US7009172B2 - Method and apparatus for imaging using continuous non-raster patterns - Google Patents
Method and apparatus for imaging using continuous non-raster patterns Download PDFInfo
- Publication number
- US7009172B2 US7009172B2 US10/795,205 US79520504A US7009172B2 US 7009172 B2 US7009172 B2 US 7009172B2 US 79520504 A US79520504 A US 79520504A US 7009172 B2 US7009172 B2 US 7009172B2
- Authority
- US
- United States
- Prior art keywords
- probe
- field
- sample area
- specimen
- image data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q10/00—Scanning or positioning arrangements, i.e. arrangements for actively controlling the movement or position of the probe
- G01Q10/04—Fine scanning or positioning
- G01Q10/06—Circuits or algorithms therefor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70383—Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
- G03F7/704—Scanned exposure beam, e.g. raster-, rotary- and vector scanning
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
- G02B21/0036—Scanning details, e.g. scanning stages
Definitions
- This invention relates to the field of scanning microscopy where a specimen is scanned using non-raster, continuous-spiral patterns with particular applications in laser scanning confocal microscope systems as well as beam projection systems.
- a specimen is scanned with a probe by moving a specimen relative to a stationary beam or by moving a beam relative to a stationary specimen.
- a spinning disk containing an array of apertures can be placed between the light source and the specimen so that regions of the specimen are illuminated in a patterned and sequential manner.
- One objective of laser scanning confocal microscopy is to realize diffraction limited spatial resolution through the use of strategically placed apertures.
- the typical pattern to perform this operation is in the form of a raster pattern or 2-dimensional grid produced by rapidly scanning along a straight line in one axis (X direction), then moving the beam one grid location in the orthogonal axis (Y direction), followed by a scan along a parallel straight line in the X axis (in either the forward or reverse direction).
- X direction straight line in one axis
- Y direction orthogonal axis
- Y direction orthogonal axis
- a scan along a parallel straight line in the X axis in either the forward or reverse direction.
- An inefficiency of the current technique is caused by the fact that beam-directing devices with inertia cannot instantaneously start or stop their movements. At the end of each line segment, the beam must be directed to retrace or turn around in order to initiate the scanning of a new line. During this time, no useful data are collected. This retrace or turn around time ultimately limits the temporal resolution (i.e. the number of images that can be collected per unit time).
- the greatest scan rates achieved with this approach have yielded acquisition rates on the order of 30 frames/sec for images containing 512 ⁇ 512 pixels or less. Higher rates can be achieved by decreasing the dimensions of the scanned region.
- acousto-optical beam deflector (AOD) devices which do not have any moving mechanical parts, have been implemented as beam-steering devices to increase scan speeds.
- AOD acousto-optical beam deflector
- this approach is limited by the small deflection angles and the optical properties of AOD devices.
- light at different wavelengths is deflected at different angles. Consequently, it is difficult to illuminate the same spot in the specimen simultaneously with different wavelengths of light, and in the case of fluorescence microscopy, light coming from the specimen does not move along the same path as light directed toward the specimen after passing through the AOD.
- AOD devices are typically not placed in the path of light coming from the specimen and it is not possible to focus light emanating from the image plane in the specimen at a pinhole placed in front of the detector, as is required for true confocal microscopy. Instead, light is often passed through a slit, which permits more out-of-focus light to reach the detector. In this approach, optical performance is sacrificed for speed.
- U.S. Pat. Nos. 6,606,153 and 6,271,916 to Marxer et al. describe a system for surface inspection in which an object is moved in a spiral pattern. The purpose for this movement is to minimize the distance traveled when inspecting circular wafers and to simplify the optical arrangement to detect scattered light.
- the system is not designed for gathering images at high frame rates and, in general, any system that moves an object solely by moving a stage results in scanning that is considerably slower than one that involves steering a beam.
- the present invention utilizes non-raster scanning patterns to perform rapid probe steering and data collection within imaging devices such as scanning microscopes or beam projection systems such as those used to perform maskless lithography.
- imaging devices such as scanning microscopes or beam projection systems such as those used to perform maskless lithography.
- waveforms to direct probe-steering devices in each spatial dimension that are primarily sinusoidal in nature, continuous spiral scanning patterns are generated with a number of advantages.
- An object of the present invention is to optimize the rate of scanning and/or data collection by increasing the number of data points and/or the number of frames projected or acquired per unit time. In confocal microscopy applications, these high scan rates can be attained without sacrificing the ability to achieve diffraction-limited spatial resolution.
- the present invention also produces smooth movements to maximize performance and reduce wear and tear on electromechanical scanning devices.
- the present invention also allows for software-controlled location (i.e.
- the present invention also optimizes the spatial accuracy of the assignment of pixel locations.
- the present invention also allows the user to select from a continuous scale between temporal versus spatial resolutions.
- the present invention also facilitates automated, intelligent probe-steering control in a repeated fashion since the start and end points of each scan are near the same location.
- the scanning pattern utilizes an Archimedes' spiral that begins at a central location and spirals out to a desired radius. The beam direction is then turned around and the spiral is connected in a continuous fashion to a second Archimedes' spiral that spirals inward, filling the gap approximately midway between lines generated by the first spiral. The pattern terminates at the central location where the process can be repeated without interruption in the gathering of data.
- the scanning pattern utilizes an Archimedes' spiral that spirals out to a specified radius. The pattern then, without changing direction, continuously spirals inward to the center where the sequence can be re-initiated. For maximum temporal resolution during imaging, data gathered during the outward and inward spirals can be used to generate separate frames or images.
- the outcome is a class of spiral scanning patterns that minimize accelerations needed to produce scanned images and generate serial data streams in which little or no time is lost projecting to, or collecting from, unwanted regions.
- the present invention can incorporate substantially rectangular spiral patterns, where portions of the spiral pattern are distorted to provide a larger useable area than a round spiral pattern.
- Techniques of the present invention can be applied to a variety of other projection or probe devices where beam-steering and/or scanning is performed in a point-by-point (i.e. serial) fashion.
- the beam can be both rapidly steered and modulated in intensity.
- the beam of energy or particles can be made to spiral during data collection.
- the stage is maintained stationary and a mechanical probe is moved using spiral patterns.
- the beam or probe remains stationary and the stage affixed to the sample is moved in a spiral pattern. Embodiments of the present invention combine of these controls in different spatial dimensions.
- FIG. 1 shows a moderate spatial resolution spiral pattern with approximately 1000 points and a single turnaround region where filled diamond symbols represent the locations of individual samples collected at a constant temporal rate;
- FIGS. 2A and 2B show X and Y control signals used to generate the spiral in FIG. 1 ;
- FIG. 3A–3C show an alternative continuous spiral patterns with no turnaround region where filled diamond symbols represent the locations of sample points
- FIGS. 4A and 4B show X and Y control signals used to generate the spiral in FIG. 3 ;
- FIG. 5 shows the sample locations of a spiral data acquisition sequence
- FIG. 6 shows an image of a fluorescent pollen grain generated by mapping spiral data points of FIG. 5 to a raster image
- FIGS. 7A and 7B show images of fluorescent pollen grains collected using higher temporal resolution (10 spiral rotations, FIG. 7A ) versus higher spatial resolution (40 spiral rotations, FIG. 7B );
- FIG. 8 illustrates a non-raster scanning pattern having rounded corners
- FIGS. 9A and 9B illustrate x and y control signals for generating the scanning pattern shown in FIG. 8 ;
- FIGS. 10A and 10B show the overall amplitudes of X and Y control signals
- FIGS. 11A and 11B show acceleration of X and Y control signals
- FIGS. 12A and 12B illustrate rectangular areas covered by round versus square spiral patterns
- FIG. 13 shows in block diagram form a general hardware arrangement and flow of information during spiral imaging
- FIG. 14 shows in flow diagram form an execution sequence for data acquisition and display in an embodiment of the present invention.
- elliptical patterns are formed as characterized by Lissajous patterns. If the same frequency is used to control X and Y movements with a phase difference between the sinusoids of 90°, a circle is produced. In order to produce a pattern of nearly sinusoidal waveforms in which a two-dimensional area is scanned, the radius of the circle can be made to vary continuously, but slowly.
- spiral patterns can be employed in order to efficiently scan a two dimensional field of view. Most differences among patterns arise in the manner in which sequential spirals are combined to produce continuous waveforms and uniform spatial coverage while simultaneously minimizing accelerations (particularly peak acceleration).
- FIG. 1 One example of a coupled spiral pattern is shown in FIG. 1 , in which there is an outward spiral, followed by an inward spiral midway between the line segments generated by the outward spiral (mathematically performed by offsetting the outward spiral one-half rotation compared to the inward spiral).
- the two spirals are connected by a single turn-around region where peak accelerations are generated.
- commonly employed raster scans require two turnaround regions per line segment where a typical image might consist of approximately 500 lines (1,000 turnarounds/frame).
- FIG. 1 generates a single turnaround per frame.
- samples are collected when the beam is located at the positions represented by the filled diamond symbols. Except for the turnaround region 10 , the spatial area covered during each sample period is approximately the same throughout the field of view. Sample areas are also distributed uniformly throughout the roughly circular field of view. Together, these attributes produce one objective of the present invention: uniform coverage of the field of view with equal beam dwell time in each region. In confocal microscopy applications, uneven dwell times could cause non-uniform photo-bleaching of a specimen; and in lithography applications could cause non-uniform chemical properties of a photo-resistive coating.
- FIGS. 2A and 2B illustrate the X and Y control signals used to generate the spiral in FIG. 1 .
- These typically are voltages (or currents) generated by a digital-to-analog interface within a computer and applied to electromechanical beam-steering devices. Except for the turnaround region at the mid-point of the traces, waveforms consist of slowly varying, amplitude- and frequency-modulated sinusoidal waveforms.
- FIGS. 3A–3C shows an alternative continuous spiral pattern in which there are no turnaround regions.
- the scanning pattern spirals out to a specified radius and, without changing direction, continuously spirals inward to the center where the sequence can be re-initiated.
- Separate images can be generated from the inward and outward spirals ( FIGS. 3A and 3B ).
- This pattern and sequence is optimum for the highest frame rates.
- a minor disadvantage of this method is that the positions of the spiral data set for all even numbered frames differ somewhat from sample positions for odd numbered frames. This can be avoided by computing a single frame from the combination of inward and outward spiral samples ( FIG. 3C ) at the expense of halving the maximum frame rate.
- FIGS. 4A and 4B respectively, show the X and Y control signals used to generate the spiral pattern illustrated in FIG. 3 .
- Control signals typically consist of slowly varying, amplitude- and frequency-modulated sinusoidal waveforms optimized for driving beam-steering devices at high frequencies.
- a range can be established.
- a value of t midway between the two end-points of the range can then be tested using the formula for distance above.
- the range can be divided in half, based on whether the distance is greater than or less than the desired separation. This binary-search process can be repeated until a desired accuracy is achieved.
- Beam modulation can be performed in a variety of ways (e.g. shutter, AOD) where electronic modulation of modem solid state lasers provides an ideal method for pattern projection. Modulation can be on/off or in a continuous (i.e. analog) mode to produce precise intensity control. By separately modulating and combining multiple beams with different wavelengths, it is also possible to project multi-colored displays. Data acquisition at each spiral location can also involve simultaneously acquiring multiple display images. Data acquisition can include intensity values at different wavelengths (e.g. using optical filters) or some other attribute of the acquired signals (e.g. polarization properties, time delay between excitation and emission during fluorescence lifetime measurements).
- FIG. 5 A practical consideration in order to generate images (e.g. on a computer screen) arises from the fact that sampled data from spiral patterns are generally not aligned with the two-dimensional grid or “raster” structure of most display devices.
- the requirement to map samples collected in a spiral pattern to a raster space is illustrated in FIG. 5 .
- a fluorescently- labeled pollen grain FIG. 6 was sampled at the spiral locations represented by filled diamonds 20 in FIG. 5 .
- One method to translate between the spiral data set and a two-dimensional grid of pixels appropriate for display devices such as computer monitors and television screens is to use a weighted average of nearest sample points. This can be implemented by finding the “n” nearest sampled (i.e. spiral) data points to each two-dimensional display pixel. By weighting the spiral data points (e.g. inversely proportional) to the distance between the location of the spiral point and the location of the display pixel an accurate representation of the spiral data with smooth transitions in the grid display can be generated. Proper weighting also includes ensuring that the sum of the weighting factors at each location is equal to 1, or some constant value if contrast gain is desired. For example, we have found that using 4–5 nearest points produces adequate images. The mapping of data samples collected at locations 20 in FIG. 5 to raster pixels illustrated in FIG. 6 was performed using this method.
- a second general method to map a spiral data set to a two-dimensional display is by finding the “n” nearest two-dimensional display pixels to each sampled (i.e. spiral) data point.
- the influence of each newly acquired sample on nearby raster pixels can be weighted (e.g. inversely proportional) to the distance between the location of the spiral point and the location of the display pixel.
- the time since pixels were last updated can be taken into account.
- a significant advantage of schemes to map spiral data to raster images is the fact that the number of “spiral” data points sampled can be independent of the number of display pixels. If high temporal resolution (i.e. a high frame rate) is desired, then a small number of data points along the spiral pattern can produce a roughly uniform distribution of samples within an approximately circular field of view. If high spatial resolution is desired, then more spirals as well as more data points along the spirals can be selected. When tracking rapid dynamic behaviors or making comparisons with spatial-temporal mathematical models, the spiral pattern can be used to select just enough spatial resolution while maximizing temporal resolution.
- the number of sample points per image and frame rate can be chosen to be any values on a continuous scale (i.e. single points can be added or subtracted). Maximum values are governed only by sinusoidal scanning frequency and signal gathering limitations, not by the characteristics of display devices.
- Another significant advantage of the spiral method is the use of the actual position feedback signal from the electromechanical scanning device to dictate the (x,y) position of each sample collected. This is particularly important at higher frame rates when there are larger differences between command voltages and actual position (as measured using a position sensor). Any changes in the performance of scanning devices, such as those that often occur running at different frequencies or due to changes in temperature or wear, can be bypassed using the position feedback signal. Corrections can also be included for spatial aberrations generated by lenses or other components of the beam pathways.
- Using the spiral method with position feedback there is no longer a requirement to have precise control over the time or locations of data samples to correspond to exact grid positions. Every position within every frame is determined (and can be adjusted on a continuous scale) on a sample-by-sample basis. Consequently, it is not necessary to generate a pixel clock signal to control data acquisition, nor is it necessary to discard data obtained during periods of nonlinear velocities, such as occur during the turn-around intervals of a raster scanning system.
- the spiral pattern approach allows magnification (i.e. by controlling the spiral radius), X-Y location (i.e. by adding offsets), spatial resolution (i.e. number of samples per spiral and number of spirals) and temporal resolution (i.e. by controlling the number of samples and sample rate) to all be implemented under software control. Switching any of these characteristics can be performed rapidly; for example, to “zoom in” during the tracking of quickly moving or dynamically changing (or combinations of both) objects within a field of view.
- the ability to acquire images at a high frame rate and/or to adjust spatial resolution within selected regions of a field of view is a crucial element of imaging systems designed to track high velocity missiles or dynamically changing particles. As an example, FIGS.
- FIG. 7A and 7B illustrate images that have been collected using different spiral resolutions and different frame rates.
- a decreased number of spirals allows higher frame rates to be achieved ( FIG. 7A ) whereas an increased number of spirals generates higher spatial resolution within each image ( FIG. 7B ).
- non-raster patterns can be used in alternative embodiments of the present invention.
- the p (or power) term in equation 3 below can be set to a value between 0 and 1.
- x a ⁇ t ⁇ sin p ( t )
- y a ⁇ t ⁇ cos p ( t )
- Both x and y accelerations (related to ⁇ ( ⁇ x) and ⁇ ( ⁇ y), respectively, see FIG. 12B ) increase somewhat in regions near the rounded corners, but in may cases, these can be maintained within the performance specifications of beam steering devices.
- FIG. 8 shows an outward spiral (inward spiral removed for clarity) where sine and cosine terms are raised to the power 0.7.
- Individual x and y control signals are shown in FIGS. 9A and 9B .
- the pattern maintains uniform spacing, but fills in the corners of a square field-of-view. Because of the uniform distance between samples, the overall amplitudes of ⁇ x and ⁇ y ( FIGS. 10A and 10B ) are independent of frequency. In this class of patterns, there is an increased (but manageable, particularly in the region of the outer spirals) acceleration (i.e. proportional to ⁇ ( ⁇ x) and ⁇ ( ⁇ x), shown in FIGS. 11A and 11B ) in the corner regions.
- FIGS. 12A and 12B illustrate useable rectangular areas covered by round ( FIG. 12A ) versus “square” ( FIG. 12B ) spiral patterns. Both of the spiral patterns of FIGS. 12 A and 12 B)contains 18 revolutions reaching the same radius.
- the useable rectangular area of the square spiral in FIG. 12B is 30% greater than the round spiral in FIG. 12A .
- FIG. 13 illustrates an exemplary, overall arrangement of hardware and flow of data during spiral imaging.
- Embodiments utilizing the hardware arrangement shown in FIG. 13 can include confocal laser-scanning microscopes, near field microscopes, and atomic force microscopes.
- spiral patterns are computed and sent to a scan device via digital-to-analog converter 100 .
- the actual position coordinates of the scanning device can be fed back to the computer via an analog-to-digital converter 102 for use in generating display images.
- Scan device 104 moves a probe, such as a beam and/or the sample 108 according to the computed spiral command signals.
- Signals collected from the sample e.g. light
- counters 110 e.g.
- the automated scheme can be implemented in a variety of imaging devices that are capable of deflecting a beam or probe, or moving a stage using spiral patterns.
- Intensity (e.g. light) signals are registered with the position coordinates (either command or feedback) to generate raw data sets for storage and/or display.
- Raw spiral data sets can be displayed on a raster terminal using a weighed averaging scheme, as described above. Images, displayed 112 either singly or as a video sequences, show a roughly circular (reflecting the spiral pattern) field of view.
- FIG. 14 shows an overall flow diagram of an algorithm capable of generating spiral control signals, acquiring/storing spiral image data and displaying spiral data on a conventional (raster) monitor.
- the algorithm can use different techniques (as described above) to map spiral data to raster images depending on the need for high display frame rates (e.g. during on-line monitoring) or for image accuracy (e.g. during off-line display).
- the spiral approach can be used for fluorescence imaging involving single photon activation, where descanning of the collected light is required for confocal imaging, or using multi-photon activation where descanning of the emitted light is not necessary.
- Spiral movement can be implemented using a number of beam-steering devices such as closed-loop galvanometers coupled to mirrors, piezoelectric actuated dual axis mirrors, and single- and dual-axis MEMS (microelectromechanical system) micro-mirrors.
- the sinusoidal control waveforms allow the rate and accuracy of beam-steering to be improved.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Microscoopes, Condenser (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
Δd=√{square root over ((x i −x i−1)2+(y i −y i−1)2)}{square root over ((x i −x i−1)2+(y i −y i−1)2)} (1)
If t is the independent variable and coordinate (xi−1,yi−1) has been computed as the ti−1 sample point along the spiral, then the next value ti at coordinate (xi,yi) can be computed by a successive approximation scheme. By starting at value ti−1 and initially choosing a temporary t value that is always greater than the desired separation, a range can be established. An example of a simple formula for the increment, Δt=ti−ti−1, that is approximately double the actual increment, is:
where ti−1 is expressed in rotations and Δd is the desired separation distance. A value of t midway between the two end-points of the range can then be tested using the formula for distance above. The range can be divided in half, based on whether the distance is greater than or less than the desired separation. This binary-search process can be repeated until a desired accuracy is achieved.
x=a·t·sinp(t)
y=a·t·cosp(t) (3)
The pattern at p=0 is an expanding square and p=1 has been used to compute the rounded patterns in
Claims (75)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/795,205 US7009172B2 (en) | 2003-03-06 | 2004-03-04 | Method and apparatus for imaging using continuous non-raster patterns |
EP04718123A EP1604190A4 (en) | 2003-03-06 | 2004-03-05 | Method and apparatus for imaging using contunuous non-raster patterns |
JP2006509233A JP2006520022A (en) | 2003-03-06 | 2004-03-05 | Method and apparatus for imaging using a continuous non-raster pattern |
PCT/US2004/006973 WO2004079405A2 (en) | 2003-03-06 | 2004-03-05 | Method and apparatus for imaging using contunuous non-raster patterns |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US45269403P | 2003-03-06 | 2003-03-06 | |
US10/795,205 US7009172B2 (en) | 2003-03-06 | 2004-03-04 | Method and apparatus for imaging using continuous non-raster patterns |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040217270A1 US20040217270A1 (en) | 2004-11-04 |
US7009172B2 true US7009172B2 (en) | 2006-03-07 |
Family
ID=33313322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/795,205 Expired - Fee Related US7009172B2 (en) | 2003-03-06 | 2004-03-04 | Method and apparatus for imaging using continuous non-raster patterns |
Country Status (4)
Country | Link |
---|---|
US (1) | US7009172B2 (en) |
EP (1) | EP1604190A4 (en) |
JP (1) | JP2006520022A (en) |
WO (1) | WO2004079405A2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080025462A1 (en) * | 2004-05-20 | 2008-01-31 | Sutko John L | Photon Event Distribution Sampling Apparatus and Method |
US20080123169A1 (en) * | 2004-03-08 | 2008-05-29 | Board Of Regents Of The University And Community C | Method and Apparatus for Two-Axis, High-Speed Beam Steering |
US20090116707A1 (en) * | 2004-05-20 | 2009-05-07 | Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, | Discrete event distribution sampling apparatus and methods |
DE102008020889A1 (en) | 2008-04-22 | 2009-11-05 | Nanolit Gmbh | Method and apparatus for volumetric scanning |
US20110096157A1 (en) * | 2009-10-28 | 2011-04-28 | Alan Marc Fine | Microscopy imaging |
US9075225B2 (en) | 2009-10-28 | 2015-07-07 | Alentic Microscience Inc. | Microscopy imaging |
US9586817B2 (en) | 2011-07-28 | 2017-03-07 | Seagate Technology Llc | Semi-auto scanning probe microscopy scanning |
DE102016211126A1 (en) * | 2016-06-22 | 2017-12-28 | Osram Opto Semiconductors Gmbh | Measuring device for flat samples and methods for measuring |
US9989750B2 (en) | 2013-06-26 | 2018-06-05 | Alentic Microscience Inc. | Sample processing improvements for microscopy |
US10437038B2 (en) | 2015-02-20 | 2019-10-08 | Max-Planck-Geselleschaft Zur Foerderung Der Wissenschaften E.V. | Device and method for creating an optical tomogram of a microscopic sample |
US10502666B2 (en) | 2013-02-06 | 2019-12-10 | Alentic Microscience Inc. | Sample processing improvements for quantitative microscopy |
US12022236B2 (en) | 2009-10-28 | 2024-06-25 | Alentic Microscience Inc. | Detecting and using light representative of a sample |
EP4435490A1 (en) * | 2023-03-22 | 2024-09-25 | Abberior Instruments GmbH | Method, minflux microscope and computer program for locating or tracking emitters |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4765667B2 (en) * | 2006-02-27 | 2011-09-07 | ブラザー工業株式会社 | Image processing program and image processing apparatus |
US7406860B2 (en) | 2006-04-28 | 2008-08-05 | Seagate Technology Llc | Atomic force microscopy scanning and image processing |
EP1895347A1 (en) * | 2006-09-01 | 2008-03-05 | Universität Zürich | Scanning-microscope and method for operating a scanning-microscope |
WO2008153836A2 (en) * | 2007-05-31 | 2008-12-18 | President And Fellows Of Harvard College | Target-locking acquisition with real-time confocal (tarc) microscopy |
FR2941787B1 (en) * | 2009-02-04 | 2011-04-15 | Ecole Polytech | METHOD AND DEVICE FOR ACQUIRING SIGNALS IN LASER SCANNING MICROSCOPY. |
JP5737704B2 (en) * | 2010-09-27 | 2015-06-17 | 株式会社ライフテック | Fluorescent single particle detection method and detection system |
US9063534B2 (en) | 2010-10-13 | 2015-06-23 | Mbda Uk Limited | Workpiece positioning method and apparatus |
US20130081159A1 (en) * | 2011-07-29 | 2013-03-28 | Seagate Technology Llc | Advanced atomic force microscopy scanning for obtaining a true shape |
JP2013058956A (en) * | 2011-09-09 | 2013-03-28 | Sony Corp | Information processor, information processing method, program, and information processing system |
CN104661704B (en) * | 2012-07-18 | 2017-04-12 | 普林斯顿大学托管委员会 | Multiscale spectral nanoscopy |
US9784960B2 (en) * | 2014-06-10 | 2017-10-10 | Purdue Research Foundation | High frame-rate multichannel beam-scanning microscopy |
WO2016166816A1 (en) * | 2015-04-14 | 2016-10-20 | 株式会社島津製作所 | Scanning probe microscope |
EP3125272A1 (en) * | 2015-07-29 | 2017-02-01 | FEI Company | Scan pattern in a charged particle microscope comprising nested orbital windings |
JP6423841B2 (en) | 2016-10-11 | 2018-11-14 | 浜松ホトニクス株式会社 | Sample observation apparatus and sample observation method |
US11189027B2 (en) * | 2017-05-15 | 2021-11-30 | Sigtuple Technologies Private Limited | Method and system for determining area to be scanned in peripheral blood smear for analysis |
US10979681B2 (en) * | 2018-09-13 | 2021-04-13 | Varjo Technologies Oy | Display apparatus and method of displaying using light source and beam scanning arrangement |
DE102018216038A1 (en) | 2018-09-20 | 2020-03-26 | Carl Zeiss Microscopy Gmbh | Method and device for acquiring an image of an object with a scanning microscope |
CN110275294A (en) * | 2019-06-27 | 2019-09-24 | 长春理工大学 | The lobster eye lens of Archimedes's bipitch type arrangement mode |
US20210248746A1 (en) * | 2020-02-12 | 2021-08-12 | Samantree Medical Sa | Systems and methods for imaging samples with reduced sample motion artifacts |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5865978A (en) * | 1997-05-09 | 1999-02-02 | Cohen; Adam E. | Near-field photolithographic masks and photolithography; nanoscale patterning techniques; apparatus and method therefor |
US6271916B1 (en) | 1994-03-24 | 2001-08-07 | Kla-Tencor Corporation | Process and assembly for non-destructive surface inspections |
US20010047682A1 (en) * | 1994-12-22 | 2001-12-06 | Amin Samsavar | Dual stage instrument for scanning a specimen |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3712955A (en) * | 1971-01-06 | 1973-01-23 | Photo Metrics Inc | Method and apparatus for optically scanning specimens and producing graphic records therefrom |
US3840293A (en) * | 1972-07-21 | 1974-10-08 | Gen Electric | Electronically driven spiral scan synchronous transmit-receiver laser system |
WO1997004347A1 (en) * | 1995-07-19 | 1997-02-06 | Morphometrix Technologies Inc. | Automated scanning of microscope slides |
JPH09269328A (en) * | 1996-03-29 | 1997-10-14 | Canon Inc | Scanning probe microscope |
US6967725B2 (en) * | 2000-10-13 | 2005-11-22 | Lucent Technologies Inc. | System and method for optical scanning |
-
2004
- 2004-03-04 US US10/795,205 patent/US7009172B2/en not_active Expired - Fee Related
- 2004-03-05 JP JP2006509233A patent/JP2006520022A/en active Pending
- 2004-03-05 EP EP04718123A patent/EP1604190A4/en not_active Withdrawn
- 2004-03-05 WO PCT/US2004/006973 patent/WO2004079405A2/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6271916B1 (en) | 1994-03-24 | 2001-08-07 | Kla-Tencor Corporation | Process and assembly for non-destructive surface inspections |
US6606153B2 (en) * | 1994-03-24 | 2003-08-12 | Kla-Tencor Corporation | Process and assembly for non-destructive surface inspections |
US20010047682A1 (en) * | 1994-12-22 | 2001-12-06 | Amin Samsavar | Dual stage instrument for scanning a specimen |
US20030089162A1 (en) * | 1994-12-22 | 2003-05-15 | Amin Samsavar | Dual stage instrument for scanning a specimen |
US5865978A (en) * | 1997-05-09 | 1999-02-02 | Cohen; Adam E. | Near-field photolithographic masks and photolithography; nanoscale patterning techniques; apparatus and method therefor |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080123169A1 (en) * | 2004-03-08 | 2008-05-29 | Board Of Regents Of The University And Community C | Method and Apparatus for Two-Axis, High-Speed Beam Steering |
US7796314B2 (en) | 2004-03-08 | 2010-09-14 | Board Of Regents Of The Nevada System Of Higher Education | Method and apparatus for two-axis, high-speed beam steering |
US8031926B2 (en) | 2004-05-20 | 2011-10-04 | Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno | Discrete event distribution sampling apparatus and methods |
US20090116707A1 (en) * | 2004-05-20 | 2009-05-07 | Board Of Regents Of The Nevada System Of Higher Education On Behalf Of The University Of Nevada, | Discrete event distribution sampling apparatus and methods |
US20080025462A1 (en) * | 2004-05-20 | 2008-01-31 | Sutko John L | Photon Event Distribution Sampling Apparatus and Method |
US7960702B2 (en) | 2004-05-20 | 2011-06-14 | Board of Regents of the Nevada System fo Higher Education, on behalf of the University of Nevada, Reno | Photon event distribution sampling apparatus and method |
DE102008020889A1 (en) | 2008-04-22 | 2009-11-05 | Nanolit Gmbh | Method and apparatus for volumetric scanning |
US10866395B2 (en) | 2009-10-28 | 2020-12-15 | Alentic Microscience Inc. | Microscopy imaging |
US10620234B2 (en) | 2009-10-28 | 2020-04-14 | Alentic Microscience Inc. | Microscopy imaging |
US9075225B2 (en) | 2009-10-28 | 2015-07-07 | Alentic Microscience Inc. | Microscopy imaging |
US12022236B2 (en) | 2009-10-28 | 2024-06-25 | Alentic Microscience Inc. | Detecting and using light representative of a sample |
US9720217B2 (en) | 2009-10-28 | 2017-08-01 | Alentic Microscience Inc. | Microscopy imaging |
US11947096B2 (en) | 2009-10-28 | 2024-04-02 | Alentic Microscience Inc. | Microscopy imaging |
US11635447B2 (en) | 2009-10-28 | 2023-04-25 | Alentic Microscience Inc. | Microscopy imaging |
US10114203B2 (en) | 2009-10-28 | 2018-10-30 | Alentic Microscience Inc. | Microscopy imaging |
US10345564B2 (en) | 2009-10-28 | 2019-07-09 | Alentic Microscience Inc. | Microscopy imaging |
US11294160B2 (en) | 2009-10-28 | 2022-04-05 | Alentic Microscience Inc. | Microscopy imaging |
US10900999B2 (en) | 2009-10-28 | 2021-01-26 | Alentic Microscience Inc. | Microscopy imaging |
US20110096157A1 (en) * | 2009-10-28 | 2011-04-28 | Alan Marc Fine | Microscopy imaging |
US10520711B2 (en) | 2009-10-28 | 2019-12-31 | Alentic Microscience Inc. | Microscopy imaging |
US9041790B2 (en) | 2009-10-28 | 2015-05-26 | Alentic Microscience Inc. | Microscopy imaging |
US9586817B2 (en) | 2011-07-28 | 2017-03-07 | Seagate Technology Llc | Semi-auto scanning probe microscopy scanning |
US11598699B2 (en) | 2013-02-06 | 2023-03-07 | Alentic Microscience Inc. | Sample processing improvements for quantitative microscopy |
US10502666B2 (en) | 2013-02-06 | 2019-12-10 | Alentic Microscience Inc. | Sample processing improvements for quantitative microscopy |
US10768078B2 (en) | 2013-02-06 | 2020-09-08 | Alentic Microscience Inc. | Sample processing improvements for quantitative microscopy |
US10809512B2 (en) | 2013-06-26 | 2020-10-20 | Alentic Microscience Inc. | Sample processing improvements for microscopy |
US10459213B2 (en) | 2013-06-26 | 2019-10-29 | Alentic Microscience Inc. | Sample processing improvements for microscopy |
US10746979B2 (en) | 2013-06-26 | 2020-08-18 | Alentic Microscience Inc. | Sample processing improvements for microscopy |
US9989750B2 (en) | 2013-06-26 | 2018-06-05 | Alentic Microscience Inc. | Sample processing improvements for microscopy |
US11874452B2 (en) | 2013-06-26 | 2024-01-16 | Alentic Microscience Inc. | Sample processing improvements for microscopy |
US10437038B2 (en) | 2015-02-20 | 2019-10-08 | Max-Planck-Geselleschaft Zur Foerderung Der Wissenschaften E.V. | Device and method for creating an optical tomogram of a microscopic sample |
DE102016211126A1 (en) * | 2016-06-22 | 2017-12-28 | Osram Opto Semiconductors Gmbh | Measuring device for flat samples and methods for measuring |
EP4435490A1 (en) * | 2023-03-22 | 2024-09-25 | Abberior Instruments GmbH | Method, minflux microscope and computer program for locating or tracking emitters |
WO2024194179A1 (en) * | 2023-03-22 | 2024-09-26 | Abberior Instruments Gmbh | Method, minflux microscope and computer program for locating or tracking emitters |
Also Published As
Publication number | Publication date |
---|---|
EP1604190A2 (en) | 2005-12-14 |
WO2004079405A3 (en) | 2005-09-15 |
WO2004079405A2 (en) | 2004-09-16 |
JP2006520022A (en) | 2006-08-31 |
EP1604190A4 (en) | 2010-11-03 |
US20040217270A1 (en) | 2004-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7009172B2 (en) | Method and apparatus for imaging using continuous non-raster patterns | |
EP1073926B1 (en) | Wide field of view and high speed optical scanning microscope | |
US8031926B2 (en) | Discrete event distribution sampling apparatus and methods | |
US6201639B1 (en) | Wide field of view and high speed scanning microscopy | |
US7960702B2 (en) | Photon event distribution sampling apparatus and method | |
JP4198347B2 (en) | Apparatus for beam control in a scanning microscope. | |
US7649683B2 (en) | Process for the observation of at least one sample region with a light raster microscope with linear sampling | |
CN103477209A (en) | Systems and methods for illumination phase control in fluorescence microscopy | |
JP2009075309A (en) | Optical scanning element and driving method for the same, and optical scanning probe employing optical scanning element | |
US20120019647A1 (en) | Method and configuration for the optical detection of an illuminated specimen | |
US20100314533A1 (en) | Scanning microscope and method of imaging a sample | |
US20080123169A1 (en) | Method and Apparatus for Two-Axis, High-Speed Beam Steering | |
US12092807B2 (en) | Optical system with a tilted illumination plane and method for illuminating a sample volume in an optical system with a tilted illumination plane | |
EP4025902A1 (en) | High speed scanning systems for super resolution imaging | |
EP4296750A2 (en) | Microscope device with virtual objective | |
CN114994892A (en) | Laser confocal microscopic imaging system and method | |
Loney | Scanner component and head development for confocal microscopy using moving mirror technology | |
EP3828614B1 (en) | Laser scanning microscope and method for determining a position of a fluorophore | |
JPH10221606A (en) | Scan type microscope device | |
JPH0815281A (en) | Scanning type probe microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOARD OF REGENTS OF THE UNIVERSITY AND COMMUNITY C Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PUBLICOVER, NELSON GEORGE;SUTKO, JOHN LEONARD;REEL/FRAME:015528/0358 Effective date: 20040526 |
|
AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF NEVADA RENO;REEL/FRAME:018432/0111 Effective date: 20050309 |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PATENT HOLDER CLAIMS MICRO ENTITY STATUS, ENTITY STATUS SET TO MICRO (ORIGINAL EVENT CODE: STOM); ENTITY STATUS OF PATENT OWNER: MICROENTITY |
|
REFU | Refund |
Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: R2552); ENTITY STATUS OF PATENT OWNER: MICROENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY DATA PREVIOUSLY RECORDED ON REEL 021000 FRAME 0057. ASSIGNOR(S) HEREBY CONFIRMS THE EXECUTIVE ORDER 9424, CONFIRMATORY LICENSE;ASSIGNOR:RENO, UNIVERSITY OF NEVADA;REEL/FRAME:043421/0789 Effective date: 20050309 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.) |
|
AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:BOARD OF REGENTS OF THE NEVADA SYSTEM OF HIGHER EDUCATION, ON BEHALF OF THE UNIVERSITY OF NEVADA, RENO;REEL/FRAME:044160/0852 Effective date: 20171117 |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.) |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20180307 |