使用任何光学元件折射或准直或重定向光有可能是没有必要的。
来自样品的邻近像素(或者在入射光99与像素之间的路径上)的一部 分107的光将主要(在某些情况下,基本上完全)由该像素105接收。
在这种布置中,由传感器的像素阵列感测到的光直接代表样品的部分 的相应阵列,因此有效地表示样品的图像,该图像能够是高分辨率的。
在到达传感器的光的初始来源在环境中的程度下,所述光可以是环境 光,或者可以通过专用光源119提供。在一些实施方式中,通过控制光源 或屏蔽环境光或两者而控制样品的照明并且特别是照明的均匀性可以是有 用的。
为了捕捉样品的图像,在概念上的图像捕捉周期期间,传感器被驱动 和读取。在图像捕捉周期期间,通过传感器在其所有像素处接收的光被转 换为传送到芯片的电子部件的电信号(例如,模拟信号或数字值)。取决于 技术,所述信号可以并行或串行地读取。在某些范围内,诸如由14位数字 值表示的范围,来自每个像素的电信号通常由对应于由像素感测到的光强 度的量化强度值表示。色彩信息能够以各种方式获得,例如,在多个相邻 的像素上使用带通滤光器,或用不同颜色的照明顺序成像,并且可能以其 他方式。无论使用何种方法,从空间和/或时间的各个像素共同接收的电信 号可以表示样品的全彩高分辨率高动态范围的图像。
除了该系统的电子特征外,还有在下面讨论的机械元件,除其他事项 外,所述机械元件处理、容纳和照射样品101。
形成所述系统的电子和机械部件的部分或全部,包括传感器、芯片 104、头板106、控制单元108、用户设备110和用户界面109,和它们中的 任何两种或多种的组合,可以作为单个商业产品生产并且可以是可重复使 用的或一次性的。
控制用于成像的样品的体积
1.样品
参照图2,被成像的样品101(我们有时使用可与样品互换的单词样 本)可以由类似的小型个体(units)97组成或包含类似的小型个体97,诸 如颗粒、小块、微粒、细胞或分子或它们的组合或任何两种或多种不同类 型的组合。个体97可悬浮于或携带在液体95中以形成液体悬浮样品个体 97,夹带在气体中以形成气体悬浮样品个体(未示出),以未悬浮和未夹带 的形式(例如粉末)静止在传感器(未示出)的表面上,或者保持在固 体、凝胶化或其他集成自支撑材料的集成基质中,仅举几例,诸如组织的 切片层。我们有时非常广泛地使用术语基质以包括例如将样品个体保持在 其中的任何材料,包括液体、气体、固体、凝胶或任何其他材料。
此外,样品101也可包含用于控制在传感器102上的样品101的体积 的间隔特征230。在某些情况下,并且对于给定类型的样品个体或精确指定 体积的样品(例如,对于血液计数,或者其中对精确体积的样品中的样品 个体数量进行计数的其他分析)中,通过传感器顶表面的宽度和长度并且 通过该表面与腔室顶部的平坦底面之间的间隙220(或腔室)的高度,由传 感器成像的样品体积被精确地控制。在一些情况下,所述体积可能不需要是精确的,但间隙高度可能需要是精确的值,或者不大于特定的值,或者 不小于特定的值,或这些条件的组合。
各种各样的技术和设备可用于形成和维持间隙的高度(例如,精确的 高度)。我们将那些技术和设备广泛地称为间隔特征。在图2所示的例子 中,间隔特征包括微球体或其他类型的大小均匀的珠粒,例如3.0μm或 5.0μm。为了建立精确和均匀的间距以及因此的样品空间体积,可能有用 的是指定珠粒尺寸的精度,例如,珠粒可指定为4.0μm,精度是正负100 纳米。珠粒可以是非球形的。珠粒能够以各种不同的方式使用。
如图2中所示,在一些实现方式中,当样品被输送到传感器表面103 时,珠粒230被包括在样品内,例如具有样品个体(其可以小于珠粒)在 其中悬浮的液体基质的样品。如果腔室顶部然后被允许安置或向下压到样 品上,并且假设样品中有足够的珠粒并且它们在液体中合理地分布,则可 以实现均匀精确的间隙高度。为了这个目的,珠粒例如可能以每微升样品 10,000-500,000珠粒的比例存在于样品中。如果珠粒被选择为在样品中具有 接近中性的浮力,保持珠粒在样品中均匀分布可以通过简单的机械搅拌实 现。
在一些情况下,珠粒的尺寸可以大致与样品个体相同。在一些实现方 式中可包括两种不同尺寸的珠粒。较大的尺寸限定了预期的间距。假设较 小的珠粒在整个样品中合理均匀地分布,并且每单位体积的样品中的较小 珠粒的数量是已知的,较小的尺寸可以被计数以验证样品空间的体积是按 照预期的。珠粒可以是透明的以允许光通过传感器,或者可以是彩色或荧 光的,或不透明的,或这些特性的两种或两种以上的组合。
2.腔室顶部
腔室顶部可相对于所述传感器表面103降低以从传感器102去除样品 的过多体积,并允许样品个体97(诸如发散在流体中的细胞)在传感器 102的表面103上均匀地分布。在一些实现方式中,过多体积的去除不改变 样品个体的体浓度,使得较小体积的样品(例如大约40μL)的成像产生适 用于分配到传感器上的大样品(例如大约100μL或以上)的数据。在其他 实现方式中,新的浓度始终正比于样品个体的体浓度,从而允许确定修正 系数。为了实现成像所需的样品浓度,可如下面所述地进一步处理样品。
腔室顶部能够以各种方式来降低。在一个例子中,再次参照图2,腔室 顶部具有平坦顶表面400,并且在腔室顶部的降低过程中,顶表面400保持 基本上平行于传感器102的顶表面103,我们有时称这种过程为平坦直线下 降。
参照图3和图4,在另一例子中,腔室顶部95最初被放置在斜面上, 使得一个边缘靠在传感器上。腔室顶部然后以受控的速度分布降低,直到 与传感器平齐。我们有时称这个过程为旋转下降。有时,控制旋转下降的 诸如位置变量或参数的数据可以被选择并存储在例如控制器中。基于所存 储的数据,旋转下降能够为不同的成像过程(同一样品或不同样品)可重 复地进行。
腔室顶部的下降可通过各种机构控制,例如,由人手动地控制或通过 诸如致动器1010的机器控制。在一些实施方式中,例如,在腔室顶部的一 个端部被降低之后并且在腔室顶部与样品接触后,腔室的另一端部可以反 复地升高和降低,而不是一路下降到其最终位置。这个操作可以使样品进 出传感器102与腔室顶部95之间的空间,这可以为样品提供混合效果,使 得样品个体97在样品被成像前是良好地分布的,例如均匀地分布。
在一些实施方式中,腔室顶部的底部具有直边缘1004,其压靠腔室的 底表面上的竖直壁1005的直脊。所述壁能够由沉积在图像传感器芯片103 的表面103和电路基板104上的封装环氧树脂形成。边缘1004与脊之间的 直线接触点可以用作降低或升高腔室顶部95的铰链。
作为使用的例子,在样品沉积到裸露的传感器上后,腔室顶部由在别 处的另一点接触1006以一定角度支撑并且向前滑动,直到边缘1004被推 靠在壁1005的封装脊上,使得其不能进一步滑动。所述铰链允许腔室顶部 在从样品到样品或从测试到测试一致的x方向上的旋转扭动。腔室顶部然 后沿着所述脊滑动,直到腔室顶部的相邻边缘撞上另一屏障1007(例如, 要么也是封装的一部分要么是离开侧部的单独结构)。这允许腔室顶部在y 方向上从测试到测试(或从样品到样品)的可重复定位。然后,支撑腔室 顶部的接触点1006被降低,允许腔室顶部旋转下降直到与传感器平齐。在 一些实施方式中,接触点被降低的方式使得它与腔室顶部的摩擦提供了将 腔室顶部推靠在脊上的力,而不是将其拉远,从而减少或避免对腔室顶部 在壁1005处的位置的干扰。可能的是,腔室顶部可在被放置在(或下降 到)传感器上之后或在样品被从腔室排出时滑动。导柱1008和/或远离传感 器的侧部的壁有时被用于最小化腔室顶部的可行进距离。
在一些实施方式中,腔室顶部的接触边缘1004在相对端部1009处具 有两个延伸点,以最小化流入铰链内的样品的量。流入铰链内的样品可能 会导致样品个体(诸如细胞)被压扁或在腔室顶部下降期间被截留。
用来降低腔室顶部的致动器1010可以是不固定到腔室顶部的无源设 备。腔室顶部可仅仅停靠在致动器上,并且经由重力或诸如磁、电磁、弹 簧等的其他力下降。下降的速度分布可以通过各种装置控制,诸如包括旋 转配重、减震器1011、磁体、电磁体等。
虽然腔室顶部被描述为朝向传感器表面下降,在诸如使用标准显微计 数细胞或其他颗粒的实施方式中,所描述的机构可以用于任何表面,诸如 玻璃载玻片。
样品制备
如先前所解释的,可以是期望的是,被成像样品的样品个体的浓度与 被分配到传感器表面的样品个体的体浓度相同或具有已知的关系。
在某些情况下,样品个体和珠粒比样品的其他流体组分(诸如稀释 剂)重,并且在力被施加到样品时倾向于积聚(与流动或移动对比)。
所述力可以是重力,随着样品个体朝向样品底部下沉,这可能在稀释 样品中导致沉淀浓度梯度。所述力也可以来源于下降的腔室顶部。随着腔 室顶部移动(例如加速),在传感器102周界之外的样品,较重、悬浮的样 品个体具有比流体多的动量,并且不会与样品的其他部分一样快地移动或 加速。在样品的过多体积被去除之前,样品个体可以被以比分配到传感器 上的样品的体浓度更高的浓度留在传感器上。此外,所述力还可以包括在 样品与系统表面之间的摩擦力或样品内的剪切力。摩擦力和剪切力可以降 低样品个体相对于样品流的速度。
此外,在腔室顶部完成它的下降后,样品可以继续流动,导致样品个 体移动并扰乱它们的成像。
在一些实施方式中,样品的粘度可被调节,以控制样品个体的浓度并 且减少样品在成像期间的流动。在一些例子中,调节可以通过添加一种或 多种粘度控制剂到样品而进行。样品个体的沉积速率可以被降低,并且流 体可被允许在间隔珠粒和样品个体上施加更强的力,以抵消它们的动量和 摩擦。增加的粘度也可以在腔室顶部完成其下降后减少流动的可能性。
合适的试剂可以包括葡聚糖、甘油、淀粉、诸如甲基纤维素的纤维素 衍生物、这些材料的任何组合以及其他材料。
可选地或附加地,一种或多种试剂可以被加入到样品,以增加稀释剂 密度,使得稀释剂与间隔珠粒和/或样品个体之间的密度差被降低或者甚至 被消除。密度差的降低或消除也可以控制样品个体的浓度并且减少样品在 成像期间的流动。
用于增加稀释剂密度的试剂可以与粘度控制剂是相同的试剂。在一些 实施方式中,触变剂可被用来实现相同的效果,并且还允许样品个体与稀 释剂的更容易混合。在一些情况下,光致交联剂(多种光致交联剂)或胶 凝剂(多种胶凝剂)(例如,依赖于温度的,诸如低融点琼脂糖)可用于增 加样品的粘度,同时允许对样品个体与稀释剂的容易混合。
清洁接触显微传感器
参考图4A和图4B,在将新样品加载到传感器表面103上之前,先前 成像的样品被去除,传感器表面103被清洁。去除和清洁能够以各种方式 完成。在一个例子中,具有类似于所述传感器的宽度的无绒吸收性拭子 1030沿着传感器表面拖动(1031)。在拖动过程中的一个或多个时刻,拭子 封装传感器,使得拭子和传感器表面形成在整个传感器表面上的浅的角 度。我们还可以将拭子与传感器表面之间的这种接触称为封装接触。以所 述封装接触,拭子具有到传感器的所有表面的良好通路,而不会擦洗表 面。
在一些实施方式中,拭子的一些区域被加载(或预加载)有清洁剂 (多种清洁剂)1034,诸如表面活性剂、有机溶剂或纯净水。其他区域 1035可以保持干燥并且是吸收性的。清洁剂可以存储在拭子的分离隔室1032内,例如,以微胶囊1033或其他的形式。微胶囊1033可以就在拭子 的使用前或在使用过程中通过压缩破裂,从而允许清洁剂(多种清洁剂) 润湿或浸透拭子。使用该微胶囊可以防止清洁剂在拭子的储存期间蒸发。 这些流体区域能够以基于拖动运动的特定顺序布置,使得例如传感器首先 被干燥区域接触以吸收多余的流体,然后被肥皂区域接触以松动余下的碎 屑,然后被第二干燥区域接触以吸收肥皂,然后被纯净水接触稀释剩余的 肥皂,然后被第三干燥区域接触以干燥传感器。其他布置可以基于清洗需 要而做出。
示例实施方式
一组特定的应用涉及血液(即,包括血液的样品101)。该系统可被用 来检测和分析血液中的细胞的类型,对血液中的各种类型的细胞计数,确 定血液中的细胞的正常性,监测血液中的细胞的功能,以及分析血液的化 学性质。
血液计数(Blood counts),其中诸如白细胞、红细胞和血小板的特定 种类的细胞或细胞单体被在仔细控制的血液体积中进行计数,在发达国家 的卫生保健系统中是普遍的。血液计数在诊断病症和健康状况,确定它们 的严重程度以及确定这样的条件随着时间的变化中是非常有用的。在美国 每年完成超过2.5亿血液计数。常见形式的血液计数对血液中的各种单体和 它们的性质进行计数,并且被称为全血液计数(CBC)。
血液计数可以是昂贵的并且趋向于在专用实验室中操作的昂贵大型专 用机器上进行,例如,在医院或诊所中。因此,它们对于贫穷或偏远地区 的人口并不总是可获得的。这种交付模式也可以减缓周转时间,并且使得 血液计数对病人是不便的。获得由这样的实验室进行计数所需要的血液量 通常需要病人经受由熟练的技术人员进行的静脉穿刺;这一过程例如在儿 童或老年患者中通常是困难的。
该系统可以被构造为在盖子与传感器表面之间限定小并且精确受控的 样品空间体积。
浓缩白血细胞
白血细胞(WBC)在血液中的浓度较低,并且所述浓度可由于在样品 制备中加入到血液中的任何稀释剂而进一步降低。其结果是,在传感器表 面上要被成像或计数的白细胞的总数可以是较低的。通常,颗粒计数的误 差是计数的平方根,而要被计数的颗粒的数量较少可能导致较高百分比的 误差和标准差。
参考图5A和图5B,白血细胞浓度能够以可预测的方式增加。在一些 实施方式中,可使用合适的间隔珠粒,使得红血细胞(RBC)1042的平均 浓度可在传感器表面上维持在期望的水平上,而同时血液计数增加。通 常,随着腔室顶部95朝着样品下降,与腔室顶部的表面和传感器的表面在 相反方向上接触的细胞可以被截留(在接触点1044处)。例如,当细胞被 在相对表面之间压缩时,所述细胞通常不移动。因此,间隔珠粒的尺寸可 以选择为使得腔室顶部的表面与传感器之间的距离小于白血细胞的平均直 径。在某些情况下,为了维持红血细胞的浓度,珠粒可具有比红血细胞的 平均直径大的直径。下降的腔室顶部压缩具有平均直径或更大直径的白血 细胞,而不压缩具有平均直径或更小直径的红血细胞。随着样品的总体积 降低,腔室顶部下降到达珠粒直径,白血细胞在传感器表面的浓度增加。 珠粒直径的一个例子可以是7微米。其他合适的直径可被选择以控制不同 细胞类型在样品中的浓度。
基于腔室在成像期间的高度(在腔室顶部95完成后它的下降后)以及 测量细胞的传感器的表面积,所述白血细胞的体积可以计算出来。这个体 积可以用于确定白血细胞的平均直径,这与腔室顶部开始截留白血细胞时 测得的腔室高度是大约相同的。因此,相对于更小的未被截留的细胞的浓 度,诸如红血细胞,白血细胞的浓度可以正比于它们的尺寸增加。白血细 胞的浓度与尺寸之间的关系被对所有的白血细胞尺寸积分,以获得平均浓度(在细胞被浓缩之前在样品中的体浓度)。比通过它们在分配到腔室的样 品中的初始浓度所预期的更多的白血细胞被进行计数,计数统计可以得到 改善。
加载传感器
在一些实施方式中,样品被迅速地并且以可重复的方式准备好用于在 腔室(或在腔室顶部与传感器之间)中进行成像。我们有时称这个过程为 样品填充过程。快速的过程可以防止样品蒸发,并且减少样品个体在此期 间可以在流体中重新分布的样品静止时间(通过沉降例如由于重力)。
在一些实施方式中,在样品被分配到传感器表面上之前,腔室顶部可 以被降低以相对靠近传感器表面,例如,距传感器表面小于1mm。在样品 被引入腔室顶部下之后,样品经由毛细作用力填充腔室。一旦该腔室被充 分地填充,腔室顶部被降低以制备成像所需量的样品。
参照图6A、图6B和图7,用于流体装载移液管末端1052的导向件 1050被用来使末端1052接近腔室顶部的边缘,使得样品101每次被沉积在 传感器表面上的相同位置上。
在一些实施方式中,腔室顶部和/或所述图像传感器表面涂覆有亲水性 涂层(多个涂层)1060,以提高毛细作用力并且增加样品填充过程的速 度。同样,疏水涂层1062可用于围绕包含液体样品1064的传感器活性区 域。
在样品个体的沉降是重要的关注点的情况下,样品可被混合,例如在 流体喷射和/或腔室顶部下降的过程中,其中的任一个或两者可以自动地控 制,例如通过泵、致动器等。
数据收集和分析
通过成像过程收集的数据可以被处理以产生各种感兴趣的结果。作为 一个例子,一种用于计算在任何细胞类型中的光吸收物质(或吸收体)的 浓度的方法,例如,单个红血细胞的血红蛋白含量在下面结合图8和图9 进行描述。
a)对吸收体最优化的照明波长1070被确定(1080)以供使用。通常 地,用于实现高图像对比度和高精确度的波长是吸收体的最大吸收波长。
b)适当类型的细胞通过计算机视觉或手工区分1082。与光谱相关的公 式是比尔定律(I/I0=e-εCl),其中,I是在透过样品(例如,红血细胞)传播 后的强度,I0是透过水/非吸收材料传播后的强度,ε是物质(例如血红蛋 白)在照明波长处的消光系数,C是吸收体的浓度,而l是光穿过细胞 1074的路径长度。
c)总吸收(I)通过在细胞1074内的像素的平均强度计算1084。
d)在RBC位置处的背景光强度(10)被推算1086,例如,使用CV 方法(例如,通过识别邻近细胞1074的背景区域1072,然后将它们的值内 插/外推至细胞所在的位置)
e)路径长度(1)可例如使用分析或统计模型计算1088,或者,如果 样品被压缩,则使用腔室高度计算1088。
f)吸收体的浓度因此使用上述公式确定1090。
尽管步骤顺序地呈现在说明书和图9中,实际的数据收集和分析不必 遵循这个示例顺序,而是能够以任何合适的顺序执行。
在一些实现中,分析或统计模型可以用于校正从比尔定律的偏离。偏 离可能由于例如细胞上的厚度不均匀(路径长度)、细胞壁处的反射、与光 在两个平坦表面之间传播的路径长度相比改变光穿过细胞传播的路径长度 的透镜效应、光散射(传感器将记录来自前散射光以及透射光的信号)和 其他。
在一些实施方式中,浓度的精确度可使用通过忽略接近照明缺陷的任 何细胞和邻接其他细胞的任何细胞的平均血红蛋白测量而得到加强。
在对血液样品应用血红蛋白测量时,照明波长可以是血红蛋白和氧合 血红蛋白的等吸光点,因为这两种物质都可以出现血液中。可选地,只要 血液在处理过程中已经被充分暴露于空气,从而将所有血红蛋白转换为氧 合血红蛋白,可以使用氧合血红蛋白的最大吸收。
可选地,如果对于诊断目的检测这些分子的存在是所期望的,则可使 用碳氧血红蛋白或高铁血红蛋白的最大吸收波长。如果甲基化或羧化剂包 括在稀释剂中以将血红蛋白转化为碳氧血红蛋白或高铁血红蛋白,碳氧血 红蛋白或高铁血红蛋白的最大吸收波长也可用于测量正常血红蛋白的浓 度。
基于我们已经讨论的体系结构和原理可以制造并交付种类繁多的产 品。所述产品可以包括传感器单元、传感器单元加读出单元、传感器单元 加头板、样品腔室、腔室顶部(或盖子)、传感器单元加移液管、传感器单 元加泵、系统设备、手持设备、到其他设备的插件和附件、移液管、预加 载移液管、图像处理器、软件、光源、完整设备中的样品腔室加光源加传 感器加头板加电子部件,以及这些的两种或多种的组合,以及其他部件。
考虑到由传感器和系统执行的操作的宽范围以及应用的广谱性,认识 到一些涉及成像、一些涉及分析以及一些涉及分析和成像的组合可能是有 用的。
其他实施例在以下权利要求和其他权利要求的范围之内。
Claims (19)
1.一种装置,包括:
光敏元件的二维布置,其暴露在成像传感器的传感器表面处,
第二表面,其相对于成像表面移动到预定位置以形成样品空间,该样品空间位于传感器表面与第二表面之间并且包含样品的至少一部分,
机构,该机构配置为通过使第二表面重复地朝向和远离传感器表面移动来引起样品混合。
2.根据权利要求1所述的装置,其中,所述机构以受控的速度移动所述第二表面。
3.根据权利要求1所述的装置,其中,所述机构包括致动器。
4.根据权利要求3所述的装置,其中,所述致动器包括泵。
5.根据权利要求1所述的装置,其中,所述机构配置为使所述第二表面朝向和远离所述传感器表面移动而不到达所述预定位置。
6.根据权利要求1所述的装置,其中,样品的混合包括使得样品个体均匀地分布在所述样品中。
7.根据权利要求1所述的装置,其中,所述机构被自动控制。
8.根据权利要求1所述的装置,其中,所述机构配置为沿着轨迹移动所述第二表面。
9.根据权利要求1所述的装置,其中,所述轨迹包括弧。
10.根据权利要求1所述的装置,其中,所述样品包括要被计数的单体,并且所述机构被构造为使得所述第二表面的移动导致所述单体均匀地分布在所述传感器表面上,并且导致所述样品中的单体在所述第二表面到达预定位置后的体浓度始终成比例于所述样品中的单体在第二表面处于初始位置时的体浓度。
11.根据权利要求1所述的装置,其中,所述样品中的单体在所述第二表面到达预定位置后的体浓度相同于或高于所述样品中的单体在第二表面处于初始位置时的体浓度。
12.根据权利要求1所述的装置,其中,所述第二表面具有对准边缘,该对准边缘抵靠与所述传感器表面相关联的对准边缘,从而限定所述第二表面绕其转动以到达所述预定位置的枢转轴线。
13.一种方法,包括
重复地朝向和远离成像传感器的传感器表面移动第一表面,
然后将第一表面移动到相对于传感器表面的预定位置,
当第一表面处于预定位置时,使用成像传感器来拍摄第一表面与传感器表面之间的空间中的样品的图像。
14.根据权利要求13所述的方法,包括
在成像传感器拍摄图像之前,将样本提供在第一表面与第二表面之间的空间中。
15.根据权利要求14所述的方法,其中,提供样品包括使得样品能够毛细流动到所述空间内。
16.根据权利要求13所述的方法,其中,相对于传感器表面将第一表面移动到预定位置包括使样品压靠传感器表面。
17.根据权利要求13所述的方法,其中,第一表面到预定位置的重复移动中的至少一个或第一表面到预定位置的移动是自动控制的。
18.根据权利要求13所述的方法,包括在将所述第一表面朝向和远离所述传感器表面重复移动之前,将所述样品喷射到所述空间中。
19.根据权利要求18所述的方法,其中,所述样品是自动地喷射的。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361839735P | 2013-06-26 | 2013-06-26 | |
US61/839,735 | 2013-06-26 | ||
CN201480047483.9A CN105765440B (zh) | 2013-06-26 | 2014-06-25 | 用于显微的样品处理改进装置及方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480047483.9A Division CN105765440B (zh) | 2013-06-26 | 2014-06-25 | 用于显微的样品处理改进装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110058005A true CN110058005A (zh) | 2019-07-26 |
Family
ID=52115296
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480047483.9A Active CN105765440B (zh) | 2013-06-26 | 2014-06-25 | 用于显微的样品处理改进装置及方法 |
CN201910089876.0A Pending CN110058005A (zh) | 2013-06-26 | 2014-06-25 | 用于显微的样品处理改进 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480047483.9A Active CN105765440B (zh) | 2013-06-26 | 2014-06-25 | 用于显微的样品处理改进装置及方法 |
Country Status (6)
Country | Link |
---|---|
US (7) | US9518920B2 (zh) |
EP (1) | EP3014330B1 (zh) |
JP (2) | JP2016531282A (zh) |
CN (2) | CN105765440B (zh) |
CA (2) | CA2953620C (zh) |
WO (1) | WO2014205576A1 (zh) |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140152801A1 (en) | 2009-10-28 | 2014-06-05 | Alentic Microscience Inc. | Detecting and Using Light Representative of a Sample |
CN105974571B (zh) | 2009-10-28 | 2019-05-28 | 阿兰蒂克微科学股份有限公司 | 显微成像 |
US9075225B2 (en) | 2009-10-28 | 2015-07-07 | Alentic Microscience Inc. | Microscopy imaging |
US10502666B2 (en) | 2013-02-06 | 2019-12-10 | Alentic Microscience Inc. | Sample processing improvements for quantitative microscopy |
CA2953620C (en) | 2013-06-26 | 2020-08-25 | Alentic Microscience Inc. | Sample processing improvements for microscopy |
US9759651B2 (en) * | 2014-12-23 | 2017-09-12 | Magellan Diagnostics, Inc. | Combination optical hemoglobin and electrochemical lead assay |
WO2016141487A1 (en) | 2015-03-10 | 2016-09-15 | Alentic Microscience Inc. | Sample processing improvements for quantitative microscopy |
RU2018107453A (ru) | 2015-08-10 | 2019-09-12 | Эссенликс Корп. | Устройства для анализов и способы в биологии/химии, предусматривающие упрощенные стадии, образцы небольшого объема, повышенную скорость и простоту применения |
KR101982330B1 (ko) | 2015-09-14 | 2019-05-24 | 에센릭스 코프. | 증기 응축액 특히 입김 응축액을 수집 및 분석하기 위한 장치 및 시스템 그리고 이 장치 및 시스템을 사용하는 방법 |
CN112462055B (zh) | 2015-09-14 | 2024-06-07 | 上海宜晟生物科技有限公司 | 用于分析样品,尤其是血液,的装置和系统以及其使用方法 |
CN108431600A (zh) * | 2015-12-24 | 2018-08-21 | 皇家飞利浦有限公司 | 用于确定细胞悬液的方法和系统 |
CN105655494B (zh) * | 2016-03-18 | 2018-08-24 | 深圳市华星光电技术有限公司 | 有机发光二极管的基底及其制作方法、有机发光二极管 |
EP3792613A1 (en) * | 2016-04-08 | 2021-03-17 | Alentic Microscience Inc. | Sample processing for microscopy |
US10393660B2 (en) * | 2016-11-06 | 2019-08-27 | JianFeng Zhang | Apparatus and method for measuring concentration of materials in liquid or gas |
EP3558121B1 (en) | 2016-12-21 | 2022-06-08 | Essenlix Corporation | Devices and methods for authenticating a sample and use of the same |
CN110573256B (zh) * | 2016-12-30 | 2022-09-02 | 罗氏血液诊断股份有限公司 | 样品处理系统及方法 |
WO2018148342A1 (en) | 2017-02-07 | 2018-08-16 | Essenlix Corporation | Compressed open flow assay and use |
US12066434B2 (en) | 2017-02-08 | 2024-08-20 | Essenlix Corporation | QMAX assays and applications |
CA3053002A1 (en) | 2017-02-08 | 2018-08-16 | Essenlix Corp. | Bio/chemical material extraction and assay |
CA3053005A1 (en) | 2017-02-08 | 2018-08-16 | Essenlix Corporation | Sample collection and handling for delayed analysis |
EP3662259A4 (en) | 2017-02-09 | 2021-08-25 | Essenlix Corporation | COLORIMETRIC TESTS |
CN111433606B (zh) | 2017-02-09 | 2024-05-24 | 上海宜晟生物科技有限公司 | 采用不同间距高度的测定 |
CN110998325B (zh) | 2017-02-09 | 2024-08-16 | 上海宜晟生物科技有限公司 | 扩增测定 |
US10966634B2 (en) | 2017-02-16 | 2021-04-06 | Essenlix Corporation | Assay with textured surface |
IL253067B (en) * | 2017-06-21 | 2022-01-01 | Gyntools Ltd | Test devices and test fixture for use with them |
US11346850B2 (en) | 2017-06-21 | 2022-05-31 | Gyntools Ltd | Assay system including assay apparatus and handheld single use assay devices for use therewith |
CN112689758A (zh) | 2017-08-01 | 2021-04-20 | Essenlix公司 | 检查药物对微生物影响的装置和方法 |
US11280706B2 (en) | 2017-08-01 | 2022-03-22 | Essenlix Corporation | Dilution calibration |
US11243201B2 (en) | 2017-08-01 | 2022-02-08 | Essenlix Corporation | Sample collection, holding and assaying |
DE102017119093A1 (de) * | 2017-08-21 | 2019-02-21 | Carl Zeiss Microscopy Gmbh | Immersionsmikroskopie |
WO2019075415A1 (en) | 2017-10-13 | 2019-04-18 | Essenlix Corporation | DEVICES AND METHODS FOR AUTHENTICATING MEDICAL ANALYSIS AND USES THEREOF |
US11609224B2 (en) | 2017-10-26 | 2023-03-21 | Essenlix Corporation | Devices and methods for white blood cell analyses |
US10807095B2 (en) | 2017-10-26 | 2020-10-20 | Essenlix Corporation | Making and tracking assay card |
US11237113B2 (en) | 2017-10-26 | 2022-02-01 | Essenlix Corporation | Rapid pH measurement |
US11648551B2 (en) | 2017-12-12 | 2023-05-16 | Essenlix Corporation | Sample manipulation and assay with rapid temperature change |
WO2019118936A2 (en) | 2017-12-14 | 2019-06-20 | Essenlix Corporation | Devices, systems, and methods for monitoring hair |
WO2019140334A1 (en) | 2018-01-11 | 2019-07-18 | Essenlix Corporation | Homogeneous assay (ii) |
TWI685960B (zh) * | 2018-02-03 | 2020-02-21 | 美商伊路米納有限公司 | 使用感測器的主動表面的結構和方法 |
US11885952B2 (en) | 2018-07-30 | 2024-01-30 | Essenlix Corporation | Optics, device, and system for assaying and imaging |
US11609233B2 (en) | 2019-03-28 | 2023-03-21 | Alentic Microscience Inc. | Indicator-based analysis of a sample |
US11255850B2 (en) | 2019-03-28 | 2022-02-22 | Alentic Microscience Inc. | Bead-based analysis of a sample |
US11719700B2 (en) | 2019-03-28 | 2023-08-08 | Alentic Microscience Inc. | Upconversion for microscopy |
IL267301A (en) | 2019-06-12 | 2019-11-28 | Gyntools Ltd | A test device and hand-held sample collection tools for it |
EP4028745B1 (en) | 2019-10-30 | 2024-05-08 | GynTools Ltd | Assay system including assay apparatus and handheld single use assay devices for use therewith |
CA3174596A1 (en) * | 2020-03-06 | 2021-09-10 | Alentic Microscience Inc. | Portable imaging device |
CN113899659A (zh) * | 2020-06-22 | 2022-01-07 | 苏州中加康美科技有限公司 | 一种载玻片及血细胞分析仪 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3447863A (en) * | 1966-07-11 | 1969-06-03 | Sodell Research & Dev Co | Method for preparing a slide for viewing |
EP0321889A2 (en) * | 1987-12-22 | 1989-06-28 | Board Of Regents, The University Of Texas System | Methods and apparatus for quantifying components in liquid samples |
US6302985B1 (en) * | 1996-12-18 | 2001-10-16 | Kabushiki Kaisha Tiyoda Seisakusho | Method of adhering cover glass and cover glass adhering device |
CN101203596A (zh) * | 2005-04-21 | 2008-06-18 | 塞莱勒斯诊断公司 | 用于自动快速免疫组织化学的并行处理流体方法和设备 |
US20110181884A1 (en) * | 2008-03-04 | 2011-07-28 | California Institute Of Technology | Optofluidic microscope device with photosensor array |
CN102470403A (zh) * | 2009-07-27 | 2012-05-23 | 韦尔泰克有限公司 | 推进工具 |
CN102687023A (zh) * | 2009-11-13 | 2012-09-19 | 文塔纳医疗系统公司 | 用于可调容纳体积的薄膜处理装置 |
CN102713720A (zh) * | 2009-10-28 | 2012-10-03 | 阿兰蒂克微科学股份有限公司 | 显微成像 |
Family Cites Families (230)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3000049A (en) * | 1958-08-04 | 1961-09-19 | American Plastics Corp | Plastic hinge and method of making the same |
US3510194A (en) | 1965-08-09 | 1970-05-05 | Robert F Connelly | Particle count membrane filter mount |
US3556633A (en) * | 1969-01-17 | 1971-01-19 | Winifred Liu Mutschmann | Specimen carrying slide with runoff trough |
US3551023A (en) * | 1969-01-17 | 1970-12-29 | Ibm | Pathology specimen processing method and article |
JPS5243790B1 (zh) | 1971-07-26 | 1977-11-01 | ||
JPS5219937B2 (zh) | 1972-07-31 | 1977-05-31 | ||
US3872738A (en) | 1973-09-24 | 1975-03-25 | Landis Tool Co | Machine tool |
JPS5243790A (en) | 1975-10-03 | 1977-04-06 | Chiyoda Chem Eng & Constr Co Ltd | Method of removing nox |
US4338024A (en) | 1980-05-02 | 1982-07-06 | International Remote Imaging Systems, Inc. | Flow analyzer and system for analysis of fluids with particles |
US4612614A (en) | 1980-09-12 | 1986-09-16 | International Remote Imaging Systems, Inc. | Method of analyzing particles in a fluid sample |
JPS58182267A (ja) | 1982-04-16 | 1983-10-25 | Matsushita Electric Ind Co Ltd | 固体撮像装置 |
JPS5948954A (ja) | 1982-09-13 | 1984-03-21 | Kyocera Corp | 密着型読み取り装置 |
GB8328979D0 (en) * | 1983-10-31 | 1983-11-30 | Bellhouse Brian John | Optical assay |
FR2567063B1 (fr) | 1984-07-03 | 1986-11-21 | Stenay Papeterie | Procede de fabrication d'un rouleau elastique de fibres utilisable comme rouleau de calandre |
GB8427285D0 (en) * | 1984-10-29 | 1984-12-05 | Bellhouse Medical Products Ltd | Blood bag |
JPS61158584A (ja) * | 1984-12-28 | 1986-07-18 | 株式会社北村鉄工所 | 蝶番の製造方法及びその製品 |
US5059398A (en) | 1985-07-22 | 1991-10-22 | Drummond Scientific Company | Disposable preselected-volume capillary pipet device |
US4963498A (en) | 1985-08-05 | 1990-10-16 | Biotrack | Capillary flow device |
JPH07117607B2 (ja) | 1986-05-08 | 1995-12-18 | 松下電子工業株式会社 | カラ−固体撮像装置 |
US4774643A (en) | 1986-11-17 | 1988-09-27 | Diagin, Inc. | Illuminator for radiation dosimeter and method of manufacture |
US4744643A (en) * | 1987-01-20 | 1988-05-17 | Taylor Howard L | Apparatus for restricting motion of living microscopic organisms during observation under a microscope |
US5223398A (en) | 1987-03-13 | 1993-06-29 | Coulter Corporation | Method for screening cells or formed bodies for enumeration of populations expressing selected characteristics |
JPS63229426A (ja) | 1987-03-18 | 1988-09-26 | Fujitsu Ltd | 半導体装置及び半導体素子間の光配線方法 |
US4882284A (en) | 1987-04-13 | 1989-11-21 | Ortho Pharmaceutical Corporation | Method for quantitating and differentiating white blood cells |
JPS6471172A (en) | 1987-09-11 | 1989-03-16 | Oki Electric Ind Co Ltd | Complete contact type image sensor |
US5039487A (en) | 1987-12-22 | 1991-08-13 | Board Of Regents, The University Of Texas System | Methods for quantifying components in liquid samples |
US4950445A (en) | 1988-02-05 | 1990-08-21 | Cabot Safety Corporation | Method of vacuum forming disposable faceshield |
US4845809A (en) * | 1988-03-21 | 1989-07-11 | Pillifant Jr Albert | Leaf spring biased position retentive hinge assembly |
US4993056A (en) | 1990-06-08 | 1991-02-12 | Lary Banning G | Specimen apparatus and method of use |
US5124141A (en) | 1990-06-14 | 1992-06-23 | Flow Incorporated | Method for diagnosing malaria |
JPH04316478A (ja) | 1991-04-12 | 1992-11-06 | Nec Corp | 生物試料観察装置、システムおよび方法 |
DE69205067T2 (de) | 1991-06-07 | 1996-03-21 | Kansei Kk | Aufprall-Schutzvorrichtung für Passagiere in einem Kraftfahrzeug oder dergleichen. |
US5181382A (en) | 1991-08-02 | 1993-01-26 | Middlebrook Thomas F | Heating/cooling or warming stage assembly with coverslip chamber assembly and perfusion fluid preheater/cooler assembly |
US5218211A (en) | 1991-10-23 | 1993-06-08 | The United States Of America As Represented By The Secretary Of Commerce | System for sampling the sizes, geometrical distribution, and frequency of small particles accumulating on a solid surface |
US5846708A (en) | 1991-11-19 | 1998-12-08 | Massachusetts Institiute Of Technology | Optical and electrical methods and apparatus for molecule detection |
JPH05219937A (ja) | 1992-02-12 | 1993-08-31 | Nec Corp | 生物試料観察システムおよび方法 |
JP3047597B2 (ja) | 1992-02-27 | 2000-05-29 | 松下電器産業株式会社 | 部品実装方法 |
US5585246A (en) | 1993-02-17 | 1996-12-17 | Biometric Imaging, Inc. | Method for preparing a sample in a scan capillary for immunofluorescent interrogation |
US5383472A (en) | 1993-07-22 | 1995-01-24 | Devlin; Mark T. | Method and apparatus for handling of biopsy tissue specimen |
US5389779A (en) | 1993-07-29 | 1995-02-14 | At&T Corp. | Method and apparatus for near-field, scanning, optical microscopy by reflective, optical feedback |
KR100262878B1 (ko) | 1993-10-04 | 2000-08-01 | 포만 제프리 엘 | 근접시야 광학현미경 및 그 측정방법 |
IL112147A (en) * | 1994-01-19 | 1999-12-22 | Du Pont | Sample holder and method for automated electrophoresis |
DE69527947T2 (de) | 1994-03-11 | 2003-05-28 | Abbott Laboratories, Abbott Park | Cyanidfreies reagens und verfahren zur bestimmung von hämoglobin |
JPH07301586A (ja) * | 1994-05-09 | 1995-11-14 | Toa Medical Electronics Co Ltd | 試料処理装置 |
DE4417079C2 (de) | 1994-05-17 | 1998-06-10 | Fraunhofer Ges Forschung | Objektträger zum Beobachten von biologischem Material |
US6297025B1 (en) | 1994-06-13 | 2001-10-02 | Matsushita Electric Industrial Co., Ltd | Measurement of complete electrical waveforms of tissue or cells |
US6259104B1 (en) | 1994-07-15 | 2001-07-10 | Stephen C. Baer | Superresolution in optical microscopy and microlithography |
US5627041A (en) | 1994-09-02 | 1997-05-06 | Biometric Imaging, Inc. | Disposable cartridge for an assay of a biological sample |
DE19512117A1 (de) | 1995-04-04 | 1996-10-10 | Itt Ind Gmbh Deutsche | Meßeinrichtung |
US5605813A (en) * | 1995-06-06 | 1997-02-25 | Becton, Dickinson And Company | Culture slide assembly |
JPH0921963A (ja) | 1995-07-10 | 1997-01-21 | Hitachi Ltd | 内視鏡装置 |
US5633972A (en) | 1995-11-29 | 1997-05-27 | Trustees Of Tufts College | Superresolution imaging fiber for subwavelength light energy generation and near-field optical microscopy |
US6399023B1 (en) | 1996-04-16 | 2002-06-04 | Caliper Technologies Corp. | Analytical system and method |
US6387707B1 (en) | 1996-04-25 | 2002-05-14 | Bioarray Solutions | Array Cytometry |
US6084683A (en) | 1996-05-28 | 2000-07-04 | Bruno; Alfredo Emilio | Optical detection apparatus for chemical analyses of small volumes of samples |
WO1998029736A1 (en) | 1996-12-31 | 1998-07-09 | Genometrix Incorporated | Multiplexed molecular analysis apparatus and method |
US5880830A (en) | 1997-01-29 | 1999-03-09 | Greenvision Systems Ltd. | Spectral imaging method for on-line analysis of polycyclic aromatic hydrocarbons in aerosols |
JP4169827B2 (ja) | 1997-05-28 | 2008-10-22 | ミクロナス ゲーエムベーハー | 測定装置 |
US5894349A (en) | 1997-08-20 | 1999-04-13 | Lucent Technologies Inc. | Manufacturing method including near-field optical microscopic examination of a semiconductor substrate |
US7030904B2 (en) | 1997-10-06 | 2006-04-18 | Micro-Medical Devices, Inc. | Reduced area imaging device incorporated within wireless endoscopic devices |
WO1999040842A1 (en) | 1998-02-13 | 1999-08-19 | Non-Invasive Technology, Inc. | Transabdominal examination, monitoring and imaging of tissue |
US6723290B1 (en) * | 1998-03-07 | 2004-04-20 | Levine Robert A | Container for holding biologic fluid for analysis |
US6180314B1 (en) * | 1998-05-27 | 2001-01-30 | Becton, Dickinson And Company | Method for preparing thin liquid samples for microscopic analysis |
JP4217300B2 (ja) * | 1998-06-29 | 2009-01-28 | オリンパス株式会社 | Xyステージ |
AU749884B2 (en) | 1998-08-28 | 2002-07-04 | Febit Ferrarius Biotechnology Gmbh | Support for a method for determining an analyte and a method for producing the support |
JP2000146910A (ja) | 1998-09-02 | 2000-05-26 | Sankyo Co Ltd | 電気泳動システム |
AU2882800A (en) | 1999-02-17 | 2000-09-04 | Lucid, Inc. | Tissue specimen holder |
US6411434B1 (en) * | 1999-02-17 | 2002-06-25 | Lucid, Inc. | Cassette for facilitating optical sectioning of a retained tissue specimen |
US6690464B1 (en) | 1999-02-19 | 2004-02-10 | Spectral Dimensions, Inc. | High-volume on-line spectroscopic composition testing of manufactured pharmaceutical dosage units |
US6396980B1 (en) | 1999-02-22 | 2002-05-28 | Alliance Fiber Optics Products, Inc. | Multi-port fiber optic device with V-groove dual fiber collimator for WDM application |
JP2002538423A (ja) | 1999-02-23 | 2002-11-12 | テラプロウブ リミテッド | テラヘルツ画像形成のための方法及び装置 |
EP1041624A1 (en) | 1999-04-02 | 2000-10-04 | Interuniversitair Microelektronica Centrum Vzw | Method of transferring ultra-thin substrates and application of the method to the manufacture of a multilayer thin film device |
US6773676B2 (en) * | 1999-04-27 | 2004-08-10 | Agilent Technologies, Inc. | Devices for performing array hybridization assays and methods of using the same |
US6261523B1 (en) * | 1999-04-27 | 2001-07-17 | Agilent Technologies Inc. | Adjustable volume sealed chemical-solution-confinement vessel |
US6252705B1 (en) * | 1999-05-25 | 2001-06-26 | Schlumberger Technologies, Inc. | Stage for charged particle microscopy system |
US6621079B1 (en) | 1999-07-02 | 2003-09-16 | University Of Virginia Patent Foundation | Apparatus and method for a near field scanning optical microscope in aqueous solution |
JP2001078175A (ja) | 1999-07-07 | 2001-03-23 | Fuji Photo Film Co Ltd | 蛍光観察装置 |
US6285018B1 (en) | 1999-07-20 | 2001-09-04 | Intevac, Inc. | Electron bombarded active pixel sensor |
US6867851B2 (en) | 1999-11-04 | 2005-03-15 | Regents Of The University Of Minnesota | Scanning of biological samples |
US6784982B1 (en) | 1999-11-04 | 2004-08-31 | Regents Of The University Of Minnesota | Direct mapping of DNA chips to detector arrays |
US6323944B1 (en) | 1999-11-19 | 2001-11-27 | Jobin Yvon, Inc. | Compact spectrofluorometer |
US6470532B2 (en) * | 2000-02-29 | 2002-10-29 | Torqmaster, Inc. | Cam hinge with controlled friction for improved cam operation |
US20060263888A1 (en) | 2000-06-02 | 2006-11-23 | Honeywell International Inc. | Differential white blood count on a disposable card |
DE10033268C2 (de) * | 2000-07-10 | 2002-08-08 | Innovatis Gmbh | Verfahren zur Untersuchung von Zellen in einer Kulturflüssigkeit |
US6844150B2 (en) | 2000-08-24 | 2005-01-18 | The Regents Of The University Of California | Ultrahigh resolution multicolor colocalization of single fluorescent probes |
JP4379758B2 (ja) | 2000-11-13 | 2009-12-09 | 日本分光株式会社 | 近接場顕微鏡 |
US20030007894A1 (en) | 2001-04-27 | 2003-01-09 | Genoptix | Methods and apparatus for use of optical forces for identification, characterization and/or sorting of particles |
US20040004759A1 (en) | 2002-07-08 | 2004-01-08 | Olszak Artur G. | Microscope array for simultaneously imaging multiple objects |
JP2002306509A (ja) | 2001-04-10 | 2002-10-22 | Olympus Optical Co Ltd | 遠隔手術支援システム |
US6544793B2 (en) | 2001-04-27 | 2003-04-08 | Becton, Dickinson And Company | Method for calibrating a sample analyzer |
US7151246B2 (en) | 2001-07-06 | 2006-12-19 | Palantyr Research, Llc | Imaging system and methodology |
US7943093B2 (en) * | 2001-12-12 | 2011-05-17 | Erie Scientific Company | Cover slip |
US20040171076A1 (en) | 2001-12-20 | 2004-09-02 | Dejneka Matthew J. | Detectable micro to nano sized structures, methods of manufacture and use |
AU2002361858A1 (en) | 2001-12-21 | 2003-07-30 | Spectral Dimensions, Inc. | Spectrometric process monitoring |
US8721565B2 (en) | 2005-08-04 | 2014-05-13 | Dune Medical Devices Ltd. | Device for forming an effective sensor-to-tissue contact |
US7524459B2 (en) | 2002-01-24 | 2009-04-28 | California Institute Of Technology In Pasadena | Optoelectronic and microfluidic integration for miniaturized spectroscopic devices |
US7738945B2 (en) | 2002-04-19 | 2010-06-15 | University Of Washington | Method and apparatus for pseudo-projection formation for optical tomography |
DE10218988C1 (de) * | 2002-04-24 | 2003-11-20 | Horst Dieter Becker | Vorrichtung und Verfahren zum Benetzen von Objekten |
US7330305B2 (en) | 2002-04-26 | 2008-02-12 | Optiscan Pty Ltd | Laser scanning confocal microscope with fibre bundle return |
JP4331501B2 (ja) | 2002-06-14 | 2009-09-16 | オリンパス株式会社 | 小型光学ユニット |
US6901086B2 (en) | 2002-10-30 | 2005-05-31 | Chian Chiu Li | Stack-type diode laser device |
JP4038210B2 (ja) | 2002-11-18 | 2008-01-23 | インターナショナル リモート イメイジング システムズ インコーポレイテッド | 自動流動顕微鏡のための粒子抽出 |
JP4723860B2 (ja) | 2002-12-09 | 2011-07-13 | クォンタム セミコンダクター リミテッド ライアビリティ カンパニー | Cmos画像センサー |
US7443507B2 (en) | 2002-12-25 | 2008-10-28 | Bio-Rad Laboratories Inc. | Surface plasmon resonance sensor |
US20060000429A1 (en) | 2003-01-08 | 2006-01-05 | Stone Kevin T | Vehicle rooftop engine cooling system |
US7267647B2 (en) | 2003-02-10 | 2007-09-11 | Pentax Corporation | Endoscope |
US7023563B2 (en) | 2003-02-14 | 2006-04-04 | Chian Chiu Li | Interferometric optical imaging and storage devices |
US7009172B2 (en) | 2003-03-06 | 2006-03-07 | Board Of Regents Of The University And Community College System Of Nevada, Reno | Method and apparatus for imaging using continuous non-raster patterns |
US20040219184A1 (en) | 2003-03-25 | 2004-11-04 | The Regents Of The University Of California | Growth of large patterned arrays of neurons on CCD chips using plasma deposition methods |
US7142571B2 (en) | 2003-05-09 | 2006-11-28 | Chian Chiu Li | Stack-type diode laser device |
KR100573621B1 (ko) | 2003-07-18 | 2006-04-25 | 주식회사 디지탈바이오테크놀러지 | 세포 개체수 계수용 장치 및 그 제조방법 |
US7727752B2 (en) | 2003-07-29 | 2010-06-01 | Life Technologies Corporation | Kinase and phosphatase assays |
US7079256B2 (en) | 2003-08-09 | 2006-07-18 | Chian Chiu Li | Interferometric optical apparatus and method for measurements |
US20050048498A1 (en) | 2003-08-29 | 2005-03-03 | Applera Corporation | Compositions, methods, and kits for assembling probes |
US7651598B2 (en) | 2003-09-05 | 2010-01-26 | University Of Maryland | Arbitrary and simultaneous control of multiple objects in microfluidic systems |
US7423766B1 (en) | 2003-12-17 | 2008-09-09 | Chian Chiu Li | Interferometric optical profiler |
ES2614425T3 (es) * | 2004-01-08 | 2017-05-31 | Dako Denmark A/S | Aparato y métodos para el procesamiento de muestras biológicas y un depósito para los mismos |
GB2410081B (en) | 2004-01-19 | 2007-02-21 | Limited Cambridge University T | Terahertz radiation sensor and imaging system |
US20050190286A1 (en) * | 2004-02-26 | 2005-09-01 | Gregory Kaduchak | Integrated array sensor for real time measurements of biological samples |
ES2643836T3 (es) * | 2004-04-07 | 2017-11-24 | Abbott Laboratories | Cámara desechable para analizar fluidos biológicos |
GB0409572D0 (en) | 2004-04-29 | 2004-06-02 | Univ Sheffield | High resolution imaging |
DE102004022263A1 (de) * | 2004-05-06 | 2005-12-15 | Clondiag Chip Technologies Gmbh | Vorrichtung und Verfahren zum Nachweis von molekularen Wechselwirkungen |
DE102005052752A1 (de) | 2005-11-04 | 2007-05-10 | Clondiag Chip Technologies Gmbh | Vorrichtung und Verfahren zum Nachweis von molekularen Wechselwirkungen |
DE102005052713A1 (de) * | 2005-11-04 | 2007-05-16 | Clondiag Chip Tech Gmbh | Vorrichtung und Verfahren zum Nachweis von molekularen Wechselwirkungen |
US7751048B2 (en) | 2004-06-04 | 2010-07-06 | California Institute Of Technology | Optofluidic microscope device |
US7773227B2 (en) | 2004-06-04 | 2010-08-10 | California Institute Of Technology | Optofluidic microscope device featuring a body comprising a fluid channel and having light transmissive regions |
JP2006003653A (ja) | 2004-06-17 | 2006-01-05 | Olympus Corp | 生体試料観察システム |
WO2006012893A1 (de) * | 2004-08-05 | 2006-02-09 | Jpk Instruments Ag | Vorrichtung zum aufnehmen einer messprobe |
US7310151B2 (en) | 2004-08-30 | 2007-12-18 | Chian Chiu Li | Interferometric optical apparatus and method using wavefront division |
US7425460B2 (en) | 2004-09-17 | 2008-09-16 | California Institute Of Technology | Method for implementation of back-illuminated CMOS or CCD imagers |
US7385175B2 (en) | 2004-09-18 | 2008-06-10 | Chian Chiu Li | Bi-directional optical transmission system and method |
JP4316478B2 (ja) | 2004-11-18 | 2009-08-19 | シャープ株式会社 | 画像センサおよびその駆動方法、並びに走査駆動器 |
KR20080030549A (ko) | 2004-12-30 | 2008-04-04 | 기븐 이미징 리미티드 | 체내 검사를 위한 장치, 시스템 및 방법 |
EP1838205A4 (en) | 2005-01-21 | 2009-07-15 | Optiscan Pty Ltd | FIBER BUNDLE FOR CONTACT DOMICROSCOPY |
AU2006208907A1 (en) * | 2005-01-26 | 2006-08-03 | Enigma Diagnostics Ltd | Method for carrying out a multi-step reaction, breakable container for storing reagents and method for transferring solid reagent using an electrostatically charged wand |
US7518731B2 (en) | 2005-02-01 | 2009-04-14 | Chian Chiu Li | Interferometric MOEMS sensor |
US7088116B1 (en) | 2005-02-09 | 2006-08-08 | Haian Lin | Optoelectronic probe |
US7476787B2 (en) | 2005-02-23 | 2009-01-13 | Stc.Unm | Addressable field enhancement microscopy |
WO2007046845A2 (en) | 2005-02-28 | 2007-04-26 | The Trustees Of Boston College | Electrical detection of plasmon resonances |
US20060217594A1 (en) | 2005-03-24 | 2006-09-28 | Ferguson Gary W | Endoscopy device with removable tip |
EP1866616B1 (en) | 2005-04-05 | 2013-01-16 | The Board Of Trustees Of The Leland Stanford Junior University | Optical image processing using minimum phase functions |
EP1710565A1 (de) | 2005-04-05 | 2006-10-11 | F. Hoffmann-La Roche Ag | Mobiles optisches Diagnosesystem |
US20060239866A1 (en) | 2005-04-26 | 2006-10-26 | Drummond Scientific Company | Glass safety tube |
EP2453239B1 (en) | 2005-05-23 | 2017-04-26 | Harald F. Hess | Optical microscopy with transformable optical labels |
US7466409B2 (en) | 2005-06-08 | 2008-12-16 | California Institute Of Technology | Method and apparatus for CMOS imagers and spectroscopy |
JP5220594B2 (ja) | 2005-06-14 | 2013-06-26 | プロトクス セラピューティックス インコーポレイティッド | ポア形成修飾タンパク質を用いて良性前立腺肥大症を治療または予防する方法 |
US9354156B2 (en) | 2007-02-08 | 2016-05-31 | Emd Millipore Corporation | Microfluidic particle analysis method, device and system |
US8045002B2 (en) | 2005-07-29 | 2011-10-25 | Mitutoyo Corporation | Systems and methods for controlling strobe illumination |
US7796797B2 (en) | 2005-09-28 | 2010-09-14 | Sysmex Corporation | Apparatus for obtaining an image of a blood cell and method for obtaining an image of a blood cell |
US7731901B2 (en) | 2005-10-19 | 2010-06-08 | Abbott Laboratories | Apparatus and method for performing counts within a biologic fluid sample |
WO2007055224A1 (ja) | 2005-11-08 | 2007-05-18 | Kansai Technology Licensing Organization Co., Ltd. | 角膜疾患治療剤 |
ES2298954T3 (es) * | 2005-12-05 | 2008-05-16 | Foss Analytical A/S | Aparato y metodo para analisis espectrofotometrico. |
EP1993434A2 (en) | 2006-03-10 | 2008-11-26 | Hadas Lewy | Automated sampling and analysis using a personal sampler device |
CN101405084B (zh) | 2006-03-20 | 2011-11-16 | 皇家飞利浦电子股份有限公司 | 用于电子微流体设备的系统级封装台 |
NZ571425A (en) | 2006-03-24 | 2011-09-30 | Advanced Animal Diagnostics | Microfluidic chamber assembly for mastitis assay with wedge shaped chamber |
GB0606788D0 (en) | 2006-04-03 | 2006-05-10 | Ind Co Ltd | Confocal microscopy |
US7968833B2 (en) | 2006-04-26 | 2011-06-28 | National University Corporation NARA Institute of Science and Technology | Image sensor with optical and electrical measurement functions |
US7768654B2 (en) | 2006-05-02 | 2010-08-03 | California Institute Of Technology | On-chip phase microscope/beam profiler based on differential interference contrast and/or surface plasmon assisted interference |
HU226837B1 (hu) * | 2006-05-31 | 2009-12-28 | Semmelweis Egyetem | Folyadéksugárral mûködõ deszorpciós ionizációs eljárás és eszköz |
US8004692B2 (en) | 2006-06-30 | 2011-08-23 | Chian Chiu Li | Optical interferometer and method |
CN103173346B (zh) | 2006-11-06 | 2017-04-19 | 科隆迪亚戈有限公司 | 使用结合元件用于分析的装置和方法 |
WO2008063135A1 (en) * | 2006-11-24 | 2008-05-29 | Agency For Science, Technology And Research | Apparatus for processing a sample in a liquid droplet and method of using the same |
US7719685B2 (en) | 2006-11-30 | 2010-05-18 | Chian Chiu Li | Near-field optical apparatus and method using photodetector array |
US20080144899A1 (en) | 2006-11-30 | 2008-06-19 | Manoj Varma | Process for extracting periodic features from images by template matching |
JP2008192813A (ja) | 2007-02-05 | 2008-08-21 | Fujifilm Corp | Ccd固体撮像素子 |
EP1967581B1 (en) | 2007-03-08 | 2016-08-17 | Imec | CMOS compatible method for manufacturing microneedle structures |
US8027083B2 (en) | 2007-04-20 | 2011-09-27 | International Business Machines Corporation | Contact microscope using point source illumination |
US8964020B2 (en) | 2007-04-25 | 2015-02-24 | Stc.Unm | Solid-state microscope for selectively imaging a sample |
WO2008136007A2 (en) | 2007-05-08 | 2008-11-13 | Amihay Halamish | Acquiring regions of interest at a high frame rate |
US7951345B2 (en) | 2007-06-01 | 2011-05-31 | Lary Research & Development, Llc | Useful specimen transport apparatus with integral capability to allow three dimensional x-ray images |
WO2009082523A2 (en) | 2007-09-26 | 2009-07-02 | Massachusetts Institute Of Technology | High-resolution 3d imaging of single semiconductor nanocrystals |
US8552705B2 (en) | 2007-11-09 | 2013-10-08 | St-Ericsson Sa | Lower power controller for DC to DC converters |
US7990539B2 (en) | 2008-01-03 | 2011-08-02 | Chian Chiu Li | Sensor and method utilizing multiple optical interferometers |
CN102087197B (zh) | 2009-12-08 | 2014-06-18 | 龚维燕 | 全功能血液分析仪器中库尔特微孔的共轴照明方法及其分析仪器 |
US8120783B2 (en) | 2008-02-04 | 2012-02-21 | Chian Chiu Li | Biosensing apparatus and method using optical interference |
US8325988B2 (en) | 2008-03-03 | 2012-12-04 | California Institute Of Technology | Image reconstruction by position and motion tracking |
WO2009111577A1 (en) | 2008-03-04 | 2009-09-11 | California Institute Of Technology | Methods of using optofluidic microscope devices |
US8089630B2 (en) | 2008-03-14 | 2012-01-03 | The Board Of Trustees Of The University Of Illinois | Spectral near-field optical tomography |
ES2398488T3 (es) * | 2008-03-21 | 2013-03-19 | Abbott Point Of Care, Inc. | Método y aparato para determinar los índices de células sanguíneas rojas en una muestra de sangre utilizando la pigmentación intrínseca de la hemoglobina contenida en células sanguíneas rojas |
WO2009117652A1 (en) * | 2008-03-21 | 2009-09-24 | Abbott Point Of Care, Inc. | Method and apparatus for determining the hematocrit of a blood sample utilizing the intrinsic pigmentation of hemoglobin contained within the red blood cells |
JP2011516833A (ja) | 2008-03-21 | 2011-05-26 | アボット・ポイント・オブ・ケア | 蛍光消光及び/又は蛍光退色を用いて個々の細胞又は粒状物質を分析するための方法及び装置 |
JP5539958B2 (ja) * | 2008-04-02 | 2014-07-02 | アボット ポイント オブ ケア インコーポレイテッド | 薄膜状体液試料において実施される血清学的凝集イムノアッセイ及び他のイムノアッセイのための方法 |
CN101561443B (zh) | 2008-04-15 | 2013-08-21 | 深圳迈瑞生物医疗电子股份有限公司 | 五分类白细胞模拟物粒子、其制备方法以及含该模拟粒子的质控物和校准物 |
US9602777B2 (en) | 2008-04-25 | 2017-03-21 | Roche Diagnostics Hematology, Inc. | Systems and methods for analyzing body fluids |
US9017610B2 (en) | 2008-04-25 | 2015-04-28 | Roche Diagnostics Hematology, Inc. | Method of determining a complete blood count and a white blood cell differential count |
CN102176864B (zh) | 2008-08-07 | 2014-12-31 | 马萨诸塞大学 | 分光镜传感器 |
JP5056709B2 (ja) | 2008-10-03 | 2012-10-24 | 凸版印刷株式会社 | 固体撮像素子の製造方法 |
US8372726B2 (en) | 2008-10-07 | 2013-02-12 | Mc10, Inc. | Methods and applications of non-planar imaging arrays |
US20120231533A1 (en) | 2008-10-28 | 2012-09-13 | Holl Mark R | Device and method for the study of cell and tissue function |
US8457440B1 (en) | 2009-01-27 | 2013-06-04 | Axsun Technologies, Inc. | Method and system for background subtraction in medical optical coherence tomography system |
US8419623B2 (en) | 2009-01-28 | 2013-04-16 | Cani Optical Systems, Llc | Portable endoscope for diverse medical disciplines |
JP5670052B2 (ja) | 2009-03-26 | 2015-02-18 | シスメックス株式会社 | 血液分析装置、血液分析方法及びコンピュータプログラム |
KR101565750B1 (ko) | 2009-04-10 | 2015-11-05 | 삼성전자 주식회사 | 고감도 이미지 센서 |
US8310022B2 (en) | 2009-06-03 | 2012-11-13 | Sargent Edward H | Photoconductive materials and devices with internal photoconductive gain |
US20120224053A1 (en) | 2009-06-17 | 2012-09-06 | Board Of Regents, The University Of Texas System | Method and apparatus for quantitative microimaging |
JP5219937B2 (ja) | 2009-06-22 | 2013-06-26 | 中国電力株式会社 | 改良土の供試体をキャッピングする方法、及びこの方法に用いる補助具 |
US8570370B2 (en) | 2009-08-31 | 2013-10-29 | Bio-Rad Laboratories, Inc. | Compact automated cell counter |
WO2011033513A1 (en) | 2009-09-16 | 2011-03-24 | Medigus Ltd. | Small diameter video camera heads and visualization probes and medical devices containing them |
WO2011041407A1 (en) | 2009-09-29 | 2011-04-07 | Research Triangle Institute, International | Quantum dot-fullerene junction optoelectronic devices |
FR2951542B1 (fr) | 2009-10-16 | 2011-12-02 | Commissariat Energie Atomique | Procede de detection optique d'objets micrometriques en solution |
EP3136079B1 (en) * | 2009-10-20 | 2020-02-12 | The Regents of The University of California | Incoherent lensfree cell holography and microscopy on a chip |
US9075225B2 (en) | 2009-10-28 | 2015-07-07 | Alentic Microscience Inc. | Microscopy imaging |
US20140152801A1 (en) | 2009-10-28 | 2014-06-05 | Alentic Microscience Inc. | Detecting and Using Light Representative of a Sample |
US8584703B2 (en) * | 2009-12-01 | 2013-11-19 | Integenx Inc. | Device with diaphragm valve |
US8748186B2 (en) | 2009-12-22 | 2014-06-10 | Abbott Laboratories | Method for performing a blood count and determining the morphology of a blood smear |
ES2438841T3 (es) | 2009-12-31 | 2014-01-20 | Abbott Point Of Care, Inc. | Método y aparato para determinar el volumen celular medio de los glóbulos rojos en la sangre |
US20110190613A1 (en) | 2010-01-11 | 2011-08-04 | O2 Medtech, Inc., | Hybrid spectrophotometric monitoring of biological constituents |
EP2550522B1 (en) | 2010-03-23 | 2016-11-02 | California Institute of Technology | Super resolution optofluidic microscopes for 2d and 3d imaging |
JP5663089B2 (ja) | 2010-08-05 | 2015-02-04 | アボット ポイント オブ ケア インコーポレイテッド | 顕微鏡画像からの自動全血試料分析のための方法および装置 |
US9643184B2 (en) | 2010-10-26 | 2017-05-09 | California Institute Of Technology | e-Petri dishes, devices, and systems having a light detector for sampling a sequence of sub-pixel shifted projection images |
US8454908B2 (en) * | 2010-11-10 | 2013-06-04 | Constitution Medical, Inc. | Automated systems and methods for preparing biological specimens for examination |
WO2012094523A2 (en) | 2011-01-06 | 2012-07-12 | The Regents Of The University Of California | Lens-free tomographic imaging devices and methods |
CN111610138B (zh) | 2011-04-15 | 2023-06-09 | 罗氏血液诊断股份有限公司 | 测量细胞体积和成份 |
CN103930762B (zh) | 2011-06-17 | 2018-03-20 | 罗氏血液诊断股份有限公司 | 用于样本显示与查看的系统和方法 |
DE102011117228A1 (de) | 2011-10-28 | 2013-05-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Mikroskopiesystem zur Zustandsbestimmung von Zellen |
US9715099B2 (en) | 2011-11-07 | 2017-07-25 | The Regents Of The University Of California | Maskless imaging of dense samples using multi-height lensfree microscope |
US10549271B2 (en) | 2011-11-16 | 2020-02-04 | Leica Biosystems Melbourne Pty Limited | Cover member, method and treatment module for treating a biological sample on a substrate |
DE102012101377B4 (de) * | 2012-02-21 | 2017-02-09 | Leica Biosystems Nussloch Gmbh | Verfahren bei der Vorbereitung von Proben zum Mikroskopieren und Vorrichtung zum Überprüfen der Eindeckqualität von Proben |
FR2987922B1 (fr) * | 2012-03-06 | 2014-04-18 | Commissariat Energie Atomique | Procede et dispositif de comptage d'objets |
US20140002662A1 (en) | 2012-06-22 | 2014-01-02 | E. Neil Lewis | Particle characterization |
US8741232B2 (en) | 2012-09-05 | 2014-06-03 | Faxitron Bioptics, Llc | Specimen imaging device and methods for use thereof |
CN104641227B (zh) | 2012-09-19 | 2016-10-05 | 松下健康医疗控股株式会社 | 生物传感器及生物传感器的制造方法 |
EP2954310B1 (en) | 2013-02-06 | 2024-01-03 | Alentic Microscience Inc. | Detecting and using light representative of a sample |
US10502666B2 (en) | 2013-02-06 | 2019-12-10 | Alentic Microscience Inc. | Sample processing improvements for quantitative microscopy |
US9304280B2 (en) | 2013-03-14 | 2016-04-05 | The Regents Of The University Of Michigan | Compact lens system and array |
CA2953620C (en) | 2013-06-26 | 2020-08-25 | Alentic Microscience Inc. | Sample processing improvements for microscopy |
CA3158669A1 (en) | 2013-12-17 | 2015-06-25 | Alentic Microscience Inc. | Dosimeters including lensless imaging systems |
WO2016141487A1 (en) | 2015-03-10 | 2016-09-15 | Alentic Microscience Inc. | Sample processing improvements for quantitative microscopy |
WO2018084280A1 (ja) * | 2016-11-07 | 2018-05-11 | 富士フイルム株式会社 | 光吸収体含有フィルムおよびバックライトユニット |
EP3340204B1 (en) | 2016-12-22 | 2019-03-20 | Urban Software Institute GmbH | Computer system and method for determining reliable vehicle control instructions |
-
2014
- 2014-06-25 CA CA2953620A patent/CA2953620C/en active Active
- 2014-06-25 CN CN201480047483.9A patent/CN105765440B/zh active Active
- 2014-06-25 WO PCT/CA2014/050610 patent/WO2014205576A1/en active Application Filing
- 2014-06-25 EP EP14817587.0A patent/EP3014330B1/en active Active
- 2014-06-25 CA CA3080335A patent/CA3080335C/en active Active
- 2014-06-25 CN CN201910089876.0A patent/CN110058005A/zh active Pending
- 2014-06-25 JP JP2016522155A patent/JP2016531282A/ja active Pending
- 2014-06-25 US US14/314,743 patent/US9518920B2/en active Active
-
2016
- 2016-11-23 US US15/360,724 patent/US9989750B2/en active Active
-
2018
- 2018-06-01 US US15/995,598 patent/US10459213B2/en active Active
-
2019
- 2019-01-30 JP JP2019014120A patent/JP6918852B2/ja active Active
- 2019-06-27 US US16/455,539 patent/US10809512B2/en active Active
- 2019-06-27 US US16/455,482 patent/US10746979B2/en active Active
-
2020
- 2020-08-17 US US16/995,271 patent/US20200379234A1/en not_active Abandoned
-
2022
- 2022-03-16 US US17/696,704 patent/US11874452B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3447863A (en) * | 1966-07-11 | 1969-06-03 | Sodell Research & Dev Co | Method for preparing a slide for viewing |
EP0321889A2 (en) * | 1987-12-22 | 1989-06-28 | Board Of Regents, The University Of Texas System | Methods and apparatus for quantifying components in liquid samples |
US6302985B1 (en) * | 1996-12-18 | 2001-10-16 | Kabushiki Kaisha Tiyoda Seisakusho | Method of adhering cover glass and cover glass adhering device |
CN101203596A (zh) * | 2005-04-21 | 2008-06-18 | 塞莱勒斯诊断公司 | 用于自动快速免疫组织化学的并行处理流体方法和设备 |
US20110181884A1 (en) * | 2008-03-04 | 2011-07-28 | California Institute Of Technology | Optofluidic microscope device with photosensor array |
CN102470403A (zh) * | 2009-07-27 | 2012-05-23 | 韦尔泰克有限公司 | 推进工具 |
CN102713720A (zh) * | 2009-10-28 | 2012-10-03 | 阿兰蒂克微科学股份有限公司 | 显微成像 |
CN102687023A (zh) * | 2009-11-13 | 2012-09-19 | 文塔纳医疗系统公司 | 用于可调容纳体积的薄膜处理装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2016531282A (ja) | 2016-10-06 |
EP3014330A1 (en) | 2016-05-04 |
JP6918852B2 (ja) | 2021-08-11 |
EP3014330A4 (en) | 2017-03-01 |
CN105765440A (zh) | 2016-07-13 |
US10459213B2 (en) | 2019-10-29 |
CA2953620C (en) | 2020-08-25 |
US20190317309A1 (en) | 2019-10-17 |
CA3080335C (en) | 2023-06-13 |
EP3014330B1 (en) | 2024-01-03 |
US20170075099A1 (en) | 2017-03-16 |
US10746979B2 (en) | 2020-08-18 |
CA2953620A1 (en) | 2014-12-31 |
US9518920B2 (en) | 2016-12-13 |
US20220206282A1 (en) | 2022-06-30 |
WO2014205576A1 (en) | 2014-12-31 |
CN105765440B (zh) | 2020-08-18 |
US20180284416A1 (en) | 2018-10-04 |
CA3080335A1 (en) | 2014-12-31 |
US20150002834A1 (en) | 2015-01-01 |
US20200379234A1 (en) | 2020-12-03 |
JP2019090825A (ja) | 2019-06-13 |
US11874452B2 (en) | 2024-01-16 |
US10809512B2 (en) | 2020-10-20 |
US20190324258A1 (en) | 2019-10-24 |
US9989750B2 (en) | 2018-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110058005A (zh) | 用于显微的样品处理改进 | |
US10627390B2 (en) | Method for imaging biologic fluid samples using a predetermined distribution | |
JP6750033B2 (ja) | 顕微鏡検査のための試料処理 | |
US9523670B2 (en) | Method and apparatus for determining hemoglobin based parameters in an unlysed blood sample | |
US20130169948A1 (en) | Method for rapid imaging of biologic fluid samples | |
KR20190015763A (ko) | 미세유체기술을 이용한 휴대용 세포 검출 및 분석 방법 및 시스템 | |
US20070229823A1 (en) | Determination of the number concentration and particle size distribution of nanoparticles using dark-field microscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40005941 Country of ref document: HK |
|
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190726 |
|
RJ01 | Rejection of invention patent application after publication |