CN101937970A - 具有一个或多个非定值掺杂浓度分布的相变化存储器 - Google Patents

具有一个或多个非定值掺杂浓度分布的相变化存储器 Download PDF

Info

Publication number
CN101937970A
CN101937970A CN201010214596.7A CN201010214596A CN101937970A CN 101937970 A CN101937970 A CN 101937970A CN 201010214596 A CN201010214596 A CN 201010214596A CN 101937970 A CN101937970 A CN 101937970A
Authority
CN
China
Prior art keywords
electrode
phase change
additive
storage medium
change storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010214596.7A
Other languages
English (en)
Other versions
CN101937970B (zh
Inventor
施彦豪
郑怀瑜
陈介方
吴昭谊
李明修
龙翔澜
马修·J·布雷杜斯克
林仲汉
西蒙·洛克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
International Business Machines Corp
Original Assignee
Macronix International Co Ltd
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd, International Business Machines Corp filed Critical Macronix International Co Ltd
Publication of CN101937970A publication Critical patent/CN101937970A/zh
Application granted granted Critical
Publication of CN101937970B publication Critical patent/CN101937970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of the switching material, e.g. post-treatment, doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/823Device geometry adapted for essentially horizontal current flow, e.g. bridge type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells

Abstract

本发明公开了一种具有一个或多个非定值掺杂浓度分布的相变化存储器,其包含一具有例如是硫属化物GST的相变化材料主体及一个或多个添加物的存储元件,其中添加物具有一沿着通过存储元件的电极间电流路径非定值添加浓度分布。此处的名词″非定值″添加物浓度分布的使用可以根据不同的结晶性、热性和电性以及相变化转变等条件而在不同区域中掺杂不同的材料或浓度。

Description

具有一个或多个非定值掺杂浓度分布的相变化存储器
技术领域
本发明是关于以包含硫属化物的相变化材料为基础的存储器装置,以及用于制造此装置的方法。
背景技术
以相变化为基础的材料,例如以硫属化物为基础的材料或相似的材料,可以使用于集成电路中所提供适当大小的电流,来引发在非晶相与结晶相之间的相变化。非晶相通常的特征是具有比结晶相更高的电阻,其可以很容易地被感应以指示数据。此特性已引起广泛的注意,尤其是对于使用可编程电阻材料以形成非易失性存储器电路,其可利用随机存取方式来读取及写入。
由非晶相至结晶相的改变通常是使用较小电流的操作。由结晶相至非晶相的改变,在此称为复位,通常是使用较高电流的操作,其包含一个短且高电流密度脉冲以熔化或打断此晶相结构,在此相变化材料快速的冷却之后,退火此熔化的相变化材料且允许至少一部份的相变化材料稳定至非晶相。
复位操作所需的电流密度可由降低在存储单元内相变化材料元件的大小及/或在电极及相变化材料之间的接触面积,故而使用较小电极接触面积可以有较高的电流密度穿过此相变化材料。
相变化装置所引起的一个问题是数据保持能力。相变化存储器会因为电阻随着时间偏移而产生问题,此时主动区域的组成会因为此装置所曝露的环境因素由非晶相转变为结晶相,或是反之亦然。举例而言,一存储单元的主动区域被复位至大致为非晶态或许在一段时间之后会在主动区域中发展出结晶区域的分布。假如这些结晶区域连接在一起而在主动区域中形成一低电阻路径的话,当此存储单元被读取时就会检测到一低电阻状态而产生数据错误。可参见Gleixner的论文″Phase Change MemoryReliability″,22nd NVSMW,2007。
相变化存储单元所引起的另一个问题是由非晶态与结晶态之间的材料密度差异所引发的问题。如此体积的改变是因为非晶态至结晶态转变导致相变化材料中及与电极界面之间的应力所产生。于操作时,重复的设置与复位操作导致相变化材料中空洞的产生,其会造成装置失效且限制存储单元的循环承受力。此外,于制造时,高温的后段工艺可以导致先前沉积的非晶态转变为高密度的结晶态,其也可以产生导致装置失效的空洞。
硫属化物及其它的相变化材料可以与添加物结合以改善导电性、转换温度、熔化温度及其它材料特性。与添加物结合的相变化材料通常称为″掺入杂质″或是″添加掺杂物″。这些名词″添加物″、″杂质″或是″掺杂物″可以于此说明书中交互的使用。硫属化物中所使用的代表性添加物包括氮、硅、氧、氧化硅、氮化硅、铜、银、金、铝、氧化铝、钽、氧化钽、氮化钽、钛及氧化钛。举例而言,可参阅美国专利第6800504号(掺杂金属)及美国专利申请公开第2005/0029502号(掺杂氮)。已有许多研究进行以通过调整相变化材料中的掺杂浓度提供可以在低电流操作的存储装置。
Ovshinsky等人的美国专利第6087674号及其母案第5825046号描述形成复合存储材料的方法,其中相变化材料与相对高浓度的介电材料混合以管理此复合存储材料的电阻值。这些专利中所描述的复合存储材料的本质为何并不清楚,但是其描述可以利用多层结构或是混合结构的方式进行复合。这些专利中所描述的介电材料包含一个广泛的范围。
许多研究已对于使用氧化硅掺杂的硫属化物展开以减少存储装置操作时所需的复位电流。可参阅Ryu等人的论文″SiO2 Incorporation Effects inGe2Sb2Te5 Films Prepared by Magnetron Sputtering for Phase Change RandomAccess Memory Device″,Electrochemical and Solid-State Letters,9(8)G259~G261(2006);Lee等人的论文″Separate domain doemation inGe2Sb2Te5-SiO2 mixed layer″,Appl.Phys.Lett.89,163503(2006);Czubatyj等人的论文″Current Reduction in Ovonic Memory Device″,E*PCOS06(2006);以及Noh等人的论文″Modification of Ge2Sb2Te5 by the Addition ofSiOx for Improved Operation of Phase Change Random Access MemoryDevice″,Mater.Res.Soc.Symp.Proc.Vol.888(2006)。这些参考数据建议相对低浓度的氧化硅掺杂于Ge2Sb2Te5(GST)中导致电阻的显著增加及复位电流的对应降低。Czubatyj等人的论文建议掺杂约10%体积百分比(6.7%原子数百分比)氧化硅的GST合金结构可以改善其电阻,且报导对于最高达30%体积百分比氧化硅掺杂进行测试,但是并没有提供其细节。Lee等人的论文则描述约为8.4%原子数百分比的相对高掺杂浓度的一种现象,其中在高温退火之后氧化硅似乎会自GST中分离,以形成GST区域在边界主要由氧化硅所包围。掺杂氧化硅也会导致此材料结晶相中的粒子大小降低,且改善其可制造性。
Hudgens的美国专利申请公开第2005/0029502号描述一种复合的掺杂GST,其中宣称氮或氮及氧会导致粒子大小降低,而第二掺杂物如钛,以可增加设置编程速度的方式施加。在Hudgens专利申请案中的第二掺杂物施加是用来抵消由掺杂氮所增加的设置编程时间。然而,发现到如氮或氧的气相掺杂物虽然可以降低沉积材料中的粒子大小,但是并不可靠,且会在使用时于材料中生成空洞。
Chen等人的于2009年3月10日发证的美国专利第7501648号″PHASECHANGE METERIAL AND AS SOCIATED MEMORY DEVICES″中描述使用氮化合物掺杂的相变化材料会影响其转变速度。
本案发明人的另一于2008年10月2日申请的美国专利申请第12/286874号″DIELECTRIC MESH ISOLATED PHASE CHANGESTRUCTURE FOR PHASE CHANGE MEMORY″中描述使用相对高浓度的氧化硅掺杂,及提出与上述改变相变化存储材料成分相关的一些问题。
虽然使用添加物可以大幅地改善良率,但是会造成数据保持及可靠性等问题。此外,与未掺杂的相变化材料相较,使用添加物会对许多存储器性能产生不良的影响,例如设置编程速度及阈值电压等,因而限制了相变化为基础的存储电路无法在某些应用中的使用。
因此,最好是能提供一种存储单元,其能够解决上述良率、数据保持及可靠性等问题。
发明内容
有鉴于此,本发明的主要目的是提供一个相变化存储装置,其包含一具有例如是硫属化物GST的相变化材料主体及一个或多个添加物的存储元件,其中添加物具有一沿着通过存储元件的电极间电流路径的非定值添加浓度分布。此装置包括一第一电极、一相变化存储元件与该第一电极连接、及一第二电极与相变化存储元件连接。此存储元件具有一相变化材料主体,其具有不同的区域特性,在装置操作时具有极不同的热性、电性和相转变等特性。一第一区域邻接该第一电极、一第二区域包围该主动区域、一第三区域介于该主动区域与该第二电极之间及一第四区域邻接该第二电极。此处的名词″非定值″添加物浓度分布的使用可以根据不同的应力性、热性和电性,以及相转变等条件而在不同区域中掺杂不同的材料或浓度。
在此处所描述的一实施例中,该相变化存储材料包含一基础相变化存储材料具有一第一添加物浓度分布在邻接该第一电极的一第一层及一第二添加物浓度分布在邻接该第二电极的一第二层。该相变化存储材料的该主动区域于该第一层内。该第一添加物浓度分布是用于改善该较低电阻相的电阻值稳定性,且该第二添加物浓度分布是用于改善该存储单元的循环承受力。在一范例中,该基础相变化存储材料是锗锑碲(GST),该第一层中的添加物是硅,而在该第一层及第二层中的另一添加物是氧化硅。如此提供存储单元在多次设置/复位循环中于低电阻状态的改善阻抗稳定性,同时又可以避免空洞的形成。此外,在第二层中没有硅掺杂的存在减少存储单元整体的电阻值。
本发明是揭露一种集成电路存储器装置其是以具有非定值添加物浓度分布的相变化存储装置为基础。
附图说明
图1为一个存储单元的一部份的简要剖面示意图,其具有不同的区域特性,在装置操作时具有极不同的热性、电性和相转变等特性。
图2显示使用一基础相变化材料及单一添加物的浓度分布的第一实施例。
图3显示使用一基础相变化材料及两种添加物组合的浓度分布的第二实施例。
图4显示使用一基础相变化材料及另两种不同添加物组合的浓度分布的第三实施例。
图5显示使用一基础相变化材料及另两种不同添加物组合的浓度分布的第四实施例。
图6显示具有此处所描述的非定值添加物浓度分布的存储单元的制造流程图。
图7为一第一实施例中存储单元的一部份的剖面图,其包含一具有非定值添加浓度分布的相变化材料存储元件。
图8为一第二实施例中存储单元的一部份的剖面图,其包含一具有非定值添加浓度分布的相变化材料存储元件。
图9为一第三实施例中存储单元的一部份的剖面图,其包含一具有非定值添加浓度分布的相变化材料存储元件。
图10是可应用本发明的集成电路的简化方块图。此集成电路包括使用此处所描述的非定值添加浓度分布存储单元的存储器阵列。
图11为具有此处所描述的非定值添加浓度分布存储单元的存储器阵列的简要示意图。
【主要元件符号说明】
100、700、800、900:存储单元
110、710、810、910:主动区域
113、713、813、913:非主动区域
116、716、816、916:存储元件
120、720、820、920:第一电极
122:第一电极的宽度
130:介电层
140、740、840、940:第二电极
715:介电间隔物
717:电流路径长度
817:存储元件宽度
822:底表面
824:顶表面
1010:集成电路
1012:具有非定值掺杂分布的相变化存储单元阵列
1014:字线译码器及驱动器
1016:字线
1018:位线译码器
1020:位线
1022:总线
1024:感应放大器/数据输入结构
1026:数据总线
1028:数据输入线
1030:其它电路
1032:数据输出线
1034:控制器
1036:偏压电路的电压及电流源
1130、1132、1134、1136:存储单元
1140、1142、1144、1146:存储元件
1154:源极线
1155:源极线终端
1156、1158:字线
1160、1162:位线
1180:电流路径
具体实施方式
本发明以下的实施例描述系搭配第1到11图进行说明。
图1为一个概要图示,其描述一个存储单元100的一部份的剖面图,其包含一具有相变化材料主体的存储元件116,相变化材料主体包括一沿着通过存储元件116的电极间电流路径的非定值添加浓度分布。如同之前所描述的,非定值添加浓度分布包含一第一添加浓度分布于主动区域110中及一第二添加浓度分布于主动区域110外的非主动区域113中。
此存储单元100包括一第一电极120延伸穿透介电层130以接触存储元件116的底表面,及一第二电极140于存储元件116之上。此第一及第二电极120、140,可以包含举例而言,氮化钛或氮化钽。替代地,此第一及第二电极120、140,每一个可以包含钨、氮化钨、氮化钛铝、或是氮化钽铝,或是包含,对进一步的范例而言,一个或多个元素选自下列群组掺杂-Si、Si、C、Ge、Cr、Ti、W、Mo、Al、Ta、Cu、Pt、Ir、La、Ni、N、O以及Ru及其组合。
如图1中所示,第一电极120相对窄的宽度122(在某些实施例中为直径)导致此第一电极与存储元件的接触区域小于存储元件116与顶电极140的接触区域。因此电流集中于存储元件116靠近第一电极120的部分,导致主动区域110是靠近或是与第一电极120接触,如图中所示。此存储元件116也包括一非主动区域113于主动区域110之外,其所谓的非主动是指在操作时不会进行相变化。此存储元件包括一基础相变化材料,其可以被特征为具有四个区间。区间1是相变化材料与第一电极120的界面、区间2是包围存储元件主动区域的一层、区间3是介于主动区域与第二电极140界面的一层而区间4是与第二电极140的界面。区间1~4可以在此装置的制造及操作时具有极不同的热性、电性、结晶性和应力性。每一个区间因此可以作为基础相变化材料不同添加物的候选人以增进其效能。根据此存储单元的结构及相变化材料中主动区域的位置,此界面区间1和4可以包括主动区域的一部份。此外,对一远离电极的主动区域,可以在主动区域与各自的第一和第二电极之间具有两个中间区间。
存储元件116的基础相变化材料在此范例中为Ge2Sb2Te5。这些基础材料可以定义为选取作为相变化材料的元素组合,且沉积具有定义该材料特性的浓度分布。因为添加物是组合的,基础材料中的相对元素浓度并不会改变。而是,在此范例中基础相变化材料掺杂的添加物是沿着底电极120与顶电极140之间的电极间路径的具有非定值浓度分布的氧化硅,如图2中所示。在此非定值浓度分布中,氧化硅中硅与氧成分的整体浓度在区间1和区间2是约为15%原子数百分比,且在区间3的非主动区域中浓度下降,而在区间4靠近第二电极140处更下降至接近0%。也可以使用其它硫属化物或是添加物。
举例而言,其它的基础相变化材料可以包括GexSb2yTex+3y,其中x和y是整数(包括0)。也可以使用GeSbTe为基础以外的其它的基础相变化材料,包括GaxSb2yTex+3y,其中x和y是整数。替代地,此基础相变化材料可以选自包括AgxInySb2Te3,其中x和y是小于1的分数。
图2显示使用氧化硅作为添加物的一非定值添加物浓度分布的第一实施例。如图2中所示,氧化硅的浓度在底电极120与存储元件116界面处较顶电极140与存储元件116界面处为高。在图2的所示范例中,相变化材料的添加物在底电极120与存储元件116界面处具有硅浓度约5±2%原子数百分比,氧浓度约10±4%原子数百分比。而氧化硅的浓度随后向下转变至在与顶电极界面处的大致未掺杂的GST,导致图中所示的非定值添加物浓度分布。
主动区域110包含相变化材料结晶相区域与富含介电质的网状结构(未示),是由氧化硅掺杂自相变化合金分离所导致,细节可参阅美国专利申请第12/286874号,名称为″DIELECTRIC MESH ISOLATED PHASECHANGE STRUCTURE FOR PHASE CHANGE MEMORY″,在此作为参考数据。
在此存储单元100的复位操作,偏压电路(可参阅,例如图10中的具有控制器撘配1034的偏压电路的电压及电流源1036)与第一及第二电极120、140耦接以诱发电流经由存储元件116通过第一与第二电极120、140之间足以诱发一通常为高电阻的非晶相于主动区域的相变化区域中以在此存储单元100建立高电阻复位状态。
GST为基础的存储材料通常包含两个结晶相,一较低转换温度的面心立方(FCC)相及一较高转换温度的六方最密堆积(HCP)相,此六方最密堆积(HCP)相的密度高于面心立方(FCC)相。在通常情况下,并不希望发生自面心立方(FCC)相至六方最密堆积(HCP)相的转换,因为存储材料体积的减少会导致存储材料内及电极与存储材料界面间的应力。未掺杂的Ge2Sb2Te5,其自面心立方(FCC)相至六方最密堆积(HCP)相的转换是发生在低于退火温度400℃以下。因为包含未掺杂的Ge2Sb2Te5的存储单元在设置操作时或许会经历大于400℃的温度,转换至六方最密堆积(HCP)相或许会对存储单元产生一些可靠性问题。此外,转换至六方最密堆积(HCP)相的速度也会较慢。
于一存储单元的寿命期间,如此的体积变化会于主动区域内产生空洞,因而造成装置的失效。
曾发现Ge2Sb2Te5若含有10%~20%原子数百分比的氧化硅,可以在高达400℃的退火温度时仍保持面心立方(FCC)相。更进一步而言,具有10%~20%原子数百分比的氧化硅掺杂的Ge2Sb2Te5与未掺杂的Ge2Sb2Te5比较,具有较小的结晶尺寸。其结果是,包含10%~20%原子数百分比的氧化硅掺杂的Ge2Sb2Te5的存储单元在后段工艺或是设置操作时可以在高达400℃的温度退火以避免高密度六方最密堆积(HCP)相,且与未掺杂的Ge2Sb2Te5比较,因此经历较少的应力和具有增加的可靠性及较高切换速度。
一相变化材料的结构会倾向在装置主动区域内改变,而不是在主动区域外,因为在其内部具有较剧烈热条件,因此材料会根据热环境迁移至较稳定的状态。通过将第一添加物浓度分布掺杂于主动区域内,其通过抑制空洞迁移倾向强化此相变化材料,此存储装置的良率、耐力及保持力会显著地改善。
图3显示使用氧化硅和硅的组合作为添加物的一非定值添加物浓度分布的第二实施例。如图3所示的范例中,相变化材料的添加物在底电极120与存储元件116界面处具有硅浓度约5±2%原子数百分比,氧浓度约10±4%原子数百分比。在此范例中,除了原本氧化硅中的硅组成之外,硅添加物的最大浓度约1~5%原子数百分比之间。因此,此材料组合后的元素硅和氧以及GST基底的浓度分布包括10%原子数百分比硅、10%原子数百分比氧和80%原子数百分比的GST元素。可以发现硅添加物改善了保持时间及承受力,但是会伤害设置时间。将较高浓度的硅加入主动区域110中可以改善主动区域的保持能力,而不会严重地影响远离主动区域的保持力。此外,降地远离主动区域的区域的硅掺杂浓度可以降低存储单元的整体电阻值,且改善此技术微缩至更低操作电压时的稳定性。
图4显示使用氧化硅和银的组合作为添加物的一非定值添加物浓度分布的第三实施例。如图4所示的范例中,相变化材料的添加物在底电极120与存储元件116界面处具有硅浓度约5±2%原子数百分比,氧浓度约10±4%原子数百分比。发现银添加物改善了保持时间,但是会使得存储单元的阈值电压变得太高而无法实际应用在芯片上。改变银的非定值添加物浓度分布或许可以降低阈值电压至一现实可用的值而仍能为存储单元提供好的保持力。
图5显示使用氧化硅和氮化硅的组合作为添加物的一非定值添加物浓度分布的第四实施例。如图5所示的范例中,相变化材料的氧化硅添加物在底电极120与存储元件116界面处具有硅浓度约5±2%原子数百分比,氧浓度约10±4%原子数百分比。在此范例中,氮化硅添加物的最大浓度中的硅组成约5±2%原子数百分比,而氮组成约8.3±3.3%原子数百分比。发现掺杂氮化硅的GST具有较掺杂氧化硅的GST更佳的保持时间,但是此装置会较掺杂氧化硅的GST更早失效。图5的实施例中可以较在整个主动区域掺杂定量氮化硅时提供更佳的承受力和保持时间,通过在邻近第一和第二电极的界面区域掺杂氧化硅,在主动区域中掺杂氮化硅而没有大量氧化硅分布于此主动区域中。此外在此范例中介于氮化硅掺杂区域与顶电极界面的大块区域是仅掺杂氧化硅。
其它的添加物也可以使用于此非定值添加物浓度分布中。举例而言,也可以使用InGeTe中的In添加于GST基础的相变化材料中提供较高温度保持。也发现Ge可以和硅类似的方式改善保持能力。
图6显示具有此处所描述的非定值添加物浓度分布的存储单元的制造流程图,此存储单元具有与图1类似的结构。故使用与图1元件相同的参考标号。
在步骤600,具有宽度或直径122的第一电极120延伸穿过介电层130。在此例示实施例中,第一电极120包含氮化钛而介电层130包含氮化硅。在其它的实施例中,第一电极120具有采用亚光刻技术产生的宽度或直径122。
第一电极120延伸穿过介电层130至底层的存取电路(未示)。此底层的存取电路可以使用业界所熟知的工艺形成,且存取电路元件的组态是取决于此处所描述的存储单元实际应用的存储阵列的组态。通常而言,存取电路可以包括例如是晶体管和二极管的存取装置、字线和源极线、导电栓塞、及掺杂区域于一半导体衬底内。
此第一电极120及介电层130可以由举例而言于2007年6月18日申请的美国专利申请第11/764678号(现为公开号2008/0191187)的”Methodfor Manufacturing a Phase Change Memory Device with Pillar BottomElectrode”所揭露的方法、工艺及材料形成,在此引为参考数据。举例而言,一电极材料层可以形成于存取电路(未示)的上表面,之后再使用标准光刻工艺图案化一层光刻胶于电极层之上以形成一光刻胶掩模于第一电极120位置之上。之后光刻胶掩模,举例而言使用氧气等离子体进行图案化,以形成具有亚光刻尺寸的掩模结构于第一电极120位置之上。之后,此电极材料层使用图案化后的光刻胶掩模结构进行刻蚀,因此形成具有亚光刻直径122的第一电极120。最后形成介电层130及进行平坦化。
此第一电极120及介电层130可以由另一范例于2007年9月14日申请的美国专利申请第11/855979号(现为公开号2009/0072215)的”PhaseChange Memory Cell in Via Array with Self-Aligned,Self-Converged BottomElectrode and Method for Manufacturing”所揭露的方法、工艺及材料形成,在此引为参考数据。举例而言,介电层130可以形成于存取电路(未示)的上表面,之后再形成一隔离层和牺牲层。之后,具有开口接近于工艺最小特征尺寸的掩模被形成以产生掩模于牺牲层之上,开口是位于第一电极120位置上方。使用此掩模选择性地刻蚀隔离层和牺牲层,因此形成一介层孔于隔离层和牺牲层之中且裸露出介电层130的上表面。于移除掩模之后,于介层孔中进行一选择性地侧削刻蚀使得隔离层被刻蚀而保留牺牲层和介电层130。然后在介层孔中形成一填充材料,因为选择性地侧削刻蚀工艺的缘故,导致自动对准的空洞的填充材料形成在介层孔中。之后,在此填充材料进行非均向刻蚀以开启此空洞,且继续刻蚀直到低于空洞的填充材料被裸露出来为止,因此形成填充材料的侧壁间隔物在介层孔中。此侧壁间隔物具有一开口尺寸大致由空洞的尺寸所决定,且因此可以小于工艺最小特征尺寸。之后,使用侧壁间隔物作为刻蚀掩模对介电层130进行刻蚀,因此形成一具有小于工艺最小特征尺寸的开口于介电层130中。之后,一电极材料层形成于开口内的介电层130之上。进行一例如是化学机械抛光的平坦化工艺以除去隔离层和牺牲层而形成此第一电极120。
在步骤610形成一相变化元件,包含一基础的相变化材料Ge2Sb2Te5具有非定值添加物浓度分布。
非定值添加物浓度分布可以使用多种技术形成。举例而言,将基础GST材料共同溅射而成,是在相同的反应室中使用不同的溅射枪而具有添加物,且通过开启或关闭各自的掺杂溅射枪来调整添加物浓度分布。在另一范例中,通过在一反应室中使用单一的掺杂GST溅射枪,然后移至另一反应室中使用其它的掺杂/未掺杂GST溅射枪等等。在另一范例中,通过在一反应室中使用单一的未掺杂GST溅射枪,然后移至另一反应室中使用单一的掺杂GST溅射枪,然后再移至第三反应室中使用另一的掺杂GST溅射枪等等。替代地,此存储材料可以使用复合靶材进行溅射。此外,也可以使用其它的沉积技术,包括化学气相沉积、原子层沉积等等。
之后,在步骤620形成一第二电极,且在步骤630进行后段工艺以完成此晶片的半导体工艺步骤,导致如图1所示的结构。此后段工艺可以使用业界所熟知的标准工艺形成,且所进行的工艺是取决于此处所描述的存储单元实际应用的存储阵列的组态。通常而言,由此后段工艺所形成的结构可以包括例如是接点、层间介电层及此晶片中的内联机的不同的金属层接,其包含用以将此存储单元与周边电路耦接的电路。这些后段工艺可以包括在升温时沉积介电材料,例如在400℃或以上沉积氮化硅,或是在500℃或以上的高密度等离子体沉积氧化硅。由于这些工艺的结果,图10中所示的控制电路和偏压电路形成于此装置上。
在图1中的香菇状存储单元中,电流是在底电极集中,导致主动区域110是邻接于底电极。因此,如图2~图5中所示的非定值添加物浓度分布可以抑制空洞迁移于主动区域110内。
对于对称的结构,以下所讨论的如此的桥或柱结构,此主动区域可以与电极远离。在这种情况下,添加物浓度分布可以是对主动区域相对称的。举例而言,施加图2中第一实施例所示的概念至桥或柱结构装置,添加物浓度分布(自第一电极至第二电极)可以是未掺杂GST、具有增加氧化硅添加物的GST、具有定值氧化硅添加物的GST、具有减少氧化硅添加物的GST、及未掺杂GST。因此,对香菇状存储单元而言,最热的点是靠近底电极处,且添加物浓度分布相对于最热点而改变。对桥或柱结构存储单元而言,此添加物浓度分布根据主动区域的位置自香菇状存储单元的轮廓做调整。
图7~图9显示具有非定值添加物浓度分布存储单元的替代结构,具有包含相变化区域嵌于富含介电质的网状结构内的主动区域。描述于图1中的元件可以应用于图7~图9的存储单元中,且因此不重复详细地描述这些材料。
图7为一个存储单元700的一部份的剖面图,其包含一具有相变化材料主体的存储元件716,相变化材料主体包括一沿着通过存储元件716的电极间电流路径的非定值添加浓度分布。此非定值添加浓度分布包含一第一添加浓度分布于主动区域710中及一第二添加浓度分布于主动区域710外的非主动区域713中。此主动区域710包含相变化区域嵌于富含介电质的网状结构区域内(未示),是由氧化硅掺杂自相变化合金分离所导致,细节可参阅美国专利申请第12/286874号,名称为″DIELECTRIC MESHISOLATED PHASE CHANGE STRUCTURE FOR PHASE CHANGEMEMORY″,在此作为参考数据。
此存储单元700包括一介电间隔物715分隔第一和第二电极720、740。存储元件716延伸穿越介电间隔物715以接触第一和第二电极720、740,因此定义出一介于第一和第二电极720、740之间的电极间电流路径,其具有由此介电间隔物715宽度717所定义的一长度。在操作时,电流会通过第一和第二电极720、740之间且通过存储元件716,此主动区域710会较存储元件716的其余部分(如非主动区域713)更快地加热。
图8为一个存储单元800的一部份的剖面图,其包含一具有相变化材料主体的存储元件816,相变化材料主体具有一沿着通过存储元件816的电极间电流路径的非定值添加浓度分布。此非定值添加浓度分布包含一第一添加浓度分布于主动区域810中及一第二添加浓度分布于主动区域810外的非主动区域813中。此主动区域810包含相变化区域嵌于富含介电质的网状结构区域内(未示),是由氧化硅掺杂自相变化合金分离所导致。
此存储单元800包括一柱状存储元件816与第一和第二电极820、840分别在底表面和顶表面822、824接触。存储元件816具有一宽度817大致与第一和第二电极820、840相同以定义出由介电层(未示)所环绕的一多层柱状物。此处所使用的名词″大致″是想要用来表示工艺偏差的容许值。在操作时,电流会通过第一和第二电极820、840之间且通过存储元件816,此主动区域810会较存储元件816的其余部分(如非主动区域813)更快地加热。
图9为一个存储单元900的一部份的剖面图,其包含一具有相变化材料主体的存储元件916,相变化材料主体包括一沿着通过存储元件916的电极间电流路径的非定值添加浓度分布。此非定值添加浓度分布包含一第一添加浓度分布于主动区域910中及一第二添加浓度分布于主动区域910外的非主动区域913中。此主动区域910包含相变化区域嵌于富含介电质的网状结构区域内(未示),是由氧化硅掺杂自相变化合金分离所导致。
此存储单元900包括一多孔状存储元件916由介电层(未示)所环绕且与第一和第二电极920、940分别在底表面和顶表面接触。存储元件916具有一宽度小于第一和第二电极的宽度,且在操作时,电流会通过第一和第二电极之间且通过存储元件,此主动区域会较存储元件的其余部分更快地加热。
必须理解的是,此处所描述的非定值添加浓度分布并不局限于此处所描述的存储单元结构,且通常包括存储单元具有包含相变化材料的主动区域,其中主动区域内会发生具有可检测的电性特性的固态相之间的转换。
图10是可应用本发明的集成电路1010的简化方块图。此集成电路1010包括使用此处所描述的非定值添加浓度分布存储单元的存储器阵列1012。一字线译码器及驱动器1014具有读取、复位及设置模式,被耦接至多条字线1016,其间并形成电性连接,且沿着存储器阵列1012的列方向排列。一位线(行)译码器1018被耦接并电性连接至多条沿着存储器阵列1012的行排列的多条位线1020,以读取、设置和复位此阵列1012中的相变化存储单元(未示)。地址是经由总线1022提供至字线译码器及驱动器1014和位线译码器1018。方块1024中的感应电路与数据输入结构,包括读取、复位及设置模式的电压及/或电流源,是透过数据总线1026耦接至位线译码器1018。数据是由集成电路1010上的输入/输出端或其它内部或外部的数据来源,透过数据输入线1028传送至方块1024的数据输入结构。集成电路1010亦可包括其它电路1030,如一般用途的处理器、特定用途的应用电路或是可提供此存储单元阵列1012所支持的系统单芯片功能的多个模块的组合。数据是由方块1024中的感应放大器,透过数据输出线1032,传送至集成电路1010上的输入/输出端或其它集成电路1010内或外的数据目的地。
集成电路1010中也包括此存储单元阵列1012对于读取、复位及设置模式的控制器1034。在此实施例中,此控制器1034是利用偏压调整状态机构来实施控制偏压电路电压及电流源1036,以施加如读取、编程、擦除、擦除验证及编程验证等模式的电压及/或电流至字线及位线。此外,熔化/冷却循环的调整偏压也可如同前述般应用。控制器1034可以利用技术领域中已知的特殊目的逻辑电路来实作。于其它实施方式中,控制器1034可包括一般用途的处理器以执行计算机程序来控制元件的操作,而该处理器可以实作于相同的集成电路上。于另外的实施方式中,控制器1034可利用特殊目的逻辑电路与一般用途的处理器的组合来实作。
如图11所示,存储器阵列1012中的每一存储单元包括一场效晶体管(或是其它的存取装置例如是二极管)及一相变化存储元件其具有主动区域110包含相变化材料区域嵌于富含介电质的网状结构内。图11中显示四个存储单元1130、1132、1134、1136,如图中所示每一个存储单元具有各自的存储元件1140、1142、1144、1146,代表阵列305中的一小区段其可以包含上百万个存储单元。
存储单元1130、1132、1134、1136中每一个存取晶体管的源极与共同源极线1154耦接,此共同源极线终止于一例如是接地端点的源极线终端电路1155。在另一实施例中,存取晶体管的源极并没有电性连接,而是可以单独的控制。此源极线终端电路1155可以包含一偏压电路例如电压源或是电流源,以及译码电路以施加调整偏压至某些实施例接地端点以外的共同源极线1154。
多条字线包含字线1156、1158平行地延伸于一第一方向且与字线译码器1014电性通讯。存储单元1130和1134中存取晶体管的栅极与字线1156耦接,存储单元1132和1136中存取晶体管的栅极与字线1158耦接。
多条位线包含位线1160、1162平行地延伸于一第二方向且与位线译码器1018电性通讯。在此例示实施例中,每一个存储元件是将对应的位线与对应的存取晶体管的漏极耦接。替代地,存储元件可以是将对应的位线与对应的存取晶体管的源极耦接。
必须明白的是存储阵列1012并不局限于图11中所示的阵列组态,且其它的组态也可以替代地被使用。此外,MOS场效晶体管以外,双极结晶体管在某些实施例也可以用来作为存取装置。
在操作中,阵列1012中的每一存储单元根据对应存储元件的电阻值来储存数据。此数据可以由,例如比较一选取存储单元的位线电流与一由感应放大器1024所感应的合适的参考电流来决定。此参考电流可以被建立使得一预定的电流范围与逻辑″0″对应,而另一不同的预定电流范围与逻辑″1″对应。
读取或写入阵列1012中的一个存储单元可以通过施加合适的电压至字线1156、1158之一且耦接位线1160、1162之一至一电压以使得电流流入所选取的存储单元来达成。举例而言,通过所选取的存储单元(在此范例中为1130及其对应的存储元件为1140)的电流路径1180是通过施加足以开启存储单元1130的晶体管的电压至位线1160、字线1156、源极线1154,以诱发电流自位线1160流至源极线1154,或反之亦然,来建立此路径1180。所施加的电压大小及持续时间是根据所执行的操作,例如是读取操作或是写入操作,来决定。
在存储单元1130的一复位(或擦除)操作时,字线译码器1014提供字线1156一个合适的电压以开启存储单元1130的存取晶体管。位线译码器1018提供位线1160一个合适的电压大小及持续时间以诱发电流通过存储元件1140,此电流足以提高主动区域的温度超过此存储元件1140的相变化材料的转换温度,且高于熔化温度以将此主动区域置于一液态。此电流然后被终止,举例而言,停止施加在字线1156与位线1160的电压,导致相对短的冷却时间而使主动区域很快地冷却而稳定在大致为高电阻的非晶相,以在存储单元1130中建立高电阻复位状态。此复位操作也可以包含一个或多个电压脉冲施加至此位线,举例而言使用一组脉冲。
在存储单元1130的一设置(或编程)操作时,字线译码器1014提供字线1156一个合适的电压以开启存储单元1130的存取晶体管。位线译码器1018提供位线1160一个合适的电压大小及持续时间以诱发电流通过存储元件1140,此电流足以导致主动区域的至少一部分自非晶相转变至结晶相,此转变降低此存储元件1140的电阻且将此存储单元1130设置为所预期的状态。
在此存储单元1130的读取(或感应)操作时,字线译码器1014提供字线1156一个合适的电压以开启存储单元1130的存取晶体管。位线译码器1018提供位线1160一个合适的电压大小及持续时间以诱发电流通过存储元件1140,此电流并不会导致存储元件1140进行电阻态改变。通过此位线1160及存储单元1130的电流是根据此存储单元的电阻,即与存储单元相关的数据状态而决定。因此,此存储单元1130的数据状态可以由举例而言,由方块1024中的感应放大器比较位线1160电流与一合适的参考电流来决定。
在此处所描述实施例中是使用具有一个或多个添加物的基础相变化材料Ge2Sb2Te5。也可以使用其它添加物或是其它硫属化物。硫属化物是任意选自由四种元素氧(O)、硫(S)、硒(Se)及碲(Te)组成的群,形成周期表VIA族的群。硫属化物包含硫属与更具有正电性元件或自由基的化合物。硫属合金包含硫属与其它材料,例如转换金属,的组成。硫属合金通常包含一个或多个选自元件周期表IVA族的元素,例如锗或锡。通常,硫属合金包含至少一种选自锑、镓、铟、银的组合物。以相变化为基础的存储器材料已被描述于许多技术文献中,包含Ga/Sb、In/Sb、In/Se、Sb/Te、Ge/Te、Ge/Sb/Te、In/Sb/Te、Ga/Se/Te,Sn/Sb/Te,In/Sb/Ge,Ag/In/Sb/Te、Ge/Sn/Sb/Te、Ge/Sb/Se/Te以及Te/Ge/Sb/S的合金。在Ge/Sb/Te合金的家族中,可适用的合金组成范围相当的广。此组成可以被定义为TeaGebSb100-(a+b)。某一学者提出了最适用的合金为在沉积的材料中Te的平均浓度低于70%,通常是低于60%,且范围通常是介于23%至58%之间,最好是介于48%至58%之间。在此材料中,Ge的浓度高于约5%且平均范围由低至8%至30%上下的浓度,而残蚀的材料通常小于50%。最好是,Ge的浓度大约由8%至40%。剩余的主要组成元件为Sb。这些百分比为原子百分比,其构成100%组成元件的原子。请见Ovshinsky所提出的美国专利5687112案号第10-11栏。由其它学者所提出的合金包含Ge2Sb2Te5、GeSb2Te4、GeSb4Te7。请参考Noboru Yamada于1997年在SPIE v.3109第28/37页所提出的”Potentialof Ge-Sb-Te Phase-Change Optical Disks for High-Data-Rate Recording”。通常,转换金属,例如铬、铁、镍、铌、钯、铂或上述的组合可以和Ge/Sb/Te组合以形成具有可编程电阻特征的相变化合金。适用的存储器材料可见于Ovshinsky于11-13栏的112,其在此作为参考的范例。
以下的表1显示可以在装置的主动区域中发现的可能化合物,其具有之前所描述的掺杂硅和氧化硅的Ge2Sb2Te5相变化材料。可以发现,Si2Te3相较于此表中的其它可能化合物具有较高的熔化点及重新结晶转换温度。因此,在主动区域中形成Si2Te3倾向增加主动区域中存储材料的熔化点及重新结晶转换温度。如此现象相信可以稳定主动区域及抑制空洞的形成。
  可能的化合物   熔化温度   重新结晶转换温度
  SiO2   1726℃
  Si   1414℃
  Ge   938.3℃   520℃
  Si2Te3   885℃   290℃
  GeTe   724℃   180℃
  Ge2Sb2Te5   615℃   140℃
  Sb   630℃   X
  Sb2Te3   617℃   97℃
  Sb2Te   547.5℃   95℃
  Te   449.5℃   10℃
表1
以下的表2显示介于硅与不同的元素GexSybYTez、锗、锑、碲的键能能量。可以发现,硅-碲键能相较于碲与存储材料中其它成份的键能而言是较强的。因为是一较强键能的结果,可以改善存储器的承受力及数据保持特性。
键能   能量(KJmol-1)
  Ge-Ge   264.4±6.8
  Ge-Sb   X
  Ge-Te   396.7±3.3
  Sb-Te   277.4±3.8
  Te-Te   257.6±4.1
  Sb-Sb   301.7±6.3
  Si-Ge   297
  Si-Sb   X
  Si-Te   448±8
表2
如同以上所描述的,许多稳定的材料,例如是介电材料,包括氧化铝、碳化硅和氮化硅等具有高混合热可以被用作为添加物以降低颗粒大小及分离颗粒边界而限制空洞在相变化材料中形成。此外,许多倾向与相变化材料中的元素反应及抑制空洞在主动区域中形成的活性添加物可以被使用。对硫属化物为基础的相变化材料而言,此种活性添加物可以包括倾向与碲强烈键能以在存储单元的主动区域内形成较高熔化点化合物的材料可能包括钪、钛、钒、铬、锰、铁和镓,以及其它自周期表元素14至33中(除了钝气之外)所选取的材料。
虽然本发明是参照较佳实施例及范例来加以描述,应了解这些范例是用于说明而非限缩之用。对于依据本发明的精神及权利要求范围内的修改及组合,将为本领域技术人员显而易知。

Claims (19)

1.一种存储器装置,具有一第一电极、一第二电极和存储元件,其特征在于,该存储元件包含:
一相变化存储材料,与该第一电极和第二电极连接,该相变化存储材料包含一基础相变化存储材料及一添加物浓度分布介于该第一电极和第二电极之间,对一个或以上的添加物其添加物浓度分布是不均匀的。
2.根据权利要求1所述的装置,其特征在于,该添加物浓度分布包含至少两种添加物具有各自的浓度分布,在介于该第一电极和第二电极之间其浓度分布是不均匀的。
3.根据权利要求1所述的装置,其特征在于,该基础相变化存储材料是锗锑碲GST,该添加物之一是硅,在该相变化存储材料的一主动区域内具有较高浓度而在邻接该第二电极具有较低浓度,及另一添加物是氧化硅,在该主动区域内和介于该主动区域与该第二电极之间的一区域具有较高浓度。
4.根据权利要求1所述的装置,其特征在于,该相变化存储材料包含一基础相变化存储材料具有一第一添加物浓度分布在邻接该第一电极的一第一层及一第二添加物浓度分布在邻接该第二电极的一第二层。
5.根据权利要求4所述的装置,其特征在于,该相变化存储材料具有一主动区域,且该主动区域于该第一层内。
6.根据权利要求5所述的装置,其特征在于,该相变化存储材料具有一较低电阻相及一较高电阻相,且该第一添加物浓度分布是用于改善该较低电阻相的电阻值稳定性,且该第二添加物浓度分布是用于改善该存储元件的循环承受力。
7.根据权利要求1所述的装置,其特征在于,该相变化存储材料具有一第一区域邻接该第一电极、一第二区域包围该主动区域、一第三区域介于该主动区域与该第二电极之间及一第四区域邻接该第二电极,该添加物浓度分布在该第一、第二、第三、及第四区域变动。
8.一种集成电路存储器装置,其特征在于,包含:
一存储单元阵列,其中于该阵列中的一存储单元包含一存储装置,具有一第一电极、一第二电极和存储元件,且该存储元件包含相变化存储材料与该第一电极和第二电极连接,该相变化存储材料包含一基础相变化存储材料及添加物浓度分布介于该第一电极和第二电极之间,对一个或以上的添加物其添加物浓度是不均匀的;
译码电路,与该阵列耦接以响应地址而存取该阵列中的所选取的存储单元;以及
一控制器及支持电路,与该阵列耦接以响应命令而在该阵列中的所选取的存储单元中执行读取、设置和复位操作。
9.根据权利要求8所述的装置,其特征在于,该添加物浓度分布包含至少两种添加物具有各自的浓度分布,在介于该第一电极和第二电极之间其浓度分布是不均匀的。
10.根据权利要求8所述的装置,其特征在于,该基础相变化存储材料是锗锑碲GST,该添加物之一是硅,在该相变化存储材料的一主动区域内具有较高浓度而在邻接该第二电极具有较低浓度,及另一添加物是氧化硅,在该主动区域内和介于该主动区域与该第二电极之间的一区域具有较高浓度。
11.根据权利要求8所述的装置,其特征在于,该相变化存储材料包含一基础相变化存储材料具有一第一添加物浓度分布在邻接该第一电极的一第一层及一第二添加物浓度分布在邻接该第二电极的一第二层。
12.根据权利要求11所述的装置,其特征在于,该相变化存储材料具有一主动区域,且该主动区域于该第一层内。
13.根据权利要求12所述的装置,其特征在于,该相变化存储材料具有一较低电阻相及一较高电阻相,且该第一添加物浓度分布是用于改善该较低电阻相的电阻值稳定性,且该第二添加物浓度分布是用于改善该存储单元的循环承受力。
14.根据权利要求8所述的装置,其特征在于,该相变化存储材料具有一第一区域邻接该第一电极、一第二区域包围一主动区域、一第三区域介于该主动区域与该第二电极之间及一第四区域邻接该第二电极,该添加物浓度分布在该第一、第二、第三、及第四区域变动。
15.一种集成电路存储器装置,其特征在于,包含:
一存储单元阵列,其中于该阵列中的一存储单元包含一存储装置,具有一第一电极、一第二电极和一存储元件,且该存储元件包含相变化存储材料与该第一电极和第二电极连接及一主动区域,该相变化存储材料包含一基础相变化存储材料的一第一层邻接该第一电极与一基础相变化存储材料的一第二层邻接该第二电极,具有一第一添加物浓度分布于该第一层中包括一第一添加物及一第二添加物浓度分布于该第二层中包括一第二添加物。
16.根据权利要求15所述的装置,其特征在于,该第一添加物被选取用于改善该相变化存储材料电阻值的稳定性,且该第二添加物被选取用于降低该相变化存储材料于固态相之间转换时的密度改变。
17.根据权利要求15所述的装置,其特征在于,该基础相变化存储材料是锗锑碲GST,该第一添加物浓度分布包括硅在该第一层中具有较该第二层中更高的浓度。
18.一种集成电路存储器装置,其特征在于,包含:
一存储单元阵列,其中于该阵列中的一存储单元包含一存储装置,具有一第一电极、一第二电极和存储元件,且该存储元件包含相变化存储材料与该第一电极和第二电极连接及一主动区域,该相变化存储材料包含一基础相变化存储材料及一添加物,该添加物具有一分布介于该第一电极和第二电极之间是不均匀的;以及
其中该添加物分布包含硅浓度为5±2%原子数百分比,氧浓度为10±4%原子数百分比于一主动区域内。
19.根据权利要求18所述的装置,其特征在于,该基础相变化材料是锗锑碲GST。
CN2010102145967A 2009-06-25 2010-06-25 具有一个或多个非定值掺杂浓度分布的相变化存储器 Active CN101937970B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US22050209P 2009-06-25 2009-06-25
US61/220,502 2009-06-25
US12/729,837 2010-03-23
US12/729,837 US8363463B2 (en) 2009-06-25 2010-03-23 Phase change memory having one or more non-constant doping profiles

Publications (2)

Publication Number Publication Date
CN101937970A true CN101937970A (zh) 2011-01-05
CN101937970B CN101937970B (zh) 2012-11-14

Family

ID=43380536

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102145967A Active CN101937970B (zh) 2009-06-25 2010-06-25 具有一个或多个非定值掺杂浓度分布的相变化存储器

Country Status (3)

Country Link
US (1) US8363463B2 (zh)
CN (1) CN101937970B (zh)
TW (1) TWI422013B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742490A (zh) * 2016-03-11 2016-07-06 中国科学院上海微系统与信息技术研究所 一种提高相变存储器数据保持力的相变材料层结构
CN108807453A (zh) * 2017-05-04 2018-11-13 旺宏电子股份有限公司 介电掺杂且富含锑的gst相变存储器
CN111670497A (zh) * 2018-02-09 2020-09-15 美光科技公司 用于存储器装置的掺杂剂调制蚀刻
US11735261B2 (en) 2017-04-28 2023-08-22 Micron Technology, Inc. Programming enhancement in self-selecting memory

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8000127B2 (en) * 2009-08-12 2011-08-16 Nantero, Inc. Method for resetting a resistive change memory element
US9263126B1 (en) 2010-09-01 2016-02-16 Nantero Inc. Method for dynamically accessing and programming resistive change element arrays
US8238149B2 (en) 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US8363463B2 (en) 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
US8634235B2 (en) 2010-06-25 2014-01-21 Macronix International Co., Ltd. Phase change memory coding
US8865514B2 (en) * 2010-11-09 2014-10-21 Micron Technology, Inc. Post deposition adjustment of chalcogenide composition in chalcogenide containing semiconductors
US8497705B2 (en) 2010-11-09 2013-07-30 Macronix International Co., Ltd. Phase change device for interconnection of programmable logic device
US8227785B2 (en) * 2010-11-11 2012-07-24 Micron Technology, Inc. Chalcogenide containing semiconductors with chalcogenide gradient
US8467238B2 (en) 2010-11-15 2013-06-18 Macronix International Co., Ltd. Dynamic pulse operation for phase change memory
US8374019B2 (en) 2011-01-05 2013-02-12 Macronix International Co., Ltd. Phase change memory with fast write characteristics
US8426242B2 (en) * 2011-02-01 2013-04-23 Macronix International Co., Ltd. Composite target sputtering for forming doped phase change materials
KR101952879B1 (ko) * 2011-02-01 2019-02-28 매크로닉스 인터내셔널 컴퍼니 리미티드 도핑된 상 변화 재료를 형성하기 위한 복합 타겟의 스퍼터링
US8497182B2 (en) * 2011-04-19 2013-07-30 Macronix International Co., Ltd. Sidewall thin film electrode with self-aligned top electrode and programmable resistance memory
US8892808B2 (en) * 2011-04-22 2014-11-18 Hewlett-Packard Development Company, L.P. Retention-value associated memory
JP5674548B2 (ja) * 2011-04-28 2015-02-25 株式会社日立製作所 半導体記憶装置
US8946666B2 (en) 2011-06-23 2015-02-03 Macronix International Co., Ltd. Ge-Rich GST-212 phase change memory materials
TWI501234B (zh) * 2011-09-23 2015-09-21 Univ Nat Sun Yat Sen 具二氧化矽絕緣層之電阻式隨機存取記憶體構造
TWI496146B (zh) * 2011-09-23 2015-08-11 Univ Nat Sun Yat Sen 具氮化矽絕緣層之電阻式隨機存取記憶體構造
US8932901B2 (en) 2011-10-31 2015-01-13 Macronix International Co., Ltd. Stressed phase change materials
US9847478B2 (en) * 2012-03-09 2017-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for resistive random access memory (RRAM)
JP6003238B2 (ja) * 2012-05-30 2016-10-05 住友電気工業株式会社 半導体装置
US8971089B2 (en) * 2012-06-27 2015-03-03 Intel Corporation Low power phase change memory cell
US8993374B2 (en) 2012-08-03 2015-03-31 Micron Technology, Inc. Phase change material gradient structures and methods
TW201532327A (zh) * 2013-11-19 2015-08-16 Univ Rice William M 用於改良SiOx切換元件之效能的多孔SiOx材料
US9336879B2 (en) 2014-01-24 2016-05-10 Macronix International Co., Ltd. Multiple phase change materials in an integrated circuit for system on a chip application
KR20160063067A (ko) * 2014-11-26 2016-06-03 에스케이하이닉스 주식회사 저항 메모리 소자 및 그 제조 방법
US20160233420A1 (en) 2015-02-10 2016-08-11 Eugeniy Troyan SEMICONDUCTOR MEMORY DEVICES FOR USE IN ELECTRICALLY ALTERABLE READ ONLY MEMORY (ROM) AND SEMICONDUCTOR THIN FILM DEVICES (SPINTRONS and SPIN-ORBITRONS)
US9865811B2 (en) 2015-02-10 2018-01-09 Eugeniy Troyan Semiconductor memory devices for use in electrically alterable read only memory (ROM) and semiconductor thin film devices (spintrons and spin-orbitrons)
US9672906B2 (en) 2015-06-19 2017-06-06 Macronix International Co., Ltd. Phase change memory with inter-granular switching
US9882126B2 (en) * 2016-04-09 2018-01-30 International Business Machines Corporation Phase change storage device with multiple serially connected storage regions
US9793323B1 (en) * 2016-07-11 2017-10-17 Macronix International Co., Ltd. Phase change memory with high endurance
US9997702B2 (en) * 2016-08-11 2018-06-12 Arm Ltd. Fabrication of correlated electron material films with varying atomic or molecular concentrations of dopant species
US10541271B2 (en) 2017-10-18 2020-01-21 Macronix International Co., Ltd. Superlattice-like switching devices
US10693065B2 (en) 2018-02-09 2020-06-23 Micron Technology, Inc. Tapered cell profile and fabrication
US10424730B2 (en) 2018-02-09 2019-09-24 Micron Technology, Inc. Tapered memory cell profiles
US10374009B1 (en) 2018-07-17 2019-08-06 Macronix International Co., Ltd. Te-free AsSeGe chalcogenides for selector devices and memory devices using same
US10418552B1 (en) * 2018-08-21 2019-09-17 Micron Technology, Inc. Transition metal doped germanium-antimony-tellurium (GST) memory device components and composition
US11289540B2 (en) 2019-10-15 2022-03-29 Macronix International Co., Ltd. Semiconductor device and memory cell
US11195999B2 (en) 2019-11-13 2021-12-07 International Business Machines Corporation Phase change material with reduced reset state resistance drift
US11121319B2 (en) 2019-12-11 2021-09-14 International Business Machines Corporation Phase-change memory with no drift
US11158787B2 (en) 2019-12-17 2021-10-26 Macronix International Co., Ltd. C—As—Se—Ge ovonic materials for selector devices and memory devices using same
US11362276B2 (en) 2020-03-27 2022-06-14 Macronix International Co., Ltd. High thermal stability SiOx doped GeSbTe materials suitable for embedded PCM application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502197A (ja) * 2001-08-30 2005-01-20 マイクロン テクノロジー インコーポレイテッド 金属をドープしたカルコゲニド材料を使用する集積回路装置及び製造
US20050029502A1 (en) * 2003-08-04 2005-02-10 Hudgens Stephen J. Processing phase change material to improve programming speed
CN1909239A (zh) * 2005-08-04 2007-02-07 三星电子株式会社 相变材料、制造和操作其的方法和相变随机存取存储器

Family Cites Families (337)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) * 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) * 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
US3846767A (en) * 1973-10-24 1974-11-05 Energy Conversion Devices Inc Method and means for resetting filament-forming memory semiconductor device
US4177475A (en) * 1977-10-31 1979-12-04 Burroughs Corporation High temperature amorphous memory device for an electrically alterable read-only memory
IL61678A (en) * 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4452592A (en) * 1982-06-01 1984-06-05 General Motors Corporation Cyclic phase change coupling
JPS60137070A (ja) * 1983-12-26 1985-07-20 Toshiba Corp 半導体装置の製造方法
US4719594A (en) * 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4876220A (en) * 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (ja) * 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
JP2606857B2 (ja) * 1987-12-10 1997-05-07 株式会社日立製作所 半導体記憶装置の製造方法
US5166758A (en) * 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5596522A (en) * 1991-01-18 1997-01-21 Energy Conversion Devices, Inc. Homogeneous compositions of microcrystalline semiconductor material, semiconductor devices and directly overwritable memory elements fabricated therefrom, and arrays fabricated from the memory elements
US5534712A (en) * 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5177567A (en) * 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
JP2825031B2 (ja) * 1991-08-06 1998-11-18 日本電気株式会社 半導体メモリ装置
US5166096A (en) * 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
JPH05206394A (ja) * 1992-01-24 1993-08-13 Mitsubishi Electric Corp 電界効果トランジスタおよびその製造方法
US5958358A (en) * 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
JP2884962B2 (ja) * 1992-10-30 1999-04-19 日本電気株式会社 半導体メモリ
US5515488A (en) * 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
US5785828A (en) * 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5831276A (en) * 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5879955A (en) * 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5789758A (en) * 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5869843A (en) * 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5837564A (en) * 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
KR0182866B1 (ko) * 1995-12-27 1999-04-15 김주용 플래쉬 메모리 장치
US5687112A (en) * 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6025220A (en) * 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5866928A (en) * 1996-07-16 1999-02-02 Micron Technology, Inc. Single digit line with cell contact interconnect
US6337266B1 (en) * 1996-07-22 2002-01-08 Micron Technology, Inc. Small electrode for chalcogenide memories
US5789277A (en) * 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5985698A (en) * 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US5814527A (en) * 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5998244A (en) * 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5688713A (en) * 1996-08-26 1997-11-18 Vanguard International Semiconductor Corporation Method of manufacturing a DRAM cell having a double-crown capacitor using polysilicon and nitride spacers
US6147395A (en) * 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US5825046A (en) * 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
US6087674A (en) * 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5716883A (en) * 1996-11-06 1998-02-10 Vanguard International Semiconductor Corporation Method of making increased surface area, storage node electrode, with narrow spaces between polysilicon columns
US6015977A (en) * 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) * 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) * 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US5902704A (en) * 1997-07-02 1999-05-11 Lsi Logic Corporation Process for forming photoresist mask over integrated circuit structures with critical dimension control
US6768165B1 (en) * 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6617192B1 (en) 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
US6969866B1 (en) 1997-10-01 2005-11-29 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US7023009B2 (en) 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
FR2774209B1 (fr) 1998-01-23 2001-09-14 St Microelectronics Sa Procede de controle du circuit de lecture d'un plan memoire et dispositif de memoire correspondant
US6087269A (en) * 1998-04-20 2000-07-11 Advanced Micro Devices, Inc. Method of making an interconnect using a tungsten hard mask
US6372651B1 (en) * 1998-07-17 2002-04-16 Advanced Micro Devices, Inc. Method for trimming a photoresist pattern line for memory gate etching
US6141260A (en) * 1998-08-27 2000-10-31 Micron Technology, Inc. Single electron resistor memory device and method for use thereof
US6351406B1 (en) * 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6483736B2 (en) * 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6034882A (en) * 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
JP2000164830A (ja) 1998-11-27 2000-06-16 Mitsubishi Electric Corp 半導体記憶装置の製造方法
US6487106B1 (en) * 1999-01-12 2002-11-26 Arizona Board Of Regents Programmable microelectronic devices and method of forming and programming same
US6291137B1 (en) * 1999-01-20 2001-09-18 Advanced Micro Devices, Inc. Sidewall formation for sidewall patterning of sub 100 nm structures
US6245669B1 (en) * 1999-02-05 2001-06-12 Taiwan Semiconductor Manufacturing Company High selectivity Si-rich SiON etch-stop layer
US6943365B2 (en) 1999-03-25 2005-09-13 Ovonyx, Inc. Electrically programmable memory element with reduced area of contact and method for making same
DE60032129T2 (de) * 1999-03-25 2007-09-27 Ovonyx Inc. Elektrisch programmierbares speicherelement mit verbesserten kontakten
US6750079B2 (en) 1999-03-25 2004-06-15 Ovonyx, Inc. Method for making programmable resistance memory element
US6177317B1 (en) * 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6075719A (en) * 1999-06-22 2000-06-13 Energy Conversion Devices, Inc. Method of programming phase-change memory element
US6077674A (en) * 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6326307B1 (en) * 1999-11-15 2001-12-04 Appllied Materials, Inc. Plasma pretreatment of photoresist in an oxide etch process
US6314014B1 (en) * 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
US6576546B2 (en) 1999-12-22 2003-06-10 Texas Instruments Incorporated Method of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications
TW586154B (en) * 2001-01-05 2004-05-01 Macronix Int Co Ltd Planarization method for semiconductor device
US6927411B2 (en) 2000-02-11 2005-08-09 Axon Technologies Corporation Programmable structure, an array including the structure, and methods of forming the same
US6687307B1 (en) 2000-02-24 2004-02-03 Cisco Technology, Inc Low memory and low latency cyclic prefix addition
US6420216B1 (en) * 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6444557B1 (en) 2000-03-14 2002-09-03 International Business Machines Corporation Method of forming a damascene structure using a sacrificial conductive layer
US6888750B2 (en) 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6420215B1 (en) * 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6501111B1 (en) * 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6563156B2 (en) 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6512263B1 (en) * 2000-09-22 2003-01-28 Sandisk Corporation Non-volatile memory cell array having discontinuous source and drain diffusions contacted by continuous bit line conductors and methods of forming
US6555860B2 (en) 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6567293B1 (en) 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6429064B1 (en) * 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
KR100382729B1 (ko) * 2000-12-09 2003-05-09 삼성전자주식회사 반도체 소자의 금속 컨택 구조체 및 그 형성방법
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6271090B1 (en) * 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
TW490675B (en) * 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6627530B2 (en) 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6534781B2 (en) 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
KR100574715B1 (ko) 2001-01-30 2006-04-28 가부시키가이샤 히타치세이사쿠쇼 반도체 집적 회로 장치
KR100400037B1 (ko) * 2001-02-22 2003-09-29 삼성전자주식회사 콘택 플러그를 구비하는 반도체 소자 및 그의 제조 방법
US6487114B2 (en) * 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US6596589B2 (en) 2001-04-30 2003-07-22 Vanguard International Semiconductor Corporation Method of manufacturing a high coupling ratio stacked gate flash memory with an HSG-SI layer
US6730928B2 (en) 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US7102150B2 (en) * 2001-05-11 2006-09-05 Harshfield Steven T PCRAM memory cell and method of making same
US6514788B2 (en) * 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
DE10128482A1 (de) 2001-06-12 2003-01-02 Infineon Technologies Ag Halbleiterspeichereinrichtung sowie Verfahren zu deren Herstellung
US6774387B2 (en) 2001-06-26 2004-08-10 Ovonyx, Inc. Programmable resistance memory element
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6673700B2 (en) 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6737312B2 (en) 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6764894B2 (en) 2001-08-31 2004-07-20 Ovonyx, Inc. Elevated pore phase-change memory
US6507061B1 (en) 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US7045383B2 (en) 2001-09-19 2006-05-16 BAE Systems Information and Ovonyx, Inc Method for making tapered opening for programmable resistance memory element
US6566700B2 (en) 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6800563B2 (en) 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6791859B2 (en) 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6545903B1 (en) * 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6512241B1 (en) 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6867638B2 (en) 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
JP3948292B2 (ja) 2002-02-01 2007-07-25 株式会社日立製作所 半導体記憶装置及びその製造方法
US7151273B2 (en) 2002-02-20 2006-12-19 Micron Technology, Inc. Silver-selenide/chalcogenide glass stack for resistance variable memory
US6972430B2 (en) 2002-02-20 2005-12-06 Stmicroelectronics S.R.L. Sublithographic contact structure, phase change memory cell with optimized heater shape, and manufacturing method thereof
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
JP3796457B2 (ja) 2002-02-28 2006-07-12 富士通株式会社 不揮発性半導体記憶装置
US6579760B1 (en) 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
AU2003221003A1 (en) 2002-04-09 2003-10-20 Matsushita Electric Industrial Co., Ltd. Non-volatile memory and manufacturing method thereof
US6864500B2 (en) 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6605821B1 (en) 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
JP3896576B2 (ja) 2002-07-11 2007-03-22 松下電器産業株式会社 不揮発性メモリおよびその製造方法
US6864503B2 (en) 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
AU2002326868A1 (en) 2002-09-11 2004-04-30 Ovonyx, Inc. Programming a phase-change material memory
JP4190238B2 (ja) 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
AU2003259447A1 (en) 2002-10-11 2004-05-04 Koninklijke Philips Electronics N.V. Electric device comprising phase change material
US6992932B2 (en) 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
JP4928045B2 (ja) 2002-10-31 2012-05-09 大日本印刷株式会社 相変化型メモリ素子およびその製造方法
US6940744B2 (en) 2002-10-31 2005-09-06 Unity Semiconductor Corporation Adaptive programming technique for a re-writable conductive memory device
US7314776B2 (en) 2002-12-13 2008-01-01 Ovonyx, Inc. Method to manufacture a phase change memory
US6791102B2 (en) 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US6744088B1 (en) 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US7589343B2 (en) 2002-12-13 2009-09-15 Intel Corporation Memory and access device and method therefor
US6815266B2 (en) 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
EP1439583B1 (en) 2003-01-15 2013-04-10 STMicroelectronics Srl Sublithographic contact structure, in particular for a phase change memory cell, and fabrication process thereof
KR100476690B1 (ko) 2003-01-17 2005-03-18 삼성전자주식회사 반도체 장치 및 그 제조방법
CN100505086C (zh) 2003-01-31 2009-06-24 Nxp股份有限公司 用于低功耗和高选择性的mram结构
KR100486306B1 (ko) 2003-02-24 2005-04-29 삼성전자주식회사 셀프 히터 구조를 가지는 상변화 메모리 소자
US7115927B2 (en) 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
US7402851B2 (en) * 2003-02-24 2008-07-22 Samsung Electronics Co., Ltd. Phase changeable memory devices including nitrogen and/or silicon and methods for fabricating the same
US7323734B2 (en) 2003-02-25 2008-01-29 Samsung Electronics Co., Ltd. Phase changeable memory cells
US6936544B2 (en) 2003-03-11 2005-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of removing metal etching residues following a metal etchback process to improve a CMP process
US7400522B2 (en) 2003-03-18 2008-07-15 Kabushiki Kaisha Toshiba Resistance change memory device having a variable resistance element formed of a first and second composite compound for storing a cation
KR100504698B1 (ko) 2003-04-02 2005-08-02 삼성전자주식회사 상변화 기억 소자 및 그 형성 방법
JP4634014B2 (ja) 2003-05-22 2011-02-16 株式会社日立製作所 半導体記憶装置
KR100979710B1 (ko) 2003-05-23 2010-09-02 삼성전자주식회사 반도체 메모리 소자 및 제조방법
US20060006472A1 (en) 2003-06-03 2006-01-12 Hai Jiang Phase change memory with extra-small resistors
US7067865B2 (en) 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
US6838692B1 (en) 2003-06-23 2005-01-04 Macronix International Co., Ltd. Chalcogenide memory device with multiple bits per cell
US7132350B2 (en) 2003-07-21 2006-11-07 Macronix International Co., Ltd. Method for manufacturing a programmable eraseless memory
US20050018526A1 (en) 2003-07-21 2005-01-27 Heon Lee Phase-change memory device and manufacturing method thereof
KR100615586B1 (ko) 2003-07-23 2006-08-25 삼성전자주식회사 다공성 유전막 내에 국부적인 상전이 영역을 구비하는상전이 메모리 소자 및 그 제조 방법
DE102004039977B4 (de) 2003-08-13 2008-09-11 Samsung Electronics Co., Ltd., Suwon Programmierverfahren und Treiberschaltung für eine Phasenwechselspeicherzelle
US6927410B2 (en) 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
KR100505709B1 (ko) 2003-09-08 2005-08-03 삼성전자주식회사 상 변화 메모리 장치의 파이어링 방법 및 효율적인파이어링을 수행할 수 있는 상 변화 메모리 장치
US20050062087A1 (en) 2003-09-19 2005-03-24 Yi-Chou Chen Chalcogenide phase-change non-volatile memory, memory device and method for fabricating the same
DE10345455A1 (de) 2003-09-30 2005-05-04 Infineon Technologies Ag Verfahren zum Erzeugen einer Hartmaske und Hartmasken-Anordnung
US6910907B2 (en) 2003-11-18 2005-06-28 Agere Systems Inc. Contact for use in an integrated circuit and a method of manufacture therefor
US7485891B2 (en) 2003-11-20 2009-02-03 International Business Machines Corporation Multi-bit phase change memory cell and multi-bit phase change memory including the same, method of forming a multi-bit phase change memory, and method of programming a multi-bit phase change memory
KR100558548B1 (ko) 2003-11-27 2006-03-10 삼성전자주식회사 상변화 메모리 소자에서의 라이트 드라이버 회로 및라이트 전류 인가방법
US6937507B2 (en) 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US7928420B2 (en) 2003-12-10 2011-04-19 International Business Machines Corporation Phase change tip storage cell
US7291556B2 (en) 2003-12-12 2007-11-06 Samsung Electronics Co., Ltd. Method for forming small features in microelectronic devices using sacrificial layers
KR100569549B1 (ko) 2003-12-13 2006-04-10 주식회사 하이닉스반도체 상 변화 저항 셀 및 이를 이용한 불휘발성 메모리 장치
KR100564602B1 (ko) 2003-12-30 2006-03-29 삼성전자주식회사 상 변화 메모리 어레이의 셋 프로그래밍 방법 및 기입드라이버 회로
US7038230B2 (en) 2004-01-06 2006-05-02 Macronix Internation Co., Ltd. Horizontal chalcogenide element defined by a pad for use in solid-state memories
JP4124743B2 (ja) 2004-01-21 2008-07-23 株式会社ルネサステクノロジ 相変化メモリ
KR100564608B1 (ko) 2004-01-29 2006-03-28 삼성전자주식회사 상변화 메모리 소자
US6936840B2 (en) 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
US7858980B2 (en) 2004-03-01 2010-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Reduced active area in a phase change memory structure
KR100574975B1 (ko) 2004-03-05 2006-05-02 삼성전자주식회사 상 변화 메모리 어레이의 셋 프로그래밍 방법 및 기입드라이버 회로
JP4529493B2 (ja) 2004-03-12 2010-08-25 株式会社日立製作所 半導体装置
KR100598100B1 (ko) 2004-03-19 2006-07-07 삼성전자주식회사 상변환 기억 소자의 제조방법
DE102004014487A1 (de) 2004-03-24 2005-11-17 Infineon Technologies Ag Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material
KR100532509B1 (ko) 2004-03-26 2005-11-30 삼성전자주식회사 SiGe를 이용한 트렌치 커패시터 및 그 형성방법
US7158411B2 (en) 2004-04-01 2007-01-02 Macronix International Co., Ltd. Integrated code and data flash memory
US7482616B2 (en) 2004-05-27 2009-01-27 Samsung Electronics Co., Ltd. Semiconductor devices having phase change memory cells, electronic systems employing the same and methods of fabricating the same
US6977181B1 (en) 2004-06-17 2005-12-20 Infincon Technologies Ag MTJ stack with crystallization inhibiting layer
US7359231B2 (en) 2004-06-30 2008-04-15 Intel Corporation Providing current for phase change memories
KR100668825B1 (ko) 2004-06-30 2007-01-16 주식회사 하이닉스반도체 상변화 기억 소자 및 그 제조방법
DE102004035830A1 (de) 2004-07-23 2006-02-16 Infineon Technologies Ag Speicherbauelement mit thermischen Isolationsschichten
KR100657897B1 (ko) 2004-08-21 2006-12-14 삼성전자주식회사 전압 제어층을 포함하는 메모리 소자
US7365385B2 (en) 2004-08-30 2008-04-29 Micron Technology, Inc. DRAM layout with vertical FETs and method of formation
KR100610014B1 (ko) 2004-09-06 2006-08-09 삼성전자주식회사 리키지 전류 보상 가능한 반도체 메모리 장치
US7023008B1 (en) 2004-09-30 2006-04-04 Infineon Technologies Ag Resistive memory element
US7443062B2 (en) 2004-09-30 2008-10-28 Reliance Electric Technologies Llc Motor rotor cooling with rotation heat pipes
TWI277207B (en) 2004-10-08 2007-03-21 Ind Tech Res Inst Multilevel phase-change memory, operating method and manufacture method thereof
KR100626388B1 (ko) 2004-10-19 2006-09-20 삼성전자주식회사 상변환 메모리 소자 및 그 형성 방법
JP2006127583A (ja) 2004-10-26 2006-05-18 Elpida Memory Inc 不揮発性半導体記憶装置及び相変化メモリ
US7364935B2 (en) 2004-10-29 2008-04-29 Macronix International Co., Ltd. Common word line edge contact phase-change memory
DE102004052611A1 (de) 2004-10-29 2006-05-04 Infineon Technologies Ag Verfahren zur Herstellung einer mit einem Füllmaterial mindestens teilweise gefüllten Öffnung, Verfahren zur Herstellung einer Speicherzelle und Speicherzelle
US7238959B2 (en) 2004-11-01 2007-07-03 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids and sloped trench, and a method of making same
US20060108667A1 (en) 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
US7202493B2 (en) 2004-11-30 2007-04-10 Macronix International Co., Inc. Chalcogenide memory having a small active region
JP2006156886A (ja) 2004-12-01 2006-06-15 Renesas Technology Corp 半導体集積回路装置およびその製造方法
US7355238B2 (en) 2004-12-06 2008-04-08 Asahi Glass Company, Limited Nonvolatile semiconductor memory device having nanoparticles for charge retention
KR100827653B1 (ko) 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7220983B2 (en) 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
DE102004059428A1 (de) 2004-12-09 2006-06-22 Infineon Technologies Ag Herstellungsverfahren für eine mikroelektronische Elektrodenstruktur, insbesondere für ein PCM-Speicherelement, und entsprechende mikroelektronische Elektrodenstruktur
TWI260764B (en) 2004-12-10 2006-08-21 Macronix Int Co Ltd Non-volatile memory cell and operating method thereof
JP4848633B2 (ja) 2004-12-14 2011-12-28 ソニー株式会社 記憶素子及び記憶装置
US20060131555A1 (en) 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
US20060138467A1 (en) 2004-12-29 2006-06-29 Hsiang-Lan Lung Method of forming a small contact in phase-change memory and a memory cell produced by the method
JP4646634B2 (ja) 2005-01-05 2011-03-09 ルネサスエレクトロニクス株式会社 半導体装置
US7419771B2 (en) 2005-01-11 2008-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a finely patterned resist
DE602005009793D1 (de) 2005-01-21 2008-10-30 St Microelectronics Srl Phasenwechselspeicher-Vorrichtung und Verfahren zu ihrer Herstellung
US20060172067A1 (en) 2005-01-28 2006-08-03 Energy Conversion Devices, Inc Chemical vapor deposition of chalcogenide materials
US20060169968A1 (en) 2005-02-01 2006-08-03 Thomas Happ Pillar phase change memory cell
US7214958B2 (en) 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7099180B1 (en) 2005-02-15 2006-08-29 Intel Corporation Phase change memory bits reset through a series of pulses of increasing amplitude
US7229883B2 (en) 2005-02-23 2007-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory device and method of manufacture thereof
KR100668333B1 (ko) 2005-02-25 2007-01-12 삼성전자주식회사 Pram 소자 및 그 제조방법
JP2006244561A (ja) 2005-03-01 2006-09-14 Renesas Technology Corp 半導体装置
US7154774B2 (en) 2005-03-30 2006-12-26 Ovonyx, Inc. Detecting switching of access elements of phase change memory cells
US7488967B2 (en) 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
DE602005011249D1 (de) 2005-04-08 2009-01-08 St Microelectronics Srl Phasenwechselspeicher mit rohrförmiger Heizstruktur sowie deren Herstellungsverfahren
US7166533B2 (en) 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
KR100675279B1 (ko) 2005-04-20 2007-01-26 삼성전자주식회사 셀 다이오드들을 채택하는 상변이 기억소자들 및 그제조방법들
US7408240B2 (en) 2005-05-02 2008-08-05 Infineon Technologies Ag Memory device
US7488968B2 (en) 2005-05-05 2009-02-10 Ovonyx, Inc. Multilevel phase change memory
KR100682946B1 (ko) 2005-05-31 2007-02-15 삼성전자주식회사 상전이 램 및 그 동작 방법
KR100668846B1 (ko) 2005-06-10 2007-01-16 주식회사 하이닉스반도체 상변환 기억 소자의 제조방법
US7388273B2 (en) 2005-06-14 2008-06-17 International Business Machines Corporation Reprogrammable fuse structure and method
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US7696503B2 (en) 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7321130B2 (en) 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7598512B2 (en) 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US20060289847A1 (en) 2005-06-28 2006-12-28 Richard Dodge Reducing the time to program a phase change memory to the set state
US20060289848A1 (en) 2005-06-28 2006-12-28 Dennison Charles H Reducing oxidation of phase change memory electrodes
US7233520B2 (en) 2005-07-08 2007-06-19 Micron Technology, Inc. Process for erasing chalcogenide variable resistance memory bits
TWI290369B (en) 2005-07-08 2007-11-21 Ind Tech Res Inst Phase change memory with adjustable resistance ratio and fabricating method thereof
US7309630B2 (en) 2005-07-08 2007-12-18 Nanochip, Inc. Method for forming patterned media for a high density data storage device
US7345907B2 (en) 2005-07-11 2008-03-18 Sandisk 3D Llc Apparatus and method for reading an array of nonvolatile memory cells including switchable resistor memory elements
US20080042119A1 (en) * 2005-08-09 2008-02-21 Ovonyx, Inc. Multi-layered chalcogenide and related devices having enhanced operational characteristics
US20070037101A1 (en) 2005-08-15 2007-02-15 Fujitsu Limited Manufacture method for micro structure
TWI273703B (en) 2005-08-19 2007-02-11 Ind Tech Res Inst A manufacture method and structure for improving the characteristics of phase change memory
KR100655443B1 (ko) 2005-09-05 2006-12-08 삼성전자주식회사 상변화 메모리 장치 및 그 동작 방법
US7615770B2 (en) 2005-10-27 2009-11-10 Infineon Technologies Ag Integrated circuit having an insulated memory
US7417245B2 (en) 2005-11-02 2008-08-26 Infineon Technologies Ag Phase change memory having multilayer thermal insulation
US7973384B2 (en) 2005-11-02 2011-07-05 Qimonda Ag Phase change memory cell including multiple phase change material portions
US7397060B2 (en) 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US20070111429A1 (en) 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7394088B2 (en) 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7829876B2 (en) 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7479649B2 (en) 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7233054B1 (en) 2005-11-29 2007-06-19 Korea Institute Of Science And Technology Phase change material and non-volatile memory device using the same
US7605079B2 (en) 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7728319B2 (en) 2005-12-20 2010-06-01 Nxp B.V. Vertical phase change memory cell and methods for manufacturing thereof
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US20070156949A1 (en) 2005-12-30 2007-07-05 Rudelic John C Method and apparatus for single chip system boot
US7292466B2 (en) 2006-01-03 2007-11-06 Infineon Technologies Ag Integrated circuit having a resistive memory
KR100763908B1 (ko) 2006-01-05 2007-10-05 삼성전자주식회사 상전이 물질, 이를 포함하는 상전이 메모리와 이의 동작방법
US20070158632A1 (en) 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7595218B2 (en) 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7825396B2 (en) 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7351648B2 (en) 2006-01-19 2008-04-01 International Business Machines Corporation Methods for forming uniform lithographic features
US7432206B2 (en) 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7956358B2 (en) 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US7426134B2 (en) 2006-02-24 2008-09-16 Infineon Technologies North America Sense circuit for resistive memory
US7910907B2 (en) 2006-03-15 2011-03-22 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US20070252127A1 (en) 2006-03-30 2007-11-01 Arnold John C Phase change memory element with a peripheral connection to a thin film electrode and method of manufacture thereof
US20070235811A1 (en) 2006-04-07 2007-10-11 International Business Machines Corporation Simultaneous conditioning of a plurality of memory cells through series resistors
US7928421B2 (en) 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
US20070249090A1 (en) 2006-04-24 2007-10-25 Philipp Jan B Phase-change memory cell adapted to prevent over-etching or under-etching
US7514705B2 (en) 2006-04-25 2009-04-07 International Business Machines Corporation Phase change memory cell with limited switchable volume
US8129706B2 (en) 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory
US7608848B2 (en) 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US20070267618A1 (en) 2006-05-17 2007-11-22 Shoaib Zaidi Memory device
KR100782482B1 (ko) 2006-05-19 2007-12-05 삼성전자주식회사 GeBiTe막을 상변화 물질막으로 채택하는 상변화 기억 셀, 이를 구비하는 상변화 기억소자, 이를 구비하는 전자 장치 및 그 제조방법
US7423300B2 (en) 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US7696506B2 (en) 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US7663909B2 (en) 2006-07-10 2010-02-16 Qimonda North America Corp. Integrated circuit having a phase change memory cell including a narrow active region width
US7785920B2 (en) 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7453081B2 (en) 2006-07-20 2008-11-18 Qimonda North America Corp. Phase change memory cell including nanocomposite insulator
US7542338B2 (en) 2006-07-31 2009-06-02 Sandisk 3D Llc Method for reading a multi-level passive element memory cell array
US7501648B2 (en) 2006-08-16 2009-03-10 International Business Machines Corporation Phase change materials and associated memory devices
US7684225B2 (en) 2006-10-13 2010-03-23 Ovonyx, Inc. Sequential and video access for non-volatile memory arrays
US20080225489A1 (en) 2006-10-23 2008-09-18 Teledyne Licensing, Llc Heat spreader with high heat flux and high thermal conductivity
US7863655B2 (en) 2006-10-24 2011-01-04 Macronix International Co., Ltd. Phase change memory cells with dual access devices
US20080101110A1 (en) 2006-10-25 2008-05-01 Thomas Happ Combined read/write circuit for memory
US7682868B2 (en) 2006-12-06 2010-03-23 Macronix International Co., Ltd. Method for making a keyhole opening during the manufacture of a memory cell
US20080137400A1 (en) 2006-12-06 2008-06-12 Macronix International Co., Ltd. Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same
US7473576B2 (en) 2006-12-06 2009-01-06 Macronix International Co., Ltd. Method for making a self-converged void and bottom electrode for memory cell
US7476587B2 (en) 2006-12-06 2009-01-13 Macronix International Co., Ltd. Method for making a self-converged memory material element for memory cell
US20080165569A1 (en) 2007-01-04 2008-07-10 Chieh-Fang Chen Resistance Limited Phase Change Memory Material
US7515461B2 (en) 2007-01-05 2009-04-07 Macronix International Co., Ltd. Current compliant sensing architecture for multilevel phase change memory
US20080164453A1 (en) 2007-01-07 2008-07-10 Breitwisch Matthew J Uniform critical dimension size pore for pcram application
US7440315B2 (en) 2007-01-09 2008-10-21 Macronix International Co., Ltd. Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell
US7456460B2 (en) 2007-01-29 2008-11-25 International Business Machines Corporation Phase change memory element and method of making the same
US7535756B2 (en) 2007-01-31 2009-05-19 Macronix International Co., Ltd. Method to tighten set distribution for PCRAM
US7701759B2 (en) 2007-02-05 2010-04-20 Macronix International Co., Ltd. Memory cell device and programming methods
US7463512B2 (en) 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US8138028B2 (en) 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US8008643B2 (en) 2007-02-21 2011-08-30 Macronix International Co., Ltd. Phase change memory cell with heater and method for fabricating the same
US7569844B2 (en) 2007-04-17 2009-08-04 Macronix International Co., Ltd. Memory cell sidewall contacting side electrode
US8357920B2 (en) 2007-04-20 2013-01-22 Nxp B.V. Electronic component, and a method of manufacturing an electronic component
US20080265234A1 (en) 2007-04-30 2008-10-30 Breitwisch Matthew J Method of Forming Phase Change Memory Cell With Reduced Switchable Volume
US7906368B2 (en) 2007-06-29 2011-03-15 International Business Machines Corporation Phase change memory with tapered heater
US7745807B2 (en) 2007-07-11 2010-06-29 International Business Machines Corporation Current constricting phase change memory element structure
US7755935B2 (en) 2007-07-26 2010-07-13 International Business Machines Corporation Block erase for phase change memory
US7642125B2 (en) 2007-09-14 2010-01-05 Macronix International Co., Ltd. Phase change memory cell in via array with self-aligned, self-converged bottom electrode and method for manufacturing
US7893420B2 (en) 2007-09-20 2011-02-22 Taiwan Seminconductor Manufacturing Company, Ltd. Phase change memory with various grain sizes
US7868313B2 (en) 2008-04-29 2011-01-11 International Business Machines Corporation Phase change memory device and method of manufacture
US7759770B2 (en) 2008-06-23 2010-07-20 Qimonda Ag Integrated circuit including memory element with high speed low current phase change material
US8324605B2 (en) 2008-10-02 2012-12-04 Macronix International Co., Ltd. Dielectric mesh isolated phase change structure for phase change memory
US8173987B2 (en) 2009-04-27 2012-05-08 Macronix International Co., Ltd. Integrated circuit 3D phase change memory array and manufacturing method
US8238149B2 (en) 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US8363463B2 (en) 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
US7894254B2 (en) 2009-07-15 2011-02-22 Macronix International Co., Ltd. Refresh circuitry for phase change memory
US20110049456A1 (en) 2009-09-03 2011-03-03 Macronix International Co., Ltd. Phase change structure with composite doping for phase change memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005502197A (ja) * 2001-08-30 2005-01-20 マイクロン テクノロジー インコーポレイテッド 金属をドープしたカルコゲニド材料を使用する集積回路装置及び製造
US20050029502A1 (en) * 2003-08-04 2005-02-10 Hudgens Stephen J. Processing phase change material to improve programming speed
CN1909239A (zh) * 2005-08-04 2007-02-07 三星电子株式会社 相变材料、制造和操作其的方法和相变随机存取存储器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742490A (zh) * 2016-03-11 2016-07-06 中国科学院上海微系统与信息技术研究所 一种提高相变存储器数据保持力的相变材料层结构
CN105742490B (zh) * 2016-03-11 2018-09-07 中国科学院上海微系统与信息技术研究所 一种提高相变存储器数据保持力的相变材料层结构
US11735261B2 (en) 2017-04-28 2023-08-22 Micron Technology, Inc. Programming enhancement in self-selecting memory
CN108807453A (zh) * 2017-05-04 2018-11-13 旺宏电子股份有限公司 介电掺杂且富含锑的gst相变存储器
CN111670497A (zh) * 2018-02-09 2020-09-15 美光科技公司 用于存储器装置的掺杂剂调制蚀刻
CN111670497B (zh) * 2018-02-09 2023-08-29 美光科技公司 用于存储器装置的掺杂剂调制蚀刻
US11800816B2 (en) 2018-02-09 2023-10-24 Micron Technology, Inc. Dopant-modulated etching for memory devices

Also Published As

Publication number Publication date
CN101937970B (zh) 2012-11-14
US20100328996A1 (en) 2010-12-30
TWI422013B (zh) 2014-01-01
TW201112400A (en) 2011-04-01
US8363463B2 (en) 2013-01-29

Similar Documents

Publication Publication Date Title
CN101937970B (zh) 具有一个或多个非定值掺杂浓度分布的相变化存储器
EP1764847B1 (en) Ring heater for a phase change memory device
CN101504967B (zh) 中心加热相变化存储器结构及其制造方法
KR100782482B1 (ko) GeBiTe막을 상변화 물질막으로 채택하는 상변화 기억 셀, 이를 구비하는 상변화 기억소자, 이를 구비하는 전자 장치 및 그 제조방법
CN101714609B (zh) 一种硫属材料型存储装置及其制造方法
CN100502029C (zh) 相变化存储器件及其形成方法
CN101170120B (zh) 具双存取元件的相变化存储单元
CN101252168B (zh) 具有加热器的相变化储存单元及其制造方法
CN100550461C (zh) 具有真空侧壁子的相变存储单元
US7893418B2 (en) Phase change memory cell having interface structures with essentially equal thermal impedances and manufacturing methods
CN101236985B (zh) 一种具有共平面电极表面的存储单元装置及其制造方法
EP2383811B1 (en) Reduced power consumption phase change memory
EP1783844A2 (en) Phase change memory cell including multiple phase change material portions
US20110049456A1 (en) Phase change structure with composite doping for phase change memory
CN102610750A (zh) 四元素镓碲锑为基的相变化材料及存储装置
CN102592664A (zh) 具有快速写入特性的相变存储装置
US8916414B2 (en) Method for making memory cell by melting phase change material in confined space
CN101877384B (zh) 低操作电流相变存储器元件结构
CN102420287A (zh) 电流相对于由电极定义的轴横向流动的相变化只读存储器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant