CN110573256B - 样品处理系统及方法 - Google Patents

样品处理系统及方法 Download PDF

Info

Publication number
CN110573256B
CN110573256B CN201780087503.9A CN201780087503A CN110573256B CN 110573256 B CN110573256 B CN 110573256B CN 201780087503 A CN201780087503 A CN 201780087503A CN 110573256 B CN110573256 B CN 110573256B
Authority
CN
China
Prior art keywords
substrate
fluid
platform
less
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780087503.9A
Other languages
English (en)
Other versions
CN110573256A (zh
Inventor
E·埃尔根
S·康罗伊
R·E·奥斯特布罗克
C·奇鲁比尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Constitution Medical Inc
Original Assignee
F Hoffmann La Roche AG
Constitution Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG, Constitution Medical Inc filed Critical F Hoffmann La Roche AG
Publication of CN110573256A publication Critical patent/CN110573256A/zh
Application granted granted Critical
Publication of CN110573256B publication Critical patent/CN110573256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0289Apparatus for withdrawing or distributing predetermined quantities of fluid
    • B01L3/0293Apparatus for withdrawing or distributing predetermined quantities of fluid for liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/52Supports specially adapted for flat sample carriers, e.g. for plates, slides, chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • G01N1/31Apparatus therefor
    • G01N1/312Apparatus therefor for samples mounted on planar substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0822Slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00138Slides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本公开文本的特征在于用于在基底上制备样品的方法、流体输送平台及设备,该基底包括:基底处理器,其被配置为在第一位置与第二位置之间移动基底;以及平台,其被定位成使得当该基底处于该第二位置时,该平台面向该基底,其中该平台包括流体输送区域,该流体输送区域具有由亲水性材料形成的第二表面和由疏水性材料形成的第一表面,该亲水性材料的水接触角为40度或更小,该第一表面在该基底处于该第二位置时面向该基底,该疏水性材料的水接触角为100度或更大。

Description

样品处理系统及方法
相关申请的交叉引用
本申请要求于2016年12月30日提交的第62/440,847号美国临时专利申请的优先权,所述申请的全部内容通过引用方式并入本文中。
技术领域
本公开文本涉及用于诸如血液和其他生物流体之类的各种流体样品以及组织样品的样品处理系统。
背景技术
实验室技术人员多年来通过首先将样品施加到诸如显微镜载玻片之类的基底上,然后例如在显微镜下观察所制备的基底,来检查各种生物样品。由于各个技术人员的技能和经验的差异以及施加步骤的日常变化,手动施加程序的质量参差不齐。此外,在基底上手动制备生物样品相对较慢,因为它通常涉及多个劳动密集型步骤。
发明内容
本公开文本的特征在于用于在基底上自动制备样品以用于后续检查、分类及诊断操作的系统及方法。通常,样品被施加到诸如显微镜载玻片或盖玻片之类的基底。一旦施加,就通过将基底上的样品暴露于各种附加的处理步骤来进一步处理样品,其中一些或所有的处理步骤涉及将流体施加到样品上。这些附加的处理步骤以自动方式执行以确保制备的样品之间的均匀性和一致性比原本经由手动制备可能得到的均匀性和一致性更高。处理步骤的自动化还可以实现比原本经由手动处理可能得到的生产量更高的生产量,由此通过减少所需要的人工劳动量来降低样品处理的成本。
本文公开的系统及方法总体上用于将样品施加到基底以供进一步分析。可以施加于基底的样品包括例如含有红细胞、白细胞和血小板的血液样品。此外,还可以将包括红细胞和/或白细胞和/或血小板的其他生物样品(诸如骨髓、尿液、阴道组织、上皮组织、肿瘤、精液以及唾液)施加于基底。可以施加到基底并且可以包含感兴趣的细胞的其他流体包括但不限于脑脊髓液(CSF)、包括胸膜液的浆液、腹膜液(例如,由于诸如腹水之类的病情引起的)、心包液、滑液以及持续性非卧床腹膜透析(CAPD)液。不含细胞但也可以施加于基底的流体包括但不限于血浆和血清。
本文公开的系统及方法还可以用于将包括感兴趣的分析物的流体施加到基底的表面上以进行固定化。例如,可以用被选择用于结合特定分析物的捕获分子或配体来功能化基底表面。本文公开的系统及方法可以用于将包括生物分析物分子的流体施加到基底的功能化表面上,其中分析物分子被捕获在基底表面上。然后可以经由各种诊断程序和分析来处理具有捕获的分析物的基底。
用于制备施加到基底的样品的后续处理步骤可以包括将样品暴露于一种或多种流体以固定、染色和漂洗样品。诸如流体输送、搅拌以及流体排放之类的流体输送步骤以及诸如干燥之类的其他制备步骤也可以包括在样品制备中。
概括而言,本文公开的系统及方法使用最少流体量提供快速、高效和高度均匀的样品处理。该方法通常包括一个或多个固定、染色和漂洗阶段,包括在固定、染色和漂洗阶段中的一者或多者期间或之后的一个或多个搅拌阶段。这些系统可以作为一个独立的装置来实现,也可以作为一个用于制备和检查生物样品的更大系统中的一个部件来实现。
通常,在第一方面,本公开文本的特征在于用于在基底上制备样品的方法、流体输送平台及设备,该基底包括:基底处理器,其被配置为在第一位置与第二位置之间移动基底;以及平台,其被定位成使得当该基底处于该第二位置时,该平台面向该基底,其中该平台的特征在于流体输送区域,该流体输送区域具有由亲水性材料形成的第二表面和由疏水性材料形成的第一表面,该亲水性材料的水接触角为40度或更小,该第一表面在该基底处于该第二位置时面向该基底,该疏水性材料的水接触角为100度或更大。
该设备的实施方案可以包括以下特征中的任何一者或多者。
该平台可以包括由该亲水性材料形成的第一构件,以及设置在该第一构件的至少一部分上以形成该第一表面的疏水性材料层。在垂直于由该第一表面限定的平面的方向上测量的该疏水性材料层的厚度可以为100微米或更小(例如,5微米或更小)。
该亲水性材料可以包括选自云母、玻璃和玻璃-陶瓷复合材料的至少一种材料。该亲水性材料可以包括选自金属和金属氧化物的至少一种材料。该亲水性材料可以包括该疏水性材料的氧化产物。该疏水性材料可以包括选自聚二甲基丙烯酰胺、聚二甲基硅氧烷、聚烯烃和含氟聚合物的至少一种材料。
该设备可以包括至少一个间隔物,其位于该第一表面上使得当该基底处于该第二位置时,该基底接触该至少一个间隔物,并且对于该第一表面上的任何两个位置,该基底与该第一表面之间的最近距离的最大变化为10微米或更小。
该设备可以包括流体出口孔,其位于该第二表面上。该流体出口孔的中心可以沿着与该流体输送区域的中心轴线正交的方向从该中心轴线移位。该设备可以包括第一和第二流体入口孔,其位于该流体输送区域的中心轴线的相对侧上的第二表面上,其中对于该第一和第二流体入口孔中的每一者,流动轴线在该流体入口孔的中心与该流体出口孔之间延伸,并且该流动轴线与凹部的中心轴线之间的角度为α。
该设备可以包括第三和第四流体入口孔,其位于该中心轴线的相对侧上的第二表面上,其中对于该第三和第四流体入口孔中的每一者,流动轴线在该流体入口孔的中心与该流体出口孔之间延伸,并且该流动轴线与凹部的中心轴线之间的角度为β。α的值可以为15度或更小(例如,10度或更小)。β的值可以为10度或更小(例如,6度或更小)。α的值可以大于β的值。
沿垂直于上表面的方向测量的该流体输送区域的最大深度可以为200微米或更小(例如,150微米或更小)。该疏水性材料和该亲水性材料的水接触角之间的差值可以为50度或更大(例如,70度或更大)。
该第二表面可以是平面的。该流体输送区域可以在该第一表面中形成凹部,并且该凹部可以包括在该第一表面与该第二表面之间延伸的侧壁表面。每对相邻侧壁表面可以被定向成使得该表面所对着的角度大于90度。每对相邻侧壁表面可以沿着圆角融合。
该凹部可以包括:平行的第一和第二侧壁表面;第三侧壁表面,其正交于该第一和第二侧壁表面;第四和第五侧壁表面,其分别在该第三侧壁表面与该第一和第二侧壁表面之间延伸;以及第六和第七侧壁表面,其分别从该第一和第二侧壁表面延伸并相交。该凹部的底表面可以具有七边形横向形状,并且该凹部的至少一些侧壁表面可以具有不同长度。该第一、第二、第三和第四流体入口孔可以被定位成比距离该第六和第七侧壁表面更靠近该第三侧壁表面。
除非另有明确说明,否则该设备的实施方案还可以包括本文公开的任何其他特征,包括结合不同实施方案以任何组合公开的特征。
另一方面,本公开文本的特征在于流体输送平台,该流体输送平台包括:第一表面以及至少一个间隔物,其从该第一表面延伸并且被配置为接触基底以保持该基底与该第一表面之间的固定间隔,其中该第一表面包括第一材料,其中第二表面在该第一表面中形成凹部的底部并且包括与该第一材料不同的第二材料,并且其中该第一材料的水接触角与该第二材料的水接触角之间的差值为50度或更大。
该平台的实施方案可以包括以下特征中的任何一者或多者。
该水接触角之间的差值可以为70度或更大。该第一材料的水接触角可以为100度或更大。该第二材料的水接触角可以为40度或更小。
该第一材料可以包括选自聚二甲基丙烯酰胺、聚二甲基硅氧烷、聚烯烃和含氟聚合物的至少一种材料。该第二材料可以包括选自云母、玻璃和玻璃-陶瓷复合材料的至少一种材料。该第二材料可以包括选自金属和金属氧化物的至少一种材料。该第二材料可以包括该第一材料的氧化产物。
该第一表面可以由设置在该第二材料的基底上的第一材料层形成,并且在垂直于由该第一表面限定的平面的方向上测量的该第一材料层的厚度可以为100微米或更小(例如,5微米或更小)。
该平台可以包括一个或多个可变形构件,其被定位成与该第一表面相对并且位于该平台与支撑基座之间。该一个或多个可变形构件可以包括弹簧、弹性体材料、金属材料、聚合物材料、橡胶材料、泡沫材料、磁悬浮元件、电磁悬浮元件、液压悬浮元件和气动悬浮元件中的至少一者。
除非另有明确说明,否则该平台的实施方案还可以包括本文公开的任何其他特征,包括结合不同实施方案以任何组合公开的特征。
另一方面,本公开文本的特征在于流体输送平台,该流体输送平台包括:第一表面;凹部,其形成在该第一表面中并且具有由第二表面形成的底部;至少一个间隔物,其从上表面延伸并且被配置为接触基底以保持该基底与该第一表面之间的固定间隔;流体出口孔,其沿着该第二表面设置,其中该流体出口孔的中心沿着该凹部的中心轴线定位;第一和第二流体入口孔,其沿着该第二表面定位在该中心轴线的相对侧上;以及第三和第四流体入口孔,其沿着该第二表面定位在该中心轴线的相对侧上,其中对于该第一和第二流体入口孔中的每一者,流动轴线在该流体入口孔的中心与该流体出口孔之间延伸,并且该流动轴线与该凹部的中心轴线之间的角度为α,其中对于该第三和第四流体入口孔中的每一者,流动轴线在该流体入口孔的中心与该流体出口孔之间延伸,并且该流动轴线与该凹部的中心轴线之间的角度为β,并且其中α大于β。
该平台的实施方案可以包括以下特征中的任何一者或多者。
该第一和第二流体入口孔中的每一者可以被定位成沿着相应的流动轴线与该流体出口孔相距距离a1,该第三和第四流体入口孔中的每一者沿着相应的流动轴线与该流体出口孔相距距离b1,并且其中a1大于b1。α的值可以为15度或更小(例如,10度或更小)。β的值可以为10度或更小(例如,6度或更小)。
该凹部可以包括:平行的第一和第二侧壁表面;第三侧壁表面,其正交于该第一和第二侧壁表面;第四和第五侧壁表面,其分别在该第三侧壁表面与该第一和第二侧壁表面之间延伸;以及第六和第七侧壁表面,其分别从该第一和第二侧壁表面延伸并相交。该第二表面可以具有七边形横向形状,并且该凹部的至少一些侧壁表面可以具有不同长度。该第一、第二、第三和第四流体入口孔可以被定位成比距离该第六和第七侧壁表面更靠近该第三侧壁表面。
该平台可以包括一个或多个可变形构件,其被定位成与该第一表面相对并且位于该平台与支撑基座之间。该一个或多个可变形构件可以包括弹簧、弹性体材料、金属材料、聚合物材料、橡胶材料、泡沫材料、磁悬浮元件、电磁悬浮元件、液压悬浮元件和气动悬浮元件中的至少一者。
除非另有明确说明,否则该平台的实施方案可以包括本文公开的任何其他特征,包括结合不同实施方案以任何组合公开的特征。
另一方面,本公开文本的特征在于将流体施加至基底的方法,该方法包括:将该基底相对于流体输送系统的平台定位,使得该基底面向该平台并且通过间隙与该平台分离,其中该平台的特征在于:第一表面,其在该基底处于该平台时面向该基底并且由疏水性材料形成,该疏水性材料的水接触角为100度或更大;流体输送区域,其特征在于由亲水性材料形成的第二表面,该亲水性材料的水接触角为40度或更小;多个流体入口孔,其位于该第二表面上;以及流体出口孔,其位于该第二表面上;通过将该流体输送通过该多个流体入口孔来用该流体填充该间隙,由此使该基底与该流体接触;以及通过该流体出口孔排出该流体从该间隙中除去该流体。
除非另有明确说明,否则该方法的实施方案可以包括本文公开的任何一个或多个特征,包括结合不同实施方案以任何组合公开的特征。
除非另有定义,否则本文所使用的所有技术和科学术语均具有与本公开文本所属领域的一般技术人员所通常理解的含义相同的含义。下文描述了合适的方法和材料,但是在本文主题的实践或测试中可使用与本文所述类似或等同的方法和材料。本文提及的所有出版物、专利申请、专利以及其他参考文献都通过引用整体并入。如有冲突,以本说明书(包括定义)为准。另外,材料、方法以及例子仅为说明性的而不旨在进行限制。
在附图及下文描述中陈述一或多个实施方案的细节。从具体实施方式、附图说明及权利要求书,其他特征和优点将显而易见。
附图说明
图1至4是示出用于处理安装于基底的样本的系统的部分的示意图。
图5是自动化样本处理系统的示意图。
图6是示出用于处理安装于基底的样本的系统的一部分的示意图。
图7A是示出用于将基底臂从打开位置移动到处理位置的一系列示例性步骤的流程图。
图7B是示出用于处理基底上的样本的一系列示例性步骤的流程图。
图8是流体输送平台的实施方案的示意图。
图9是图8的流体输送平台的另一个示意图。
图10是图8的流体输送平台的另一示意图。
图11是用于在打开位置与处理位置之间移动基底的臂的示意图。
图12是传感器垫的图像。
图13是示出用于将基底夹持器对准流体输送平台的一系列示例性步骤的流程图。
图14是示出在打开位置中安装在基底夹持器上的基底的图像。
图15是示出在处理位置中安装在基底夹持器上的基底的图像。
图16是示出位于传感器垫上的校准质量的图像。
图17和18是流体输送平台的示意图。
图19是用于在打开位置与处理位置之间移动基底的臂的示意图。
图20至24是具有可变形构件的流体输送平台的示意图。
图25至27是具有用于检测部件的相对移动和/或变形的传感器的流体输送平台的示意图。
不同附图中相同的参考符号表示相同的元件。
具体实施方式
本文公开了用于自动化生物样品处理的方法及系统。自动化样品处理方法及系统提供了优于手动和其他自动化处理方法的优点,包括提高了处理速度,同时使用最少试剂体积并同时产生高度均匀的样品制备,从而与手工或其他系统处理的样品相比显著降低与染色剂、固定剂和其他试剂相关联的可变性。
常规的自动化处理方法通常具有相对较高的处理生产量,同时消耗大量处理流体,或者具有相对较低的处理生产量,同时消耗减少的流体体积。然而,对于许多应用,高生产量操作和低流体消耗都是需要的。通过保持高生产量,可以高效率地处理样品以供后续检查。通过保持较低的流体消耗量,处理废物的量随着所需的处理试剂的量而减少,从而保持较低的操作成本。减少流体消耗也是有利的,因为产生的废液更少,要求系统用户处理和处置的废物的量就更少,并且所需要的系统上用于废液存储的贮存器更小。由于需要处理的潜在危险物质较少,因此产生较少量的废物对环境也是有益的。
本文公开的系统及方法允许使用少量处理流体(例如,每个样品少于1mL流体)快速自动处理样品(例如,通过单个机器每小时处理超过100个样品),同时产生高度均匀且可重复的结果。然而,即使对于以较低生产量水平处理样品的系统,仍然实现了许多前述优点,包括减少流体消耗,减少废物产生、存储和处理,以及降低操作成本。
简介-样品制备系统及方法
作为示例,以下讨论集中于将包括血细胞的流体施加到基底的表面以示出本文公开的系统及方法的许多特征。然而,应理解,该方法及系统不仅限于该应用。相反,如上文所解释的,该方法及系统可以用于以受控方式将多种流体(包括含有细胞的流体和不含细胞的流体)施加到基底的表面。以下关于将含细胞的溶液施加于基底表面并对沉积的样品执行基于细胞的分析的讨论决不应被解释为将该方法及系统限制于处理此类样品。
同样作为示例,讨论集中于系统的特定实施方案的特征。然而,应理解,系统及其各种部件可以通过各种方式来实施。例如,如稍后将讨论的,平台的其他配置也可以与本文公开的方法及系统结合使用。除非明确指出或以其他方式显而易见,否则以下讨论决不应被解释为限于本文公开的各种系统配置和部件的特定实施方案。
在检查之前,通常以一系列步骤处理施加到基底的样品以增强样品的某些特征的视觉外观。图1示出了用于制备生物样品以在诸如显微镜载玻片、盖玻片之类的基底2或其他透明基底上进行检查或成像的系统1的实施方案。系统1可以结合到整个系统中以制备和分析包括体液的样品或含有细胞的其他生物样品。系统1通常可以包括或形成系统的一部分,所述系统获得样品、将样品施加到基底、固定和染色样品、干燥样品、对样品成像以及分析从样品获得的图像和其他数据。系统1还可以用于其他样品制备系统和/或作为独立装置。
系统1可以包括或连接到控制系统5,如图4中所示,所述控制系统提供了系统1的另一个透视图。控制系统5可以包括一个或多个计算机,每个计算机包含能够执行存储在诸如硬盘驱动器、光盘驱动器或存储器之类的计算机可读介质上的软件指令的中央处理单元。另外,控制系统5可以包括用于执行软件指令的电路。控制系统5可以包括用户界面以接收用户命令以控制系统1的操作。存储在控制系统5上或提供给控制系统的软件(即,一个或多个计算机)可以包括在样品处理期间控制系统1的部件(诸如流体泵和真空吸尘器)的操作的程序。例如,软件可以包括用于指示系统1将各种固定剂、染色剂和漂洗剂施加到基底上的样品并在样品处理期间执行若干搅拌步骤的指令。
另外,所述软件可以包括默认设置,并且用户界面可以包含用于向用户提供改变这些默认设置的能力的定制特征。例如,用户界面可以包含定制特征以允许用户定制固定、染色和漂洗阶段的速度、频率或顺序,以及搅拌参数(下面进一步描述)。控制系统5还可以经由网络协议(例如
Figure BDA0002180960550000091
IPX、TCP/IP、
Figure BDA0002180960550000092
)进行通信。例如,网络协议可以使用电缆(例如双绞线电缆)和/或诸如WiFi和/或
Figure BDA0002180960550000093
的无线连接。控制系统5可以使用网络协议连接到实验室信息系统。实验室信息系统可以包含服务器和/或数据库以存储与由系统1处理的样品有关的信息。例如,数据库可以包含表格,所述表格提供关于人或样品来源的信息(例如,姓名、出生日期(DOB)、地址、采集样品的时间、性别等)、与样品处理有关的信息(在日期##/##/####进行处理、样品编号#等)、获取样品的任何图像的副本,以及通过分析图像获得的任何结果的副本。
参考图1,系统1可以包括支撑件110A和110B以将图1中所示的系统1的样品处理模块固定到系统或实验室工作站内的位置。系统1还包括一个或多个基底臂10A和10B,每个基底臂在其基座处连接到致动器30A和30B。基底臂10A和10B的相对端包括基底夹持器20A和20B以在样品处理期间接收和保持基底。每个基底夹持器20A和20B接收并保持基底2,同时系统1完成样品处理步骤(下面描述)。基底可以是或包括显微镜载玻片、盖玻片或适用于在样品处理期间保持样品和在样品处理后进行显微镜检查的其他透明材料。基底可以由对于电磁光谱的至少可见部分内的辐射可以是透明的或者可以是不透明的一种或多种材料形成。此类材料的例子包括但不限于各种玻璃、石英、熔融石英和各种聚合物,其中一些可以是透明的。
图1的实施方案示出了玻璃显微镜载玻片、基底2,所述基底包括生物样品3。使用抽吸孔,基底夹持器20A、20B可以在样品处理期间将基底2保持到基底臂10A、10B。抽吸管23通过抽吸孔21A和21B以及22A和22B向基底夹持器20A和20B提供抽吸(注意,孔21A和22A位于图1中的基底2后面并且以虚线示出)。
图1中所示的实施方案是能够在基底臂10A和10B中的每一者上保持和处理基底的双基底系统。其他实施方案提供循序地或同时处理单个基底或三个或更多个基底。此外,虽然图1中描绘的实施方案使用抽吸将基底2附接到基底臂10A和10B,但是其他实施方案可以使用各种类型的夹具、指状物或磁体(如果基底被磁化)以在样品处理期间将基底2附接到基底臂10A。
在图5中所示的实施方案中,系统1从自动化基底移动器120接收或者从个人手动地接收承载样品3的基底2。作为示例,基底移动器120可以是在工位(例如,工位121与工位122、与工位123、与工位124以及与工位125)之间运输基底的装置。图5示出了具有第一标签读取器工位121、施加器工位122、包括系统1的染色工位123、成像工位124和第二标签读取器工位125的系统。第一标签读取器工位121被配置为从基底2读取信息,诸如用于识别特定基底2和其上的样品3的条形码和/或“指纹”信息。第二标签读取器工位125以相同方式起作用,并且它读取的信息用于验证在成像工位124处成像的样品3与所处理的基底相同。
可选地,在一些实施方案中,系统1仅包括单个标签读取器工位。例如,第一标签读取器工位121可以不存在于系统1中,所述系统反而可以包括位于成像工位124与标签读取器工位125之间的打印工位(打印工位未在图5中示出)。在基底2在工位124处成像之后,打印工位标记基底(例如,通过使用点阵打印头在基底上打印标签),然后标签读取器工位125读取由打印工位施加的标签以验证在成像工位124处成像的样品3对应于所标记的基底2。通常,系统1的实施方案可以包括单个标签读取器工位、多个标签读取器工位,或者甚至没有标签读取器工位。
基底移动器120可以包括用于保持基底2的夹持器127,以及使得移动器120能够确定基底2是否安装在移动器120中的配准电路或软件。在一些实施方案中,基底移动器120可以包括用于将基底2从第一工位(即,第一标签读取器工位121)移动到第二工位(即,施加器工位122)的液压缸。在样品处理之后,基底移动器120可以从染色工位123中移除处理过的基底2并将基底2运输到诸如显微镜或成像工位124之类的另一个工位以进行基底/样品检查。可选地,个人可以在样品处理后从系统1中手动地移除基底2。
在图5中所示的系统1的实施方案中,在成像工位124处执行样品3在基底2上的成像。然而,在某些实施方案中,可以在不同位置执行样品成像。例如,可以在染色工位123处执行样品成像,所述染色工位可以包括诸如一个或多个辐射源和一个或多个检测器之类的部件以及用于获得样品图像的各种其他光学部件。在此类实施方案中,系统1可以不包括单独的成像工位124,其中成像工位的所有功能都在系统的其他工位处(例如,在染色工位123处)执行。
虽然图1中的系统1被配置为在两个基底上接受和处理样品,但是在以下讨论和附图中,可以仅参考系统1中的一组部件(例如,基底夹持器20A、致动器30A、基底臂10A等)。然而,应理解,结合一组部件公开的相同步骤、特征和属性也可以应用于系统1中的另一组部件(例如,基底夹持器20B、致动器30B、基底臂10B等)。因此,虽然为了清楚和简洁起见,本文的讨论仅集中于一组部件,但是应理解,用于样品检查的机器(诸如系统1)可以包括两组或两组以上的部件,每一组具有本文讨论的一些或所有特征。
图7A示出了包括用于将基底臂从打开位置移动到处理位置的一系列步骤的流程图500。下面参考示出了系统1的示意图的图7B进一步描述流程图500。在流程图500的第一步骤502中,基底移动器120将基底2放置成与基底夹持器20A接触。在步骤504中,基底2以“样本向上”或“打开”位置定位在基底夹持器25A上。接下来,在步骤506中,致动器30A使基底臂10A旋转大约180°(参见图7B)以将基底2定位在平台60A正上方的“样本向下”或“样品处理”或“关闭”位置(步骤508),使得在步骤510中,基底2处于处理位置。以上述方式旋转基底臂10A在其上放置样品3的基底2的表面与平台60A的上表面之间建立限定的间隙距离或厚度。
然后,在步骤512中,系统1通过引导包括染色剂、洗涤液和固定剂的合适流体从贮存器210A、211A、212A和213A通过孔42A、43A、44A和45A泵送成与样品3接触来对位于基底2上的样品3进行染色。通过孔40A和41A进行真空泵送从样品3中移除过量流体,并将所述过量流体收集在废物收集器230和231中。
在步骤514中,在样品3染色之后,致动器30A使基底臂10A旋转大约180°(反转步骤506的旋转)以使基底返回到“样本向上”位置。最后,在步骤516中,基底移动器120从基底夹持器20A中移除处理过的基底2。如果操作者或自动化基底移动器可以从系统1装载和卸载基底,则也可以使用其他打开或“样本向上”位置。例如,样本向上位置可以从样品处理位置旋转100°或更多(例如,120°或更多、130°或更多、140°或更多)。在一些实施方案中,如果操作者或基底移动器可以从系统1装载和卸载基底,则样本向上位置可以从样品处理位置旋转小于100°(例如,小于90°、小于80°、小于70°)。
致动器30A和/或30B可以包括电动马达、气动装置、磁系统或其他硬件(例如,蜗轮)以移动基底臂10A和/或10B。另外,系统1可以包括一个或多个传感器,所述传感器被配置为向控制系统5提供反馈测量值以确保致动器30A/30B和基底臂10A/10B的旋转将基底相对于平台60A/60B的上表面可再现地定位,从而在基底与平台表面之间建立一致厚度的间隙。此类传感器可以包括例如位置传感器和行进距离传感器,所述传感器测量基底臂10A/10B和/或致动器30A/30B从初始位置(例如,“样本向上”或“打开”位置)的相对位移。
当基底臂10A和10B处于如图1中所描绘的打开位置时,基底夹持器20A和20B可以各自接收基底2。一旦装载到基底夹持器20A或20B上,致动器30A和/或30B然后将基底臂10A和/或10B以及因此基底2从打开(“样本向上”)位置旋转到处理位置(“样本向下”,如针对图3中的基底臂10B所示)以施加固定剂、染色剂和漂洗溶液(包括搅拌步骤),并返回到打开位置以在处理后卸载。
参考图3,致动器30B使基底臂10B从图1中所描绘的打开位置旋转到“关闭”或处理位置。图3示出了基底臂10B上的基底2已经翻转并从图1中所示的其装载位置旋转大约180到朝下位置,其中基底2上的样品3基本上平行于平台60B的表面。如上面结合图7B所讨论的,虽然基底2在所示的样品处理位置中位于平台60B的近侧,但是系统1通过将在下面更详细地描述的若干处理阶段将各种固定剂、染色剂和漂洗剂施加到基底2上的样品3。为了从处理位置中移除基底2,致动器30B将基底臂10B旋转回到图1中所示的打开位置(两个臂)和图3中所示的打开位置(只有基底臂10A处于打开位置)。
在某些实施方案中,控制系统5可以利用一个或多个传感器105A和105B检测基底臂10A和/或10B的位置,以检测指示器臂101A和101B(如图1和3中所示)。传感器105A和105B可以是接近传感器(例如光电传感器),所述接近传感器利用例如红外光或各种其他技术(激光器、运动检测器、电感传感器、电容传感器、电阻(即,接触)传感器或开关)来检测基底臂10A和/或10B的存在或不存在。例如,传感器105A或105B可以具有检测场,并且传感器可以确定基底臂(例如,臂10A和/或10B)或基底夹持器(例如,夹持器20A和/或20B)是否在检测场内。控制系统5可以从传感器接收信息以确定基底臂10A和/或10B的位置。例如,当基底臂10B(图3中未示出)旋转到处理位置时,指示器臂101B的近端上的接近传感器105B不再感测目标基底夹持器20B,因为目标夹持器20B旋转远离接近传感器105B。因此,接近传感器105B通知控制系统5基底臂10B不再位于其检测场内。即,在该位置中,指示器臂101B的远端上的接近传感器105B将不会向控制系统5发送正检测信号,因为传感器没有正确地检测任何目标(例如,基底臂或基底夹持器)。因此,控制系统5基于接近传感器105B不存在正检测信号来确定基底臂10B处于处理位置。
当基底臂10B旋转到打开位置时(如图1中所示),指示器臂101B的远端上的接近传感器105B感测目标基底夹持器20B,并通知控制系统5基底臂10B旋转到打开位置。换句话说,当基底臂10B已经旋转远离传感器105B时,传感器向控制系统5发送“不存在”信号。当基底臂10B旋转到打开位置时,基底臂10B更靠近传感器105B,并且传感器可以向控制系统5发送“存在”信号。在备选配置中,传感器可以安装在基底臂10B上并且可以检测指示器臂101B的存在。在一些实施方案中,控制系统5可以用于将致动器30A和30B的位置校准到已知的打开和样品处理位置,和/或基于从致动器30A和30B接收的控制信号和/或反馈来主动监控基底臂10A和10B的移动和位置。
通常,系统1可以包括如图1中所示的一个或多个(例如,两个、三个、四个、五个或五个以上)平台60A和60B以供样品处理。如图2中所示,平台60A可以包括用于支撑平台的顶侧的侧面。图1、3和6中所示的保护罩100可以位于平台60A和60B之间以防止流体在平台60A与60B之间飞溅。在一些实施方案中,保护罩100可由透明材料形成,所述透明材料阻止来自平台60A和60B中的一者的流体污染另一个平台。在某些实施方案中,保护罩100可以由半透明或不透明的材料形成。在图1、3和6中,保护罩100被描绘为由透明材料形成以允许位于保护罩100后面的其他部件在同一图中示出。保护罩100也可以被示为由不透明材料形成,在这种情况下,诸如平台60A和块80A之类的一些部件的部分将被会遮挡。
对于具有如图1中所示的两个平台60A和60B的系统,基底2通常以交替方式提供到基底移动器120上和从基底移动器提供基底。在一些实施方案中,第一基底2从基底移动器120提供到第一基底夹持器20A,以在第一平台60A处进行处理,同时系统1处于第一位置。当在第一平台60A处理第一基底2时,转位机构50A可以将系统1平移到第二位置使得第二基底夹持器20B可以从基底移动器120接收要在第二平台60B处理的第二基底。当在第二平台60B处处理第二基底时,转位机构50A可以将系统1平移回到第一位置,使得基底移动器120可以从第一基底夹持器20A中移除第一基底2。一旦从第一基底夹持器20A中移除基底2,就可以将下一个基底提供给第一基底夹持器20A。这种用于向交替基底夹持器20A、20B提供基底的方法可以被实施加于两个以上(例如,三个、四个、五个或五个以上)工位或平台,由此增加准备用于进一步评估的样品的生产量。
通过平台60A和60B发生到基底2上的样品3的流体输送,所述平台可以分别附接到块80A和80B。块80A包括支撑顶侧85A的侧面81A至84A,如图2中所示。块80A和80B可以由诸如金属、陶瓷和/或聚合物之类的材料制成。合适材料的例子包括热塑性聚合物材料,诸如聚醚醚酮(PEEK)、聚醚酰亚胺(PEI)、聚芳醚酮(PAEK)和聚醚酮酮(PEKK)、聚甲醛(POM)、缩醛、聚缩醛、聚甲醛以及其他均聚物和共聚物。合适材料的例子可以商品名
Figure BDA0002180960550000141
Figure BDA0002180960550000142
购得。
特别是在实施样品的罗曼诺夫斯基染色法染色的实施方案中,诸如
Figure BDA0002180960550000143
之类的材料可以用于形成块80A和80B。可以在实施方案中使用的其他材料包括金属和
Figure BDA0002180960550000144
牌涂有聚四氟乙烯的铝、钢或钛。用于形成块80A/80B的金属可以在涂覆之前用一种或多种无机氧化物进行机械抛光和/或处理。
其他疏水性材料也可以用于形成块80A/80B的部分或整个块。此类疏水性材料的例子包括云母、各种玻璃和Micor。
在一些实施方案中,平台60A和/或60B可以如图1至3中所示般升高。可选地,在某些实施方案中,平台60A和/或60B可以分别与块80A和80B的上表面齐平。
如图1和2中所示,平台60A可以包括偏移部70A-70D以在平台60A的表面与基底2之间提供间隔,并防止基底2接触平台60A。平台60B可以包括一组对应偏移部71A-71D。偏移部可以包括支座、销、钉、杆、珠、壁或在平台60A和/或60B的表面与基底2之间提供间隔的其他结构。
偏移部70A-70D和71A-71D确保当基底2接触偏移部时平台60A和60B与基底2的表面保持分离,由此保持平台的表面与基底之间的空间或间隙。偏移部71A-71D的使用确保当流体从基底与平台表面之间的间隙排出时以及在基底2相对于平台表面定位期间当板旋转到“处理”位置时,基底2不会被牵引与平台表面接触。
在一些实施方案中,基底2的面向上平台表面的表面与上平台表面基本平行。如本文中所使用,短语“基本上平行”意味着两个表面精确平行或近乎平行,使得当基底2接触偏移部时减小或消除基底2的表面平坦度的缺陷。例如,虽然在制造基底时非常小心,但是某些基底可能具有诸如扭曲和/或非共面角之类的缺陷。在本文所公开的系统及方法中,偏移部的使用有助于通过在需要时改善基底2的表面平坦度来校正这些缺陷,从而使基底2在所述过程中以与平台60A和60B基本平行的关系定向。短语“基本上平行”涵盖其中两个表面不完全平坦但是偏移部都具有相同尺寸或高度使得至少基底表面与偏移部的接触点在同一平面内的情况。
在某些实施方案中,基底2的面向上平台表面的表面与上平台表面相对于彼此以一定角度定向,使得表面之间的间隙为楔形,而非具有恒定厚度。在某些实施方案中,楔形间隙可以改善表面之间的流体流动,从而允许更好地控制流体输送到间隙中和/或从间隙排出流体。上平台表面与基底的面向上平台表面的表面之间的角度可以为15度或更小(例如,12度或更小、10度或更小、8度或更小、5度或更小,或者更小)。
在处理位置中以可再现位置关系保持平台的上表面与基底表面的益处在于,因此限定了包围在这两个表面之间的体积并且可以精确地控制所述体积。如果两个表面没有可再现地定位,并且它们之间的角度发生变化,则它们之间的体积也会发生变化。
如本文中所使用,短语“基本上平行”意味着两个表面精确平行或近乎平行,使得当基底2接触偏移部时减小或消除基底2的表面平坦度的缺陷。例如,虽然在制造基底时非常小心,但是某些基底可能具有诸如扭曲和/或非共面角之类的缺陷。在本文所公开的系统及方法中,偏移部的使用有助于通过在需要时改善基底2的表面平坦度来校正这些缺陷,从而使基底2在所述过程中以与平台60A和60B基本平行的关系定向。短语“基本上平行”涵盖其中两个表面不完全平坦但是偏移部都具有相同尺寸或高度使得至少基底表面与偏移部的接触点在同一平面内的情况。
图6示出了具有样品3(样品未示出)的基底2、基底夹持器20B、块80A、80B、平台60A、60B、偏移部70A-70D和71A-71D以及基底2与平台60B之间的间隙92(注意偏移部71B由于图6的视角而被遮挡)。间隙92允许流体在包含孔40B-45B(图2中示出)的平台60B的表面与包含样品3的基底2之间行进。最佳样品固定、染色和漂洗所需的间隔距离将取决于从孔42B-45B(和/或孔42A-45A)分配的流体的流速、孔直径、处理期间施加的流体的粘度以及可用于从基底移除流体的抽吸量、间隔和平台利用(即孔40B、41B(和/或孔40A、41A))而变化。
在一些实施方案中,例如,在平台60B的表面与基底2之间提供约100至200微米的间隙92的偏移部使得能够在能够以每秒70微升至140微升(例如,每秒90、115或125微升)的范围内的流速从直径范围为500微米至1,500微米的孔40B-45B分配流体的实施方案中对包括血细胞的样品进行固定、染色和漂洗。通常,对于某些实施方案,间隙92的尺寸或高度可以从约50微米至1,000微米(例如,从约50微米至500微米、从约75微米至250微米、从约100微米至200微米)变化,条件是此类实施方案能够克服间隔中的流体的表面张力,同时在样品处理期间分配和移除流体。
通常,位于平台60A和/或60B上的孔的直径可以在约125微米至5,000微米之间变化。在某些实施方案中,孔的直径全部都是相同的。然而,在一些实施方案中,一些部分的直径可以不同。各个孔和/或孔组可以具有不同的直径,这取决于通过它们输送的流体的本质。例如,染色孔的直径可以大于或小于输送固定剂和/或漂洗溶液的孔,所述直径是基于所输送的这些不同类型的溶液的体积以及输送溶液的时间段的持续时间。
系统1包括一系列孔和管以分散和移除在样品处理期间施加的流体。以下讨论描述了与平台60A相关联的各种孔、管和其他部件,但类似考虑适用于平台60B及其相关部件。图2示出了图1中所示的系统的近视图,并且详细示出了平台60A上的孔40A-45A和连接到块80A的管50A-55A。管52A-55A将包括一种或多种固定剂、染色剂和漂洗溶液的某些流体分布在平台60A上、分布到间隔中,并分布到基底上。
参考图2,平台60A的顶侧包括连接到管50A-55A的六个孔40A-45A。流体由一个或多个泵通过管和孔驱动到基底2上。例如,如图4中所示的一个或多个流体贮存器210A-213A(诸如第一染色剂贮存器211A、第二染色剂贮存器212A、固定剂贮存器210A和漂洗溶液贮存器213A)可以将流体引导到平台60A和基底2上。图1至3中所示的孔40A-45A的直径在大约500微米至1,500微米的范围内,但是在某些实施方案中直径也可以更小或更大。在一些实施方案中,真空孔40A和41A的直径大于流体孔42A-45A的直径的两倍。
孔40A-45A中的每一者通常专用于特定的流体或真空源。可选地,可以为每个流体或真空源使用一个以上的孔,或者来自各种流体和真空源的多个管可以连接到位于平台60A上的单个孔。例如,在一些实施方案中,平台60A上的仅一个孔可以用于废物移除,但是当使用更粘稠的流体时,单个孔可能无法提供足够的抽吸来从平台排出残余流体。因此,在某些实施方案中可能需要在平台上的不同位置提供两个抽吸孔(例如,平台的每一端有一个抽吸孔)以通过图2中的孔40A和41A如所示般移除过量染色剂、固定剂和漂洗流体。进一步突出流体-孔配置的可变性,在某些实施方案中,平台60A上的单个孔可以专用于特定染色剂,而在其他实施方案中,多个孔用于在样品处理期间施加染色剂。实际上,在本发明的不同实施方案中可以使用与孔的数量、孔位置和分配给每个孔和流体管的流体有关的各种组合。
孔40A-45A通常可以根据需要定位在平台60A上以提供流体输送到基底2和从基底移除流体。通常,流体孔中的每一者定位在平台60A上,使得当样品进行处理时,孔的孔隙不直接定位在基底2上的样品3附近或下方。对于样品与染色剂的某些组合,例如,如果从直接位于样品3的一部分附近或下方的孔分配染色剂,则可以对该部分(在孔附近)中的细胞施加的染色剂的量大于对样品其他部分中的细胞施加的染色剂的量。结果,接收较大量染色剂的细胞在样品图像中可能看起来较暗,并且样品细胞的这种不均匀染色可能使样品的手动和自动化评估复杂化并且基于图像将错误引入诊断测量和分析结果。因此,向样品3输送染色剂的流体孔可以与基底2的含样品区域(例如,载玻片)间隔开一定距离以改善染色结果。
另外,使用彼此相对定位的成对孔(例如,多对孔)也可以改善染色均匀性。例如,在一些实施方案中,使用两个孔将染色剂输送至样品3。两个孔可以位于平台60A上与样品3的边缘间隔开一定距离(例如,偏离所述边缘)的位置处,并且在平行于平台60A的短边7的方向上彼此相对地定位。当从两个间隔开的孔分配染色剂时,在样品3的不同区域中的细胞上沉积相对均匀量的染色剂,并且在样品图像中观察到改善的染色均匀性。
类似地,虽然废物移除孔40A和41A通常可以根据需要定位以使用一个或多个真空源从基底2的表面移除过量流体,但是在一些实施方案中,用于移除流体的孔与平台60A上位于基底2上的样品3内的细胞正下方的位置间隔开一定距离。通过这种方式(即,不直接与样品3的一部分相对)定位废物移除孔减少了当致动此类孔以从基底2排出流体时来自样品3的细胞被无意地损坏或被吸入流体废物移除孔的机会。在某些实施方案中,由于平台60A的长边和短边的长度不同,废物移除孔与样品区域的边缘间隔开并且沿着平行于平台60A的长边9的方向彼此相对地布置。
在一些实施方案中,一个或多个附加的废物移除孔可以定位在块80A和80B的顶侧85A和85B中,从而形成围绕平台60A和60B的凹槽(如图2中所示)。在流体输送和从间隙92排放期间,过量流体可能泄漏到凹槽中。可以通过顶侧85A和85B中的附加废物移除孔移除这种过量流体。
在第8,454,908号美国专利中公开了系统1的其他方面和将流体施加到基底2上的样品3的步骤,所述专利的全部内容通过引用方式并入本文中。
复合平台
为了实现样品3的一致、可靠的处理,特别是当将一种或多种染色剂施加到样品3时(例如,对样品多次施加染色剂,或者将多种染色剂各自一次或多次施加到样品),用于样品处理的流体应当施加至样品3,同时使从间隙92流出的流体泄漏最小化。如上面所讨论的,泵压力与毛细管力的组合用于用诸如染色流体之类的处理流体填充间隙92(所述间隙的厚度在180微米至200微米之间,例如,大约190微米)。毛细管力将流体保持在基底与平台的上表面之间并且由基底的边缘限定的间隙92内,从而限制流体从间隙92泄漏。
在各种处理步骤期间,可以可选地搅拌间隙92中的流体(例如,通过循环地改变基底2与平台60A或60B之间的距离)以改善间隙92内的流体分布的均匀性和/或消除可能由于将流体引入间隙92而产生的温度梯度。然而,应注意,搅拌不是必需的,并且引入了流体从间隙92泄漏的可能性。例如,在第2016/0018302号美国专利申请公开案中公开了将流体输送到间隙92中的其他方面,所述专利的全部内容通过引用方式并入本文。
在包括可选的搅拌的所有处理步骤期间,在基底2与平台60A或60B的上表面之间甚至相对较小的不对准(大约10微米)由于间隙92内的毛细管力分布不均匀而可能导致流体从间隙92泄漏。这种泄漏会导致样品3的染色不一致,因为在处理期间不一致量的染色剂和/或其他流体可能与样品3接触。另外,泄漏还可能导致流体接触基底的边缘,这可能导致从间隙92排出不完整流体,并最终污染系统。
另外,当平台60A或60B的面向基底2的上表面由疏水性材料形成时,穿过表面的流体运输(例如,染色溶液的流动)可能不总是顺畅的。如果流体流动不顺畅,则可能发生样品3染色的变化,因为染色溶液可能不均匀地输送到样品中。
以下讨论涉及平台60A的各种特征。然而,应理解,所述讨论同样适用于平台60B及其对应特征。包括平台60A和60B两者的系统可以包括在一个或两个平台上实施的下面讨论的一些或所有特征。
为了在间隙92内实现改善的流体保持和分布,图8中示出了平台60A的实施方案的示意图。平台60A包括当基底处于“处理”位置时面向基底2的第一表面602,以及具有第二表面606的流体输送区域604。为了在间隙92内实现改善的流体保持,平台60A形成为复合结构。第一表面602由具有疏水性质的第一材料形成,而第二表面606由具有亲水性质的第二材料形成。通过这种方式,通过孔42A-45A中的一者或多者输送到流体输送区域604中的流体易于流过第二表面606。然而,疏水的第一表面602阻止流体流出流体输送区域604,由此从间隙92泄漏。
通常,形成第一表面602的第一材料具有100度或更大(例如,110度或更大、120度或更大、130度或更大、140度或更大、150度或更大)的水接触角以确保第一种材料具有足够的疏水性。合适的第一材料包括但不限于聚二甲基丙烯酰胺、聚二甲基硅氧烷和含氟聚合物。
形成第二表面606的第二材料通常具有40度或更小(例如,30度或更小、25度或更小、20度或更小、15度或更小)的水接触角以确保第二材料是足够亲水的。合适的第二材料包括但不限于云母、玻璃、诸如
Figure BDA0002180960550000191
之类的玻璃-陶瓷复合材料、玻璃涂层、金属、氧化物和氮化物。
在某些实施方案中,流体输送区域604被实施为第一表面602内的凹部。可选地,在一些实施方案中,流体输送区域604被实施为相对于第一表面602的凸起区域。即,当基底处于处理位置时,第二表面606比第一表面602更靠近基底2。例如当将第二材料中的一者或多者的涂层或膜施加到第一材料时,流体输送区域604可以通过这种方式实施。
在一些实施方案中,第一表面602和第二表面606在处理位置中与基底的距离基本相同。例如,第二表面606可以通过氧化或以其他方式处理第一表面602的一部分以形成第二表面来形成。化学方法(例如,使用化学氧化剂)和物理方法(例如,将第一表面602暴露于UV辐射和/或等离子体)可以用于处理第一表面602以形成第二表面。
在一些实施方案中,为了确保间隙92内的流体保持,第一材料的水接触角与第二材料的水接触角之间的差值为50度或更大(例如,60度或更大、70度或更大、80度或更大、90度或更大、100度或更大)。通常,第一和第二材料的水接触角之间的差值越大,阻止诸如染色溶液之类的流体流入间隙92的位于平台60A的第一表面602上方的部分的程度就越大。
平台60A的复合结构可以通过各种方式实施。在一些实施方案中,例如,平台60A由第二材料块制成,使得流体输送区域604形成在块中。第一材料层设置在第二材料块上以形成第一表面602。
已经发现第一材料层的厚度是本文公开的复合平台的重要特征。通常,如果第一材料层的厚度太大,则间隙92内的毛细管力受到干扰,导致从间隙92的流体泄漏增加。具体地,在间隙92的厚度突然改变的搅拌循环期间,如果第一材料层的厚度太大,则已经发现间隙边缘处的毛细管力增加,从而将流体汲取离开间隙的中间区域(即,离开间隙的位于流体输送区域604中间上方的部分),导致染色剂不均匀地施加到样品3。为了避免此类影响,第一材料层的厚度不能太大。因此,在垂直于第一表面602的方向上测量的第一材料层的厚度大致为100微米或更小(例如,80微米或更小、60微米或更小、40微米或更小、20微米或更小、10微米或更小、5微米或更小、1微米或更小、800nm或更小、600nm或更小、400nm或更小、200nm或更小、100nm或更小)。
如图8中所示,在一些实施方案中,平台60A包括废物移除孔40A和41A以及流体入口孔42A-45A,它们通常如本公开文本中其他地方所述起作用。然而,已经发现,流体入口孔42A-45A的位置相对于废物移除孔40A的位置对于确保将诸如染色溶液之类的流体均匀地输送到间隙92中以及通过孔40A高效地移除流体可能是重要的。具体地,通过将孔42A-45A定位在相对于孔40A成角度的偏移位置处,可以实现流体输送区域604和间隙92内的改善的流体流动。
图9示出了流体输送区域604的示意性俯视图。在一些实施方案中,如图9中所示,孔40A沿着流体输送区域604的中心轴线608定位在流体输送区域604的第二表面606上。孔43A和45A位于中心轴线608的相对侧,每个孔在与轴线608相距距离a1(在垂直于轴线608的方向上测量的)处并且在与孔40A相距距离a2(沿着平行于轴线608的方向测量的)处。流动轴线610a和610d分别从孔43A和45A延伸到孔40A。流动轴线610a和610d中的每一者与中心轴线608之间的角度为α。
类似地,孔42A和44A位于中心轴线608的相对侧,每个孔在与轴线608相距距离b1(在垂直于轴线608的方向上测量)处并且在与孔40A相距距离b2(沿着平行于轴线608的方向测量)处。流动轴线610c和610b分别从孔42A和44A延伸到孔40A。流动轴线610c和610b中的每一者与中心轴线608之间的角度为β。
在某些实施方案中,α大于β。可选地,在一些实施方案中,β可以大于α。通常,例如,α可以为15度或更小(例如,12度或更小、10度或更小、8度或更小、6度或更小、8.3度)。另外,β可以为10度或更小、8度或更小、6度或更小、4度或更小、5.3度。可选地,在一些实施方案中,β可以大于α。
在一些实施方案中,a1大于b1。可选地,在某些实施方案中,b1可以大于a1。通常、例如,a1可以为10mm或更小(例如,8mm或更小、6mm或更小、5mm或更小、4mm或更小、3mm或更小、2mm或更小、1mm或更小)。另外,b1可以为10mm或更小(例如,8mm或更小、6mm或更小、5mm或更小、4mm或更小、3mm或更小、2mm或更小、1mm或更小)。
在某些实施方案中,a2大于b2。可选地,在一些实施方案中,b2可以大于a2。通常、例如,a2可以为10mm或更小(例如,8mm或更小、6mm或更小、5mm或更小、4mm或更小、3mm或更小、2mm或更小、1mm或更小)。另外,b2可以为10mm或更小(例如,8mm或更小、6mm或更小、5mm或更小、4mm或更小、3mm或更小、2mm或更小、1mm或更小)。
更一般地,在某些实施方案中,孔43A和45A不相对于孔40A对称地定位。例如,孔43A和45A可以定位在距中心轴线608不同的距离处,定位在距孔40A的不同距离处,和/或沿着流动轴线相对于中心轴线608以不同角度定位。类似地,在一些实施方案中,孔42A和44A不相对于孔40A对称地定位。例如,孔42A和44A可以定位在距中心轴线608不同的距离处,定位在距孔40A的不同距离处,和/或沿着流动轴线相对于中心轴线608以不同角度定位。
在图9中,孔40A和41A各自沿着中心轴线608定位。然而,更一般地,孔40A和41A中的任一者或两者可以在垂直于中心轴线608的方向上从轴线608移位。例如,通过将孔40A和41A中的一者或两者定位成使得它们从轴线608移位,可以在位于孔之间的流体中形成收缩,这可以有助于通过孔移除流体。具体地,将孔定位在非轴向位置处可能导致在孔之间的中点处形成非对称收缩。在一些实施方案中,孔40A和41A中的任一者或两者可以在垂直于中心轴线608的方向上从轴线608移位2mm或更多(例如,3mm或更多、4mm或更多、5mm或更多、6mm或更多、8mm或更多、10mm或更多)。
当被实施为凹部时的流体输送区域604的最大深度—由第一表面602限定的平面与流体输送区域604的第二表面606之间的最大距离—通常可以根据需要基于间隙92的厚度和在间隙内分布的流体体积来选择。在一些实施方案中,例如,流体输送区域604的最大深度为200微米或更小(例如,180微米或更小、160微米或更小、150微米或更小、140微米或更小、130微米或更小、120微米或更小、100微米或更小)。
在一些实施方案中,流体输送区域604的第二表面606是平面的并且标称上平行于第一表面602。然而,在某些实施方案中,第二表面606不是平面的,并且可以具有弯曲(即,凸起或凹入)形状。
图10是示出流体输送区域604的另一个俯视图的示意图。除了第二表面606之外,流体输送区域604还由在平台60A的第一表面602与第二表面606之间延伸的侧壁表面650、652、654、656、658、660和662界定。已经发现,为了确保流体输送区域604内的可重复且一致的流体流动,消除“死区体积”是重要的。死区体积对应于流体输送区域604内通常由以浅角度相交的壁之间的角部形成的区域,流体流动流入所述区域可能受到损害和/或流体可能难以从所述区域中排出。死区体积可能导致流体不完全填充间隙92和/或从间隙92内不完全排出流体,由此导致样品的非均匀处理(例如,非均匀染色)以及由于在先前的流体未从间隙中完全移除时新流体过度填充间隙,流体可能从间隙92泄漏。
为了消除流体输送区域604内的死区体积并确保一致的流体流动,侧壁表面650、652、654、656、658、660和662可以相对于彼此以特定布置定位。例如,如图10中所示,在一些实施方案中,侧壁表面被定位成使得每对相邻壁表面所对的角度大于70度(例如,大于80度、大于90度、大于100度、大于110度、大于120度)。为了进一步减少流体输送区域604中的死区体积,在一些实施方案中,每对相邻侧壁表面沿着圆角融合。例如,如图10中所示,表面650和652不会沿着线相交,反而沿着圆角651彼此混合。通常,圆角会降低流体弯月面的“钉扎”效应。当侧壁表面在锐线或锐角处相遇时,角部内的流体形成具有相对较小半径的弯月面(即,与交互的几何形状匹配)。因为导致流体稳定的毛细管力对于较小弯月面半径而言较高,所以流体表现出陷入锐角中的趋势较高。相比之下,当侧壁表面沿着圆角融合时,圆角附近的流体所采用的弯月面具有相对较大半径,从而减小了流体内的毛细管力并使得流体更容易移除。
通常可以根据需要选择第二表面606的横向形状以适应流体入口孔和出口孔,并促进凹部内可重复的、一致的流体流动。在一些实施方案中,例如,第二表面606具有七边形横向形状,如图10中所示。通常,侧壁表面的长度可以全部相同,或者可选地,一些侧壁表面的长度可以不同,如图10中所示。
流体输送区域604示出了侧壁表面的相对定向和尺寸的一个例子。侧壁表面654和660是平行的,而壁表面650与两个表面正交。侧壁表面652和662分别在壁表面650与壁表面654和660之间延伸。侧壁表面656和658分别从表面654和660延伸,并且在圆角657处相交。
在图10中,选择侧壁表面的特定长度和定向以促进从孔42A-45A输送流体,以及通过孔40A和41A排出流体。为此,孔42A-45A被定位成更靠近侧壁表面650而不是侧壁表面656和658中的任一者,而孔40A被定位成靠近由表面656和658的相交形成的角部657。可以使用各种制造方法将第一疏水性材料层施加到第二亲水性材料块上以形成第一表面602。在一些实施方案中,例如,疏水性材料层可以使用例如在Chen等人2006年在意大利斯特雷萨镇发表在DTIP of MEMS and MOEMS上的“Fabrication of Switches on Polymer-Based byHot Embossing”中所述的热压程序施加,所述文件的全部内容通过引用方式并入本文。在该程序中,将亲水性材料块和疏水性材料层安装在板上,并在高温下压在一起,之后冷却结合结构。
在某些实施方案中,疏水性材料层可以通过化学方式涂覆在亲水性材料块上。即,疏水性材料可以通过喷涂或通过执行湿化学结合而沉积在亲水性材料上。在一些实施方案中,常规微加工中使用的结合方法可以适于将疏水性材料层施加到亲水块上。例如,聚二甲基硅氧烷(PDMS)可以使用各种表面处理方法与玻璃-陶瓷复合材料结合以在PDMS层与块之间形成牢固的永久性结合。此类方法的例子在下列参考文献中公开,每一份参考文献的全部内容通过引用方式并入本文:Nugen、SR等人于2009年发表在Biosensors andBioelectronics 24(8):第2428-2433页中的“PMMA Biosensor for Nucleic Acids withIntegrated Mixer and Electrochemical Detection”;以及Shiu、P.P.等人于2008年发表在Journal of Micromechanics and Microengineering 18(2):025012中的“RapidFabrication of Tooling for Microfluidics Devices Via Laser Micromachining andHot Embossing”。
在一些实施方案中,可以使用诸如蒸发、溅射、喷刷、涂漆、印刷、暴露于UV辐射和等离子体暴露之类的一种或多种物理方法在亲水性材料上形成疏水性材料层。
通过使用本节中讨论的平台60A,可以实现许多优点。具体地,诸如染色溶液之类的处理流体可以被输送到改善了均匀性的间隙92中,导致处理步骤更均匀地施加于样品3,并且样品中的非系统处理伪像更少。还可以实现通过废物移除孔改善处理流体的排放。
此外,通过减少或防止流体从间隙92泄漏,可以实现消耗的试剂体积的减少。例如,通过使用图8中所示的平台60A而不是图1中所示的平台60A,已经实现了将流体消耗从每个样品约220微升减少到每个样品约170微升。
其他样品处理系统
除了本文公开的系统之外,上面讨论的复合平台还可以与其他样品处理系统一起使用,所述其他样品处理系统包括被设计用于组织样品和/或生物流体的自动化检查的系统。例如,在第2013/0203100号美国专利申请公开案中公开了与上述复合平台兼容的系统的例子,所述专利申请公开案的全部内容通过引用方式并入本文。
系统对准和校准
为了实现样品的可重复的、高质量的处理,在基底2与平台60A和60B之间保持高度对准可能是重要的。如上面所讨论的,即使相对较小的错位也会导致流体从间隙92泄漏,以及不均匀的样品处理(例如,不均匀的样品染色)。参考图1,基底臂10A和10B使基底2相对于平台60A和60B旋转就位。因此,基底臂10A和10B的错位导致分配到间隙92中的流体量与平台60A/60B和基底2之间的间隙92的体积之间的体积不匹配,这由于臂10A和10B的错位而与预期值不同。当发生这种情况时,基底2和平台60A/60B的表面的非平行相对定向可能导致在流体进入间隙92时所述间隙内的非对称流体弯月面流动,间隙92的厚度局部太大,以及在基底2的边缘处的弯月面稳定性较弱,其中弯月面有助于促进间隙92内的流体限制。这些影响可能导致染色和其他处理伪像。
图11示出了臂1100的示意性等距视图,所述臂可以用作图1中的基底臂10A和/或10B的替代物。臂1100通过延伸穿过安装孔1102的紧固件连接到支撑件110A或110B。基底夹持器1106通过紧固件1108连接到臂1100,并且被配置为可释放地拿起和释放基底2。三个调整螺钉1104允许基底夹持器1106的倾斜调整,从而有效地形成夹持器1106的运动学支承。通过调整三个螺钉1104,可以校正基底夹持器1106相对于臂1100的任何倾斜角度的补偿,并且基底2可以位于标称上平行于平台60A和60B的平面的平面(即,由第一表面602限定的平面)中。真空孔1110从基底夹持器1106延伸并且可以连接到真空源,使得在操作期间,基底2凭借通过夹持器1106中的一个或多个孔隙(未示出)施加的抽吸附接到夹持器1106。
在一些实施方案中,紧固件1108可以位于在臂1100中形成的凹部或凹槽内,如图19中所示。实际上,紧固件1108经由该实施方式部分地或完全地钻孔于臂1100中。已经通过实验发现,通过安置如图19中所示的紧固件1108,由臂1100和基底夹持器1106形成的部件可以制造得更加抵抗相对移动和相对于平台60A/60B的移动,从而确保在多个处理循环期间保持基底2与平台60A/60B之间的相对对准。这确保了染色在长时间使用系统时是可再现的。
为了确保基底夹持器20A/B或1106与平台60A/B之间的正确对准,可以使用传感器垫。图12示出了包括三个传感器1202、1204和1206的传感器垫1200的图像。每个传感器通过相应的电通信线路连接到接口1208,所述接口被配置用于连接到计算机或其他计算装置。通过接口1208,计算装置可以接收由传感器1202、1204和1206生成的电信号以供系统1校准。
通常,传感器垫1200可以由夹在两片聚合物材料(例如,聚酯)之间的相对较薄的柔性压电阻墨层形成。传感器垫1200的厚度可能很重要,因为它影响校准系统使用的试剂体积。随着传感器垫1200的厚度增加,所消耗的试剂体积增加。因此,已经确定,传感器厚度在200微米至270微米之间有效地平衡了足够多体积的试剂的使用以确保适当的样品处理,并且同时避免了系统消耗过量试剂。
出于对准目的,被集成到系统1中的传感器还可以用于测量电信号并将电信号发送到计算机或其他计算装置。例如,传感器可以被集成到平台60A/60B中以测量和传输电信号以供校准。例如,对准传感器也可以集成到基底夹持器20A和/或20B中。为了提供多次对准检查,可以将多个传感器集成到系统1中,并且系统可以在样品处理之前对传感器执行多个对准程序。作为另一替代方案,在一些实施方案中,可以使用校准或测量载玻片来确保对准。
图13是包括用于将基底夹持器对准平台60A/B的一系列步骤的流程图1300。在初始化系统1并清洁平台表面以移除任何染色剂残留物之后,在步骤1302中通过激活系统的真空源首先将基底(例如,显微镜载玻片)安装在基底夹持器上。该步骤在图14中所示的图像中示出。接下来,在步骤1304中,在确保夹持器处于“原位”位置之后,夹持器旋转(例如,通过将臂10A/B或臂1100旋转)到“向下”位置,如图15中所示。然后在步骤1306中,将220微升固定剂分配到间隙92中,并且检查固定剂在间隙内的分布以确定固定剂是否均匀分布。然后将夹持器旋转回到“向上”位置,移除基底,并清洁平台以移除任何过量固定剂。
接下来,在步骤1308中,将新的载玻片安装在处于“原位”位置的基底夹持器上,在平台60A/B上激活废液真空,并且将传感器垫1200定位在平台上并与平台的偏移部对准。然后将传感器垫1200连接到计算装置。
在步骤1310中,调节传感器垫1200上的三个传感器中的第一者。在轻轻按压第一传感器以验证传感器的电压响应响应于所施加的压力而下降(例如,低于1V)之后,如图16中所示将20g质量放置在传感器上并且测量电压响应。用50g质量和20g与50g质量的组合重复该程序。然后,基于针对20g、50g和70g施加质量测量的电压响应,通过确定作为所施加质量的函数的电压测量值的最佳拟合线,在步骤1312中确定第一传感器的校准曲线。
接下来,在步骤1314和1316中,以与第一传感器相同的方式校准第二和第三传感器。在步骤1316之后,校准所有三个传感器1202、1204和1206的电压响应。然后,在步骤1318中,在将基底夹持器上的载玻片安装在“原位”位置之后,将夹持器旋转到“向下”位置,使传感器垫1200仍然在平台上对准,并且废液真空停用。在步骤1320中,在传感器垫1200固定在载玻片与平台之间的情况下,调整夹持器的定向直到所有三个传感器电压响应都在可接受方差内相等。
最后,在步骤1322中,从平台移除传感器垫1200,将夹持器(仍然安装有载玻片)放置于“向下”位置中,并且将红色和蓝色染料分配到间隙92中以便目视对准验证。在验证之后,该程序在步骤1324处终止。
流体分配平台
如上面所讨论的,控制基底2与平台60A/60B之间的间隙92是本文公开的系统及方法的重要方面,因为它影响处理样品的可再现性。标称上在样品处理期间,间隙92填充有经过精确计量的流体体积,所述流体体积与由基底2的表面和平台60A/60B界定的区域的体积相匹配。重要的是,间隙92内不存在气穴,当间隙92的体积大于分配到间隙中的流体量时,可能发生气穴。当存在气穴时,诸如染色剂之类的流体不均匀地流过间隙92并且可能不均匀地施加到样品上。当随后分析染色的样品时,样品图像中的伪像可能由非均匀染色产生,并且这些伪像可以使得对样品执行的定量测量不准确。
分配到间隙92中的流体体积不超过间隙92的体积也很重要。如果流体体积超过间隙体积,则基底2的边缘处的流体弯月面会破裂,导致流体从间隙92泄漏。通过这种方式发生流体损失,并且在此类条件下染色的样品也可以产生由非均匀染色引起的定量成像伪像。
间隙92的形状也可能会影响流体填充和排放性能。如果间隙92的厚度沿着间隙92内的流体流动方向变化,则流体中的毛细管力变化并且流动阻力非线性地变化。当流动阻力在间隙92内显著变化时,染色剂和其他流体不与样品均匀地相互作用,这可能导致不均匀的染色性能。
因此,对间隙92的厚度的精确控制与对本文公开的方法及系统的性能的控制相关联。通常,在本文公开的样品处理系统中,因为间隙92的厚度在约10微米至约800微米之间,所以间隙厚度的细微差异可能表现为性能的显著变化。
图1的前述讨论集中于其中平台(例如,平台60B/50B)包括一系列偏移部以确保基底2在样品处理期间不接触平台表面的系统的实施方案。然而,流体输送平台也可以通过其他方式实施。
图17是另一个染色平台1760A的示意图。四个间隔物1770A-D从平台1760A向上延伸。可变形构件1710在支撑块1790与染色平台1760A之间延伸。引导元件1785限制平台1760A的运动范围。
在操作期间,当基底2旋转到处理位置时,基底接触隔离物1770A-D。因此,通过调整间隔物1770A-D中的每一者延伸超出平台1760A的表面的量,可以精确地控制间隙92的几何形状和体积。除了在平台1760A与基底2之间建立平行关系之外,还可以调整间隔物1770A-D以限定具有更复杂但仍可再现形状(诸如楔形)的间隙92。
当基底2下降成与间隔物1770A-D接触时,如图18中所示,可变形构件1710允许平台1760A在垂直于平台1760A的平面的方向上移动。因为可变形构件1710施加趋向于将平台1760A压向基底方向的力,所以间隔物1770A-D中的每一者接触基底2。结果,在平台1760A与基底2之间形成可再现厚度的间隙92,间隙的厚度由间隔物1770A-D的几何形状限定。
通过这种方式,可以消除涉及臂10A/10B相对于平台1760A的运动的复杂校准,并且在无需调整基底2的厚度的情况下仅通过调整间隔物1770A-D可以限定间隙92的体积和形状。构件1710的可变形本质确保即使基底厚度变化和/或臂10A/10B每次都不会将基底2定位在完全相同的处理位置,基底2和间隔物1770A-D也会被压在一起。即使发生此类变化,也可以建立可再现体积和形状的间隙92。
相对于某些其他实施方式,平台1760A具有较低复杂性和成本,因为它消除了涉及基底臂的运动的复杂校准步骤和与校准相关联的复杂定位硬件。同时,平台1760A允许对间隙92的几何形状进行稳健且可再现的控制,由此确保流体一致地施加到多个样品。此外,通过建立具有一致几何形状的间隙92,被输送到间隙92中的各种处理流体的体积可以保持恒定,从而减少系统中的日常可变性及系统的流体消耗。
可变形构件1710通常可以通过各种方式实施。在一些实施方案中,例如,可变形构件1710可以是弹簧或其他盘绕构件。更一般地,可变形构件1710是可以沿着与平台1760A的平面正交的方向压缩并且将力沿着相同方向施加到平台1760A的元件。可变形构件1710也可以例如以片簧、盘簧、由诸如软聚合物、橡胶和聚合物泡沫之类的弹性材料形成的构件的形式实施。此外,在一些实施方案中,可变形构件1710可以被实施为液压、气动、磁性和/或电磁悬架。例如,液压流体、气体或场(例如,磁场)可以用于将平台1760A悬挂在支撑块1790上方,并且当基底2接触间隔物1770A-D时将相反的力施加到平台1760A。
应注意,除了向平台1760A施加力以确保与间隔物1770A-D接触之外,可变形构件1710还允许平台1760A相对于基底2稍微旋转使得可以高度可再现地实现对准。因而,可以消除对系统的某些部件相对于彼此进行高度精确对准的要求。即,因为可变形构件1710允许旋转和平移对准灵活性两者,所以可以放宽系统的其他部件的对准公差。
在一些实施方案中,如上面结合图17和18所讨论的,平台1760A使用可变形构件1710相对于支撑块悬挂。可选地或另外,在某些实施方案中,平台1760A可以经由刚性或固定连接件安装到支撑块1790,并且基底2经由一个或多个柔性/可变形构件悬挂在平台1760A上方。用于通过这种方式安装基底2的可变形构件可以通过各种方式集成到系统中。例如,由一个或多个柔性构件形成的密封件可以位于基底2与基底夹持器(例如,基底夹持器20A/20B和1106)之间。作为另一个例子,一个或多个柔性构件可以位于臂10A/10B与基底夹持器20A/20B/1106之间。作为其他例子,一个或多个柔性构件可以用于将致动器30A/30B安装在系统内,并且臂10A/10B可以由可变形材料形成。
图20至27是示出系统的附加实施方案的示意图,其中可变形构件位于系统内的不同位置。在图20至27中的每一者中,致动器30A(例如,马达)经由安装件2002连接到支撑块1790。致动器30A使连接到基底夹持器1106的臂1100在平台1760A上方的打开位置和处理位置之间旋转。如上面所讨论的,间隔物1770A-D(为了清楚起见,在图20至27中仅标记其中一个)限定了基底2与平台1760A之间的间隙。
在图20和25至27中,被实施为多个弹簧的可变形构件1710将平台1760A悬挂在支撑块1790上方,如上面所讨论的。在图21中,可变形构件1710被实施为位于支撑块1790与平台1760A之间的弹性层,从而允许平台1760相对于支撑块1790旋转和平移。因为可变形构件1710由弹性材料(例如,泡沫、橡胶)形成,所以图21中的构件1710以与图20中的弹簧相同的方式将平台1760A和间隔物1770A-D压靠在基底2上。
在图22中,可变形构件1710位于臂10A与基底夹持器20A之间。平台1760A刚性地安装到支撑块1790,并且可变形构件1710将基底2压靠在间隔物1770A-D上。在图23中,可变形构件1710位于安装件2002与支撑块1790之间,并且以类似方式起作用以将基底2压靠在间隔物1770A-D上。在图24中,可变形构件1710被实施为基底2与基底夹持器20A之间的柔性密封件,并且以与图22和23中所示的可变形构件类似的方式起作用。
如上面所讨论的,一个或多个可变形构件确保基底压靠在平台上,使得所有间隔物1770A-D都接触基底表面。通过使用柔性的可变形元件,臂的移动和马达的停止位置不需要被控制到如此高的精度,否则当基底和平台相对于彼此刚性地安装和定位时可能是必要的。结果,例如,可以放宽精确的马达位置控制要求,这允许使用各种不同类型的马达。除了步进马达之外,还可以使用AC/DC有刷或无刷马达。此外,还可以使用各种致动器,诸如气动致动器。可以用于确保致动器运动在基底相对于平台正确定位的情况下停止的机构的例子包括:用作机械止动器以限制臂10A/10B的基于致动器的旋转的机构;其中致动器旋转被限于定义的(例如,编程的)步数(例如,对于步进马达)或者受编码器或基于距离传感器的测量值限制的机构;其中开关或传感器用于提供反馈信号的机构,当基底到达其正确的对准位置时,所述反馈信号停止致动器移动(此类传感器的例子包括光学传感器、磁传感器、电感传感器、电容传感器、电磁传感器、距离传感器和基于电触点的开关);包括一个或多个传感器的机构,所述传感器测量由致动器施加的夹紧力(例如,基于马达电流的测量值)并且当所施加的力超过阈值时停止致动器运动,所述阈值已被确定为导致基底与平台之间的充分接触;以及包括一个或多个开关和/或传感器以基于系统的各种元件的变形(包括例如平台1760A与支撑块1790之间的相对运动、基底夹持器20A/20B/1106相对于臂10A/10B的相对运动、臂10A/10B的变形以及用于将致动器30A/30B安装到系统的一个或多个可变形元件的变形)提供反馈信号的机构。指示相对运动和/或变形的合适信号可以例如通过电接触开关、光学传感器、磁传感器、电磁传感器、电感传感器、电容传感器、应变仪、力传感器和扭矩传感器(其中的任何一者或多者可以集成到系统中)生成。
图25至27是包括一个或多个传感器并且生成可以用于停止致动器运动的反馈信号的系统的示意图,所述传感器用于检测系统的部件的相对运动/位移。在图25中,传感器2004检测平台1760A相对于支撑块1790的位置。传感器2004可以是机械开关、电接触开关,以及包括(但不限于)光学传感器、磁传感器、电容传感器、电感传感器和电磁传感器的各种传感器中的任一者。
传感器还可以用于检测除平台1760A之外的系统的部件的相对位置/位移/变形。在图26中,传感器2004被定位成检测臂10A的相对位置。在图27中,传感器2004被定位成检测基底夹持器20A的相对位置。图26和27中的传感器2004通常可以包括与图25中相同的任何传感器并且还包括其他传感器。
图17中的平台1760A包括四个间隔物1770A-D。然而,更一般地,平台1760A可以包括任何数量的间隔物。例如,在一些实施方案中,平台1760A具有两个间隔物或三个间隔物。在某些实施方案中,平台1760A包括五个或更多个间隔物(例如,六个或更多个间隔物、八个或更多个间隔物、十个或更多个间隔物,或者甚至更多的间隔物)。
虽然间隔物1770A-D在图17中被实施为“销”,但是更一般地,它们可以具有为基底2提供稳定接触点的任何形状。例如,在一些实施方案中,间隔物可以被实施为沿着平台1760A的侧面的至少一部分延伸的脊部。在某些实施方案中,间隔物可以被实施为L形角部构件。在一些实施方案中,间隔物可以具有圆形、椭圆形、正方形、矩形、三角形、六边形、八边形或多边形的横截面形状。
在一些实施方案中,间隔物可以例如通过铣削或注塑成型整体制造为平台1760A的一部分。可选地,在某些实施方案中,间隔物可以制造为与平台1760A分离的元件,并且通过诸如胶合或压制之类的工艺安装到平台1760A。
在一些实施方案中,间隔物可以通过可调方式安装到平台1760A上,使得可以根据需要调整间隙厚度和形状。例如,间隔物1770A-D可以使用控制在平台1760A的表面上方突出的每个间隔物的长度的机构(例如使用垫片、具有不同长度的销组和/或具有不同厚度/形状的平台)安装到平台1760A。
样品处理阶段
取决于样品3的本质,可以执行许多不同的处理阶段作为整个处理序列的一部分以制备样品以供检查。下面讨论此类阶段的例子。然而,应明白,可以使用本文公开的系统执行各种不同的处理阶段和阶段组合,包括未在本文中作为例子具体讨论的阶段。
(i)固定剂阶段
流体管52A-55A和52B-55B可以被定位成在样品处理期间将固定剂输送到平台60A和60B、间隙92、基底2和样品3。可以使用的固定剂包括用于保护生物样品免于腐烂的化学品,并且此类固定剂可以阻止样品中发生生化反应并且增加样品的机械强度和稳定性。可以使用各种固定剂,包括但不限于甲醇、乙醇、异丙醇、丙酮、甲醛、戊二醛、EDTA、表面活性剂、金属盐、金属离子、尿素和氨基化合物。
参考图4,一个或多个流体管52-55A可以连接到平台60A内的孔和相应的固定剂贮存器210A。流体管还可以包括与泵200A和/或阀的连接,所述阀能够通过管和位于平台上的孔将固定剂从贮存器引导到基底和样品上。作为例子,泵200A可以将来自贮存器210A的固定剂通过管54A、通过块80A从孔44A引出到平台60A上,引导到平台60A与基底2之间的间隙92中,并引导到包含样品3的基底2上。在将特定量的固定剂施加到基底2之后,真空或其他抽吸源220A和/或221A可以经由孔40A和/或41A中的一者或多者通过废液管50A和51A将残余固定剂从平台60A、间隙92和基底2排出到废物容器230A和/或231A中。
在一些实施方案中,泵200A将诸如甲醇之类的固定剂通过管54A和孔44A引导到平台60A上并以每秒70微升的流速进入间隙92持续四秒的时间段。然后,真空或其他抽吸源220A和/或221A使用孔40A和/或41A以及废液管50A和/或51A(下面进一步描述)移除存在于间隙92中和/或平台60A和基底2上的残余固定剂。接下来,泵200A可以再次将固定剂以每秒70微升的流速通过管54A和孔44A引导到平台60A上持续四秒的时间段,然后进行第二流体抽空过程。取决于需要固定的生物样品的类型,可以使用相同或不同的固定剂再次重复这种固定和排空过程。
此外,系统1能够改变每个固定阶段的频率和流速。也可以使用足以克服位于间隙92中的流体中的任何表面张力并固定样品3以供进一步处理和评估的其他流速。通过调整固定阶段的频率和/或流速,系统1可以使用几种不同的固定剂实现各种样品的最佳固定。在一些实施方案中,流体进入间隙92的流速在填充循环期间不是恒定的。例如,流体可以最初以较慢速率分配到间隙92中,然后流体进入间隙92的速率可以逐渐增加。在某些实施方案中,在单个填充循环期间,流体可以按随时间降低的速率分配到间隙92中。在一些实施方案中,填充可以最初以较慢速率发生,在填充间隙92的初始部分之后以增加的速率发生,然后随着间隙92的填充接近完成而以较慢速率发生。通过在填充循环开始和结束时缓慢填充间隙92,可以减少由于间隙92内的流体弯月面破裂导致的流体泄漏的风险。
应注意,虽然前面关于填充频率和流速的讨论发生在固定阶段的背景下,但是相同技术也可以适用于用包括染色溶液和漂洗溶液的其他溶液填充间隙92。
用于不同类型的样品、流体和处理方法的机器指令可以在控制单元5中硬连线或预编程,并且根据需要由系统操作者选择。
通常,在固定剂阶段期间可以将多种固定剂施加于样品。例如,85%甲醇可以用作固定剂。对于一些染色剂,可以使用乙醇或甲醛基固定剂。
(ii)染色阶段
系统1还包括被配置为在一个或多个染色阶段中将一种或多种染料或染色剂施加到固定于基底的样品上的管和孔。当在显微镜或其他成像装置下观察或成像样品时,对样品染色会增加样品的对比度。可以使用罗曼诺夫斯基染色剂和/或其他染料或染色剂,包括苏木精和曙红、荧光素、使用抗体的噻嗪染色剂、核酸探针和/或金属盐和离子。
在某些实施方案中,泵201A将染料或染色剂从贮存器211A引导到染色管52A中。然后将染色剂引导到附接到块80A的孔42A。接下来,染色剂从平台60A中的孔42A流出,进入基底2与平台60A之间的间隙92,并且对基底2上的样品3进行染色。
在一些实施方案中,可以使用多个管和孔将染色剂施加到样品3。例如,第二泵(例如,泵202A)可以将来自贮存器212A的染色剂(例如,与从贮存器211A分配的染色剂相同或不同的染色剂)通过管53A和孔43A引导到平台60A上。在某些实施方案中,两个或更多个流体管可以连接到用于将染色剂通过孔引导到平台上的共用染色剂贮存器或泵和/或阀。再次参考图2,管52A可以将诸如荧光素染料之类的红色染料输送到平台、基底2和样品3。管53A可以输送诸如噻嗪染料之类的蓝色染料。在图1至6中,选择平台60A上的孔的数量、位置和尺寸以优化将染色剂施加到固定到基底上的样品。如果选择其他染色剂,则孔的数量、位置和尺寸可以是典型的,这取决于染色剂的粘度。
孔40A-45A(和40B-45B)中的每一者可以包括用于接收流体的输入通道和用于输出流体的输出通道两者。在一些实施方案中,漂洗剂45A、固定剂44A以及染色孔42A-43A的输出通道位于平台60A的上表面上,并且真空孔40A和41A的输入通道可以位于平台60A的上表面的相对端上。漂洗剂45A、固定剂44A以及染色孔42A-43A的输入通道可以位于块80A的同一侧面上,并且真空口40A和41A的输出通道可以位于块80A的相对侧上。
作为例子并参考图2,控制系统5指示泵(例如,泵201A)将染色剂(例如,包括荧光素染料的染色剂)从染色剂贮存器引导到流体管52A中。染色剂从流体管进入孔42A。然后,染色剂以每秒140微升的流速离开孔42A,并且沉积到平台60A与含有样品3的基底2之间的间隙92中,使得样品3染色五秒钟。在染色之后,真空或其他抽吸源(例如,泵220和/或221)然后可以使用孔40A-41A和废液管50A-51A排出存在于间隙92、平台60A和基底2上的残留染色剂。
系统1可以被编程为在第一染色阶段之后延迟(例如,3秒至10秒的延迟,诸如5秒延迟)之后重复这些染色和排出阶段。控制系统5可以指示第二泵202A将噻嗪染料从染色剂贮存器通过流体管53A从孔43A中以每秒140微升的流速引出到平台60A上,在那里它接触样品一段时间,例如三秒钟。真空或其他抽吸源(例如,泵220A和/或221)然后可以使用孔40A-41A和废液管50A-51A排出存在于间隙92中和/或平台60A上和/或基底2上的残留噻嗪染料。与固定阶段一样,系统1能够改变每个染色阶段的频率、延迟时间和流速。流速可以在例如每秒70微升至140微升的范围内,或者可以小于或大于该范围的外部极限(例如,每秒10微升至500微升),条件是流速足够高到克服存在于位于间隙92中的流体中的表面张力,并且理想地对样品染色以供预期评估,而且也可以足够低到使得间隙92的完全填充在没有空气夹杂物并且在不会使沿着基底2的边缘形成的弯月面破裂的情况下发生并且有助于将流体保持在间隙92内。
可施加于样品的示例性染色剂包括但不限于:瑞氏-姬姆萨染色剂、吉姆沙染色剂和罗曼诺夫斯基染色剂。其他试剂,如免疫细胞化学试剂或特定细胞组分的其他标志物,也可以应用于样品。
(iii)废液移除
如上所述,真空或其他抽吸源220和/或221(例如,诸如真空罐或泵)可以在固定和染色阶段期间或之间从基底2、间隙92和平台60A排出残余流体。参考图1,一个或多个废液管可以连接到块80A的侧面82A和84A。废液管或真空管50A和51A用于将流体和小颗粒物质从平台60A、间隙92和基底2取出到废物容器或与系统1分开的其他位置。参考图2,废液管51A和51B可以在废液管的远端处连接到单独的真空源220和221和废物容器230和231。可选地,两个或更多个废液管可以连接到单个真空源和同一废物容器,如图4中所示。废液管50A和50B可以分别延伸穿过阀90A和90B,如图3中所示。
用于施加抽吸的真空或其他源(例如,真空泵220和/或221)可以连接到废液管50A、50B、51A和51B中的一者或多者以将流体从平台60A和/或60B、间隙92和基底2抽取到废物容器230和231中。在基底2与平台之间的间隙92在100微米至200微米之间时,在废液管内施加的真空力可以等于负1至负10磅/平方英寸(“psi”),以提供足够的吸力来移除流体。通常,如本文中所使用,“负”压力是指小于系统1内的环境压力或系统1周围环境的压力。例如,在一些实施方案中,系统1周围的环境具有大约一个大气压的环境空气压力。“负”压力是指小于该环境空气压力的压力(例如,施加到流体的负1psi的压力是比施加在流体上的环境空气压力小1psi的压力)。可以使用从负0.1psi至负14psi(例如,负6psi)或更大的其他真空,条件是此类真空足以克服存在于间隙92中的流体中的任何表面张力并且移除间隙92中以及基底2和样品3上的所有残余流体。另外,在施加真空以立即从间隙92排出流体之前,致动器30A可以将基底2的近边缘从样品处理位置升高15至35微米的距离。基底2与平台60A之间的这种间隔随时间变化增加的分离可以改善真空阶段期间间隙92中的任何残余流体的排出,因为保留在间隙92内的小液滴倾向于在该过程期间汇合以形成然后更易于从间隙92中排出的更大流体液滴。
在一些实施方案中,控制系统5被配置为改变在样品处理期间施加于流体移除的频率和真空。例如,在固定阶段之后,控制系统5可以打开阀90A和/或90C,并且在废液管(例如,废液管50A和51A)中施加负5psi的真空持续5秒钟。在该时间段期间,通过孔40A和41A从间隙92、基底2和平台60A移除固定剂。流体行进通过废液管,并且沉积在一个或多个废物容器(例如,容器230和/或231)中。一旦排出时间段到期,控制系统5就可以指示阀90A、90C中的一者或多者关闭废液管50A和/或51A,由此防止真空220、221进一步排空。控制系统5可以引导系统1在每个固定阶段之后重复该流体移除步骤。
夹紧阀90A、90B、90C和90D关闭废液管50A、50B、51A和51B,如图1中所示。阀90A-90D可以通过包含在阀内或外部的致动器机械地、电气地、液压地或气动地致动。阀90A-90D用于阻止流体流过废液管50A、50B、51A和51B。例如,当从系统1更换或清空完整的废物容器230时,可能需要关闭阀(90A-90D)以防止废液管中存在残余流体泄漏。系统1的实施方案可以使用不同的阀类型或诸如夹具或止动器之类的其他机构以关闭废液管50A、50B、51A和51B。
(iv)漂洗阶段
在系统1的样品处理期间,可以在一个或多个漂洗阶段中施加漂洗溶液。例如,可能需要在固定阶段之间、在染色阶段之间和/或在固定阶段与染色阶段之间从基底2、间隙92和平台60A和/或60B上的样品3中移除残留和/或过量流体。与本系统及方法兼容的漂洗溶液包括蒸馏水;缓冲的水溶液;有机溶剂;以及在有或没有缓冲的情况下水溶剂与有机溶剂的混合物。
为了漂洗样品,泵(例如,泵203A)将漂洗溶液(例如,包括蒸馏水)从贮存器(例如,贮存器213A)引导到漂洗管(例如,漂洗管55A)中。漂洗溶液进入与块80A连接的孔45A。漂洗溶液通过孔45A的输出通道流到平台60A上,然后进入基底2与平台60A之间的间隙92。然后,真空源220、221对废液管50A和51A中的一者或多者施加吸力以从间隙92和基底2中移除漂洗溶液;漂洗溶液被输送到废物容器230和/或231。
在一些实施方案中,控制系统5可以引导泵203A以例如每秒70微升的流速施加漂洗溶液。一旦引入间隙92,漂洗阶段就与基底2上的样品3接触一段时间,例如5秒。与固定阶段一样,控制系统5可以改变每个漂洗阶段的持续时间和流速以及漂洗阶段的数量。另外,控制系统5可以在样品处理期间调整一个或多个漂洗阶段的放置。控制系统5可以例如指示在完成所有固定阶段之后发生一次漂洗阶段,并且在完成所有染色阶段之后发生第二次漂洗阶段。可选地,漂洗阶段可以散布在两个或更多个固定阶段之间或两个或更多个染色阶段之间。
(v)搅拌阶段
在某些实施方案中的样品处理可以可选地包括一个或多个搅拌阶段,以在固定、染色和/或漂洗阶段期间在整个间隙92、含有样品3的基底2以及平台60A和/或60B中分散固定剂、染色剂和/或漂洗流体。图3中所示的致动器30A和/或30B可以提供精细的移动调整以改变基底2相对于平台60A和/或60B的位置。用于处理样品3的任何流体都不需要搅拌。然而,在一些实施方案中,当填充间隙时,搅拌可以用于混合/均匀化间隙92内的流体,并且在特定处理阶段之后从间隙92排出流体。
控制系统5可以包括用于指示致动器30A和/或30B发起搅拌阶段的软件和/或硬件。致动器30A和/或30B可以被配置为在来自控制系统5的搅拌发起命令时上下移动基底臂10A和/或10B。搅拌阶段可以重复预定数量的搅拌循环。如本文中所使用的术语“搅拌循环”是指从向上方向上的起始位置开始的运动,然后是与向上方向相反的向下方向的移动。在一些实施方案中,一个或多个搅拌循环在每个循环结束时或至少在一些循环结束时将基底2返回到起始位置。在某些实施方案中,基底2在一些或所有搅拌循环结束时不返回到起始位置,但是每个循环仍然包括向上运动然后向下运动。致动器30A和/或30B通常在一个或多个搅拌循环中继续移动基底2,直到从控制系统5向致动器发送停止命令。搅拌阶段可以暂时增加基底2与平台60A和/或60B的表面之间的间隔尺寸(间隔距离),然后将基底2返回到样品处理位置。另外,搅拌阶段可以包括使基底2在相对于平台60A和/或60B的表面的角位置与样品处理位置之间移位的一系列移动。当基底2在搅拌阶段期间从样品处理位置移动时,被分配到平台60A和/或60B与基底2之间的间隙92中的流体中的表面张力导致流体重新分布在基底2上,并且可以有利地改善流体整个样品3的均匀性。
应注意,在本文公开的所有搅拌技术中,控制基底2与平台60A/60B之间的相对位移以确保流体保留在间隙92中。为了确保流体保留在间隙中,在不破坏在基底2的边缘处形成的流体弯月面的情况下发生搅拌,因为弯月面主要引起流体限制。
其他方法也可以用于在搅拌阶段期间相对于平台60A,60B移动基底2。例如,在一些实施方案中,偏移部70A-D和/或71A-D中的一者或多者的位置(例如,偏移部在平台60A和/或60B的表面上方延伸的量)可以被快速调整以搅拌样品3。在某些实施方案中,可以调整平台60A和/或60B的位置以引起样品3的搅拌。例如,平台60A和/或60B可以上下交替地移动(例如,对应于上述基底2的移动方向)以引起样品3的搅拌。
在一些实施方案中,当基底臂10A、10B由挠曲材料制成时,通过改变致动器30A和/或30B驱动基底2朝向偏移部70A-D和/或71A-D的程度,可以实现样品3的搅拌,如下面所讨论的。通过检测基底臂10A,10B中的应变变化(作为时间函数的),应变计可以用于测量和调整施加到基底2的搅拌频率。当通过这种方式搅拌样品3时,基底2通常仅接触偏移部70A-70D(或偏移部71A-71D)中的一者或两者。
搅拌阶段可以包括通过致动器30A和/或30B施加的一个或多个搅拌循环。此外,搅拌阶段可以在固定剂、染色剂和/或漂洗阶段期间发生一次或多次,并且在固定、染色和/或漂洗阶段中的每一者之间以不同的频率发生。例如并且参考图3,致动器30A和/或30B可以竖直地将基底2的近边缘从样品处理位置升高35微米的距离,并且随后在每次固定、染色和漂洗阶段之后将基底2返回到样品处理位置三次。致动器30A和/或30B可以在两秒内完成每个搅拌循环(例如,一秒钟使基底2的近边缘从样品处理位置竖直地升高35微米,并且一秒钟将基底返回到样品处理位置)。系统1能够执行指令以改变每个搅拌循环和/或阶段的搅拌频率和距离。例如,搅拌阶段可以包括致动器30A和/或30B将基底2的近边缘从样品处理位置竖直地升高5微米的距离,然后每秒10至20次将基底返回到样品处理位置。
也可以使用搅拌距离和频率的备选组合。例如,在一些实施方案中,搅拌距离为5微米或更大(例如,15微米或更大、25微米或更大、50微米或更大、100微米或更大、150微米或更大、200微米或更大、250微米或更大、300微米或更大、500微米或更大、700微米或更大、1mm或更大)。例如,在某些实施方案中,搅拌距离在35微米至350微米之间。
在一些实施方案中,搅拌循环频率是每秒一个循环或更多(例如,每秒两个循环或更多、每秒三个循环或更多、每秒四个循环或更多、每秒五个循环或更多、每秒七个循环或更多、每秒十个循环或更多)。
还可以使用附加的搅拌技术。例如,在一些实施方案中,基底夹持器20A和/或20B可以包括致动器,所述致动器使基底2围绕垂直于图1和3中所描绘的致动器30A和/或30B的旋转轴线的轴线旋转。
可选地,平台60A和/或60B可以配备有偏移调整器以在固定、染色和漂洗阶段期间升高或降低一个或多个偏移部70A-D和/或71A-D。为了实施偏移调整器,平台60A和/或60B可以包括附接到平台中的内板的偏移部。可以使用内部致动器改变板的高度,因此改变偏移部的高度。可选地,可以通过指示致动器移动平台60A和/或60B或块80A和/或80B来改变偏移部70A-D和/或71A-D相对于基底2的位置,由此在搅拌阶段期间改变间隔距离。与常规染色和制备技术相比,控制系统5可以在样品制备过程期间使用显著更少的流体体积来调整流体循环的频率、流速、偏移部高度、间隔距离以及搅拌参数和频率以更高效地处理样品。
在一些实施方案中,基底臂10A和/或10B可以由挠曲材料制成,使得如果样品处理位置中的基底2仅搁置在从平台延伸的两个偏移部上,则致动器或其他动力元件可以使基底2(例如,载玻片)进一步朝向平台表面旋转直到载玻片搁置在所有四个偏移部70A-D和/或71A-D上。改变基底在这两个位置之间的位置可以在样品处理期间实现充分的搅拌。基底臂10A和/或10B可以包括应变仪以监控基底臂10A和/或10B中的应变,并且可以用于向控制系统5通知基底2相对于平台偏移部70A-D和/或71A-D的位置。另外,控制系统5可以包括与基底2的厚度缺陷相对应的信息,控制系统5可以在将基底2放置在样品处理位置时或在搅拌阶段期间考虑所述信息。
(vi)干燥阶段
在某些实施方案中,控制系统5可以使用附接到系统1的干燥器4来干燥样品3。例如,干燥器4可以引导空气流穿过样品3。通常,可以控制系统1以改变空气的温度、流速、所施加的空气流的持续时间以及样品处理期间用于干燥样品3的一个或多个阶段。例如,在完成染色阶段之后,干燥器4可以在大约120°F下以每分钟10升的速率引导空气流过样品3持续7秒时间段。也可以使用其他空气温度(例如,环境温度高达300°F)、空气流速(例如,每分钟一升至每分钟100升)和空气流动时间段(例如,从几秒到几分钟)。
其他实施方案
已经描述了许多实施方案。然而,应理解,在不脱离本公开文本的精神和范围的情况下,可以进行各种修改。因此,其他实施方案也处于所附权利要求的范围内。

Claims (51)

1.一种用于在基底上制备样品的设备,
该设备包括:
基底处理器,其被配置为在第一位置与第二位置之间移动基底;和
平台,其被定位成使得当该基底处于该第二位置时,该平台面向该基底,
其中该平台包括:
流体输送区域,其具有由亲水性材料形成的第二表面,该亲水性材料的水接触角为40度或更小;和
第一表面,其由疏水性材料形成,该第一表面在该基底处于该第二位置时面向该基底,该疏水性材料的水接触角为100度或更大,且
该设备进一步包括:
多个流体入口孔,其位于该第二表面上;和
流体出口孔,其位于该第二表面上。
2.根据权利要求1所述的设备,其中该平台包括由该亲水性材料形成的第一构件,以及设置在该第一构件的至少一部分上以形成该第一表面的疏水性材料层。
3.根据权利要求2所述的设备,其中在垂直于由该第一表面限定的平面的方向上测量的该疏水性材料层的厚度为100微米或更小。
4.根据权利要求3所述的设备,其中该疏水性材料层的厚度为5微米或更小。
5.根据权利要求1所述的设备,其中该亲水性材料包括选自云母、玻璃和玻璃-陶瓷复合材料的至少一种材料。
6.根据权利要求1所述的设备,其中该亲水性材料包括选自金属和金属氧化物的至少一种材料。
7.根据权利要求1所述的设备,其中该亲水性材料包括该疏水性材料的氧化产物。
8.根据权利要求1所述的设备,其中该疏水性材料包括选自聚二甲基丙烯酰胺、聚二甲基硅氧烷、聚烯烃和含氟聚合物的至少一种材料。
9.根据权利要求1所述的设备,其进一步包括至少一个间隔物,其位于该第一表面上使得当该基底处于该第二位置时,该基底接触该至少一个间隔物,并且对于该第一表面上的任何两个位置,该基底与该第一表面之间的最近距离的最大变化为10微米或更小。
10.根据权利要求1所述的设备,其中该流体出口孔的中心沿着与该流体输送区域的中心轴线正交的方向从该中心轴线移位。
11.根据权利要求1所述的设备,其中该多个流体入口孔包括第一和第二流体入口孔,其位于该流体输送区域的中心轴线的相对侧上的第二表面上,其中对于该第一和第二流体入口孔中的每一者:
流动轴线在该流体入口孔的中心与该流体出口孔之间延伸;并且
该流动轴线与凹部的中心轴线之间的角度为α。
12.根据权利要求11所述的设备,其中该多个流体入口孔进一步包括第三和第四流体入口孔,其位于该中心轴线的相对侧上的第二表面上,其中对于该第三和第四流体入口孔中的每一者:
流动轴线在该流体入口孔的中心与该流体出口孔之间延伸;并且
该流动轴线与凹部的中心轴线之间的角度为β。
13.根据权利要求11所述的设备,其中α为15度或更小。
14.根据权利要求13所述的设备,其中α为10度或更小。
15.根据权利要求12所述的设备,其中β为10度或更小。
16.根据权利要求15所述的设备,其中β为6度或更小。
17.根据权利要求12所述的设备,其中α大于β。
18.根据权利要求1所述的设备,其中沿垂直于上表面的方向测量的该流体输送区域的最大深度为200微米或更小。
19.根据权利要求18所述的设备,其中该最大深度为150微米或更小。
20.根据权利要求1所述的设备,其中该疏水性材料和该亲水性材料的水接触角之间的差值为70度或更大。
21.根据权利要求12所述的设备,其中该第二表面是平面的。
22.根据权利要求21所述的设备,其中该流体输送区域在该第一表面中形成凹部,并且其中该凹部包括在该第一表面与该第二表面之间延伸的侧壁表面。
23.根据权利要求22所述的设备,其中每对相邻侧壁表面被定向成使得该表面所对着的角度大于90度。
24.根据权利要求23所述的设备,其中每对相邻侧壁表面沿着圆角融合。
25.根据权利要求22所述的设备,其中该凹部包括:
平行的第一和第二侧壁表面;
第三侧壁表面,其正交于该第一和第二侧壁表面;
第四和第五侧壁表面,其分别在该第三侧壁表面与该第一和第二侧壁表面之间延伸;和
第六和第七侧壁表面,其分别从该第一和第二侧壁表面延伸并相交。
26.根据权利要求25所述的设备,其中该凹部的底表面具有七边形横向形状,并且其中该凹部的至少一些侧壁表面具有不同长度。
27.根据权利要求25所述的设备,其中该第一、第二、第三和第四流体入口孔被定位成比距离该第六和第七侧壁表面更靠近该第三侧壁表面。
28.一种流体输送平台,
该平台包括:
第一表面;和
至少一个间隔物,其从该第一表面延伸并且被配置为接触基底以保持该基底与该第一表面之间的固定间隔,
其中该第一表面包括第一材料;
其中第二表面在该第一表面中形成凹部的底部并且包括与该第一材料不同的第二材料;并且
其中该第一材料的水接触角与该第二材料的水接触角之间的差值为50度或更大,且
该平台进一步包括:
多个流体入口孔,其位于该第二表面上;和
流体出口孔,其位于该第二表面上。
29.根据权利要求28所述的平台,其中该水接触角之间的差值为70度或更大。
30.根据权利要求28所述的平台,其中该第一材料的水接触角为100度或更大。
31.根据权利要求28所述的平台,其中该第二材料的水接触角为40度或更小。
32.根据权利要求28所述的平台,其中该第一材料包括选自聚二甲基丙烯酰胺、聚二甲基硅氧烷、聚烯烃和含氟聚合物的至少一种材料。
33.根据权利要求28所述的平台,其中该第二材料包括选自云母、玻璃和玻璃-陶瓷复合材料的至少一种材料。
34.根据权利要求28所述的平台,其中该第二材料包括选自金属和金属氧化物的至少一种材料。
35.根据权利要求28所述的平台,其中该第二材料包括该第一材料的氧化产物。
36.根据权利要求28所述的平台,其中该第一表面由设置在该第二材料的基底上的第一材料层形成,并且其中在垂直于由该第一表面限定的平面的方向上测量的该第一材料层的厚度为100微米或更小。
37.根据权利要求36所述的平台,其中该第一材料层的厚度为5微米或更小。
38.根据权利要求28所述的平台,其进一步包括一个或多个可变形构件,其被定位成与该第一表面相对并且位于该平台与支撑基座之间。
39.根据权利要求38所述的平台,其中该一个或多个可变形构件包括弹簧、弹性体材料、金属材料、聚合物材料、橡胶材料、泡沫材料、磁悬浮元件、电磁悬浮元件、液压悬浮元件和气动悬浮元件中的至少一者。
40.一种流体输送平台,其包括:
第一表面;
凹部,其形成在该第一表面中并且具有由第二表面形成的底部;
至少一个间隔物,其从上表面延伸并且被配置为接触基底以保持该基底与该第一表面之间的固定间隔;
流体出口孔,其沿着该第二表面设置,其中该流体出口孔的中心沿着该凹部的中心轴线定位;
第一和第二流体入口孔,其沿着该第二表面定位在该中心轴线的相对侧上;和
第三和第四流体入口孔,其沿着该第二表面定位在该中心轴线的相对侧上,
其中对于该第一和第二流体入口孔中的每一者:
流动轴线在该流体入口孔的中心与该流体出口孔之间延伸,并且该流动轴线与该凹部的中心轴线之间的角度为α;
其中对于该第三和第四流体入口孔中的每一者:
流动轴线在该流体入口孔的中心与该流体出口孔之间延伸,并且该流动轴线与该凹部的中心轴线之间的角度为β;并且
其中α大于β。
41.根据权利要求40所述的平台,其中该第一和第二流体入口孔中的每一者被定位成沿着相应的流动轴线与该流体出口孔相距距离a1,该第三和第四流体入口孔中的每一者沿着相应的流动轴线与该流体出口孔相距距离b1,并且其中a1大于b1
42.根据权利要求40所述的平台,其中α为15度或更小。
43.根据权利要求42所述的平台,其中α为10度或更小。
44.根据权利要求40所述的平台,其中β为10度或更小。
45.根据权利要求44所述的平台,其中β为6度或更小。
46.根据权利要求40所述的平台,其中该凹部包括:
平行的第一和第二侧壁表面;
第三侧壁表面,其正交于该第一和第二侧壁表面;
第四和第五侧壁表面,其分别在该第三侧壁表面与该第一和第二侧壁表面之间延伸;和
第六和第七侧壁表面,其分别从该第一和第二侧壁表面延伸并相交。
47.根据权利要求46所述的平台,其中该第二表面具有七边形横向形状,并且其中该凹部的至少一些侧壁表面具有不同长度。
48.根据权利要求46所述的平台,其中该第一、第二、第三和第四流体入口孔被定位成比距离该第六和第七侧壁表面更靠近该第三侧壁表面。
49.根据权利要求40所述的平台,其进一步包括一个或多个可变形构件,其被定位成与该第一表面相对并且位于该平台与支撑基座之间。
50.根据权利要求49所述的平台,其中该一个或多个可变形构件包括弹簧、弹性体材料、金属材料、聚合物材料、橡胶材料、泡沫材料、磁悬浮元件、电磁悬浮元件、液压悬浮元件和气动悬浮元件中的至少一者。
51.一种将流体施加至基底的方法,其包括:
将该基底相对于流体输送系统的平台定位,使得该基底面向该平台并且通过间隙与该平台分离,其中该平台包括:
第一表面,其在该基底面向该平台时面向该基底并且由疏水性材料形成,该疏水性材料的水接触角为100度或更大;
流体输送区域,其包括由亲水性材料形成的第二表面,该亲水性材料的水接触角为40度或更小;
多个流体入口孔,其位于该第二表面上;和
流体出口孔,其位于该第二表面上;
通过将该流体输送通过该多个流体入口孔来用该流体填充该间隙,由此使该基底与该流体接触;以及
通过该流体出口孔排出该流体来从该间隙中除去该流体。
CN201780087503.9A 2016-12-30 2017-12-29 样品处理系统及方法 Active CN110573256B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662440847P 2016-12-30 2016-12-30
US62/440,847 2016-12-30
PCT/US2017/068883 WO2018126098A2 (en) 2016-12-30 2017-12-29 Sample processing systems and methods

Publications (2)

Publication Number Publication Date
CN110573256A CN110573256A (zh) 2019-12-13
CN110573256B true CN110573256B (zh) 2022-09-02

Family

ID=61028195

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780087503.9A Active CN110573256B (zh) 2016-12-30 2017-12-29 样品处理系统及方法

Country Status (5)

Country Link
US (2) US11278883B2 (zh)
EP (2) EP3995212A1 (zh)
JP (1) JP6886023B2 (zh)
CN (1) CN110573256B (zh)
WO (1) WO2018126098A2 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3205268A1 (en) 2019-05-03 2020-11-12 Gen-Probe Incorporated System and method for managing liquid waste
TWI750600B (zh) * 2020-02-27 2021-12-21 國立臺灣大學 流體量測元件及其製作方法
EP3916394A1 (en) * 2020-05-29 2021-12-01 Roche Diagnostics GmbH Module for an automated laboratory system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044519A1 (fr) * 2001-11-20 2003-05-30 Nec Corporation Appareil de separation, procede de separation et procede de production d'un appareil de separation
WO2008063135A1 (en) * 2006-11-24 2008-05-29 Agency For Science, Technology And Research Apparatus for processing a sample in a liquid droplet and method of using the same
CN101291736A (zh) * 2005-06-03 2008-10-22 斯平克斯公司 用于流体的可编程微量操作的剂量计
CN101558262A (zh) * 2006-06-02 2009-10-14 应用生物系统有限责任公司 微流体装置中控制气泡形成的装置及方法
CN103055975A (zh) * 2012-12-31 2013-04-24 苏州汶颢芯片科技有限公司 一种温度响应的微流体自驱动微流控芯片及其制备方法
WO2013181656A1 (en) * 2012-06-01 2013-12-05 President And Fellows Of Harvard College Microfluidic devices formed from hydrophobic paper
WO2014152825A1 (en) * 2013-03-14 2014-09-25 Diagnostics For All, Inc. Molecular diagnostic devices with magnetic components
CN105102958A (zh) * 2013-04-05 2015-11-25 罗氏血液诊断股份有限公司 制备用于检查的生物样本的自动化系统及方法
CN105344394A (zh) * 2015-09-24 2016-02-24 基蛋生物科技股份有限公司 一种高精度微量液体等量分流器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975250A (en) * 1989-08-21 1990-12-04 Fisher Scientific Co. Aligned slideholder and assembly
JP2005528582A (ja) * 2001-09-07 2005-09-22 コーニング インコーポレイテッド ハイスループット分析のためのマイクロカラム・プラットフォームに基づくアレイ
US7007710B2 (en) 2003-04-21 2006-03-07 Predicant Biosciences, Inc. Microfluidic devices and methods
JP2005270845A (ja) * 2004-03-25 2005-10-06 Mitsubishi Rayon Co Ltd 親水性フッ素樹脂製多孔質膜の処理方法
US8828912B2 (en) * 2009-09-21 2014-09-09 Akonni Biosystems, Inc. Method of making a microarray assembly
US20110124144A1 (en) * 2009-03-17 2011-05-26 Roth & Rau Ag Substrate processing system and substrate processing method
US9498791B2 (en) 2009-11-13 2016-11-22 Ventana Medical Systems, Inc. Opposables and automated specimen processing systems with opposables
TW201234011A (en) * 2010-11-01 2012-08-16 Nanoink Inc High-throughput slide processing apparatus
ES2700297T3 (es) 2010-11-10 2019-02-14 Roche Diagnostics Hematology Inc Aparato automático para preparar muestras biológicas para examinar
KR102090934B1 (ko) 2012-01-09 2020-03-19 퍼킨엘머 헬스 사이언시즈, 아이엔씨. 마이크로유체 반응기 시스템
WO2013127990A1 (en) * 2012-03-01 2013-09-06 Victorious Medical Systems Aps Method and system for distributing and agitating an amount of liquid over a microscope slide
JP6274105B2 (ja) * 2012-08-13 2018-02-07 ソニー株式会社 スライドトレイ及びスライド搬送装置
EP3014330B1 (en) * 2013-06-26 2024-01-03 Alentic Microscience Inc. Sample processing improvements for microscopy
WO2015051295A1 (en) * 2013-10-04 2015-04-09 Biogenex Laboratories, Inc. Assembly for forming microchamber for inverted substrate
CN203568342U (zh) * 2013-10-10 2014-04-30 广州安必平自动化检测设备有限公司 可拆卸的染色板
EP3174503A1 (en) 2014-08-03 2017-06-07 Mvalve Technologies Ltd. Sealing elements for intracardiac devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044519A1 (fr) * 2001-11-20 2003-05-30 Nec Corporation Appareil de separation, procede de separation et procede de production d'un appareil de separation
CN101291736A (zh) * 2005-06-03 2008-10-22 斯平克斯公司 用于流体的可编程微量操作的剂量计
CN101558262A (zh) * 2006-06-02 2009-10-14 应用生物系统有限责任公司 微流体装置中控制气泡形成的装置及方法
WO2008063135A1 (en) * 2006-11-24 2008-05-29 Agency For Science, Technology And Research Apparatus for processing a sample in a liquid droplet and method of using the same
WO2013181656A1 (en) * 2012-06-01 2013-12-05 President And Fellows Of Harvard College Microfluidic devices formed from hydrophobic paper
CN103055975A (zh) * 2012-12-31 2013-04-24 苏州汶颢芯片科技有限公司 一种温度响应的微流体自驱动微流控芯片及其制备方法
WO2014152825A1 (en) * 2013-03-14 2014-09-25 Diagnostics For All, Inc. Molecular diagnostic devices with magnetic components
CN105102958A (zh) * 2013-04-05 2015-11-25 罗氏血液诊断股份有限公司 制备用于检查的生物样本的自动化系统及方法
CN105344394A (zh) * 2015-09-24 2016-02-24 基蛋生物科技股份有限公司 一种高精度微量液体等量分流器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
超疏水表面的减阻研究;郝秀清等;《润滑与密封》;20090915(第09期);第25-28页 *

Also Published As

Publication number Publication date
US20190344260A1 (en) 2019-11-14
WO2018126098A2 (en) 2018-07-05
JP2020503520A (ja) 2020-01-30
WO2018126098A3 (en) 2018-08-02
EP3565667A2 (en) 2019-11-13
EP3995212A1 (en) 2022-05-11
JP6886023B2 (ja) 2021-06-16
CN110573256A (zh) 2019-12-13
US20220203350A1 (en) 2022-06-30
US11278883B2 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
US20220203350A1 (en) Sample processing systems and methods
US11668629B2 (en) In situ heat induced antigen recovery and staining apparatus and method
US11913860B2 (en) Method of removing floatation liquid
JP5513487B2 (ja) 検体処理のための方法および装置
EP3467469B1 (en) Automated apparatus for preparing biological specimens for examination
EP3693722B1 (en) Automated systems and methods for preparing biological specimens for examination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant