CN101170120B - 具双存取元件的相变化存储单元 - Google Patents

具双存取元件的相变化存储单元 Download PDF

Info

Publication number
CN101170120B
CN101170120B CN200710138293.XA CN200710138293A CN101170120B CN 101170120 B CN101170120 B CN 101170120B CN 200710138293 A CN200710138293 A CN 200710138293A CN 101170120 B CN101170120 B CN 101170120B
Authority
CN
China
Prior art keywords
electrode
memory cell
gap
word line
memory element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200710138293.XA
Other languages
English (en)
Other versions
CN101170120A (zh
Inventor
龙翔澜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Publication of CN101170120A publication Critical patent/CN101170120A/zh
Application granted granted Critical
Publication of CN101170120B publication Critical patent/CN101170120B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5678Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using amorphous/crystalline phase transition storage elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of the switching material, e.g. post-treatment, doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • H10N70/066Patterning of the switching material by filling of openings, e.g. damascene method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/72Array wherein the access device being a diode
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/74Array wherein each memory cell has more than one access device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/76Array using an access device for each cell which being not a transistor and not a diode
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

本发明公开一种自行对准存储元件及其形成方法。一种自行对准存储元件,其包括存储单元,该存储单元可通过施加能量而在多个电学状态之间转换,该存储元件包括基底以及多条字线,至少有一侧的字线被介电材料所覆盖,定义出多个间隙。存取元件位于基底中,其具有第一端点位于第二间隙之下,且具有第二端点位于第一与第三间隙的下。第一和第二源极线位于第一和第三间隙的中且电学连接该第二端点。第一电极位于第二间隙的中且电学连接该第一端点。存储单元位于第二间隙之中,位于第一电极上方且与第一电极电学连接。第二电极位于存储单元之上且与其连接。第一电极、存储单元以及第二电极自行对准。一部分的存储元件具有次光刻尺寸的宽度。

Description

具双存取元件的相变化存储单元
技术领域
本发明涉及一种具相变化型存储材料的高密度存储元件及其操作方法,其存储材料包括硫族化合物(chalcogenide)基材料及其他材料。
背景技术
相变化型存储材料是一种广泛使用在读写光碟片的材料。这一些材料至少具有两个固相,包括例如是一般非晶型固相(generally amorphous)和一般结晶固相。以激光脉冲可使得读写光碟片可以在不同的相之间转换,以读取两种相的不同的光学特性。
相变化型存储材料,如硫族化合物基材料及其相似材料,也可以通过在集成电路施加适当水平的电流而改变其相态。一般非晶型态的电阻高于一般结晶态的电阻,其可快速读出以显示其数据。这些特性被研究用于可编程的阻抗材料,以用来形成可以随机存取来读取和写入非挥发性存储电路。
非晶态可以在低电流操作下改变为结晶态。由结晶态改变为非晶态,在此处用作为重置,则通常需要在较高电流下操作,该操作包括短而高电流密度脉冲,以熔化或破坏(break down)结晶结构,其后,相变化材料快速冷却,停止相变化程序,且使得至少一部分的相变化结构稳定于非晶态。通常都希望用来使得相变化材料由结晶态转变为非晶态的重置电流可以最小化。缩小存储单元中相变化材料单元的尺寸以及电极和相变化材料之间的接触面积可减小用于重置的重置电流的大小,藉以使得可以以绝对小的通过相变化材料单元的电流值达到最大的电流密度。即使是小的元件,重置电流仍是高密度、低电压集成电路的一个设计极限。
随着相变化存储材料存储单元结构的小型化,具有相变化存储单元阵列的元件的限制因素则是其阵列的架构,阵列的架构包括存取晶体管、字线以及位线,其各个存储单元可以进行读取、设定与重置操作。典型的阵列架构如龙先生在美国专利第6864503号所披露的“间隙壁硫族化合物存储方法与元件”以及吴先生在美国专利第6545903号所披露的“以自行对准阻抗插塞形成具有相变化材料的存储单元”。在’503专利中,相变化存储单元的阵列架构如图3所示,其包括形成在半导体基底上的存取晶体管(在’503专利中称为绝缘晶体管)以及导电插塞,其中导电插塞形成在各个存取晶体管的漏极以及在相对应的相变化存储单元的电极之间的接触窗开口之中。半导体中用来分隔存取存储器的空间需求,或是隔绝相邻的存取晶体管的需求限制了阵列的大小。一种高密度阵列架构如Kang等人在2006年2月的ISSCC中所提出的“一种0.1MM、1.8V、256Mb、66MHz同步化相变化随机存取存储器(PRAM)”。
因此,需要提出一种具有可提供高密度元件的阵列架构的元件,以助于施加相对较高电流到所选择的元件在低电压进行重置操作。
发明内容
本发明第一实施例是一种自行对准存储元件,其包括存储单元,此存储单元可通过施加能量而在多个电学状态之间转换。此存储元件包括基底以及第一、第二、第三以及第四字线位于基底上且以第一方向排列。字线具有顶面与侧面,且至少有一侧的字线被介电材料所覆盖。介电材料之间定义出第一、第二和第三间隙。此存储元件也包括位于基底中的多个存取元件的多个端点,第一端点直接位于第二间隙之下;第二端点直接位于各第一与第三间隙的下。第一和第二源极线位于第一和第三间隙的中且电学连接该第二端点之一。第一电极位于第二间隙的中且电学连接该第一端点。存储单元位于第二间隙之中,位于第一电极上方且与其电学连接。第二电极位于存储单元之上且与其接触,且以垂直于第一方向的第二方向排列。第一电极、存储单元以及第二电极自行对准。在一些实施例中,存取元件包括第一和第二晶体管,其具有共漏极。在一些实例中,字线以一距离分隔,该距离为最小次光刻距离,以使得至少一部分的该间隙为次光刻尺寸间隙,至少一部分的该存储单元具有次光刻尺寸宽度。
本发明的自行对准存储元件,其包括存储单元,可藉施加能量而在不同的电学状态之间转换,形成此自行对准存储元件的方法的一个实例如后所述。在基底上形成第一、第二、第三与第四字线导体,各字线导体具有字线顶面与字线侧面。在该字线侧面上形成多个介电侧壁间隙壁,这些侧壁间隙壁彼此以裸露出该基底的第一、第二与第三间隙分隔。在第一、第二与第三间隙的基底中形成存取元件的第一和第二端点,第一端点直接位于该第二间隙下方,第二端点直接形成于各第一和第三间隙下方。在该第一和第三间隙中形成一源极线,其电学连接各别的该第二端点之一。在第二间隙中形成第一电极,其电学连接第一端点。在第二间隙中沉积存储材料,以形成第一单元,其电性接触第一电极。形成第二电极,其电性接触存储单元。在一些实施例中,执行形成介电侧壁间隙壁的步骤,可使得字线以一距离分隔,该距离等于最小的光刻距离,介电侧壁间隙壁定义上述第一、第二和第三间隙壁,这些间隙壁中有至少一部分为次光刻尺寸间隙。在此实施例中,存储单元具有由第二间隙所定义的宽度,且至少一部分的宽度为次光刻尺寸宽度。
上述的存储单元和存取控制元件结构具有可以在低电压下操作的相变化存储单元,因此,可制成高密度、高容量的存储阵列。
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合附图,作详细说明如下:
附图说明
图1是绘示包括具有双源极线和双字线的相变化存储单元存储阵列的示意图。
图2是绘示包括具有双源极线和双字线以及其他电路的相变化存储单元存储阵列的集成电路元件的方块图。
图3是依照本发明沿着平行且通过位线所绘示的存储元件剖面示意图。
图4是绘示图3的上视图。
图5、6、7是绘示沿着图35-5、6-6以及7-7切线的侧视图。
图8是绘示基底上被介电层所覆盖的字线。
图8A是绘示在图8的结构上沉积氮化层。
图8B是绘示蚀刻图8A结构的结果,其留下位于字线侧壁上的侧壁间隙壁,并在侧壁间隙壁之间形成侧壁间隙,并且形成对准侧壁间隙的源极与漏极。
图9是绘示在图8所示的结构上沉积导电层。
图10是绘示回蚀刻图9的导电层的结果。
图11是绘示在图10的结构上沉积介电层。
图12是绘示图11的结构进行机械研磨之后的示意图。
图13是绘示在图12所示的结构上形成掩模层。
图14是绘示蚀刻图13所示的结构的结果。
图15是绘示在图14所示的结构上沉积存储材料。
图16是绘示存储材料进行化学机械抛光工艺后的结果。
图17是绘示在图16所示的结构上沉积金属位线层。
图18、19是绘示在图17所示的结构上形成第二掩模层。
图20是绘示蚀刻图19至基底表面以形成位线堆叠结构。
图21是移除图20所示的结构的第二掩模层的侧视图。
图22是绘示另一种包括具有双字线以及双位线(亦作为源极)的相变化存储单元的示意图。
图23是绘示所述的存储元件的操作方法的流程方块图。
附图标记说明
12:侧壁间隙            14:距离
20:基底                23a、23b、23c、23d、321、322:字线
23、24:字线驱动器      28a、28b、28c:共源极线
29:源极线终端电路      32、33、332:下电极
34、37:上电极          35、36、45、46:存储单元
38:相变化区            41、42、341、342:位线
43:设定、重置以及读取电流源
50、51、52、53:存取晶体管
51a、51b:电流路径      60:具双源极线的相变化存储阵列
61:行解码器            62、64:位线
63:列解码器            66:读出放大器/数据输入结构
65、67:总线            68:电流源
69:状态机器            71:输入线
72:输出线              74:其他电路
75:集成电路            79:距离
80、81:顶盖层          82:间隙壁
84:栅氧化层            86、93、96:介电层
88、106:沟槽           90:导电层
91:导电构件            92:绝缘介电层
94、102:掩模层                 98:相变化存储材料
100:金属位线                   104:位线堆叠结构
315、316、317、318:二极管      320:字线驱动器
335:存储单元                   340:偏压源
350、351、500:存储单元         501:模式
502、505:驱动左边的字线        503:于位线上施加读取偏压脉冲
504:读出数据                   506:于位线上施加设定偏压脉冲
507、510:校验数据              508:驱动左边以及右边的字线
509:于位线上施加重置偏压脉冲   S、S51、S52、S53:源极
D、D52/D53:漏极                G52、G53:栅极
5-5、6-6、7-7:剖面线
具体实施方式
本发明将配合具体结构的实施例与方法详细说明如下。本发明并不限于所披露的实施例和方法,亦可以以其他的特征(feature)、构件、方法和实施例来实施。优选实施例是用来说明本发明,而非用以限制其范围,本发明的保护范围当以权利要求为准。本领域技术人员基于以下说明当可做各种等效的更动与润饰。此外,在各实施例中相同的构件是以相同的标号来表示的。
具双存取元件的相变化存储单元及其阵列以及其制造和操作方法将配合图1至23详细说明。
图1是绘示一种存储阵列,其具有双字线和双源极线,并且在存储单元电极和存取阵列之间具有自行对准接触窗/存储单元。在图式中,含有存储单元35、36、45和46的四个存储单元,是数百万个存储单元所构成的阵列中的一小部分。以含有存储单元35和36的存储单元来说明。由图可知,含有存储单元35的存储单元包括一个上电极34和一个下电极32,存储单元35中含有相变化材料可用来电学连接上、下电极34、32。同样地,含有存储单元36的存储单元包括一个上电极37和一个下电极33。上电极37和34与位线41耦接。含有存储单元45和46的存储单元也以相同的方式连接。如图3所示,各个存储单元在接近其下电极处具有相变化区。
请参照图1,共源极线28a、28b以及28c、字线23a、23b、23c以及23d排列的方向大致与Y方向平行(与一般字线平行X方向的排列方式相反)。位线41和42排列的方向大致与X方向平行。因此,Y解码器(decoder)和具有设定、重置和读取模式的字线驱动器24,与字线23a、23b、23c、23d耦接。设定、重置和读取模式的位线的电流源(current source)43、解码器和读出放大器(未绘示)与位线41和42耦接。共源极线28a、28b和28c,与源极线终端电路(termination circuit)29如接地端耦接。在一些实施例中,源极线终端电路包括多个偏压电路,用来施加不是接地的偏压至源极线,其包括偏压电路如电压源和电流源以及解码电路。
在所示的阵列中的各个存储单元与第一和第二个存取晶体管耦接。因此,包含存储单元35的存储单元的下电极32与存取晶体管53的漏极D53以及存取晶体管52的漏极D52耦接。存取晶体管52和53的源极端S52和S53分别与源极线28a和28b耦接。存取晶体管52的栅极G52与字线23a耦接。存取晶体管53的栅极G53与字线23b耦接。同样地,含有存储单元36的存储单元的下电极33与存取晶体管50的漏极以及存取晶体管51的漏极耦接。存取晶体管50和51的源极端分别与源极线28b和28c耦接。存取晶体管50的栅极与字线23c耦接。存取晶体管51的栅极与字线23d耦接。
由图可知共源极线28b被图式中呈Y方向排列的两列的存储单元所共用。
在进行操作时,电流源43和字线驱动器24以低电流读取模式、一个或多个中间电流设定模式、以及高电流重置模式操作。在高电流重置模式期间,通过施加电流给位线41并且在字线导体23a和23b施加电压,可建立通过所选择的存储单元(例如含有存储单元35的存储单元)的电流路径51a,以开启存取晶体管52和53,使得电流同时通过源极线28a和源极线28b。双字线导体23a和23b以及双源极线导体28a和28b比仅使用单一源极线导体容易建立一个至接地端的低电阻路径。因此,在高电流重置模式期间,电流源可以在低电压下操作,且可以更有效率提供耦合功率给要需要达到重置状态的存储单元。
相反地,在低电流读取模式期间,施加电流给位线41可建立通过所选择的存储单元(请参照含有存储单元36的存储单元)的电流路径51b,并且在字线导体23d施加足以开启存取晶体管51的电压,可使得电流流到源极线导体28c。字线导体23c的电压维持在一水平(level),其足以关闭存取晶体管50,并且阻挡电流流到源极线导体28b。这样可以提供低电容给使用于低电流读取模式的电路,且可以使得读取模式的操作更为快速。
在设定模式期间,使用一个或多个中间电流水平,仅使得一个存取晶体管致能,如以上读取模式所述者。或者,在设定模式期间,可以依据特定的目标设计,使用两个存取晶体管,如以上重置模式所述者。
存储单元的存储单元35、36、45、46的实施例包括相变化型存储材料,其包括硫族化合物型材料和其他材料。硫属元素包括周期表第四族的氧、硫、硒、碲四种元素中任何一种。硫族化合物包括硫族元素和阳电性(electropositive)的元素或自由基的化合物。硫族化合物合金包括硫族化合物和其他材料例如是过渡金属的组合物。通常硫族化合物合金包括一种或多种周期表第六族的元素,例如锗和锌。通常,硫族化合物合金包括锑(Sb)、镓(Ge)、铟(In)和银(Ag)中一种或多种的组合物。科技文献中已披露多种相变化型存储材料,其合金包括Ga/Sb、In/Sb、In/Se、Sb/Te、Ge/Te、Ge/Se/Te、In/Sb/Te、Ge/Se/Te、Sn/Sb/Te、In/Sb/Ge、Ag/In/Sb/Te、Ge/Sn/Sb/Te、Ge/Sb/Se/Te以及Te/Ge/Sb/S。在Ge/Sb/Te合金族群中,可实施的合金组成的范围非常广。其组成可以TeaGebSb100-(a+b)来表示的。
研究人员研究大部分有用的合金中的Te在沉积材料中的平均浓度最好低于70%,典型的是小于60%,通常的范围是约为23%至58%,更佳的是约为48%至58%。Ge在材料中的平均浓度是大于5%,其范围为8%至约为30%,通常是低于50%。较佳的是Ge的浓度范围为约为8%至40%。组成物中剩下的主要组成元素是Sb。所述的这一些百分比为原子百分比,其全部组成元素的原子为100%。(Ovshinsky’112专利,第10-11行)。其他的研究人员研究的特定合金包括Ge2SbTe5、GeSb2Te4以及GeSb4Te7。(NoboruYamada,高数据率纪录的Ge-Sb-Te相变化光碟片的电位,SPIE第3109期,第28-37页,1997年)。通常,过渡金属例如是铬(Cr)、铁(Fe)、镍(Ni)以及铌(Nb)、钯(Pd)、铂(Pt)及其混合物或合金,可与Ge/Sb/Te结合成相变化合金,其具有防编程的特性。可以使用的存储材料的具体实例如Ovshinsky’112专利第11-13行所述,其实例并入本案参考。
在存储单元的有源沟道区的局部范围(local order)中,相变化合金可以在第一个结构态和第二结构态之间转换,第一个结构态是一种为一般非晶型固态的材料;第二结构态是一种为一般结晶固态材料。这一些合金至少为双稳态(bistable)。“非晶型”表示有序性相对较低的结构,比单结晶无序,其具有可侦测的特性,如电阻较高于结晶相。“结晶”表示有序性相对较高的结构,比非晶型有序,其具有可侦测的特性,如电阻较低于非晶相。典型的相变化材料可以在完全非晶态和完全结晶态之间的整个光谱的局部范围的不同的可侦测的状态之间转换。改变非晶相和结晶相所影响的材料的其他特性包括原子排列;自由电子的密度以及活化能。材料可转换到不同的固相,或转换两个或更多个固相,提供介于完全非晶态和完全结晶态之间的灰阶。其材料的电性也随之而改变。
相变化合金可通过施加电脉冲(electrical pluses)而由一个相态改变到另一个相态。短而高振幅的脉冲可以使得相变化材料改变为一般的非晶态。长而低振幅的脉冲可以使得相变化材料改变为一般的结晶相。短而高振幅的脉冲够高,足以打断结晶结构的键;够短,可以避免原子再结晶成结晶态。适当的脉冲轮廓可以依据经验或模拟来决定的,并且具体施加于特定的相变化合金。在以下的内容中,相变化材料以GST来表示的,而其他种类的相变化材料也是可以使用的。此处用于PCRAM的材料为Ge2Sb2Te5
以下将简要说明四种阻抗式存储材料。
1.硫族化合物材料
GexSbyTez
x:y:z=2:2:5
或是其他的组成x:0~5;y:0~5;z:0~10
GeSbTe具有掺杂,例如是N-、Si-、Ti-或是可以使用其他的元素。
形成的方法:通过PVD溅射或磁性溅射法,在1毫托~100毫托的压力下以Ar、N2以及/或He等作为反应气体。沉积工艺通常在室温下进行。使用高宽比为1~5的准直管可增进沟填的效能。此外,还可以使用数十至数百伏特电压的DC偏压来增进沟填效能。另一方面,通常是同时使用DC偏压和准直管。
通常,在真空或是N2的环境中进行热沉积后的退火处理,可以增加硫族化合物材料的结晶态。退火的温度范围通常在摄氏100度至400度,退火的时间少于30秒。
硫族化合物材料的厚度因存储单元结构的设计而有所不同。通常,硫族化合物材料的厚度大于8nm可具有相变化的特性,以使其材料具有至少两种稳定的阻抗态。
2.超巨磁电阻(CMR)阻抗材料
PrxCayMnO3
x:y=0.5:0.5
或是其他的组成为x:0~1;y:0~1
其他的CMR材料则包括Mn的氧化物可被使用。
形成的方法:通过PVD溅射或磁性溅射法,在1毫托~100毫托的压力下以Ar、N2以及/或He等作为反应气体。沉积工艺的温度依据沉积后的退火条件而定,通常在室温至摄氏600度。使用高宽比为1~5的准直管可增进沟填的效能。此外,还可以使用数十至数百伏特电压的DC偏压来增进沟填效能。另一方面,通常是同时使用DC偏压和准直管。为提高磁性结晶相,可以施加数十至10000高斯的磁场。
通常,在沉积之后,在真空或N2或是O2/N2混合物的环境中进行热退火处理可以提高CMR材料的结晶态。退火的温度范围通常在摄氏400度至600度,退火的时间少于2小时。
CMR材料的厚度因存储单元结构的设计而有所不同。通常,厚度为10nm至200nm的CMR材料可用作核心材料(core material)。
通常,可以使用YBCO(YBaCuO3,为一种高温超导体材料)缓冲层来提高CMR材料的结晶态。YBCO通常在沉积CMR材料之前沉积,其厚度范围在30nm至200nm。
3.二元素化合物
NixOy;TixOy;AlxOy;WxOy;ZnxOy;ZrxOy;CuxOy
x:y=0.5:0.5
其他的组成x:0~1;y:0~1
形成方法:
1.沉积:通过PVD溅射或磁性溅射法,在1毫托~100毫托的压力下以Ar、N2、O2以及/或He等作为反应气体,使用金属氧化物如NixOy、TixOy、AlxOy、WxOy、ZnxOy、ZrxOy、CuxOy等作为靶材。沉积工艺通常在室温下进行。使用高宽比为1~5的准直管可增进沟填的效能。此外,还可以使用数十至数百伏特电压的DC偏压来增进沟填效能。如有需要,可以同时使用DC偏压和准直管。
通常,在沉积之后,在真空或N2或是O2/N2混合物的环境中进行热退火处理可以提高金属氧化物的氧分布。退火的温度范围通常在摄氏400度至600度,退火的时间少于2小时。
2.反应性沉积:通过PVD溅射或磁性溅射法在1毫托~100毫托的压力下以Ar/O2、Ar/N2/O2、纯O2、He/O2、He/N2/O2等作为反应气体,使用金属如Ni、Ti、Al、W、Zn、Zr、Cu等作为靶材。沉积工艺通常在室温下进行。使用高宽比为1~5的准直管可增进沟填的效能。此外,还可以使用数十至数百伏特电压的DC偏压来增进沟填效能。如有需要,可以同时使用DC偏压和准直管。
通常,在真空或N2或是O2/N2混合物的环境中进行沉积后热退火处理可以提高金属氧化物的氧分布。退火的温度范围通常在摄氏400度至600度,退火的时间少于2小时。
3.氧化:通过高温氧化系统,例如是炉管或是RTP系统,在温度范围为摄氏200度至摄氏700度具有纯O2或N2/O2混合气体,压力为数毫托至1大气压的条件下,进行沉积工艺数分钟至数小时。其他的氧化方法是以等离子体氧化,在具有纯O2或Ar/O2混合气体或是Ar/N2/O2混合气体,压力为1毫托至100毫托的RF或DC电源等离子体中氧化金属如Ni、Ti、Al、W、Zn、Zr、Cu等的表面。氧化的时间范围为数秒至数分钟。氧化的温度范围依据等离子体氧化的程度而有所不同,约为室温至摄氏300度。
4.聚合物材料
具有Cu、C60、Ag等掺杂的TCNQ
PCBM-TCNQ混合聚合物
形成方法:
1.蒸镀:通过热蒸镀、电子束蒸镀或是分子束外延(MBE)系统进行沉积工艺。在单一的腔室中共蒸镀固态的TCNQ以及掺杂粒(Dopant pellet)。固态的TCNQ以及掺杂粒置于W舟或是Ta舟或是陶瓷舟中。施加高电流或电子束以熔化材料源,使材料混合并沉积在晶片上。腔室中不含反应化学品或气体。沉积的压力为10-4托至10-10托。晶片的温度范围为室温至摄氏200度。
通常,在真空或N2的环境中进行沉积后热退火处理可以提高聚合物材料的组成分布。退火的温度范围通常在室温至300度,退火的时间少于1小时。
2.旋涂:通过旋涂机以小于1000rpm的速率涂布掺杂的TCNQ溶液。在涂布之后,将晶片在室温或低于摄氏200度的环境中静置至成固态。静置的时间范围为数分钟至数天,依温度以及形成的条件而有所不同。
以PVD溅射或是磁性溅射法形成硫族化合物材料的实施例例如是以Ar、N2及/或He等为气体源,在1毫托至100毫托的压力下沉积。沉积通常在室温下进行。高宽比为1~5的准直管可用来增进沟填效能。此外,还可以使用数十至数百伏特电压的DC偏压来增进沟填效能。另一方面,可以同时使用DC偏压和准直管。
通常,在真空或是N2的环境中进行沉积后热退火处理可以增加硫族化合物材料的结晶态。退火的温度范围通常在摄氏100度至400度,退火的时间少于30秒。
硫族化合物材料的厚度因存储单元结构的设计而有所不同。通常,硫族化合物材料的厚度大于8nm具有相变化的特性,以使其材料具有至少两种稳定的阻抗态。期望的材料是具有适当的最小的厚度。
图2为依照本发明实施例所绘示的一种集成电路的简示方块图。集成电路75包括位于半导体基底上的存储阵列60,存储阵列60具有自行对准接触窗和绝缘线的相变化存储单元。具有读取、设定以及重置模式的行解码器61与多对字线62耦接,并且以存储单元阵列60的行方向排列。列解码器63与多个位线64耦接,并且以存储单元阵列60的列方向排列,用以读取、设定以及重置存储阵列60的存储单元。地址(address)经由总线65至列解码器63以及行解码器61。在方块66中的读出放大器和数据输入结构包括读取、设定以及重置模式的电流源,其通过数据总线67与列解码器63耦接。数据通过数据输入线71从集成电路75上的输入/输出端口或从集成电路75内部或外部的其他数据源提供至方块66的数据输入结构。在说明的实施例中,集成电路75的中可包含其他的电路74,例如一般的处理器或是特殊功用的处理器,或由相变化存储单元阵列所支援的具有系统芯片功用的模块组合。数据是从方块66中的读出放大器经由数据输出线72传送到集成电路75的输入/输出端口,或传送到集成电路75内部或外部的其他数据端(datadestination)。
在此例中的控制器是使用偏压状态的机器(bias arrangement statemachine)69来控制所施加的偏压供应电压(bias arrangement supply voltage),以及电流源68如读取、设定、重置以及校验字线及位线的电压及/或电流,并且以如下图23所示的存取控制处理器来控制双字线/源极线的操作。控制器可使用已知特殊目的用的逻辑电路。在另一实施例中,控制器包括一般用处理器,其可配置在相同的集成电路上,通过执行计算机程式来控制元件的操作。在又一实施例中,可结合特殊目的用的逻辑电路以及一般的处理器来作为控制器。
图3至7是绘示相变化随机存取存储器(PCRAM)存储单元以及自行对准接触窗/存储单元/源极线和存取晶体管,其制造方法如第8至21图所示。存储单元形成在半导体基底20上。一对存取晶体管52和53包括形成在p型基底20的中作为n型源极区S52和S53的端点以及作为n型共漏极区D52/D53的端点。多晶硅字线23a和23b形成存储单元35的存取晶体管52和53的栅极G52和G53。沿着存取晶体管的列重复图案。存取晶体管52和53的端点S52和S53以及端点D52/D53包括基底中的掺杂区,其可以多晶硅字线23a和23b作为掩模,经由自行对准注入工艺来形成的。此实施例所述的自行对准是通过字线结构之间所定义之间隙来达成的,此间隙可用来在其插塞(plugs)上设置存取晶体管的端点,形成源极线和下电极以及存储元件,再于下电极上形成位线,而不需要额外的光刻掩模来设置这一些构件。
栅极氧化层84是形成在基底20中;字线23则形成在栅极氧化层84上。各字线23被顶盖层81,其覆盖并且被间隙壁82环绕。典型的顶盖层80和间隙壁82为氮化物。介电层86,典型为SiO2,形成在共源极线28之上方。位线41和42形成在存储单元35和36、介电层86和氮化顶盖层80之上方。填充着介电层的沟槽88与位线垂直,因此,可隔开位线以及存储单元、下电极以及漏极,如图5所示。为清楚起见,省略绘示图4-7的沟槽88中的介电层。在图6中,填充着介电层的沟槽88亦隔开氮化顶盖层80以及位线41。但未隔开共源极线28或存取晶体管的源极。同样地,在图7中,填充着介电层的沟槽88隔开了位线41但未隔开字线23或栅极氧化层84。深度不同的沟槽88可以以传统或非传统的方法来形成,例如可以使用适当的蚀刻终止层来达成的。
请参照图8,在基底20上形成栅氧化层84、多晶硅层以及硬掩模介电材料层,例如是SiN,之后,进行蚀刻工艺,以形成字线23和覆盖字线顶面的介电层81。各字线23和介电层81之间以距离79分隔,较佳的距离79等于形成字线和介电层的光刻工艺的光刻的最小特征尺寸。
请参照图8A,在图8所示的结构上沉积氮化层80,其蚀刻后的结果如图8B所示。以蚀刻工艺移除氮化层80,至介电层81以及基底20裸露出来,以在字线23的侧壁形成间隙壁82。间隙壁82彼此之间以侧壁间隙距离14分隔开,且在间隙壁82之间形成侧壁间隙12。接着,以氮化物覆盖的字线作为掩模,对准侧壁间隙,形成存取晶体管的源极和漏极端点S、D。当距离79为光刻的最小特征尺寸时,所形成之间隙12的至少一部分为次光刻尺寸间隙,其具有对应的侧壁间隙距离14,其为次光刻尺寸距离。通过侧壁间隙壁82所产生之间隙12来导引形成存取晶体管的源极和漏极以及间隙12下方的其他的元件构件,可以使得工艺为一种完全自行对准的工艺。完全对准工艺可以减少其他掩模的需求,简化制造的程序。所形成的存储元件阵列是一种无接触窗电极阵列,其表示不需要额外的光刻步骤来形成额外的接触窗。减少额外的接触窗可以减少存储单元的总尺寸。此外,由于各个存储单元中有至少一部分的宽度为次光刻尺寸,因此,存储单元的尺寸可以缩减为16F2至8F2、4F2,典型约为6F2,F表示所使用的工艺的最小特征尺寸。
之后,在图8的结构上沉积一层导电层90,典型的材料为钨或其他合适的导电材料如Ti或TiN,以形成图9的结构。导电层90回蚀刻后,则形成图10所示的导电构件91。接着,在图10结构上沉积绝缘介电层92,典型的材料为二氧化硅,以形成图11所示的结构。接着,以化学机械抛光形成图12所示的经过研磨的介电层93。
请参照图13,在图12所示的结构上形成一掩模层94,此掩模层对准预定形成的存取晶体管的源极。请参照图14,蚀刻移除未被掩模层94覆盖的经过研磨的介电层93,留下源极上方的蚀刻后的介电层96,但裸露出漏极上方未被介电材料覆盖的导电构件91。图15绘示在图14所示的结构上沉积相变化存储材料98的示意图,其存储材料与其所覆盖的导电构件91接触,导电构件则与漏极接触。图16绘示图15的存储材料98经过化学机械抛光步骤之后形成第一次组件(subassembly)的示意图。
图17绘示在图16所示的结构上沉积金属位线层100形成第二次组件的示意图。图18和19绘示在图17所示的结构中的金属位线层100上形成第二掩模层102的示意图。请参照图20,与图5相似,以第二掩模102蚀刻图19的结构,至基底20裸露出来,以形成被沟槽106分隔的位线堆叠结构104。如图4、6和7所示,此蚀刻工艺终止于覆盖于字线23上的介电层81以及覆盖于源极线28上的介电层86。图21为图20移除第二掩模层102之后的侧面示意图。接着,进行填入介电层的程序以及化学机械抛光的工艺,以形成图3至7所示的结构。
图22绘示另一种包括二极管的存取元件的示意图。请参照图22,第一存储单元350包括上电极334、存储单元335以及一下电极332。第二存储单元351亦如图所示。第一字线导体321以及第二字线导体322与可进行设定、重置以及读取模式的字线驱动器320耦接。第一位线341和第二位线342与可设定、重置以及读取模式的偏压电源340以及读出放大器及数据输入结构(未绘示)耦接。当二极管317和318作为存储单元351的双存取元件时,二极管315和二极管316作为存储单元350的双存取元件。存储单元350的下电极332耦接到二极管315的正极以及二极管316的正极。二极管315的负极耦接到字线导体321;二极管316的负极耦接到字线导体322。在此例中,字线导体321和322同时作为字线和源极线,不同于图1的实施例中以分隔开的导体作为源极线(28a、28b、28c)以及字线(23a、23b、23c、23d)。
在进行操作时,在重置模式期间,字线321和322是设定在低电压例如是接地,或足以使得二极管315、316为导电的其他电压。在此模式中,字线321和322作为源极线,电流经由存储单元350同时沿着字线导体321与322,产生重置模式的相对低电阻路径。在读取模式期间,只有字线321、322其中之一设定在低电压。在设定模式期间,只有字线321、322其中之一设定在低电压。如上所述,在一些实施例中,在设定模式期间可同时将字线321和322设定在低电压。
图23绘示存储元件的基本的操作方法,此存储元件例如是图3的具有双字线/源极线的结构者。用来说明实施例的图23,其所示的流程是在控制图2的状态机器(state machine)69下施行的。依据指令执行程序,以存取选择的存储单元(500)。在接收到指令时,程序会判断存取的模式(501)。若是存取的模式为读取模式,控制的逻辑会使得字线驱动器以足以使得电流经左边的存取元件以及所选择的存储单元的电压来驱动左边的字线,右边的字线则施以可以避免电流通过右边存取元件的电压(502)。接着,在与所选择的存储单元对应的位线上施加读取偏压脉冲(503)。最后,读出所选择的存储单元的数据(504)。
若是存取的模式为设定模式,其操作则相似。控制逻辑会使得字线驱动器以足以使得电流经左边的存取元件以及所选择的存储单元的电压来驱动左边的字线,右边的字线则施以可以避免电流通过右边存取元件的电压(505)。其后,在与所选择的存储单元对应的位线上施加设定偏压脉冲(506)。最后,校验所选择的存储单元的数据(507)。
若是存取的模式为重置模式,控制逻辑会使得字线驱动器以足以使得平行流经左边与右边存取元件的电压来同时驱动左边与右边的字线(508)。接着,在位线上施加重置偏压脉冲(509)。最后,校验所选择的存储单元的数据(510)。
如上所述,在另一个实施例中,在设定模式期间、或是多阶存储单元的一个或多个设定模式期间,控制逻辑可以上述重置模式的方式同时驱动字线。
当然,有许多的材料可用于图3所示的结构之中。例如,可以采用铜金属化工艺,或是其他种类的金属化工艺,包括以铝、氮化钛以及以钨为主的材料均是可以采用的。再者,也可以使用非金属导电材料例如掺杂的多晶硅。在所示的实施例中的电极材料较佳的是TiN或TaN。或者,电极可以是TiAlN或TaAlN,或可以包括一种或是多种元素,例如是选自于Ti、W、Mo、Al、Ta、Cu、Pt、Ir、La、Ni及Ru及其合金所组成的族群。介电材料包括二氧化硅、聚亚酰胺、氮化硅或其他的介电沟填材料。在一个实施例中,沟填层包括对热以及电的绝缘性较佳的材料,以提供相变化存储单元热和电的绝缘。
低温介电材料例如是氮化硅层或氧化硅层,可以使用低于摄氏200度的工艺温度来形成的。等离子体增强型化学气相沉积法(PECVD)是一种适合用来形成二氧化硅的方法。
在一些情况下,可能需要以较高温的工艺例如是以高密度等离子体化学气相沉积法(HDPCVD)来沉积介电材料。再者,在目前掩模光刻工艺中所形成以及图案化的各种掩模的最小特征尺寸的等级为0.2微米(200nm)、0.14微米或0.09微米。随着光刻工艺的演进发展,工艺的实施例可以采用更窄的最小特征尺寸。此外,可以采用次光刻工艺以达到线宽为40nm或更小的等级。
在一些实施例中,除了所披露的介电材料之外,还包括热绝缘存储单元35的结构,或可以热绝缘存储单元35的结构来代替所披露的介电材料。热绝缘材料层的代表性材料包括Si、C、O、F以及H元素的组合。可以使用的热绝缘材料的实例包括SiO2、SiCOH、聚亚酰胺、聚酰胺以及氟碳聚合物。可以使用的热绝缘材料的其他材料的实例包括氟化的SiO2、硅倍半烷氧化合物(silsesquioxane)、聚芳醚、聚对二甲苯、氟化聚合物、氟化非晶型碳、类金刚石碳、多孔氧化硅、中孔二氧化硅(mesoporous silica)、多孔硅倍半烷氧化合物、多孔聚亚酰胺以及多孔聚芳醚。在另一实施例中,热绝缘结构包括填充气体之间隙位在相邻存储单元的介电沟填材料中,以热绝缘的。热和电性绝缘可以使用单一层或组合层。
在以上的说明中所使用的以上、以下、顶端、底端、上方、下方等仅是用来使本发明更易于了解,而并非用以限制本发明。
虽然本发明已以一优选实施例披露如上,然其并非用以限定本发明。本发明所属技术领域中的技术人员在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视后附的权利要求所界定的为准。
以上所述的任何或所有的专利、专利申请案以及公开的数据均并入本案参考之。

Claims (13)

1.一种自行对准存储元件,其包括存储单元,该存储单元可通过施加能量而在多个电学状态之间转换,该存储元件包括:
基底;
第一、第二、第三以及第四字线位于该基底之上,并且以第一方向排列,该字线具有多个顶面与多个侧面,其中至少有一顶面被介电材料覆盖,该介电材料之间定义出第一、第二以及第三间隙;
多个存取元件的多个端点位于基底中,第一端点直接位于该第二间隙之下,且第二端点直接形成于各该第一与各该第三间隙之下;
第一和第二源极线位于该第一和该第三间隙的中且电学连接各别的该第二端点之一;
第一电极位于该第二间隙的中且电学连接该第一端点;
存储单元位于该第二间隙之中,位于该第一电极上方且与该第一电极电学连接;
第二电极位于该存储单元之上且与其连接,并且沿第二方向排列,该第二方向与该第一方向垂直,该第一电极、该存储单元以及该第二电极自行对准。
2.如权利要求1所述的自行对准存储元件,其中该第二电极包括位线导体。
3.如权利要求1所述的自行对准存储元件,其中该存取元件包括具有共漏极的第一和第二晶体管。
4.如权利要求3所述的自行对准存储元件,其中该共漏极构成该第一端点。
5.如权利要求1所述的自行对准存储元件,还包括有源区,其中该存储单元包括相变化区;
该有源区至少包括具有非晶相和结晶相的相变化材料;
该存储单元具有设定状态和重置状态;
在该重置状态中,该存储单元的相变化区的至少一实质部分为非晶相,并且在该设定状态中,该存储单元的该相变化区的至少一实质部分为结晶相。
6.如权利要求1所述的自行对准存储元件,其中该字线被一距离分隔开,该距离等于最小光刻距离,以使得至少一部分的该第二间隙为次光刻尺寸间隙,该存储单元具有宽度是由该第二间隙所定义,该第二间隙的至少一部分的宽度为次光刻尺寸的宽度。
7.如权利要求1所述的自行对准存储元件,其中该存储单元沿平行于该第一方向测得一厚度,且还包括多个该第二电极,该第二电极被多个沟槽隔开,且该沟槽定义该厚度。
8.一种形成自行对准存储元件的方法,该存储元件包括存储单元,其可藉施加能量而在不同的电学状态之间转换,该方法包括:
(a)在基底上形成第一、第二、第三与第四字线导体,各字线导体具有字线顶面与字线侧面;
(b)在该字线侧面上形成多个介电侧壁间隙壁,该侧壁间隙壁彼此以裸露出该基底的第一、第二与第三间隙分隔;
(c)在该第一、该第二与该第三间隙的该基底中形成存取元件的第一和第二端点,第一端点直接位于该第二间隙下方,且第二端点直接形成于各该第一和第三间隙下方;
(d)在该第一和第三间隙中形成一源极线,其电学连接各别的该第二端点之一;
(e)在该第二间隙中形成第一电极,其电学连接该第一端点;
(f)在该第二间隙中沉积存储材料,以形成第一单元,其电学连接该第一电极;以及
(g)形成第二电极,其电学连接该存储单元。
9.如权利要求8所述的形成自行对准存储元件的方法,其中该(b)的形成步骤包括在该字线顶面形成多个介电层。
10.如权利要求9所述的形成自行对准存储元件的方法,其中该(b)的形成步骤的该介电层为氮化物。
11.如权利要求9所述的形成自行对准存储元件的方法,其中执行该(b)的形成步骤可以使得该字线导体以一距离分隔,该距离等于最小光刻距离,以该介电侧壁间隙壁定义出该第一、该第二与该第三间隙,至少一部分的该间隙为次光刻尺寸间隙,该存储单元具有宽度,该宽度是由至少一部分的该第二间隙定义,至少一部分的该宽度为次光刻尺寸宽度。
12.如权利要求8所述的形成自行对准存储元件的方法,在步骤(e)之后还包括以下步骤:
在该间隙填入介电材料;以及
移除该第二间隙中的至少一部分的该介电材料,以裸露出该第一电极。
13.如权利要求8所述的形成自行对准存储元件的方法,其中:
该存储材料沉积步骤形成第一组件,且还包括:
平坦化该第一组件,以形成具有平坦上表面的第二组件,且其中该第二电极形成步骤包括:
在该平坦上表面上沉积第二电极材料;
在该第二电极材料上形成多个第二电极掩模层;
在该第二电极掩模层之间形成多个沟槽;以及
移除该第二电极掩模层,且还包括:
在该沟槽中沉积一介电材料。
CN200710138293.XA 2006-10-24 2007-08-03 具双存取元件的相变化存储单元 Active CN101170120B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/552,487 US7863655B2 (en) 2006-10-24 2006-10-24 Phase change memory cells with dual access devices
US11/552,487 2006-10-24

Publications (2)

Publication Number Publication Date
CN101170120A CN101170120A (zh) 2008-04-30
CN101170120B true CN101170120B (zh) 2010-06-09

Family

ID=39397224

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200710138293.XA Active CN101170120B (zh) 2006-10-24 2007-08-03 具双存取元件的相变化存储单元

Country Status (2)

Country Link
US (2) US7863655B2 (zh)
CN (1) CN101170120B (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7863655B2 (en) * 2006-10-24 2011-01-04 Macronix International Co., Ltd. Phase change memory cells with dual access devices
US7778063B2 (en) * 2006-11-08 2010-08-17 Symetrix Corporation Non-volatile resistance switching memories and methods of making same
US7718989B2 (en) 2006-12-28 2010-05-18 Macronix International Co., Ltd. Resistor random access memory cell device
US7729161B2 (en) * 2007-08-02 2010-06-01 Macronix International Co., Ltd. Phase change memory with dual word lines and source lines and method of operating same
KR20100076274A (ko) * 2008-12-26 2010-07-06 주식회사 하이닉스반도체 상변화 메모리 소자 및 그 제조방법
US8064247B2 (en) 2009-01-14 2011-11-22 Macronix International Co., Ltd. Rewritable memory device based on segregation/re-absorption
US8692310B2 (en) 2009-02-09 2014-04-08 Spansion Llc Gate fringing effect based channel formation for semiconductor device
JP2010251529A (ja) * 2009-04-16 2010-11-04 Sony Corp 半導体記憶装置およびその製造方法
US8406033B2 (en) 2009-06-22 2013-03-26 Macronix International Co., Ltd. Memory device and method for sensing and fixing margin cells
US8363463B2 (en) 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
US8238149B2 (en) 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US7894254B2 (en) 2009-07-15 2011-02-22 Macronix International Co., Ltd. Refresh circuitry for phase change memory
US8110822B2 (en) 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
US8198619B2 (en) 2009-07-15 2012-06-12 Macronix International Co., Ltd. Phase change memory cell structure
US8064248B2 (en) 2009-09-17 2011-11-22 Macronix International Co., Ltd. 2T2R-1T1R mix mode phase change memory array
US8178387B2 (en) 2009-10-23 2012-05-15 Macronix International Co., Ltd. Methods for reducing recrystallization time for a phase change material
US8729521B2 (en) 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
US8497705B2 (en) 2010-11-09 2013-07-30 Macronix International Co., Ltd. Phase change device for interconnection of programmable logic device
US8467238B2 (en) 2010-11-15 2013-06-18 Macronix International Co., Ltd. Dynamic pulse operation for phase change memory
US8409960B2 (en) * 2011-04-08 2013-04-02 Micron Technology, Inc. Methods of patterning platinum-containing material
US9450022B1 (en) * 2012-09-05 2016-09-20 Hrl Laboratories, Llc Memristor devices and fabrication
CN103093815A (zh) * 2013-01-10 2013-05-08 华中科技大学 一种多值相变随机存储器的存储单元及操作方法
CN104124149B (zh) * 2013-04-28 2016-10-05 中芯国际集成电路制造(上海)有限公司 半导体器件的形成方法
US9741918B2 (en) 2013-10-07 2017-08-22 Hypres, Inc. Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit
CN104966717B (zh) * 2014-01-24 2018-04-13 旺宏电子股份有限公司 一种存储器装置及提供该存储器装置的方法
JP2015198136A (ja) * 2014-03-31 2015-11-09 株式会社東芝 半導体記憶装置及びその製造方法
US9672906B2 (en) 2015-06-19 2017-06-06 Macronix International Co., Ltd. Phase change memory with inter-granular switching
KR20200031315A (ko) * 2018-09-14 2020-03-24 삼성전자주식회사 쓰기 방향에 따른 비대칭 쓰기 동작을 실행하도록 구성되는 메모리 장치
US11810854B2 (en) * 2019-05-15 2023-11-07 Tokyo Electron Limited Multi-dimensional vertical switching connections for connecting circuit elements
FR3135161A1 (fr) * 2022-04-28 2023-11-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de fabrication d’un matériau à changement de phase

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1449021A (zh) * 2002-03-28 2003-10-15 旺宏电子股份有限公司 自对准可编程相变存储器件及其制造方法
US6815704B1 (en) * 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
CN1787249A (zh) * 2004-12-07 2006-06-14 旺宏电子股份有限公司 硫属化合物随机存取内存及其制造方法
US7071485B2 (en) * 2003-05-22 2006-07-04 Hitachi, Ltd. Semiconductor integrated circuit device

Family Cites Families (268)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
US3755751A (en) * 1971-10-21 1973-08-28 Motorola Inc High voltage solid-state amplifier having temperature responsive shutdown
IL61678A (en) * 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4345218A (en) * 1980-09-08 1982-08-17 National Semiconductor Corporation Two stage thermal shutdown
US4452592A (en) 1982-06-01 1984-06-05 General Motors Corporation Cyclic phase change coupling
JPS60137070A (ja) 1983-12-26 1985-07-20 Toshiba Corp 半導体装置の製造方法
US4719594A (en) * 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4876220A (en) 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (ja) 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
JP2606857B2 (ja) 1987-12-10 1997-05-07 株式会社日立製作所 半導体記憶装置の製造方法
US5534712A (en) * 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5177567A (en) * 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
JP2825031B2 (ja) 1991-08-06 1998-11-18 日本電気株式会社 半導体メモリ装置
US5166096A (en) 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
JPH05206394A (ja) 1992-01-24 1993-08-13 Mitsubishi Electric Corp 電界効果トランジスタおよびその製造方法
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
JP2884962B2 (ja) 1992-10-30 1999-04-19 日本電気株式会社 半導体メモリ
US5331291A (en) * 1992-12-17 1994-07-19 Krell Industries, Inc. Circuit and method for adjusting the bias of an amplifier based upon load current and operating temperature
US5515488A (en) 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
US5785828A (en) * 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5869843A (en) * 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5789758A (en) * 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5879955A (en) * 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
KR0182866B1 (ko) * 1995-12-27 1999-04-15 김주용 플래쉬 메모리 장치
US5687112A (en) * 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US6025220A (en) * 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5866928A (en) 1996-07-16 1999-02-02 Micron Technology, Inc. Single digit line with cell contact interconnect
US5789277A (en) * 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5985698A (en) 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US5998244A (en) * 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US5688713A (en) 1996-08-26 1997-11-18 Vanguard International Semiconductor Corporation Method of manufacturing a DRAM cell having a double-crown capacitor using polysilicon and nitride spacers
US6147395A (en) * 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US6087674A (en) * 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5716883A (en) * 1996-11-06 1998-02-10 Vanguard International Semiconductor Corporation Method of making increased surface area, storage node electrode, with narrow spaces between polysilicon columns
US6015977A (en) 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US5933365A (en) 1997-06-19 1999-08-03 Energy Conversion Devices, Inc. Memory element with energy control mechanism
US5902704A (en) 1997-07-02 1999-05-11 Lsi Logic Corporation Process for forming photoresist mask over integrated circuit structures with critical dimension control
US6768165B1 (en) * 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US6617192B1 (en) 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
US7023009B2 (en) 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6969866B1 (en) 1997-10-01 2005-11-29 Ovonyx, Inc. Electrically programmable memory element with improved contacts
FR2774209B1 (fr) * 1998-01-23 2001-09-14 St Microelectronics Sa Procede de controle du circuit de lecture d'un plan memoire et dispositif de memoire correspondant
US6087269A (en) 1998-04-20 2000-07-11 Advanced Micro Devices, Inc. Method of making an interconnect using a tungsten hard mask
US6372651B1 (en) 1998-07-17 2002-04-16 Advanced Micro Devices, Inc. Method for trimming a photoresist pattern line for memory gate etching
US6141260A (en) 1998-08-27 2000-10-31 Micron Technology, Inc. Single electron resistor memory device and method for use thereof
US6034882A (en) * 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6351406B1 (en) * 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6483736B2 (en) 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
JP2000164830A (ja) 1998-11-27 2000-06-16 Mitsubishi Electric Corp 半導体記憶装置の製造方法
US6291137B1 (en) 1999-01-20 2001-09-18 Advanced Micro Devices, Inc. Sidewall formation for sidewall patterning of sub 100 nm structures
DE19903325B4 (de) 1999-01-28 2004-07-22 Heckler & Koch Gmbh Verriegelter Verschluß für eine Selbstlade-Handfeuerwaffe, mit einem Verschlußkopf und Verschlußträger und einem federnden Sperring mit Längsschlitz
US6245669B1 (en) 1999-02-05 2001-06-12 Taiwan Semiconductor Manufacturing Company High selectivity Si-rich SiON etch-stop layer
US6750079B2 (en) 1999-03-25 2004-06-15 Ovonyx, Inc. Method for making programmable resistance memory element
KR100441692B1 (ko) 1999-03-25 2004-07-27 오보닉스, 아이엔씨. 개선된 접점을 갖는 전기적으로 프로그램가능한 메모리 소자
US6943365B2 (en) 1999-03-25 2005-09-13 Ovonyx, Inc. Electrically programmable memory element with reduced area of contact and method for making same
US6325392B1 (en) * 1999-03-26 2001-12-04 Jetseal, Inc. Multiple-ply resilient seal
US6177317B1 (en) * 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6075719A (en) 1999-06-22 2000-06-13 Energy Conversion Devices, Inc. Method of programming phase-change memory element
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6326307B1 (en) 1999-11-15 2001-12-04 Appllied Materials, Inc. Plasma pretreatment of photoresist in an oxide etch process
US6314014B1 (en) 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
US6576546B2 (en) * 1999-12-22 2003-06-10 Texas Instruments Incorporated Method of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications
TW586154B (en) 2001-01-05 2004-05-01 Macronix Int Co Ltd Planarization method for semiconductor device
US6927411B2 (en) * 2000-02-11 2005-08-09 Axon Technologies Corporation Programmable structure, an array including the structure, and methods of forming the same
US6444557B1 (en) * 2000-03-14 2002-09-03 International Business Machines Corporation Method of forming a damascene structure using a sacrificial conductive layer
US6420216B1 (en) * 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6888750B2 (en) * 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6420215B1 (en) * 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6563156B2 (en) * 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6440837B1 (en) * 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6512263B1 (en) 2000-09-22 2003-01-28 Sandisk Corporation Non-volatile memory cell array having discontinuous source and drain diffusions contacted by continuous bit line conductors and methods of forming
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6555860B2 (en) * 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6567293B1 (en) * 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6429064B1 (en) * 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
KR100382729B1 (ko) 2000-12-09 2003-05-09 삼성전자주식회사 반도체 소자의 금속 컨택 구조체 및 그 형성방법
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6627530B2 (en) 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6271090B1 (en) * 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6534781B2 (en) * 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
KR100625129B1 (ko) 2001-01-30 2006-09-18 가부시키가이샤 히타치세이사쿠쇼 반도체 집적 회로 장치의 제조 방법
KR100400037B1 (ko) 2001-02-22 2003-09-29 삼성전자주식회사 콘택 플러그를 구비하는 반도체 소자 및 그의 제조 방법
US6487114B2 (en) 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US6598589B2 (en) * 2001-03-26 2003-07-29 General Motors Corporation Engine control algorithm-cold start A/F modifier
US6596589B2 (en) 2001-04-30 2003-07-22 Vanguard International Semiconductor Corporation Method of manufacturing a high coupling ratio stacked gate flash memory with an HSG-SI layer
US6730928B2 (en) 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US6514788B2 (en) * 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
DE10128482A1 (de) 2001-06-12 2003-01-02 Infineon Technologies Ag Halbleiterspeichereinrichtung sowie Verfahren zu deren Herstellung
US6774387B2 (en) 2001-06-26 2004-08-10 Ovonyx, Inc. Programmable resistance memory element
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6589714B2 (en) * 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6673700B2 (en) * 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6511867B2 (en) * 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6605527B2 (en) * 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6737312B2 (en) 2001-08-27 2004-05-18 Micron Technology, Inc. Method of fabricating dual PCRAM cells sharing a common electrode
US6709958B2 (en) 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6507061B1 (en) 2001-08-31 2003-01-14 Intel Corporation Multiple layer phase-change memory
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) * 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US7045383B2 (en) 2001-09-19 2006-05-16 BAE Systems Information and Ovonyx, Inc Method for making tapered opening for programmable resistance memory element
US6566700B2 (en) * 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6800563B2 (en) 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6791859B2 (en) 2001-11-20 2004-09-14 Micron Technology, Inc. Complementary bit PCRAM sense amplifier and method of operation
US6545903B1 (en) * 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6512241B1 (en) * 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6867638B2 (en) * 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
JP3948292B2 (ja) * 2002-02-01 2007-07-25 株式会社日立製作所 半導体記憶装置及びその製造方法
US6972430B2 (en) 2002-02-20 2005-12-06 Stmicroelectronics S.R.L. Sublithographic contact structure, phase change memory cell with optimized heater shape, and manufacturing method thereof
US7122281B2 (en) 2002-02-26 2006-10-17 Synopsys, Inc. Critical dimension control using full phase and trim masks
JP3796457B2 (ja) 2002-02-28 2006-07-12 富士通株式会社 不揮発性半導体記憶装置
US6620715B1 (en) 2002-03-29 2003-09-16 Cypress Semiconductor Corp. Method for forming sub-critical dimension structures in an integrated circuit
US6670628B2 (en) 2002-04-04 2003-12-30 Hewlett-Packard Company, L.P. Low heat loss and small contact area composite electrode for a phase change media memory device
CN1639868A (zh) * 2002-04-09 2005-07-13 松下电器产业株式会社 非易失性存储器及其制造方法
US6864500B2 (en) * 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6605821B1 (en) * 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
US6864503B2 (en) * 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
JP4190238B2 (ja) * 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
KR20050053750A (ko) 2002-10-11 2005-06-08 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 상변환 물질을 포함하는 전기 장치
US6992932B2 (en) * 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
JP4928045B2 (ja) 2002-10-31 2012-05-09 大日本印刷株式会社 相変化型メモリ素子およびその製造方法
US6940744B2 (en) * 2002-10-31 2005-09-06 Unity Semiconductor Corporation Adaptive programming technique for a re-writable conductive memory device
US6744088B1 (en) * 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US6791102B2 (en) 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US7589343B2 (en) * 2002-12-13 2009-09-15 Intel Corporation Memory and access device and method therefor
US6815266B2 (en) * 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
EP1439583B1 (en) 2003-01-15 2013-04-10 STMicroelectronics Srl Sublithographic contact structure, in particular for a phase change memory cell, and fabrication process thereof
US7277317B2 (en) 2003-01-31 2007-10-02 Nxp B.V. MRAM architecture for low power consumption and high selectivity
US7115927B2 (en) 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
KR100486306B1 (ko) * 2003-02-24 2005-04-29 삼성전자주식회사 셀프 히터 구조를 가지는 상변화 메모리 소자
US6936544B2 (en) 2003-03-11 2005-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of removing metal etching residues following a metal etchback process to improve a CMP process
KR100504698B1 (ko) 2003-04-02 2005-08-02 삼성전자주식회사 상변화 기억 소자 및 그 형성 방법
KR100979710B1 (ko) 2003-05-23 2010-09-02 삼성전자주식회사 반도체 메모리 소자 및 제조방법
US20060006472A1 (en) 2003-06-03 2006-01-12 Hai Jiang Phase change memory with extra-small resistors
US7067865B2 (en) 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
US6838692B1 (en) * 2003-06-23 2005-01-04 Macronix International Co., Ltd. Chalcogenide memory device with multiple bits per cell
US7132350B2 (en) 2003-07-21 2006-11-07 Macronix International Co., Ltd. Method for manufacturing a programmable eraseless memory
US20050018526A1 (en) 2003-07-21 2005-01-27 Heon Lee Phase-change memory device and manufacturing method thereof
KR100615586B1 (ko) * 2003-07-23 2006-08-25 삼성전자주식회사 다공성 유전막 내에 국부적인 상전이 영역을 구비하는상전이 메모리 소자 및 그 제조 방법
US7893419B2 (en) 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
US6927410B2 (en) 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
US20050062087A1 (en) 2003-09-19 2005-03-24 Yi-Chou Chen Chalcogenide phase-change non-volatile memory, memory device and method for fabricating the same
DE10345455A1 (de) 2003-09-30 2005-05-04 Infineon Technologies Ag Verfahren zum Erzeugen einer Hartmaske und Hartmasken-Anordnung
US6910907B2 (en) * 2003-11-18 2005-06-28 Agere Systems Inc. Contact for use in an integrated circuit and a method of manufacture therefor
US6808991B1 (en) 2003-11-19 2004-10-26 Macronix International Co., Ltd. Method for forming twin bit cell flash memory
KR100558548B1 (ko) 2003-11-27 2006-03-10 삼성전자주식회사 상변화 메모리 소자에서의 라이트 드라이버 회로 및라이트 전류 인가방법
US6937507B2 (en) 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US7928420B2 (en) 2003-12-10 2011-04-19 International Business Machines Corporation Phase change tip storage cell
US7291556B2 (en) 2003-12-12 2007-11-06 Samsung Electronics Co., Ltd. Method for forming small features in microelectronic devices using sacrificial layers
KR100569549B1 (ko) * 2003-12-13 2006-04-10 주식회사 하이닉스반도체 상 변화 저항 셀 및 이를 이용한 불휘발성 메모리 장치
US7038230B2 (en) 2004-01-06 2006-05-02 Macronix Internation Co., Ltd. Horizontal chalcogenide element defined by a pad for use in solid-state memories
JP4124743B2 (ja) 2004-01-21 2008-07-23 株式会社ルネサステクノロジ 相変化メモリ
KR100564608B1 (ko) 2004-01-29 2006-03-28 삼성전자주식회사 상변화 메모리 소자
US6936840B2 (en) 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
US7858980B2 (en) 2004-03-01 2010-12-28 Taiwan Semiconductor Manufacturing Co., Ltd. Reduced active area in a phase change memory structure
JP4529493B2 (ja) * 2004-03-12 2010-08-25 株式会社日立製作所 半導体装置
KR100598100B1 (ko) 2004-03-19 2006-07-07 삼성전자주식회사 상변환 기억 소자의 제조방법
DE102004014487A1 (de) 2004-03-24 2005-11-17 Infineon Technologies Ag Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material
KR100532509B1 (ko) 2004-03-26 2005-11-30 삼성전자주식회사 SiGe를 이용한 트렌치 커패시터 및 그 형성방법
US7482616B2 (en) 2004-05-27 2009-01-27 Samsung Electronics Co., Ltd. Semiconductor devices having phase change memory cells, electronic systems employing the same and methods of fabricating the same
US6977181B1 (en) 2004-06-17 2005-12-20 Infincon Technologies Ag MTJ stack with crystallization inhibiting layer
US7359231B2 (en) * 2004-06-30 2008-04-15 Intel Corporation Providing current for phase change memories
KR100657897B1 (ko) 2004-08-21 2006-12-14 삼성전자주식회사 전압 제어층을 포함하는 메모리 소자
US7365385B2 (en) * 2004-08-30 2008-04-29 Micron Technology, Inc. DRAM layout with vertical FETs and method of formation
KR100610014B1 (ko) * 2004-09-06 2006-08-09 삼성전자주식회사 리키지 전류 보상 가능한 반도체 메모리 장치
US7443062B2 (en) 2004-09-30 2008-10-28 Reliance Electric Technologies Llc Motor rotor cooling with rotation heat pipes
KR100626388B1 (ko) 2004-10-19 2006-09-20 삼성전자주식회사 상변환 메모리 소자 및 그 형성 방법
US7364935B2 (en) 2004-10-29 2008-04-29 Macronix International Co., Ltd. Common word line edge contact phase-change memory
DE102004052611A1 (de) 2004-10-29 2006-05-04 Infineon Technologies Ag Verfahren zur Herstellung einer mit einem Füllmaterial mindestens teilweise gefüllten Öffnung, Verfahren zur Herstellung einer Speicherzelle und Speicherzelle
US20060108667A1 (en) 2004-11-22 2006-05-25 Macronix International Co., Ltd. Method for manufacturing a small pin on integrated circuits or other devices
US7202493B2 (en) * 2004-11-30 2007-04-10 Macronix International Co., Inc. Chalcogenide memory having a small active region
KR100827653B1 (ko) 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7220983B2 (en) 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
TWI260764B (en) 2004-12-10 2006-08-21 Macronix Int Co Ltd Non-volatile memory cell and operating method thereof
US20060131555A1 (en) 2004-12-22 2006-06-22 Micron Technology, Inc. Resistance variable devices with controllable channels
US20060138467A1 (en) 2004-12-29 2006-06-29 Hsiang-Lan Lung Method of forming a small contact in phase-change memory and a memory cell produced by the method
JP4646634B2 (ja) * 2005-01-05 2011-03-09 ルネサスエレクトロニクス株式会社 半導体装置
US7419771B2 (en) 2005-01-11 2008-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming a finely patterned resist
EP1684352B1 (en) * 2005-01-21 2008-09-17 STMicroelectronics S.r.l. Phase-change memory device and manufacturing process thereof
US7214958B2 (en) 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7099180B1 (en) 2005-02-15 2006-08-29 Intel Corporation Phase change memory bits reset through a series of pulses of increasing amplitude
US7229883B2 (en) * 2005-02-23 2007-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory device and method of manufacture thereof
JP2006244561A (ja) 2005-03-01 2006-09-14 Renesas Technology Corp 半導体装置
US7154774B2 (en) 2005-03-30 2006-12-26 Ovonyx, Inc. Detecting switching of access elements of phase change memory cells
US7488967B2 (en) 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
US7166533B2 (en) 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
KR100675279B1 (ko) 2005-04-20 2007-01-26 삼성전자주식회사 셀 다이오드들을 채택하는 상변이 기억소자들 및 그제조방법들
KR100668846B1 (ko) * 2005-06-10 2007-01-16 주식회사 하이닉스반도체 상변환 기억 소자의 제조방법
US7321130B2 (en) * 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7598512B2 (en) 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US7696503B2 (en) 2005-06-17 2010-04-13 Macronix International Co., Ltd. Multi-level memory cell having phase change element and asymmetrical thermal boundary
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US20060289848A1 (en) 2005-06-28 2006-12-28 Dennison Charles H Reducing oxidation of phase change memory electrodes
US7309630B2 (en) 2005-07-08 2007-12-18 Nanochip, Inc. Method for forming patterned media for a high density data storage device
US7345907B2 (en) 2005-07-11 2008-03-18 Sandisk 3D Llc Apparatus and method for reading an array of nonvolatile memory cells including switchable resistor memory elements
US20070037101A1 (en) 2005-08-15 2007-02-15 Fujitsu Limited Manufacture method for micro structure
US7615770B2 (en) * 2005-10-27 2009-11-10 Infineon Technologies Ag Integrated circuit having an insulated memory
US7417245B2 (en) 2005-11-02 2008-08-26 Infineon Technologies Ag Phase change memory having multilayer thermal insulation
US7397060B2 (en) * 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US20070111429A1 (en) 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7394088B2 (en) * 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7479649B2 (en) 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7829876B2 (en) 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7605079B2 (en) 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7292466B2 (en) 2006-01-03 2007-11-06 Infineon Technologies Ag Integrated circuit having a resistive memory
US7595218B2 (en) 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US20070158632A1 (en) 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7825396B2 (en) 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7351648B2 (en) * 2006-01-19 2008-04-01 International Business Machines Corporation Methods for forming uniform lithographic features
US7432206B2 (en) 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US7956358B2 (en) 2006-02-07 2011-06-07 Macronix International Co., Ltd. I-shaped phase change memory cell with thermal isolation
US7426134B2 (en) 2006-02-24 2008-09-16 Infineon Technologies North America Sense circuit for resistive memory
US7910907B2 (en) 2006-03-15 2011-03-22 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US20070235811A1 (en) 2006-04-07 2007-10-11 International Business Machines Corporation Simultaneous conditioning of a plurality of memory cells through series resistors
US7928421B2 (en) 2006-04-21 2011-04-19 Macronix International Co., Ltd. Phase change memory cell with vacuum spacer
US20070249090A1 (en) 2006-04-24 2007-10-25 Philipp Jan B Phase-change memory cell adapted to prevent over-etching or under-etching
US8129706B2 (en) 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory
US7608848B2 (en) 2006-05-09 2009-10-27 Macronix International Co., Ltd. Bridge resistance random access memory device with a singular contact structure
US7423300B2 (en) 2006-05-24 2008-09-09 Macronix International Co., Ltd. Single-mask phase change memory element
US7696506B2 (en) 2006-06-27 2010-04-13 Macronix International Co., Ltd. Memory cell with memory material insulation and manufacturing method
US7663909B2 (en) 2006-07-10 2010-02-16 Qimonda North America Corp. Integrated circuit having a phase change memory cell including a narrow active region width
US7785920B2 (en) 2006-07-12 2010-08-31 Macronix International Co., Ltd. Method for making a pillar-type phase change memory element
US7542338B2 (en) 2006-07-31 2009-06-02 Sandisk 3D Llc Method for reading a multi-level passive element memory cell array
US7684225B2 (en) 2006-10-13 2010-03-23 Ovonyx, Inc. Sequential and video access for non-volatile memory arrays
US20080225489A1 (en) 2006-10-23 2008-09-18 Teledyne Licensing, Llc Heat spreader with high heat flux and high thermal conductivity
US7863655B2 (en) 2006-10-24 2011-01-04 Macronix International Co., Ltd. Phase change memory cells with dual access devices
US20080101110A1 (en) 2006-10-25 2008-05-01 Thomas Happ Combined read/write circuit for memory
US20080137400A1 (en) 2006-12-06 2008-06-12 Macronix International Co., Ltd. Phase Change Memory Cell with Thermal Barrier and Method for Fabricating the Same
US20080165569A1 (en) 2007-01-04 2008-07-10 Chieh-Fang Chen Resistance Limited Phase Change Memory Material
US7515461B2 (en) 2007-01-05 2009-04-07 Macronix International Co., Ltd. Current compliant sensing architecture for multilevel phase change memory
US20080164453A1 (en) 2007-01-07 2008-07-10 Breitwisch Matthew J Uniform critical dimension size pore for pcram application
US7440315B2 (en) 2007-01-09 2008-10-21 Macronix International Co., Ltd. Method, apparatus and computer program product for stepped reset programming process on programmable resistive memory cell
US7456460B2 (en) 2007-01-29 2008-11-25 International Business Machines Corporation Phase change memory element and method of making the same
US7535756B2 (en) 2007-01-31 2009-05-19 Macronix International Co., Ltd. Method to tighten set distribution for PCRAM
US7701759B2 (en) 2007-02-05 2010-04-20 Macronix International Co., Ltd. Memory cell device and programming methods
US7463512B2 (en) 2007-02-08 2008-12-09 Macronix International Co., Ltd. Memory element with reduced-current phase change element
US8138028B2 (en) 2007-02-12 2012-03-20 Macronix International Co., Ltd Method for manufacturing a phase change memory device with pillar bottom electrode
US8008643B2 (en) 2007-02-21 2011-08-30 Macronix International Co., Ltd. Phase change memory cell with heater and method for fabricating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1449021A (zh) * 2002-03-28 2003-10-15 旺宏电子股份有限公司 自对准可编程相变存储器件及其制造方法
US7071485B2 (en) * 2003-05-22 2006-07-04 Hitachi, Ltd. Semiconductor integrated circuit device
US6815704B1 (en) * 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
CN1787249A (zh) * 2004-12-07 2006-06-14 旺宏电子股份有限公司 硫属化合物随机存取内存及其制造方法

Also Published As

Publication number Publication date
US20080106923A1 (en) 2008-05-08
US7863655B2 (en) 2011-01-04
US20110076825A1 (en) 2011-03-31
US8110456B2 (en) 2012-02-07
CN101170120A (zh) 2008-04-30

Similar Documents

Publication Publication Date Title
CN101170120B (zh) 具双存取元件的相变化存储单元
CN100550462C (zh) 具有l型电极的电阻式随机存取存储器单元
CN101290948B (zh) 存储器结构及其制造方法以及存储单元阵列的制造方法
CN101345251B (zh) 位于半导体衬底之上的存储单元阵列及其制造方法
US7910906B2 (en) Memory cell device with circumferentially-extending memory element
US7397060B2 (en) Pipe shaped phase change memory
CN100440486C (zh) 具有电极层处理的相变随机存取存储器的制造方法
US8062923B2 (en) Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US8106376B2 (en) Method for manufacturing a resistor random access memory with a self-aligned air gap insulator
CN101236985B (zh) 一种具有共平面电极表面的存储单元装置及其制造方法
US8222071B2 (en) Method for making self aligning pillar memory cell device
CN101083298B (zh) 具有缩减活性面积及接触面积的电阻式随机存取存储单元
CN100543966C (zh) 用以制造存储元件的方法
CN101257086B (zh) 具有环形顶终端底电极的存储装置及其制作方法
TWI321356B (en) Phase change memory cells with dual access devices

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant